WO2021115033A1 - 一种不间断电源及其电池组升降压电路 - Google Patents

一种不间断电源及其电池组升降压电路 Download PDF

Info

Publication number
WO2021115033A1
WO2021115033A1 PCT/CN2020/129026 CN2020129026W WO2021115033A1 WO 2021115033 A1 WO2021115033 A1 WO 2021115033A1 CN 2020129026 W CN2020129026 W CN 2020129026W WO 2021115033 A1 WO2021115033 A1 WO 2021115033A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch unit
battery pack
capacitor
switch
inductor
Prior art date
Application number
PCT/CN2020/129026
Other languages
English (en)
French (fr)
Inventor
吴庆彬
杨燕芬
Original Assignee
科华恒盛股份有限公司
漳州科华技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科华恒盛股份有限公司, 漳州科华技术有限责任公司 filed Critical 科华恒盛股份有限公司
Publication of WO2021115033A1 publication Critical patent/WO2021115033A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads

Definitions

  • This application relates to the field of power conversion technology, and in particular to an uninterruptible power supply and its battery pack buck-boost circuit.
  • the buck-boost circuit of the battery pack is a common power circuit in the Uninterruptible Power Supply (UPS). It is used to boost and buck the power of the battery pack to achieve a stable output of the UPS.
  • UPS Uninterruptible Power Supply
  • Buck-Boost topology is mostly used. structure.
  • the purpose of this application is to provide an uninterruptible power supply and its battery pack buck-boost circuit, so as to effectively avoid parallel circulation to ensure battery life, while canceling the restriction on the number of batteries and achieving positive and negative bus voltage balance , Thereby ensuring the safe and stable operation of the system.
  • this application discloses a battery pack buck-boost circuit, a battery pack, a positive inductor, a negative inductor, a first switch unit, a second switch unit, a third switch unit, and a fourth switch Unit, fifth switch unit, first capacitor, second capacitor, and control unit;
  • the positive pole of the battery pack is connected to one end of the first switch unit through the positive inductor;
  • the negative pole of the battery pack is connected to one end of the second switch unit through the negative inductor;
  • the first switch unit The other end of the second switch unit and the other end of the second switch unit are both connected to one end of the fifth switch unit;
  • One end of the third switch unit is connected between the positive inductor and the first switch unit, and the other end is connected in series with the first capacitor, the second capacitor, and the fourth switch unit in sequence;
  • the other end of the fourth switch unit is connected between the negative inductor and the second switch unit;
  • the other end of the fifth switch unit is connected between the first capacitor and the second capacitor;
  • Each of the first switch unit to the fifth switch unit includes a controllable switch and a diode connected in anti-parallel to the controllable switch; the control unit is respectively connected to the control terminal of each controllable switch to Separately controlling the on and off of each of the controllable switches;
  • the series circuit of the battery pack, the positive inductor, the third switch unit, the first capacitor, the fifth switch unit, the second switch unit, and the negative inductor serves as a first voltage regulating circuit , Used to adjust the positive bus voltage output by the first capacitor; the battery pack, the positive inductor, the first switch unit, the fifth switch unit, the second capacitor, the fourth The series circuit of the switch unit and the negative inductor serves as a second voltage regulating circuit for regulating the negative bus voltage output by the second capacitor.
  • each switch unit in the first voltage regulating loop is turned on, so as to charge the first capacitor to increase the positive bus voltage;
  • each switch unit in the second voltage regulating loop When the positive bus voltage is higher than the negative bus voltage, each switch unit in the second voltage regulating loop is turned on, so as to charge the second capacitor to increase the negative bus voltage.
  • each switch unit in the second voltage regulation loop When the positive bus voltage is lower than the negative bus voltage, each switch unit in the second voltage regulation loop is turned on, so that the second capacitor is discharged to reduce the negative bus voltage;
  • each switch unit in the first voltage regulating loop When the positive bus voltage is higher than the negative bus voltage, each switch unit in the first voltage regulating loop is turned on, so that the first capacitor is discharged to reduce the positive bus voltage.
  • the series circuit of the battery pack, the positive inductor, the first switching unit, the second switching unit, and the negative inductor is used as an energy storage circuit for realizing the relationship between battery power and inductor magnetic field energy. Conversion between
  • the series circuit of the battery pack, the positive inductor, the third switch unit, the first capacitor, the second capacitor, the fourth switch unit, and the negative inductor is used as an output circuit for realizing Conversion between battery electric energy, inductive magnetic field energy, and capacitive electric field energy.
  • the input/output states of the battery pack to each of the battery pack buck-boost circuits are consistent.
  • the input end of the controllable switch is connected to the cathode of the diode and serves as the first end of the switch unit; the output end of the controllable switch is connected to the cathode of the diode.
  • the anode is connected and serves as the second end of the switch unit;
  • the first terminal of the first switch unit is connected to the positive inductor, and the second terminal is connected to the first terminal of the second switch unit; the second terminal of the third switch unit is connected to the positive inductor and Between the first switch unit, the first end is connected to the first capacitor; the first end of the fourth switch unit is connected between the negative inductor and the second switch unit, and the second end is connected to The second capacitor connection;
  • the first end of the fifth switch unit is connected between the first capacitor and the second capacitor; the second end is connected between the first switch unit and the second switch unit.
  • the input end of the controllable switch is connected to the cathode of the diode and serves as the first end of the switch unit; the output end of the controllable switch is connected to the cathode of the diode.
  • the anode is connected and serves as the second end of the switch unit;
  • the first terminal of the first switch unit is connected to the positive inductor, and the second terminal is connected to the first terminal of the second switch unit; the second terminal of the third switch unit is connected to the positive inductor and Between the first switch unit, the first end is connected to the first capacitor; the first end of the fourth switch unit is connected between the negative inductor and the second switch unit, and the second end is connected to The second capacitor connection;
  • the first end of the fifth switch unit is connected between the first switch unit and the second switch unit, and the second end is connected between the first capacitor and the second capacitor.
  • each of the controllable switches is an NPN type transistor, the collector of the NPN type transistor is used as the input terminal of the controllable switch, and the emitter is used as the output terminal of the controllable switch;
  • each of the controllable switches is a PNP type transistor, the emitter of the PNP type transistor is used as the input terminal of the controllable switch, and the collector is used as the output terminal of the controllable switch;
  • each of the controllable switches is an NMOS tube, the drain of the NMOS tube is used as the input terminal of the controllable switch, and the source is used as the output terminal of the controllable switch;
  • each of the controllable switches is a PMOS tube, and the source of the PMOS tube is used as the input terminal of the controllable switch, and the drain is used as the output terminal of the controllable switch.
  • it further includes a fuse connected between the positive electrode of the battery pack and the positive inductor, or connected between the negative electrode of the battery pack and the negative inductor.
  • the present application also discloses an uninterruptible power supply, including any of the above-mentioned battery pack buck-boost circuits.
  • the battery buck-boost circuit disclosed in the embodiments of the present application in addition to realizing the basic functions of buck-boosting, is based on the first voltage regulating circuit and the second voltage regulating circuit designed in the circuit structure, which can respectively align the bus voltage, The negative bus voltage is adjusted to help balance the positive and negative bus voltages.
  • this application can avoid the occurrence of parallel circulation by reasonably controlling the charging and discharging states of the battery packs of different UPSs to ensure the battery life, so there is no need to pull the middle point of the battery pack.
  • the uninterruptible power supply provided by this application also has the above-mentioned beneficial effects.
  • Fig. 1 is a circuit structure diagram of a buck-boost circuit of a battery pack disclosed in the prior art
  • FIG. 2 is an application environment diagram of a buck-boost circuit of a battery pack disclosed in an embodiment of the application;
  • FIG. 3 is a circuit structure diagram of a buck-boost circuit of a battery pack disclosed in an embodiment of the application;
  • FIG. 4 is a structure diagram of a parallel circuit of a buck-boost circuit of a battery pack disclosed in an embodiment of the application;
  • FIG. 5 is a schematic diagram of the current path of the buck-boost circuit of the battery pack shown in FIG. 3 in the first operating state;
  • FIG. 6 is a schematic diagram of a current path of the buck-boost circuit of the battery pack shown in FIG. 3 in a second operating state;
  • FIG. 7 is a schematic diagram of a current path of the buck-boost circuit of the battery pack shown in FIG. 3 in a third operating state;
