WO2021114840A1 - 基于语义分析的评分方法、装置、终端设备及存储介质 - Google Patents

基于语义分析的评分方法、装置、终端设备及存储介质 Download PDF

Info

Publication number
WO2021114840A1
WO2021114840A1 PCT/CN2020/119299 CN2020119299W WO2021114840A1 WO 2021114840 A1 WO2021114840 A1 WO 2021114840A1 CN 2020119299 W CN2020119299 W CN 2020119299W WO 2021114840 A1 WO2021114840 A1 WO 2021114840A1
Authority
WO
WIPO (PCT)
Prior art keywords
neural network
network model
matrix
text
sample set
Prior art date
Application number
PCT/CN2020/119299
Other languages
English (en)
French (fr)
Inventor
邓悦
郑立颖
徐亮
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2021114840A1 publication Critical patent/WO2021114840A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/279Recognition of textual entities
    • G06F40/289Phrasal analysis, e.g. finite state techniques or chunking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/35Clustering; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/30Semantic analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/105Human resources
    • G06Q10/1053Employment or hiring

Definitions

  • This application relates to the field of computer technology, in particular to a scoring method, device, terminal device and storage medium for semantic analysis.
  • the inventor realized that the current language model has a large amount of parameters and the terminal processor memory is difficult to support, making the training and reasoning speed of the language model very slow, and the accuracy of the language model is difficult to judge, which not only increases the cost of interviews, It also reduces the accuracy of ability judgments in various dimensions, which directly affects the efficiency of smart interviews.
  • the embodiments of the application provide a scoring method, device, terminal device, and storage medium based on semantic analysis, including but not limited to solving the problems of slow language model accuracy reasoning, increasing interview costs, low accuracy of interview dimensions, and low interview efficiency. .
  • an embodiment of the present application provides a scoring method based on semantic analysis, including:
  • the first neural network model is based on the training sample set and the second neural network model training
  • the second neural network model is based on the training sample set and the output of the first neural network model Result obtained by training
  • the output result of the first neural network model is obtained by using the training sample set as input
  • the training sample set includes a plurality of interview corpus texts
  • the interview score result of the target user is calculated.
  • an embodiment of the present application provides a scoring device based on semantic analysis, including:
  • the acquiring unit is used to acquire voice information of the target user and convert the voice information into text information;
  • the processing unit is configured to input the text information into the trained first neural network model, perform semantic analysis on the text information, and obtain the output text classification result of the first neural network model; wherein, the text classification The result includes the score label corresponding to the text information, the first neural network model is based on the training sample set and the second neural network model training, and the second neural network model is based on the training sample set and the first neural network model.
  • the output result of the neural network model is obtained by training, the output result of the first neural network model is obtained by taking the training sample set as input, and the training sample set includes a plurality of interview corpus texts;
  • the scoring unit is used to calculate the interview scoring result of the target user according to the scoring label.
  • an embodiment of the present application provides a terminal device, including: a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor executes the computer program When realized:
  • the first neural network model is based on the training sample set and the second neural network model training
  • the second neural network model is based on the training sample set and the output of the first neural network model Result obtained by training
  • the output result of the first neural network model is obtained by using the training sample set as input
  • the training sample set includes a plurality of interview corpus texts
  • the interview score result of the target user is calculated.
  • an embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the following is achieved:
  • the first neural network model is based on the training sample set and the second neural network model training
  • the second neural network model is based on the training sample set and the output of the first neural network model Result obtained by training
  • the output result of the first neural network model is obtained by using the training sample set as input
  • the training sample set includes a plurality of interview corpus texts
  • the interview score result of the target user is calculated.
  • the embodiments of the present application also provide a computer program product.
  • the computer program product runs on a terminal device, the terminal device realizes:
  • the first neural network model is based on the training sample set and the second neural network model training
  • the second neural network model is based on the training sample set and the output of the first neural network model Result obtained by training
  • the output result of the first neural network model is obtained by using the training sample set as input
  • the training sample set includes a plurality of interview corpus texts
  • the interview score result of the target user is calculated.
  • the embodiments of this application have the following beneficial effects: through the embodiments of this application, the voice information of the target user is obtained, and the voice information is converted into text information; the text information is input to the trained The first neural network model performs semantic analysis on the text information to obtain the output text classification result of the first neural network model; wherein the text classification result includes the score tag corresponding to the text information; according to the score Label, calculate the interview scoring result of the target user; realize the rapid and accurate scoring of each dimensional ability point of the target user according to the answer of the target user in the intelligent interview scene, improve the interview efficiency and the accuracy of interview scoring; Ease of use and practicality.
  • Fig. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a scoring method based on semantic recognition provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a speech model training provided by another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a scoring device based on semantic analysis provided by an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the term “if” can be construed as “when” or “once” or “in response to determination” or “in response to detecting “.
  • the phrase “if determined” or “if detected [described condition or event]” can be interpreted as meaning “once determined” or “in response to determination” or “once detected [described condition or event]” depending on the context ]” or “in response to detection of [condition or event described]”.
  • the interviewee’s voice information during the conversation is received through the microphone of the terminal device, and based on the semantic analysis of the voice information, the interviewee’s answers are scored , Evaluate the ability of interviewees in various dimensions, and improve the efficiency of interviews.
  • the interviewee is a user
  • the terminal device can ask the user questions of multiple feature dimensions in the form of text or voice, receive the user’s answer, and score the user’s answer based on semantic analysis, and finally get the user The ability score of each feature dimension.
  • the terminal device may be a mobile phone, a notebook computer, a super-mobile personal computer (ultra-mobile personal computer, UMPC) and other terminal devices; it may also include, but is not limited to, a tablet computer, a wearable device, a vehicle-mounted device, and augmented reality (augmented reality). , AR)/virtual reality (virtual reality, VR) devices, netbooks, personal digital assistants (personal digital assistants, PDAs), etc.
  • AR /virtual reality
  • VR virtual reality
  • PDAs personal digital assistants
  • FIG. 2 is a schematic diagram of the implementation process of a scoring method based on semantic analysis provided by an embodiment of the present application, and the method includes:
  • Step S201 Acquire voice information of the target user, and convert the voice information into text information.
  • the target user may be the interviewee
  • the terminal device may act as an interviewer to ask questions in various aspects for the target user; the terminal device can realize the intelligent interview conversation by receiving the voice information of the target user. Scenes.
  • the acquiring voice information of the target user and converting the voice information into text information includes:
  • A1 Recognize the voice information through a voice recognition algorithm, and extract the acoustic features in the voice information;
  • A2. Convert voice information into text information according to the acoustic characteristics.
  • the terminal device in the conversation scene of the smart interview, can receive the voice information of the target user during the conversation through the microphone, recognize the voice information through the voice recognition algorithm, extract the acoustic characteristics of the voice, and obtain the phoneme of the voice information Information, which converts voice information into text information by matching phoneme information with words or words in a dictionary.
  • the method before inputting the text information into the trained first neural network model, the method includes:
  • the number of longest short sentences is set, the voice information is divided into at least one voice short sentence less than or equal to the number of the longest short sentences, and the at least one The short speech sentence is converted into the text information.
  • the terminal device divides the text information according to the preset number of word segmentation to obtain multiple short sentence texts that meet the preset number of word segmentation; or in the process of converting the voice information into text information, set the longest number of short sentences to convert the voice information Divide into multiple voice short sentences less than or equal to the longest short sentence, and convert multiple voice short sentences into corresponding text information.
  • the size of the target parameter matrix used is consistent before and after, which is convenient for data processing by the terminal device.
  • the corresponding relationship between the text information and the current conversation topic is established to provide a more accurate and reliable basis for the subsequent classification of text information, so that in the intelligent interview process, according to the voice The information is more accurate for the interviewer's scoring.
  • Step S202 Input the text information into the trained first neural network model, and perform semantic analysis on the text information to obtain the output text classification result of the first neural network model; wherein, the text classification result includes The score tag corresponding to the text information.
  • the first neural network model is a language model, which performs semantic recognition on text information, and classifies the text information according to the recognized semantics, and obtains the score label of the classification result corresponding to the text information.
  • the terminal device divides the sentence corresponding to the text information into short sentences and divides it into multiple words or words; converts the divided words or words into a vector matrix representation, and performs semantic recognition Algorithm to understand semantics; classify text information according to semantics, and output text classification results corresponding to the text information.
  • the first neural network model is obtained by training based on the training sample set and the second neural network model
  • the second neural network model is obtained by training based on the training sample set and the output result of the first neural network model
  • the output result of the first neural network model is obtained by taking the training sample set as input, and the training sample set includes a plurality of interview corpus texts.
  • FIG. 3 a schematic flow chart of a training method for a speech recognition model provided by an embodiment of the present application.
  • the training process of the model includes:
  • Step S301 Obtain a training sample set, where the training sample set includes a plurality of interview corpus texts;
  • the training sample set includes multiple-dimensional interview corpus text
  • the first neural network model is multi-dimensionally trained to facilitate multi-dimensional classification of the voice information input by the target user, thereby realizing the multi-dimensional classification of the target user Ability to score.
  • Step S302 dividing the sentence text in the training sample set into a short sentence set with a preset number of word segmentation, and encoding the word segmentation in the short sentence set to obtain a word segmentation matrix;
  • the terminal device divides the sentence text in the training sample set according to the preset number of word segmentation, and obtains a collection of short sentences less than or equal to the preset number of word segmentation. For example, “The weather has been bad a few days ago. It is rare that the weather today is good. Suitable for outing”, divided into ⁇ "before", “a few days”, “weather”, “always”, “bad”, “,”, “rare”, “today”, “weather”, “good”, “ ,”, “very”, “suitable”, “outing” ⁇ , plus punctuation marks a total of 14 word segmentation, the preset number of word segmentation can be 14, and you can also set different number of word segmentation thresholds according to the size of the model.
  • each word segmentation to obtain an encoded word segmentation matrix.
  • Each row of the matrix identifies the representation vector of each word segmentation. For example, if the sentence text includes 14 word segmentation, the word segmentation matrix includes 14 rows. Specifically, taking the above sentence text as an example, a 14*100-dimensional word segmentation matrix M is obtained after word segmentation in the short sentence set, and Mi is the i-th row of the word segmentation matrix M.
  • Step S303 Perform convolution calculation on the word segmentation matrix to obtain a target matrix, and use the dot product of the target matrix and the parameter matrix as the output matrix of the first neural network;
  • one or more word segments in the short sentence set are randomly masked, that is, one of the word segments is encoded as an unknown quantity. Take the word segmentation matrix M as an example. Explain that the fifth word "not good” and the ninth word “good” are masked and used as the input of the first neural network model. Perform convolution calculation on the input word segmentation matrix.
  • the size of matrix K is 14*100.
  • Step S304 Obtain the prediction vector corresponding to the masked word in the output matrix, and calculate the cross entropy loss of the prediction vector and the real vector actually corresponding to the masked word as the first loss.
  • the prediction vector corresponding to the 5th and 9th rows in the matrix T and the real vector corresponding to the words "not good” and “not good” are covered, and the cross entropy loss of the two is calculated as the first Loss1.
  • the method before inputting the text information into the trained first neural network model, the method includes:
  • the second neural network model is a sequence labeling model.
  • the output matrix output by the first neural network model is used as input to calculate the probability that the word segmentation corresponding to each row vector in the output matrix is covered and the probability that the word is not covered, so as to realize the matching.
  • the recognition and labeling of each word segment in the output matrix makes the first neural network model more accurate for semantic analysis.
  • the output layer performs a linear transformation on the vector corresponding to each word segmentation of the bidirectional LSTM layer ;
  • the 2-dimensional vectors C1 to C14 corresponding to all word segments can be obtained, and the probability matrix C corresponding to all word segments is output.
  • the loss of the first neural network model is defined as Loss1-Loss2.
