WO2021114564A1 - 一种低对比度红外图像的增强方法 - Google Patents

一种低对比度红外图像的增强方法 Download PDF

Info

Publication number
WO2021114564A1
WO2021114564A1 PCT/CN2020/089852 CN2020089852W WO2021114564A1 WO 2021114564 A1 WO2021114564 A1 WO 2021114564A1 CN 2020089852 W CN2020089852 W CN 2020089852W WO 2021114564 A1 WO2021114564 A1 WO 2021114564A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
infrared image
value
infrared
contrast
Prior art date
Application number
PCT/CN2020/089852
Other languages
English (en)
French (fr)
Inventor
刘羽
朱伟
王幸鹏
贺超
石林
颜世博
邱文嘉
董小舒
王成成
王扬红
Original Assignee
南京莱斯电子设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京莱斯电子设备有限公司 filed Critical 南京莱斯电子设备有限公司
Publication of WO2021114564A1 publication Critical patent/WO2021114564A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/92Dynamic range modification of images or parts thereof based on global image properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/18Image warping, e.g. rearranging pixels individually
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image

Definitions

  • the invention relates to the field of infrared image processing, in particular to a method for enhancing low-contrast infrared images.
  • Histogram equalization is a common image enhancement method, which can effectively improve image contrast, but when there is more noise in the image, the corresponding noise will also be amplified, and when the gray value of the image is too concentrated, the histogram equalization cannot be achieved Good results; genetic algorithm can adaptively enhance the gray-scale properties of infrared images, but the calculation time is too long, and it is difficult to realize real-time processing under normal computing resources.
  • genetic algorithm can adaptively enhance the gray-scale properties of infrared images, but the calculation time is too long, and it is difficult to realize real-time processing under normal computing resources.
  • the technical problem to be solved by the present invention is to provide a method for enhancing low-contrast infrared image in view of the shortcomings of the prior art, including the following steps:
  • Step 1 Obtain an infrared image, determine whether the infrared image is a low-contrast image by obtaining the standard deviation of the image, if it is, perform step 2, otherwise no processing is performed;
  • Step 2 Perform stretching transformation on the low-contrast infrared image in the logarithmic domain to obtain a stretched image
  • Step 3 Calculate the average gray level of the infrared image, determine whether it needs to be inverted, if necessary, perform inverted processing, and then go to step 4, if not, go to step 4 directly;
  • Step 4 Calculate the standard deviation of the infrared image, and perform mean filtering on the image
  • Step 5 Calculate the enhancement coefficient to obtain the residual image
  • Step 6 using the mapping relationship between the residual image and the stretched image to obtain the final enhanced image.
  • step 1 the standard deviation of the image is obtained by the following formula:
  • N is the number of pixels of the infrared image Image1 obtained
  • is the average of the gray values of the infrared image pixels
  • is the standard deviation of the calculated image
  • x i represents the gray value of the i-th pixel of the infrared image Image1.
  • step 1 if the standard deviation ⁇ is less than 30, it is judged to be a low-contrast image.
  • step 2 for the infrared image Image1 that meets the low-contrast requirements, the following formula is used to stretch in the logarithmic domain:
  • Pmax is the maximum value of the gray value in the infrared image Image1
  • Average is the logarithmic average of all pixels in the infrared image image1 with e as the base, and find the exponent of the log average with e as the base, and its calculation method for:
  • is a minimum value, usually 0.0001, to avoid the situation of taking the logarithm to 0, and use the above formula to map Image1 to the logarithmic domain for stretching and transformation to obtain a new infrared image Image2.
  • step 3 the average gray value ⁇ 2 of the infrared image Image2 is obtained. If ⁇ 2 ⁇ 128, inverted color processing is required.
  • step 4 the specific implementation method of performing mean filtering on the image is as follows: calculate the average value of the pixel gray value of the infrared image and the gray value of its eight neighborhood pixels, update the pixel value of the infrared image to be equal to the average value, and obtain the image Image3.
  • step 5 the specific implementation method of the residual image is: traverse the infrared images Image2 and Image4, for the same position, the pixel gray value of Image2 minus the pixel gray value of Image4, the value of less than 0 takes the value 0, whichever is The result is the residual image Image5.
  • step 6 the specific implementation method for obtaining the enhanced image is:
  • Value_image5(x) represents the pixel gray value at the corresponding position of the image Image5
  • Value_image4(x) represents the value at the corresponding position of the image Image4
  • F(x) is the enhanced pixel of the residual image Image5 at the corresponding position Value_image5(x) Gray value
  • the enhancement factor is Traverse Image5 to get image Image6;
  • the enhanced image obtained is denoted as Image6.
  • Image6 For the enhanced image Image6 obtained in step 6, if inverse color processing is performed in step 3, the enhanced image Image6 will be inverted again to obtain the final enhanced image.
  • the present invention is an image enhancement method proposed for low-contrast infrared images.
  • the image variance is used to judge the image quality, and the low-contrast infrared image is transformed in logarithmic domain through exponential domain. Change again.
  • Determine whether the infrared image needs to be inversely processed the infrared image is subjected to mean blur processing, the infrared image enhancement coefficient p is calculated, and the enhancement parameter matrix is calculated using the enhancement coefficient p, the infrared image before the blur processing, and the infrared image after the blur, to obtain the corresponding Enhancement parameter A:
  • the infrared image before the blur processing is enhanced through the enhancement coefficient and the enhancement parameter matrix.
  • the enhancement method of the present invention has the characteristics of no parameter setting and obvious contrast stretching.
  • Fig. 1 is a flowchart of a low-contrast infrared image enhancement method in an embodiment of the present invention.
  • Fig. 2 is an infrared input image selected in the embodiment of the present invention.
  • Fig. 3 is the result of the logarithmic domain and exponential domain transformation of the infrared image in the embodiment of the present invention.
  • Fig. 4 is the final enhanced image result obtained in the embodiment of the present invention.
  • the present invention provides a method for enhancing low-contrast infrared images, including:
  • a) Obtain infrared image data image1, as shown in Figure 2. Calculate the standard deviation of the image. The smaller the standard deviation, the more concentrated the distribution of the image, the lower the contrast of the image. The standard deviation of the image is used to determine whether the image is a low-contrast infrared image. When the standard deviation of the image is less than 30, the infrared image has a low contrast and is considered to be a low-contrast infrared image. The standard deviation of the image is 8.45505, which meets the judgment conditions for low-contrast infrared images.
  • step c Since the color inversion process has been done in step c), the color inversion process is performed on the infrared image Image6 again to obtain the final enhanced image, as shown in Figure 4.
  • the present invention provides a method for enhancing low-contrast infrared images.
  • the above are only preferred embodiments of the present invention. It should be noted that for those of ordinary skill in the art Under the premise of not departing from the principle of the present invention, several improvements and modifications can be made, and these improvements and modifications should also be regarded as the protection scope of the present invention. All the components that are not clear in this embodiment can be implemented using existing technology.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

