WO2021115352A1 - 一种立体显示屏 - Google Patents

一种立体显示屏 Download PDF

Info

Publication number
WO2021115352A1
WO2021115352A1 PCT/CN2020/135054 CN2020135054W WO2021115352A1 WO 2021115352 A1 WO2021115352 A1 WO 2021115352A1 CN 2020135054 W CN2020135054 W CN 2020135054W WO 2021115352 A1 WO2021115352 A1 WO 2021115352A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
imaging frame
light
transflective
display screen
Prior art date
Application number
PCT/CN2020/135054
Other languages
English (en)
French (fr)
Inventor
谢云
Original Assignee
谢云
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 谢云 filed Critical 谢云
Publication of WO2021115352A1 publication Critical patent/WO2021115352A1/zh
Priority to US17/835,997 priority Critical patent/US11973925B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • H04N13/312Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers the parallax barriers being placed behind the display panel, e.g. between backlight and spatial light modulator [SLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/346Image reproducers using prisms or semi-transparent mirrors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • This application relates to the field of visual images, and specifically to a stereoscopic display screen.
  • Displaying 3D graphics in a computer means displaying three-dimensional graphics in a plane. Unlike the real world, there is a real three-dimensional space and a real distance space. Computers often need to use a 3D coordinate system to establish a sense of space as a reference, and cooperate with the human eye to observe the characteristics of objects close to large and small to form a three-dimensional object.
  • the existing transparent display technology has problems such as high cost, low definition, and large volume.
  • the transparent display solution used in the existing holographic projection system includes the most common transparent solution that uses 45° angle holographic glass reflection for secondary imaging.
  • this solution causes the image to be unclear.
  • the present application provides a three-dimensional display screen to solve the technical problems of high cost, low definition, and large volume of the holographic 3D effect of simulating objects in reality in the prior art.
  • a three-dimensional display screen includes: a light component for providing light signals with a light intensity lower than the light intensity of the video information; a transparent display component for displaying video information; a spatial imaging frame component for forming a front view and rear
  • the end is a hollow closed cavity sealed by a transparent display part; the internal area of the space imaging frame part forms the foreground stage imaging area; the space imaging frame part is formed with the central axis of the transparent display part as a mirror symmetry plane, on the opposite side of the light part
  • the position forms a virtual space imaging frame component, and the virtual space imaging frame component forms a virtual background stage imaging area;
  • the central axis of the transparent display component refers to the translucent and semi-reflective light component of the transparent display component, and the vertical space imaging frame
  • This design scheme can effectively reduce the volume of the entire display system, making the volume only half of the original, and also reducing the corresponding hardware consumption.
  • the optical component is embedded in the surface of the spatial imaging frame component, is arranged inside the spatial imaging frame component, or is arranged outside the spatial imaging frame; wherein the optical component embedded in the surface of the spatial imaging frame component includes the optical component that is set in the spatial imaging frame component.
  • the light source inside the surface and any light-transmitting structure is arranged inside the surface of the spatial imaging frame component, and the light-transmitting structure is a light component that transmits the light source from the inside of the surface of the spatial imaging frame component to the inner cavity of the imaging frame component.
  • the intensity of the optical signal projected by the optical component into the cavity of the imaging frame component is lower than the intensity of the optical signal of the video information.
  • the optical component when the optical component is arranged outside the imaging frame, it means that the optical component is formed by natural light; or the optical component is arranged outside the imaging frame means that the optical component is arranged outside the spatial imaging frame component.
  • the transparent display component includes a display screen and a semi-transparent and semi-reflective component; wherein the semi-transparent and semi-reflective component is arranged between the spatial imaging frame component and the display screen, and is attached to the surface of the display screen .