  • the better the recognition effect of the second neural network model it means that the second neural network model can easily find which ones in the output matrix of the first neural network model Words are concealed, which means that the segmentation or semantics analyzed by the first neural network model is greater than the real semantics.
  • the first neural network model and the second neural network model are interactively trained, and the parameter matrices of the first neural network model and the second neural network model are respectively initialized randomly, that is, a parameter matrix of a preset size is defined , And set a predetermined initial value for the parameter matrix.
  • the first neural network model and the second neural network model are trained in rounds according to the number of iterative training. In the first round, the first neural network model is iteratively trained to adjust the parameter matrix of the first neural network model.
  • the second neural network model does not perform iterative training, and only the second neural network model is used to calculate the output matrix of the first neural network model. , The probability of each word segmentation being concealed, and the second loss is calculated. Perform iterative training on the first neural network model according to the second loss and the first loss, and adjust the parameter matrix of the first neural network model.
  • the second neural network model after completing the training of the first neural network according to the preset iterative training times, according to the output matrix of the first neural network and the training sample set, according to the preset training times of the second neural network model, the second neural network model performs iterative training to adjust the parameter matrix of the second neural network model.
  • the number of iterative training can be set by the amount of data in each bureau. For example, if there are a total of L sentence data, and N pieces of data are set for each training, the number of iterative training is L/N, and N is generally set to 128.
  • the first neural network model using the target score parameter matrix is used as the semantic recognition and text classification of the voice information input by the target user model. By multiplying the output matrix of the first neural network model with the target predicted score label, the probability of each score level in the score label level is obtained, and the score level with the highest probability is used as the scoring result of this session.
  • the scoring label is a label that sets the score level on the result of text classification, so that the ability level of the target user can be determined according to the scoring label.
  • the scoring label can be set to five levels, for example, 1, 2, 3, 4, and 5. According to the scoring label corresponding to the text classification result, the scoring result of this conversation scene is determined.
  • the first neural network model and the second neural network model are interactively trained, the second neural network model is used to determine whether the output of the first neural network model is true and reasonable, and the loss of the second neural network model is added to In the first neural network model, it is used as a reference indicator for iterative training of the first neural network model; the closer the output of the first neural network model is to the real semantics, the more difficult it is for the second neural network model to accurately determine the output of the first neural network model. Whether the semantics are wrong or not, it further promotes the iterative training of the second neural network model.
  • the authenticity of the output results in the first neural network model will be judged more accurately, and the output of the first neural network model will be closer to the real semantics.
  • the two models are being iteratively trained In the process, the ability of semantic recognition and sequence labeling is getting stronger and stronger, which improves the first neural network model to output the specified words or short sentences to recognize the semantic shortcomings, making the output semantics of the first neural network model more flexible and changeable. , So as to classify the input different text information more accurately.
  • the two models are trained at the same time during the training process. In the actual application process, only the trained first neural network model is used. Therefore, when the semantic analysis unit is deployed in the terminal device, the amount of parameters is greatly reduced. The reasoning speed of the model is improved, while the storage space occupied by the model is reduced, and the processing performance of the terminal device is improved.
  • FIG. 4 shows a structural block diagram of the semantic analysis-based scoring device provided in an embodiment of the present application. The relevant part.
  • the device includes:
  • the acquiring unit 41 is configured to acquire voice information of the target user, and convert the voice information into text information;
  • the processing unit 42 is configured to input the text information into the trained first neural network model, perform semantic analysis on the text information, and obtain the output text classification result of the first neural network model; wherein, the text The classification result includes the score label corresponding to the text information, the first neural network model is obtained by training based on the training sample set and the second neural network model, and the second neural network model is based on the training sample set and the second neural network model.
  • An output result of a neural network model obtained by training, the output result of the first neural network model is obtained by taking the training sample set as input, and the training sample set includes a plurality of interview corpus texts;
  • the scoring unit 43 is configured to calculate the interview scoring result of the target user according to the scoring label.
  • the acquiring unit 41 further includes:
  • the recognition subunit is used for recognizing the voice information through a voice recognition algorithm, and extracting the acoustic features in the voice information;
  • the conversion subunit is used to convert voice information into text information according to the acoustic characteristics.
  • the scoring device based on semantic analysis further includes:
  • the first dividing unit is configured to divide the text information according to a preset number of word segmentation to obtain at least one short sentence text that meets the preset number of word segmentation;
  • the second dividing unit is configured to set the number of longest short sentences in the process of converting the voice information into the text information, and divide the voice information into at least one voice short sentence less than or equal to the number of longest short sentences , And convert the at least one short speech sentence into the text information.
  • the scoring device based on semantic analysis further includes:
  • a sample set obtaining unit configured to obtain a training sample set, where the training sample set includes a plurality of interview corpus texts;
  • the third dividing unit is configured to divide the sentence text in the training sample set into a short sentence set with a preset number of word segmentation, and to encode the word segmentation in the short sentence set to obtain a word segmentation matrix;
  • the first calculation unit is configured to perform convolution calculation on the word segmentation matrix to obtain a target matrix, and use the dot product of the target matrix and the parameter matrix as the output matrix of the first neural network;
  • the second calculation unit is configured to obtain the prediction vector corresponding to the word segmentation masked in the output matrix, and calculate the cross entropy loss of the real vector actually corresponding to the prediction vector and the mask word as the first loss.
  • the scoring device based on semantic analysis further includes:
  • the input unit is configured to input the output matrix to a second neural network model, and the second neural network model performs a bidirectional convolution calculation on the output matrix, and outputs the probability that each word segment in the output matrix is concealed;
  • the third calculation unit is used to calculate the cross entropy loss corresponding to all the masked word segmentation in the probability matrix as the second loss.
  • the scoring device based on semantic analysis further includes:
  • the first training unit is used to complete the training of the first neural network according to the preset iterative training times, according to the output matrix of the first neural network and the training sample set, according to the preset training times for the second neural network model, Perform iterative training on the second neural network model, and adjust the parameter matrix of the second neural network model.
  • the scoring device based on semantic analysis further includes:
  • the second training unit is used to interactively train the first neural network model and the second neural network model, adjust the parameter matrix, and obtain the first target parameter matrix of the first neural network model and the second neural network model of the second neural network model.
  • the target parameter matrix is used to interactively train the first neural network model and the second neural network model, adjust the parameter matrix, and obtain the first target parameter matrix of the first neural network model and the second neural network model of the second neural network model. The target parameter matrix.
  • FIG. 5 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • the terminal device 5 of this embodiment includes: at least one processor 50 (only one is shown in FIG. 5), a memory 51, and stored in the memory 51 and can be stored in the at least one processor 50.
  • the computer program 52 running on the processor 50 implements the steps in any of the above-mentioned semantic analysis-based scoring method embodiments when the processor 50 executes the computer program 52.
  • a terminal device includes: a memory, a processor, and a computer program stored in the memory and capable of running on the processor, and when the processor executes the computer program:
  • the first neural network model is based on the training sample set and the second neural network model training
  • the second neural network model is based on the training sample set and the output of the first neural network model Result obtained by training
  • the output result of the first neural network model is obtained by using the training sample set as input
  • the training sample set includes a plurality of interview corpus texts
  • the interview score result of the target user is calculated.
  • the processor further implements when executing the computer program:
  • the voice information is converted into text information.
  • the processor further implements when executing the computer program:
  • the number of longest short sentences is set, the voice information is divided into at least one voice short sentence less than or equal to the number of the longest short sentences, and the at least one The short speech sentence is converted into the text information.
  • the processor further implements when executing the computer program:
  • the prediction vector corresponding to the masked word segment in the output matrix is obtained, and the cross entropy loss of the prediction vector and the real vector actually corresponding to the masked word is calculated as the first loss.
  • the processor further implements when executing the computer program:
  • the processor further implements when executing the computer program:
  • the processor further implements when executing the computer program:
  • the terminal device 5 may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server.
  • the terminal device may include, but is not limited to, a processor 50 and a memory 51.
  • FIG. 5 is only an example of the terminal device 5, and does not constitute a limitation on the terminal device 5. It may include more or less components than those shown in the figure, or a combination of certain components, or different components. , For example, can also include input and output devices, network access devices, and so on.
  • the so-called processor 50 may be a central processing unit (Central Processing Unit, CPU).
  • the processor 50 may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application-specific integrated circuits (Application Specific Integrated Circuits). Specific Integrated Circuit, ASIC), ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory 51 may be an internal storage unit of the terminal device 5 in some embodiments, such as a hard disk or a memory of the terminal device 5. In other embodiments, the memory 51 may also be an external storage device of the terminal device 5, such as a plug-in hard disk equipped on the terminal device 5, a smart memory card (Smart Media Card, SMC), and a secure digital (Secure Digital, SD) card, flash memory card (Flash Card) and so on. Further, the memory 51 may also include both an internal storage unit of the terminal device 5 and an external storage device.
  • the memory 51 is used to store an operating system, an application program, a boot loader (BootLoader), data, and other programs, such as the program code of the computer program. The memory 51 can also be used to temporarily store data that has been output or will be output.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the following is achieved:
  • the first neural network model is based on the training sample set and the second neural network model training
  • the second neural network model is based on the training sample set and the output of the first neural network model Result obtained by training
  • the output result of the first neural network model is obtained by using the training sample set as input
  • the training sample set includes a plurality of interview corpus texts
  • the interview score result of the target user is calculated.
  • the voice information is converted into text information.
  • the processor further implements when executing the computer program:
  • the number of longest short sentences is set, the voice information is divided into at least one voice short sentence less than or equal to the number of the longest short sentences, and the at least one The short speech sentence is converted into the text information.
  • the processor further implements when executing the computer program:
  • the prediction vector corresponding to the masked word segment in the output matrix is obtained, and the cross entropy loss of the prediction vector and the real vector actually corresponding to the masked word is calculated as the first loss.
  • the processor further implements when executing the computer program:
  • the processor further implements when executing the computer program:
  • the processor further implements when executing the computer program:
  • the embodiments of the present application provide a computer program product.
  • the steps in the foregoing method embodiments can be realized when the mobile terminal is executed.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • this application implements all or part of the processes in the above-mentioned embodiments and methods, which can be completed by instructing relevant hardware through a computer program, and the computer program can be stored in a non-volatile computer-readable storage medium.
  • the computer program is executed by the processor, it can implement the steps of the foregoing method embodiments.
  • the computer program includes computer program code
  • the computer program code may be in the form of source code, object code, executable file, or some intermediate forms.
  • Non-volatile memory may include any entity or device, recording medium, computer memory, read-only memory (ROM, Read-Only Memory) that can carry computer program code to the camera/terminal device.
  • Memory read-only memory
  • PROM programmable ROM
  • EPROM electrically programmable ROM
  • EEPROM electrically erasable programmable ROM
  • Volatile memory may include random access memory (RAM, Random Access Memory) and external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Channel
  • memory bus Radbus direct RAM
  • RDRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM
  • the disclosed apparatus/network equipment and method may be implemented in other ways.
  • the device/network device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division, and there may be other divisions in actual implementation, such as multiple units.
  • components can be combined or integrated into another system, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Software Systems (AREA)
  • Operations Research (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Marketing (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Databases & Information Systems (AREA)
  • Machine Translation (AREA)

