WO2021114166A1 - Process for preparing n-substituted alkanolamines and/or n-substituted diamines from glycolaldehyde - Google Patents

Process for preparing n-substituted alkanolamines and/or n-substituted diamines from glycolaldehyde Download PDF

Info

Publication number
WO2021114166A1
WO2021114166A1 PCT/CN2019/124791 CN2019124791W WO2021114166A1 WO 2021114166 A1 WO2021114166 A1 WO 2021114166A1 CN 2019124791 W CN2019124791 W CN 2019124791W WO 2021114166 A1 WO2021114166 A1 WO 2021114166A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
glycolaldehyde
process according
hydrogen
noble metal
Prior art date
Application number
PCT/CN2019/124791
Other languages
French (fr)
Inventor
Bright KUSEMA
Zhen YAN
Stephane Streiff
Original Assignee
Rhodia Operations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations filed Critical Rhodia Operations
Priority to PCT/CN2019/124791 priority Critical patent/WO2021114166A1/en
Publication of WO2021114166A1 publication Critical patent/WO2021114166A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • C07C209/26Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds by reduction with hydrogen

Definitions

  • the present invention relates to a process for preparing alkanolamines and/or diamines from a hydroxyl-substituted aldehyde.
  • the present invention relates to a process for preparing N-substituted alkanolamines and/or N-substituted diamines from glycolaldehyde.
  • (N-substituted) alkanolamines are produced almost exclusively by reacting ethylene oxide with ammonia or primary, secondary or tertiary amines.
  • N, N-dimethylethanolamine is produced industrially by reacting ethylene oxide and dimethylamine.
  • Ethylene oxide is fossil-based, toxic, carcinogenic and mutagenic. During this process, high molecular weight byproducts with more than 1 EO unit are generated as waste.
  • Glycolaldehyde (GA) the smallest molecule containing both an aldehyde group and hydroxyl group obtainable from biomass, creates a versatile platform for ethanolamine derivatives potentially replacing current pathways via toxic ethylene oxide.
  • U.S. Pat. No. 8772548B2 discloses a one-step reaction of glycolaldehyde with an aminating agent in the presence of hydrogen, a catalyst comprising of Ni, Co, and/or Cu and an inert solvent.
  • Preferential solvents are water and THF, and preference is given to ammonia as an aminating agent.
  • glycolaldehyde was contacted with ammonia at a molar ratio (NH 3 : GA) of 35.
  • a conversion of 100% is obtained, with maximum selectivity of 82%for monoethanolamine (MEOA) and 17%of ethylenediamine (EDA) . It is said that a solvent used must be inert under the reaction conditions and has to have sufficient solubility for reactants and products.
  • CN107011194B discloses a method for carrying out catalytic reductive amination reaction on glycolaldehyde and an amination agent in the presence of hydrogen gas and a catalyst.
  • the catalyst is a reduced supported noble metal catalyst containing rare-earth metal oxides; the reaction is carried out in an aqueous solution or an organic solution of the amination agent, in order to selectively obtain alkanolamine and diamine.
  • the reductive amination of glycolaldehyde with NH 3 over Ru/ZrO 2 catalyst to ethanolamine and ethylenediamine is demonstrated.
  • WO2019193117A1 discloses a two-step one-pot process for reacting glycolaldehyde with an aminating agent in the presence of a reactive organic fluid for instance a reactive solvent.
  • the first step comprises of contacting glycolaldehyde with an aminating agent in the presence of a reactive fluid for instance a reactive solvent under inert atmosphere to produce unsaturated intermediates, and reacting the reaction mixture obtained in step 1 with hydrogen in the presence of a supported hydrogenation catalyst in a second step.
  • N-substituted alkanolamines for example, dimethylethanolamine (DMEA)
  • DMEA dimethylethanolamine
  • TMEDA N-substituted diamines
  • relatively mild reaction condition temperature lower than 100 °C and pressure lower than 70 bar
  • the aim of the present invention is to provide an improved method for the amination of glycolaldehyde, which has a higher selectivity towards N-substituted alkanolamines and/or N-substituted diamines under relatively mild reaction conditions, i.e. at a temperature lower than 100°C and a pressure lower than 70 bar.
  • the present invention provides a process for preparing a N- substituted alkanolamine of formula (I) and/or a N-substituted diamine of formula (II) from glycolaldehyde:
  • R and R’ independently from each other, represent hydrogen, linear or branched C1-C20 alkyl, C3-C12 cycloalkyl, C2-30 alkoxyalkyl, or C3-30 dialkylaminoalkyl, provided that at least one of R and R’ is not hydrogen,
  • R and R’ have the same meanings as defined above.
  • the total yields towards N-substituted alkanolamine and N-substituted diamine can be more than 70%.
  • glycolaldehyde is derived from biomass, the N-substituted alkanolamines and/or N-substituted diamines produced are bio-based products.
  • the present invention provides a process for preparing a N-substituted alkanolamine of formula (I) and/or a N-substituted diamine of formula (II) from glycolaldehyde:
  • R and R’ independently from each other, represent hydrogen, linear or branched C1-C20 alkyl, C3-C12 cycloalkyl, C2-30 alkoxyalkyl, or C3-30 dialkylaminoalkyl, provided that at least one of R and R’ is not hydrogen,
  • R and R’ have the same meanings as defined above.
  • Glycolaldehyde is commercially available and can be prepared, for example, by oxidizing ethylene glycol (see, for example, JP 3246248 and JP3279342) .
  • Glycolaldehyde is preferably synthesized by reaction of formaldehyde with carbon monoxide and hydrogen, as described, for example, in US 2009012333, US 2008081931, US 2007249871, etc.
  • R and R’ independently from each other, represents hydrogen, linear or branched C1-C4 alkyl, provided that at least one of R and R’ is not hydrogen.