  • the transflective light component is a transflective and transflective screen, a transflective and transflective screen, a transflective and transflective screen, a transflective screen, a transflective screen, a transflective screen, and a one-way Glass or mirror glass, semi-transparent and semi-reflective film.
  • the three kinds of light signals are gathered into the human eye to form an image including a foreground stage imaging area image, a video content image, and a virtual background stage imaging area image.
  • the foreground stage imaging area is relative to the virtual rear stage imaging area.
  • the imaging area of the scene stage is close to the human eye;
  • the video information is located between the imaging area of the foreground stage and the imaging area of the virtual background stage;
  • the image formation of the imaging area of the foreground stage, the video content image, and the imaging area of the virtual background stage has a depth of field Three-dimensional view;
  • the specific three types of optical signals refer to: 1) The optical signal of the video information passes through the mirror glass (transflective glass) and enters the human eye; 2) The optical signal emitted from the imaging area of the foreground stage enters the human eye 3)
  • the light signal of the virtual background stage imaging area formed by the reflection of the transflective glass in the foreground stage imaging area enters the human eye.
  • This design scheme can abandon the use of traditional transparent screens, and use ordinary LCD screens (non-transparent screens) and transflective glass in the three-dimensional space created by the spatial imaging frame components, which can also achieve the effect of virtual transparency.
  • the cost of using traditional transparent screens is greatly reduced, and at the same time, the clarity is greatly improved due to the absence of background light on the transparent screen.
  • the video information is 3D video information or 2D video information with a black background.
  • the front end of the spatial imaging frame member is provided with a closing member for viewing.
  • the front end of the spatial imaging frame component is provided with a touch screen for controlling the playback of the display content displayed on the display screen.
  • the display screen, the touch screen, and the light components arranged inside or on the inner surface of the spatial imaging frame component are controlled by a processor, and the processor is arranged outside the spatial imaging frame component.
  • Figure 1 is a schematic diagram of the 3D display provided by this application.
  • FIG. 2 is a schematic diagram of a structure provided by an embodiment of the application.
  • the virtual transparent display part is formed by a display screen (non-transparent liquid crystal screen) and a semi-transparent and semi-reflective component attached to the display screen (or a semi-transparent and semi-reflective film is pasted on the display screen).
  • the image content displayed in this way can directly enter the eyes through the transflective light component, and the foreground stage light in front of the screen will also directly enter the eye.
  • the virtual background stage light formed after the screen foreground stage light is reflected by the transflective light component When entering the eyes, these three types of light overlap. Due to their respective light intensity and brightness, different degrees of transparency are finally achieved (for example, the pure black part of the video content has a brightness of 0.
  • this part of the light entering the eye is mainly the foreground stage. Reflected light, the foreground stage light and the reflected light have the same color, so this part feels completely transparent, and displays the contents of the virtual background stage formed by the specular reflection of the foreground stage).
  • the display screen and the transflective glass form a transparent display part
  • the transparent display part is perpendicular to the ground
  • a rectangular flat foreground stage is set in front of the transparent display part
  • a rectangular stage light part is set in the foreground stage.
  • the foreground stage imaging area is closer to the human eye relative to the virtual background stage imaging area;
  • the video information is located between the foreground stage imaging area and the virtual background stage imaging area;
  • the foreground stage imaging area The image, the video content image, and the virtual background stage imaging area image form a stereoscopic view with a sense of depth of field.
  • a three-dimensional display screen includes: a light component for providing light signals with a light intensity lower than the light intensity of the video information; a transparent display component for displaying video information; a spatial imaging frame component for forming a front view and rear A hollow closed cavity sealed by a transparent display part; the internal area of the spatial imaging frame part forms the foreground stage imaging area; since the transparent display part is provided with transflective glass to have a mirror effect, the spatial imaging frame part is formed to be transparent