  • FIG. 8 is a schematic diagram of a current path of the buck-boost circuit of the battery pack shown in FIG. 3 in a fourth operating state;
  • FIG. 9 is a schematic diagram of a current path of the buck-boost circuit of the battery pack shown in FIG. 3 in a fifth operating state;
  • FIG. 10 is a schematic diagram of a current path of the buck-boost circuit of the battery pack shown in FIG. 3 in a sixth operating state;
  • FIG. 11 is a schematic diagram of the current path of the buck-boost circuit of the battery pack shown in FIG. 3 in the seventh operating state;
  • FIG. 12 is a schematic diagram of the current path of the buck-boost circuit of the battery pack shown in FIG. 3 in an eighth operating state.
  • the core of this application is to provide an uninterruptible power supply and its battery pack buck-boost circuit, so as to effectively avoid parallel circulation to ensure battery life, while canceling the restriction on the number of batteries and achieving positive and negative bus voltage balance , Thereby ensuring the safe and stable operation of the system.
  • a common battery pack is often used, that is, two or more UPS hosts share a set of batteries at the same time.
  • the midpoint of the battery pack in the UPS is pulled out and connected to the output midpoint, as shown in FIG. 1.
  • the method of setting the center line of the battery pack will greatly reduce the service life of the lithium battery.
  • the present application provides a buck-boost circuit for a battery pack, which can effectively solve the above-mentioned problems.
  • FIG. 2 is an application environment diagram of a battery pack buck-boost circuit disclosed in an embodiment of the application.
  • two UPSs are running in parallel, sharing a battery pack; the specific connection positions of the buck-boost circuits of the battery packs in the two UPSs are shown in the two solid rectangular boxes in the figure.
  • FIG. 3 is a circuit structure diagram of a buck-boost circuit of a battery pack disclosed in an embodiment of the application.
  • the battery buck-boost circuit mainly includes a battery pack, a positive inductor L1, a negative inductor L2, a first switch unit S1, a second switch unit S2, a third switch unit S3, a fourth switch unit S4, a fifth switch unit S5, The first capacitor C1, the second capacitor C2 and the control unit;
  • the positive pole of the battery pack is connected to one end of the first switch unit S1 through the positive inductor L1; the negative pole of the battery pack is connected to one end of the second switch unit S2 through the negative inductor L2; the other end of the first switch unit S1 and the second switch unit S2
  • the other end of the third switch unit S3 is connected to one end of the fifth switch unit S5; one end of the third switch unit S3 is connected between the positive inductor L1 and the first switch unit S1, and the other end is connected in series with a first capacitor C1, a second capacitor C2, and
  • the fourth switch unit S4; the other end of the fourth switch unit S4 is connected between the negative inductor L2 and the second switch unit S2; the other end of the fifth switch unit S5 is connected between the first capacitor C1 and the second capacitor C2;
  • Each of the first switch unit S1 to the fifth switch unit S5 includes a controllable switch and a diode connected in anti-parallel to the controllable switch; the control unit is respectively connected to the control terminal of each controllable switch to control the conduction of each controllable switch.
  • connection point of the first capacitor C1 and the second capacitor C2 is the neutral point, the other end of the first capacitor C1 is connected to the positive bus, the voltage across the first capacitor C1 is the positive bus voltage; the other end of the second capacitor C2 One end is connected to the negative bus, and the voltage at both ends of the second capacitor C2 is the negative bus voltage.
  • the inductance values of the positive electrode inductance L1 and the negative electrode inductance L2 are equal, and the capacitance values of the first capacitor C1 and the second capacitor C2C2 are equal.
  • the battery pack, the positive inductor L1, the third switch unit S3, and the first capacitor C1 The series circuit of the fifth switch unit S5, the second switch unit S2, and the negative inductor L2 is used as the first voltage regulating circuit to adjust the positive bus voltage output by the first capacitor C1; the battery pack, the positive inductor L1, and the first switch
  • the series circuit of the unit S1, the fifth switch unit S5, the second capacitor C2, the fourth switch unit S4, and the negative inductor L2 serves as a second voltage regulating circuit for regulating the negative bus voltage output by the second capacitor C2.
  • the battery buck-boost circuit disclosed in this application can be adjusted and improved by using the first voltage regulating circuit or the second voltage regulating circuit. Specifically, during the discharge state of the battery pack, when the positive bus voltage is lower than the negative bus voltage, each switch unit in the first voltage regulation loop is turned on to charge the first capacitor C1 to increase the positive bus voltage; When the bus voltage is higher than the negative bus voltage, each switch unit in the second voltage regulating loop is turned on to charge the second capacitor C2 to increase the negative bus voltage.
  • each switch unit in the second voltage regulation loop is turned on, so that the second capacitor C2 discharges to reduce the negative bus voltage;
  • each switch unit in the first voltage regulating loop is turned on, so that the first capacitor C1 is discharged to reduce the positive bus voltage.
  • the series circuit of the battery pack, the positive inductor L1, the first switch unit S1, the second switch unit S2, and the negative inductor L2 is used as an energy storage circuit to realize the conversion between battery electric energy and the magnetic field energy of the inductor; battery pack, positive
  • the series circuit of the inductor L1, the third switch unit S3, the first capacitor C1, the second capacitor C2, the fourth switch unit S4, and the negative inductor L2 is used as the output circuit to realize the relationship between battery power, inductor magnetic field energy, and capacitor electric field energy. Conversion.
  • the energy storage circuit and the output circuit are the main working circuits for the buck-boost conversion and output of the battery pack buck-boost circuit disclosed in this application.
  • the first voltage regulating circuit can be used to adjust the positive bus voltage or the second voltage regulating circuit can be used to adjust the negative bus voltage through switch control to achieve the positive and negative bus voltage balance.
  • FIG. 4 is a structure diagram of a parallel circuit of a buck-boost circuit of a battery pack disclosed in an embodiment of the application.
  • the relevant components of the UPS1 on the left are marked with the subscript "_a”
  • the relevant components of the UPS2 on the right are marked with the subscript "_b”.
  • the two battery pack buck-boost circuits will be connected in parallel at both ends of the battery pack to form a loop. Due to the existence of this loop, each UPS applies voltage to other UPSs at the parallel connection.
  • a parallel circulating current will be formed between the two UPSs. Since there is usually no current sharing control between the UPS rectifiers, the parallel circulating current can easily cause the rectifier of one UPS to be overloaded, and the rectifiers of other UPSs cannot be started, and then the rectifier failure will cause the voltage to run out of control, and the bus voltage will be overvoltage and will cause trouble. And all the batteries in the battery pack are overcharged and damaged.
  • the battery pack boosts each battery pack.
  • the input/output status of the step-down circuit is the same.
  • each battery pack buck-boost circuit charges the battery pack at the same time, or is discharged by the battery pack at the same time; and, each battery pack buck-boost circuit is in The parameters such as the charging current when charging the battery pack are all the same; the parameters such as the discharging current when the battery pack is discharging the buck-boost circuit of each battery pack are all the same.
  • the battery pack can charge the capacitors in UPS1 and UPS2 at the same time, and specifically, the battery pack can charge C1_a in UPS1 with a charging current of I 0, and at the same time
  • the charging current with a current magnitude of I 0 charges C2_b in UPS2.
  • the battery buck-boost circuit disclosed in the embodiment of the application in addition to realizing the basic function of buck-boosting, is based on the first voltage regulating circuit and the second voltage regulating circuit designed in the circuit structure, which can respectively align the busbars
  • the voltage and the negative bus voltage are adjusted to help achieve the balance of the positive and negative bus voltages.
  • this application can avoid the occurrence of parallel circulation by reasonably controlling the charging and discharging states of the battery packs of different UPSs to ensure the battery life, so there is no need to pull the middle point of the battery pack. It not only guarantees the normal and safe operation of the system, but also cancels the restriction on the number of batteries in the battery pack. There is no need to use dual battery packs as in the prior art. Instead, a single battery pack power supply scheme can be used, which greatly improves the product. Applicability and economic benefits.
  • each switch unit includes a controllable switch and a diode, and since the controllable switch and the diode in the switch unit are in anti-parallel connection, the conduction direction of the controllable switch and The diode conduction direction is opposite.
  • the on-off of the controllable switch is determined by the control signal sent by the control unit, and the on-off of the diode is determined by the voltage difference between both ends.
  • the control unit can be realized by using devices such as a single-chip microcomputer and FPGA.