  • R and R’ independently from each other, represent linear or branched C1-C20 alkyl, C3-C12 cycloalkyl, C2-30 alkoxyalkyl, or C3-30 dialkylaminoalkyl.
  • R and R’ independently from each other, represent linear or branched C1-C4 alkyl.
  • an aminating agent preference is given to monomethylamine, dimethylamine, monoethylamine, diethylamine, n-propylamine, di-n-propylamine, isopropylamine, diisoropylamine, isopropylethylamine, n-butylamine, di-n-butylamine, isobutylamine, cyclopropylamine, cyclopropylmethylamine, cyclobutylamine, cyclobutylmethylamine, cyclopentylamine, cyclopentylmethylamine, methoxyethylamine, ethyoxymethylamine, dimethylaminomethylamine, diethylaminomethylamine, and dimethylaminopropylamine, and the like.
  • the molar ratio of the aminating agent to glycolaldehyde is within a range from 1: 1 to 10: 1, preferably, 1: 1 to 5: 1.
  • the hydrogen is preferably used in technical grade purity.
  • the hydrogen can also be used in a form of a hydrogen-comprising gas, i.e. in mixtures with other inert gases, such as nitrogen, helium, neon, and argon.
  • the reaction of glycolaldehyde with the aminating agent in the presence of hydrogen takes place in a solvent.
  • the solvent used is inert under the reaction conditions and has a sufficient solubility for reactants and products.
  • the solvent is selected from methanol, ethanol, isopropyl alcohol, and tetrahydrofuran (THF) .
  • the solvent is substantially free of water.
  • the term "substantially free of water” when used with reference to the solvent means that the solvent comprises no more than 0.5 wt. %, preferably no more than 0.2 wt. %of water, based on the total weight of the solvent.
  • the solvent is completely free of water.
  • the term "completely free of water” when used with reference to the solvent means that the solvent comprises no water at all.
  • the solvent is a mixed solvent comprising (i) at least one C1-C3 alkanol and/or tetrahydrofuran; and (ii) a co-solvent selected from water, dioxane and butanol.
  • the co-sovent is present in an amount no more than 80 wt. %, or no more than 50 wt%, based on the total weight of the solvent.
  • the co-solvent is present in an amount ranging from 10 wt. %to 70 wt. %, or from 20 wt. %to 60 wt. %, or from 30 wt. %to 50 wt. %, based on the total weight of the solvent.
  • the solvent is a mixed solvent of a C1-C3 alkanol and water, wherein the water may be present in an amount ranging from above 0.5 wt. %to 30 wt. %, or from 10 wt. %to 30 wt. %, or from 10 wt. %to from 20 wt. %, or from above 0.5 wt. %to 10 wt. %, based on the total weight of the solvent.
  • the solvent is a mixed solvent of tetrahydrofuran and water, wherein the water may be present in an amount ranging from above 0.5 wt. %to 30 wt. %, or from 10 wt. %to 30 wt. %, or from 10 wt. %to from 20 wt.%, or from above 0.5 wt. %to 10 wt. %, based on the total weight of the solvent.
  • the solvent can be used in a proportion of 10 wt. %to 95 wt. %by weight, preferably 75 wt. %to 95 wt. %, based in each case on the total weight of the reaction mixture including glycolaldehyde, the aminating agent and the solvent used.
  • glycolaldehyde takes place in the present of a supported noble metal catalyst.
  • supported noble metal catalyst means a catalyst comprising a noble metal on a support.
  • the noble metal is selected from Pd, Pt, Rh and Ru
  • the support is selected from carbon black, graphite, activated carbon, aluminium oxide, silicon dioxide or other supports known in the art.
  • the noble metal is present in amount from 0.5 wt. %to 10 wt.%in the supported noble metal catalyst, relative to the total weight of the supported noble metal catalyst.
  • the supported noble metal catalyst can be commercial available or prepared with a method known in the art.
  • the solvent is methanol
  • the noble metal is selected from Pd, Pt, Rh and Ru.
  • the solvent is ethanol
  • the noble metal is selected from Pd, Pt, Rh and Ru.
  • the solvent is isopropyl alcohol
  • the noble metal is selected from Pd, Pt, Rh and Ru.
  • the solvent is THF
  • the noble metal is selected from Pd, Pt, Rh and Ru.
  • the supported noble metal catalyst useful for the present invention mention can be made to A102023-5 from Johnson Matthey, an Pd/C catalyst containing 5 wt. %Pd.
  • the aminating agent is dimethylamine
  • the solvent is methanol or ethanol
  • the supported noble metal catalyst is Pd/C.
  • glycolaldehyde can be carried out at a temperature from 0°C to 80°C and a hydrogen pressure from 1 bar to 65 bar for 1-20 hours.
  • the amination of glycolaldehyde can be carried out at room temperature and a hydrogen pressure from 10 bar to 40 bar for 3-20 hours.
  • room temperature is between 15°C and 25°C.
  • glycolaldehyde is added into a mixture of an aminating agent and a catalyst in a solvent gradually. More preferably, glycolaldehyde in a solvent is added into a mixture of an aminating agent and a catalyst in the same solvent gradually.
  • glycolaldehyde can be carried out in a catalyst effective mode.
  • the molar ratio of the noble metal in the catalyst to glycolaldehyde can be in the range of 0.01%-0.6%.
  • N, N-dimethylethanolamine (DMEA) and N, N, N’, N’-tetramethylethylene diamine (TMDEA) based on glycolaldehyde was 76%and 4%, respectively.
  • the yield to DMEA and TMEDA based on glycolaldehyde was 35%and 40%, respectively.
  • the yield to DMEA and TMEDA based on glycolaldehyde was 50%and 20%, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process for preparing a N-substituted alkanolamine of formula (I) and/or a N-substituted diamine of formula (II) from glycolaldehyde is provided, which comprises reacting glycolaldehyde with an aminating agent of formula (III) in a solvent comprising at least one C1-C3 alkanol and/or tetrahydrofuran in the presence of hydrogen and a supported noble metal catalyst, wherein in formulas (I) - (III) : R and R', independently from each other, represent hydrogen, linear or branched C1-C20 alkyl, C3-C12 cycloalkyl, C2-C30 alkoxyalkyl, or C3-30 dialkylaminoalkyl, provided that at least one of R and R' is not hydrogen.

