WO2021115145A1 - 光纤激光器 - Google Patents
光纤激光器 Download PDFInfo
- Publication number
- WO2021115145A1 WO2021115145A1 PCT/CN2020/132656 CN2020132656W WO2021115145A1 WO 2021115145 A1 WO2021115145 A1 WO 2021115145A1 CN 2020132656 W CN2020132656 W CN 2020132656W WO 2021115145 A1 WO2021115145 A1 WO 2021115145A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- grating
- fiber
- active
- resonant cavity
- fiber laser
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/0675—Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
- H01S3/1061—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using a variable absorption device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
- H01S3/1123—Q-switching
- H01S3/127—Plural Q-switches
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1618—Solid materials characterised by an active (lasing) ion rare earth ytterbium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/081—Construction or shape of optical resonators or components thereof comprising three or more reflectors
- H01S3/082—Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression
- H01S3/0823—Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression incorporating a dispersive element, e.g. a prism for wavelength selection
- H01S3/0826—Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
- H01S3/09415—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
- H01S3/1123—Q-switching
- H01S3/113—Q-switching using intracavity saturable absorbers
Definitions
- This application relates to the field of laser technology, in particular to a fiber laser.
- fiber lasers have become one of the research hotspots in the laser field and have been widely used in many fields, such as laser processing, laser medical treatment, optical communications, national defense and military science, and scientific research.
- a stable standing wave is formed based on grating feedback and resonated in the FP cavity, which is modulated by the saturated absorption of the fiber.
- Current passive Q-switching is mainly based on saturable absorption modulation such as graphene, carbon nanotubes, and semiconductor saturated absorption mirrors.
- the solution cannot be fully optical, and the cost is relatively high.
- While purely active Q-switching achieves full fiber optics, it cannot compress the pulse width to a very narrow range, and it is difficult to obtain stable high-energy pulses.
- the two schemes of single passive Q adjustment and single active Q adjustment have no good application space in industrial mass production. For current traditional fiber lasers, it is impossible to achieve full-fiber active and passive dual Q-switching.
- the purpose of this application is to provide a fiber laser with a narrow pulse width and high peak value that can realize full fiberization, has stable high-energy pulses, and has a narrow pulse width and a high peak value.
- the present application provides a fiber laser, which includes a first resonant cavity, a second resonant cavity, a pump source, and a beam combiner.
- the first resonant cavity includes a fourth grating, a first active fiber, and a first feedback element, The first end of the fourth grating and the first feedback element are connected through the first active optical fiber
- the second resonant cavity includes a second grating, a second active optical fiber, and a second feedback element , The first end of the second grating is connected to the second feedback element through the second active optical fiber, and a Q switch is provided in the first resonant cavity or the second resonant cavity
- the beam combiner includes The pump end, the signal end and the output end, the pump source is connected to the pump end of the beam combiner, and the signal end or output end of the beam combiner is connected to the second resonant cavity and connected to the second resonant cavity.
- the first resonant cavity is located in the second resonant cavity, the first resonant cavity and the second resonant cavity overlap, or the second resonant cavity and the first resonant cavity are sequentially Set up.
- the pump source generates laser light under electrical excitation and enters the second active fiber through the beam combiner to form a broadband spectrum of spontaneous emission ASE.
- the Q switch When the Q switch is in the off state, energy accumulation is formed in the second active fiber.
- the Q switch When the Q switch is turned on, under the feedback selection of the first feedback element and the second feedback element, a giant pulse first laser is formed, and the wavelength of the first laser is within the absorption line of the first active optical fiber.
- the first active optical fiber, the inner cavity feedback unit and the fourth grating form a laser resonant cavity.
- the first active optical fiber Under the excitation of the first laser energy, the first active optical fiber generates stimulated absorption of the first laser to form a population inversion ,
- the second laser with a narrower pulse width is formed by the feedback of the first feedback element and the fourth grating, and the second laser is amplified again by the first active fiber, and the second laser is output through the output port of the laser.
- the feedback adjustment of the grating can be used to form laser output with different photon energies, and the working mode includes continuous and pulsed.
- This solution can adjust the size of the energy stored in the external cavity through the duty cycle of the Q switch, which helps to reduce the pulse width of the fiber laser, increase the peak power, expand the application of the pulse fiber laser, and fully realize the full fiber optics.
- the Q switch may be arranged between the fourth grating and the first active fiber, or between the first active fiber and the first feedback element, or The Q switch is provided between the fourth grating and the second active fiber, or between the second active fiber and the second grating.
- the first feedback element is a third grating
- the second feedback element is a first grating
- the first end of the fourth grating is connected to the third grating through the first active optical fiber
- the second end of the fourth grating is connected to the first end of the second grating through the second active optical fiber
- the first end of the third grating is connected to the first grating.
- the laser of the present application uses the first active fiber as a saturable absorber to form passive Q-switching, and a Q switch as an active modulation device to form active Q-switching.
- the Q switch plays an active modulation role
- the first active optical fiber plays a passive modulation role, forming an active and passive dual Q modulation.
- the pump source generates laser light under electrical excitation and enters the second active fiber via the combiner to form a broadband spectrum of spontaneous emission ASE.
- the Q switch When the Q switch is in the off state, the second active fiber Energy accumulation is formed.
- the Q switch When the Q switch is turned on, the first grating and the second grating are feedback selection to form a giant pulse first laser.
- the wavelength of the first laser is at the absorption line of the first active fiber Inside, the first active fiber, the third grating, and the fourth grating form a laser resonant cavity.
- the Yb ion in the first active fiber produces excited absorption of the first laser to form a particle number Inverted, the second laser with a narrower pulse width is formed by the feedback of the third grating and the fourth grating, and the second laser is amplified again by the first active fiber.
- the second laser reaches the output end of the beam combiner. The output device.
- the first feedback element is a third grating
- the second feedback element is a first grating
- the first end of the fourth grating is connected to the first grating through the first active optical fiber.
- the second end of the grating, the second end of the fourth grating is connected to the first end of the second grating through the second active optical fiber, and the first end of the first grating is connected to the third grating.
- the first feedback element and the second feedback element are the same broadband mirror, and the first end of the fourth grating is connected to the broadband mirror through the first active optical fiber.
- the first feedback element and the second feedback element are the same first grating, and the first end of the fourth grating is connected to the first grating through the first active optical fiber.
- the beam combiner is placed outside the second resonant cavity, and the signal end of the beam combiner is connected to the second resonant cavity through the second end of the second grating and connected to the second resonant cavity.
- the second active optical fiber or the output end of the beam combiner is connected to the second resonant cavity through the first end of the second feedback element and connected to the second active optical fiber.