  • the central axis of the display part is a mirror symmetry plane, and a virtual space imaging frame part is formed at a position opposite to the light part.
  • the virtual space imaging frame part forms a virtual background stage imaging area;
  • the central axis of the transparent display part refers to The semi-transparent and semi-reflective part of the transparent display part, the surface formed perpendicular to the axial direction of the spatial imaging frame part;
  • the axial direction of the spatial imaging frame member refers to the direction perpendicular to the surface on which the video information is displayed on the display screen.
  • the video information with a black background will appear transparent in the transparent display part. It can realize the pseudo 3D holographic reproduction of video information on the three-dimensional stage.
  • the internal area of the spatial imaging frame component is a hollow structure.
  • the optical signal of the optical component is blue light.
  • the optical component is embedded inside the surface of the spatial imaging frame component, is arranged inside the spatial imaging frame component, or is arranged outside the imaging frame.
  • the light component embedded in the surface of the spatial imaging frame component includes a light source arranged inside the surface of the spatial imaging frame component and an arbitrary light-transmitting structure is arranged inside the surface of the spatial imaging frame component.
  • the light-transmitting structure is The light source penetrates from the inside of the surface of the spatial imaging frame component to the light component of the cavity of the imaging frame component.
  • any light-transmitting structure provided on the inner surface of the spatial imaging frame component can be a grid-like line; or a foreground stage light as shown in FIG. 2.
  • the optical component is embedded in the spatial imaging frame component and the component is arranged inside the spatial imaging frame component refers to that the optical component is arranged in the hollow structure to form the video information displayed on the display screen with higher optical information intensity than the optical component.
  • the light component embedded in the surface of the spatial imaging frame component includes a light source arranged inside the surface of the spatial imaging frame component and an arbitrary light-transmitting structure is arranged inside the surface of the spatial imaging frame component. The light-transmitting structure removes the light source from The light component that penetrates from the surface of the spatial imaging frame component to the cavity of the imaging frame component.
  • the light component is arranged outside the imaging frame; when the light component is arranged outside the imaging frame, it means that the light component is formed by natural light.
  • the optical component is arranged outside the imaging frame; when the optical component is arranged outside the imaging frame, it means that the optical component is arranged outside the spatial imaging frame component.
  • the intensity of the video information displayed on the display screen is higher than that of the optical component.
  • the transparent display component includes a display screen and a semi-transparent and semi-reflective component; wherein the semi-transparent and semi-reflective component is arranged between the spatial imaging frame component and the display screen, and is attached to the display screen On the surface.
  • the transflective and transflective component is a transflective and transflective screen, a transflective and transflective screen, a transflective and transflective screen, a transflective screen, a transflective screen, a transflective screen, One-way glass, mirror glass or transflective film.
  • the video information is 3D video information or 2D video information with a black background.
  • the front end of the space imaging frame member is provided with a closed member for viewing.
  • the closing member may be transparent glass, transparent plastic, or the like.
  • the front end of the space imaging frame component is provided with a touch screen for controlling the display of the display content to play, and the touch screen can seal the front end of the space imaging component.
  • the display screen, the touch screen, and the optical components arranged inside or on the inner surface of the spatial imaging frame component are controlled by a processor, and the processor is arranged outside the spatial imaging frame component.
  • the display is a plug-in type, which is to use products that have been commercialized, such as mobile phones, PADs, monitors, and televisions, which are directly inserted to replace the screens in the display of this application. Can reduce the input of the content display part.
  • the functional modules in the various embodiments of the present application may be integrated together to form an independent part, or each module may exist alone, or two or more modules may be integrated to form an independent part.