Description

Process for preparing N-substituted alkanolamines and/or N-substituted diamines from glycolaldehyde TECHNICAL FIELD
The present invention relates to a process for preparing alkanolamines and/or diamines from a hydroxyl-substituted aldehyde. In particular, the present invention relates to a process for preparing N-substituted alkanolamines and/or N-substituted diamines from glycolaldehyde.
BACKGROUND ART
Industrially, (N-substituted) alkanolamines are produced almost exclusively by reacting ethylene oxide with ammonia or primary, secondary or tertiary amines.
For example, N, N-dimethylethanolamine is produced industrially by reacting ethylene oxide and dimethylamine. Ethylene oxide is fossil-based, toxic, carcinogenic and mutagenic. During this process, high molecular weight byproducts with more than 1 EO unit are generated as waste.
The reaction of hydroxyl-substituted aldehydes with aminating agents is already known from the prior art.
Glycolaldehyde (GA) , the smallest molecule containing both an aldehyde group and hydroxyl group obtainable from biomass, creates a versatile platform for ethanolamine derivatives potentially replacing current pathways via toxic ethylene oxide.
U.S. Pat. No. 8772548B2 discloses a one-step reaction of glycolaldehyde with an aminating agent in the presence of hydrogen, a catalyst comprising of Ni, Co, and/or Cu and an inert solvent. Preferential solvents are water and THF, and preference is given to ammonia as an aminating agent. In a reaction at 100℃ and 100 bar of hydrogen pressure for 8 hours, glycolaldehyde was contacted with ammonia at a molar ratio (NH 3: GA) of 35. A conversion of 100%is obtained, with maximum selectivity of 82%for monoethanolamine (MEOA) and 17%of ethylenediamine (EDA) . It is said that a solvent used must be inert under the reaction conditions and has to have sufficient solubility for reactants and products.
CN107011194B discloses a method for carrying out catalytic reductive amination reaction on glycolaldehyde and an amination agent in the presence of  hydrogen gas and a catalyst. The catalyst is a reduced supported noble metal catalyst containing rare-earth metal oxides; the reaction is carried out in an aqueous solution or an organic solution of the amination agent, in order to selectively obtain alkanolamine and diamine. In particular, the reductive amination of glycolaldehyde with NH 3 over Ru/ZrO 2 catalyst to ethanolamine and ethylenediamine is demonstrated.
WO2019193117A1 discloses a two-step one-pot process for reacting glycolaldehyde with an aminating agent in the presence of a reactive organic fluid for instance a reactive solvent. The first step comprises of contacting glycolaldehyde with an aminating agent in the presence of a reactive fluid for instance a reactive solvent under inert atmosphere to produce unsaturated intermediates, and reacting the reaction mixture obtained in step 1 with hydrogen in the presence of a supported hydrogenation catalyst in a second step.
Faveere et al., Glycolaldehyde as Bio-based C2 Platform Chemical: Catalytic Reductive Amination of vicinal Hydroxyl Aldehydes, ACS Catal. 2019, discloses the reductive amination of glycolaldehyde with aqueous amine solutions at a temperature of 100℃ and a hydrogen pressure of 70 bar to obtain N, N-dimethylethanolamine and N, N, N’, N’-tetramethylethylene diamine, wherein the weight ratio of the catalyst to glycolaldehyde is 50%.
Thus there is still a need for an improved method for the amination of glycolaldehyde which has a higher selectivity towards preferred products such as N-substituted alkanolamines, for example, dimethylethanolamine (DMEA) , and N-substituted diamines, for example, N, N, N’, N’-tetramethylethylene diamine (TMEDA) under relatively mild reaction condition (temperature lower than 100 ℃ and pressure lower than 70 bar) .
SUMMARY OF THE INVENTION
The aim of the present invention is to provide an improved method for the amination of glycolaldehyde, which has a higher selectivity towards N-substituted alkanolamines and/or N-substituted diamines under relatively mild reaction conditions, i.e. at a temperature lower than 100℃ and a pressure lower than 70 bar.
Upon diligent research, the inventors have discovered surprisedly that such an aim can be achieved by selecting a combination of specific aminating agent, specific solvent and specific catalyst during the amination process of glycolaldehyde.
Thus, the present invention provides a process for preparing a N- substituted alkanolamine of formula (I) and/or a N-substituted diamine of formula (II) from glycolaldehyde:
Figure PCTCN2019124791-appb-000001
in formula (I) and formula (II) :
R and R’, independently from each other, represent hydrogen, linear or branched C1-C20 alkyl, C3-C12 cycloalkyl, C2-30 alkoxyalkyl, or C3-30 dialkylaminoalkyl, provided that at least one of R and R’ is not hydrogen,
comprising reacting glycolaldehyde with an aminating agent of formula (III) in a solvent comprising at least one C1-C3 alkanol and/or tetrahydrofuran in the presence of hydrogen and a supported noble metal catalyst,
Figure PCTCN2019124791-appb-000002
in formula (III) :
R and R’ have the same meanings as defined above.
