WO2021112622A1 - 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치 - Google Patents

무선 통신 시스템에서 신호를 송수신하는 방법 및 장치 Download PDF

Info

Publication number
WO2021112622A1
WO2021112622A1 PCT/KR2020/017646 KR2020017646W WO2021112622A1 WO 2021112622 A1 WO2021112622 A1 WO 2021112622A1 KR 2020017646 W KR2020017646 W KR 2020017646W WO 2021112622 A1 WO2021112622 A1 WO 2021112622A1
Authority
WO
WIPO (PCT)
Prior art keywords
crb
base station
terminal
information
resource block
Prior art date
Application number
PCT/KR2020/017646
Other languages
English (en)
French (fr)
Inventor
이권종
이재현
이효진
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US17/756,801 priority Critical patent/US20230031806A1/en
Priority to EP20897025.1A priority patent/EP4064600A4/en
Publication of WO2021112622A1 publication Critical patent/WO2021112622A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1461Suppression of signals in the return path, i.e. bidirectional control circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the present disclosure is intended to support a full-duplex operation in a wireless communication system, and more particularly, to a power control method and apparatus for efficiently utilizing a full-duplex operation in a wireless communication system.
  • the 5G communication system or the pre-5G communication system is called a system after the 4G network (Beyond 4G Network) communication system or after the LTE system (Post LTE).
  • the 5G communication system is being considered for implementation in a very high frequency (mmWave) band (eg, such as a 60 gigabyte (70 GHz) band).
  • mmWave very high frequency
  • FQAM Hybrid FSK and QAM Modulation
  • SWSC Small Cell Superposition Coding
  • ACM advanced coding modulation
  • FBMC Fan Bank Multi Carrier
  • NOMA non-orthogonal multiple access
  • SCMA sparse code multiple access
  • the Internet is evolving from a human-centered connection network where humans create and consume information to an Internet of Things (IoT) network that exchanges and processes information between distributed components such as objects.
  • IoT Internet of Things
  • IoE Internet of Everything
  • technology elements such as sensing technology, wired/wireless communication and network infrastructure, service interface technology, and security technology are required.
  • a sensor network for connection between objects and a machine to machine communication (Machine to Machine) are required.
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • IoT Internet Technology
  • IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliance, advanced medical service, etc. through the convergence and complex between existing IT (information technology) technology and various industries. can be applied to
  • 5G communication system technologies such as sensor network, machine to machine (M2M), and MTC (Machine Type Communication) are being implemented by 5G communication technologies such as beamforming, MIMO, and array antenna.
  • 5G communication technologies such as beamforming, MIMO, and array antenna.
  • cloud RAN cloud radio access network
  • the present disclosure aims to provide a method for transmitting and receiving a signal by a terminal supporting a full-duplex operation in a wireless communication system.
  • a terminal for transmitting and receiving a signal in a wireless communication system and a method of operating the terminal may be provided.
  • a terminal for transmitting and receiving a signal in a wireless communication system comprising: a transceiver; and at least one or more processors controlling the transceiver.
  • the at least one processor controls the transceiver to receive information on an FD CRB (Full Duplex Carrier Resource Block) from a base station, and identifies a resource element available for uplink data transmission based on the information on the FD CRB, and , may control the transceiver to transmit uplink data using the identified resource element.
  • FD CRB Full Duplex Carrier Resource Block
  • a base station for transmitting and receiving signals in a wireless communication system and a method of operating the base station may be provided.
  • a base station for transmitting and receiving signals in a wireless communication system includes a transceiver; and at least one or more processors controlling the transceiver.
  • the at least one processor obtains information on the FD CRB, controls the transceiver to transmit the information on the FD CRB, and is available for uplink data transmission identified based on the information on the FD CRB.
  • the transceiver may be controlled to receive uplink data using a resource element.
  • FIG. 1 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource domain in which data or a control channel is transmitted in a system in LTE.
  • FIG. 2 is a diagram illustrating a PDCCH that is a downlink physical channel through which DCI of LTE is transmitted.
  • 3 is a diagram illustrating an example of a basic unit of time and frequency resources constituting a downlink control channel in 5G.
  • CORESET control resource set
  • 5 is a diagram illustrating an example of a configuration for a downlink RB structure in 5G.
  • FIG. 6 is a block diagram of a transceiver having a self-interference cancellation function, which is a major component of a full-duplex system, according to an embodiment of the present disclosure.
  • FIG. 7A and 7B are block diagrams of a magnetic interference canceller according to an exemplary embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a method for a terminal to transmit and receive a signal in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of a method for a base station to transmit and receive a signal in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart illustrating power control by a base station supporting a full-duplex operation according to an embodiment of the present disclosure.
  • 11A illustrates a change in transmit power of a base station and a change in an FD CRB according to an embodiment of the present disclosure.
  • 11B is a diagram illustrating an FD CRB set list according to an embodiment of the present disclosure.
  • FIG. 12 is a diagram illustrating a scenario in which a base station adjusts transmission power according to a distance between a base station and a terminal according to an embodiment of the present disclosure.
  • FIG. 13 is a flowchart illustrating a method of changing transmission power based on an FD CRB set list according to an embodiment of the present disclosure.
  • FIG. 14 is a flowchart illustrating an operation of a base station according to an embodiment of the present disclosure.
  • 15 is a flowchart illustrating an operation of a terminal according to an embodiment of the present disclosure.
  • 16 is a diagram illustrating an example of transmission power adjustment of a base station according to an embodiment of the present disclosure.
  • 17 is a flowchart of a method for a base station to determine transmission power according to an embodiment of the present disclosure.
  • FIG. 18 is a flowchart illustrating a process of determining an operation of a terminal according to an embodiment of the present disclosure
  • 19 is a diagram illustrating a transmission message of a terminal in a base station according to an embodiment of the present disclosure.
  • 20 is a diagram illustrating an operation of a base station according to an embodiment of the present disclosure.
  • 21 is a flowchart illustrating an operation of a terminal according to an embodiment of the present disclosure.
  • 22 is a diagram illustrating a transmission message of a terminal in a base station according to an embodiment of the present disclosure.
  • FIG. 23 is a diagram for explaining a difference in an FD CRB between an uplink resource allocation time of a terminal and a transmission time, according to an embodiment of the present disclosure.
  • 24 is a diagram illustrating a data transmission flow chart between a terminal and a base station according to an embodiment of the present disclosure.
  • 25 is a diagram illustrating a CRB interpretation method of a terminal according to an embodiment of the present disclosure.
  • 26 is a diagram illustrating an example of interpretation according to a CRB interpretation method of a terminal according to an embodiment of the present disclosure.
  • FIG. 27 is a diagram illustrating a CRB interpretation method of a terminal according to an embodiment of the present disclosure.
  • FIG. 28 is a diagram illustrating an example of an interpretation according to a CRB interpretation method of a terminal according to an embodiment of the present disclosure.
  • 29 is a diagram illustrating a CRB interpretation method of a terminal according to an embodiment of the present disclosure.
  • FIG. 30 is a diagram illustrating an example of interpretation according to a CRB interpretation method of a terminal according to an embodiment of the present disclosure.
  • 31 is a block diagram illustrating the structure of a terminal according to an embodiment of the present disclosure.
  • 32 is a block diagram illustrating a structure of a base station according to an embodiment of the present disclosure.
  • a terminal for transmitting and receiving a signal in a wireless communication system may be provided.
  • the terminal includes a transceiver and at least one processor for controlling the transceiver, wherein the at least one processor controls the transceiver to receive information on an FD CRB (Full Duplex Carrier Resource Block) from a base station, and the FD At least one resource block available for uplink data transmission may be identified based on the CRB information, and the transceiver may be controlled to transmit uplink data using the identified at least one resource block.
  • FD CRB Full Duplex Carrier Resource Block
  • the information on the FD CRB may be indicated by an index corresponding to an FD CRB configuration condition
  • the FD CRB configuration condition may include characteristics of a base station related to a self-interference channel.
  • the frequency band of the at least one resource block available for transmission of the uplink data identified based on the information on the FD CRB is among all frequency bands available for receiving downlink data from the base station. It may correspond to some frequency bands.
  • the at least one processor may control the transceiver to receive downlink data from the base station by using at least one resource block available for the uplink data transmission.
  • the at least one processor may control the transceiver not to receive downlink data from the base station by using at least one resource block available for the uplink data transmission.
  • a frequency band of at least one resource block usable for transmission of the uplink data corresponds to a partial frequency band among the entire frequency band of the base station, and frequencies other than the partial frequency band among the entire frequency band.
  • the band may be a frequency band available for receiving downlink data from the base station.
  • the information on the FD CRB includes information on a resource block set including at least one resource block usable for uplink data transmission of the terminal, and information on the resource block set may include at least one of location information, number information, and index information indicating the resource block set of the at least one resource block.
  • the frequency band of the at least one resource block corresponds to a partial frequency band allocated from the base station for the terminal to transmit uplink data among all frequency bands of the base station, and the at least one The frequency band of the resource block may be allocated based on the FD CRB configuration condition.
  • a base station for transmitting and receiving signals in a wireless communication system.
