WO2021114564A1 - 一种低对比度红外图像的增强方法 - Google Patents
一种低对比度红外图像的增强方法 Download PDFInfo
- Publication number
- WO2021114564A1 WO2021114564A1 PCT/CN2020/089852 CN2020089852W WO2021114564A1 WO 2021114564 A1 WO2021114564 A1 WO 2021114564A1 CN 2020089852 W CN2020089852 W CN 2020089852W WO 2021114564 A1 WO2021114564 A1 WO 2021114564A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- infrared image
- value
- infrared
- contrast
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000012545 processing Methods 0.000 claims abstract description 21
- 230000002708 enhancing effect Effects 0.000 claims abstract description 6
- 238000013507 mapping Methods 0.000 claims abstract description 3
- 238000004364 calculation method Methods 0.000 claims description 8
- 101100129500 Caenorhabditis elegans max-2 gene Proteins 0.000 claims description 6
- 230000009466 transformation Effects 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 abstract description 4
- 230000001131 transforming effect Effects 0.000 abstract 1
- 230000008569 process Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
- G06T5/92—Dynamic range modification of images or parts thereof based on global image properties
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/18—Image warping, e.g. rearranging pixels individually
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10048—Infrared image
Definitions
- the invention relates to the field of infrared image processing, in particular to a method for enhancing low-contrast infrared images.
- Histogram equalization is a common image enhancement method, which can effectively improve image contrast, but when there is more noise in the image, the corresponding noise will also be amplified, and when the gray value of the image is too concentrated, the histogram equalization cannot be achieved Good results; genetic algorithm can adaptively enhance the gray-scale properties of infrared images, but the calculation time is too long, and it is difficult to realize real-time processing under normal computing resources.
- genetic algorithm can adaptively enhance the gray-scale properties of infrared images, but the calculation time is too long, and it is difficult to realize real-time processing under normal computing resources.
- the technical problem to be solved by the present invention is to provide a method for enhancing low-contrast infrared image in view of the shortcomings of the prior art, including the following steps:
- Step 1 Obtain an infrared image, determine whether the infrared image is a low-contrast image by obtaining the standard deviation of the image, if it is, perform step 2, otherwise no processing is performed;
- Step 2 Perform stretching transformation on the low-contrast infrared image in the logarithmic domain to obtain a stretched image
- Step 3 Calculate the average gray level of the infrared image, determine whether it needs to be inverted, if necessary, perform inverted processing, and then go to step 4, if not, go to step 4 directly;
- Step 4 Calculate the standard deviation of the infrared image, and perform mean filtering on the image
- Step 5 Calculate the enhancement coefficient to obtain the residual image
- Step 6 using the mapping relationship between the residual image and the stretched image to obtain the final enhanced image.
- step 1 the standard deviation of the image is obtained by the following formula:
- N is the number of pixels of the infrared image Image1 obtained
- ⁇ is the average of the gray values of the infrared image pixels
- ⁇ is the standard deviation of the calculated image
- x i represents the gray value of the i-th pixel of the infrared image Image1.
- step 1 if the standard deviation ⁇ is less than 30, it is judged to be a low-contrast image.
- step 2 for the infrared image Image1 that meets the low-contrast requirements, the following formula is used to stretch in the logarithmic domain:
- Pmax is the maximum value of the gray value in the infrared image Image1
- Average is the logarithmic average of all pixels in the infrared image image1 with e as the base, and find the exponent of the log average with e as the base, and its calculation method for:
- ⁇ is a minimum value, usually 0.0001, to avoid the situation of taking the logarithm to 0, and use the above formula to map Image1 to the logarithmic domain for stretching and transformation to obtain a new infrared image Image2.
- step 3 the average gray value ⁇ 2 of the infrared image Image2 is obtained. If ⁇ 2 ⁇ 128, inverted color processing is required.
- step 4 the specific implementation method of performing mean filtering on the image is as follows: calculate the average value of the pixel gray value of the infrared image and the gray value of its eight neighborhood pixels, update the pixel value of the infrared image to be equal to the average value, and obtain the image Image3.
- step 5 the specific implementation method of the residual image is: traverse the infrared images Image2 and Image4, for the same position, the pixel gray value of Image2 minus the pixel gray value of Image4, the value of less than 0 takes the value 0, whichever is The result is the residual image Image5.