With the process according to the present invention, the amination of glycolaldehyde with a higher selectivity towards N-substituted alkanolamines and/or N-substituted diamines under relatively mild reaction condition, i.e. at a temperature lower than 100℃ and a pressure lower than 70 bar, can be realized.
With the process according to the present invention, the total yields towards N-substituted alkanolamine and N-substituted diamine can be more than 70%.
In addition, it is much easier to control EO unit to only 1 by using glycolaldehyde. Since glycolaldehyde is derived from biomass, the N-substituted alkanolamines and/or N-substituted diamines produced are bio-based products.
Other subjects and characteristics, aspects and advantages of the present invention will emerge even more clearly on reading the detailed description and the examples that follow.
DETAILED DESCRIPTION OF THE INVENTION
As used herein, unless otherwise indicated, the limits of a range of values are included within this range, in particular in the expressions "between…and…" and "from…to…” .
As used herein, the term “comprising” is to be interpreted as encompassing all specifically mentioned features as well optional, additional, unspecified ones.
As used herein, the use of the term “comprising” also discloses the embodiment wherein no features other than the specifically mentioned features are present (i.e. “consisting of” ) .
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by those skilled in the field the present invention belongs to. When the definition of a term in the present description conflicts with the meaning as commonly understood by those skilled in the field the present invention belongs to, the definition described herein shall apply.
Should the disclosure of any patents, patent applications and publications which are incorporated herein by reference conflict with the description of the present application in the extent that it may render a term unclear, the present description shall take precedence.
Unless otherwise specified, all numerical values expressing amount of ingredients, reaction conditions and the like used in the description and claims are to be understood as being modified by the term “about” . Accordingly, unless indicated to the contrary, the numerical values and parameters described herein are approximate values which are capable of being changed according to the desired performance obtained as required.
The present invention provides a process for preparing a N-substituted alkanolamine of formula (I) and/or a N-substituted diamine of formula (II) from glycolaldehyde:
Figure PCTCN2019124791-appb-000003
in formula (I) and formula (II) :
R and R’, independently from each other, represent hydrogen, linear or branched C1-C20 alkyl, C3-C12 cycloalkyl, C2-30 alkoxyalkyl, or C3-30 dialkylaminoalkyl, provided that at least one of R and R’ is not hydrogen,
comprising reacting glycolaldehyde with an aminating agent of formula (III) in a solvent comprising at least one C1-C3 alkanol and/or tetrahydrofuran in the presence of hydrogen and a supported noble metal catalyst,
Figure PCTCN2019124791-appb-000004
in formula (III) :
R and R’ have the same meanings as defined above.
The reaction for the amination of glycolaldehyde is illustrated in the following scheme.
Figure PCTCN2019124791-appb-000005
Glycolaldehyde is commercially available and can be prepared, for example, by oxidizing ethylene glycol (see, for example, JP 3246248 and JP3279342) .
Glycolaldehyde is preferably synthesized by reaction of formaldehyde with carbon monoxide and hydrogen, as described, for example, in US 2009012333, US 2008081931, US 2007249871, etc.
In some embodiments, R and R’, independently from each other, represents hydrogen, linear or branched C1-C4 alkyl, provided that at least one of R and R’ is not hydrogen.
In some embodiments, R and R’, independently from each other, represent linear or branched C1-C20 alkyl, C3-C12 cycloalkyl, C2-30 alkoxyalkyl, or C3-30 dialkylaminoalkyl.
In some embodiments, R and R’, independently from each other, represent linear or branched C1-C4 alkyl.
As examples of an aminating agent, preference is given to monomethylamine, dimethylamine, monoethylamine, diethylamine, n-propylamine, di-n-propylamine, isopropylamine, diisoropylamine, isopropylethylamine, n-butylamine, di-n-butylamine, isobutylamine, cyclopropylamine, cyclopropylmethylamine, cyclobutylamine, cyclobutylmethylamine, cyclopentylamine, cyclopentylmethylamine, methoxyethylamine, ethyoxymethylamine, dimethylaminomethylamine, diethylaminomethylamine, and dimethylaminopropylamine, and the like.
Advantageously, the molar ratio of the aminating agent to glycolaldehyde is within a range from 1: 1 to 10: 1, preferably, 1: 1 to 5: 1.
The hydrogen is preferably used in technical grade purity. The hydrogen can also be used in a form of a hydrogen-comprising gas, i.e. in mixtures with other inert gases, such as nitrogen, helium, neon, and argon.
According to the present invention, the reaction of glycolaldehyde with the aminating agent in the presence of hydrogen takes place in a solvent.
The solvent used is inert under the reaction conditions and has a sufficient solubility for reactants and products.
In some embodiments, the solvent is selected from methanol, ethanol, isopropyl alcohol, and tetrahydrofuran (THF) .
In some embodiments, the solvent is substantially free of water.