  • the base station includes a transceiver and at least one processor for controlling the transceiver, wherein the at least one processor controls the transceiver to obtain information on the FD CRB and transmit information on the FD CRB,
  • the transceiver may be controlled to receive uplink data using at least one resource block available for receiving uplink data identified based on the information on the FD CRB.
  • the information on the FD CRB may be indicated by an index corresponding to an FD CRB configuration condition
  • the FD CRB configuration condition may include characteristics of a base station related to a self-interference channel.
  • the frequency band of at least one resource block available for receiving the uplink data identified based on the information on the FD CRB is a part of the entire frequency band available for downlink data transmission to the terminal. It may correspond to a frequency band.
  • the at least one processor may control the transceiver to transmit downlink data to the terminal by using at least one resource block available for receiving the uplink data.
  • the at least one processor may control the transceiver not to transmit downlink data to the terminal by using at least one resource block available for receiving the uplink data.
  • the information on the FD CRB includes information on a resource block set including at least one resource block available for uplink data reception, and the information on the resource block set includes: It may include at least one of location information of at least one resource block, number information, and index information indicating the resource block set.
  • a method for a terminal to transmit and receive a signal in a wireless communication system includes: receiving information on an FD CRB from a base station; identifying at least one resource block available for uplink data transmission based on the information on the FD CRB; It may include transmitting the uplink data using at least one resource block.
  • a terminal for transmitting and receiving a signal in a wireless communication system includes a transceiver; and at least one or more processors controlling the transceiver, wherein the at least one processor controls the transceiver to receive information on an FD CRB (Full Duplex Carrier Resource Block) from a base station, and based on the information on the FD CRB to identify a resource element available for uplink data transmission, and control the transceiver to transmit uplink data using the identified resource element.
  • FD CRB Full Duplex Carrier Resource Block
  • the information on the FD CRB is indicated by an index corresponding to an FD CRB configuration condition
  • the FD CRB configuration condition may include at least one of the number of ports, the port type, and the transmission power.
  • the processor may control the transceiver to receive the information on the FD CRB through RRC (Radio Resource Control) signaling including the information on the FD CRB or DCI (DownLink Control Information).
  • RRC Radio Resource Control
  • DCI DownLink Control Information
  • the processor controls the transceiver to receive a CSI-RS (Channel Status Information-Reference Signal) using the identified resource element, and a CQI determined based on the received CSI-RS ( Channel Quality Indicator) to the base station to control the transceiver, and as the transmission power for the identified resource element is adjusted based on the information on the FD CRB, the CSI- received through the identified resource element Among RS and Physical Downlink Shared Channel (PDSCH), the transmission power of the PDSCH may be adjusted.
  • CSI-RS Channel Status Information-Reference Signal
  • the processor obtains information on a preset transmit power pattern from the base station, and receives the transmit power change indicator from the base station at a time point identified based on the information on the transmit power pattern. It is possible to control the transceiver and measure the CQI based on the CSI-RS transmitted with the transmission power changed based on the transmission power pattern.
  • the processor controls the transceiver to receive the transmit power indicator from the base station, and measures the CQI based on the CSI-RS transmitted based on the transmit power corresponding to the transmit power indicator.
  • the processor identifies an FD CRB set from the information on the FD CRB, and based on the uplink resource allocation possibility for each FD CRB included in the FD CRB set, a Virtual Resource Block (VRB). ) number, and a CRB having a VRB number for the FD CRB corresponding to the RB number allocated to the uplink resource by the terminal may be identified as the resource element.
  • VRB Virtual Resource Block
  • the processor identifies an FD CRB set from the information on the FD CRB, and sequentially determines a VRB number for each FD CRB included in the FD CRB set based on the CRB order,
  • the UE may identify, as the resource element, a CRB having a VRB number for the FD CRB corresponding to an RB number allocated as an uplink resource.
  • the processor identifies an FD CRB set from the information on the FD CRB, and assigns an RB overlapping the FD CRB set and the UL PDSCH RB region allocated as a Resource Indication Value (RIV) to the resource. elements can be identified.
  • RIV Resource Indication Value
  • a base station for transmitting and receiving a signal in a wireless communication system comprising: a transceiver; and at least one or more processors controlling the transceiver, wherein the at least one processor obtains information on the FD CRB, controls the transceiver to transmit information on the FD CRB, and information on the FD CRB
  • the transceiver may be controlled to receive the uplink data by using the resource element available for the uplink data transmission identified based on .
  • the information on the FD CRB is indicated by an index corresponding to an FD CRB configuration condition
  • the FD CRB configuration condition may include at least one of the number of ports, the type of port, and the transmission power.
  • the processor may control the transceiver to transmit information on the FD CRB through RRC signaling or DCI.
  • the information on the FD CRB includes information about a transmit power adjusted in a resource element available for the uplink data transmission
  • the processor is configured to: The transmission power of the PDSCH among the PDSCH and CSI-RS transmitted using the identified resource element may be adjusted, and the transceiver may be controlled to transmit the PDSCH and the CSI-RS based on the adjustment result.
  • the processor controls the transceiver to transmit a transmit power change indicator to the terminal at the time of transmit power change, changes the transmit power based on information on a preset transmit power pattern, and changes the transmit power
  • the transceiver may be controlled to transmit the CSI-RS based on power.
  • the processor may control the transceiver to transmit the transmit power indicator to the terminal, and control the transceiver to transmit the CSI-RS based on the transmit power corresponding to the transmit power indicator.
  • each block of the flowchart diagrams and combinations of the flowchart diagrams may be performed by computer program instructions.
  • These computer program instructions may be embodied in a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, such that the instructions performed by the processor of the computer or other programmable data processing equipment are not described in the flowchart block(s). It creates a means to perform functions.
  • These computer program instructions may also be stored in a computer-usable or computer-readable memory that may direct a computer or other programmable data processing equipment to implement a function in a particular manner, and thus the computer-usable or computer-readable memory.
  • the instructions stored in the flow chart block(s) may also be possible for the instructions stored in the flow chart block(s) to produce an article of manufacture containing instruction means for performing the function described in the flowchart block(s).
  • the computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operational steps are performed on the computer or other programmable data processing equipment to create a computer-executed process to create a computer or other programmable data processing equipment. It may also be possible for instructions to perform the processing equipment to provide steps for performing the functions described in the flowchart block(s).
  • each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s). It should also be noted that in some alternative implementations it is also possible for the functions recited in blocks to occur out of order. For example, two blocks shown one after another may in fact be performed substantially simultaneously, or it may be possible that the blocks are sometimes performed in the reverse order according to a corresponding function.
  • ' ⁇ unit' used in this embodiment means software or hardware components such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit), and ' ⁇ unit' performs certain roles do.
  • '-part' is not limited to software or hardware.
  • the ' ⁇ unit' may be configured to reside on an addressable storage medium or may be configured to refresh one or more processors.
  • ' ⁇ part' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and programs. Includes procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • components and ' ⁇ units' may be combined into a smaller number of components and ' ⁇ units' or further separated into additional components and ' ⁇ units'.
  • components and ' ⁇ units' may be implemented to play one or more CPUs in a device or secure multimedia card.
  • ' ⁇ unit' may include one or more processors.
  • the base station is a subject performing resource allocation of the terminal, and may be at least one of a gNode B, an eNode B, a Node B, a base station (BS), a radio access unit, a base station controller, or a node on a network.
  • the terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smart phone, a computer, or a multimedia system capable of performing a communication function.
  • UE user equipment
  • MS mobile station
  • a cellular phone a smart phone
  • computer or a multimedia system capable of performing a communication function.
  • the present disclosure describes a technique for a terminal to receive broadcast information from a base station in a wireless communication system.
  • the present disclosure relates to a communication technique that converges a 5 th generation (5G) communication system for supporting a higher data rate after a 4 th generation (4G) system with an Internet of Things (IoT) technology, and a system thereof.
  • the present disclosure provides intelligent services (eg, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail business, security and safety-related services, etc.) based on 5G communication technology and IoT-related technology. ) can be applied to
  • Terms referring to, terms referring to messages, terms referring to components of an apparatus, and the like are exemplified for convenience of description. Accordingly, the present disclosure is not limited to the terms described below, and other terms having equivalent technical meanings may be used.
  • 3GPP LTE 3rd generation partnership project long term evolution
  • a wireless communication system for example, 3GPP's HSPA (High Speed Packet Access), LTE (Long Term Evolution or E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced (LTE-A), LTE-Pro, 3GPP2 HRPD (High Rate Packet Data), UMB (Ultra Mobile Broadband), and IEEE 802.16e, such as communication standards such as broadband wireless broadband wireless providing high-speed, high-quality packet data service It is evolving into a communication system.
  • HSPA High Speed Packet Access
  • LTE-A Long Term Evolution-A
  • LTE-Pro LTE-Pro
  • 3GPP2 HRPD High Rate Packet Data
  • UMB Ultra Mobile Broadband
  • IEEE 802.16e such as communication standards such as broadband wireless broadband wireless providing high-speed, high-quality packet data service It is evolving into a communication system.