- the beam combiner reverse-pumps the first active fiber, which has high conversion efficiency, reduces intracavity loss, lowers the threshold value of second laser generation, and greatly reduces laser resonance conditions in principle.
- the beam combiner is placed in the second resonant cavity and outside the first resonant cavity, and the beam combiner is connected to the second end of the fourth grating and Between the second active optical fibers, the output end of the combiner is connected to the second active optical fiber.
- the output port of the fiber laser is connected to an output device, and the output device is an isolator or a collimator.
- the first active optical fiber and the second active optical fiber are Yb rare earth ion doped optical fibers.
- the Yb ions in the first active optical fiber produce stimulated absorption of the first laser light, resulting in population inversion.
- N pump sources there are N pump sources, where N is a natural number. In some embodiments, N is a natural number from 1 to 19. In other embodiments, the number of pump sources may be two.
- the pump source includes but is not limited to a semiconductor chip pump source, and the wavelength range of the pump source is 800-1000 nm.
- the beam combiner includes but is not limited to a (N+1)x1 beam combiner, where N is any natural number. In some embodiments, N is a natural number from 1 to 19.
- the center wavelength ⁇ 1 of the first grating is 200 ⁇ 1 ⁇ 1600, and the reflectivity R 1 is 0 ⁇ R 1 ⁇ 1;
- the center wavelength ⁇ 2 of the second grating is 200 ⁇ 2 ⁇ 1600 ,
- the reflectivity R 2 is 0 ⁇ R 2 ⁇ 1;
- the third grating center wavelength ⁇ 3 is 200 ⁇ 3 ⁇ 1600, and the reflectivity R 3 is 0 ⁇ R 3 ⁇ 1;
- the fourth grating center wavelength ⁇ 4 is 200 ⁇ 4 ⁇ 1600, and the reflectivity R 4 is 0 ⁇ R 4 ⁇ 1.
- passive Q-switching is formed by using the first active optical fiber as a saturable absorber, and the Q-switch is used as an active modulator to form active Q-switching.
- the Q-switch plays a role of active modulation, and the first active optical fiber Passive modulation is formed to realize the active and passive dual Q modulation of this application.
- the feedback adjustment of the grating can be used to form laser output with different photon energies, and the working mode includes continuous and pulsed.
- This solution can adjust the size of the energy stored in the external cavity through the duty cycle of the Q switch, which is helpful to reduce the pulse width of the fiber laser, increase the peak power, expand the application of the pulse fiber laser, and fully realize the full fiber.
- Active and passive dual Q-switching is based on an all-fiber technology solution to obtain narrow pulse width and high peak power.
- the saturable absorber in this application is a Yb ion-doped fiber.
- Yb in the fiber is a metal ion.
- the Yb rare earth ion doped fiber is used as a saturable absorber because of the unique energy level structure of the rare earth ion Yb. Therefore, in this application, rare earth ion-doped fiber is used as a saturable absorber, which can omit the use of a saturable absorber and realize an all-fiber optical path.
- FIG. 1 is a schematic diagram of Embodiment 1 of the fiber laser of this application.
- Embodiment 2 is a schematic diagram of Embodiment 2 of the fiber laser of this application.
- Embodiment 3 is a schematic diagram of Embodiment 3 of the fiber laser of this application.
- Embodiment 4 is a schematic diagram of Embodiment 4 of the fiber laser of this application.
- Embodiment 5 is a schematic diagram of Embodiment 5 of the fiber laser of this application.
- Embodiment 6 is a schematic diagram of Embodiment 6 of the fiber laser of this application.
- FIG. 7 is a schematic diagram of Embodiment 7 of the fiber laser of this application.
- FIG. 8 is a schematic diagram of Embodiment 8 of the fiber laser of this application.
- FIG. 9 is a schematic diagram of Embodiment 9 of the fiber laser of this application.
- Embodiment 10 is a schematic diagram of Embodiment 10 of the fiber laser of this application.
- FIG. 11 is a schematic diagram of Embodiment 11 of the fiber laser of this application.
- the first embodiment of the fiber laser of the present application which includes a first resonant cavity, a second resonant cavity, a pump source 900, a beam combiner 800, and an output device 101.
- the first resonant cavity is located in the second resonant cavity.
- the first resonant cavity includes a fourth grating 400, a first active fiber 500, and a first feedback element
- the second resonant cavity includes a second grating 200, a second active fiber 600, and a second feedback element.
- the first feedback element is the third grating 300
- the second feedback element is the first grating 100.
- the beam combiner 800 in the first embodiment is placed outside the second resonant cavity, and the beam combiner 800 includes a pump end connected to the pump source 900, an output end connected to the output device 101, and The signal end connected to the second active optical fiber 600.
- the signal end of the beam combiner 800 is connected to the second resonant cavity through the second end of the second grating 200 and connected to the second active optical fiber 600 .
- the pump source 900 is connected to the pump end of the beam combiner 800, and the signal end of the beam combiner 800 is connected to the second resonant cavity and connected to the second active optical fiber 600.
- the first end of the grating 200 is connected to the second end of the fourth grating 400 through the second active fiber 600, and the second end of the second grating 200 is connected to the output port of the fiber laser.
- the output port of is connected to the output device 101.
- the first end of the fourth grating 400 is connected to the second end of the third grating 300 through the first active optical fiber 500, and a Q switch is provided between the fourth grating 400 and the third grating 300 700.
- the first end of the third grating 300 is connected to the first grating 100.
- the Q switch is arranged between the fourth grating 400 and the first active optical fiber 500.
- the laser of the present application uses the first active fiber as a saturable absorber to form passive Q-switching, and a Q switch as an active modulation device to form active Q-switching.
- the Q switch plays an active modulation role
- the first active optical fiber plays a passive modulation role.
- the first active optical fiber 500 and the second active optical fiber 600 are Yb rare earth ion doped fibers. The Yb ions in the first active optical fiber produce stimulated absorption of the first laser light, resulting in population inversion.
- the Q switch described here is an active Q switch, which can specifically be an acousto-optic Q switch, an electro-optical Q switch, or a mechanical Q switch (such as a rotating mirror Q switch).
- the output device is the collimator 101. In other embodiments, the output device may also be an isolator.
- the number of the pump source 900 is two, and the pump source 900 includes but is not limited to a semiconductor chip pump source, and the wavelength range is 800-1000 nm.
- the beam combiner 800 includes but is not limited to a (N+1) ⁇ 1 beam combiner, where N is any natural number.