As used herein, the term "substantially free of water" when used with reference to the solvent means that the solvent comprises no more than 0.5 wt. %, preferably no more than 0.2 wt. %of water, based on the total weight of the solvent.
In some embodiments, the solvent is completely free of water.
As used herein, the term "completely free of water" when used with reference to the solvent means that the solvent comprises no water at all.
In some embodiments, the solvent is a mixed solvent comprising (i) at least one C1-C3 alkanol and/or tetrahydrofuran; and (ii) a co-solvent selected from water, dioxane and butanol. Preferably, the co-sovent is present in an amount no more than 80 wt. %, or no more than 50 wt%, based on the total weight of the solvent.
In some embodiments, the co-solvent is present in an amount ranging from 10 wt. %to 70 wt. %, or from 20 wt. %to 60 wt. %, or from 30 wt. %to 50 wt. %, based on the total weight of the solvent.
In some embodiments, the solvent is a mixed solvent of a C1-C3 alkanol and water, wherein the water may be present in an amount ranging from above 0.5 wt. %to 30 wt. %, or from 10 wt. %to 30 wt. %, or from 10 wt. %to from 20 wt. %, or from above 0.5 wt. %to 10 wt. %, based on the total weight of the solvent.
In some embodiments, the solvent is a mixed solvent of tetrahydrofuran and water, wherein the water may be present in an amount ranging from above 0.5 wt. %to 30 wt. %, or from 10 wt. %to 30 wt. %, or from 10 wt. %to from 20 wt.%, or from above 0.5 wt. %to 10 wt. %, based on the total weight of the solvent.
The solvent can be used in a proportion of 10 wt. %to 95 wt. %by weight, preferably 75 wt. %to 95 wt. %, based in each case on the total weight of the reaction mixture including glycolaldehyde, the aminating agent and the solvent used.
According to the present invention, the amination of glycolaldehyde takes place in the present of a supported noble metal catalyst.
As used herein, the term “supported noble metal catalyst” means a catalyst comprising a noble metal on a support.
Preferably, the noble metal is selected from Pd, Pt, Rh and Ru, and the support is selected from carbon black, graphite, activated carbon, aluminium oxide, silicon dioxide or other supports known in the art.
Advantageously, the noble metal is present in amount from 0.5 wt. %to 10 wt.%in the supported noble metal catalyst, relative to the total weight of the supported noble metal catalyst.
The supported noble metal catalyst can be commercial available or prepared with a method known in the art.
In some embodiments, the solvent is methanol, the noble metal is selected from Pd, Pt, Rh and Ru.
In some embodiments, the solvent is ethanol, the noble metal is selected from Pd, Pt, Rh and Ru.
In some embodiments, the solvent is isopropyl alcohol, the noble metal is selected from Pd, Pt, Rh and Ru.
In some embodiments, the solvent is THF, the noble metal is selected from Pd, Pt, Rh and Ru.
As an example for the supported noble metal catalyst useful for the present invention, mention can be made to A102023-5 from Johnson Matthey, an Pd/C catalyst containing 5 wt. %Pd.
In a particular embodiment, the aminating agent is dimethylamine, the solvent is methanol or ethanol, the supported noble metal catalyst is Pd/C.
The amination of glycolaldehyde can be carried out at a temperature from 0℃ to 80℃ and a hydrogen pressure from 1 bar to 65 bar for 1-20 hours.
Advantageously, the amination of glycolaldehyde can be carried out at room temperature and a hydrogen pressure from 10 bar to 40 bar for 3-20 hours.
According to the present invention, room temperature is between 15℃ and 25℃.
Preferably, glycolaldehyde is added into a mixture of an aminating agent and a catalyst in a solvent gradually. More preferably, glycolaldehyde in a solvent is added into a mixture of an aminating agent and a catalyst in the same solvent gradually.
The amination of glycolaldehyde according to the present invention can be carried out in a catalyst effective mode. For example, the molar ratio of the noble metal in the catalyst to glycolaldehyde can be in the range of 0.01%-0.6%.
Examples
The technical features and technical effects of the present invention will be further described below in conjunction with the following examples so that the skilled in the art would fully understand the present invention. It will be readily understood by the skilled in the art that the examples herein are for illustrative purposes only and the scope of the present invention is not limited thereto.
Example 1
Figure PCTCN2019124791-appb-000006
0.24 g of glycolaldehyde, 0.54 g of dimethylamine, 3 mL ethanol and 20 mg of 5 wt. %Pd/C catalyst were added into a 30 mL stainless-steel autoclave at room temperature (T=25℃) . The autoclave was closed, flushed with nitrogen three times and then charged with 40 bar of hydrogen. The mixture was cooled to 0℃ under stirring and maintained at the same temperature for 6 hours. Next, the reaction was continued at room temperature (T=25℃) for 12 hours. Then the pressure was released, the reaction mixture was filtered and analyzed by GC.
The yield to N, N-dimethylethanolamine (DMEA) and N, N, N’, N’-tetramethylethylene diamine (TMDEA) based on glycolaldehyde was 76%and 4%, respectively.
Example 2