Abstract

涉及视觉图像领域,一种立体显示屏包括:光部件,用于提供光强低于视频信息光强的光信号;透明显示部件,用于显示视频信息;空间成像框部件,用于形成前方可视,后端通过透明显示部件密封的中空封闭腔体;空间成像框部件内部区域形成前景舞台成像区;空间成像框部件形成以透明显示部件中轴面为镜像对称面,在光部件对侧位置形成虚拟空间成像框部件,虚拟空间成像框部件内部形成虚拟后景舞台成像区;前景舞台成像区与虚拟后景舞台成像区形成用于显示视频信息的镜像对称的立体空间成像区。

Description

一种立体显示屏 技术领域
本申请涉及视觉图像领域,具体而言,涉及一种立体显示屏。
背景技术
在视觉系统上,由于我们的两只眼睛存在大约60mm的间距,我们在观看物体的时候,左眼和右眼视网膜上的物体成像会存在一定程度的水平差异,这种现象就是我们平常说的视差(disparity/parallax),也正是有这种视差的存在,我们的大脑才能判断出物体的远近,也就是看到了立体纵深感的3D画面。
在计算机里显示3D图形,就是说在平面里显示三维图形,不像现实世界里,有真实的三维空间,有真实的距离空间。计算机里往往需要通过3D坐标系建立空间感作为参考,并配合人眼观察物体近大远小的特性形成物体立体效果。如下图(图1)所示,物体表面不同顶点位置通过对相应坐标位的遮挡,让人在大脑中建立了每个顶点在对应3D空间中的上下左右位置信息,物体表面所有顶点对坐标位的遮挡,最后在大脑中形成一个相对于这个坐标空间的3D立体信息,它让我们对画面中的物体有了距离上的预判,从而“欺骗”大脑,产生裸眼3D的效果,如图1所示。
因此如果希望在现实中模拟出物体的全息3D效果,需要在现实空间中建立一个三维参考空间,同时利用透明显示技术在此三维参考空间中显示物体三维内容。而现有的透明显示技术存在成本高、清晰度低、体积大等问题,例如现有全息投影系统使用的透明显示方案,包括最常见的利用45°角全息玻璃反射进行二次成像的透明方案,但这种方案由于二次成像后光损失严重再加上背景光的影响,导致影像不清晰,只有在较黑的环境中使用,同时投影源也无法隐藏;还有使用透明液晶屏加背光的方案或者直接 使用透明OLED屏的方案,因为透明显示需要较强的背光驱动,因此功耗高,同时价格昂贵。这几种方案共有的问题就是系统体积大;由于背景光的干扰,清晰度都不如传统显示屏高。
发明内容
本申请提供一种立体显示屏,以解决现有技术在现实中模拟出物体的全息3D效果成本高、清晰度低、体积大的技术问题。
本申请的实施例通过如下方式实现:
一种立体显示屏包括:光部件,用于提供光强低于所述视频信息光强的光信号;透明显示部件,用于显示视频信息;空间成像框部件,用于形成前方可视,后端通过透明显示部件密封的中空封闭腔体;所述空间成像框部件内部区域形成前景舞台成像区;所述空间成像框部件形成以透明显示部件中轴面为镜像对称面,在光部件对侧位置形成虚拟空间成像框部件,所述虚拟空间成像框部件内部形成虚拟后景舞台成像区;所述透明显示部件中轴面指的是透明显示部件的半透半反光线部件,垂直空间成像框部件轴向方向形成的面。这种设计方案可以有效减小整个显示系统的体积,使体积只有原来的一半,也减少相应的硬件消耗。
进一步的,所述光部件嵌入空间成像框部件表面内部、设置在空间成像框部件内部或者设置在空间成像框外部;其中,嵌入空间成像框部件表面内部的光部件包括通过设置在空间成像框部件表面内部中的光源和在空间成像框部件表面内部设置任意透光的结构,所述透光结构是将光源从空间成像框部件表面内部透出至成像框部件内腔的光部件。此时,光部件投射到成像框部件内腔中的光信号强度低于视频信息光信号强度。