- step 6 the specific implementation method for obtaining the enhanced image is:
- Value_image5(x) represents the pixel gray value at the corresponding position of the image Image5
- Value_image4(x) represents the value at the corresponding position of the image Image4
- F(x) is the enhanced pixel of the residual image Image5 at the corresponding position Value_image5(x) Gray value
- the enhancement factor is Traverse Image5 to get image Image6;
- the enhanced image obtained is denoted as Image6.
- Image6 For the enhanced image Image6 obtained in step 6, if inverse color processing is performed in step 3, the enhanced image Image6 will be inverted again to obtain the final enhanced image.
- the present invention is an image enhancement method proposed for low-contrast infrared images.
- the image variance is used to judge the image quality, and the low-contrast infrared image is transformed in logarithmic domain through exponential domain. Change again.
- Determine whether the infrared image needs to be inversely processed the infrared image is subjected to mean blur processing, the infrared image enhancement coefficient p is calculated, and the enhancement parameter matrix is calculated using the enhancement coefficient p, the infrared image before the blur processing, and the infrared image after the blur, to obtain the corresponding Enhancement parameter A:
- the infrared image before the blur processing is enhanced through the enhancement coefficient and the enhancement parameter matrix.
- the enhancement method of the present invention has the characteristics of no parameter setting and obvious contrast stretching.
- Fig. 1 is a flowchart of a low-contrast infrared image enhancement method in an embodiment of the present invention.
- Fig. 2 is an infrared input image selected in the embodiment of the present invention.
- Fig. 3 is the result of the logarithmic domain and exponential domain transformation of the infrared image in the embodiment of the present invention.
- Fig. 4 is the final enhanced image result obtained in the embodiment of the present invention.
- the present invention provides a method for enhancing low-contrast infrared images, including:
- a) Obtain infrared image data image1, as shown in Figure 2. Calculate the standard deviation of the image. The smaller the standard deviation, the more concentrated the distribution of the image, the lower the contrast of the image. The standard deviation of the image is used to determine whether the image is a low-contrast infrared image. When the standard deviation of the image is less than 30, the infrared image has a low contrast and is considered to be a low-contrast infrared image. The standard deviation of the image is 8.45505, which meets the judgment conditions for low-contrast infrared images.
- step c Since the color inversion process has been done in step c), the color inversion process is performed on the infrared image Image6 again to obtain the final enhanced image, as shown in Figure 4.
- the present invention provides a method for enhancing low-contrast infrared images.
- the above are only preferred embodiments of the present invention. It should be noted that for those of ordinary skill in the art Under the premise of not departing from the principle of the present invention, several improvements and modifications can be made, and these improvements and modifications should also be regarded as the protection scope of the present invention. All the components that are not clear in this embodiment can be implemented using existing technology.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (10)