- the central wavelength ⁇ 1 of the first grating is 200 ⁇ ⁇ 1 ⁇ 1600, and the reflectivity R 1 is 0 ⁇ R 1 ⁇ 1;
- the central wavelength ⁇ 2 of the second grating is 200 ⁇ 2 ⁇ 1600, and the reflectivity R 2 Is 0 ⁇ R 2 ⁇ 1;
- the third grating center wavelength ⁇ 3 is 200 ⁇ 3 ⁇ 1600, and the reflectivity R 3 is 0 ⁇ R 3 ⁇ 1;
- the fourth grating center wavelength ⁇ 4 is 200 ⁇ 4 ⁇ 1600, the reflectivity R 4 is 0 ⁇ R 4 ⁇ 1.
- the working mode of the fiber laser includes continuous or pulsed.
- the pump source 900 generates laser light under electrical excitation and enters the second active fiber 600 through the combiner 800 to form a broadband spectrum of spontaneous emission ASE.
- the Q switch 700 When the Q switch 700 is in the off state, the second Energy accumulation is formed in the active optical fiber 600.
- the Q switch 700 is turned on, the first grating 100 and the second grating 200 form a giant pulse of the first laser light, and the wavelength of the first laser light is at Within the absorption spectrum of the first active fiber 500, the first active fiber 500 and the third grating 300 and the fourth grating 400 form a laser resonant cavity.
- Yb in the first active fiber 500 The ions produce stimulated absorption of the first laser to form a population inversion.
- the third grating 300 and the fourth grating 400 feed back to form a second laser with a narrower pulse width.
- the second laser is amplified by the first active optical fiber 500.
- the second laser light reaches the output device 101 via the output end of the beam combiner 800.
- the feedback adjustment of the grating can be used to form laser output with different photon energies, and the working mode includes continuous and pulsed.
- This solution can adjust the size of the energy stored in the external cavity through the duty cycle of the Q switch, which is helpful to reduce the pulse width of the fiber laser, increase the peak power, and expand the application of the pulsed fiber laser.
- the first active fiber 500 is used as
- the saturable absorber is a Yb rare earth ion doped optical fiber.
- Yb in the optical fiber is a metal ion.
- the Yb rare earth ion doping as a saturable absorber is due to the unique energy level structure of the rare earth ion Yb. Therefore, this application adopts rare earth ion doped fiber as a saturable absorber, which can realize an all-fiber optical path.
- the beam combiner 800 reverse-pumps the first active optical fiber 500, which has high conversion efficiency, can reduce intracavity loss, lower the threshold value of the second laser, and in principle make the laser resonance conditions greater reduce.
- FIG. 2 is a schematic diagram of the second embodiment of the present application.
- the second embodiment is different from the first embodiment in that the output port of the fiber laser is connected to an isolator 102.
- FIG. 3 is a schematic diagram of the third embodiment of the present application.
- the third embodiment is different from the first embodiment in that the Q switch is arranged between the fourth grating and the second active optical fiber.
- FIG. 4 is a schematic diagram of Embodiment 4 of the present application.
- the difference between Embodiment 4 and Embodiment 2 is that the first feedback element and the second feedback element are the same broadband mirror 110, and the first resonance
- the cavity includes the fourth grating 400, the first active fiber 500, and the broadband mirror 110
- the second resonant cavity includes the second grating 200, the second active fiber 600, and the broadband mirror 110 .
- the second grating 200 is connected to the second end of the fourth grating 400 through the second active fiber 600, and the first end of the fourth grating 400 is connected to the broadband reflector through the first active fiber 500.
- Mirror 110, the Q switch 700 is connected between the first end of the fourth grating 400 and the first active optical fiber 500.
- FIG. 5 is a schematic diagram of Embodiment 5 of the present application.
- the difference between Embodiment 5 and Embodiment 4 is that the first feedback element and the second feedback element are the same first grating 100, and the laser output port Connect the isolator.
- the first resonant cavity includes the fourth grating 400, the first active fiber 500, and the first grating 100
- the second resonant cavity includes the second grating 200, the second active fiber 600, and the The first grating 100 is described.
- the second grating 200 is connected to the second end of the fourth grating 400 through the second active fiber 600, and the first end of the fourth grating 400 is connected to the first end through the first active fiber 500.
- the Q switch 700 is connected between the first end of the fourth grating 400 and the first active optical fiber 500.
- FIG. 6 a schematic diagram of the sixth embodiment of the present application.
- the beam combiner 800 in the sixth embodiment is placed in the second resonant cavity and is located in the second resonant cavity. Outside the first resonant cavity, the beam combiner 800 is connected between the second end of the fourth grating 400 and the second active optical fiber 600, and the output end of the beam combiner 800 is connected to the first Two active optical fiber 600.
- FIG. 7 a schematic diagram of the seventh embodiment of the present application.
- the seventh embodiment is different from the fourth embodiment in that the beam combiner 800 in the seventh embodiment is placed in the second resonant cavity and is located in the second resonant cavity. Outside the first resonant cavity, the beam combiner 800 is connected between the second end of the fourth grating 400 and the second active optical fiber 600, and the output end of the beam combiner 800 is connected to the first Two active optical fiber 600.
- FIG. 8 a schematic diagram of the eighth embodiment of the present application.
- the eighth embodiment is different from the first embodiment in that the first resonant cavity and the second resonant cavity in the eighth embodiment are overlapped.
- the first resonant cavity includes a third grating 300, a first active fiber 500, and a fourth grating 400
- the second resonant cavity includes a first grating 100, a second active fiber 600, and a second grating 200, so
- the second end of the third grating 300 is connected to the first end of the first grating 100
- the second end of the first grating 100 is connected to the first active optical fiber 500 and then to the first end of the fourth grating 400
- the second end of the fourth grating 400 is connected to the second active optical fiber 600 and then connected to the first end of the second grating 200.
- the second end of the second grating 200 is connected to the signal end of the beam combiner 800.
- the pump end of 800 is connected to the pump source 900, and the output end of the combiner 800 is connected to the output device.
- a Q switch 700 is provided between the first active fiber 500 and the fourth grating 400.
- FIG. 9 is a schematic diagram of the ninth embodiment of the present application.
- the ninth embodiment is different from the eighth embodiment in that the Q switch 700 is disposed between the first grating 100 and the first active optical fiber 500.
- FIG. 10 a schematic diagram of the tenth embodiment of the present application.
- the tenth embodiment is different from the ninth embodiment in that the Q switch 700 is disposed between the fourth grating 400 and the second active optical fiber 600.
- FIG. 11 is a schematic diagram of Embodiment 11 of the present application.