0.12 g of glycolaldehyde, 0.22 g of dimethylamine, 2 mL ethanol and 20 mg of 5 wt. %Pd/C catalyst were added into a 30 mL stainless-steel autoclave at room temperature (T=25℃) . The autoclave was closed, flushed with nitrogen three times and then charged with 40 bar of hydrogen. The mixture was heated under stirring at 80℃ for 3 hours. Then reaction mixture was cooled to room temperature (T=25℃) and the pressure was released, the reaction mixture was filtered and analyzed by GC.
The yield to DMEA and TMEDA based on glycolaldehyde was 35%and 40%, respectively.
Example 3
0.12 g of glycolaldehyde, 0.21 g of dimethylamine, 2 mL ethanol and 20 mg of 5 wt. %Pd/C catalyst were added into a 30 mL stainless steel autoclave at room temperature (T=25℃) . The autoclave was closed, flushed with nitrogen three times and then charged with 10 bar of hydrogen. The mixture was kept at 25℃ under stirring for 3 hours. Then the pressure was released, the reaction mixture was filtered and analyzed by GC.
The yield to DMEA and TMEDA based on glycolaldehyde was 65%and 9%, respectively.
Comparative Example 1
0.12 g of glycolaldehyde, 0.22 g of dimethylamine, 2 mL water and 20 mg of 5 wt. %Pd/C catalyst were added into a 30 mL stainless-steel autoclave at room temperature (T=25℃) . The autoclave was closed, flushed with nitrogen three times and then charged with 40 bar of hydrogen. The mixture was kept at 25℃ under stirring for 3 hours. Then the pressure was released, the reaction mixture was filtered and analyzed by GC.
The yield to DMEA and TMEDA based on glycolaldehyde was 50%and 20%, respectively.
Example 4
0.12 g of glycolaldehyde, 0.22 g of dimethylamine, 2 mL ethanol and 20 mg of 5 wt. %Pt/C catalyst were added into a 30 mL stainless-steel autoclave at room temperature (T=25℃) . The autoclave was closed, flushed with nitrogen three times and then charged with 40 bar of hydrogen. The mixture was kept at room temperature (T=25℃) under stirring for 12 hours. Then the pressure was released, the reaction mixture was filtered and analyzed by GC.
The yield to DMEA and TMEDA based on glycolaldehyde was 84%and 8%, respectively.
Example 5
0.12 g of glycolaldehyde, 0.22 g of dimethylamine, 2 mL ethanol and 20 mg of 5 wt. %Pd/C catalyst were added into a 30 mL stainless-steel autoclave at room temperature (T=25℃) . The autoclave was closed, flushed with nitrogen three times and then charged with 40 bar of hydrogen. The mixture was kept at room temperature (T=25℃) under stirring for 3 hours. Then the pressure was released, the reaction mixture was filtered and analyzed by GC.
The yield to DMEA and TMEDA based on glycolaldehyde was 94%and 2%, respectively.
Example 6
1.26 g of dimethylamine, 36 mL ethanol and 240 mg of 5 wt. %Pd/C catalyst were added into a 100 mL stainless steel autoclave at room temperature (T=25℃) . The autoclave was closed, flushed with nitrogen three times and then charged with 20 bar of hydrogen. The mixture was heated under stirring at 25℃and 1.41 g of glycolaldehyde and 24 mL of ethanol were added to the reactor at 0.067 mL/min for 6 hours. Then the pressure was released, the reaction mixture was filtered and analyzed by GC.
The yield to DMEA and TMEDA based on glycolaldehyde was 82%and 4%, respectively.
Example 7
0.12 g of glycolaldehyde, 0.22 g of dimethylamine, 2 mL ethanol and 22 mg of 5 wt. %Rh/Al 2O 3 catalyst were added into a 30 mL stainless-steel autoclave at room temperature (T=25℃) . The autoclave was closed, flushed with nitrogen three times and then charged with 40 bar of hydrogen. The mixture was cooled to 0℃ under stirring and maintained at the same temperature for 6 hours. Then the pressure was released, the reaction mixture was filtered and analyzed by GC.
The yield to DMEA and TMDEA based on glycolaldehyde was 72%and 4%, respectively.
Example 8
0.12 g of glycolaldehyde, 0.22 g of dimethylamine, 2 mL methanol and 23 mg of 5 wt. %Pd/C catalyst were added into a 30 mL stainless-steel autoclave at room temperature (T=25℃) . The autoclave was closed, flushed with nitrogen three times and then charged with 40 bar of hydrogen. The mixture was kept at room temperature (T=25℃) under stirring for 3 hours. Then the pressure was released, the reaction mixture was filtered and analyzed by GC.
The yield to DMEA and TMEDA based on glycolaldehyde was 83%and 4%, respectively.
Example 9
0.12 g of glycolaldehyde, 0.22 g of dimethylamine, 2 mL isopropanol and 20 mg of 5 wt. %Rh/Al 2O 3 catalyst were added into a 30 mL stainless-steel autoclave at room temperature (T=25℃) . The autoclave was closed, flushed with nitrogen three times and then charged with 40 bar of hydrogen. The mixture was  kept at room temperature (T=25℃) under stirring for 3 hours. Then the pressure was released, the reaction mixture was filtered and analyzed by GC.
The yield to DMEA and TMEDA based on glycolaldehyde was 68%and 4%, respectively.
Example10
0.12 g of glycolaldehyde, 0.22 g of dimethylamine, 2 mL isopropanol and 20 mg of 5 wt. %Pd/C catalyst were added into a 30 mL stainless-steel autoclave at room temperature (T=25℃) . The autoclave was closed, flushed with nitrogen three times and then charged with 40 bar of hydrogen. The mixture was kept at room temperature (T=25℃) under stirring for 3 hours. Then the pressure was released, the reaction mixture was filtered and analyzed by GC.
The yield to DMEA and TMEDA based on glycolaldehyde was 89%and 2%, respectively.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (14)