  • Uplink refers to a radio link in which a UE (User Equipment) or MS (Mobile Station) transmits data or control signals to a base station (eNode B, or base station (BS)). It means a wireless link that transmits data or control signals.
  • the multiple access method as described above divides the data or control information of each user by allocating and operating the time-frequency resources to which data or control information is to be transmitted for each user so that they do not overlap each other, that is, orthogonality is established. .
  • the 5G communication system must be able to freely reflect various requirements such as users and service providers, so services that satisfy various requirements must be supported.
  • Services considered for the 5G communication system include Enhanced Mobile BroadBand (eMBB), Massive Machine Type Communication (mMTC), and Ultra Reliability Low Latency Communication (URLLC). etc.
  • the eMBB aims to provide a data transfer rate that is more improved than the data transfer rate supported by the existing LTE, LTE-A, or LTE-Pro.
  • the eMBB in a 5G communication system, the eMBB must be able to provide a maximum data rate of 20 Gbps in the downlink and a maximum data rate of 10 Gbps in the uplink from the viewpoint of one base station.
  • it is necessary to provide an increased user perceived data rate of the terminal.
  • transmission/reception technology including a more advanced multi-input multi-output (MIMO) transmission technology.
  • MIMO multi-input multi-output
  • mMTC is being considered to support application services such as the Internet of Things (IoT) in the 5G communication system.
  • IoT Internet of Things
  • mMTC may require large-scale terminal access support, improved terminal coverage, improved battery life, and reduced terminal cost within a cell. Since the Internet of Things is attached to various sensors and various devices to provide communication functions, it must be able to support a large number of terminals (eg, 1,000,000 terminals/km2) within a cell.
  • a terminal supporting mMTC is highly likely to be located in a shaded area not covered by a cell such as the basement of a building due to the nature of the service, it may require wider coverage compared to other services provided by the 5G communication system.
  • a terminal supporting mMTC should be configured as a low-cost terminal, and since it is difficult to frequently exchange the battery of the terminal, a very long battery life time may be required.
  • URLLC as a cellular-based wireless communication service used for a specific purpose (mission-critical), remote control for a robot or a machine, industrial automation
  • a service used for unmaned aerial vehicles, remote health care, emergency alerts, etc. it is necessary to provide communication that provides ultra-low latency and ultra-reliability.
  • a service supporting URLLC must satisfy an air interface latency of less than 0.5 milliseconds, and at the same time has a requirement of a packet error rate of 10-5 or less. Therefore, for a service supporting URLLC, the 5G system must provide a smaller Transmit Time Interval (TTI) than other services, and at the same time, a design requirement for allocating a wide resource in a frequency band is required.
  • TTI Transmit Time Interval
  • the above-described mMTC, URLLC, and eMBB are only examples of different service types, and the service types to which the present disclosure is applied are not limited to the above-described examples.
  • each service considered in the above-mentioned 5G communication system should be provided by convergence with each other based on one framework. That is, for efficient resource management and control, it is preferable that each service is integrated and controlled and transmitted as a single system rather than being operated independently.
  • embodiments of the present disclosure will be described below using LTE, LTE-A, LTE Pro, or NR system as an example, the embodiment of the present disclosure may be applied to other communication systems having a similar technical background or channel type. In addition, embodiments of the present disclosure may be applied to other communication systems through some modifications within a range that does not significantly depart from the scope of the present disclosure as judged by a person having skilled technical knowledge.
  • FIG. 1 is a diagram showing the basic structure of a time-frequency domain, which is a radio resource domain in which the data or control channel is transmitted in a system in LTE.
  • the minimum transmission unit in the time domain is an OFDM symbol 101, in which N symb OFDM symbols 101 are gathered to form one slot 102, and two slots are gathered to form one subframe 103. make up
  • the length of the slot 102 is 0.5 ms
  • the length of the subframe 103 is 1.0 ms.
  • the radio frame 104 is a time domain unit composed of 10 subframes 103 .
  • the minimum transmission unit in the frequency domain is a subcarrier 105 , and the bandwidth of the entire system transmission bandwidth consists of a total of N BW subcarriers 105 .
  • a basic unit of a resource in the time-frequency domain is a resource element (RE) 106, which may be represented by an OFDM symbol index and a subcarrier index.
  • a resource block (RB; Resource Block or PRB; Physical Resource Block) 107 is defined by N symb consecutive OFDM symbols 101 in the time domain and N RB consecutive subcarriers 108 in the frequency domain. Accordingly, one RB 107 is composed of N symb x N RB REs 106 .
  • DCI downlink control information
  • scheduling information for downlink data or uplink data is transmitted from the base station to the terminal through DCI.
  • DCI is whether it is scheduling information for uplink data or scheduling information for downlink data, whether it is a compact DCI with a small size of control information, whether spatial multiplexing using multiple antennas is applied, DCI for power control It may include information on whether or not it is recognized.
  • the DCI format defined according to the above-described information may be applied and operated.
  • DCI format 1 which is scheduling control information for downlink data, is configured to include at least the following control information.
  • Type 0 allocates resources in a RBG (resource block group) unit by applying a bitmap method.
  • the basic unit of scheduling in the LTE system is a resource block (RB) expressed by time and frequency domain resources, and the RBG is composed of a plurality of RBs to become the basic unit of scheduling in the type 0 scheme.
  • Type 1 allows allocating a specific RB within an RBG.
  • - Resource block assignment Notifies the RB allocated for data transmission.
  • the resource represented is determined by the system bandwidth and resource allocation method.
  • MCS Modulation and Coding Scheme
  • HARQ process number Notifies the process number of HARQ.
  • New data indicator Notifies whether HARQ initial transmission or retransmission.
  • Transmit Power Control command for PUCCH (Transmit Power Control (TPC) command for Physical Uplink Control CHannel (PUCCH)): Notifies a transmit power control command for PUCCH, which is an uplink control channel.
  • TPC Transmit Power Control
  • PUCCH Physical Uplink Control CHannel
  • the DCI is transmitted through a physical downlink control channel (PDCCH), which is a downlink physical control channel, through a channel coding and modulation process.
  • PDCCH physical downlink control channel
  • a CRC Cyclic Redundancy Check
  • the CRC is scrambled with an RNTI (Radio Network Temporary Identifier) corresponding to the identity of the UE.
  • RNTI Radio Network Temporary Identifier
  • Different RNTIs are used according to the purpose of the DCI message, for example, UE-specific data transmission, a power control command, or a random access response. That is, the RNTI is not explicitly transmitted, but is transmitted while being included in the CRC calculation process.
  • the UE Upon receiving the DCI message transmitted on the PDCCH, the UE checks the CRC using the assigned RNTI. If the CRC check result is correct, the UE can know that the message has been transmitted to the UE.
  • FIG. 2 is a diagram illustrating a PDCCH that is a downlink physical channel through which DCI of LTE is transmitted.
  • the PDCCH 201 is time-multiplexed with a Physical Downlink Shared Channel (PDSCH) 202, which is a data transmission channel, and is transmitted over the entire system bandwidth.
  • PDSCH Physical Downlink Shared Channel
  • the area of the PDCCH 201 is expressed by the number of OFDM symbols, which is indicated to the UE by a Control Format Indicator (CFI) transmitted through a Physical Control Format Indicator CHannel (PCFICH).
  • CFI Control Format Indicator
  • PCFICH Physical Control Format Indicator CHannel
  • the PDCCH 201 is allocated to the OFDM symbol that comes in the front part of the subframe, so that the UE can decode the downlink scheduling assignment as soon as possible, and through this, the decoding delay for the DL-SCH (DownLink Shared CHannel), that is, the overall downlink There is an advantage in that link transmission delay can be reduced.
  • DownLink Shared CHannel DownLink Shared CHannel
  • One PDCCH carries one DCI message, and since a plurality of terminals can be scheduled simultaneously in downlink and uplink, a plurality of PDCCHs are transmitted simultaneously in each cell.
  • a cell-specific reference signal (CRS) 203 is used as a reference signal for decoding the PDCCH 201 .
  • the CRS 203 is transmitted in every subframe over the entire band, and scrambling and resource mapping are changed according to a cell ID (IDentity). Since the CRS 203 is a reference signal commonly used by all terminals, terminal-specific beamforming cannot be used. Therefore, the multi-antenna transmission method for PDCCH of LTE is limited to open-loop transmission diversity.
  • the number of ports of CRS is implicitly known to the UE from decoding of PBCH (Physical Broadcast CHannel).
  • Resource allocation of the PDCCH 201 is based on a Control-Channel Element (CCE), and one CCE consists of 9 Resource Element Groups (REGs), that is, a total of 36 Resource Elements (REs).
  • CCE Control-Channel Element
  • REGs Resource Element Groups
  • the number of CCEs required for a specific PDCCH 201 may be 1, 2, 4, or 8, which depends on the channel coding rate of the DCI message payload. As described above, different numbers of CCEs are used to implement link adaptation of the PDCCH 201 .
  • the UE needs to detect a signal without knowing information about the PDCCH 201.
  • a search space indicating a set of CCEs is defined for blind decoding.