- the difference between Embodiment 11 and the foregoing embodiments is that the second resonant cavity and the first resonant cavity in Embodiment 11 are arranged in sequence.
- the first resonant cavity includes a third grating 300, a first active fiber 500, and a fourth grating 400
- the second resonant cavity includes a first grating 100, a second active fiber 600, and a second grating 200.
- the pump source 900 is connected to the pump end of the combiner 800, the output end of the combiner 800 is connected to the first end of the first grating 100, and the second end of the first grating 100 is connected to the second active optical fiber 600.
- the first end of the second grating 200 is connected, the second end of the second grating 200 is connected to the first end of the third grating 300, and the second end of the third grating 300 is connected to the first active optical fiber 500 and then connected to the second end.
- the first end of the four grating 400 and the second end of the fourth grating 400 are connected to the output device.
- the Q switch 700 is arranged between the second active optical fiber 600 and the second grating 200.
- the setting of the Q switch 700 is not limited to the above-mentioned embodiment, and equivalent transformations based on the present application fall within the protection scope of the present application, and are not exhaustively listed here.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
一种光纤激光器,包括第一谐振腔、第二谐振腔、泵浦源(900)、合束器(800),第一谐振腔包括第四光栅(400)、第一有源光纤(500)以及第一反馈元件,第四光栅(400)的第一端与第一反馈元件之间通过第一有源光纤(500)相连接,第二谐振腔包括第二光栅(200)、第二有源光纤(600)以及第二反馈元件,第二光栅(200)的第一端通过第二有源光纤(600)连接第二反馈元件,且在第一谐振腔中或第二谐振腔中设有Q开关(700),泵浦源(900)连接合束器(800)泵浦端,合束器(800)的信号端或输出端接入第二谐振腔并连接第二有源光纤(600),第二光栅(200)的第二端或第四光栅(400)的第二端连接光纤激光器的输出端口。激光器实现主被动双重调Q,有助于缩小光纤激光器的脉宽,提升峰值功率,拓展脉冲光纤激光器的应用。
Description
本申请涉及激光技术领域,尤其是涉及一种光纤激光器。
近年来,光纤激光器成为激光领域的研究热点之一,并在很多领域得到了广泛的应用,如激光加工、激光医疗、光通信、国防军事以及科学研究等领域。
目前光纤激光器中,基于光栅反馈形成稳定驻波再F-P腔内进行谐振,通过光纤的饱和吸收进行调制,当前被动调Q主要是基于石墨烯、碳纳米管、半导体饱和吸收镜等可饱和吸收调制方案,无法全光纤化,且成本较高。而单纯主动调Q虽实现全光纤化但是无法将脉宽压缩到很窄,同时难获得稳定的高能量脉冲。单被动调Q,单主动调Q两种方案在工业量产中均没有很好的应用空间。对于目前传统的光纤激光器而言,无法实现全光纤化的主被动双重调Q。
因此,提供一种可实现全光纤化、脉冲能量稳定、窄脉宽、高峰值功率、适用于工业量产的光纤激光器实为必要。
申请内容
本申请的目的在于提供一种可实现全光纤化、具有稳定高能量脉冲的、窄脉宽高峰值的光纤激光器。
为实现本申请目的,提供以下技术方案:
本申请提供一种光纤激光器,其包括第一谐振腔、第二谐振腔、泵浦源以及合束器,所述第一谐振腔包括第四光栅、第一有源光纤以及第一反馈元件,所述第四光栅的第一端与所述第一反馈元件之间通过所述第一有源光纤相连接,所述第二谐振腔包括第二光栅、第二有源光纤以及第二反馈元件,所述第二光栅的第一端通过所述第二有源光纤连接所述第二反馈元件,且在第一谐振腔中或第二谐振腔中设有Q开关,所述合束器包括泵浦端、信号端和输出端,所述泵浦源连接所述合束器泵浦端,所述合束器的信号端或输出端接入所述第二谐振腔并连接所述第二有源光纤,所述第二光栅的第二端或 第四光栅的第二端连接所述光纤激光器的输出端口。
一些实施方式中,所述第一谐振腔位于所述第二谐振腔内、所述第一谐振腔与所述第二谐振腔交叠或所述第二谐振腔与所述第一谐振腔依次设置。
所述泵浦源在电激励下产生激光经由合束器进入第二有源光纤,形成自发辐射ASE宽带光谱,所述Q开关在关闭状态时,第二有源光纤内形成能量积攒,当所述Q开关开启时,所述第一反馈元件与所述第二反馈元件的反馈选择下,形成巨脉冲第一激光,所述第一激光波长在第一有源光纤吸收谱线内,所述第一有源光纤与所述内腔反馈单元和所述第四光栅形成激光谐振腔,在第一激光能量激励下,第一有源光纤对第一激光产生受激吸收,形成粒子数反转,通过第一反馈元件与第四光栅反馈形成更窄脉宽第二激光,第二激光通过第一有源光纤形再次成放大,所述第二激光经由激光器的输出端口输出。
本申请可以通过光栅的反馈调节,形成不同光子能量的激光输出,工作方式包含连续、脉冲。本方案可以通过Q开关的工作占空比调整外腔储存能量的大小,有助于缩小光纤激光器的脉宽,提升峰值功率,拓展脉冲光纤激光器的应用,且完全可实现全光纤化。
一些实施方式中,所述Q开关可以设置在所述第四光栅与所述第一有源光纤之间,或设置在所述第一有源光纤与所述第一反馈元件之间,或设置在所述第四光栅与所述第二有源光纤之间,或所述第二有源光纤与所述第二光栅之间设有所述Q开关。
一些实施方式中,所述第一反馈元件为第三光栅,所述第二反馈元件为第一光栅,所述第四光栅的第一端通过所述第一有源光纤连接所述第三光栅的第二端,所述第四光栅的第二端通过所述第二有源光纤连接所述第二光栅的第一端,所述第三光栅的第一端连接所述第一光栅。本申请激光器以第一有源光纤作为可饱和吸收体形成被动调Q,而Q开关作为主动调制器件形成主动调Q。在脉冲形成过程中,Q开关起到主动调制作用,第一有源光纤起到被动调制作用,形成主被动双重调Q。