进一步的,所述当所述光部件设置在成像框外部指的是光部件是自然光形成的;或者光部件设置在成像框外部指的是在空间成像框部件外部设 置光部件。
进一步的,所述透明显示部件包括显示屏和半透半反光线部件;其中,所述半透半反光线部件设置在空间成像框部件与显示屏之间,贴合在所述显示屏表面上。
进一步的,所述半透半反光线部件是半反半透式屏幕、半穿透半反射式屏幕、半反射半穿透式屏幕、半反射式屏幕、透反屏幕、半反屏幕、单向玻璃或镜显玻璃、半透半反膜。
进一步的,当显示屏显示视频信息时,三种光信号汇集进入人眼形成包括前景舞台成像区图像、视频内容图像、和虚拟后景舞台成像区图像,所述前景舞台成像区相对于虚拟后景舞台成像区靠近人眼;所述视频信息位于前景舞台成像区与虚拟后景舞台成像区中间;所述前景舞台成像区图像、视频内容图像、和虚拟后景舞台成像区图像形成具有景深感的立体视图;具体三种光信号指的是:1)是视频信息的光信号穿过镜面玻璃(半透半反玻璃)进入人眼;2)前景舞台成像区发射的光信号进入人眼;3)前景舞台成像区经过半透半反玻璃反射形成的虚拟后景舞台成像区光信号进入人眼。这种设计方案可以摒弃传统透明屏的使用,在空间成像框部件所营造出的立体空间中使用普通液晶屏(非透明屏)加半透半反玻璃,也能实现虚拟透明的效果,这将大大降低使用传统透明屏的成本,同时由于无背景光对透明屏的影响,清晰度也大大提升。
进一步的,所述视频信息是黑色背景的3D视频信息或者2D视频信息。
进一步的,所述空间成像框部件前端部设置用于观看的封闭部件。
进一步的,所述空间成像框部件前端部设置用于控制显示屏显示内容播放的触摸屏。这种设计方案也解决了传统45°角全息玻璃透明显示方案 无法实现触控的问题。
进一步的,所述显示屏、触摸屏、设置在空间成像框部件内部或内表面的光部件是通过处理器控制的,所述处理器是设置在空间成像框部件外部。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请提供的3D显示原理图;
图2为本申请实施例提供的一种结构示意图。
具体实施方式
下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行描述。
本申请原理:
虚拟透明显示部件是由显示屏(非透明液晶屏)和贴在显示屏上的半透半反光线部件(或在显示屏上贴半透半反膜)形成。这样展示的影像内容可以穿过半透半反光线部件直接进入眼中,同时屏幕前的前景舞台光线也会直接进入眼中,屏幕前景舞台光线通过半透半反光线部件反射后形成的虚拟后景舞台光线进入眼中,这三种光线重叠,由于各自光强及明度的不同,最终实现不同程度的透明效果(例如视频内容中纯黑色部分,明度为0,这时进入眼中的这部分光线主要为前景舞台反射光线,前景舞台光线与反射光线颜色相同,所以这部分感觉就是完全透明,并显示前景舞台经镜面反射形成的虚拟后景舞台的内容)。
本申请中,如图2所述,显示屏与半透半反玻璃组成透明显示部件,该透明显示部件垂直于地面,在透明显示部件前设置矩形平面前景舞台,前景舞台设置矩形舞台光部件。当显示屏显示视频信息内容时,三种光线汇集进入人眼形成图像,视频信息的光信号穿过半透半反光线部件直接进入人眼,前景舞台成像区发出的光信号直接进入人眼,而前景舞台成像区经过半透半反光线部件反射形成的虚拟后景舞台成像区光信号也会进入人眼,这三种光信号进入人眼后形成包括前景舞台成像区图像、视频内容图像、和虚拟后景舞台成像区图像,所述前景舞台成像区相对于虚拟后景舞台成像区靠近人眼;所述视频信息位于前景舞台成像区与虚拟后景舞台成像区中间;所述前景舞台成像区图像、视频内容图像、和虚拟后景舞台成像区图像形成具有景深感的立体视图。
