WO2021114860A1 - 一种具有复合通讯光伏优化器的光伏系统及其工作方法 - Google Patents

一种具有复合通讯光伏优化器的光伏系统及其工作方法 Download PDF

Info

Publication number
WO2021114860A1
WO2021114860A1 PCT/CN2020/121285 CN2020121285W WO2021114860A1 WO 2021114860 A1 WO2021114860 A1 WO 2021114860A1 CN 2020121285 W CN2020121285 W CN 2020121285W WO 2021114860 A1 WO2021114860 A1 WO 2021114860A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
composite communication
optimizer
module
nfc
Prior art date
Application number
PCT/CN2020/121285
Other languages
English (en)
French (fr)
Inventor
高培鑫
郭辰
刘鑫
李腾
彭文博
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2021114860A1 publication Critical patent/WO2021114860A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention belongs to the technical field of photovoltaic power generation, and specifically relates to a photovoltaic system with a composite communication photovoltaic optimizer and a working method thereof.
  • Photovoltaic (power) optimizer can achieve maximum power point tracking (MPPT) for each photovoltaic module to ensure that each photovoltaic module in the photovoltaic system can output electric energy to the maximum. It has energy transmission, energy optimization, data collection and communication functions at the same time, and is suitable for use in mountainous areas and areas where roofs are heavily shaded.
  • MPPT power point tracking
  • ZigBee is a new type of wireless communication technology, suitable for a series of electronic components and equipment with short transmission range and low data transmission rate.
  • ZigBee wireless communication technology can achieve coordinated communication between thousands of tiny sensors, relying on special radio standards, so this technology is often called Home RF Lite wireless technology, FireFly wireless technology.
  • NFC Near Field Communication
  • RFID radio frequency identification
  • the communication method of the above photovoltaic optimizer is suitable for online monitoring of photovoltaic optimizer data, but it cannot solve the problem of positioning the photovoltaic optimizer in the system, that is, it is impossible to determine which photovoltaic optimizer is in the photovoltaic optimizer string and which two are adjacent PV optimizer connection. It is impossible to locate which string or square the photovoltaic optimizer is in in the background system.
  • maintenance personnel can only retrieve it from the background, and the data retrieved from the background has a lag, which cannot reflect the on-site conditions of the photovoltaic optimizer in real time.
  • the purpose of the present invention is to provide a photovoltaic system with a composite communication photovoltaic optimizer and a working method thereof, which can monitor the working status of each photovoltaic module in the photovoltaic system in real time and provide position information of the photovoltaic module. , So that the problematic photovoltaic components can be controlled and dealt with in time, and the safety and stability of photovoltaic system operation can be improved.
  • the invention discloses a photovoltaic system with a composite communication photovoltaic optimizer.
  • Each photovoltaic component in the photovoltaic system is correspondingly connected with a composite communication photovoltaic optimizer.
  • the input end of the composite communication photovoltaic optimizer is connected with the photovoltaic component, and the output end is connected with others.
  • Composite communication photovoltaic optimizer in series;
  • the composite communication photovoltaic optimizer includes an MCU and a power conversion unit.
  • the power conversion unit is connected to the MCU and the photovoltaic module respectively.
  • the input and output ends of the power conversion unit are connected to the detection unit;
  • the MCU is also connected to the Zigbee module and the NFC module;
  • the composite communication photovoltaic optimizer is connected to the host computer through the Zigbee module, and is connected to the NFC module of other composite communication photovoltaic optimizers and the handheld NFC inspection equipment through the NFC module.
  • Each composite communication photovoltaic optimizer has a unique identification ID.
  • the power conversion unit includes a step-up synchronous rectification circuit.
  • the detection unit includes two shunt monitors for detecting currents at the input and output ends of the power conversion unit and two voltage dividers for detecting and detecting voltages at the input and output ends of the power conversion unit.
  • the antennas of the Zigbee module and the NFC module are fixed on the outer wall of the housing of the composite communication photovoltaic optimizer without contact.
  • the housing of the composite communication photovoltaic optimizer is a non-metal housing.
  • the communication modes of the NFC module of the composite communication photovoltaic optimizer include point-to-point mode, card reader mode and card mode.
  • the present invention discloses a working method of the photovoltaic system with a composite communication photovoltaic optimizer, including:
  • the detection unit detects the electrical parameters from the input and output of the power conversion unit. After communicating with the MCU, the MCU processing electrical parameters are compared with the preset thresholds in the MCU. According to the comparison results, the MCU issues a local command to control the composite The working mode of the communication photovoltaic optimizer;
  • the MCUs of all composite communication photovoltaic optimizers in the photovoltaic system send the electrical parameters detected by the detection unit to the host computer through the Zigbee module.
  • the detection unit of a composite communication photovoltaic optimizer in the photovoltaic system detects the output power of the power conversion unit
  • the upper computer issues an upper computer command to control the composite communication photovoltaic optimizer to start the optimization mode
  • the staff holds the NFC inspection equipment to detect the composite communication photovoltaic optimizer.
  • the NFC module of the composite communication photovoltaic optimizer is in point-to-point mode, and the MCU sends the summarized electrical parameters to the staff holding the NFC inspection equipment through the NFC module, and the staff passes