  • the search space is composed of a plurality of sets at the aggregation level (AL) of each CCE, and the search space is not explicitly signaled but is implicitly defined through a function and subframe number by the UE identity.
  • the UE performs decoding on the PDCCH 201 for all possible resource candidates that can be made from CCEs in the configured search space, and information declared valid for the UE through CRC verification. to process
  • the search space is classified into a terminal-specific search space and a common search space.
  • a group of terminals or all terminals may search the common search space of the PDCCH 201 in order to receive cell-common control information such as a dynamic scheduling or paging message for system information.
  • cell-common control information such as a dynamic scheduling or paging message for system information.
  • SIB System Information Block
  • the entire PDCCH region is composed of a set of CCEs in the logical region, and a search space composed of a set of CCEs exists.
  • the search space is divided into a common search space and a UE-specific search space, and the search space for the LTE PDCCH is defined as follows.
  • the PDCCH candidate set to be monitored is defined in terms of search spaces, and the aggregation level search space in is defined by the PDCCH candidate set.
  • the set of PDCCH candidates to monitor are defined in terms of search spaces, where a search space at aggregation level is defined by a set of PDCCH candidates.
  • the search space For each serving cell in which the PDCCH is monitored, the search space (For each serving cell on which PDCCH is monitored, the CCEs corresponding to PDCCH candidate m of the search space) are given by)
  • variable Y k is defined as (For the UE-specific search space at aggregation level L, the variable Y k is defined by)
  • the RNTI value used for the n RNTI is defined in the DL 7.1 and uplink 8.
  • the RNTI value used for n RNTI is defined in subclause 7.1 in downlink and subclause 8 in uplink.
  • the UE-specific search space is not explicitly signaled but is implicitly defined through a function and a subframe number by the UE identity.
  • the UE-specific search space can change according to the subframe number, this means that it can change with time, and through this, a problem that a specific UE cannot use the search space by other UEs among UEs ( blocking problem).
  • this search space changes with time. , such a problem may not occur in the next subframe. For example, even if a part of the UE-specific search space of UE#1 and UE#2 overlaps in a specific subframe, the overlap in the next subframe is expected to be different because the UE-specific search space changes for each subframe. can do.
  • the common search space is defined as a set of promised CCEs because a certain group of terminals or all terminals must receive the PDCCH. In other words, the common search space does not change according to the identity of the UE or the subframe number.
  • the common search space exists to transmit various system messages, it can also be used to transmit control information of individual terminals. Through this, the common search space can be used as a solution to the problem that the terminal cannot be scheduled due to insufficient resources available in the terminal-specific search space.
  • the search space is a set of candidate control channels composed of CCEs that the UE should attempt to decode on a given aggregation level, and since there are several aggregation levels that make one bundle with 1, 2, 4, 8 CCEs, the UE has a plurality of have a search space.
  • the number of PDCCH candidates to be monitored by the UE in the search space defined according to the aggregation level is defined in the table below.
  • the aggregation level ⁇ 1, 2, 4, 8 ⁇ is supported, and in this case, ⁇ 6, 6, 2, 2 ⁇ PDCCH candidates are each.
  • an aggregation level ⁇ 4, 8 ⁇ is supported, and in this case, it has ⁇ 4, 2 ⁇ PDCCH candidates, respectively.
  • the reason why the common search space supports only the aggregation level of ⁇ 4, 8 ⁇ is to improve the coverage characteristics because the system message generally needs to reach the cell edge.
  • DCI transmitted to the common search space is defined only for a specific DCI format, such as 0/1A/3/3A/1C, which corresponds to a system message or power control for a UE group.
  • DCI format with spatial multiplexing is not supported in the common search space.
  • the downlink DCI format to be decoded in the UE-specific search space depends on a transmission mode configured for the corresponding UE. Since the setting of the transmission mode is made through RRC (Radio Resource Control) signaling, the exact subframe number for whether the setting is effective for the corresponding terminal is not specified. Therefore, the terminal can be operated so as not to lose communication by always performing decoding on DCI format 1A regardless of the transmission mode.
  • RRC Radio Resource Control
  • 3 is a diagram illustrating an example of a basic unit of time and frequency resources constituting a downlink control channel in 5G.
  • a Resource Element Group (REG) 303 which is a basic unit of time and frequency resources constituting a control channel, consists of one OFDM symbol 301 on the time axis, and 12 subcarriers on the frequency axis. (302), namely, 1 RB (Resource Block).
  • the data channel and the control channel can be time-multiplexed within one subframe by assuming that the time axis basic unit is one OFDM symbol 301 .
  • the processing time of the user can be reduced, so it is easy to satisfy the delay time requirement.
  • the frequency axis basic unit of the control channel By setting the frequency axis basic unit of the control channel to 1 RB 302, frequency multiplexing between the control channel and the data channel can be performed more efficiently.
  • control channel regions of various sizes can be set. For example, if a basic unit to which a downlink control channel is allocated in 5G is referred to as a Control Channel Element (CCE) 304 , one CCE 304 may be composed of a plurality of REGs 303 . If the REG 303 shown in FIG. 3 is described as an example, the REG 303 may be composed of 12 REs, and if 1 CCE 304 is composed of 6 REGs 303, 1 CCE 304 is It means that it can be composed of 72 REs.
  • CCE Control Channel Element
  • the corresponding region may be composed of a plurality of CCEs 304, and a specific downlink control channel is mapped to one or more CCEs 304 according to the aggregation level (AL) in the control region and transmitted.
  • A aggregation level
  • the CCEs 304 in the control area are divided by numbers, and in this case, numbers may be assigned according to a logical mapping method.
  • the DMRS 305 may be transmitted in three REs within one REG 303 .
  • the UE can decode the control information even without information about which precoding the base station has applied.
  • CORESET control resource set
  • FIG. 4 An example of FIG. 4 is a case in which one slot is assumed to be 7 OFDM symbols.
  • 4 shows an example in which two control regions (control region #1 (401) and control region #2 (402)) are set in a system bandwidth 410 on the frequency axis and one slot 420 on the time axis.
  • the frequency of the control regions 401 and 402 may be set to a specific subband 403 within the entire system bandwidth 410 .
  • the time length of the control regions 401 and 402 may be set by one or more OFDM symbols, and the time length of the control regions 401 and 402 may be defined as the control region length (Control Resource Set Duration) 404 .
  • the control region #1 401 is set to a control region length of 2 symbols
  • the control region #2 402 is set to a control region length of 1 symbol.
  • the control region in 5G described above may be configured by the base station to the terminal through higher layer signaling (eg, system information, master information block (MIB), RRC signaling).
  • Setting the control region to the terminal means providing information such as the location of the control region, subbands, resource allocation of the control region, and the length of the control region. For example, the information in Table 2 may be included.
  • the configuration information in [Table 2] is an example of the present disclosure, and in addition to the configuration information in [Table 2], various information necessary for transmitting the downlink control channel may be configured in the terminal.
  • DCI downlink control information
  • scheduling information for uplink data (PUSCH; Physical Uplink Shared CHannel) or downlink data (PDSCH; Physical Downlink Shared CHannel) is transmitted from the base station to the terminal through DCI.
  • PUSCH Physical Uplink Shared CHannel
  • PDSCH Physical Downlink Shared CHannel
  • the UE may monitor a DCI format for fallback and a DCI format for non-fallback for PUSCH or PDSCH.
  • the DCI format for countermeasures may consist of a field fixed between the base station and the terminal, and the DCI format for non-prevention may include a configurable field.
  • DCI for countermeasures for scheduling PUSCH may include information in Table 3.
  • DCI for non-preparation for scheduling PUSCH may include information in Table 4.
  • DCI for a countermeasure for scheduling a PDSCH may include information in Table 5.
  • the DCI for non-preparation for scheduling the PDSCH may include the information in Table 6.
  • the DCI may be transmitted through a physical downlink control channel (PDCCH), which is a downlink physical control channel, through a channel coding and modulation process.
  • PDCCH physical downlink control channel
  • a CRC Cyclic Redundancy Check
  • RNTI Radio Network Temporary Identifier
  • Different RNTIs are used according to the purpose of the DCI message, for example, UE-specific data transmission, a power control command, or a random access response. That is, the RNTI is not explicitly transmitted, but is transmitted while being included in the CRC calculation process.
  • the UE may check the CRC using the allocated RNTI. If the CRC check result is correct, the terminal can know that the corresponding message has been transmitted to the terminal.
  • DCI scheduling PDSCH for system information may be scrambled with SI-RNTI.
  • DCI scheduling a PDSCH for a random access response (RAR) message may be scrambled with an RA-RNTI.
  • DCI scheduling the PDSCH for the paging message may be scrambled with the P-RNTI.
  • DCI notifying SFI Slot Format Indicator
  • DCI notifying Transmit Power Control TPC may be scrambled with TPC-RNTI.
  • DCI for scheduling UE-specific PDSCH or PUSCH may be scrambled with C-RNTI (Cell RNTI).
  • a specific terminal When a specific terminal receives a data channel, that is, a PUSCH or a PDSCH scheduled through the PDCCH, data is transmitted and received together with the DMRS in the corresponding scheduled resource region.