  • the input end of the controllable switch is connected to the cathode of the diode and serves as the first end of the switch unit; the output end of the controllable switch is connected to the anode of the diode and serves as the switch The second end of the unit.
  • the conduction direction of the switch unit is from the first end to the second end; when the controllable switch is turned off and the diode is turned on, the conduction direction of the switch unit is the first end.
  • each controllable switch is an NPN type transistor, the collector of the NPN type transistor is used as the input terminal of the controllable switch, and the emitter is used as the output terminal of the controllable switch.
  • the first controllable switch in the first switch unit S1 is denoted as Q1, and the first diode is denoted as D1;
  • the second controllable switch in the second switch unit S2 is denoted as Q2, and the second diode is denoted as D2;
  • the third controllable switch in the third switch unit S3 is denoted as Q3, and the third diode is denoted as D3;
  • the fourth controllable switch in the fourth switch unit S4 is denoted as Q4, and the fourth diode is denoted as D4;
  • the fifth controllable switch in the fifth switch unit S5 is denoted as Q5, and the fifth diode is denoted as D5.
  • each controllable switch may be a PNP type transistor, the emitter of the PNP type transistor is used as the input terminal of the controllable switch, and the collector is used as the output terminal of the controllable switch.
  • each controllable switch may be an NMOS transistor, the drain of the NMOS transistor is used as the input terminal of the controllable switch, and the source is used as the output terminal of the controllable switch.
  • each controllable switch may be a PMOS tube, and the source of the PMOS tube is used as the input terminal of the controllable switch, and the drain is used as the output terminal of the controllable switch.
  • the first terminal of the first switch unit S1 is connected to the positive inductor L1, and the second terminal is connected to the first terminal of the second switch unit S2; the second terminal of the third switch unit S3 Connected between the positive inductor L1 and the first switch unit S1, the first end is connected to the first capacitor C1, and the first end of the fourth switch unit S4 is connected between the negative inductor L2 and the second switch unit S2, and the second The terminal is connected to the second capacitor C2.
  • the first terminal of the fifth switch unit S5, that is, the input terminal of the fifth controllable switch Q5, is connected between the first capacitor C1 and the second capacitor C2; the first terminal of the fifth switch unit S5
  • the two-terminal connection, that is, the output terminal of the fifth controllable switch Q5, is connected between the first switch unit S1 and the second switch unit S2. Therefore, for FIG.
  • the conduction of the fifth switch unit S5 specifically refers to the conduction of the fifth diode D5, and the fifth controllable switch Q5 Is controlled to be in the off state; in the same way, when the second voltage regulating loop is turned on when the battery pack is charged, the conduction of the fifth switch unit S5 specifically refers to the conduction of the fifth controllable switch Q5, and the fifth controllable switch Q5 is turned on.
  • the diode D5 is turned off.
  • connection direction of the fifth switch unit S5 in FIG. 3 can also be changed, that is, in another embodiment, the first end of the fifth switch unit S5, that is, the input end of the fifth controllable switch Q5 can be connected Between the first switch unit S1 and the second switch unit S2, the second terminal of the fifth switch unit S5, that is, the output terminal of the fifth controllable switch Q5, is connected between the first capacitor C1 and the second capacitor C2.
  • the turning on of the fifth switch unit S5 specifically refers to turning on the fifth controllable switch Q5, and the fifth diode D5 is turned off;
  • the conduction of the fifth switch unit S5 specifically refers to the conduction of the fifth diode D5, and the fifth controllable switch Q5 is controlled to be in the off state .
  • the buck-boost circuit of the battery pack disclosed in the embodiment of the present application may further include a fuse F.
  • the fuse F may be connected between the positive electrode of the battery pack and the positive inductor L1, or connected to the negative electrode of the battery pack. Between and the negative inductance L2.
  • the operating state of the buck-boost circuit of the battery pack shown in Figure 3 can be divided into two categories: the battery pack discharge state (corresponding to Figures 5 to 8) and the battery pack charging state (corresponding to the figure) 9 ⁇ Figure 12).
  • the battery pack discharge state corresponding to Figures 5 to 8
  • the battery pack charging state corresponding to the figure 9 ⁇ Figure 12.
  • FIG. 5 is a schematic diagram of the current path of the buck-boost circuit of the battery pack shown in FIG. 3 in the first operating state.
  • the first controllable switch Q1 and the second controllable switch Q2 are turned on, and the rest of the controllable switches are all turned off, so that the energy storage circuit is forwardly conducted, and the positive inductor L1 And the negative inductor L2 is in a charged state.
  • FIG. 6 is a schematic diagram of the current path of the buck-boost circuit of the battery pack shown in FIG. 3 in the second operating state.
  • each controllable switch is turned off, and at the same time, the third diode D3 and the fourth diode D4 are turned on due to the forward pressure difference, thereby outputting The loop is forward conducting, and the battery pack discharges the first capacitor C1 and the second capacitor C2.
  • FIG. 7 is a schematic diagram of the current path of the buck-boost circuit of the battery pack shown in FIG. 3 in the third operating state.
  • the current path shown in Figure 7 can be used to increase the positive bus voltage.
  • the first controllable switch Q1, the third controllable switch Q3, and the fourth controllable switch Q4 are all turned off, and the second controllable switch Q2 and the fifth controllable switch are all turned off.
  • Q5 are all turned on; at the same time, the third diode D3 is turned on due to the forward pressure difference, so that the first voltage regulating loop is forwarded.
  • the battery pack discharges the first capacitor C1, and the first capacitor C1 is in a charged state.
  • FIG. 8 is a schematic diagram of the current path of the buck-boost circuit of the battery pack shown in FIG. 3 in the fourth operating state.
  • the current path shown in Figure 8 can be used to increase the negative bus voltage.
  • the first controllable switch Q1 under the control of the control unit, the first controllable switch Q1 is turned on, and the other controllable switches are all turned off; at the same time, the fourth diode D4 and the fifth diode D5 are subjected to the forward direction
  • the pressure difference leads to conduction, and thus the second voltage regulating circuit is forward conduction.
  • the battery pack discharges the second capacitor C2, and the second capacitor C2 is in a charged state.
  • FIG. 9 is a schematic diagram of the current path of the buck-boost circuit of the battery pack shown in FIG. 3 in the fifth operating state.
  • each controllable switch is turned off.
  • the energy storage circuit is reversely conducted, and the positive inductor L1 and the negative inductor L2 are in a discharge state.
  • FIG. 10 is a schematic diagram of the current path of the buck-boost circuit of the battery pack shown in FIG. 3 in the sixth operating state.
  • the third controllable switch Q3 and the fourth controllable switch Q4 are both turned on, and the first controllable switch Q1, the second controllable switch Q2, and the fifth controllable switch Q2 are both turned on.
  • the control switches Q5 are all turned off, and thus the output loop is reversely conducted.
  • the first capacitor C1 and the second capacitor C2 discharge the battery pack, and the battery pack is in a charging state.
  • FIG. 11 is a schematic diagram of the current path of the buck-boost circuit of the battery pack shown in FIG. 3 in the seventh operating state.
  • the current path shown in Figure 11 can be used to reduce the negative bus voltage.
  • the fourth controllable switch Q4 and the fifth controllable switch Q5 are both turned on, the first controllable switch Q1, the second controllable switch Q2, and the third controllable switch Q3 are all turned off; at the same time, the first diode D1 is turned on due to the forward pressure difference, so that the second voltage regulation loop is reversely conducted.
  • the second capacitor C2 discharges the battery pack, and the battery pack is in a charging state.
  • FIG. 12 is a schematic diagram of the current path of the buck-boost circuit of the battery pack shown in FIG. 3 in the eighth operating state.
  • the current path shown in Figure 12 can be used to reduce the positive bus voltage.
  • the third controllable switch Q3 under the control of the control unit, the third controllable switch Q3 is turned on, and the other controllable switches are all turned off; at the same time, the second diode D2 and the fifth diode D5 are subjected to the forward direction
  • the pressure difference leads to conduction, and thus the first pressure regulating circuit conducts reverse conduction.
  • the first capacitor C1 discharges the battery pack, and the battery pack is in a charging state.
  • each controllable switch in the above-mentioned six operating states, the conduction state of each controllable switch can be referred to Table 1. Among them, “1" means on, and “0" means off.
  • this application also discloses an uninterruptible power supply, which includes any of the above-mentioned battery pack buck-boost circuits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种不间断电源及其电池组升降压电路,该电池组升降压电路中,电池组的正极(Bat+)通过正极电感(L1)分别与第一开关单元(S1)和第三开关单元(S3)连接;电池组的负极(Bat-)通过负极电感(L2)分别与第二开关单元(S2)和第四开关单元(S4)连接;第一开关单元(S1)的另一端分别与第二开关单元(S2)的另一端以及第五开关单元(S5)连接;第三开关单元(S3)的另一端与第一电容(C1)连接;第一电容(C1)的另一端分别与第五开关单元(S5)的另一端和第二电容(C2)连接,第二电容(C2)的另一端与第四开关单元(S4)的另一端连接;第一开关单元(S1)至第四开关单元(S4)均包括可控开关和反向并联的二极管;控制单元与各可控开关的控制端连接。该不间断电源及其电池组升降压电路可有效实现正负母线电压平衡,并可在避免出现并机环流以保障电池寿命的同时,也取消了对电池数量的限制。