  • the handheld NFC inspection equipment can issue real-time NFC commands to control the working mode of the composite communication photovoltaic optimizer;
  • the staff determines the position of the photovoltaic module through the unique identification ID of the photovoltaic module and then processes the photovoltaic module.
  • the MCU controls the power conversion unit to achieve maximum power tracking, so that the output power of the power conversion unit is maximized.
  • the MCU simultaneously accepts the voltage, current and power and other electrical parameters of the power conversion unit's input and output from the detection unit and is working at the same time At the same time, relevant electrical parameters are generated and sent to the NFC module and Zigbee module, and at the same time, data and instructions from the NFC module of the handheld NFC inspection device and the upper computer Zigbee module are accepted.
  • the priority of the real-time NFC command >the priority of the host computer command>the priority of the local command.
  • the handheld NFC inspection equipment can perform real-time firmware upgrades to the composite communication photovoltaic optimizer.
  • the present invention has the following beneficial technical effects:
  • the invention discloses a photovoltaic system with a composite communication photovoltaic optimizer.
  • the Zigbee module realizes the working status monitoring, remote control and information collection of the photovoltaic system by the background system; and realizes the accurate positioning of each photovoltaic optimizer through the NFC module , At the same time, it is convenient for inspectors to detect the real-time status of the composite communication photovoltaic optimizer, avoiding lagging information from the background system.
  • the device is reasonably designed and can monitor the working status of each photovoltaic module in the photovoltaic system in real time, and provide the position information of the photovoltaic module at the same time, so that the problematic photovoltaic module can be controlled and dealt with in time, and the safety and stability of the photovoltaic system operation can be improved. .
  • the antennas of the Zigbee module and the NFC module are fixed on the inner wall of the housing of the composite communication photovoltaic optimizer without contact to prevent mutual electromagnetic interference between the antennas.
  • the shell of the composite communication photovoltaic optimizer is a non-metal shell, which further reduces the influence of electromagnetic interference on the communication effect.
  • the working method of the photovoltaic system with the composite communication photovoltaic optimizer disclosed in the present invention has a high degree of automation.
  • the working mode of the composite communication photovoltaic optimizer can be adjusted according to the actual situation to ensure the normality of the photovoltaic module jobs.
  • the inspectors can obtain the real-time status information of each photovoltaic module, and adjust the working mode of the composite communication photovoltaic optimizer in time according to this information; it can also locate the specific composite communication according to the abnormal status information fed back by the host computer
  • the photovoltaic optimizer and the connected photovoltaic modules are processed in time.
  • the composite communication photovoltaic optimizer can reasonably execute instructions normally according to the instruction level under the interleaved control of multiple instructions.
  • the NFC inspection equipment can perform real-time firmware upgrades to the composite communication photovoltaic optimizer, and can quickly upgrade the composite communication photovoltaic optimizer firmware and check the firmware upgrade effect in real time, which is convenient for comparison.
  • Figure 1 is a schematic diagram of the structure of the photovoltaic optimizer with composite communication of the present invention
  • Figure 2 is a working principle diagram of the switching communication mode of the NFC module of the photovoltaic system of the composite communication photovoltaic optimizer of the present invention.
  • each photovoltaic module is correspondingly connected with a composite communication photovoltaic optimizer;
  • the composite communication photovoltaic optimizer includes an MCU, a power conversion unit and a detection unit, and a power conversion unit Respectively connected with MCU and photovoltaic module, MCU is also connected with Zigbee module and NFC module.
  • the detection unit includes two shunt monitors, which can use Texas Instruments' INA210, which can detect the current at the input and output ends of the power conversion unit, and can detect the input voltage and current of the composite communication photovoltaic optimizer; the detection unit includes two voltage dividers , A voltage divider is composed of two resistors to get a voltage signal.
  • the power conversion unit is a step-up parallel synchronous rectification circuit, which boosts the output of the DC voltage at the input.
  • the MCU receives the detection unit to detect the input and output voltage and current of the power conversion unit, and issues instructions to enable the power conversion unit to achieve maximum power tracking (MPPT). Maximize the output power of the power conversion unit.
  • the boost parallel synchronous rectifier circuit uses the mosfet tube to conduct resistance to ground, and the switching time is short, which reduces the rectification loss and improves the efficiency.
  • the antennas of the Zigbee module and the NFC module are fixed on the outer wall of the composite communication photovoltaic optimizer shell without contact, and the composite communication photovoltaic optimizer shell is a non-metallic shell. All composite communication photovoltaic optimizers are connected to the host computer through the Zigbee module, and connected with other composite communication photovoltaic optimizers and NFC inspection equipment through the NFC module. Each composite communication photovoltaic optimizer is burned into the program during production and has a unique identification ID .
  • MCU can use STM32F334C8T6.
  • the Zigbee module can use TI's CC2530.
  • NFC module can use NXP DESFire EV1.