Abstract

一种基于语义分析的评分方法、装置、终端设备及存储介质,所述方法包括:获取目标用户的语音信息,并将所述语音信息转化为文本信息(S201);将所述文本信息输入至训练后的第一神经网络模型,对所述文本信息进行语义分析,得到所述第一神经网络模型的输出文本分类结果,其中,所述文本分类结果包括所述文本信息对应的评分标签(S202);根据所述评分标签,计算所述目标用户的面试评分结果(S203)。解决了语言模型精度推理速度慢、增加面试成本以及面试维度判定准确性低、面试效率低的问题。

Description

基于语义分析的评分方法、装置、终端设备及存储介质
本申请要求于2020年05月28日在中国专利局提交的、申请号为202010469517.0、发明名称为“基于语义分析的评分方法、装置、终端设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机技术领域,具体涉及一种语义分析的评分方法、装置、终端设备及存储介质。
背景技术
随着企业规模的扩大,招聘员工的数量也随之增加;针对招聘量大的情形,通过智能面试可以进行能力评分。在智能面试能力评分场景中,根据用户的回答对其各维度能力点进行评分。
然而,发明人意识到,目前语言模型的参数量很大,终端处理器内存难以支持,使得语言模型的训练和推理速度都很慢,而且语言模型的精度难以评判,不仅增大了面试成本,还降低各维度能力判定的准确性,从而直接影响智能面试效率。
技术问题
本申请实施例提供了一种基于语义分析的评分方法、装置、终端设备及存储介质,包括但不限于解决语言模型精度推理速度慢增加面试成本以及面试维度判定准确性低、面试效率低的问题。
技术解决方案
第一方面,本申请实施例提供了一种基于语义分析的评分方法,包括:
获取目标用户的语音信息,并将所述语音信息转化为文本信息;
将所述文本信息输入至训练后的第一神经网络模型,对所述文本信息进行语义分析,得到所述第一神经网络模型的输出文本分类结果;其中,所述文本分类结果包括所述文本信息对应的评分标签,所述第一神经网络模型为基于训练样本集合及第二神经网络模型训练得到的,所述第二神经网络模型为基于所述训练样本集合及第一神经网络模型的输出结果训练得到的,所述第一神经网络模型的输出结果为将所述训练样本集合作为输入得到的,所述训练样本集合包括多个面试语料文本;
根据所述评分标签,计算所述目标用户的面试评分结果。
第二方面,本申请实施例提供了一种基于语义分析的评分装置,包括:
获取单元,用于获取目标用户的语音信息,并将所述语音信息转化为文本信息;
处理单元,用于将所述文本信息输入至训练后的第一神经网络模型,对所述文本信息进行语义分析,得到所述第一神经网络模型的输出文本分类结果;其中,所述文本分类结果包括所述文本信息对应的评分标签,所述第一神经网络模型为基于训练样本集合及第二神经网络模型训练得到的,所述第二神经网络模型为基于所述训练样本集合及第一神经网络模型的输出结果训练得到的,所述第一神经网络模型的输出结果为将所述训练样本集合作为输入得到的,所述训练样本集合包括多个面试语料文本;
评分单元,用于根据所述评分标签,计算所述目标用户的面试评分结果。
第三方面,本申请实施例提供了一种终端设备,包括:存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现:
获取目标用户的语音信息,并将所述语音信息转化为文本信息;
将所述文本信息输入至训练后的第一神经网络模型,对所述文本信息进行语义分析,得到所述第一神经网络模型的输出文本分类结果;其中,所述文本分类结果包括所述文本信息对应的评分标签,所述第一神经网络模型为基于训练样本集合及第二神经网络模型训练得到的,所述第二神经网络模型为基于所述训练样本集合及第一神经网络模型的输出结果训练得到的,所述第一神经网络模型的输出结果为将所述训练样本集合作为输入得到的,所述训练样本集合包括多个面试语料文本;
根据所述评分标签,计算所述目标用户的面试评分结果。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现:
获取目标用户的语音信息,并将所述语音信息转化为文本信息;
将所述文本信息输入至训练后的第一神经网络模型,对所述文本信息进行语义分析,得到所述第一神经网络模型的输出文本分类结果;其中,所述文本分类结果包括所述文本信息对应的评分标签,所述第一神经网络模型为基于训练样本集合及第二神经网络模型训练得到的,所述第二神经网络模型为基于所述训练样本集合及第一神经网络模型的输出结果训练得到的,所述第一神经网络模型的输出结果为将所述训练样本集合作为输入得到的,所述训练样本集合包括多个面试语料文本;
根据所述评分标签,计算所述目标用户的面试评分结果。
第五方面,本申请实施例还提供了一种计算机程序产品,当计算机程序产品在终端设备上运行时,使得终端设备执行时实现:
获取目标用户的语音信息,并将所述语音信息转化为文本信息;
将所述文本信息输入至训练后的第一神经网络模型,对所述文本信息进行语义分析,得到所述第一神经网络模型的输出文本分类结果;其中,所述文本分类结果包括所述文本信息对应的评分标签,所述第一神经网络模型为基于训练样本集合及第二神经网络模型训练得到的,所述第二神经网络模型为基于所述训练样本集合及第一神经网络模型的输出结果训练得到的,所述第一神经网络模型的输出结果为将所述训练样本集合作为输入得到的,所述训练样本集合包括多个面试语料文本;
根据所述评分标签,计算所述目标用户的面试评分结果。
有益效果
本申请实施例与现有技术相比存在的有益效果是:通过本申请实施例,获取目标用户的语音信息,并将所述语音信息转化为文本信息;将所述文本信息输入至训练后的第一神经网络模型,对所述文本信息进行语义分析,得到所述第一神经网络模型的输出文本分类结果;其中,所述文本分类结果包括所述文本信息对应的评分标签;根据所述评分标签,计算所述目标用户的面试评分结果;实现在智能面试场景中根据目标用户的回答对其各维度能力点的快速准确的评分,提高了面试效率及面试评分的准确性;具有较强的易用性与实用性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请一实施例提供的应用场景示意图;
图2是本申请一实施例提供的基于语义识别的评分方法的流程示意图;
图3是本申请另一实施例提供的语音模型训练的的流程示意图;
图4是本申请实施例提供的基于语义分析的评分装置的结构示意图;
图5是本申请实施例提供的终端设备的结构示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
目前,在智能面试会话场景中,特别是招聘量大的应用场景,通过终端设备的麦克风接收被面试者会话过程中的语音信息,基于对语音信息的语义分析,对被面试者的回答进行打分,评估被面试者各个维度能力,提升面试效率。
如图1所示,被面试者为用户,终端设备可以通过文字或语音的形式向用户提出多个特征维度的问题,接收用户的回答,并对用户的回答基于语义分析进行打分,最终得到用户各个特征维度的能力评分。
其中,所述终端设备可以是手机、笔记本电脑、超级个人计算机(ultra-mobile personal computer,UMPC)等终端设备;还可以包括但不限于平板电脑、可穿戴设备、车载设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、上网本、个人数字助理(personal digital assistant,PDA)等,本申请实施例对客户端的载体即终端设备的具体类型不作任何限制。
参见图2是本申请实施例提供基于语义分析的评分方法的实现流程示意图,该方法包括:
步骤S201,获取目标用户的语音信息,并将所述语音信息转化为文本信息。
在本实施例中,所述目标用户可以是被面试者,终端设备可以作为面试官的角色,为目标用户提出多个方面的问题;终端设备通过接收目标用户的语音信息,实现智能面试的会话场景。
在一些实施例中,所述获取目标用户的语音信息,并将所述语音信息转化为文本信息,包括:
A1、通过语音识别算法对所述语音信息进行识别,提取所述语音信息中的声学特征;
A2、根据所述声学特征,将语音信息转化为文本信息。
在本申请实施例中,智能面试的会话场景中,终端设备可以通过麦克风接收目标用户会话过程中的语音信息,通过语音识别算法对语音信息进行识别,提取语音的声学特征,获取语音信息的音素信息,通过将音素信息与字典中的字或者词语进行对应,将语音信息转化为文本信息。
在一些实施例中,在所述将所述文本信息输入至训练后的第一神经网络模型之前,包括:
按预设分词数量,将所述文本信息进行划分,得到符合所述预设分词数量的至少一个短句文本;
或者,在将所述语音信息转化为所述文本信息过程中,设置最长短句数量,将所述语音信息划分为小于或等于所述最长短句数量的至少一个语音短句,并将所述至少一个语音短句转化为所述文本信息。
具体的,终端设备按照预设分词数量,将文本信息进行划分,得到满足预设分词数量的多个短句文本;或者在将语音信息转化为文本信息过程中,设置最长短句数量,将语音信息划分为小于或等于最长短句数量的多个语音短句,将多个语音短句转化为相应的文本信息。以便于在后续对文本信息进行语义识别时,使用的目标参数矩阵的大小前后保持一致,便于终端设备的数据处理。
需要说明的是,在实际的会话过程的应用场景中,建立所述文本信息与当前会话主题的对应关系,为后续对文本信息的分类提供更准确可靠的依据,使得智能面试过程中,根据语音信息对面试者的评分更准确。
步骤S202,将所述文本信息输入至训练后的第一神经网络模型,对所述文本信息进行语义分析,得到所述第一神经网络模型的输出文本分类结果;其中,所述文本分类结果包括所述文本信息对应的评分标签。
在本实施例中,第一神经网络模型为语言模型,对文本信息进行语义识别,并根据识别出的语义,将文本信息进行分类,得到与文本信息对应的分类结果的评分标签。
具体的,终端设备在对文本信息进行语义识别过程中,将文本信息对应的句子进行短句划分,划分为多个词语或字;将划分出的词语或者字转换成向量矩阵表示,通过语义识别算法,进行语义理解;根据语义将文本信息进行分类,输出与文本信息对应的文本分类结果。