  • a data channel that is, a PUSCH or a PDSCH scheduled through the PDCCH
  • 5 is a diagram illustrating an example of a configuration for a downlink RB structure in 5G.
  • FIG. 5 shows a case in which a specific terminal uses 14 OFDM symbols as one slot (or subframe) in downlink, PDCCH is transmitted in the first two OFDM symbols, and DMRS is transmitted in the third symbol. indicates.
  • the PDSCH in a specific RB in which the PDSCH is scheduled, the PDSCH is transmitted by mapping data to REs for which DMRS is not transmitted in the third symbol and REs from the fourth to the last symbol.
  • the subcarrier spacing ⁇ f expressed in FIG. 5 is 15 kHz for the LTE/LTE-A system and one of ⁇ 15, 30, 60, 120, 240, 480 ⁇ kHz is used for the 5G system.
  • the base station needs to transmit a reference signal.
  • the UE may measure the channel state between the BS and the UE by using the CRS or CSI-RS transmitted by the BS.
  • the channel state should be measured in consideration of various factors, which may include an amount of interference in downlink.
  • the amount of interference in the downlink includes an interference signal and thermal noise generated by an antenna belonging to an adjacent base station, and the amount of interference in the downlink is important for the UE to determine the downlink channel condition. For example, when a signal is transmitted from a base station having one transmit antenna to a terminal having one receive antenna, the terminal receives the energy per symbol that can be received in downlink from the reference signal received from the base station and simultaneously receives the symbol in the section receiving the corresponding symbol. Es/Io must be determined by judging the amount of interference to be made. The determined Es/Io is converted into a data transmission rate or a value corresponding thereto and is transmitted to the base station in the form of a channel quality indicator (CQI).
  • CQI channel quality indicator
  • the terminal feeds back information on the downlink channel state to the base station so that it can be utilized for downlink scheduling of the base station. That is, the terminal measures the reference signal transmitted by the base station in the downlink and feeds back information extracted thereto to the base station in the form defined by the LTE/LTE-A standard.
  • information fed back by the UE in LTE/LTE-A may be referred to as channel state information, and the channel state information may include the following three pieces of information.
  • RI Rank Indicator
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • CQI may be replaced with a signal to interference plus noise ratio (SINR) that can be utilized similarly to the maximum data rate, the maximum error correction code rate and modulation method, data efficiency per frequency, etc. have.
  • SINR signal to interference plus noise ratio
  • the RI, PMI, and CQI are related to each other and have meaning.
  • a precoding matrix supported by LTE/LTE-A is defined differently for each rank. Therefore, the PMI value X when RI has a value of 1 and the PMI value X when RI has a value of 2 may be interpreted differently.
  • the PMI value X notified to the base station is applied by the base station even when the terminal determines the CQI. That is, the UE reporting RI_X, PMI_Y, and CQI_Z to the base station is equivalent to reporting that the UE can receive the data rate corresponding to CQI_Z when the rank is RI_X and PMI_Y is PMI_Y.
  • the terminal calculates the CQI, it is assumed that the base station is to perform the transmission method, so that the optimized performance can be obtained when the transmission is actually performed in the corresponding transmission method.
  • RI, PMI, and CQI which are channel state information fed back by the UE, may be fed back in a periodic or aperiodic form.
  • the base station aperiodic feedback indicator (or channel state information request field, channel state) included in downlink control information (DCI) for the terminal Information request information) may be used to perform aperiodic feedback (or aperiodic channel state information reporting).
  • DCI downlink control information
  • the terminal receives an indicator configured to perform aperiodic feedback in the nth subframe
  • the terminal includes aperiodic feedback information (or channel state information) in data transmission in the n+kth subframe to perform uplink transmission. can do.
  • k is a parameter defined in the 3GPP LTE Release 11 standard, which is 4 in Frequency Division Duplexing (FDD) and may be defined as in [Table 7] in Time Division Duplexing (TDD).
  • feedback information (or channel state information) includes RI, PMI, and CQI, and RI and PMI may not be fed back according to feedback configuration (or channel status report configuration).
  • an in-band full duplex (hereinafter, referred to as full duplex) system is a time division transmission/reception (TDD) or a frequency division duplexing (FDD) system in the same band, unlike a frequency division duplexing (FDD) system. It is a system in which an uplink signal and a downlink signal of the same cell are simultaneously transmitted within a time resource. That is, in a full-duplex system, uplink and downlink signals are mixed in the same cell, and this acts as interference.
  • the type of interference that appears additionally due to the use of a full-duplex system is classified into two types: self-interference and cross-link interference.
  • Self-interference means the interference received from the base station's own downlink transmission received in the same band when the base station receives the uplink from the terminal, and the interference received from its own uplink transmission when the terminal has the full-duplex operation function when receiving the downlink. do. Since self-interference occurs at a close distance compared to a desired signal, the signal to interference and noise ratio (SINR) of the desired signal is greatly reduced. Therefore, the transmission performance of the full-duplex system is greatly affected by the performance of the self-interference cancellation technology.
  • SINR signal to interference and noise ratio
  • Cross-interference means interference received from downlink transmission of another base station received in the same band when the base station receives uplink from the terminal, and interference received from uplink transmission of another terminal when the terminal receives downlink.
  • the distance between the interfering transmitting end and the interfering receiving end is greater than the distance between the receiving end of the base station and the terminal transmitting the request signal of the base station, but the interference Since the transmit power is generally greater than 10-20 dB compared to the transmit power of the terminal, the received SINR performance of the uplink desired signal of the terminal received by the base station may be greatly affected.
  • the terminal receiving the downlink may receive cross-interference from another terminal using the uplink in the same band.
  • the distance between the interference terminal and the terminal receiving the downlink is significantly closer than the distance between the base station and the terminal receiving the downlink, the downlink desired signal reception SINR performance of the terminal may be lowered.
  • the meaningfully close case means that the reception power of the interference from the uplink terminal in the downlink receiving terminal is greater than or similar to the received signal from the base station in the downlink receiving terminal, so that the performance of the downlink received SINR of the terminal may be lowered. It means being close enough to be there.
  • the full-duplex system is divided into a type in which only a base station supports self-interference cancellation for supporting a full-duplex operation, and a type in which both the base station and the terminal support.
  • the reason for not considering the case where only the terminal has the interference cancellation function is that the implementation of the antenna separation self-interference cancellation, RF-circuit self-interference cancellation, and digital magnetic interference cancellation functions, which are components, is necessary for the base station in terms of form factor size and circuit structure. This is because it can be implemented more easily.
  • the type of the full-duplex system considered in the present disclosure basically considers the case where only the base station has the self-interference cancellation function, but the present disclosure can be equally applied and operated for the case where both the terminal and the base station have the self-interference cancellation function. .
  • FIG. 6 is a block diagram of a transceiver having a self-interference cancellation function, which is a major component of a full-duplex system, according to an embodiment of the present disclosure.
  • the structure of the transceiver 600 is equally applicable to the base station and the terminal, and the structure of any one of the base station and the terminal is not specified.
  • the present disclosure basically assumes that the base station has a self-interference cancellation function and configures a full-duplex system, it is assumed that the transceiver 600 is a base station for convenience.
  • the base station 600 may include a transmitter 610 for transmitting a downlink signal to the terminal, a self-interference canceller 620 for self-interference cancellation, and a receiver 630 for receiving an uplink signal from the terminal.
  • a transmitter 610 for transmitting a downlink signal to the terminal
  • a self-interference canceller 620 for self-interference cancellation
  • a receiver 630 for receiving an uplink signal from the terminal.
  • the detailed configuration method of each component of the base station 600 may vary depending on the implementation method of the base station.
  • the transceiver 600 may correspond to a terminal, and in this case, the terminal also transmits an uplink signal to the base station, the transmitter 610, the self-interference canceller 620 for self-interference cancellation, and the base station from the base station. It may include a receiver 630 for receiving a downlink signal.
  • FIG. 7 is a block diagram of a magnetic interference canceller according to an exemplary embodiment of the present disclosure.
  • the magnetic interference cancellation unit 700 may perform magnetic interference cancellation.
  • the magnetic interference cancellation unit 700 of FIG. 7A may include an antenna separation magnetic interference cancellation unit 710 , an RF-circuit magnetic interference cancellation unit 720 , and a digital magnetic interference cancellation unit 730 , but the magnetic interference cancellation unit ( 700) is not limited to the above-described example.
  • FIG. 7B is a diagram illustrating a full duplex transceiver block diagram according to an embodiment of the present disclosure.
  • the antenna SIC of FIG. 7b may correspond to the antenna separation self-interference canceller 710 of the present disclosure
  • the RF SIC may correspond to the RF-circuit self-interference canceller 720
  • the digital SIC is a digital self-interference canceller. It may correspond to rejection 730 .
  • the self-interference canceller 710 physically separates the antennas of the transmitting end and the receiving end of the base station, so that the magnetic interference is sufficiently attenuated by the receiving end of the base station to be received.
  • physically separating the antenna of the transmitting end and the antenna of the receiving end is a separation method using destructive interference of the antenna so that the downlink transmission signal of the base station is received small at the uplink receiving end of the base station, and a circulator in the same antenna. It may mean separation using a method using a method, a method using a cross pole structure, a method using an isolator, or the like.