  • the Zigbee module uses the networking function to communicate with the upper computer, uploads the unique identification ID of the photovoltaic optimizer and the data obtained from the power conversion unit to the upper computer, and the upper computer monitoring system processes the data of each composite communication photovoltaic optimizer in the photovoltaic array .
  • NFC Near Field Communication
  • EMCA-340 EMCA-340
  • the NFC module of the composite communication photovoltaic optimizer has three communication modes, namely point-to-point mode, card reader mode and card mode.
  • NFC module is equivalent to an IC card using RFID technology.
  • the NFC module stores the unique identification ID of the photovoltaic optimizer, which can be read by handheld NFC inspection equipment or other photovoltaic optimizers in card reader mode .
  • Card reader mode The NFC module of the composite communication photovoltaic optimizer is in the card reader mode, which can read the unique identification ID of the NFC module in card mode of other composite communication photovoltaic optimizers.
  • Point-to-point mode The NFC module of the composite communication photovoltaic optimizer can exchange data bidirectionally with the handheld NFC inspection equipment, and the handheld NFC inspection equipment can transmit instructions to the NFC module of the composite communication photovoltaic optimizer.
  • the NFC module switches according to multiple conditions such as whether the MCU sends a signal, the voltage parameter at the input of the power conversion unit in the MCU signal, the current parameter at the input of the power conversion unit in the signal, and whether the NFC module detects other NFC signals. Communication mode.
  • a photovoltaic system includes n composite communication photovoltaic optimizers and a host computer.
  • the outputs of n composite communication photovoltaic optimizers are connected in series to form a composite communication photovoltaic optimizer string, and the i-th composite communication photovoltaic optimizer is in the composite communication photovoltaic optimizer string and is connected to the adjacent i-1th composite communication photovoltaic optimizer. It is connected in series with the i+1th composite communication photovoltaic optimizer.
  • the input terminal of the i-th composite communication photovoltaic optimizer is connected to the photovoltaic module.
  • the composite communication photovoltaic optimizer judges that the NFC module is in the card reader mode.
  • the i+1th composite communication photovoltaic optimizer has not been connected to the photovoltaic module before installation, and it is in the card mode according to the judgment, and its NFC module has its unique identification ID.
  • the construction personnel contact the NFC module antenna of the i+1th composite communication photovoltaic optimizer with the surface of the NFC module antenna of the i-th photovoltaic optimizer.
  • the NFC module of the i-th composite communication photovoltaic optimizer reads the i+th 1 unique identification ID of the composite communication photovoltaic optimizer and record it.
  • the construction personnel complete the entry of the entire composite communication photovoltaic optimizer string according to the access sequence of the composite communication photovoltaic optimizer.
  • the composite communication photovoltaic optimizer is connected to the grid and powered on, and the i-th composite communication photovoltaic optimizer sends a network access request to the upper computer through the Zigbee module, and the upper computer agrees to enter the network, registers, and establishes a connection.
  • the i-th composite communication photovoltaic optimizer receives the data from the host computer.
  • Initialization step 4 the composite communication host computer starts to collect data from all composite communication photovoltaic optimizers connected to the network, and the i-th composite communication photovoltaic optimizer uses the Zigbee module to combine its own unique identification ID and i+1 composite communication photovoltaic optimizer The unique identification ID is uploaded to the host computer.
  • Initialization step 5 the host computer obtains the unique identification ID of all composite communication photovoltaic optimizers and the unique identification ID of the subsequent composite communication photovoltaic optimizer, the host computer starts to pair, the front end matches the back end, and records a string of photovoltaic modules , To determine the location information of the i-th composite communication photovoltaic optimizer.
  • Initialization step 6 the upper computer sends the position information of the i-th composite communication photovoltaic optimizer through ZigBee wireless communication to the i-th composite communication photovoltaic optimizer for storage.
  • the working method of the photovoltaic system with the composite communication photovoltaic optimizer includes:
  • the detection unit detects the electrical parameters from the input and output of the power conversion unit. After communicating with the MCU, the MCU processing electrical parameters are compared with the preset thresholds in the MCU. According to the comparison results, the MCU issues a local command to control the composite The working mode of the communication photovoltaic optimizer;
  • the MCUs of all composite communication photovoltaic optimizers in the photovoltaic system send the electrical parameters detected by the detection unit to the host computer through the Zigbee module.
  • the detection unit of a composite communication photovoltaic optimizer in the photovoltaic system detects the output power of the power conversion unit
  • the upper computer issues an upper computer instruction to control the composite communication photovoltaic optimizer to start the optimization mode.
  • the staff holds the NFC inspection equipment to detect the composite communication photovoltaic optimizer.
  • the NFC module of the composite communication photovoltaic optimizer is in the point-to-point mode according to the judgment, and the MCU sends the summarized electrical parameters to the staff holding the NFC inspection equipment through the NFC module.
  • Personnel holding NFC inspection equipment can issue real-time NFC commands to control the working mode of the composite communication photovoltaic optimizer.
  • the priority of the real-time NFC command >the priority of the host computer command>the priority of the local command.