其中,所述第一神经网络模型为基于训练样本集合及第二神经网络模型训练得到的,所述第二神经网络模型为基于所述训练样本集合及第一神经网络模型的输出结果训练得到的,所述第一神经网络模型的输出结果为将所述训练样本集合作为输入得到的,所述训练样本集合包括多个面试语料文本。
参见图3,本申请实施例提供的语音识别模型的训练方法流程示意图,在将所述文本信息输入至训练后的第一神经网络模型之前,模型的训练过程包括:
步骤S301,获取训练样本集合,所述训练样本集合包括多个面试语料文本;
具体的,在训练样本集合中包括多个维度的面试语料文本,对第一神经网络模型进行多维度训练,以便于对目标用户输入的语音信息进行多维度的分类,从而实现对目标用户多维度能力进行评分。
步骤S302,将所述训练样本集合中的语句文本划分为预设分词数量的短句集合,并对所述短句集合中的分词进行编码,得到分词矩阵;
终端设备按照预设分词数量,对训练样本集合中的语句文本进行划分,得到小于或等于预设分词数量的短句集合,例如,将“前几天天气一直不好,难得今天天气不错,很适合踏青”,划分为{“前”、“几天”、“天气”、“一直”、“不好”、“、”、“难得”、“今天”、“天气”、“不错”、“,”、“很”、“适合”、“踏青”},加上标点符号共14个分词,则预设分词数量可以为14,还可以根据模型大小设置不同的分词数量阈值。对每个分词进行编码,得到编码后的分词矩阵,矩阵的每一行标识每个分词的表示向量,例如上述语句文本中包括14个分词,则分词矩阵包括14行。具体的,以上述语句文本为例,经过短句集合中的分词进行编码得到14*100维的分词矩阵M,记Mi为分词矩阵M的第i行。
步骤S303,将所述分词矩阵进行卷积计算,得到目标矩阵,将所述目标矩阵与参数矩阵的点积作为第一神经网络的输出矩阵;
具体的,将分词矩阵进行卷积计算的过程之前,将短句集合中的某一个或多个分词进行随机掩盖,即将其中的一个分词作为未知的量进行编码,以上述分词矩阵M为例进行说明,将第5个词“不好”和第9个词“不错”进行掩盖后,作为第一神经网络模型的输入。对输入的分词矩阵进行卷积计算,以分词矩阵M的第一行为例,将M1分别与M1至M14进行向量点积操作,得到r1至r14,其中,r1至r14为标量数值;再令r1*M1+r2*M2+......+r4*M14=P1,P1为一个100维的向量。将分词矩阵M的每一行均按照第一行的操作过程进行计算,将M1至M14更新为P1至P14,将向量P1至P14组合成14*100维的矩阵P。为了使第一神经网络模型学到更多的语义,将矩阵P按照对矩阵M的操作再执行一次卷积计算得到矩阵S,将矩阵S按照对矩阵M的操作再执行一次卷积计算得到矩阵K,矩阵K的大小为14*100。根据第一神经网络模型的词典大小及预设分词数量,设置参数矩阵;例如针对上述卷积计算后得到的矩阵K,第一神经网络模型的词典大小为2000,则设置参数矩阵Q的大小为100*2000,将K*Q=T,得到大小为14*2000的矩阵T,将矩阵T作为第一神经网络的输出矩阵。
步骤S304,获取所述输出矩阵中被掩盖的分词对应的预测向量,计算所述预测向量与被掩盖的词实际对应的真实向量的交叉熵损失,作为第一损失。
具体的,例如将矩阵T中的第5行和第9行对应的预测向量,与被掩盖的词“不好”、“不错”对应的真实向量,计算两者的交叉熵损失,作为第一损失Loss1。
在一些实施例中,在将所述文本信息输入至训练后的第一神经网络模型之前,包括:
B1、将所述输出矩阵输入至第二神经网络模型,由第二神经网络模型对所述输出矩阵,进行双向卷积计算,输出所述输出矩阵中每个分词被掩盖的概率。
具体的,第二神经网络模型为序列标注模型,将第一神经网络模型输出的输出矩阵作为输入,计算输出矩阵中每行向量对应的分词被掩盖的概率及没被掩盖的概率,从而实现对输出矩阵中每个分词的识别与标注,使第一神经网络模型对语义分析更准确。
在第二神经网络模型的双向LSTM层,进行卷积计算,将双向计算的结果拼接后输入第二神经网络模型的输出层;由输出层对双向LSTM层的每个分词对应的向量做线性变换;例如以上述的输出矩阵T为例,经过双向LSTM层及输出层的线性变换后,得到的第一分词的输出为100维的向量Y1,设定一个大小为100*2的参数矩阵G,通过Y1*G=C1得到输出层的第一分词的输出;其中C1为2维向量,2维向量中的第一元素代表该分词被掩盖的概率,第二个元素代表该分词没有被掩盖的概率。基于相同的操作,可以得到所有分词对应的2维向量C1至C14,输出所有分词对应的呗掩盖的概率矩阵C。
B2、计算所述概率矩阵中所有被掩盖的分词对应的交叉熵损失,作为第二损失。
具体的,第二损失Loss2=sum{交叉熵损失(第i个词是否被掩盖,Ci)},i=1、2、3、......、14。
在一个实施例中,将第一神经网络模型的损失定义为Loss1-Loss2,第二神经网络模型的识别效果越好,说明第二神经网络模型很容易发现第一神经网络模型的输出矩阵中哪些词是被掩盖的,也即说明第一神经网络模型分析出的分词或语义与真实的语义差距越大。
在一个实施例中,将第一神经网络模型与第二神经网络模型进行交互训练,分别对第一神经网络模型和第二神经网络模型的参数矩阵进行随机初始化,即定义预设大小的参数矩阵,并对参数矩阵设置预定的初始值。按照迭代训练的次数分别对第一神经网络模型和第二神经网络模型进行分轮训练。第一轮对第一神经网络模型进行迭代训练,调整第一神经网络模型的参数矩阵,第二神经网络模型不进行迭代训练,只通过第二神经网络模型计算第一神经网络模型的输出矩阵中,每个分词被掩盖的概率,并计算得到第二损失。根据第二损失和第一损失对第一神经网络模型进行迭代训练,调整第一神经网络模型的参数矩阵。
在一个实施例中,按照预设的迭代训练次数完成对第一神经网络的训练后,依据第一神经网络的输出矩阵及训练样本集合,按照对第二神经网络模型的预设训练次数,对第二神经网络模型进行迭代训练,调整第二神经网络模型的参数矩阵。
对第一神经网络模型和第二神经网络模型进行交互训练,调整参数矩阵,分别得到第一神经网络模型的第一目标参数矩阵核第二神经网路模型的第二目标参数矩阵。
其中,迭代训练的次数可以分局数据量设定,例如,总共有L条语句数据,设定每次训练用N条数据,则迭代训练的次数为L/N,一般N设置为128。
在一个实施例中,在第一神经网络模型经过迭代训练后,对应第一神经网络模型的输出层输出的矩阵,根据评分等级设置评分参数矩阵,例如针对输出矩阵T设置大小为2000*5的评分参数矩阵,将输出矩阵T与评分参数矩阵相乘,得到与输入的语句文本对应的预测评分标签S(T*U=S),计算预测评分标签与真实的评分标签的交叉熵损失,通过交叉熵损失继续迭代训练第一神经网络模型,调整评分参数矩阵,得到目标评分参数矩阵,将使用目标评分参数矩阵的第一神经网络模型作为对目标用户输入的语音信息进行语义识别及文本分类的模型。通过将第一神经网络模型的输出矩阵与目标预测评分标签相乘,得到评分标签等级中每个分数等级的概率,将概率最大的分数等级作为此次会话的评分结果。
具体的,评分标签即通过对文本分类的结果设置分值等级的标签,从而可以根据评分标签确定对目标用户的能力级别,评分标签例如可以设置为1、2、3、4、5五个等级的评分,根据文本分类结果对应的评分标签确定本次会话场景的评分结果。
通过本申请实施例,将第一神经网络模型和第二神经网络模型进行交互训练,使用第二神经网络模型判断第一神经网络模型的输出是否真实合理,将第二神经网络模型的损失添加到第一神经网络模型中,作为对第一神经网络模型进行迭代训练的参考指标;第一神经网络模型输出越接近真实语义,第二神经网络模型就越难准确判断出第一神经网络模型输出的语义是否有误,进一步促使第二神经网络模型的迭代训练。经过对第二神经网络模型的迭代训练,会更准确地判断第一神经网络模型中输出结果的真实性,进而也会使得第一神经网络模型的输出更接近真实语义,两个模型在迭代训练过程中,语义识别及序列标注能力越来越强,改善了第一神经网络模型必须输出指定的词或短句才算识别出语义的缺点,使得第一神经网络模型的输出语义更加灵活多变,从而对输入的不同文本信息的分类更精准。另外,在训练过程同时对两个模型进行训练,在实际应用过程中,只使用训练好的第一神经网络模型,因此,在终端设备部署语义分析单元时,极大的减少了参数量,大大提升了模型的推理速度,同时减少了模型所占用的存储空间,提高了终端设备的处理性能。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
对应于上文实施例所述的基于语义分析的评分方法,图4示出了本申请实施例提供的基于语义分析的评分装置的结构框图,为了便于说明,仅示出了与本申请实施例相关的部分。
参照图4,该装置包括:
获取单元41,用于获取目标用户的语音信息,并将所述语音信息转化为文本信息;
处理单元42,用于将所述文本信息输入至训练后的第一神经网络模型,对所述文本信息进行语义分析,得到所述第一神经网络模型的输出文本分类结果;其中,所述文本分类结果包括所述文本信息对应的评分标签,所述第一神经网络模型为基于训练样本集合及第二神经网络模型训练得到的,所述第二神经网络模型为基于所述训练样本集合及第一神经网络模型的输出结果训练得到的,所述第一神经网络模型的输出结果为将所述训练样本集合作为输入得到的,所述训练样本集合包括多个面试语料文本;
评分单元43,用于根据所述评分标签,计算所述目标用户的面试评分结果。
在一实施例中,获取单元41还包括:
识别子单元,用于通过语音识别算法对所述语音信息进行识别,提取所述语音信息中的声学特征;
转化子单元,用于根据所述声学特征,将语音信息转化为文本信息。
在一实施例中,基于语义分析的评分装置还包括:
第一划分单元,用于按预设分词数量,将所述文本信息进行划分,得到符合所述预设分词数量的至少一个短句文本;
或者,第二划分单元,用于在将所述语音信息转化为所述文本信息过程中,设置最长短句数量,将所述语音信息划分为小于或等于所述最长短句数量的至少一个语音短句,并将所述至少一个语音短句转化为所述文本信息。
在一实施例中,基于语义分析的评分装置还包括:
样本集合获取单元,用于获取训练样本集合,所述训练样本集合包括多个面试语料文本;
第三划分单元,用于将所述训练样本集合中的语句文本划分为预设分词数量的短句集合,并对所述短句集合中的分词进行编码,得到分词矩阵;
第一计算单元,用于将所述分词矩阵进行卷积计算,得到目标矩阵,将所述目标矩阵与参数矩阵的点积作为第一神经网络的输出矩阵;