一种低对比度红外图像的增强方法,针对低对比度场景下的图像,通过求取红外图像的标准差来评估红外图像的对比度,用于判断是否适用于该红外图像,将符合低对比度的红外图像映射到对数域进行拉伸处理,通过指数域再度变换。判断是否需要对红外图像做反色处理,对红外图像做均值模糊处理,计算红外图像增强系数p,利用增强系数p、模糊处理前的红外图像以及模糊后的红外图像计算增强参数矩阵,得到相应增强参数A;通过增强系数以及增强参数矩阵对模糊处理前的红外图像进行增强,如果前面步骤中,红外图像已经做过反色处理,则再一次进行反色处理得到最终的图像。如果前面步骤没有做反色处理,则得到的就是最终的图像。

Description

一种低对比度红外图像的增强方法 技术领域
本发明涉及红外图像处理领域,尤其涉及一种低对比度红外图像的增强方法。
背景技术
随着科技日新月异的发展,红外图像的应用也越发广泛,探寻被黑暗覆盖下的奥秘就离不开红外成像。然而由于探测器或者是环境的问题,得到的红外图像也是参差不齐,在低对比度的红外图像中,很难获取有价值的信息,因此,提升这类图像的质量显得尤为重要。直方图均衡是常见的图像增强方法,能够有效提高图像对比度,但是当图像中存在较多噪声时,相应噪声也会被放大,并且当图像的灰度值过于集中时,直方图均衡并不能取得良好效果;遗传算法能够针对红外图像灰度特性性质进行自适应增强,但是计算量耗时太长,很难在计算资源一般的情况下实现实时处理。虽然国内外研究人员提出了很多红外的增强方法,但是依旧存在一些不足之处,总结主要问题有:算法的计算量大,实现实时计算较为困难,算法的智能性和自适应性差,算法需要认为设置参数等问题。
发明内容
发明目的:本发明所要解决的技术问题是针对现有技术的不足,提供一种低对比度红外图像的增强方法,包括:包括如下步骤:
步骤1,获取红外图像,通过求取图像的标准差来判断红外图像是否是低对比度图像,如果是,执行步骤2,否则不作处理;
步骤2,对低对比度的红外图像在对数域内进行拉伸变换,得到拉伸图像;
步骤3,计算红外图像的灰度平均值,判断是否需要做反色处理,如果需要,进行反色处理,然后执行步骤4,如果不需要,直接执行步骤4;
步骤4,计算红外图像的标准差,对图像进行均值滤波;
步骤5,计算增强系数,得到残差图像;
步骤6,利用残差图像与拉伸图像的映射关系得到最终增强图像。
步骤1中,通过如下公式求取图像的标准差:
Figure PCTCN2020089852-appb-000001
其中,N为获取的红外图像Image1的像素数量,μ为红外图像像素灰度值的平均值,σ为计算得到的图像的标准差,x i表示红外图像Image1第i个像素的灰度值。
步骤1中,如果标准差σ小于30,则判断是低对比度图像。
步骤2中,对于符合低对比度要求的红外图像Image1,采用如下公式在对数域进行拉伸:
Figure PCTCN2020089852-appb-000002
其中,Pmax是红外图像Image1中灰度值的最大值,Average是红外图像image1中所有像素以e为底的对数平均值,并求以e为底,对数平均数的指数,其计算方法为:
Figure PCTCN2020089852-appb-000003
其中δ为一个极小值,一般取值0.0001,避免出现对0取对数的情况,通过上述公式将Image1映射到对数域进行拉伸变换,得到新的红外图像Image2。
步骤3中,求得红外图像Image2的灰度平均值μ2,如果μ2<128,则需要进行反色处理。
步骤3中,反色处理的具体实现方法是,遍历红外图像Image2,对每个像素灰度值Value,有:Value=255-Value。
步骤4中,对图像进行均值滤波具体实现方法为:计算红外图像的像素灰度值与其八邻域像素灰度值的平均值,将红外图像的像素值更新为等于所述平均值,得到图像Image3。
步骤5中计算增强系数的具体实现方法为:计算红外图像Image2的标准差sd,对标准差sd,如果sd大于50,则sd取值为50,计算红外图像增强系数p,有p=1-sd/50,遍历红外图像Image3,每个像素灰度值乘以红外图像增强系数p,得到新红外图像Image4。
步骤5中,残差图像的具体实现方法是:遍历红外图像Image2和Image4,对于相同位置,Image2的像素灰度值减去Image4的像素灰度值,小于0的值取值为0,取其结果得到残差图像Image5。
步骤6中,得到增强图像的具体实现方法是:
Figure PCTCN2020089852-appb-000004