Abstract

一种具有复合通讯光伏优化器的光伏系统及其工作方法,属于光伏发电技术领域。通过Zigbee模块实现了后台系统对光伏系统的工作状态监控、远程控制和信息采集;通过NFC模块实现了每个光伏优化器的准确定位,同时方便巡检人员对复合通讯光伏优化器的实时状态进行检测,避免从后台系统中调出滞后性的信息。该光伏系统设计合理,能够在实时监测各光伏组件工作状态的同时,提供光伏组件的位置信息,从而能够对问题光伏组件进行及时的控制和处理,提高光伏系统运行的安全性和稳定性。

Description

一种具有复合通讯光伏优化器的光伏系统及其工作方法 技术领域
本发明属于光伏发电技术领域,具体涉及一种具有复合通讯光伏优化器的光伏系统及其工作方法。
背景技术
光伏(功率)优化器能够对每一个光伏组件实现最大功率点追踪(MPPT),保证光伏系统中每个光伏模块都可以最大限度地输出电能。它同时具有能量传输,能量优化,数据采集功能和通讯功能,适合在山地和屋面遮挡较严重的地区使用。
ZigBee是一项新型的无线通信技术,适用于传输范围短、数据传输速率低的一系列电子元器件设备之间。ZigBee无线通信技术可于数以千计的微小传感器相互间,依托专门的无线电标准达成相互协调通信,因而该项技术常被称为Home RF Lite无线技术、FireFly无线技术。
近场通信(Near Field Communication,简称NFC),是一种新兴的技术,使用了NFC技术的设备(例如移动电话)可以在彼此靠近的情况下进行数据交换,是由非接触式射频识别(RFID)及互连互通技术整合演变而来的,通过在单一芯片上集成感应式读卡器、感应式卡片和点对点通信的功能,利用移动终端实现移动支付、电子票务、门禁、移动身份识别、防伪等应用。
当前光伏优化器的通讯方式有多种,有采用有线通讯方法RS485通讯、总线通讯,或电力线载波PLC通讯,或者无线通讯方法技术。然而上述光伏优化器的通讯方式适合在线监测光伏优化器数据,但是无法解决光伏优化器在系统中定位问题,即不能确定光伏优化器在光伏优化器组串中第几个,与邻近哪两个光伏优化器连接。在后台系统中无法定位光伏优化器在哪个组串,哪个方阵。同 时,检修人员在现场巡查光伏优化器时,只能从后台调取,而后台调取的数据有滞后性,不能实时反应光伏优化器的现场状况。
发明内容
为了解决上述现有问题,本发明的目的在于提供一种具有复合通讯光伏优化器的光伏系统及其工作方法,能够在实时监测光伏系统中各光伏组件工作状态的同时,提供光伏组件的位置信息,从而能够对问题光伏组件进行及时的控制和处理,提高光伏系统运行的安全性和稳定性。
本发明通过以下技术方案来实现:
本发明公开了一种具有复合通讯光伏优化器的光伏系统,光伏系统中每个光伏组件均对应连接有复合通讯光伏优化器,复合通讯光伏优化器的输入端与光伏组件连接,输出端与其它复合通讯光伏优化器串联;
复合通讯光伏优化器包括MCU和功率转化单元,功率转化单元分别与MCU和光伏组件连接,功率转化单元的输入端和输出端均连接有检测单元;MCU还连接有Zigbee模块和NFC模块;
复合通讯光伏优化器通过Zigbee模块与上位机连接,通过NFC模块与其它复合通讯光伏优化器的NFC模块和手持NFC巡检设备连接,每个复合通讯光伏优化器具有唯一标识ID。
优选地,功率转化单元包括升压同步整流电路。
优选地,检测单元包括两个用于检测功率转化单元输入端和输出端电流的分流监控器和两个用于检测检测功率转化单元输入端和输出端电压的电压分压器。
优选地,Zigbee模块和NFC模块的天线不接触的固定在复合通讯光伏优化器外壳的外壁上。
进一步优选地,复合通讯光伏优化器外壳为非金属外壳。
优选地,复合通讯光伏优化器的NFC模块的通讯模式包括点对点模式、读 卡器模式和卡片模式。
本发明公开了上述的具有复合通讯光伏优化器的光伏系统的工作方法,包括:
光伏系统正常工作时,检测单元检测从功率转化单元输入端和输出端的电参量,与MCU通讯后,MCU处理电参量与MCU内预设的阈值进行比较,根据比较结果,MCU下达本地指令控制复合通讯光伏优化器的工作模式;
光伏系统内所有复合通讯光伏优化器的MCU将检测单元检测的电参量后通过Zigbee模块发送至上位机,当光伏系统中某个复合通讯光伏优化器的检测单元检测到功率转换单元的输出端功率明显低于光伏系统中复合通讯光伏优化器的检测单元检测到功率转换单元的输出端功率的平均值时,上位机下达上位机指令,控制复合通讯光伏优化器开启优化模式;