第二计算单元,用于获取所述输出矩阵中被掩盖的分词对应的预测向量,计算所述预测向量与被掩盖的词实际对应的真实向量的交叉熵损失,作为第一损失。
在一实施例中,所述基于语义分析的评分装置还包括:
输入单元,用于将所述输出矩阵输入至第二神经网络模型,由第二神经网络模型对所述输出矩阵,进行双向卷积计算,输出所述输出矩阵中每个分词被掩盖的概率;
第三计算单元,用于计算所述概率矩阵中所有被掩盖的分词对应的交叉熵损失,作为第二损失。
在一实施例中,所述基于语义分析的评分装置还包括:
第一训练单元,用于按照预设的迭代训练次数完成对第一神经网络的训练后,依据第一神经网络的输出矩阵及训练样本集合,按照对第二神经网络模型的预设训练次数,对第二神经网络模型进行迭代训练,调整第二神经网络模型的参数矩阵。
在一实施例中,所述基于语义分析的评分装置还包括:
第二训练单元,用于对第一神经网络模型和第二神经网络模型进行交互训练,调整参数矩阵,分别得到第一神经网络模型的第一目标参数矩阵和第二神经网路模型的第二目标参数矩阵。
需要说明的是,上述装置/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图5为本申请一实施例提供的终端设备的结构示意图。如图5所示,该实施例的终端设备5包括:至少一个处理器50(图5中仅示出一个)、存储器51以及存储在所述存储器51中并可在所述至少一个处理器50上运行的计算机程序52,所述处理器50执行所述计算机程序52时实现上述任意各个基于语义分析的评分方法实施例中的步骤。
在本申请实施例中,一种终端设备,包括:存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现:
获取目标用户的语音信息,并将所述语音信息转化为文本信息;
将所述文本信息输入至训练后的第一神经网络模型,对所述文本信息进行语义分析,得到所述第一神经网络模型的输出文本分类结果;其中,所述文本分类结果包括所述文本信息对应的评分标签,所述第一神经网络模型为基于训练样本集合及第二神经网络模型训练得到的,所述第二神经网络模型为基于所述训练样本集合及第一神经网络模型的输出结果训练得到的,所述第一神经网络模型的输出结果为将所述训练样本集合作为输入得到的,所述训练样本集合包括多个面试语料文本;
根据所述评分标签,计算所述目标用户的面试评分结果。
在一实施例中,所述处理器执行所述计算机程序时还实现:
通过语音识别算法对所述语音信息进行识别,提取所述语音信息中的声学特征;
根据所述声学特征,将语音信息转化为文本信息。
在一实施例中,所述处理器执行所述计算机程序时还实现:
按预设分词数量,将所述文本信息进行划分,得到符合所述预设分词数量的至少一个短句文本;
或者,在将所述语音信息转化为所述文本信息过程中,设置最长短句数量,将所述语音信息划分为小于或等于所述最长短句数量的至少一个语音短句,并将所述至少一个语音短句转化为所述文本信息。
在一实施例中,所述处理器执行所述计算机程序时还实现:
获取训练样本集合,所述训练样本集合包括多个面试语料文本;
将所述训练样本集合中的语句文本划分为预设分词数量的短句集合,并对所述短句集合中的分词进行编码,得到分词矩阵;
将所述分词矩阵进行卷积计算,得到目标矩阵,将所述目标矩阵与参数矩阵的点积作为第一神经网络的输出矩阵;
获取所述输出矩阵中被掩盖的分词对应的预测向量,计算所述预测向量与被掩盖的词实际对应的真实向量的交叉熵损失,作为第一损失。
在一实施例中,所述处理器执行所述计算机程序时还实现:
将所述输出矩阵输入至第二神经网络模型,由第二神经网络模型对所述输出矩阵,进行双向卷积计算,输出所述输出矩阵中每个分词被掩盖的概率;
计算所述概率矩阵中所有被掩盖的分词对应的交叉熵损失,作为第二损失。
在一实施例中,所述处理器执行所述计算机程序时还实现:
按照预设的迭代训练次数完成对第一神经网络的训练后,依据第一神经网络的输出矩阵及训练样本集合,按照对第二神经网络模型的预设训练次数,对第二神经网络模型进行迭代训练,调整第二神经网络模型的参数矩阵。
在一实施例中,所述处理器执行所述计算机程序时还实现:
对第一神经网络模型和第二神经网络模型进行交互训练,调整参数矩阵,分别得到第一神经网络模型的第一目标参数矩阵和第二神经网路模型的第二目标参数矩阵。
所述终端设备5可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。该终端设备可包括,但不仅限于,处理器50、存储器51。本领域技术人员可以理解,图5仅仅是终端设备5的举例,并不构成对终端设备5的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。
所称处理器50可以是中央处理单元(Central Processing Unit,CPU),该处理器50还可以是其他通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路 (Application Specific Integrated Circuit,ASIC)、现成可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器51在一些实施例中可以是所述终端设备5的内部存储单元,例如终端设备5的硬盘或内存。所述存储器51在另一些实施例中也可以是所述终端设备5的外部存储设备,例如所述终端设备5上配备的插接式硬盘,智能存储卡(Smart Media Card, SMC),安全数字(Secure Digital, SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器51还可以既包括所述终端设备5的内部存储单元也包括外部存储设备。所述存储器51用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如所述计算机程序的程序代码等。所述存储器51还可以用于暂时地存储已经输出或者将要输出的数据。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现:
获取目标用户的语音信息,并将所述语音信息转化为文本信息;
将所述文本信息输入至训练后的第一神经网络模型,对所述文本信息进行语义分析,得到所述第一神经网络模型的输出文本分类结果;其中,所述文本分类结果包括所述文本信息对应的评分标签,所述第一神经网络模型为基于训练样本集合及第二神经网络模型训练得到的,所述第二神经网络模型为基于所述训练样本集合及第一神经网络模型的输出结果训练得到的,所述第一神经网络模型的输出结果为将所述训练样本集合作为输入得到的,所述训练样本集合包括多个面试语料文本;
根据所述评分标签,计算所述目标用户的面试评分结果。
在一实施例中,所述计算机程序被处理器执行时还实现:
通过语音识别算法对所述语音信息进行识别,提取所述语音信息中的声学特征;
根据所述声学特征,将语音信息转化为文本信息。
在一实施例中,所述处理器执行所述计算机程序时还实现:
按预设分词数量,将所述文本信息进行划分,得到符合所述预设分词数量的至少一个短句文本;
或者,在将所述语音信息转化为所述文本信息过程中,设置最长短句数量,将所述语音信息划分为小于或等于所述最长短句数量的至少一个语音短句,并将所述至少一个语音短句转化为所述文本信息。
在一实施例中,所述处理器执行所述计算机程序时还实现:
获取训练样本集合,所述训练样本集合包括多个面试语料文本;
将所述训练样本集合中的语句文本划分为预设分词数量的短句集合,并对所述短句集合中的分词进行编码,得到分词矩阵;
将所述分词矩阵进行卷积计算,得到目标矩阵,将所述目标矩阵与参数矩阵的点积作为第一神经网络的输出矩阵;
获取所述输出矩阵中被掩盖的分词对应的预测向量,计算所述预测向量与被掩盖的词实际对应的真实向量的交叉熵损失,作为第一损失。
在一实施例中,所述处理器执行所述计算机程序时还实现:
将所述输出矩阵输入至第二神经网络模型,由第二神经网络模型对所述输出矩阵,进行双向卷积计算,输出所述输出矩阵中每个分词被掩盖的概率;
计算所述概率矩阵中所有被掩盖的分词对应的交叉熵损失,作为第二损失。
在一实施例中,所述处理器执行所述计算机程序时还实现:
按照预设的迭代训练次数完成对第一神经网络的训练后,依据第一神经网络的输出矩阵及训练样本集合,按照对第二神经网络模型的预设训练次数,对第二神经网络模型进行迭代训练,调整第二神经网络模型的参数矩阵。
在一实施例中,所述处理器执行所述计算机程序时还实现:
对第一神经网络模型和第二神经网络模型进行交互训练,调整参数矩阵,分别得到第一神经网络模型的第一目标参数矩阵和第二神经网路模型的第二目标参数矩阵。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在移动终端上运行时,使得移动终端执行时实现可实现上述各个方法实施例中的步骤。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括能够将计算机程序代码携带到拍照装置/终端设备的任何实体或装置、记录介质、计算机存储器、只读存储器(ROM,Read-Only Memory)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM,Random Access Memory)、外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink) DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/网络设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/网络设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种基于语义分析的评分方法,其中,包括:
    获取目标用户的语音信息,并将所述语音信息转化为文本信息;