该实施例的原理:所述泵浦源在电激励下产生激光经由合束器进入第二有源光纤,形成自发辐射ASE宽带光谱,所述Q开关在关闭状态时,第二有源光纤内形成能量积攒,当所述Q开关开启时,所述第一光栅与所述第二光栅的反馈选择下,形成巨脉冲第一激光,所述第一激光波长在第一有源光纤吸收谱线内,所述第一有源光纤与第三光栅和第四光栅形成激光谐振腔,在 第一激光能量激励下,第一有源光纤中Yb离子对第一激光产生受激吸收,形成粒子数反转,通过第三光栅与第四光栅反馈形成更窄脉宽第二激光,第二激光通过第一有源光纤形再次成放大,所述第二激光经由所述合束器输出端到达所述输出器件。
另一些实施方式中,所述第一反馈元件为第三光栅,所述第二反馈元件为第一光栅,所述第四光栅的第一端通过所述第一有源光纤连接所述第一光栅的第二端,所述第四光栅的第二端通过所述第二有源光纤连接所述第二光栅的第一端,所述第一光栅的第一端连接所述第三光栅。
另一些实施方式中,所述第一反馈元件、所述第二反馈元件为同一的宽带反射镜,所述第四光栅的第一端通过所述第一有源光纤连接所述宽带反射镜。
另一些实施方式中,所述第一反馈元件、所述第二反馈元件为同一的第一光栅,所述第四光栅的第一端通过所述第一有源光纤连接所述第一光栅。
一些实施方式中,所述合束器置于所述第二谐振腔之外,所述合束器的信号端通过所述第二光栅的第二端接入所述第二谐振腔并连接所述第二有源光纤,或所述合束器的输出端通过所述第二反馈元件的第一端接入所述第二谐振腔并连接所述第二有源光纤。所述合束器对所述第一有源光纤进行反向泵浦,转换效率高,减少腔内损耗,降低第二激光产生的阈值,从原理上使激光谐振条件大大降低。
另一些实施方式中,所述合束器置于所述第二谐振腔之内,且位于所述第一谐振腔之外,所述合束器连接于所述第四光栅的第二端与所述第二有源光纤之间,所述合束器的输出端连接所述第二有源光纤。
具体实施方式中,所述光纤激光器的输出端口连接输出器件,所述输出器件为隔离器或准直器。
具体实施方式中,所述第一有源光纤和所述第二有源光纤为Yb稀土离子掺杂光纤。第一有源光纤中Yb离子对第一激光产生受激吸收,形成粒子数反转。
一些实施方式中,所述泵浦源有N个,其中N为自然数,一些实施例中,N为1~19的自然数。在另一些实施例中,泵浦源的数量可以为2个。
具体实施方式中,所述泵浦源包括但不限于半导体芯片泵源,所述泵浦源的波长范围是800~1000nm。
具体实施方式中,所述合束器包括但不限于(N+1)x1的合束器,其中 N为任意自然数。其中一些实施例中,N为1~19的自然数。
一些实施方式中,所述第一光栅中心波长λ
1为200<λ
1<1600,反射率R
1为0<R
1<1;所述第二光栅中心波长λ
2为200<λ
2<1600,反射率R
2为0<R
2<1;所述第三光栅中心波长λ
3为200<λ
3<1600,反射率R
3为0<R
3<1;所述第四光栅中心波长λ
4为200<λ
4<1600,反射率R
4为0<R
4<1。
对比现有技术,本申请具有以下优点:
目前传统的光纤激光器而言,无法实现全光纤化的主被动双重调Q。
本申请通过以第一有源光纤作为可饱和吸收体形成被动调Q,而Q开关作为主动调制器形成主动调Q,在脉冲形成过程中,Q开关起到主动调制作用,第一有源光纤形成被动调制,实现本申请的主被动双重调Q。
本申请可以通过光栅的反馈调节,形成不同光子能量的激光输出,工作方式包含连续、脉冲。本方案可以通过Q开关的工作占空比调整外腔储存能量的大小,有助于缩小光纤激光器的脉宽,提升峰值功率,拓展脉冲光纤激光器的应用,且完全可实现全光纤化,本方案中的主被动双重调Q基于全光纤化的技术方案来获取窄脉宽,高峰值功率。
并且,本申请中可饱和吸收体为掺杂Yb离子光纤,光纤中的Yb是一种金属离子,Yb稀土离子掺杂光纤作为可饱和吸收体是因为稀土离子Yb的特有能级结构。因此,本申请采用稀土离子掺杂光纤作为可饱和吸收体,可省去可饱和吸收镜的使用,可实现全光纤化光路。
图1为本申请光纤激光器实施例一的示意图;
图2为本申请光纤激光器实施例二的示意图;
图3为本申请光纤激光器实施例三的示意图;
图4为本申请光纤激光器实施例四的示意图;
图5为本申请光纤激光器实施例五的示意图;
图6为本申请光纤激光器实施例六的示意图;
图7为本申请光纤激光器实施例七的示意图;
图8为本申请光纤激光器实施例八的示意图;
图9为本申请光纤激光器实施例九的示意图;
图10为本申请光纤激光器实施例十的示意图;
图11为本申请光纤激光器实施例十一的示意图。
请参阅图1,本申请光纤激光器实施例一,其包括第一谐振腔、第二谐振腔、泵浦源900、合束器800以及输出器件101,所述第一谐振腔位于所述第二谐振腔内,所述第一谐振腔包括第四光栅400、第一有源光纤500以及第一反馈元件,所述第二谐振腔包括第二光栅200、第二有源光纤600以及第二反馈元件,本实施例中,所述第一反馈元件为第三光栅300,所述第二反馈元件为第一光栅100。
实施例一中的所述合束器800置于所述第二谐振腔之外,所述合束器800包括与泵浦源900连接的泵浦端、与输出器件101连接的输出端,以及与第二有源光纤600连接的信号端,所述合束器800的信号端通过所述第二光栅200的第二端接入所述第二谐振腔并连接所述第二有源光纤600。所述泵浦源900连接所述合束器800的泵浦端,所述合束器800的信号端接入所述第二谐振腔并连接所述第二有源光纤600,所述第二光栅200的第一端通过所述第二有源光纤600连接所述第四光栅400的第二端,所述第二光栅200的第二端连接所述光纤激光器的输出端口,所述光纤激光器的输出端口连接输出器件101。所述第四光栅400的第一端通过所述第一有源光纤500连接所述第三光栅300的第二端,所述第四光栅400与所述第三光栅300之间设有Q开关700,所述第三光栅300的第一端连接所述第一光栅100。具体的,所述Q开关设置在所述第四光栅400与所述第一有源光纤500之间。
本申请激光器以第一有源光纤作为可饱和吸收体形成被动调Q,而Q开关作为主动调制器件形成主动调Q。在脉冲形成过程中,Q开关起到主动调制作用,第一有源光纤起到被动调制作用。所述第一有源光纤500及所述第二有源光纤600为Yb稀土离子掺杂光纤。第一有源光纤中Yb离子对第一激光产生受激吸收,形成粒子数反转。
本实施例中,这里所述的Q开关即为主动Q开关,具体可以为声光Q开关、电光Q开关或机械Q开关(如转镜式Q开关)。
本实施例中所述输出器件为准直器101,在其他实施例中所述输出器件也可以采用隔离器。
在本实施例中,所述泵浦源900数量为2个,所述泵浦源900包括但不限于半导体芯片泵源,波长范围是800~1000nm。所述合束器800包括但不限于(N+1)x1的合束器,其中N为任意自然数。所述第一光栅中心波长λ
1为200< λ
1<1600,反射率R
1为0<R
1<1;所述第二光栅中心波长λ
2为200<λ
2<1600,反射率R
2为0<R
2<1;所述第三光栅中心波长λ
3为200<λ
3<1600,反射率R
3为0<R
3<1;所述第四光栅中心波长λ
4为200<λ
4<1600,反射率R
4为0<R
4<1。所述光纤激光器的工作方式包括连续或脉冲。