其中Value_image5(x)代表的是图像Image5对应位置的像素灰度值,Value_image4(x)代表的是图像Image4对应位置的值,F(x)是残差图像Image5对应位置Value_image5(x)的增强像素灰度值,增强系数为
Figure PCTCN2020089852-appb-000005
遍历Image5,得到图像Image6;
系数A的计算方法为:遍历红外图像Image2和Image3,分别得到其像素灰度值最大值max2和max3,计算系数A=(max2+max3)/2;
得到的增强图像记为Image6,对于步骤6得到的增强图像Image6,如果在步骤3中经过反色处理,则对增强图像Image6再一次进行反色处理,得到最终的增强图像。
有益效果:本发明是针对低对比度的红外图像提出来的一种图像增强方法,首先是利用图像方差来判断图像质量,对于符合低对比度的红外图像进行对数域拉伸的变换,通过指数域再度变换。判断是否需要对红外图像做反色处理,对红外图像做均值模糊处理,计算红外图像增强系数p,利用增强系数p、模糊处理前的红外图像以及模糊后的红外图像计算增强参数矩阵,得到相应增强参数A;通过增强系数以及增强参数矩阵对模糊处理前的 红外图像进行增强,如果前面步骤中,红外图像已经做过反色处理,则再一次进行反色处理得到最终的图像。如果前面步骤没有做反色处理,则得到的就是最终的图像,本发明的增强方法具有无参数设置、对比度拉伸明显的特点。
附图说明
下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述和/或其他方面的优点将会变得更加清楚。
图1是本发明实施例中低对比度红外图像增强方法的流程图。
图2是本发明实施例中选取的红外输入图像。
图3是本发明实施例中对红外图像进行对数域及指数域变换后的结果。
图4是本发明实施例中最终得到的增强图像结果。
具体实施方式
本发明提供了一种低对比度红外图像的增强方法,包括:
a)获取红外图像数据image1,如图2所示。求出该图像的标准差,标准差值越小,说明图像的分布越集中,图像的对比度就越低,利用图像的标准差来判断该图像是否属于低对比度红外图像,通过数据统计,当红外图像的标准差小于30的时候,红外图像对比度较低,认为是低对比度红外图像。该图像的标准差值为8.45505,符合低对比度红外图像的判断条件。
b)遍历红外图像Image1,找到图像中灰度值最大的值,记为Pmax,Pmax=255。计算红外图像image1中所有像素以e为底的对数平均值,并求以e为底,对数平均数的指数Average。其计算方法为:
Figure PCTCN2020089852-appb-000006
其中δ为一个极小值,避免出现对0取对数的情况。遍历红外图像Image1,利用公式:
Figure PCTCN2020089852-appb-000007
将Image1映射到对数域进行拉伸变换,得到新的红外图像Image2,如图3所示。
c)求出红外图像Image2的平均值为67.4991,小于128,对红外图像Image2做反色处理,即遍历红外图像Image2,对每个像素值value有:value=255-value。
d)对红外图像Image2进行均值滤波处理,得到新的红外图像Image3。
e)计算红外图像Image2的标准差sd=16.7889,对标准差sd,如果sd大于50,则sd取值为50,计算红外图像增强系数p,有p=1-sd/50=0.664222。
f)遍历红外图像Image3,每个像素灰度值乘红外图像增强系数p,得到新红外图像Image4。
g)遍历红外图像Image2和Image4,对于相同位置,Image2的值减去Image4的值,小于0的值全部取值为0,得到残差图像Image5。
h)遍历红外图像Image2和Image3,分别得到其最大值max2和max3,计算系数A=(max2+max3)/2。
i)利用如下表达式:
Figure PCTCN2020089852-appb-000008
得到增强后的红外图像Image6,其中 Value_image5(x)代表的是图像Image5对应位置的值,Value_image4(x)代表的是图像Image4对应位置的值。
j)由于c)步骤中做过反色处理,则对红外图像Image6再一次进行反色处理,得到最终的增强图像,如图4所示。
本发明提供了一种低对比度红外图像的增强方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (10)