    将所述文本信息输入至训练后的第一神经网络模型,对所述文本信息进行语义分析,得到所述第一神经网络模型的输出文本分类结果;其中,所述文本分类结果包括所述文本信息对应的评分标签,所述第一神经网络模型为基于训练样本集合及第二神经网络模型训练得到的,所述第二神经网络模型为基于所述训练样本集合及第一神经网络模型的输出结果训练得到的,所述第一神经网络模型的输出结果为将所述训练样本集合作为输入得到的,所述训练样本集合包括多个面试语料文本;
    根据所述评分标签,计算所述目标用户的面试评分结果。
  2. 如权利要求1所述的方法,其中,所述获取目标用户的语音信息,并将所述语音信息转化为文本信息,包括:
    通过语音识别算法对所述语音信息进行识别,提取所述语音信息中的声学特征;
    根据所述声学特征,将语音信息转化为文本信息。
  3. 如权利要求1所述的方法,其中,在所述将所述文本信息输入至训练后的第一神经网络模型之前,包括:
    按预设分词数量,将所述文本信息进行划分,得到符合所述预设分词数量的至少一个短句文本;
    或者,在将所述语音信息转化为所述文本信息过程中,设置最长短句数量,将所述语音信息划分为小于或等于所述最长短句数量的至少一个语音短句,并将所述至少一个语音短句转化为所述文本信息。
  4. 如权利要求1所述的方法,其中,在所述将所述文本信息输入至训练后的第一神经网络模型之前,包括:
    获取训练样本集合,所述训练样本集合包括多个面试语料文本;
    将所述训练样本集合中的语句文本划分为预设分词数量的短句集合,并对所述短句集合中的分词进行编码,得到分词矩阵;
    将所述分词矩阵进行卷积计算,得到目标矩阵,将所述目标矩阵与参数矩阵的点积作为第一神经网络的输出矩阵;
    获取所述输出矩阵中被掩盖的分词对应的预测向量,计算所述预测向量与被掩盖的词实际对应的真实向量的交叉熵损失,作为第一损失。
  5. 如权利要求4所述的方法,其中,在将所述文本信息输入至训练后的第一神经网络模型之前,包括:
    将所述输出矩阵输入至第二神经网络模型,由第二神经网络模型对所述输出矩阵,进行双向卷积计算,输出所述输出矩阵中每个分词被掩盖的概率;
    计算所述概率矩阵中所有被掩盖的分词对应的交叉熵损失,作为第二损失。
  6. 如权利要求4所述的方法,其中,所述方法包括:
    按照预设的迭代训练次数完成对第一神经网络的训练后,依据第一神经网络的输出矩阵及训练样本集合,按照对第二神经网络模型的预设训练次数,对第二神经网络模型进行迭代训练,调整第二神经网络模型的参数矩阵。
  7. 如权利要求6所述的方法,其中,所述方法包括:
    对第一神经网络模型和第二神经网络模型进行交互训练,调整参数矩阵,分别得到第一神经网络模型的第一目标参数矩阵和第二神经网路模型的第二目标参数矩阵。
  8. 一种基于语义分析的评分装置,其中,包括:
    获取单元,用于获取目标用户的语音信息,并将所述语音信息转化为文本信息;
    处理单元,用于将所述文本信息输入至训练后的第一神经网络模型,对所述文本信息进行语义分析,得到所述第一神经网络模型的输出文本分类结果;其中,所述文本分类结果包括所述文本信息对应的评分标签,所述第一神经网络模型为基于训练样本集合及第二神经网络模型训练得到的,所述第二神经网络模型为基于所述训练样本集合及第一神经网络模型的输出结果训练得到的,所述第一神经网络模型的输出结果为将所述训练样本集合作为输入得到的,所述训练样本集合包括多个面试语料文本;
    评分单元,用于根据所述评分标签,计算所述目标用户的面试评分结果。
  9. 如权利要求8所述的装置,其中,所述获取单元还用于:
    识别子单元,用于通过语音识别算法对所述语音信息进行识别,提取所述语音信息中的声学特征;
    转化子单元,用于根据所述声学特征,将语音信息转化为文本信息。
  10. 如权利要求8所述的装置,其中,所述基于语义分析的评分装置还包括:
    第一划分单元,用于按预设分词数量,将所述文本信息进行划分,得到符合所述预设分词数量的至少一个短句文本;
    或者,第二划分单元,用于在将所述语音信息转化为所述文本信息过程中,设置最长短句数量,将所述语音信息划分为小于或等于所述最长短句数量的至少一个语音短句,并将所述至少一个语音短句转化为所述文本信息。
  11. 如权利要求8所述的装置,其中,所述基于语义分析的评分装置还包括:
    样本集合获取单元,用于获取训练样本集合,所述训练样本集合包括多个面试语料文本;
    第三划分单元,用于将所述训练样本集合中的语句文本划分为预设分词数量的短句集合,并对所述短句集合中的分词进行编码,得到分词矩阵;
    第一计算单元,用于将所述分词矩阵进行卷积计算,得到目标矩阵,将所述目标矩阵与参数矩阵的点积作为第一神经网络的输出矩阵;
    第二计算单元,用于获取所述输出矩阵中被掩盖的分词对应的预测向量,计算所述预测向量与被掩盖的词实际对应的真实向量的交叉熵损失,作为第一损失。
  12. 一种终端设备,其中,包括:存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现:
    获取目标用户的语音信息,并将所述语音信息转化为文本信息;
    将所述文本信息输入至训练后的第一神经网络模型,对所述文本信息进行语义分析,得到所述第一神经网络模型的输出文本分类结果;其中,所述文本分类结果包括所述文本信息对应的评分标签,所述第一神经网络模型为基于训练样本集合及第二神经网络模型训练得到的,所述第二神经网络模型为基于所述训练样本集合及第一神经网络模型的输出结果训练得到的,所述第一神经网络模型的输出结果为将所述训练样本集合作为输入得到的,所述训练样本集合包括多个面试语料文本;
    根据所述评分标签,计算所述目标用户的面试评分结果。
  13. 如权利要求12所述的终端设备,其中,所述处理器执行所述计算机程序时还实现:
    通过语音识别算法对所述语音信息进行识别,提取所述语音信息中的声学特征;
    根据所述声学特征,将语音信息转化为文本信息。
  14. 如权利要求12所述的终端设备,其中,所述处理器执行所述计算机程序时还实现:
    按预设分词数量,将所述文本信息进行划分,得到符合所述预设分词数量的至少一个短句文本;
    或者,在将所述语音信息转化为所述文本信息过程中,设置最长短句数量,将所述语音信息划分为小于或等于所述最长短句数量的至少一个语音短句,并将所述至少一个语音短句转化为所述文本信息。
  15. 如权利要求12所述的终端设备,其中,所述处理器执行所述计算机程序时还实现:
    获取训练样本集合,所述训练样本集合包括多个面试语料文本;
    将所述训练样本集合中的语句文本划分为预设分词数量的短句集合,并对所述短句集合中的分词进行编码,得到分词矩阵;
    将所述分词矩阵进行卷积计算,得到目标矩阵,将所述目标矩阵与参数矩阵的点积作为第一神经网络的输出矩阵;
    获取所述输出矩阵中被掩盖的分词对应的预测向量,计算所述预测向量与被掩盖的词实际对应的真实向量的交叉熵损失,作为第一损失。
  16. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其中,所述计算机程序被处理器执行时实现:
    获取目标用户的语音信息,并将所述语音信息转化为文本信息;
    将所述文本信息输入至训练后的第一神经网络模型,对所述文本信息进行语义分析,得到所述第一神经网络模型的输出文本分类结果;其中,所述文本分类结果包括所述文本信息对应的评分标签,所述第一神经网络模型为基于训练样本集合及第二神经网络模型训练得到的,所述第二神经网络模型为基于所述训练样本集合及第一神经网络模型的输出结果训练得到的,所述第一神经网络模型的输出结果为将所述训练样本集合作为输入得到的,所述训练样本集合包括多个面试语料文本;
    根据所述评分标签,计算所述目标用户的面试评分结果。
  17. 如权利要求16所述的计算机可读存储介质,其中,所述计算机程序被处理器执行时还实现:
    通过语音识别算法对所述语音信息进行识别,提取所述语音信息中的声学特征;
    根据所述声学特征,将语音信息转化为文本信息。
  18. 如权利要求16所述的计算机可读存储介质,其中,所述处理器执行所述计算机程序时还实现:
    按预设分词数量,将所述文本信息进行划分,得到符合所述预设分词数量的至少一个短句文本;
    或者,在将所述语音信息转化为所述文本信息过程中,设置最长短句数量,将所述语音信息划分为小于或等于所述最长短句数量的至少一个语音短句,并将所述至少一个语音短句转化为所述文本信息。
  19. 如权利要求16所述的计算机可读存储介质,其中,所述处理器执行所述计算机程序时还实现:
    获取训练样本集合,所述训练样本集合包括多个面试语料文本;
    将所述训练样本集合中的语句文本划分为预设分词数量的短句集合,并对所述短句集合中的分词进行编码,得到分词矩阵;
    将所述分词矩阵进行卷积计算,得到目标矩阵,将所述目标矩阵与参数矩阵的点积作为第一神经网络的输出矩阵;
    获取所述输出矩阵中被掩盖的分词对应的预测向量,计算所述预测向量与被掩盖的词实际对应的真实向量的交叉熵损失,作为第一损失。
  20. 如权利要求19所述的计算机可读存储介质,其中,所述处理器执行所述计算机程序时还实现:
    将所述输出矩阵输入至第二神经网络模型,由第二神经网络模型对所述输出矩阵,进行双向卷积计算,输出所述输出矩阵中每个分词被掩盖的概率;
    计算所述概率矩阵中所有被掩盖的分词对应的交叉熵损失,作为第二损失。
PCT/CN2020/119299 2020-05-28 2020-09-30 基于语义分析的评分方法、装置、终端设备及存储介质 WO2021114840A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010469517.0A CN111695352A (zh) 2020-05-28 2020-05-28 基于语义分析的评分方法、装置、终端设备及存储介质
CN202010469517.0 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021114840A1 true WO2021114840A1 (zh) 2021-06-17