一种立体显示屏包括:光部件,用于提供光强低于所述视频信息光强的光信号;透明显示部件,用于显示视频信息;空间成像框部件,用于形成前方可视,后端通过透明显示部件密封的中空封闭腔体;所述空间成像框部件内部区域形成前景舞台成像区;由于透明显示部件设置半透半反玻璃具有镜面效果,所以所述空间成像框部件形成以透明显示部件中轴面为镜像对称面,在光部件对侧位置形成虚拟空间成像框部件,所述虚拟空间成像框部件内部形成虚拟后景舞台成像区;所述透明显示部件中轴面指的是透明显示部件的半透半反光线部件,垂直空间成像框部件轴向方向形成的面;
空间成像框部件轴向方向指的是和显示屏显示视频信息的表面垂直的方向。
其中,黑色背景的视频信息在透明显示部件中会呈现透明状。即可实现视频信息在立体舞台上进行伪3D全息再现。
其中,空间成像框部件内部区域是镂空结构。
其中,所述光部件的光信号是兰光。
其中,所述光部件嵌入空间成像框部件表面内部、设置在空间成像框部件内部或者设置在成像框外部。
具体实施例1:所述光部件嵌入空间成像框部件表面内部包括通过设置在空间成像框部件表面内部中的光源和在空间成像框部件表面内部设置任意透光的结构,所述透光结构是将光源从空间成像框部件表面内部透出至成像框部件内腔的光部件。
例如,空间成像框部件内表面设置任意透光的结构可以是格状线条;或如图2中的前景舞台灯光。
具体实施例二:光部件嵌入空间成像框部件设置在空间成像框部件内部指的是在镂空结构中设置光部件,形成显示屏显示的视频信息光信息强度高于光部件的光信息强度。具体的,嵌入空间成像框部件表面内部的光部件包括通过设置在空间成像框部件表面内部中的光源和在空间成像框部件表面内部设置任意透光的结构,所述透光结构是将光源从空间成像框部件表面内部透出至成像框部件内腔的光部件。
具体实施例三:光部件设置在成像框外部;所述当所述光部件设置在成像框外部指的是光部件是自然光形成的。
当白天时候,完全不需要专门的光部件,自然光即可形成与光部件同等功能,使得显示屏显示的视频信息光信息强度高于光部件的光信息强度。
具体实施例四:光部件设置在成像框外部;所述当光部件设置在成像框外部指的是在空间成像框部件外部设置光部件。
当晚上时候,可通过在空间成像框部件前端口的外部设置光部件,形成显示屏显示的视频信息光信息强度高于光部件的光信息强度。
具体实施例五:所述透明显示部件包括显示屏和半透半反光线部件;其中,所述半透半反光线部件设置在空间成像框部件与显示屏之间,贴合 在所述显示屏表面上。
具体实施例七:所述半透半反光线部件是半反半透式屏幕、半穿透半反射式屏幕、半反射半穿透式屏幕、半反射式屏幕、透反屏幕、半反屏幕、单向玻璃、镜显玻璃或半透半反膜。
具体实施例八:所述视频信息是黑色背景的3D视频信息或者2D视频信息。
具体实施例九:所述空间成像框部件前端部设置用于观看的封闭部件。所述封闭部件可以是透明玻璃、透明塑料等。
具体实施例十:所述空间成像框部件前端部设置用于控制显示屏显示内容播放的触摸屏,所述触摸屏可以密封空间成像部件前端部。
具体实施例十一:,所述显示屏、触摸屏、设置在空间成像框部件内部或内表面的光部件是通过处理器控制的,所述处理器是设置在空间成像框部件外部。
具体实施例十二:所述显示屏是一种是插屏式,就是利用已经商品化的产品,例如:手机,PAD,显示器,电视机,直接插入以取代本申请显示屏中的屏幕,这样可以减少内容显示部分的投入。
在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。应注意到:相似的标号和字母在下面的附图中表示 类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (10)