- 一种低对比度红外图像的增强方法,包括如下步骤:步骤1,获取红外图像,通过求取图像的标准差来判断红外图像是否是低对比度图像,如果是,执行步骤2,否则不作处理;步骤2,对低对比度的红外图像在对数域内进行拉伸变换,得到拉伸图像;步骤3,计算红外图像的灰度平均值,判断是否需要做反色处理,如果需要,进行反色处理,然后执行步骤4,如果不需要,直接执行步骤4;步骤4,计算红外图像的标准差,对图像进行均值滤波;步骤5,计算增强系数,得到残差图像;步骤6,利用残差图像与拉伸图像的映射关系得到最终增强图像。
- 根据权利要求2所述的方法,其特征在于,步骤1中,如果标准差σ小于30,则判断是低对比度图像。
- 根据权利要求4所述的方法,其特征在于,步骤3中,求得红外图像Image2的灰度平均值μ2,如果μ2<128,则需要进行反色处理。
- 根据权利要求5所述的方法,其特征在于,步骤3中,反色处理的具体实现方法是,遍历红外图像Image2,对每个像素灰度值Value,有:Value=255-Value。
- 根据权利要求6所述的方法,其特征在于,步骤4中,对图像进行均值滤波具体实现方法为:计算红外图像的像素灰度值与其八邻域像素灰度值的平均值,将红外图像的像素值更新为等于所述平均值,得到图像Image3。
- 根据权利要求7所述的方法,其特征在于,步骤5中计算增强系数的具体实现方法为:计算红外图像Image2的标准差sd,对标准差sd,如果sd大于50,则sd取值为50,计算红外图像增强系数p,有p=1-sd/50,遍历红外图像Image3,每个像素灰度值乘以红外图像增强系 数p,得到新红外图像Image4。
- 根据权利要求8所述的方法,其特征在于,步骤5中,残差图像的具体实现方法是:遍历红外图像Image2和Image4,对于相同位置,Image2的像素灰度值减去Image4的像素灰度值,小于0的值取值为0,取其结果得到残差图像Image5。
- 根据权利要求9所述的低对比度红外图像增强方法,其特征在于,步骤6中,得到增强图像的具体实现方法是:其中Value_image5(x)代表的是图像Image5对应位置的像素灰度值,Value_image4(x)代表的是图像Image4对应位置的值,F(x)是残差图像Image5对应位置Value_image5(x)的增强像素灰度值,增强系数为 遍历Image5,得到图像Image6;系数A的计算方法为:遍历红外图像Image2和Image3,分别得到其像素灰度值最大值max2和max3,计算系数A=(max2+max3)/2;得到的增强图像记为Image6,对于步骤6得到的增强图像Image6,如果在步骤3中经过反色处理,则对增强图像Image6再一次进行反色处理,得到最终的增强图像。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911257400.XA CN111105371B (zh) | 2019-12-10 | 2019-12-10 | 一种低对比度红外图像的增强方法 |
CN201911257400.X | 2019-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021114564A1 true WO2021114564A1 (zh) | 2021-06-17 |
Family
ID=70423127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/089852 WO2021114564A1 (zh) | 2019-12-10 | 2020-05-12 | 一种低对比度红外图像的增强方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111105371B (zh) |
WO (1) | WO2021114564A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116342635A (zh) * | 2023-05-26 | 2023-06-27 | 山东省地质矿产勘查开发局第一地质大队(山东省第一地质矿产勘查院) | 一种地质测绘中裂缝轮廓提取方法 |
CN116485686A (zh) * | 2023-06-19 | 2023-07-25 | 青岛国源中创电气自动化工程有限公司 | 一种活性污泥法的污水处理图像增强方法 |
CN117297554A (zh) * | 2023-11-16 | 2023-12-29 | 哈尔滨海鸿基业科技发展有限公司 | 一种淋巴成像装置控制系统及方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111105371B (zh) * | 2019-12-10 | 2023-05-02 | 南京莱斯电子设备有限公司 | 一种低对比度红外图像的增强方法 |
CN112561881B (zh) * | 2020-12-16 | 2023-09-05 | 南京莱斯电子设备有限公司 | 基于评价模型的红外图像自适应数据增强方法 |
CN116883279B (zh) * | 2023-07-11 | 2024-03-12 | 北京龙知远科技发展有限公司 | 一种低噪声高实时性的短波红外图像增强方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104574284A (zh) * | 2013-10-24 | 2015-04-29 | 南京普爱射线影像设备有限公司 | 一种数字x射线图像对比度增强处理方法 |
US20150169986A1 (en) * | 2013-12-18 | 2015-06-18 | Thales | Method of processing images, notably from night vision systems and associated system |
CN106127694A (zh) * | 2016-05-20 | 2016-11-16 | 重庆医科大学 | 照度不均图像增强的自适应双向保带宽对数变换方法 |
CN107392866A (zh) * | 2017-07-07 | 2017-11-24 | 武汉科技大学 | 一种光照鲁棒的人脸图像局部纹理增强方法 |
CN109584181A (zh) * | 2018-12-03 | 2019-04-05 | 北京遥感设备研究所 | 一种改进的基于Retinex红外图像细节增强方法 |
CN109685742A (zh) * | 2018-12-29 | 2019-04-26 | 哈尔滨理工大学 | 一种暗光环境下的图像增强方法 |
CN111105371A (zh) * | 2019-12-10 | 2020-05-05 | 南京莱斯电子设备有限公司 | 一种低对比度红外图像的增强方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100563312C (zh) * | 2007-12-25 | 2009-11-25 | 青岛海信信芯科技有限公司 | 一种对比度增强方法 |
CN102413283B (zh) * | 2011-10-25 | 2013-08-14 | 广州飒特红外股份有限公司 | 红外热图数字信号处理系统及方法 |
CN102547117B (zh) * | 2011-12-22 | 2014-12-03 | 北京英泰智软件技术发展有限公司 | 一种摄像机对比度增强方法 |