  • the physical separation is not limited to the above example, and may refer to separation methods in which a downlink transmission signal of the base station can be received in a small amount at an uplink receiving end of the base station.
  • the RF-circuit self-interference canceller 720 may serve to attenuate the signal strength before the self-interference signal is quantized by an analog to digital converter (ADC).
  • ADC analog to digital converter
  • the self-interference signal transmitted from the transmitting end of the base station passes through the radio channel and the antenna self-interference canceller 710 to the RF-circuit self-interference canceller 720. It is possible to simulate the channel experienced by the arriving self-interfering signal.
  • the received signal y(t) passing through the antenna self-interference canceller 710 and the radio channel may be expressed by Equation 1 below.
  • h(t) represents the time domain impulse response of the radio channel and antenna self-interference canceller 710
  • n(t) represents white noise.
  • the RF-circuit of the RF-circuit self-interference canceller 720 may generate a pseudo-channel h'(t) simulating h(t) using a time delay module, a phase shift module, an amplifier module, etc. .
  • the self-interference signal is simulated by passing the transmission signal x(t) obtained from the transmitting end through the RF-circuit.
  • a minus sign is added to the self-interference signal, which serves to attenuate the self-interference signal as a result of Equation 2 below.
  • the bandwidth in which the performance of the RF-circuit self-interference canceller 720 is maintained may appear differently depending on the bandwidth of the aforementioned RF-circuit components, for example, a time delay module, a phase shift module, an amplifier module, etc. have.
  • the bandwidth limit of the self-interference canceller is limited due to the limitation of the analog circuit.
  • the digital self-interference cancellation unit 720 the RF-to the self-interference signal X[n] in Y[n] converted to the frequency domain after the signal y'(t) after passing the self-interference unit passes through the ADC ] can be removed.
  • the digital domain channel H[n] experienced by the transmission signal X[n] is estimated, and this is subtracted from the reception signal Y[n].
  • the performance of the digital self-interference canceller is determined by the similarity between the estimated channel H'[n] and the actual channel H[n]. That is, the higher the similarity between H'[n] and H[n], the higher the performance of the digital self-interference canceller.
  • an embodiment of the present disclosure will be described using an LTE or LTE-A system as an example, but the embodiment of the present disclosure may be applied to other communication systems having a similar technical background or channel type.
  • a communication system to which an embodiment of the present disclosure is applied may also include a 5th generation mobile communication technology (5G, new radio, NR) developed after LTE-A.
  • 5G, new radio, NR 5th generation mobile communication technology
  • the embodiments of the present disclosure may be applied to other communication systems through some modifications within a range that does not significantly depart from the scope of the present disclosure as judged by those having skilled technical knowledge.
  • FIG. 8 is a flowchart of a method for a terminal to transmit and receive a signal in a wireless communication system according to an embodiment of the present disclosure.
  • the terminal may receive information about the FD CRB (Full Duplex Carrier Resource Block) from the base station.
  • FD CRB Full Duplex Carrier Resource Block
  • the FD CRB (Full Duplex Carrier Resource Block) may refer to a band in which the base station can receive an uplink signal among CRBs obtained by dividing a band usable by the base station into predetermined units.
  • the FD CRB may refer to a band in which the terminal can transmit an uplink signal among CRBs obtained by dividing a band usable by the terminal into predetermined units.
  • the FD CRB may be a band in which the base station can transmit a downlink signal.
  • the FD CRB only means a band in which the terminal can transmit the uplink signal among the bands in which the base station can receive the uplink signal or the CRB in which the band usable by the terminal is divided by a certain unit. It does not assume that the downlink signal is transmitted using the CRB.
  • the FD CRB may correspond to a Full Duplex Resource Block (FD RB). More details on the FD CRB will be described later with reference to FIG. 10 .
  • FD RB Full Duplex Resource Block
  • the information on the FD CRB may be information related to the FD CRB to be described later. That is, the information on the FD CRB may include information on CRBs configured as FD CRBs, information on indexes indicating CRBs configured as FD CRBs, and the like. In addition, information on the FD CRB may correspond to an FD CRB set list to be described later. In addition, the information on the FD CRB may include information on an FD CRB set list or FD CRB set, which will be described later. A description of the FD CRB set list and the FD CRB set will be described later in more detail with reference to FIGS. 11A and 11B of the present disclosure.
  • the information on the FD CRB may include only information on the FD CRBs corresponding to one index.
  • the information on the FD CRB may include information on FD CRBs indicated by each index for several indexes.
  • the UE may receive information on the FD CRB through Radio Resource Control (RRC) signaling or DownLink Control Information (DCI) including information on the FD CRB.
  • RRC Radio Resource Control
  • DCI DownLink Control Information
  • the values of bits for allocating PUSCH Scheduling are defined according to the resource allocation type 0 or 1, respectively, as shown in the following equation.
  • bits 0 0
  • the value of the bit for allocating PUSCH Scheduling in DCI is determined by the UE. It may change depending on the available bandwidth.
  • the maximum number of CRBs may be changed.
  • bits 0 0
  • At this time may mean the maximum number of FD CRBs that the UE can receive scheduled in the BWP or the maximum number of CRBs at a scheduling time.
  • the UE may identify a resource element available for uplink data transmission based on the information on the FD CRB.
  • information on the FD CRB may be indicated by an index corresponding to the FD CRB configuration condition.
  • the FD CRB configuration condition may be information on conditions for configuring information on the FD CRB, and may include configuration information and environment information of a base station considered when configuring or determining the FD CRB.
  • the FD CRB configuration condition may include factors that can change the self-interference channel, such as transmission power, the number of ports, a combination of ports, a transmission beam shape of the base station, and precoding.
  • the FD CRB configuration condition may mean one configuration element or a combination of one or more configuration elements.
  • the FD CRB setting condition includes at least one or more of the number of ports, port types, and transmission power, but is not limited thereto. More details on the FD CRB setting condition will be described later with reference to FIG. 14 .
  • the terminal may transmit uplink data using the identified resource element.
  • the resource area usable by the terminal may be changed according to a change of a filter, a change of a beam, and the like.
  • the resource region of the terminal changed according to the changed configuration may be reflected in uplink scheduling for the terminal.
  • the UE may check the RB number allocated as an uplink resource according to uplink scheduling.
  • the UE may identify the FD CRB set from information on the FD CRB.
  • the UE may determine a Virtual Resource Block (VRB) number based on the uplink resource allocability for each FD CRB included in the FD CRB set. Thereafter, the UE may identify, as a resource element, a CRB having a VRB number for the FD CRB corresponding to the RB number allocated to the UE as an uplink resource.
  • VRB Virtual Resource Block
  • the UE may identify the FD CRB set from information on the FD CRB, and sequentially determine the VRB number for each FD CRB included in the FD CRB set based on the CRB order.
  • the UE may identify, as the resource element, a CRB having a VRB number for the FD CRB corresponding to the RB number allocated to the UE as an uplink resource.
  • the UE identifies the FD CRB set from the information on the FD CRB, and uses the RB overlapping the FD CRB set and the UL PDSCH RB region allocated as a Resource Indication Value (RIV) as a resource element. can be identified.
  • RIV Resource Indication Value
  • the terminal may receive a CSI-RS (Channel Status Information-Reference Signal) from the base station.
  • CSI-RS Channel Status Information-Reference Signal
  • the UE may receive the CSI-RS using the identified resource element.
  • the UE may receive the CSI-RS from the base station based on the preset transmission power for the CSI-RS.
  • the UE transmits power of the PDSCH among CSI-RS and PDSCH (Physical Downlink Shared Channel) received through the identified resource element. can be adjusted.
  • the terminal may obtain information on a preset transmission power pattern from the base station, and receive a transmission power change indicator from the base station at a time point identified based on the information on the transmission power pattern. .
  • the UE may receive the CSI-RS transmitted with the changed transmission power based on the transmission power pattern.
  • the information on the preset transmission power pattern may correspond to information on the transmission powers of the base station among the FD CRB configuration conditions for configuring the FD CRB.
  • information on the preset transmission power pattern may be determined based on a power size according to a time-frequency resource previously set during signal transmission, the number of ports, a combination, precoding, and a transmission beam shape.
  • the terminal may receive the transmit power indicator from the base station. Also, the UE may receive the transmitted CSI-RS based on the transmit power corresponding to the transmit power indicator.
  • the terminal may transmit a channel quality indicator (CQI) determined based on the received CSI-RS to the base station.
  • CQI channel quality indicator
  • the CQI may be measured based on the CSI-RS transmitted from the base station according to the preset transmission power for the CSI-RS.
  • the UE may measure the CQI based on the CSI-RS transmitted from the base station with the transmission power changed based on the transmission power pattern.
  • the UE may measure the CQI based on the CSI-RS transmitted based on the transmit power corresponding to the transmit power indicator.
  • FIG. 9 is a flowchart of a method for a base station to transmit and receive a signal in a wireless communication system according to an embodiment of the present disclosure.
  • the base station may obtain information on the FD CRB.