工作人员手持NFC巡检设备检测复合通讯光伏优化器,此时复合通讯光伏优化器的NFC模块处于点对点模式,MCU将汇总的电参量通过NFC模块发送至工作人员手持NFC巡检设备,工作人员通过手持NFC巡检设备可下达实时NFC指令,控制复合通讯光伏优化器的工作模式;
当上位机监测到某一光伏组件的工作状态存在异常时,工作人员通过该光伏组件的唯一标识ID确定该光伏组件的位置后对该光伏组件进行处理。
优选地,MCU控制功率转化单元实现最大功率追踪,使功率转化单元的输出端功率最大,MCU同时接受检测单元传来的功率转化单元的输入端和输出端的电压电流功率等电参量并同时在工作时产生相关电参量并发送至NFC模块和Zigbee模块,同时接受手持NFC巡检设备的NFC模块和上位机Zigbee模块的数据和指令。
优选地,实时NFC指令的优先级>上位机指令的优先级>本地指令的优先级。
进一步优选地,手持NFC巡检设备能够对复合通讯光伏优化器进行实时固 件升级。
与现有技术相比,本发明具有以下有益的技术效果:
本发明公开的一种具有复合通讯光伏优化器的光伏系统,通过Zigbee模块实现了后台系统对光伏系统的工作状态监控、远程控制和信息采集;通过NFC模块实现了每个光伏优化器的准确定位,同时方便巡检人员对复合通讯光伏优化器的实时状态进行检测,避免从后台系统中调出滞后性的信息。该装置设计合理,能够在实时监测光伏系统中各光伏组件工作状态的同时,提供光伏组件的位置信息,从而能够对问题光伏组件进行及时的控制和处理,提高光伏系统运行的安全性和稳定性。
进一步地,Zigbee模块和NFC模块的天线不接触的固定在复合通讯光伏优化器外壳的内壁上,防止天线间互相电磁干扰。
更进一步地,复合通讯光伏优化器外壳为非金属外壳,进一步减少电磁干扰影响通讯效果。
本发明公开的上述具有复合通讯光伏优化器的光伏系统的工作方法,自动化程度高,在光伏系统正常工作时,能够根据实际情况对复合通讯光伏优化器的工作模式进行调整,保证光伏组件的正常工作。在巡检人员巡检时,能够获取每个光伏组件的实时状态信息,并根据该信息及时调整复合通讯光伏优化器的工作模式;也可以根据上位机反馈的异常状态信息定位到具体的复合通讯光伏优化器及所连接的光伏组件,做出及时的处理。
进一步地,通过对不同指令优先级的规定,复合通讯光伏优化器在多种指令交错控制下能够合理按照指令级别正常执行指令。
进一步地,NFC巡检设备能够对复合通讯光伏优化器进行实时固件升级,可快速对复合通讯光伏优化器固件升级并实时检验固件升级效果,方便对比。
附图说明
图1为本发明的具有复合通讯光伏优化器的结构示意图;
图2为本发明的复合通讯光伏优化器的光伏系统的NFC模块切换通讯方式工作原理图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步详细描述,其内容是对本发明的解释而不是限定:
如图1,本发明的具有复合通讯光伏优化器的光伏系统中,每个光伏组件均对应连接有复合通讯光伏优化器;复合通讯光伏优化器包括MCU、功率转化单元和检测单元,功率转化单元分别与MCU和光伏组件连接,MCU还连接有Zigbee模块和NFC模块。
检测单元包括两个分流监控器,可以采用德州仪器的INA210,可检测功率转化单元输入和输出端的电流得到,能够检测复合通讯光伏优化器的输入电压和电流;检测单元包括两个电压分压器,一个分压器由两个电阻组成,得到电压信号。
功率转化单元为升压并联同步整流电路,将输入端的直流电压升压输出,MCU接受检测单元检测到功率转化单元的输入输出电压电流,下达指令,使功率转化单元实现最大功率跟踪(MPPT),使功率转化单元的输出端功率最大。升压并联同步整流电路利用mosfet管导通电阻地,开关时间短,降低整流损耗,提高效率。
Zigbee模块和NFC模块的天线不接触的固定在复合通讯光伏优化器外壳的外壁上,复合通讯光伏优化器外壳为非金属外壳。所有复合通讯光伏优化器通过Zigbee模块与上位机连接,通过NFC模块与和其他复合通讯光伏优化器和NFC巡检设备连接,每个复合通讯光伏优化器在生产中烧入程序,具有唯一标识ID。
MCU可以采用STM32F334C8T6。
Zigbee模块可以采用TI的CC2530。
NFC模块可以采用NXP DESFire EV1。
Zigbee模块利用组网功能与上位机通讯,将该光伏优化器的唯一标识ID与从功率转化单元得到的数据上传到上位机,上位机监控系统处理光伏阵列中每一个复合通讯光伏优化器的数据。