  1. A process for preparing a N-substituted alkanolamine of formula (I) and/or a N-substituted diamine of formula (II) from glycolaldehyde:
    Figure PCTCN2019124791-appb-100001
    in formula (I) and formula (II) :
    R and R’, independently from each other, represent hydrogen, linear or branched C1-C20 alkyl, C3-C12 cycloalkyl, C2-C30 alkoxyalkyl, or C3-30 dialkylaminoalkyl, provided that at least one of R and R’ is not hydrogen,
    comprising reacting glycolaldehyde with an aminating agent of formula (III) in a solvent comprising at least one C1-C3 alkanol and/or tetrahydrofuran in the presence of hydrogen and a supported noble metal catalyst,
    Figure PCTCN2019124791-appb-100002
    in formula (III) :
    R and R’ have the same meanings as defined above.
  2. The process according to claim 1, wherein R and R’, independently from each other, represents hydrogen, linear or branched C1-C4 alkyl, provided that at least one of R and R’ is not hydrogen.
  3. The process according to claim 1 or 2, wherein the molar ratio of the aminating agent to glycolaldehyde is within a range from 1: 1 to 10: 1.
  4. The process according to any of claims 1-3, wherein the solvent is selected from methanol, ethanol, isopropanol, and tetrahydrofuran.
  5. The process according to any of claims 1-4, wherein the solvent is substantially free of water.
  6. The process according to any of claims 1-3, the solvent is a mixed solvent comprising (i) at least one C1-C3 alkanol and/or tetrahydrofuran; and (ii) a co-solvent selected from water, dioxane and butanol.
  7. The process according to any of claims 1-3, wherein the solvent is a mixed solvent of a C1-C3 alkanol and water, and the water is present in an amount ranging from above 0.5 wt.%to 30 wt.%, or from 10 wt.%to 30 wt.%, or from 10 wt.%to from 20 wt.%, or from above 0.5 wt.%to 10 wt.%, based on the total weight of the solvent.
  8. The process according to any of claims 1-3, wherein the solvent is a mixed solvent of tetrahydrofuran and water, and the water is present in an amount ranging from above 0.5 wt.%to 30 wt.%, or from 10 wt.%to 30 wt.%, or from 10 wt.%to from 20 wt.%, or from above 0.5 wt.%to 10 wt.%, based on the total weight of the solvent.
  9. The process according to any of claims 1-8, wherein the noble metal is selected from Pd, Pt, Rh and Ru, and the support is selected from carbon black, graphite, activated carbon, aluminium oxide, and silicon dioxide.
  10. The process according to any of claims 1-9, wherein the noble metal is present in amount from 0.5 wt.%to 10 wt.%in the supported noble metal catalyst, relative to the total weight of the supported noble metal catalyst.
  11. The process according to any of claims 1-10, wherein the aminating agent is dimethylamine, the solvent is methanol or ethanol, the supported noble metal catalyst is Pd/C.
  12. The process according to any of claims 1-11, wherein the solvent is used in a proportion of 10 wt.%to 95 wt.%by weight based in each case on the total weight of the reaction mixture including glycolaldehyde, the aminating agent and the solvent used.
  13. The process according to any of claims 1-12, wherein the molar ratio of the noble metal in the catalyst to glycolaldehyde can be in the range of 0.01%-0.6%.
  14. The process according to any of claims 1-13, wherein the reaction is carried out at a temperature from 0℃ to 80℃ and a hydrogen pressure from 1 bar to 65 bar for 1-20 hours.
PCT/CN2019/124791 2019-12-12 2019-12-12 Process for preparing n-substituted alkanolamines and/or n-substituted diamines from glycolaldehyde WO2021114166A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/124791 WO2021114166A1 (en) 2019-12-12 2019-12-12 Process for preparing n-substituted alkanolamines and/or n-substituted diamines from glycolaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/124791 WO2021114166A1 (en) 2019-12-12 2019-12-12 Process for preparing n-substituted alkanolamines and/or n-substituted diamines from glycolaldehyde