  1. 一种低对比度红外图像的增强方法,包括如下步骤:
    步骤1,获取红外图像,通过求取图像的标准差来判断红外图像是否是低对比度图像,如果是,执行步骤2,否则不作处理;
    步骤2,对低对比度的红外图像在对数域内进行拉伸变换,得到拉伸图像;
    步骤3,计算红外图像的灰度平均值,判断是否需要做反色处理,如果需要,进行反色处理,然后执行步骤4,如果不需要,直接执行步骤4;
    步骤4,计算红外图像的标准差,对图像进行均值滤波;
    步骤5,计算增强系数,得到残差图像;
    步骤6,利用残差图像与拉伸图像的映射关系得到最终增强图像。
  2. 根据权利要求1所述的方法,其特征在于,步骤1中,通过如下公式求取图像的标准差:
    Figure PCTCN2020089852-appb-100001
    其中,N为获取的红外图像Image1的像素数量,μ为红外图像像素灰度值的平均值,σ为计算得到的图像的标准差,x i表示红外图像Image1第i个像素的灰度值。
  3. 根据权利要求2所述的方法,其特征在于,步骤1中,如果标准差σ小于30,则判断是低对比度图像。
  4. 根据权利要求3所述的方法,其特征在于,步骤2中,对于符合低对比度要求的红外图像Image1,采用如下公式在对数域进行拉伸:
    Figure PCTCN2020089852-appb-100002
    其中,Pmax是红外图像Image1中灰度值的最大值,Average是红外图像image1中所有像素以e为底的对数平均值,并求以e为底,对数平均数的指数,其计算方法为:
    Figure PCTCN2020089852-appb-100003
    其中δ为一个极小值,通过上述公式将Image1映射到对数域进行拉伸变换,得到新的红外图像Image2。
  5. 根据权利要求4所述的方法,其特征在于,步骤3中,求得红外图像Image2的灰度平均值μ2,如果μ2<128,则需要进行反色处理。
  6. 根据权利要求5所述的方法,其特征在于,步骤3中,反色处理的具体实现方法是,遍历红外图像Image2,对每个像素灰度值Value,有:Value=255-Value。
  7. 根据权利要求6所述的方法,其特征在于,步骤4中,对图像进行均值滤波具体实现方法为:计算红外图像的像素灰度值与其八邻域像素灰度值的平均值,将红外图像的像素值更新为等于所述平均值,得到图像Image3。
  8. 根据权利要求7所述的方法,其特征在于,步骤5中计算增强系数的具体实现方法为:计算红外图像Image2的标准差sd,对标准差sd,如果sd大于50,则sd取值为50,计算红外图像增强系数p,有p=1-sd/50,遍历红外图像Image3,每个像素灰度值乘以红外图像增强系 数p,得到新红外图像Image4。
  9. 根据权利要求8所述的方法,其特征在于,步骤5中,残差图像的具体实现方法是:遍历红外图像Image2和Image4,对于相同位置,Image2的像素灰度值减去Image4的像素灰度值,小于0的值取值为0,取其结果得到残差图像Image5。
  10. 根据权利要求9所述的低对比度红外图像增强方法,其特征在于,步骤6中,得到增强图像的具体实现方法是:
    Figure PCTCN2020089852-appb-100004
    其中Value_image5(x)代表的是图像Image5对应位置的像素灰度值,Value_image4(x)代表的是图像Image4对应位置的值,F(x)是残差图像Image5对应位置Value_image5(x)的增强像素灰度值,增强系数为
    Figure PCTCN2020089852-appb-100005
    遍历Image5,得到图像Image6;
    系数A的计算方法为:遍历红外图像Image2和Image3,分别得到其像素灰度值最大值max2和max3,计算系数A=(max2+max3)/2;
    得到的增强图像记为Image6,对于步骤6得到的增强图像Image6,如果在步骤3中经过反色处理,则对增强图像Image6再一次进行反色处理,得到最终的增强图像。
PCT/CN2020/089852 2019-12-10 2020-05-12 一种低对比度红外图像的增强方法 WO2021114564A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911257400.XA CN111105371B (zh) 2019-12-10 2019-12-10 一种低对比度红外图像的增强方法
CN201911257400.X 2019-12-10