-
2019
- 2019-12-10 CN CN201911257400.XA patent/CN111105371B/zh active Active
-
2020
- 2020-05-12 WO PCT/CN2020/089852 patent/WO2021114564A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104574284A (zh) * | 2013-10-24 | 2015-04-29 | 南京普爱射线影像设备有限公司 | 一种数字x射线图像对比度增强处理方法 |
US20150169986A1 (en) * | 2013-12-18 | 2015-06-18 | Thales | Method of processing images, notably from night vision systems and associated system |
CN106127694A (zh) * | 2016-05-20 | 2016-11-16 | 重庆医科大学 | 照度不均图像增强的自适应双向保带宽对数变换方法 |
CN107392866A (zh) * | 2017-07-07 | 2017-11-24 | 武汉科技大学 | 一种光照鲁棒的人脸图像局部纹理增强方法 |
CN109584181A (zh) * | 2018-12-03 | 2019-04-05 | 北京遥感设备研究所 | 一种改进的基于Retinex红外图像细节增强方法 |
CN109685742A (zh) * | 2018-12-29 | 2019-04-26 | 哈尔滨理工大学 | 一种暗光环境下的图像增强方法 |
CN111105371A (zh) * | 2019-12-10 | 2020-05-05 | 南京莱斯电子设备有限公司 | 一种低对比度红外图像的增强方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116342635A (zh) * | 2023-05-26 | 2023-06-27 | 山东省地质矿产勘查开发局第一地质大队(山东省第一地质矿产勘查院) | 一种地质测绘中裂缝轮廓提取方法 |
CN116342635B (zh) * | 2023-05-26 | 2023-08-08 | 山东省地质矿产勘查开发局第一地质大队(山东省第一地质矿产勘查院) | 一种地质测绘中裂缝轮廓提取方法 |
CN116485686A (zh) * | 2023-06-19 | 2023-07-25 | 青岛国源中创电气自动化工程有限公司 | 一种活性污泥法的污水处理图像增强方法 |
CN116485686B (zh) * | 2023-06-19 | 2023-08-29 | 青岛国源中创电气自动化工程有限公司 | 一种活性污泥法的污水处理图像增强方法 |
CN117297554A (zh) * | 2023-11-16 | 2023-12-29 | 哈尔滨海鸿基业科技发展有限公司 | 一种淋巴成像装置控制系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111105371A (zh) | 2020-05-05 |
CN111105371B (zh) | 2023-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021114564A1 (zh) | 一种低对比度红外图像的增强方法 | |
Zhang et al. | Underwater image enhancement via weighted wavelet visual perception fusion | |
CN110097519B (zh) | 基于深度学习的双监督图像去雾方法、系统、介质和设备 | |
CN111986120A (zh) | 一种基于帧累加和多尺度Retinex的低光照图像增强优化方法 | |
CN108932700A (zh) | 基于目标成像模型的自适应梯度增益水下图像增强方法 | |
CN107292842B (zh) | 基于先验约束和离群值抑制的图像去模糊方法 | |
CN110189266B (zh) | 一种自适应的快速图像增强方法 | |
CN107833189A (zh) | 对比受限自适应直方图均衡的水下目标探测图像增强方法 | |
CN109919859B (zh) | 一种户外场景图像去雾增强方法、计算设备及其存储介质 | |
CN107292834B (zh) | 红外图像细节增强方法 | |
CN113222866B (zh) | 灰度图像增强方法、计算机可读介质及计算机系统 | |
TW201308997A (zh) | 用於顯示裝置之影像品質提升方法 | |
CN112116542B (zh) | 图像对比度增强方法、装置、电子设备和存储介质 | |
CN107203980B (zh) | 自适应多尺度暗通道先验的水下目标探测图像增强方法 | |
Mu et al. | Low and non-uniform illumination color image enhancement using weighted guided image filtering | |
CN114565535B (zh) | 一种基于自适应梯度gamma校正的图像增强方法及装置 | |
Feng et al. | Low-light image enhancement algorithm based on an atmospheric physical model | |
Wen et al. | Autonomous robot navigation using Retinex algorithm for multiscale image adaptability in low-light environment | |
Liang et al. | Underwater image quality improvement via color, detail, and contrast restoration | |
WO2020107308A1 (zh) | 一种基于Retinex的微光图像快速增强方法及其装置 | |
CN116091357A (zh) | 深度卷积注意力和多尺度特征融合的低光图像增强方法 | |
Chen et al. | Single-image dehazing via depth-guided deep retinex decomposition | |
Mi et al. | A generalized enhancement framework for hazy images with complex illumination | |
CN113160066A (zh) | 一种低照度图像高效增强方法 | |
CN116630198A (zh) | 一种结合自适应伽马校正的多尺度融合水下图像增强方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20899884 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20899884 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20899884 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/01/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20899884 Country of ref document: EP Kind code of ref document: A1 |