Description

一种不间断电源及其电池组升降压电路 技术领域
本申请涉及电力变换技术领域,特别涉及一种不间断电源及其电池组升降压电路。
背景技术
电池组升降压电路是不间断电源(Uninterruptible Power Supply,UPS)中的常用功率电路,用于对电池组的电能进行升压、降压处理以实现UPS的稳定输出,多采用Buck-Boost拓扑结构。
出于节能提效的考虑,共用电池组即令两台或多台UPS主机同时共用一组电池的方案被提出。在共用电池组后,为了避免出现并机环流进而损坏电池,现有技术中将UPS中电池组的中点拉出与输出中点连接,如图1所示。由此,限制了共用电池组中的电池数量必须以偶数形式增减,无法进行单节电池增减,否则将无法保障正负母线电压平衡。
鉴于此,提供一种解决上述技术问题的方案,已经是本领域技术人员所亟需关注的。
发明内容
本申请的目的在于提供一种不间断电源及其电池组升降压电路,以便在有效避免并机环流以保障电池使用寿命的基础上,同时取消对电池数量的限制并实现正负母线电压平衡,进而保障系统安全稳定运行。
为解决上述技术问题,第一方面,本申请公开了一种电池组升降压电路,电池组、正极电感、负极电感、第一开关单元、第二开关单元、第三开关单元、第四开关单元、第五开关单元、第一电容、第二电容和控制单元;
所述电池组的正极通过所述正极电感与所述第一开关单元的一端连接;所述电池组的负极通过所述负极电感与所述第二开关单元的一端连接;所述第一开关单元的另一端、所述第二开关单元的另一端均与所述第五开关单元的一端连接;
所述第三开关单元的一端连接在所述正极电感与所述第一开关单元之间,另一端依次串联有所述第一电容、所述第二电容、所述第四开关单元;所述第四开关单元的另一端连接在所述负极电感与所述第二开关单元之间;所述第五开关单元的另一端连接在所述第一电容与所述第二电容之间;
所述第一开关单元至所述第五开关单元均包括一个可控开关以及一个与所述可控开关反向并联的二极管;所述控制单元分别与各个所述可控开关的控制端连接以分别控制各个所述可控开关的通断;
所述电池组、所述正极电感、所述第三开关单元、所述第一电容、所述第五开关单元、所述第二开关单元、所述负极电感的串联回路作为第一调压回路,用于调节所述第一电容所输出的正母线电压;所述电池组、所述正极电感、所述第一开关单元、所述第五开关单元、所述第二电容、所述第四开关单元、所述负极电感的串联回路作为第二调压回路,用于调节所述第二电容所输出的负母线电压。
可选地,在所述电池组处于放电状态期间,
当所述正母线电压低于所述负母线电压时,所述第一调压回路中的各开关单元导通,以便对所述第一电容充电以提高所述正母线电压;
当所述正母线电压高于所述负母线电压时,所述第二调压回路中的各开关单元导通,以便对所述第二电容充电以提高所述负母线电压。
可选地,在所述电池组处于充电状态期间,
当所述正母线电压低于所述负母线电压时,所述第二调压回路中的各开关单元导通,以便所述第二电容放电以降低所述负母线电压;
当所述正母线电压高于所述负母线电压时,所述第一调压回路中的各开关单元导通,以便所述第一电容放电以降低所述正母线电压。
可选地,所述电池组、所述正极电感、所述第一开关单元、所述第二开关单元、所述负极电感的串联回路作为储能回路,用于实现电池电能与电感磁场能之间的转换;
所述电池组、所述正极电感、所述第三开关单元、所述第一电容、所述第二电容、所述第四开关单元、所述负极电感的串联回路作为输出回路,用于实现电池电能、电感磁场能、电容电场能之间的转换。
可选地,当并联的多个所述电池组升降压电路共用所述电池组时,所述 电池组对各个所述电池组升降压电路的输入/输出状态一致。
可选地,在所述第一开关单元至所述第五开关单元中,可控开关的输入端与二极管的阴极连接,并作为开关单元的第一端;可控开关的输出端与二极管的阳极连接,并作为开关单元的第二端;
所述第一开关单元的第一端与所述正极电感连接,第二端与所述第二开关单元的第一端连接;所述第三开关单元的第二端连接在所述正极电感与所述第一开关单元之间,第一端与所述第一电容连接;所述第四开关单元的第一端连接在所述负极电感与所述第二开关单元之间,第二端与所述第二电容连接;
所述第五开关单元的第一端连接在所述第一电容与所述第二电容之间;第二端连接在所述第一开关单元与所述第二开关单元之间。
可选地,在所述第一开关单元至所述第五开关单元中,可控开关的输入端与二极管的阴极连接,并作为开关单元的第一端;可控开关的输出端与二极管的阳极连接,并作为开关单元的第二端;
所述第一开关单元的第一端与所述正极电感连接,第二端与所述第二开关单元的第一端连接;所述第三开关单元的第二端连接在所述正极电感与所述第一开关单元之间,第一端与所述第一电容连接;所述第四开关单元的第一端连接在所述负极电感与所述第二开关单元之间,第二端与所述第二电容连接;
所述第五开关单元的第一端连接在所述第一开关单元与所述第二开关单元之间,第二端连接在所述第一电容与所述第二电容之间。
可选地,各个所述可控开关均为NPN型三极管,NPN型三极管的集电极作为所述可控开关的输入端,发射极作为所述可控开关的输出端;
或者,各个所述可控开关均为PNP型三极管,PNP型三极管的发射极作为所述可控开关的输入端,集电极作为所述可控开关的输出端;
或者,各个所述可控开关均为NMOS管,NMOS管的漏极作为所述可控开关的输入端,源极作为所述可控开关的输出端;
或者,各个所述可控开关均为PMOS管,PMOS管的源极作为所述可控开关的输入端,漏极作为所述可控开关的输出端。
可选地,还包括熔丝,所述熔丝连接在所述电池组的正极与所述正极电 感之间,或者连接在所述电池组的负极与所述负极电感之间。
第二方面,本申请还公开了一种不间断电源,包括如上所述的任一种电池组升降压电路。
本申请实施例所公开的电池组升降压电路,在实现升降压的基础功能之外,基于电路结构中设计的第一调压回路和第二调压回路,可分别对正母线电压、负母线电压进行调节,从而帮助实现正负母线电压平衡。此外,当多台UPS共用电池组时,本申请可通过合理控制不同UPS对电池组的充放电状态一致来避免并机环流的出现,以保障电池使用寿命,因而无需再将电池组中点拉出,既保障了系统的正常安全运行,也取消了对电池组中电池数量的限制,从而可采用单电池组供电方案,提高了产品的适用性和经济效益。本申请所提供的不间断电源同样具有上述有益效果。
附图说明
为了更清楚地说明现有技术和本申请实施例中的技术方案,下面将对现有技术和本申请实施例描述中需要使用的附图作简要的介绍。当然,下面有关本申请实施例的附图描述的仅仅是本申请中的一部分实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图,所获得的其他附图也属于本申请的保护范围。
图1为现有技术中公开的一种电池组升降压电路的电路结构图;
图2为本申请实施例公开的一种电池组升降压电路的应用环境图;
图3为本申请实施例公开的一种电池组升降压电路的电路结构图;
图4为本申请实施例公开的一种电池组升降压电路的并机电路结构图;
图5为图3所示电池组升降压电路在第一运行状态下的电流通路示意图;
图6为图3所示电池组升降压电路在第二运行状态下的电流通路示意图;
图7为图3所示电池组升降压电路在第三运行状态下的电流通路示意图;
图8为图3所示电池组升降压电路在第四运行状态下的电流通路示意图;
图9为图3所示电池组升降压电路在第五运行状态下的电流通路示意图;
图10为图3所示电池组升降压电路在第六运行状态下的电流通路示意图;
图11为图3所示电池组升降压电路在第七运行状态下的电流通路示意图;
图12为图3所示电池组升降压电路在第八运行状态下的电流通路示意图。
具体实施方式