Publications (1)

Publication Number Publication Date
WO2021114564A1 true WO2021114564A1 (zh) 2021-06-17

Family

ID=70423127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089852 WO2021114564A1 (zh) 2019-12-10 2020-05-12 一种低对比度红外图像的增强方法

Country Status (2)

Country Link
CN (1) CN111105371B (zh)
WO (1) WO2021114564A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116342635A (zh) * 2023-05-26 2023-06-27 山东省地质矿产勘查开发局第一地质大队(山东省第一地质矿产勘查院) 一种地质测绘中裂缝轮廓提取方法
CN116485686A (zh) * 2023-06-19 2023-07-25 青岛国源中创电气自动化工程有限公司 一种活性污泥法的污水处理图像增强方法
CN117297554A (zh) * 2023-11-16 2023-12-29 哈尔滨海鸿基业科技发展有限公司 一种淋巴成像装置控制系统及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111105371B (zh) * 2019-12-10 2023-05-02 南京莱斯电子设备有限公司 一种低对比度红外图像的增强方法
CN112561881B (zh) * 2020-12-16 2023-09-05 南京莱斯电子设备有限公司 基于评价模型的红外图像自适应数据增强方法
CN116883279B (zh) * 2023-07-11 2024-03-12 北京龙知远科技发展有限公司 一种低噪声高实时性的短波红外图像增强方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104574284A (zh) * 2013-10-24 2015-04-29 南京普爱射线影像设备有限公司 一种数字x射线图像对比度增强处理方法
US20150169986A1 (en) * 2013-12-18 2015-06-18 Thales Method of processing images, notably from night vision systems and associated system
CN106127694A (zh) * 2016-05-20 2016-11-16 重庆医科大学 照度不均图像增强的自适应双向保带宽对数变换方法
CN107392866A (zh) * 2017-07-07 2017-11-24 武汉科技大学 一种光照鲁棒的人脸图像局部纹理增强方法
CN109584181A (zh) * 2018-12-03 2019-04-05 北京遥感设备研究所 一种改进的基于Retinex红外图像细节增强方法
CN109685742A (zh) * 2018-12-29 2019-04-26 哈尔滨理工大学 一种暗光环境下的图像增强方法
CN111105371A (zh) * 2019-12-10 2020-05-05 南京莱斯电子设备有限公司 一种低对比度红外图像的增强方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100563312C (zh) * 2007-12-25 2009-11-25 青岛海信信芯科技有限公司 一种对比度增强方法
CN102413283B (zh) * 2011-10-25 2013-08-14 广州飒特红外股份有限公司 红外热图数字信号处理系统及方法
CN102547117B (zh) * 2011-12-22 2014-12-03 北京英泰智软件技术发展有限公司 一种摄像机对比度增强方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104574284A (zh) * 2013-10-24 2015-04-29 南京普爱射线影像设备有限公司 一种数字x射线图像对比度增强处理方法
US20150169986A1 (en) * 2013-12-18 2015-06-18 Thales Method of processing images, notably from night vision systems and associated system
CN106127694A (zh) * 2016-05-20 2016-11-16 重庆医科大学 照度不均图像增强的自适应双向保带宽对数变换方法
CN107392866A (zh) * 2017-07-07 2017-11-24 武汉科技大学 一种光照鲁棒的人脸图像局部纹理增强方法
CN109584181A (zh) * 2018-12-03 2019-04-05 北京遥感设备研究所 一种改进的基于Retinex红外图像细节增强方法
CN109685742A (zh) * 2018-12-29 2019-04-26 哈尔滨理工大学 一种暗光环境下的图像增强方法
CN111105371A (zh) * 2019-12-10 2020-05-05 南京莱斯电子设备有限公司 一种低对比度红外图像的增强方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116342635A (zh) * 2023-05-26 2023-06-27 山东省地质矿产勘查开发局第一地质大队(山东省第一地质矿产勘查院) 一种地质测绘中裂缝轮廓提取方法
CN116342635B (zh) * 2023-05-26 2023-08-08 山东省地质矿产勘查开发局第一地质大队(山东省第一地质矿产勘查院) 一种地质测绘中裂缝轮廓提取方法
CN116485686A (zh) * 2023-06-19 2023-07-25 青岛国源中创电气自动化工程有限公司 一种活性污泥法的污水处理图像增强方法
CN116485686B (zh) * 2023-06-19 2023-08-29 青岛国源中创电气自动化工程有限公司 一种活性污泥法的污水处理图像增强方法
CN117297554A (zh) * 2023-11-16 2023-12-29 哈尔滨海鸿基业科技发展有限公司 一种淋巴成像装置控制系统及方法