近场通信(NFC)是一种短距高频的无线电技术,在13.56MHz频率运行于20厘米距离内。其传输速度有106Kbit/秒、212Kbit/秒或者424Kbit/秒三种。目前近场通信已通过成为ISO/IEC IS 18092国际标准、EMCA-340标准与ETSI TS 102 190标准。
复合通讯光伏优化器的NFC模块具有三种通讯模式,即点对点模式,读卡器模式和卡片模式。
卡片模式:NFC模块即相当与一张采用RFID技术的IC卡,NFC模块存有该光伏优化器的唯一标识ID,可被手持NFC巡检设备或者其他处于读卡器模式的光伏优化器读取。
读卡器模式:复合通讯光伏优化器的NFC模块处于读卡器模式,可读取其他复合通讯光伏优化器的处于卡片模式NFC模块的唯一标识ID。
点对点模式:复合通讯光伏优化器的NFC模块可与手持NFC巡检设备双向交换数据,手持NFC巡检设备可复合通讯光伏优化器的NFC模块传递指令。
如图2,NFC模块根据MCU是否发出信号、MCU信号中的功率转化单元输入端电压参量、信号中的功率转化单元输入端电流参量、NFC模块是否检测到其他NFC信号等多个条件NFC模块切换通讯模式。
一个光伏系统中包括n个复合通讯光伏优化器和一个上位机。n个复合通讯光伏优化器输出串联组成一个复合通讯光伏优化器串,所述第i个复合通讯光伏优化器在复合通讯光伏优化器串中,与相邻第i-1个复合通讯光伏优化器和第i+1个复合通讯光伏优化器串联。其安装时的初始化步骤为:
初始化步骤1,第i个复合通讯光伏优化器输入端接入光伏组件,此时复合 通讯光伏优化器根据判定NFC模块处于读卡器模式。
初始化步骤2,第i+1个复合通讯光伏优化器在安装前尚未接入光伏组件,根据判定处于卡片模式,其NFC模块存有其唯一标识ID。施工人员将第i+1个复合通讯光伏优化器的NFC模块天线与第i个光伏优化器的NFC模块天线表面接触,此时第i个复合通讯光伏优化器的NFC模块读取到第i+1个复合通讯光伏优化器的唯一标识ID并记录下来。施工人员依次按复合通讯光伏优化器的接入顺序完成整个复合通讯光伏优化器串的录入工作。
初始化步骤3,复合通讯光伏优化器并网通电工作,第i个复合通讯光伏优化器通过Zigbee模块向上位机发送入网请求,上位机同意入网,并注册,建立联系。第i个复合通讯光伏优化器收到上位机的数据。
初始化步骤4,复合通讯上位机开始对所有入网的复合通讯光伏优化器要求采集数据,第i个复合通讯光伏优化器通过Zigbee模块将自己的唯一标识ID和i+1个复合通讯光伏优化器的唯一标识ID上传到上位机。
初始化步骤5,上位机得到所有复合通讯光伏优化器的自己的唯一标识ID和后面接的复合通讯光伏优化器的唯一标识ID,上位机开始配对,前端配对后端,记录一整串光伏组件串,确定第i个复合通讯光伏优化器的位置信息。
初始化步骤6,上位机将第i个复合通讯光伏优化器的位置信息通过ZigBee无线通讯下发到第i个复合通讯光伏优化器存储。
上述具有复合通讯光伏优化器的光伏系统的工作方法,包括:
光伏系统正常工作时,检测单元检测从功率转化单元输入端和输出端的电参量,与MCU通讯后,MCU处理电参量与MCU内预设的阈值进行比较,根据比较结果,MCU下达本地指令控制复合通讯光伏优化器的工作模式;
光伏系统内所有复合通讯光伏优化器的MCU将检测单元检测的电参量后通过Zigbee模块发送至上位机,当光伏系统中某个复合通讯光伏优化器的检测单元检测到功率转换单元的输出端功率明显低于光伏系统中复合通讯光伏优 化器的检测单元检测到功率转换单元的输出端功率的平均值时,上位机下达上位机指令,控制复合通讯光伏优化器开启优化模式。
工作人员手持NFC巡检设备检测复合通讯光伏优化器,此时复合通讯光伏优化器的NFC模块根据判定处于点对点模式,MCU将汇总的电参量通过NFC模块发送至工作人员手持NFC巡检设备,工作人员手持NFC巡检设备可下达实时NFC指令,控制复合通讯光伏优化器的工作模式。实时NFC指令的优先级>上位机指令的优先级>本地指令的优先级。
需要说明的是,以上所述仅为本发明实施方式之一,根据本发明所描述的系统所做的等效变化,均包括在本发明的保护范围内。本发明所属技术领域的技术人员可以对所描述的具体实例做类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均属于本发明的保护范围。