  1. 一种立体显示屏,其特征在于包括:
    光部件,用于提供光强低于所述视频信息光强的光信号;
    透明显示部件,用于显示视频信息;
    空间成像框部件,用于形成前方可视,后端通过透明显示部件密封的中空封闭腔体;所述空间成像框部件内部区域形成前景舞台成像区;所述空间成像框部件形成以透明显示部件中轴面为镜像对称面,在光部件对侧位置形成虚拟空间成像框部件,所述虚拟空间成像框部件内部形成虚拟后景舞台成像区;所述透明显示部件中轴面指的是透明显示部件的半透半反光线部件,垂直空间成像框部件轴向方向形成的面;
    所述前景舞台成像区与虚拟后景舞台成像区形成用于显示视频信息的镜像对称的立体空间成像区。
  2. 如权利要求1所述的显示屏,其特征在于所述光部件嵌入空间成像框部件表面内部、设置在空间成像框部件内部或者设置在空间成像框外部;其中,嵌入空间成像框部件表面内部的光部件包括通过设置在空间成像框部件表面内部中的光源和在空间成像框部件表面内部设置任意透光的结构,所述透光结构是将光源从空间成像框部件表面内部透出至成像框部件内腔的光部件。
  3. 如权利要求1或2所述的显示屏,其特征在于所述当所述光部件设置在成像框外部指的是光部件是自然光形成的;或者光部件设置在成像框外部指的是在空间成像框部件外部设置光部件。
  4. 如权利要求3所述的显示屏,其特征在于所述透明显示部件包括显示 屏和半透半反光线部件;其中,所述半透半反光线部件设置在空间成像框部件与显示屏之间,贴合在所述显示屏表面上。
  5. 如权利要求1、2或4所述的显示屏,其特征在于所述半透半反光线部件是半反半透式屏幕、半穿透半反射式屏幕、半反射半穿透式屏幕、半反射式屏幕、透反屏幕、半反屏幕、单向玻璃或镜显玻璃、半透半反膜。
  6. 如权利要求5所述的显示屏,其特征在于:当显示屏显示视频信息时,三种光信号汇集进入人眼形成包括前景舞台成像区图像、视频内容图像、和虚拟后景舞台成像区图像,所述前景舞台成像区相对于虚拟后景舞台成像区靠近人眼;所述视频信息位于前景舞台成像区与虚拟后景舞台成像区中间;所述前景舞台成像区图像、视频内容图像、和虚拟后景舞台成像区图像形成具有景深感的立体视图;具体三种光信号指的是:
    1)是视频信息的光信号穿过半透半反光线部件进入人眼;
    2)前景舞台成像区发射的光信号进入人眼;
    3)前景舞台成像区经过半透半反光线部件反射形成的虚拟后景舞台成像区光信号进入人眼。
  7. 如权利要求1、2、4或6所述的显示屏,其特征在于所述视频信息是黑色背景的3D视频信息或者黑色背景的2D视频信息。
  8. 如权利要求7所述的显示屏,其特征在于所述空间成像框部件前端部设置用于观看的封闭部件。
  9. 如权利要求7所述的显示屏,其特征在于所述空间成像框部件前端部设置用于控制显示屏显示内容播放的触摸屏,所述触摸屏密封空间成像部件前端部。
  10. 如权利要求9所述的显示屏,其特征在于所述显示屏、触摸屏、设置在空间成像框部件内部或内表面的光部件是通过处理器控制的,所述处理器是设置在空间成像框部件外部的。
PCT/CN2020/135054 2019-12-09 2020-12-09 一种立体显示屏 WO2021115352A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/835,997 US11973925B2 (en) 2019-12-09 2022-06-09 Stereoscopic display screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911256071.7 2019-12-09
CN201911256071.7A CN110750000A (zh) 2019-12-09 2019-12-09 一种立体显示屏