本申请的核心在于提供一种不间断电源及其电池组升降压电路,以便在有效避免并机环流以保障电池使用寿命的基础上,同时取消对电池数量的限制并实现正负母线电压平衡,进而保障系统安全稳定运行。
为了对本申请实施例中的技术方案进行更加清楚、完整地描述,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行介绍。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
当前,在不间断电源中,出于节能提效的考虑,多采用共用电池组即令两台或多台UPS主机同时共用一组电池的方案。在共用电池组后,为了避免出现并机环流,现有技术中将UPS中电池组的中点拉出与输出中点连接,如图1所示。由此,限制了共用电池组中的电池数量必须以偶数形式增减,无法进行单节电池增减。并且,设置电池组中线的方式将极大地缩减锂电池的使用寿命。鉴于此,本申请提供了一种电池组升降压电路,可有效解决上述问题。
参见图2所示,图2为本申请实施例公开的一种电池组升降压电路的应用环境图。图2中,两台UPS并机运行,共用一个电池组;两台UPS中电池组升降压电路的具体连接位置分别如图中2个实线矩形框所示。
参见图3,图3为本申请实施例公开的一种电池组升降压电路的电路结构图。该电池组升降压电路主要包括电池组、正极电感L1、负极电感L2、第一开关单元S1、第二开关单元S2、第三开关单元S3、第四开关单元S4、第五开关单元S5、第一电容C1、第二电容C2和控制单元;
电池组的正极通过正极电感L1与第一开关单元S1的一端连接;电池组的负极通过负极电感L2与第二开关单元S2的一端连接;第一开关单元S1的另一端、第二开关单元S2的另一端均与第五开关单元S5的一端连接;第三开关单元S3的一端连接在正极电感L1与第一开关单元S1之间,另一端依次 串联有第一电容C1、第二电容C2、第四开关单元S4;第四开关单元S4的另一端连接在负极电感L2与第二开关单元S2之间;第五开关单元S5的另一端连接在第一电容C1与第二电容C2之间;
第一开关单元S1至第五开关单元S5均包括一个可控开关以及一个与可控开关反向并联的二极管;控制单元分别与各个可控开关的控制端连接以分别控制各个可控开关的通断。
其中,第一电容C1与第二电容C2的连接点为中性点,第一电容C1的另一端与正母线连接,第一电容C1的两端电压为正母线电压;第二电容C2的另一端与负母线连接,第二电容C2的两端电压为负母线电压。并且,优选地,正极电感L1与负极电感L2的电感值相等,第一电容C1与第二电容C2C2的电容值相等。
在本申请所公开的由电池组、正负极电感L2、各个电容和各个开关单元所构成的电池组升降压电路中,电池组、正极电感L1、第三开关单元S3、第一电容C1、第五开关单元S5、第二开关单元S2、负极电感L2的串联回路作为第一调压回路,用于调节第一电容C1所输出的正母线电压;电池组、正极电感L1、第一开关单元S1、第五开关单元S5、第二电容C2、第四开关单元S4、负极电感L2的串联回路作为第二调压回路,用于调节第二电容C2所输出的负母线电压。
由此,当正负母线电压不平衡时,本申请所公开的电池组升降压电路可利用第一调压回路或者第二调压回路进行调节和改善。具体地,在电池组处于放电状态期间,当正母线电压低于负母线电压时,第一调压回路中的各开关单元导通,以便对第一电容C1充电以提高正母线电压;当正母线电压高于负母线电压时,第二调压回路中的各开关单元导通,以便对第二电容C2充电以提高负母线电压。
另一方面,在电池组处于充电状态期间,当正母线电压低于负母线电压时,第二调压回路中的各开关单元导通,以便第二电容C2放电以降低负母线电压;当正母线电压高于负母线电压时,第一调压回路中的各开关单元导通,以便第一电容C1放电以降低正母线电压。
此外,电池组、正极电感L1、第一开关单元S1、第二开关单元S2、负极电感L2的串联回路作为储能回路,用于实现电池电能与电感磁场能之间的 转换;电池组、正极电感L1、第三开关单元S3、第一电容C1、第二电容C2、第四开关单元S4、负极电感L2的串联回路作为输出回路,用于实现电池电能、电感磁场能、电容电场能之间的转换。
当电池组放电、储能回路正向导通时,部分电池电能被储存在正极电感L1和负极电感L2中;当电池组充电、储能回路反向导通时,正极电感L1和负极电感L2中的电感磁场能释放并转换为电池电能。当电池组放电、输出回路正向导通时,部分电池电能转换为电感磁场能和电容电场能;当电池组充电、输出回路反向导通时,电感磁场能和电容电场能转换为电池电能。
储能回路和输出回路是本申请所公开的电池组升降压电路在进行升降压变换输出的主要工作电路。当在实际运行中出现正负母线电压不平衡时,可通过开关控制,利用第一调压回路调节正母线电压,或者利用第二调压回路调节负母线电压,以实现正负母线电压平衡。
参加图4,图4为本申请实施例公开的一种电池组升降压电路的并机电路结构图。为了便于区分,图4中具体将左侧UPS1的相关元器件以脚标“_a”标记,并将右侧的UPS2的相关元器件以脚标“_b”标记。
具体地,当多台UPS并机运行而共用电池组时,两个电池组升降压电路将因同时并接在电池组两端而形成环路。由于该环路的存在,每台UPS在并接处均对其他UPS施加了电压。当并接的UPS间互相施加的电压不等时即存在电压差时,将会在两台UPS间形成并机环流。而由于UPS整流器之间通常没有均流控制,因此并机环流极易导致一台UPS的整流器过载,而其他UPS的整流器无法启动,进而整流器故障将导致电压失控,母线电压过压又进而会殃及电池组中所有电池过充损坏。
由此,在本申请实施例所提供的电池组升降压电路中,为了防止并机环流的出现,当并联的多个电池组升降压电路共用电池组时,电池组对各个电池组升降压电路的输入/输出状态一致。需要说明的是,输入/输出状态一致具体是指:对于电池组而言,各个电池组升降压电路同时对电池组充电,或者同时由电池组放电;并且,各个电池组升降压电路在均对电池组充电时的充电电流等参数均相等;电池组在对各个电池组升降压电路均放电时的放电电流等参数均相等。
例如,对于图4所示的并机电路,电池组可同时为UPS1和UPS2中的电 容充电,并且具体地,电池组可以以大小为I 0的充电电流为UPS1中的C1_a充电,并同时以电流大小为I 0的充电电流为UPS2中的C2_b充电。
可见,本申请实施例所公开的电池组升降压电路,在实现升降压的基础功能之外,基于电路结构中设计的第一调压回路和第二调压回路,可分别对正母线电压、负母线电压进行调节,从而帮助实现正负母线电压平衡。此外,当多台UPS共用电池组时,本申请可通过合理控制不同UPS对电池组的充放电状态一致来避免并机环流的出现,以保障电池使用寿命,因而无需再将电池组中点拉出,既保障了系统的正常安全运行,也取消了对电池组中电池数量的限制,无需像现有技术中那样使用双电池组,而是可以采用单电池组供电方案,极大地提高了产品的适用性和经济效益。
在上述内容的基础上,如上所述,各个开关单元均包括了可控开关和二极管,而由于开关单元中的可控开关与二极管是反向并联的,因此,可控开关的导通方向与二极管的导通方向相反。其中,可控开关的通断由控制单元发出的控制信号决定,二极管的通断则由两端的电压差决定。控制单元可具体利用单片机、FPGA等器件来实现。
在第一开关单元S1至第五开关单元S5中,可控开关的输入端与二极管的阴极连接,并作为开关单元的第一端;可控开关的输出端与二极管的阳极连接,并作为开关单元的第二端。
由此,当可控开关导通、二极管关断时,开关单元的导通方向为第一端至第二端;当可控开关关断、二极管导通时,开关单元的导通方向为第二端至第一端;当可控开关关断、二极管关断时,开关单元不导通,为关断状态。