Claims (10)

  1. 一种具有复合通讯光伏优化器的光伏系统,其特征在于,光伏系统中每个光伏组件均对应连接有复合通讯光伏优化器,复合通讯光伏优化器的输入端与光伏组件连接,输出端与其它复合通讯光伏优化器串联;
    复合通讯光伏优化器包括MCU和功率转化单元,功率转化单元分别与MCU和光伏组件连接,功率转化单元的输入端和输出端均连接有检测单元;MCU还连接有Zigbee模块和NFC模块;
    复合通讯光伏优化器通过Zigbee模块与上位机连接,通过NFC模块与其它复合通讯光伏优化器的NFC模块和手持NFC巡检设备连接,每个复合通讯光伏优化器具有唯一标识ID。
  2. 根据权利要求1所述的具有复合通讯光伏优化器的光伏系统,其特征在于,功率转化单元包括升压同步整流电路。
  3. 根据权利要求1所述的具有复合通讯光伏优化器的光伏系统,其特征在于,检测单元包括两个用于检测功率转化单元输入端和输出端电流的分流监控器和两个用于检测检测功率转化单元输入端和输出端电压的电压分压器。
  4. 根据权利要求1所述的具有复合通讯光伏优化器的光伏系统,其特征在于,Zigbee模块和NFC模块的天线不接触的固定在复合通讯光伏优化器外壳的外壁上。
  5. 根据权利要求4所述的具有复合通讯光伏优化器的光伏系统,其特征在于,复合通讯光伏优化器外壳为非金属外壳。
  6. 据权利要求1所述的具有复合通讯光伏优化器的光伏系统,其特征在于,复合通讯光伏优化器的NFC模块的通讯模式包括点对点模式、读卡器模式和卡片模式。
  7. 根据权利要求1~6任意一项所述的具有复合通讯光伏优化器的光伏系统的工作方法,其特征在于,包括:
    光伏系统正常工作时,检测单元检测从功率转化单元输入端和输出端的电 参量,与MCU通讯后,MCU处理电参量与MCU内预设的阈值进行比较,根据比较结果,MCU下达本地指令控制复合通讯光伏优化器的工作模式;
    光伏系统内所有复合通讯光伏优化器的MCU将检测单元检测的电参量后通过Zigbee模块发送至上位机,当光伏系统中某个复合通讯光伏优化器的检测单元检测到功率转换单元的输出端功率低于光伏系统中复合通讯光伏优化器的检测单元检测到功率转换单元的输出端功率的平均值时,上位机下达上位机指令,控制复合通讯光伏优化器开启优化模式;
    工作人员手持NFC巡检设备检测复合通讯光伏优化器,此时复合通讯光伏优化器的NFC模块处于点对点模式,MCU将汇总的电参量通过NFC模块发送至工作人员手持NFC巡检设备,工作人员通过手持NFC巡检设备可下达实时NFC指令,控制复合通讯光伏优化器的工作模式;
    当上位机监测到某一光伏组件的工作状态存在异常时,工作人员通过该光伏组件的唯一标识ID确定该光伏组件的位置后对该光伏组件进行处理。
  8. 根据权利要求7所述的具有复合通讯光伏优化器的光伏系统的工作方法,其特征在于,MCU控制功率转化单元实现最大功率追踪,使功率转化单元的输出端功率最大,MCU同时接受检测单元传来的功率转化单元的输入端和输出端的电压电流功率等电参量并同时在工作时产生相关电参量并发送至NFC模块和Zigbee模块,同时接受手持NFC巡检设备的NFC模块和上位机Zigbee模块的数据和指令。
  9. 根据权利要求7所述的具有复合通讯光伏优化器的光伏系统的工作方法,其特征在于,实时NFC指令的优先级>上位机指令的优先级>本地指令的优先级。
  10. 根据权利要求7所述的具有复合通讯光伏优化器的光伏系统的工作方法,其特征在于,手持NFC巡检设备能够对复合通讯光伏优化器进行实时固件升级。
PCT/CN2020/121285 2019-12-13 2020-10-15 一种具有复合通讯光伏优化器的光伏系统及其工作方法 WO2021114860A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911281933.1 2019-12-13
CN201911281933.1A CN110855011A (zh) 2019-12-13 2019-12-13 一种具有复合通讯光伏优化器的光伏系统及其工作方法

Publications (1)

Publication Number Publication Date
WO2021114860A1 true WO2021114860A1 (zh) 2021-06-17

Family

ID=69609663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121285 WO2021114860A1 (zh) 2019-12-13 2020-10-15 一种具有复合通讯光伏优化器的光伏系统及其工作方法