Family

ID=72478509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119299 WO2021114840A1 (zh) 2020-05-28 2020-09-30 基于语义分析的评分方法、装置、终端设备及存储介质

Country Status (2)

Country Link
CN (1) CN111695352A (zh)
WO (1) WO2021114840A1 (zh)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113470629A (zh) * 2021-07-16 2021-10-01 腾讯音乐娱乐科技(深圳)有限公司 音频识别模型训练方法,音色相似度检测方法
CN113590820A (zh) * 2021-07-16 2021-11-02 杭州网易智企科技有限公司 一种文本处理方法、装置、介质和电子设备
CN113593535A (zh) * 2021-06-30 2021-11-02 青岛海尔科技有限公司 语音数据的处理方法及装置、存储介质、电子装置
CN113609861A (zh) * 2021-08-10 2021-11-05 北京工商大学 基于食品文献数据的多维度特征命名实体识别方法及系统
CN113609851A (zh) * 2021-07-09 2021-11-05 浙江连信科技有限公司 心理学上想法认知偏差的识别方法、装置及电子设备
CN113643781A (zh) * 2021-06-25 2021-11-12 合肥工业大学 基于时序预警信号的健康干预方案个性化推荐方法及系统
CN113706207A (zh) * 2021-08-31 2021-11-26 中国平安财产保险股份有限公司 基于语义解析的订单成交率分析方法、装置、设备及介质
CN113782142A (zh) * 2021-08-20 2021-12-10 中国中医科学院中医药信息研究所 一种基于集成神经网络的中药饮片配方推荐系统
CN113821603A (zh) * 2021-09-29 2021-12-21 平安普惠企业管理有限公司 记录信息处理方法、装置、设备和存储介质
CN113837257A (zh) * 2021-09-15 2021-12-24 支付宝(杭州)信息技术有限公司 一种目标检测方法及装置
CN113837294A (zh) * 2021-09-27 2021-12-24 平安科技(深圳)有限公司 模型训练及调用方法、装置、计算机设备、存储介质
CN113849785A (zh) * 2021-07-29 2021-12-28 国家计算机网络与信息安全管理中心 针对应用程序的移动终端信息资产使用行为识别方法
CN114155831A (zh) * 2021-12-06 2022-03-08 科大讯飞股份有限公司 语音评测方法、相关设备及可读存储介质
CN114330512A (zh) * 2021-12-13 2022-04-12 腾讯科技(深圳)有限公司 数据处理方法、装置、电子设备及计算机可读存储介质
CN114523476A (zh) * 2022-03-02 2022-05-24 北京云迹科技股份有限公司 服务机器人的控制方法及装置
CN114548787A (zh) * 2022-02-23 2022-05-27 中国平安人寿保险股份有限公司 用户生成内容管理方法、装置、电子设备及存储介质
CN114595756A (zh) * 2022-03-04 2022-06-07 阿里巴巴(中国)有限公司 提高文本分析模型泛化能力的训练方法及装置
CN114780723A (zh) * 2022-04-08 2022-07-22 浙江师范大学 基于向导网络文本分类的画像生成方法、系统和介质
CN114783601A (zh) * 2022-03-28 2022-07-22 腾讯科技(深圳)有限公司 一种生理数据的分析方法、装置、电子设备和存储介质
CN115171695A (zh) * 2022-06-29 2022-10-11 东莞爱源创科技有限公司 语音识别方法、装置、电子设备和计算机可读介质
CN115249017A (zh) * 2021-06-23 2022-10-28 马上消费金融股份有限公司 文本标注方法、意图识别模型的训练方法及相关设备
CN115658853A (zh) * 2022-12-28 2023-01-31 中国气象局公共气象服务中心(国家预警信息发布中心) 一种基于自然语言处理的气象预警信息审核方法及系统
ES2933625A1 (es) * 2022-10-29 2023-02-10 Kallisto Ai Sl Metodo y sistema utilizando tecnicas de inteligencia artificial general para la segmentacion de usuarios
CN115905518A (zh) * 2022-10-17 2023-04-04 华南师范大学 基于知识图谱的情感分类方法、装置、设备以及存储介质
CN116205221A (zh) * 2023-05-05 2023-06-02 北京睿企信息科技有限公司 实体识别和文本分类的方法、存储介质和计算机设备
CN116245154A (zh) * 2022-11-30 2023-06-09 荣耀终端有限公司 神经网络的训练方法、舆情危机识别方法及相关装置
CN116631583A (zh) * 2023-05-30 2023-08-22 华脑科学研究(珠海横琴)有限公司 基于物联网大数据的心理疏导方法、装置以及服务器
CN116776744A (zh) * 2023-08-15 2023-09-19 工业云制造(四川)创新中心有限公司 一种基于增强现实的装备制造控制方法及电子设备
CN117074643A (zh) * 2023-08-21 2023-11-17 华院计算技术(上海)股份有限公司 煤质评价方法、系统、设备和介质
CN117609781A (zh) * 2023-11-20 2024-02-27 北京中关村科金技术有限公司 文本评估模型的训练方法、文本评估方法及装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111695352A (zh) * 2020-05-28 2020-09-22 平安科技(深圳)有限公司 基于语义分析的评分方法、装置、终端设备及存储介质
CN112162738B (zh) * 2020-10-26 2022-11-29 广东粤港澳大湾区硬科技创新研究院 数据转化方法、装置、终端设备及存储介质
CN112669820B (zh) * 2020-12-16 2023-08-04 平安科技(深圳)有限公司 基于语音识别的考试作弊识别方法、装置及计算机设备
CN112699237B (zh) * 2020-12-24 2021-10-15 百度在线网络技术(北京)有限公司 标签确定方法、设备和存储介质
CN112632222B (zh) * 2020-12-25 2023-02-03 海信视像科技股份有限公司 一种终端设备和确定数据所属领域的方法
CN112732882A (zh) * 2020-12-30 2021-04-30 平安科技(深圳)有限公司 用户意图识别方法、装置、设备及计算机可读存储介质
CN112836508B (zh) * 2021-01-29 2023-04-14 平安科技(深圳)有限公司 信息提取模型训练方法、装置、终端设备及存储介质
CN112966712B (zh) * 2021-02-01 2023-01-20 北京三快在线科技有限公司 语言模型训练方法、装置、电子设备和计算机可读介质
CN113095165A (zh) * 2021-03-23 2021-07-09 北京理工大学深圳研究院 一种用于完善面试表现的模拟面试方法和装置
CN113343666B (zh) * 2021-06-29 2023-07-14 深圳前海微众银行股份有限公司 评分的置信度的确定方法、装置、设备及存储介质
CN113343711B (zh) * 2021-06-29 2024-05-10 南方电网数字电网研究院有限公司 工单生成方法、装置、设备及存储介质
CN113420533B (zh) * 2021-07-09 2023-12-29 中铁七局集团有限公司 信息提取模型的训练方法、装置及电子设备
CN113792140A (zh) * 2021-08-12 2021-12-14 南京星云数字技术有限公司 文本处理方法、装置及计算机可读存储介质
CN113808709B (zh) * 2021-08-31 2024-03-22 天津师范大学 一种基于文本分析的心理弹性预测方法及系统
CN113902404A (zh) * 2021-09-29 2022-01-07 平安银行股份有限公司 基于人工智能的员工晋升分析方法、装置、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109241524A (zh) * 2018-08-13 2019-01-18 腾讯科技(深圳)有限公司 语义解析方法及装置、计算机可读存储介质、电子设备
CN110210032A (zh) * 2019-05-31 2019-09-06 北京神州泰岳软件股份有限公司 文本处理方法及装置
CN110310632A (zh) * 2019-06-28 2019-10-08 联想(北京)有限公司 语音处理方法及装置、以及电子设备
CN110717023A (zh) * 2019-09-18 2020-01-21 平安科技(深圳)有限公司 面试回答文本的分类方法及装置、电子设备、存储介质
US20200160846A1 (en) * 2018-11-19 2020-05-21 Panasonic Intellectual Property Corporation Of America Speaker recognition device, speaker recognition method, and recording medium
CN111695352A (zh) * 2020-05-28 2020-09-22 平安科技(深圳)有限公司 基于语义分析的评分方法、装置、终端设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109241524A (zh) * 2018-08-13 2019-01-18 腾讯科技(深圳)有限公司 语义解析方法及装置、计算机可读存储介质、电子设备
US20200160846A1 (en) * 2018-11-19 2020-05-21 Panasonic Intellectual Property Corporation Of America Speaker recognition device, speaker recognition method, and recording medium
CN110210032A (zh) * 2019-05-31 2019-09-06 北京神州泰岳软件股份有限公司 文本处理方法及装置
CN110310632A (zh) * 2019-06-28 2019-10-08 联想(北京)有限公司 语音处理方法及装置、以及电子设备
CN110717023A (zh) * 2019-09-18 2020-01-21 平安科技(深圳)有限公司 面试回答文本的分类方法及装置、电子设备、存储介质
CN111695352A (zh) * 2020-05-28 2020-09-22 平安科技(深圳)有限公司 基于语义分析的评分方法、装置、终端设备及存储介质