其中,在图3所示的具体实施例中,各个可控开关均为NPN型三极管,NPN型三极管的集电极作为可控开关的输入端,发射极作为可控开关的输出端。其中,第一开关单元S1中的第一可控开关记为Q1,第一二极管记为D1;第二开关单元S2中的第二可控开关记为Q2,第二二极管记为D2;第三开关单元S3中的第三可控开关记为Q3,第三二极管记为D3;第四开关单元S4中的第四可控开关记为Q4,第四二极管记为D4;第五开关单元S5中的第五可控开关记为Q5,第五二极管记为D5。
当然,本领域技术人员也可选用其他类型的可控开关。例如,在另一个 具体实施方式中,各个可控开关可均为PNP型三极管,PNP型三极管的发射极作为可控开关的输入端,集电极作为可控开关的输出端。在又一个具体实施方式中,各个可控开关可均为NMOS管,NMOS管的漏极作为可控开关的输入端,源极作为可控开关的输出端。在又一个具体实施方式中,各个可控开关可均为PMOS管,PMOS管的源极作为可控开关的输入端,漏极作为可控开关的输出端。
在图3中,作为一个具体实施例,第一开关单元S1的第一端与正极电感L1连接,第二端与第二开关单元S2的第一端连接;第三开关单元S3的第二端连接在正极电感L1与第一开关单元S1之间,第一端与第一电容C1连接,;第四开关单元S4的第一端连接在负极电感L2与第二开关单元S2之间,第二端与第二电容C2连接。
需要说明的是,在图3中,第五开关单元S5的第一端即第五可控开关Q5的输入端连接在第一电容C1与第二电容C2之间;第五开关单元S5的第二端连接即第五可控开关Q5的输出端连接在第一开关单元S1与所述第二开关单元S2之间。因此,对于图3,当在电池组放电情况下第二调压回路导通时,第五开关单元S5的导通具体是指第五二极管D5的导通,而第五可控开关Q5被控制处于关断状态;同理,当在电池组充电情况下第二调压回路导通时,第五开关单元S5的导通具体是指第五可控开关Q5的导通,而第五二极管D5则关断。
容易理解的是,图3中第五开关单元S5还可以更换连接方向,即还可在另一个实施例中,将第五开关单元S5的第一端即第五可控开关Q5的输入端连接在第一开关单元S1与第二开关单元S2之间,而将第五开关单元S5的第二端即第五可控开关Q5的输出端连接在第一电容C1与第二电容C2之间。如此,当在电池组放电情况下第二调压回路导通时,第五开关单元S5的导通具体是指第五可控开关Q5的导通,而第五二极管D5则关断;当在电池组充电情况下第二调压回路导通时,第五开关单元S5的导通具体是指第五二极管D5的导通,而第五可控开关Q5被控制处于关断状态。
此外,进一步地,本申请实施例所公开的电池组升降压电路还可以包括熔丝F,熔丝F具体可以连接在电池组的正极与正极电感L1之间,或者连接在电池组的负极与负极电感L2之间。
下面将对不同充放电运行状态下的电流通路进行介绍。根据电池组的充放电状态,图3所示电池组升降压电路的运行状态可分为两大类:电池组放电状态(对应于图5~图8)和电池组充电状态(对应于图9~图12)。需要说明的是,在图6~图12中,与各NPN三极管反向并联的二极管并未画出,可具体参考图5中对应位置处的二极管。
参见图5所示,图5为图3所示电池组升降压电路在第一运行状态下的电流通路示意图。如图5所示,在控制单元的控制作用下,第一可控开关Q1和第二可控开关Q2导通,其余可控开关均关断,由此储能回路正向导通,正极电感L1和负极电感L2处于充电状态。
参见图6所示,图6为图3所示电池组升降压电路在第二运行状态下的电流通路示意图。如图6所示,在控制单元的控制作用下,各个可控开关均断开,同时,第三二极管D3与第四二极管D4因承受正向压差而导通,由此输出回路正向导通,电池组对第一电容C1和第二电容C2放电。
参见图7所示,图7为图3所示电池组升降压电路在第三运行状态下的电流通路示意图。当正母线电压低于负母线电压时,可利用图7所示电流通路提升正母线电压。如图7所示,在控制单元的控制作用下,第一可控开关Q1、第三可控开关Q3和第四可控开关Q4均关断,第二可控开关Q2和第五可控开关Q5均导通;同时,第三二极管D3因承受正向压差而导通,由此第一调压回路正向导通。此时,电池组对第一电容C1放电,第一电容C1处于充电状态。
参见图8所示,图8为图3所示电池组升降压电路在第四运行状态下的电流通路示意图。当正母线电压高于负母线电压时,可利用图8所示电流通路提升负母线电压。如图8所示,在控制单元的控制作用下,第一可控开关Q1导通,其余可控开关均关断;同时,第四二极管D4和第五二极管D5因承受正向压差而导通,由此第二调压回路正向导通。此时,电池组对第二电容C2放电,第二电容C2处于充电状态。
参见图9所示,图9为图3所示电池组升降压电路在第五运行状态下的电流通路示意图。如图9所示,在控制单元的控制作用下,各个可控开关均关断,此时由于电池组电压较低,第一二极管D1和第二二极管D2因承受正压而导通,由此储能回路反向导通,正极电感L1和负极电感L2处于放电状 态。
参见图10所示,图10为图3所示电池组升降压电路在第六运行状态下的电流通路示意图。如图10所示,在控制单元的控制作用下,第三可控开关Q3管和第四可控开关Q4管均导通,第一可控开关Q1、第二可控开关Q2和第五可控开关Q5均关断,由此输出回路反向导通。此时,第一电容C1和第二电容C2对电池组放电,电池组处于充电状态。
参见图11所示,图11为图3所示电池组升降压电路在第七运行状态下的电流通路示意图。当正母线电压低于负母线电压时,可利用图11所示电流通路降低负母线电压。如图11所示,在控制单元的控制作用下,第四可控开关Q4和第五可控开关Q5均导通,第一可控开关Q1、第二可控开关Q2和第三可控开关Q3均关断;同时,第一二极管D1因承受正向压差而导通,由此第二调压回路反向导通。此时,第二电容C2对电池组放电,电池组处于充电状态。
参见图12所示,图12为图3所示电池组升降压电路在第八运行状态下的电流通路示意图。当正母线电压高于负母线电压时,可利用图12所示电流通路降低正母线电压。如图12所示,在控制单元的控制作用下,第三可控开关Q3导通,其余可控开关均关断;同时,第二二极管D2和第五二极管D5因承受正向压差而导通,由此第一调压回路反向导通。此时,第一电容C1对电池组放电,电池组处于充电状态。
具体地,在上述六种运行状态中,各个可控开关的导通状态可参见表1。其中,“1”表示导通,“0”表示关断。
表1
  Q1 Q2 Q3 Q4 Q5
运行状态一 1 1 0 0 0
运行状态二 0 0 0 0 0
运行状态三 0 1 0 0 1
运行状态四 1 0 0 0 0
运行状态五 0 0 0 0 0
运行状态六 0 0 1 1 0
运行状态七 0 0 0 1 1
运行状态八 0 0 1 0 0
进一步地,本申请还公开了一种不间断电源,包括如上所述的任一种电 池组升降压电路。
关于上述不间断电源的具体内容,可参考前述关于电池组升降压电路的详细介绍,这里就不再赘述。
本申请中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的设备而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
还需说明的是,在本申请文件中,诸如“第一”和“第二”之类的关系术语,仅仅用来将一个实体或者操作与另一个实体或者操作区分开来,而不一定要求或者暗示这些实体或者操作之间存在任何这种实际的关系或者顺序。此外,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请所提供的技术方案进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请的保护范围内。