该实施例的原理:所述泵浦源900在电激励下产生激光经由合束器800进入第二有源光纤600,形成自发辐射ASE宽带光谱,所述Q开关700在关闭状态时,第二有源光纤600内形成能量积攒,当所述Q开关700开启时,所述第一光栅100与所述第二光栅200的反馈选择下,形成巨脉冲第一激光,所述第一激光波长在第一有源光纤500吸收谱线内,所述第一有源光纤500与第三光栅300和第四光栅400形成激光谐振腔,在第一激光能量激励下,第一有源光纤500中Yb离子对第一激光产生受激吸收,形成粒子数反转,通过第三光栅300与第四光栅400反馈形成更窄脉宽第二激光,第二激光通过第一有源光纤500形再次成放大,所述第二激光经由所述合束器800输出端到达所述输出器件101。本申请可以通过光栅的反馈调节,形成不同光子能量的激光输出,工作方式包含连续、脉冲。本方案可以通过Q开关的工作占空比调整外腔储存能量的大小,有助于缩小光纤激光器的脉宽,提升峰值功率,拓展脉冲光纤激光器的应用,本申请中第一有源光纤500作为可饱和吸收体,所述可饱和吸收体为Yb稀土离子掺杂光纤,光纤中的Yb是一种金属离子,Yb稀土离子掺杂作为可饱和吸收体是因为稀土离子Yb的特有能级结构。因此,本申请采用稀土离子掺杂光纤作为可饱和吸收体,可实现全光纤化光路。再者,所述合束器800对所述第一有源光纤500进行反向泵浦,转换效率高,可减少腔内损耗,降低第二激光产生的阈值,从原理上使激光谐振条件大大降低。
请参阅图2,本申请实施例二示意图,实施例二与实施例一不同之处在于,所述光纤激光器的输出端口连接隔离器102。
请参阅图3,本申请实施例三示意图,实施例三与实施例一不同之处在于,所述Q开关设置在第四光栅与所述第二有源光纤之间。
请参阅图4,本申请实施例四示意图,实施例四与实施例二不同之处在于,所述第一反馈元件、所述第二反馈元件为同一的宽带反射镜110,所述第一谐振腔包括所述第四光栅400、第一有源光纤500以及所述宽带反射镜110,所述第二谐振腔包括所述第二光栅200、第二有源光纤600以及所述宽带反射镜110。所述第二光栅200通过所述第二有源光纤600连接所述第四光栅400第二端,所述第四光栅400的第一端通过所述第一有源光纤500连接所 述宽带反射镜110,所述Q开关700连接于所述第四光栅400第一端与所述第一有源光纤500之间。
请参阅图5,本申请实施例五示意图,实施例五与实施例四不同之处在于,所述第一反馈元件、所述第二反馈元件为同一的第一光栅100,所述激光器输出端口连接隔离器。所述第一谐振腔包括所述第四光栅400、第一有源光纤500以及所述第一光栅100,所述第二谐振腔包括所述第二光栅200、第二有源光纤600以及所述第一光栅100。所述第二光栅200通过所述第二有源光纤600连接所述第四光栅400第二端,所述第四光栅400的第一端通过所述第一有源光纤500连接所述第一光栅100,所述Q开关700连接于所述第四光栅400第一端与所述第一有源光纤500之间。
请参阅图6,本申请实施例六示意图,实施例六与实施例一不同之处在于,实施例六中的所述合束器800置于所述第二谐振腔之内,且位于所述第一谐振腔之外,所述合束器800连接于所述第四光栅400的第二端与所述第二有源光纤600之间,所述合束器800的输出端连接所述第二有源光纤600。
请参阅图7,本申请实施例七示意图,实施例七与实施例四不同之处在于,实施例七中的所述合束器800置于所述第二谐振腔之内,且位于所述第一谐振腔之外,所述合束器800连接于所述第四光栅400的第二端与所述第二有源光纤600之间,所述合束器800的输出端连接所述第二有源光纤600。
请参阅图8,本申请实施例八示意图,实施例八与实施例一不同之处在于,实施例八中的所述第一谐振腔与第二谐振腔交叠设置。具体的,所述第一谐振腔包括第三光栅300、第一有源光纤500和第四光栅400,第二谐振腔包括第一光栅100、第二有源光纤600和第二光栅200,所述第三光栅300的第二端连接第一光栅100的第一端,所述第一光栅100的第二端连接所述第一有源光纤500后连接第四光栅400的第一端,所述第四光栅400的第二端连接第二有源光纤600后连接所述第二光栅200的第一端,所述第二光栅200的第二端连接合束器800信号端,合束器800的泵浦端连接泵浦源900,合束器800的输出端连接输出器件。在第一有源光纤500与第四光栅400之间设置有Q开关700。
请参阅图9,本申请实施例九示意图,实施例九与实施例八不同之处在于,Q开关700设置在第一光栅100与第一有源光纤500之间。
请参阅图10,本申请实施例十示意图,实施例十与实施例九不同之处在于,Q开关700设置在第四光栅400与第二有源光纤600之间。
请参阅图11,本申请实施例十一示意图,实施例十一与前述实施例不同之处在于,实施例十一中的所述第二谐振腔与所述第一谐振腔依次设置。具体的,所述第一谐振腔包括第三光栅300、第一有源光纤500、第四光栅400,第二谐振腔包括第一光栅100、第二有源光纤600、第二光栅200。泵浦源900连接合束器800的泵浦端,合束器800的输出端连接所述第一光栅100的第一端,所述第一光栅100第二端连接第二有源光纤600后连接第二光栅200的第一端,所述第二光栅200的第二端连接所述第三光栅300的第一端,第三光栅300的第二端连接第一有源光纤500后连接第四光栅400的第一端,所述第四光栅400的第二端连接输出器件。Q开关700设置在第二有源光纤600与第二光栅200之间。
事实上,Q开关700的设置并不局限于上述实施例,基于本申请的等效变换均属于本申请保护范围之内,在此不作穷举。
以上所述仅为本申请的较佳实施例,本申请的保护范围并不局限于此,任何基于本申请技术方案上的等效变换均属于本申请保护范围之内。
Claims (20)
- 一种光纤激光器,其特征在于,其包括第一谐振腔、第二谐振腔、泵浦源以及合束器,所述第一谐振腔包括第四光栅、第一有源光纤以及第一反馈元件,所述第四光栅的第一端与所述第一反馈元件之间通过所述第一有源光纤相连接,所述第二谐振腔包括第二光栅、第二有源光纤以及第二反馈元件,所述第二光栅的第一端通过所述第二有源光纤连接所述第二反馈元件,且在第一谐振腔中或第二谐振腔中设有Q开关,所述合束器包括泵浦端、信号端和输出端,所述泵浦源连接所述合束器泵浦端,所述合束器的信号端或输出端接入所述第二谐振腔并连接所述第二有源光纤,所述第二光栅的第二端或第四光栅的第二端连接所述光纤激光器的输出端口。
- 如权利要求1所述的光纤激光器,其特征在于,所述第一谐振腔位于所述第二谐振腔内、所述第一谐振腔与所述第二谐振腔交叠或所述第二谐振腔与所述第一谐振腔依次设置。
- 如权利要求2所述的光纤激光器,其特征在于,所述第四光栅与所述第一有源光纤之间设有所述Q开关。
- 如权利要求2所述的光纤激光器,其特征在于,所述第一有源光纤与所述第一反馈元件之间设有所述Q开关。
- 如权利要求2所述的光纤激光器,其特征在于,所述第四光栅与所述第二有源光纤之间设有所述Q开关。
- 如权利要求2所述的光纤激光器,其特征在于,所述第二有源光纤与所述第二光栅之间设有所述Q开关。
- 如权利要求1所述的光纤激光器,其特征在于,所述第一反馈元件为第三光栅,所述第二反馈元件为第一光栅,所述第四光栅的第一端通过所述第一有源光纤连接所述第三光栅的第二端,所述第四光栅的第二端通过所述第二有源光纤连接所述第二光栅的第一端,所述第三光栅的第一端连接所述第一光栅。
- 如权利要求1所述的光纤激光器,其特征在于,所述第一反馈元件为第三光栅,所述第二反馈元件为第一光栅,所述第四光栅的第一端通过所述第一有源光纤连接所述第一光栅的第二端,所述第四光栅的第二端通过所述第二有源光纤连接所述第二光栅的第一端,所述第一光栅的第一端连接所述第三光栅。