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115249017B (zh) * 2021-06-23 2023-12-19 马上消费金融股份有限公司 文本标注方法、意图识别模型的训练方法及相关设备
CN115249017A (zh) * 2021-06-23 2022-10-28 马上消费金融股份有限公司 文本标注方法、意图识别模型的训练方法及相关设备
CN113643781A (zh) * 2021-06-25 2021-11-12 合肥工业大学 基于时序预警信号的健康干预方案个性化推荐方法及系统
CN113643781B (zh) * 2021-06-25 2023-07-04 合肥工业大学 基于时序预警信号的健康干预方案个性化推荐方法及系统
CN113593535B (zh) * 2021-06-30 2024-05-24 青岛海尔科技有限公司 语音数据的处理方法及装置、存储介质、电子装置
CN113593535A (zh) * 2021-06-30 2021-11-02 青岛海尔科技有限公司 语音数据的处理方法及装置、存储介质、电子装置
CN113609851A (zh) * 2021-07-09 2021-11-05 浙江连信科技有限公司 心理学上想法认知偏差的识别方法、装置及电子设备
CN113590820A (zh) * 2021-07-16 2021-11-02 杭州网易智企科技有限公司 一种文本处理方法、装置、介质和电子设备
CN113470629B (zh) * 2021-07-16 2024-01-09 腾讯音乐娱乐科技(深圳)有限公司 音频识别模型训练方法,音色相似度检测方法
CN113470629A (zh) * 2021-07-16 2021-10-01 腾讯音乐娱乐科技(深圳)有限公司 音频识别模型训练方法,音色相似度检测方法
CN113849785B (zh) * 2021-07-29 2024-01-30 国家计算机网络与信息安全管理中心 针对应用程序的移动终端信息资产使用行为识别方法
CN113849785A (zh) * 2021-07-29 2021-12-28 国家计算机网络与信息安全管理中心 针对应用程序的移动终端信息资产使用行为识别方法
CN113609861B (zh) * 2021-08-10 2024-02-23 北京工商大学 基于食品文献数据的多维度特征命名实体识别方法及系统
CN113609861A (zh) * 2021-08-10 2021-11-05 北京工商大学 基于食品文献数据的多维度特征命名实体识别方法及系统
CN113782142B (zh) * 2021-08-20 2024-04-16 中国中医科学院中医药信息研究所 一种基于集成神经网络的中药饮片配方推荐系统
CN113782142A (zh) * 2021-08-20 2021-12-10 中国中医科学院中医药信息研究所 一种基于集成神经网络的中药饮片配方推荐系统
CN113706207B (zh) * 2021-08-31 2024-05-31 中国平安财产保险股份有限公司 基于语义解析的订单成交率分析方法、装置、设备及介质
CN113706207A (zh) * 2021-08-31 2021-11-26 中国平安财产保险股份有限公司 基于语义解析的订单成交率分析方法、装置、设备及介质
CN113837257B (zh) * 2021-09-15 2024-05-24 支付宝(杭州)信息技术有限公司 一种目标检测方法及装置
CN113837257A (zh) * 2021-09-15 2021-12-24 支付宝(杭州)信息技术有限公司 一种目标检测方法及装置
CN113837294A (zh) * 2021-09-27 2021-12-24 平安科技(深圳)有限公司 模型训练及调用方法、装置、计算机设备、存储介质
CN113837294B (zh) * 2021-09-27 2023-09-01 平安科技(深圳)有限公司 模型训练及调用方法、装置、计算机设备、存储介质
CN113821603A (zh) * 2021-09-29 2021-12-21 平安普惠企业管理有限公司 记录信息处理方法、装置、设备和存储介质
CN114155831A (zh) * 2021-12-06 2022-03-08 科大讯飞股份有限公司 语音评测方法、相关设备及可读存储介质
CN114330512A (zh) * 2021-12-13 2022-04-12 腾讯科技(深圳)有限公司 数据处理方法、装置、电子设备及计算机可读存储介质
CN114330512B (zh) * 2021-12-13 2024-04-26 腾讯科技(深圳)有限公司 数据处理方法、装置、电子设备及计算机可读存储介质
CN114548787A (zh) * 2022-02-23 2022-05-27 中国平安人寿保险股份有限公司 用户生成内容管理方法、装置、电子设备及存储介质
CN114548787B (zh) * 2022-02-23 2024-04-12 中国平安人寿保险股份有限公司 用户生成内容管理方法、装置、电子设备及存储介质
CN114523476B (zh) * 2022-03-02 2024-02-20 北京云迹科技股份有限公司 服务机器人的控制方法及装置
CN114523476A (zh) * 2022-03-02 2022-05-24 北京云迹科技股份有限公司 服务机器人的控制方法及装置
CN114595756A (zh) * 2022-03-04 2022-06-07 阿里巴巴(中国)有限公司 提高文本分析模型泛化能力的训练方法及装置
CN114783601A (zh) * 2022-03-28 2022-07-22 腾讯科技(深圳)有限公司 一种生理数据的分析方法、装置、电子设备和存储介质
CN114780723B (zh) * 2022-04-08 2024-04-02 浙江师范大学 基于向导网络文本分类的画像生成方法、系统和介质
CN114780723A (zh) * 2022-04-08 2022-07-22 浙江师范大学 基于向导网络文本分类的画像生成方法、系统和介质
CN115171695A (zh) * 2022-06-29 2022-10-11 东莞爱源创科技有限公司 语音识别方法、装置、电子设备和计算机可读介质
CN115905518A (zh) * 2022-10-17 2023-04-04 华南师范大学 基于知识图谱的情感分类方法、装置、设备以及存储介质
CN115905518B (zh) * 2022-10-17 2023-10-20 华南师范大学 基于知识图谱的情感分类方法、装置、设备以及存储介质
ES2933625A1 (es) * 2022-10-29 2023-02-10 Kallisto Ai Sl Metodo y sistema utilizando tecnicas de inteligencia artificial general para la segmentacion de usuarios
CN116245154A (zh) * 2022-11-30 2023-06-09 荣耀终端有限公司 神经网络的训练方法、舆情危机识别方法及相关装置
CN116245154B (zh) * 2022-11-30 2024-06-11 荣耀终端有限公司 神经网络的训练方法、舆情危机识别方法及相关装置
CN115658853A (zh) * 2022-12-28 2023-01-31 中国气象局公共气象服务中心(国家预警信息发布中心) 一种基于自然语言处理的气象预警信息审核方法及系统
CN115658853B (zh) * 2022-12-28 2023-04-11 中国气象局公共气象服务中心(国家预警信息发布中心) 一种基于自然语言处理的气象预警信息审核方法及系统
CN116205221A (zh) * 2023-05-05 2023-06-02 北京睿企信息科技有限公司 实体识别和文本分类的方法、存储介质和计算机设备
CN116631583A (zh) * 2023-05-30 2023-08-22 华脑科学研究(珠海横琴)有限公司 基于物联网大数据的心理疏导方法、装置以及服务器
CN116776744A (zh) * 2023-08-15 2023-09-19 工业云制造(四川)创新中心有限公司 一种基于增强现实的装备制造控制方法及电子设备
CN116776744B (zh) * 2023-08-15 2023-10-31 工业云制造(四川)创新中心有限公司 一种基于增强现实的装备制造控制方法及电子设备
CN117074643A (zh) * 2023-08-21 2023-11-17 华院计算技术(上海)股份有限公司 煤质评价方法、系统、设备和介质
CN117074643B (zh) * 2023-08-21 2024-06-07 华院计算技术(上海)股份有限公司 煤质评价方法、系统、设备和介质
CN117609781A (zh) * 2023-11-20 2024-02-27 北京中关村科金技术有限公司 文本评估模型的训练方法、文本评估方法及装置
CN117609781B (zh) * 2023-11-20 2024-05-28 北京中关村科金技术有限公司 文本评估模型的训练方法、文本评估方法及装置

Also Published As

Publication number Publication date
CN111695352A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
WO2021114840A1 (zh) 基于语义分析的评分方法、装置、终端设备及存储介质
CN112613308B (zh) 用户意图识别方法、装置、终端设备及存储介质
CN109960725B (zh) 基于情感的文本分类处理方法、装置和计算机设备
CN113420807A (zh) 基于多任务学习与注意力机制的多模态融合情感识别系统、方法及实验评价方法
CN111046133A (zh) 基于图谱化知识库的问答方法、设备、存储介质及装置
WO2020233131A1 (zh) 问答处理方法、装置、计算机设备和存储介质
CN112233698B (zh) 人物情绪识别方法、装置、终端设备及存储介质
WO2021218028A1 (zh) 基于人工智能的面试内容精炼方法、装置、设备及介质
CN111191032B (zh) 语料扩充方法、装置、计算机设备和存储介质
WO2021204017A1 (zh) 文本意图识别方法、装置以及相关设备
WO2021139278A1 (zh) 一种智能面试方法、装置及终端设备
CN113094478B (zh) 表情回复方法、装置、设备及存储介质
CN113158656B (zh) 讽刺内容识别方法、装置、电子设备以及存储介质
CN111339775A (zh) 命名实体识别方法、装置、终端设备及存储介质
WO2022095370A1 (zh) 一种文本匹配方法、装置、终端设备和存储介质
CN111126084B (zh) 数据处理方法、装置、电子设备和存储介质
CN116304748A (zh) 一种文本相似度计算方法、系统、设备及介质
CN115312033A (zh) 基于人工智能的语音情感识别方法、装置、设备及介质
CN111354354B (zh) 一种基于语义识别的训练方法、训练装置及终端设备
CN113326383B (zh) 一种短文本实体链接方法、装置、计算设备与存储介质
CN116775873A (zh) 一种多模态对话情感识别方法
CN117114475A (zh) 基于多维度人才评估策略的综合能力测评系统
CN116483979A (zh) 基于人工智能的对话模型训练方法、装置、设备及介质
CN111401069A (zh) 会话文本的意图识别方法、意图识别装置及终端
CN115358817A (zh) 基于社交数据的智能产品推荐方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898890

Country of ref document: EP

Kind code of ref document: A1