Claims (10)

  1. 一种电池组升降压电路,其特征在于,包括电池组、正极电感、负极电感、第一开关单元、第二开关单元、第三开关单元、第四开关单元、第五开关单元、第一电容、第二电容和控制单元;
    所述电池组的正极通过所述正极电感与所述第一开关单元的一端连接;所述电池组的负极通过所述负极电感与所述第二开关单元的一端连接;所述第一开关单元的另一端、所述第二开关单元的另一端均与所述第五开关单元的一端连接;
    所述第三开关单元的一端连接在所述正极电感与所述第一开关单元之间,另一端依次串联有所述第一电容、所述第二电容、所述第四开关单元;所述第四开关单元的另一端连接在所述负极电感与所述第二开关单元之间;所述第五开关单元的另一端连接在所述第一电容与所述第二电容之间;
    所述第一开关单元至所述第五开关单元均包括一个可控开关以及一个与所述可控开关反向并联的二极管;所述控制单元分别与各个所述可控开关的控制端连接以分别控制各个所述可控开关的通断;
    所述电池组、所述正极电感、所述第三开关单元、所述第一电容、所述第五开关单元、所述第二开关单元、所述负极电感的串联回路作为第一调压回路,用于调节所述第一电容所输出的正母线电压;所述电池组、所述正极电感、所述第一开关单元、所述第五开关单元、所述第二电容、所述第四开关单元、所述负极电感的串联回路作为第二调压回路,用于调节所述第二电容所输出的负母线电压。
  2. 根据权利要求1所述的电池组升降压电路,其特征在于,在所述电池组处于放电状态期间,
    当所述正母线电压低于所述负母线电压时,所述第一调压回路中的各开关单元导通,以便对所述第一电容充电以提高所述正母线电压;
    当所述正母线电压高于所述负母线电压时,所述第二调压回路中的各开关单元导通,以便对所述第二电容充电以提高所述负母线电压。
  3. 根据权利要求1所述的电池组升降压电路,其特征在于,在所述电池组处于充电状态期间,
    当所述正母线电压低于所述负母线电压时,所述第二调压回路中的各开 关单元导通,以便所述第二电容放电以降低所述负母线电压;
    当所述正母线电压高于所述负母线电压时,所述第一调压回路中的各开关单元导通,以便所述第一电容放电以降低所述正母线电压。
  4. 根据权利要求1所述的电池组升降压电路,其特征在于,
    所述电池组、所述正极电感、所述第一开关单元、所述第二开关单元、所述负极电感的串联回路作为储能回路,用于实现电池电能与电感磁场能之间的转换;
    所述电池组、所述正极电感、所述第三开关单元、所述第一电容、所述第二电容、所述第四开关单元、所述负极电感的串联回路作为输出回路,用于实现电池电能、电感磁场能、电容电场能之间的转换。
  5. 根据权利要求1至4任一项所述的电池组升降压电路,其特征在于,当并联的多个所述电池组升降压电路共用所述电池组时,所述电池组对各个所述电池组升降压电路的输入/输出状态一致。
  6. 根据权利要求5所述的电池组升降压电路,其特征在于,在所述第一开关单元至所述第五开关单元中,可控开关的输入端与二极管的阴极连接,并作为开关单元的第一端;可控开关的输出端与二极管的阳极连接,并作为开关单元的第二端;
    所述第一开关单元的第一端与所述正极电感连接,第二端与所述第二开关单元的第一端连接;所述第三开关单元的第二端连接在所述正极电感与所述第一开关单元之间,第一端与所述第一电容连接;所述第四开关单元的第一端连接在所述负极电感与所述第二开关单元之间,第二端与所述第二电容连接;
    所述第五开关单元的第一端连接在所述第一电容与所述第二电容之间;第二端连接在所述第一开关单元与所述第二开关单元之间。
  7. 根据权利要求5所述的电池组升降压电路,其特征在于,在所述第一开关单元至所述第五开关单元中,可控开关的输入端与二极管的阴极连接,并作为开关单元的第一端;可控开关的输出端与二极管的阳极连接,并作为开关单元的第二端;
    所述第一开关单元的第一端与所述正极电感连接,第二端与所述第二开 关单元的第一端连接;所述第三开关单元的第二端连接在所述正极电感与所述第一开关单元之间,第一端与所述第一电容连接;所述第四开关单元的第一端连接在所述负极电感与所述第二开关单元之间,第二端与所述第二电容连接;
    所述第五开关单元的第一端连接在所述第一开关单元与所述第二开关单元之间,第二端连接在所述第一电容与所述第二电容之间。
  8. 根据权利要求5所述的电池组升降压电路,其特征在于,
    各个所述可控开关均为NPN型三极管,NPN型三极管的集电极作为所述可控开关的输入端,发射极作为所述可控开关的输出端;
    或者,各个所述可控开关均为PNP型三极管,PNP型三极管的发射极作为所述可控开关的输入端,集电极作为所述可控开关的输出端;
    或者,各个所述可控开关均为NMOS管,NMOS管的漏极作为所述可控开关的输入端,源极作为所述可控开关的输出端;
    或者,各个所述可控开关均为PMOS管,PMOS管的源极作为所述可控开关的输入端,漏极作为所述可控开关的输出端。
  9. 根据权利要求5所述的电池组升降压电路,其特征在于,还包括熔丝,所述熔丝连接在所述电池组的正极与所述正极电感之间,或者连接在所述电池组的负极与所述负极电感之间。
  10. 一种不间断电源,其特征在于,包括如权利要求1至9任一项所述的电池组升降压电路。
PCT/CN2020/129026 2019-12-12 2020-11-16 一种不间断电源及其电池组升降压电路 WO2021115033A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911274425.0A CN111106750B (zh) 2019-12-12 2019-12-12 一种不间断电源及其电池组升降压电路
CN201911274425.0 2019-12-12