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/835,997 Continuation US11973925B2 (en) 2019-12-09 2022-06-09 Stereoscopic display screen

Publications (1)

Publication Number Publication Date
WO2021115352A1 true WO2021115352A1 (zh) 2021-06-17

Family

ID=69285870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135054 WO2021115352A1 (zh) 2019-12-09 2020-12-09 一种立体显示屏

Country Status (3)

Country Link
US (1) US11973925B2 (zh)
CN (1) CN110750000A (zh)
WO (1) WO2021115352A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110750000A (zh) 2019-12-09 2020-02-04 谢云 一种立体显示屏

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144800A (ja) * 2002-10-22 2004-05-20 Nippon Telegr & Teleph Corp <Ntt> 三次元表示装置
CN102478715A (zh) * 2010-11-26 2012-05-30 京东方科技集团股份有限公司 立体显示装置
CN102654653A (zh) * 2011-03-23 2012-09-05 京东方科技集团股份有限公司 景深融合型立体显示装置
CN104918038A (zh) * 2014-03-11 2015-09-16 崔海龙 裸眼立体观测装置
CN209543887U (zh) * 2019-03-26 2019-10-25 谢云 一种箱体式全息展示柜
CN110750000A (zh) * 2019-12-09 2020-02-04 谢云 一种立体显示屏
CN210670388U (zh) * 2019-12-09 2020-06-02 谢云 一种立体显示屏

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124639A (ja) * 2000-08-09 2002-04-26 Seiko Instruments Inc 半導体装置及びその製造方法
JP5563250B2 (ja) * 2009-06-30 2014-07-30 株式会社ジャパンディスプレイ 立体画像表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144800A (ja) * 2002-10-22 2004-05-20 Nippon Telegr & Teleph Corp <Ntt> 三次元表示装置
CN102478715A (zh) * 2010-11-26 2012-05-30 京东方科技集团股份有限公司 立体显示装置
CN102654653A (zh) * 2011-03-23 2012-09-05 京东方科技集团股份有限公司 景深融合型立体显示装置
CN104918038A (zh) * 2014-03-11 2015-09-16 崔海龙 裸眼立体观测装置
CN209543887U (zh) * 2019-03-26 2019-10-25 谢云 一种箱体式全息展示柜
CN110750000A (zh) * 2019-12-09 2020-02-04 谢云 一种立体显示屏
CN210670388U (zh) * 2019-12-09 2020-06-02 谢云 一种立体显示屏

Also Published As

Publication number Publication date
US11973925B2 (en) 2024-04-30
CN110750000A (zh) 2020-02-04
US20220321864A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
CN102754013B (zh) 三维立体成像方法、系统和成像设备
US8976323B2 (en) Switching dual layer display with independent layer content and a dynamic mask
KR101426726B1 (ko) 베젤이 보이지 않는 투광커버를 구비한 멀티스크린 디스플레이 장치
US8711061B2 (en) Multiplanar image displays and media formatted to provide 3D imagery without 3D glasses
US9524700B2 (en) Method and system for displaying images of various formats on a single display
WO2017020557A1 (zh) 虚拟现实眼镜及显示方法
CN210670388U (zh) 一种立体显示屏
US20140267960A1 (en) Modified Viewable Display Apparatus
WO2021115352A1 (zh) 一种立体显示屏
US5585967A (en) Three dimensional virtual image system
CN203337990U (zh) 指向光源3d成像屏幕及裸眼3d投影系统
US20180348533A1 (en) Display system and display method of display system
CN210323611U (zh) 一种高亮度增强现实3d显示装置
US10802281B2 (en) Periodic lenses systems for augmented reality
CN105739110A (zh) 局部裸眼3d显示器
CN213601003U (zh) 一种景深裸眼立体显示装置
CN211426960U (zh) 一种透明显示器及一种显示系统
KR102394164B1 (ko) 유사 홀로그램 디스플레이 어셈블리 및 이를 구비한 유사 홀로그램 디스플레이 장치 및 그 제조 방법
JP4283232B2 (ja) 3次元表示方法および3次元表示装置
CN104076592A (zh) 指向光源裸眼3d投影系统及其3d成像屏幕
Smithwick et al. LCD masks for spatial augmented reality
US10605968B2 (en) Imaging system
CN201637936U (zh) 三维立体成像系统和成像设备
TW201427386A (zh) 可平衡左右眼影像亮度之立體影像系統及相關驅動方法
CN108469684B (zh) 一种透明显示器及一种显示系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899896

Country of ref document: EP

Kind code of ref document: A1