  • information on the FD CRB may be indicated by an index corresponding to the FD CRB configuration condition.
  • the FD CRB setting condition may include at least one or more of the number of ports, port types, and transmission power.
  • the base station may transmit information on the FD CRB.
  • the base station may transmit through RRC signaling or DCI including information on FD CRB.
  • the base station may receive the uplink data by using the resource element available for the uplink data transmission identified based on the information on the FD CRB.
  • the base station may transmit a CSI-RS (Channel Status Information-Reference Signal) to the terminal.
  • CSI-RS Channel Status Information-Reference Signal
  • the information on the FD CRB may include information on transmit power adjusted in a resource element available for uplink data transmission.
  • the base station may adjust the transmission power of the PDSCH among the PDSCH and CSI-RS transmitted using the identified resource element based on the adjusted transmission power.
  • the base station may transmit the PDSCH and CSI-RS based on the adjustment result.
  • the base station may transmit the transmit power change indicator to the terminal at the time of the transmit power change.
  • the base station may change the transmit power based on information on the preset transmit power pattern.
  • the base station may transmit a CSI-RS based on the changed transmit power.
  • the base station may transmit the transmit power indicator to the terminal. Also, the base station may transmit the CSI-RS based on the transmit power corresponding to the transmit power indicator.
  • the base station may receive a channel quality indicator (CQI) determined based on the transmitted CSI-RS from the terminal.
  • CQI channel quality indicator
  • FIG. 10 is a flowchart illustrating power control by a base station supporting a full-duplex operation according to an embodiment of the present disclosure.
  • the base station may set up an FD CRB (Full Duplex Carrier Resource Block).
  • FD CRB Full Duplex Carrier Resource Block
  • a carrier resource block may mean that a bandwidth in which each base station operates is divided and numbered in a resource block (RB) unit.
  • a physical resource block may mean that a band allocated to a terminal (UE), not a base station, is divided into RBs and numbered.
  • the base station and the UE may communicate through a CRB number or a PRB number, respectively, and the PRB of one UE may correspond to the CRB of the base station one-to-one. Therefore, the mapping between the CRB and the PRB only changes depending on the difference in viewpoint, and the application to the CRB and the application to the PRB can be easily induced based on the contents of the present disclosure.
  • Setting the FD CRB by the base station in step S1010 may mean determining a CRB in which the FD operation can be performed meaningfully when the base station supports the FD function.
  • the base station may set a CRB corresponding to a band in which the base station can receive an uplink signal as the FD CRB.
  • the base station may set the CRB corresponding to the band in which the terminal can transmit the uplink signal as the FD CRB.
  • the FD CRB may mean that a CRB capable of performing FD operation at a meaningful level among CRBs of all base stations is defined.
  • the FD CRB is arbitrarily set by the base station and may be determined due to the operational capability of the base station.
  • the FD CRB may be reset due to a change in the channel environment, etc., and after the reset, the list of FD CRBs is updated and the base station and the terminal can perform the same operation as before using the reset FD CRB.
  • the FD CRB of the base station may be determined in consideration of the following matters. For example, the base station may determine the specific RB as the FD CRB when the remaining self-interference level of the base station for the specific RB is measured to be less than or equal to a specific value. In addition, when the remaining self-interference level of the base station with respect to a specific RB is self-interference higher than or equal to a specific level, the base station may determine the specific RB as an HD CRB (Half Duplex Carrier Resource Block). Therefore, when the base station can adjust the downlink transmission power, the list of FD CRBs that can be set according to the downlink transmission power of the base station may change. In the present disclosure, the list of FD CRBs may correspond to an FD CRB set list to be described later. The FD CRB set list will be described later in more detail.
  • the base station may notify the terminal of the FD CRB configured in the above-described method.
  • 11A illustrates a change in transmit power of a base station and a change in an FD CRB according to an embodiment of the present disclosure.
  • the number of CRBs of the base station is 20, but it is not limited thereto, and the present disclosure is equally applicable even when the number of CRBs of the base station is any N.
  • the transmit power of the base station consists of a total of 4 steps of 43 dBm, 33 dBm, 23 dBm, and 13 dBm, and each transmit power is adjusted to have a difference of 10 dBm.
  • the step of the transmission power of the base station is not fixed to 4 steps, and the interval is not limited to 10 dBm. This is only an example for simply explaining the gist of the present disclosure, and the number of transmission power adjustment steps of the base station and the setting of transmission power may be flexibly adjusted.
  • FIG. 11A An example of the transmission power of the base station is shown in (a) of FIG. 11A.
  • the transmission power of the base station may be changed to 33 dBm, 23 dBm, 43 dBm, and 13 dBm according to time.
  • each transmission power is changed at the same time interval, but this is only for one example, and each transmission power may be flexibly changed.
  • the transmission powers of the base station change in a certain pattern, the transmission power of the base station may be arbitrarily determined according to the determination of the base station. A detailed definition of the change in transmit power will be dealt with in another embodiment.
  • FIG. 12 is a diagram illustrating a scenario in which a base station adjusts transmission power according to a distance between a base station and a terminal according to an embodiment of the present disclosure.
  • the base station when a base station needs to service a terminal that is far away from the base station, the base station may perform the service with a large transmit power. In this case, the base station may provide a service to the terminal far away from the base station at 43 dBm, which corresponds to the maximum transmission power of this example.
  • the base station when a base station serves a terminal close to the base station according to an embodiment of the present disclosure, the base station may service the terminal with a low transmission power of 13 dBm.
  • the FD CRB in which the base station can perform the FD operation may increase. Therefore, when the uplink demand is high, the base station can allocate more resources to the uplink terminal by increasing the FD CRB while servicing the downlink terminal in a close distance by lowering the transmission power. That is, the transmission power of the base station may be determined in consideration of the link request demand between the downlink terminal and the uplink terminal, the location of the downlink terminal, the distance between the base station and the terminal, and the like.
  • the distance between the base station and the terminal may be considered as follows.
  • the distance between the base station and the terminal is not limited to the actual physical distance between the base station and the terminal.
  • the distance between the base station and the terminal in this example may mean a distance converted according to the received power between the terminal and the base station, and such a converted distance may have a greater meaning than the physical distance.
  • the base station sets the terminal A to a terminal at a long distance.
  • the base station even when the minimum transmission power of the base station (13 dBm in this example) is set for any downlink terminal B, if the terminal can receive downlink, the base station will set the terminal B as a terminal in a short distance. At this time, even if the terminal B can receive with the minimum transmit power, it does not always service the terminal B with the minimum transmit power. If the terminal B wants to receive the service with a higher modulation and coding scheme (MCS), The base station may increase the transmit power of the base station. MCS settings and procedures for this will be dealt with in another embodiment.
  • MCS modulation and coding scheme
  • 11A (b) shows the type of CRB according to the transmission power of the base station.
  • the type of CRB may mean HD CRB or FD CRB.
  • the number of each CRB is sequentially assigned from 0 to 19 from the bottom.
  • all CRBs from CRB 0 to CRB 19 may operate as FD CRBs. That is, all CRBs from CRB 0 to CRB 19 may be configured as FD CRBs. Accordingly, the base station may receive an uplink signal using CRB 0 to CRB 19. In addition, the UE may transmit an uplink signal using CRB 0 to CRB 19. On the other hand, when the base station sets the transmit power to 43 dBm, which is the highest transmit power, only CRBs 5-6 can operate as FD CRBs.
  • CRBs 5-6 may be configured as FD CRBs
  • CRBs 0-4 and CRBs 7-19 may be configured as HD CRBs.
  • the base station may receive the uplink signal using CRB 5-6.
  • the UE may transmit an uplink signal using CRB 5-6.
  • the base station may use ⁇ CRB 4-9, CRB 11-17 ⁇ or ⁇ CRB 5-7, CRB 11-15 ⁇ as the FD CRB, respectively.
  • FD CRBs usable according to base station transmission power are fixed to CRBs at specific positions as shown in FIG. 11A .
  • the FD CRBs set according to each transmit power are not limited to or composed of CRBs as shown in FIG. 11A, and may vary according to the performance of the self-interference cancellation function of the base station, and may change according to the change of the self-interference channel of the base station. have.
  • the base station may use all CRBs for all transmission power of the base station for the FD operation.
  • the self-interference cancellation performance of the base station is high. Therefore, the base station may not be able to use all CRBs as FD CRBs at all transmission powers.
  • the CRB used as the FD CRB at a specific time t may be used as the HD CRB at another time t' according to a change in the self-interference channel.
  • the meaning that the CRB can be used as the FD CRB may mean that the self-interference is sufficiently removed through the operation of the self-interference cancellation function of the base station for a specific CRB. That is, the CRB used as the FD CRB may mean that self-interference is sufficiently removed so that the base station can receive the uplink of the terminal. More specifically, in the present disclosure, the meaning that the base station can use a specific CRB as the FD CRB means that when the terminal transmits the uplink, the self-interference that occurs when the base station simultaneously transmits the downlink is sufficiently removed so that the base station can This means that the uplink signal can be decoded without any problem. In addition, the CRB used as the FD CRB may mean an efficient CRB when used as an uplink.