Publications (1)

Publication Number Publication Date
WO2021115033A1 true WO2021115033A1 (zh) 2021-06-17

Family

ID=70423192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129026 WO2021115033A1 (zh) 2019-12-12 2020-11-16 一种不间断电源及其电池组升降压电路

Country Status (2)

Country Link
CN (1) CN111106750B (zh)
WO (1) WO2021115033A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116404738A (zh) * 2023-02-21 2023-07-07 南京汉科明德医疗科技有限公司 一种基于高电压电池组的ups模块

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106750B (zh) * 2019-12-12 2022-05-10 科华恒盛股份有限公司 一种不间断电源及其电池组升降压电路
CN112018867B (zh) * 2020-07-27 2022-05-10 科华恒盛股份有限公司 可配置共用电池的不间断电源及不间断电源并机系统
CN112968604B (zh) * 2021-02-07 2022-04-15 湖南大学 级联型三电平buck-boost变换器的多模态平滑控制方法及系统
CN113178914A (zh) * 2021-04-30 2021-07-27 科华数据股份有限公司 变压电路控制方法及装置、并机ups系统
CN114285138B (zh) * 2021-12-31 2022-11-18 深圳市英威腾电源有限公司 一种母线均压平衡控制装置及三相高频ups

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004726A (ja) * 2008-05-19 2010-01-07 Honda Motor Co Ltd 電力変換器
CN102684469A (zh) * 2012-04-27 2012-09-19 华为技术有限公司 不间断电源、控制不间断电源的方法及控制装置
CN107425709A (zh) * 2017-07-03 2017-12-01 南京凌鸥创芯电子有限公司 Boost功率因数校正变换器
CN108809094A (zh) * 2018-05-11 2018-11-13 山特电子(深圳)有限公司 不间断电源、dc-dc变换器及其控制方法和控制装置
CN110198116A (zh) * 2018-02-26 2019-09-03 维谛技术有限公司 电池变换电路、不间断电源及电池变换方法
CN111106750A (zh) * 2019-12-12 2020-05-05 科华恒盛股份有限公司 一种不间断电源及其电池组升降压电路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9935549B2 (en) * 2016-07-08 2018-04-03 Toshiba International Corporation Multi-switch power converter
CN206506339U (zh) * 2017-03-15 2017-09-19 漳州科华技术有限责任公司 一种buck充电装置
CN206533189U (zh) * 2017-03-21 2017-09-29 漳州科华技术有限责任公司 一种变换电路及一种不间断电源

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004726A (ja) * 2008-05-19 2010-01-07 Honda Motor Co Ltd 電力変換器
CN102684469A (zh) * 2012-04-27 2012-09-19 华为技术有限公司 不间断电源、控制不间断电源的方法及控制装置
CN107425709A (zh) * 2017-07-03 2017-12-01 南京凌鸥创芯电子有限公司 Boost功率因数校正变换器
CN110198116A (zh) * 2018-02-26 2019-09-03 维谛技术有限公司 电池变换电路、不间断电源及电池变换方法
CN108809094A (zh) * 2018-05-11 2018-11-13 山特电子(深圳)有限公司 不间断电源、dc-dc变换器及其控制方法和控制装置
CN111106750A (zh) * 2019-12-12 2020-05-05 科华恒盛股份有限公司 一种不间断电源及其电池组升降压电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116404738A (zh) * 2023-02-21 2023-07-07 南京汉科明德医疗科技有限公司 一种基于高电压电池组的ups模块
CN116404738B (zh) * 2023-02-21 2024-05-17 南京汉科明德医疗科技有限公司 一种基于高电压电池组的ups模块

Also Published As

Publication number Publication date
CN111106750A (zh) 2020-05-05
CN111106750B (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
WO2021115033A1 (zh) 一种不间断电源及其电池组升降压电路
WO2021232785A1 (zh) 三桥臂拓扑装置、控制方法、以及不间断电源系统
US7898110B2 (en) On-line uninterruptible power system
EP3270486B1 (en) Uninterruptible power supply
EP3255771B1 (en) Bidirectional dc-dc convertor
US11848581B2 (en) Source bootstrap power conversion for the safe and efficient interconnection of homogeneous or heterogeneous energy storage modules
CN205724930U (zh) 一种混合逆变器系统
EP3399634A1 (en) Isolated bidirectional dc-dc converter
EP4152559A1 (en) Energy storage system, uninterruptible power system, and battery equalization method
Sedaghati et al. Double input Z-source DC-DC converter
US20190372382A1 (en) Dc charging system for storage battery of electric vehicle
US11165358B2 (en) Switching control method for isolated bidirectional DC-DC converter
EP3576271A1 (en) Dc charging system for storage battery of electric vehicle
CN113489032B (zh) 电池储能电路及电池储能系统
Ahmadi et al. Mitigation of voltage unbalances in bipolar DC microgrids using three-port multidirectional DC-DC converters
Chen et al. A new nonisolated three-port DC-DC converter with high step-up/down ratio
Kumar et al. Multiple-input-single-output converter for hybrid renewable sources
Narula et al. Bi–directional trans–Z source boost converter for G2V/V2G applications
CN111327194B (zh) 共直流电源的电源转换器及供电装置
CN112952926A (zh) 一种多电池切换控制电路、装置、系统及控制方法
TW201528672A (zh) 電源系統及其直流轉換器
CN101807804B (zh) 电池共用的不间断电源系统
TW202023142A (zh) 串聯電池開關模組及其模式切換方法及儲能系統
CN216672622U (zh) 一种基站用电池合路器双向电源架构
CN110768342B (zh) 储能设备和充放电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898270

Country of ref document: EP

Kind code of ref document: A1