Publications (1)

Publication Number Publication Date
WO2021114166A1 true WO2021114166A1 (en) 2021-06-17

Family

ID=76329267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124791 WO2021114166A1 (en) 2019-12-12 2019-12-12 Process for preparing n-substituted alkanolamines and/or n-substituted diamines from glycolaldehyde

Country Status (1)

Country Link
WO (1) WO2021114166A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120271068A1 (en) * 2009-12-17 2012-10-25 Basf Se Reaction of glycolaldehyde with an aminating agent
CN107011194A (en) * 2016-01-27 2017-08-04 中国科学院大连化学物理研究所 A kind of method that hydramine and diamines are prepared by glycolaldehyde reduction amination
WO2019193117A1 (en) * 2018-04-04 2019-10-10 Katholieke Universiteit Leuven Reaction of glycolaldehyde

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120271068A1 (en) * 2009-12-17 2012-10-25 Basf Se Reaction of glycolaldehyde with an aminating agent
CN107011194A (en) * 2016-01-27 2017-08-04 中国科学院大连化学物理研究所 A kind of method that hydramine and diamines are prepared by glycolaldehyde reduction amination
WO2019193117A1 (en) * 2018-04-04 2019-10-10 Katholieke Universiteit Leuven Reaction of glycolaldehyde

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FAVEERE WILLIAM, MIHAYLOV TZVETAN, PELCKMANS MICHIEL, MOONEN KRISTOF, GILLIS-D’HAMERS FREDERIK, BOSSCHAERTS ROEL, PIERLOOT KRISTIN: "Glycolaldehyde as a Bio-Based C 2 Platform Chemical: Catalytic Reductive Amination of Vicinal Hydroxyl Aldehydes", ACS CATALYSIS, AMERICAN CHEMICAL SOCIETY, US, vol. 10, no. 1, 3 January 2020 (2020-01-03), US, pages 391 - 404, XP055820967, ISSN: 2155-5435, DOI: 10.1021/acscatal.9b02437 *

Similar Documents

Publication Publication Date Title
JP5806116B2 (en) Transalkoxylation of nucleophilic compounds
US8946463B2 (en) Process for the direct amination of alcohols using ammonia to form primary amines by means of a xantphos catalyst system
JPH0753535A (en) Preparation of n-(2-hydroxyethyl)piperazine
RU2007143159A (en) TAIGETSIKLIN AND METHODS FOR PREPARING 9-AMINOMINOCYCLIN
WO2008018148A1 (en) Process for producing amino compound
JP2015044812A (en) Process for preparing alkylalkanolamines
US7323599B2 (en) Process for reductively aminating ketones and aldehydes with aqueous amines and catalysts suitable therefor
JPH0481979B2 (en)
WO2021114166A1 (en) Process for preparing n-substituted alkanolamines and/or n-substituted diamines from glycolaldehyde
JP5675826B2 (en) Process for the preparation of 2,2-difluoroethylamine by hydrogenating 1,1-difluoro-2-nitroethane
US8907084B2 (en) Process for the preparation of 2-(2-aminoethoxy) ethanol (2AEE) and morpholine with 2AEE: morpholine >3
US20130116451A1 (en) Method for preparing diamino-dianhydro-dideoxyhexitols, particularly preferably 2,5-diamino-1,4:3,6-dianhydro-2,5-dideoxy-d-hexitol
JP2018140942A (en) Method for producing carbamate
US6429335B1 (en) Reductive amination of aldehydes
US6689914B2 (en) Preparation of amines
JPH0920735A (en) Amination of alcohol
KR20000062670A (en) Process for the Preparation of Bistrifluoromethylbenzylamines
JP2022522886A (en) Preparation of polyalkylene-polyamines by reductive amination
US11345680B2 (en) Method for producing bispyrrolidine compounds
US20230025575A1 (en) Process for preparing amines over a copper catalyst
KR20130073146A (en) Process for preparing alicyclic amine derivatives by hydrogenation of nitrobenzene derivatives
JPH0539249A (en) Production of 1-(3,5-dialkylphenoxy)-2-aminopropane
JPWO2017163680A1 (en) Reaction composition and reaction system using the same
US20170152212A1 (en) Method for preparing n,n'-bis(3-aminopropyl)-1,2-ethylenediamine
Gu et al. Selective synthesis of N-methylaniline from CO2, H2 and aniline over CeO2-supported Cu sub-nanoparticle catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955598

Country of ref document: EP

Kind code of ref document: A1