Country Status (2)

Country Link
CN (1) CN110855011A (zh)
WO (1) WO2021114860A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110855011A (zh) * 2019-12-13 2020-02-28 中国华能集团清洁能源技术研究院有限公司 一种具有复合通讯光伏优化器的光伏系统及其工作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202261101U (zh) * 2011-09-30 2012-05-30 上海大全赛奥法电气科技有限公司 一种功率优化器及智能光伏组件
CN105955148A (zh) * 2016-07-01 2016-09-21 福州大学 基于ZigBee的光伏组件在线监测与故障诊断方法
CN207488731U (zh) * 2017-07-20 2018-06-12 苏州艾特博斯智能设备有限公司 一种光伏组件网络优化装置
US10044184B1 (en) * 2017-10-26 2018-08-07 Jiangsu Enmagic Energy Co., Ltd. Monitoring and shutdown device for a solar photovoltaic module
CN108879959A (zh) * 2018-07-25 2018-11-23 广东石油化工学院 一种光伏组件监测方法和系统
CN208691202U (zh) * 2018-06-22 2019-04-02 上海威惠智能科技有限公司 光伏组件状态检测装置与系统
CN110855011A (zh) * 2019-12-13 2020-02-28 中国华能集团清洁能源技术研究院有限公司 一种具有复合通讯光伏优化器的光伏系统及其工作方法
CN210780234U (zh) * 2019-12-13 2020-06-16 中国华能集团清洁能源技术研究院有限公司 一种具有复合通讯光伏优化器的光伏系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202261101U (zh) * 2011-09-30 2012-05-30 上海大全赛奥法电气科技有限公司 一种功率优化器及智能光伏组件
CN105955148A (zh) * 2016-07-01 2016-09-21 福州大学 基于ZigBee的光伏组件在线监测与故障诊断方法
CN207488731U (zh) * 2017-07-20 2018-06-12 苏州艾特博斯智能设备有限公司 一种光伏组件网络优化装置
US10044184B1 (en) * 2017-10-26 2018-08-07 Jiangsu Enmagic Energy Co., Ltd. Monitoring and shutdown device for a solar photovoltaic module
CN208691202U (zh) * 2018-06-22 2019-04-02 上海威惠智能科技有限公司 光伏组件状态检测装置与系统
CN108879959A (zh) * 2018-07-25 2018-11-23 广东石油化工学院 一种光伏组件监测方法和系统
CN110855011A (zh) * 2019-12-13 2020-02-28 中国华能集团清洁能源技术研究院有限公司 一种具有复合通讯光伏优化器的光伏系统及其工作方法
CN210780234U (zh) * 2019-12-13 2020-06-16 中国华能集团清洁能源技术研究院有限公司 一种具有复合通讯光伏优化器的光伏系统

Also Published As

Publication number Publication date
CN110855011A (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
CN203251317U (zh) 应用蓝牙低能耗ble模块的智能家居监控系统
CN107682756A (zh) 基于LoRa的配电终端通讯系统
CN209296831U (zh) 一种变电站监控系统
CN105548743A (zh) 一种基于手机客户端电能质量监测系统及方法
CN107196365A (zh) 一种多负载智能无线充电装置和方法
CN109638878A (zh) 一种具有iv曲线扫描功能的智能光伏组件及发电系统
CN103840552A (zh) 一种配电房监测方法和系统
CN103634572A (zh) 一种基于视频监测的输电线路智能巡线用通信系统
WO2021114860A1 (zh) 一种具有复合通讯光伏优化器的光伏系统及其工作方法
CN102945028A (zh) 一种具有家庭电网智能控制功能的云技术应用智能家居
CN202443332U (zh) 变电站智能巡检机器人环境信息测控系统
CN104701992A (zh) 基于tcp/ip通讯的电力通信机柜监测装置
CN214800382U (zh) 一种室外通信基站全系统智能控制节能系统
CN204761158U (zh) 一种支持光伏电源的电能质量在线监测的箱变测控装置
CN210780234U (zh) 一种具有复合通讯光伏优化器的光伏系统
CN205986326U (zh) 变电站高压室智能识别装置
CN111555460A (zh) 一种光伏电站电性能健康度的智能诊断系统及判断方法
CN110957979A (zh) 一种太阳电池板工作状态检测系统
CN210724683U (zh) 一种基于Lora和PLC的光伏优化器复合通讯系统
CN205158616U (zh) 一种多功能光伏数据采集传输
CN210927564U (zh) 一种用于光伏电站的数据采集系统
CN107345993A (zh) 一种电气设备运行信息监控系统
CN212392715U (zh) 一种输电铁塔监测设备
CN209488194U (zh) 一种具有iv曲线扫描功能的智能光伏组件及发电系统
CN109753780B (zh) 一种继电保护装置识别用户身份的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898150

Country of ref document: EP

Kind code of ref document: A1