- 如权利要求1所述的光纤激光器,其特征在于,所述第一反馈单元为第三光栅,所述第二反馈单元为第一光栅,所述第四光栅的第一端通过所述第一有源光纤连接所述第三光栅的第二端,所述第二光栅的第一端通过所述第二有源光纤连接所述第一光栅的第二端,所述第三光栅的第一端连接所述第二光栅。
- 如权利要求1所述的光纤激光器,其特征在于,所述第一反馈元件、所述第二反馈元件为同一的宽带反射镜,所述第四光栅的第一端通过所述第一有源光纤连接所述宽带反射镜。
- 如权利要求1所述的光纤激光器,其特征在于,所述第一反馈元件、所述第二反馈元件为同一的第一光栅,所述第四光栅的第一端通过所述第一有源光纤连接所述第一光栅。
- 如权利要求7~11任一项所述的光纤激光器,其特征在于,所述合束器置于所述第二谐振腔之外,所述合束器的信号端通过所述第二光栅的第二端接入所述第二谐振腔并连接所述第二有源光纤。
- 如权利要求7~11任一项所述的光纤激光器,其特征在于,所述合束器置于所述第二谐振腔之外,所述合束器的输出端通过所述第二反馈元件的第一端接入所述第二谐振腔并连接所述第二有源光纤。
- 如权利要求7~11任一项所述的光纤激光器,其特征在于,所述合束器置于所述第二谐振腔之内,且位于所述第一谐振腔之外,所述合束器连接于所述第四光栅的第二端与所述第二有源光纤之间,所述合束器的输出端连接所述第二有源光纤。
- 如权利要求1或2所述的光纤激光器,其特征在于,所述光纤激光器的输出端口连接输出器件,所述输出器件为隔离器或准直器;所述第一有源光纤和所述第二有源光纤为Yb稀土离子掺杂光纤。
- 如权利要求1或2所述的光纤激光器,其特征在于,所述泵浦源的数量为1~19。
- 如权利要求1或2所述的光纤激光器,其特征在于,所述泵浦源包括半导体芯片泵源,所述泵浦源的波长范围是800~1000nm。
- 如权利要求1或2所述的光纤激光器,其特征在于,所述合束器为(N+1)×1的合束器,其中,N为1~19。
- 如权利要求1~6任一项所述的光纤激光器,其特征在于,所述的Q开关包括:声光Q开关、电光Q开关或机械Q开关中的至少一种。
- 如权利要求7~11任一项所述的光纤激光器,其特征在于,所述第一光栅中心波长λ 1为200<λ 1<1600,反射率R 1为0<R 1<1;所述第二光栅中心波长λ 2为200<λ 2<1600,反射率R 2为0<R 2<1;所述第三光栅中心波长λ 3为200<λ 3<1600,反射率R 3为0<R 3<1;所述第四光栅中心波长λ 4为200<λ 4<1600,反射率R 4为0<R 4<1。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911259375.9A CN112952538A (zh) | 2019-12-10 | 2019-12-10 | 光纤激光器 |
CN201911259375.9 | 2019-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021115145A1 true WO2021115145A1 (zh) | 2021-06-17 |
Family
ID=76225656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/132656 WO2021115145A1 (zh) | 2019-12-10 | 2020-11-30 | 光纤激光器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112952538A (zh) |
WO (1) | WO2021115145A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115513764A (zh) * | 2022-09-15 | 2022-12-23 | 香港理工大学深圳研究院 | 全光调q开关、全光调q激光器及其脉冲激光输出方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113258422B (zh) * | 2021-07-14 | 2021-10-22 | 武汉锐科光纤激光技术股份有限公司 | 脉冲光纤激光器种子源及脉冲调节方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090304033A1 (en) * | 2006-03-13 | 2009-12-10 | Lighthouse Technologies Pty Ltd | Laser for generating multiple wavelengths |
CN102157888A (zh) * | 2011-03-17 | 2011-08-17 | 广州中国科学院工业技术研究院 | 一种被动调q全光纤激光器 |
CN102904153A (zh) * | 2012-11-14 | 2013-01-30 | 山东海富光子科技股份有限公司 | 一种使用掺杂光纤作为饱和吸收体的被动调q全光纤激光器 |
CN106207723A (zh) * | 2016-08-28 | 2016-12-07 | 北京工业大学 | 一种多谐振腔耦合的全光纤脉冲激光器 |
CN107968306A (zh) * | 2017-12-13 | 2018-04-27 | 北京工业大学 | 一种全光纤脉冲复合双腔激光器 |
CN109412009A (zh) * | 2018-11-12 | 2019-03-01 | 北京工业大学 | 双谐振腔耦合的全光纤化调q锁模脉冲激光器 |
CN211045970U (zh) * | 2019-12-10 | 2020-07-17 | 苏州创鑫激光科技有限公司 | 光纤激光器 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6041070A (en) * | 1997-11-14 | 2000-03-21 | Sdl, Inc. | Resonant pumped short cavity fiber laser |
US7006550B2 (en) * | 2002-09-18 | 2006-02-28 | Orbits Lightwave, Inc. | Traveling-wave lasers with a linear cavity |
CN102306895B (zh) * | 2011-08-18 | 2012-10-10 | 厦门大学 | 基于石墨烯的调q拉曼光纤激光器 |
CN103701021B (zh) * | 2013-12-17 | 2017-03-01 | 北京工业大学 | 一种谐振腔交叉调制的全光纤脉冲激光器 |
CN205646423U (zh) * | 2016-04-20 | 2016-10-12 | 成都瀚辰光翼科技有限责任公司 | 一种4~8μm脉冲拉曼全光纤激光器 |
CN106299987B (zh) * | 2016-11-01 | 2019-08-16 | 深圳大学 | 一种基于稀土离子共掺光纤的双波长同步脉冲光纤激光器 |
CN107181159A (zh) * | 2017-07-03 | 2017-09-19 | 山东大学 | 全光纤被动调q脉冲光纤激光器 |
-
2019
- 2019-12-10 CN CN201911259375.9A patent/CN112952538A/zh active Pending