Also Published As

Publication number Publication date
CN111105371A (zh) 2020-05-05
CN111105371B (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2021114564A1 (zh) 一种低对比度红外图像的增强方法
Zhang et al. Underwater image enhancement via weighted wavelet visual perception fusion
CN110097519B (zh) 基于深度学习的双监督图像去雾方法、系统、介质和设备
CN111986120A (zh) 一种基于帧累加和多尺度Retinex的低光照图像增强优化方法
CN108932700A (zh) 基于目标成像模型的自适应梯度增益水下图像增强方法
CN107292842B (zh) 基于先验约束和离群值抑制的图像去模糊方法
CN110189266B (zh) 一种自适应的快速图像增强方法
CN107833189A (zh) 对比受限自适应直方图均衡的水下目标探测图像增强方法
CN109919859B (zh) 一种户外场景图像去雾增强方法、计算设备及其存储介质
CN107292834B (zh) 红外图像细节增强方法
CN113222866B (zh) 灰度图像增强方法、计算机可读介质及计算机系统
TW201308997A (zh) 用於顯示裝置之影像品質提升方法
CN112116542B (zh) 图像对比度增强方法、装置、电子设备和存储介质
CN107203980B (zh) 自适应多尺度暗通道先验的水下目标探测图像增强方法
Mu et al. Low and non-uniform illumination color image enhancement using weighted guided image filtering
CN114565535B (zh) 一种基于自适应梯度gamma校正的图像增强方法及装置
Feng et al. Low-light image enhancement algorithm based on an atmospheric physical model
Wen et al. Autonomous robot navigation using Retinex algorithm for multiscale image adaptability in low-light environment
Liang et al. Underwater image quality improvement via color, detail, and contrast restoration
WO2020107308A1 (zh) 一种基于Retinex的微光图像快速增强方法及其装置
CN116091357A (zh) 深度卷积注意力和多尺度特征融合的低光图像增强方法
Chen et al. Single-image dehazing via depth-guided deep retinex decomposition
Mi et al. A generalized enhancement framework for hazy images with complex illumination
CN113160066A (zh) 一种低照度图像高效增强方法
CN116630198A (zh) 一种结合自适应伽马校正的多尺度融合水下图像增强方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899884

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20899884

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20899884

Country of ref document: EP

Kind code of ref document: A1