-
2020
- 2020-11-30 WO PCT/CN2020/132656 patent/WO2021115145A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090304033A1 (en) * | 2006-03-13 | 2009-12-10 | Lighthouse Technologies Pty Ltd | Laser for generating multiple wavelengths |
CN102157888A (zh) * | 2011-03-17 | 2011-08-17 | 广州中国科学院工业技术研究院 | 一种被动调q全光纤激光器 |
CN102904153A (zh) * | 2012-11-14 | 2013-01-30 | 山东海富光子科技股份有限公司 | 一种使用掺杂光纤作为饱和吸收体的被动调q全光纤激光器 |
CN106207723A (zh) * | 2016-08-28 | 2016-12-07 | 北京工业大学 | 一种多谐振腔耦合的全光纤脉冲激光器 |
CN107968306A (zh) * | 2017-12-13 | 2018-04-27 | 北京工业大学 | 一种全光纤脉冲复合双腔激光器 |
CN109412009A (zh) * | 2018-11-12 | 2019-03-01 | 北京工业大学 | 双谐振腔耦合的全光纤化调q锁模脉冲激光器 |
CN211045970U (zh) * | 2019-12-10 | 2020-07-17 | 苏州创鑫激光科技有限公司 | 光纤激光器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115513764A (zh) * | 2022-09-15 | 2022-12-23 | 香港理工大学深圳研究院 | 全光调q开关、全光调q激光器及其脉冲激光输出方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112952538A (zh) | 2021-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10734779B2 (en) | Dual-wavelength synchronous pulsed fiber laser based on rare earth ions co-doped fiber | |
Kurkov | Q‐switched all‐fiber lasers with saturable absorbers | |
WO2021115145A1 (zh) | 光纤激光器 | |
US6891878B2 (en) | Eye-safe solid state laser system and method | |
Cai et al. | Compact self-Q-switched laser near 2 μm | |
CN101728755A (zh) | 线型腔光纤再生放大器 | |
CN211045970U (zh) | 光纤激光器 | |
CN201611727U (zh) | 线型腔光纤再生放大器 | |
Basiev et al. | Lasing properties of selectively pumped Raman-active Nd3+-doped molybdate and tungstate crystals | |
Zou et al. | 980 nm Yb-doped single-mode fiber laser and its frequency-doubling with BIBO | |
Huang et al. | Self-Pulsed Nanosecond 2.7-$\mu\text {m} $ Solid-State Erbium Laser by Cooperatively Enhanced Reabsorption | |
Liu et al. | Passive Q-switching performance with Co: LMA crystal in a diode-pumped Nd: LuVO 4 laser | |
CN210296860U (zh) | 光纤激光器 | |
CN110048294B (zh) | 一种产生高功率中红外超快脉冲激光的方法 | |
Guo et al. | High performances of diode-end-pumped Nd: SrAl 12 O 19 lasers operated in continuous-wave and passively Q-switched regimes | |
Zuo et al. | Multi-Watt Simultaneous Orthogonally Polarized Dual-Wavelength Pulse Generation of an Intracavity Nd: YLF/YVO 4 Raman Laser | |
Babar et al. | Multi-lobed double-clad Erbium-Ytterbium co-doped Q-switched fiber laser based on nonlinear polarisation rotation technique | |
Zayhowski et al. | Miniature gain-switched lasers | |
Miao et al. | Small-scale high-repetition-rate passively Q-switched intracavity OPO at 1.57 μm | |
Smolski et al. | 45 dB single-stage single-frequency Cr: ZnSe amplifier for 2.2-2.6 μm spectral range | |
Ali et al. | Q-switched multi-wavelength Brillouin erbium fiber laser | |
Zheng et al. | LD-pumped single-frequency passively Q-switched green laser | |
Zhou et al. | Developing an Yb/Nd Doped Hybrid Solid Laser of RF Gun for SuperKEKB Phase II Commissioning | |
CN108683061B (zh) | 一种自调制的双波长全光纤脉冲激光器 | |
Rong et al. | All-solid-state narrow-linewidth 455-nm blue laser based on Ti: sapphire crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20899870 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20899870 Country of ref document: EP Kind code of ref document: A1 |