  • a specific CRB is used as the HD CRB may mean that the base station cannot decode the uplink signal even if the base station receives the uplink because self-interference is too great for the specific CRB. More specifically, when the self-interference is too large, the base station cannot decode the uplink signal and the terminal has to retransmit the uplink of the terminal. Therefore, when considering the resource management and power use of the terminal, the terminal does not transmit the uplink. may mean that it is advantageous.
  • the base station when the base station arbitrarily changes the transmit power of the base station, the CRB that the base station can use as the FD CRB changes. Since the FD CRB according to each power is a value determined by the performance of the base station and the self-interference channel, it can be defined before changing the transmission power. Therefore, the base station can secure the FB CRB Set List (FB CRB set list) for each transmission power in advance, and can use this for communication with the terminal.
  • FB CRB Set List FB CRB set list
  • FD CRBs usable for the base station to receive the uplink are divided according to the transmit power of each base station, but the FD CRBs available for the base station to receive the uplink are based on the base station transmit power. It is not distinguished only for FD CRBs may be configured and configured based on an FD CRB setting condition including base station transmission power. As described above, as an example, the FD CRB configuration condition may include a transmission beam shape, precoding, the number of antenna ports, types of antenna ports, and the like.
  • the following embodiment relates to a process in which the base station delivers a list of FD CRB sets that can be used as FD CRBs according to the transmit power of the base station to the terminal.
  • the base station may cancel self-interference.
  • the base station may measure the self-interference channel and the self-interference level in advance. In this case, the amount of self-interference received for each sub-carrier of the base station may be different. In addition to this, the amount of self-interference remaining for each sub-carrier after the base station performs the self-interference cancellation function may also be different for each sub-carrier. This is because the self-interference cancellation function can be performed at different levels for each sub-carrier, which is due to the limitations of the device implementing the channel selectivity and RF self-interference cancellation function.
  • RBs that can obtain utility when utilized for full duplex operation in RB units which are the minimum units of resources allocated by the base station to the terminals, can be defined as FD CRBs, and RBs that do not can be defined as HD CRBs.
  • RBs that can obtain utility when utilized for uplink transmission/reception in units of RBs, may be defined as FD CRBs, and RBs that do not may be defined as HD CRBs.
  • Being able to obtain utility here means that uplink data can be received from the base station when using the FD operation in the same way as the meaning of 'can be used' as defined above.
  • the base station may transmit the FD CRB set list to the terminal.
  • the base station may transmit a list of FD CRBs corresponding to each index to the terminal.
  • the base station may transmit the FD CRB set corresponding to each index to the terminal for each index.
  • the base station may transmit an FD CRB set corresponding to each index for several indexes.
  • the FD CRB set may mean one or more CRBs determined as the FD CRB based on the FD CRB configuration condition.
  • the base station may notify the UE of the FD CRB according to the current FD CRB configuration condition by notifying the index indicating each FD CRB set together with the FD CRB set list or separately.
  • the base station may transmit an index to the terminal to indicate the FD CRB set determined based on the FD CRB configuration condition.
  • each index may correspond to an FD CRB setting condition. That is, if CRBs that can be used as FD CRBs are determined according to the FD CRB configuration conditions, an index may be allocated to correspond to the FD CRB configuration conditions in order to indicate to the UE the determined FD CRB set.
  • the FD CRB setting condition is not limited to the transmit power of the base station.
  • CRBs configured as FD CRBs may be changed according to the transmission power of the base station.
  • the FD CRB according to each transmit power may be changed differently.
  • the FD CRB set list may mean a set of CRB lists that can be used as FD CRBs corresponding to each index or a list of FD CRB sets. That is, the FD CRB set list includes information on which CRBs are included in the FD CRB set determined according to the FD CRB configuration condition according to the configuration of the base station and information on which index is used to indicate the determined FD CRB set. have. Accordingly, the FD CRB set list may include CRB location information of the FD CRB determined based on the FD CRB configuration condition, CRB number information, index information indicating each FD CRB set, and the like. Also, in the present disclosure, the FD RB set list may correspond to the FD CRB set list.
  • the FD CRB set included in the FD CRB set list is determined based on the FD CRB configuration condition, but the UE may not need to know all the FD CRB configuration conditions. Accordingly, the base station may transmit the FD CRB configuration condition to the terminal together with the FD CRB set list, and may transmit only necessary information among the FD CRB configuration conditions separately from the FD CRB set list. In addition, the base station may not transmit the FD CRB configuration condition to the terminal.
  • the FD CRB set corresponding to index 1 of the FD CRB set list may be CRB 5-CRB 7 and CRB 11-CRB 15.
  • the FD CRB setting condition corresponding to the index 1 may include transmission power, the number of ports, a combination of ports, a transmission beam shape, precoding, etc. according to one non-limiting example, as shown in FIG. 11A ( Referring to b), the transmit power of the base station may be 33 dBm. A detailed description of the FD CRB setting condition will be described later with reference to FIG. 14 .
  • FD CRBs corresponding to indices 2 to 4 of the FD CRB set list of FIG. 11B may be defined as an FD CRB set. In this case, there may be more than one index, and one index indicates one FD CRB set. can do.
  • FIG. 13 is a flowchart illustrating a method of changing transmission power based on an FD CRB set list according to an embodiment of the present disclosure.
  • the base station may deliver an FD CRB set list to the terminal, and in step S1320, the terminal may transmit an acknowledgment to the base station after receiving the FD CRB set list.
  • the following three cases may be considered when the FD CRB set list is transmitted to the UE in step S1310, but is not limited thereto.
  • the timing at which the FD CRB set list is transmitted to the terminal may be divided into an initial access, a change in the FD CRB set list in the base station, and a change in the base station to which the terminal belongs. and the details will be described later.
  • the time point at which the FD CRB set list is transmitted to the terminal may be after the initial access of the terminal.
  • the terminal may receive additional information necessary for transmission and reception with the base station from the base station.
  • the base station may deliver the FD CRB set list to the terminal.
  • the terminal receives the FD CRB set list from the base station, it can recognize that the corresponding base station supports the Full Duplex function. If the base station does not transmit the FD CRB set list, the terminal can recognize that the base station operates only with half duplex.
  • the base station transmits a separate indicator to the terminal to determine whether the full duplex operation is active can tell you
  • the terminal when the terminal receives a plurality of FD CRB set lists from the base station, the terminal may recognize that the base station changes the FD CRB through transmission power adjustment or full duplex function adjustment. As another example, when the terminal receives one FD CRB set list from the base station, the terminal may recognize that the base station operates without changing the FD CRB set list.
  • the timing at which the FD CRB set list is transmitted to the UE may be a case in which the FD CRB set list is changed within the base station even though the base station to which the UE belongs has not changed.
  • the base station must inform the UE of the changed FD CRB set list.
  • the UE may discard the existing FD CRB set list and operate by applying the new FD CRB set list.
  • the time point at which the UE discards the FD CRB set list and applies the new FD CRB set list follows the mutual agreement between the UE and the BS.
  • the UE may stop the uplink operation for the FD CRB until a new transmission time.
  • the timing at which the FD CRB set list is transmitted to the UE may be a case in which the base station to which the UE belongs changes.
  • the terminal may receive an FD CRB set list from a new base station.
  • the UE may interpret the FD CRB set list of the new base station in the same way as in interpreting the FD CRB set list upon initial access.
  • the base station may transmit a new FD CRB Set List to the terminal, and the terminal may receive and store the new FD CRB Set List and then utilize it for FD operation.
  • the timing of applying the new FD CRB Set List may vary depending on the agreement between the terminal and the base station.
  • Information informing the UE to transmit the FD CRB Set List from the base station may include the following information.
  • the base station may transmit to the terminal information on positions of CRBs usable as FD CRBs among the total CRBs of the base station, which are essential information, and an index corresponding to the corresponding FD CRB set.
  • the positions of CRBs usable as FD CRBs may mean positions of CRBs configured as FD CRBs based on the FD CRB configuration conditions.
  • an FD CRB set may be determined based on a configuration condition of one FD CRB.
  • the FD CRB set which is CRBs usable as the FD CRB, may be mapped one-to-one with respect to the transmission power of the base station that the base station can set. For example, as in the example described in FIG.
  • the base station may transmit the FD CRB setting condition, which is information for FD operation, simultaneously with or separately from the FD CRB Set List transmission.
  • the base station may separately transmit transmission power mapped to the index of the FD CRB Set List to the terminal.
  • FIG. 14 is a flowchart illustrating an operation of a base station according to an embodiment of the present disclosure.
  • FIG. 14 is a flowchart of a method for a base station to determine and transmit a CRB set list according to an embodiment of the present disclosure. Also, the flowchart of FIG. 14 may be a detailed operation of the base station corresponding to step S1310 of FIG. 13 .
  • the base station may first determine the FD CRB Set List. Alternatively, the base station may preferentially obtain the FD CRB Set List.
  • the FD CRB Set List may include FD CRBs determined according to the specific transmit power of the base station, but the FD CRB setting condition is not limited to the transmit power of the base station.
  • the FD CRB setting condition may mean a condition for setting the FD CRB Set List.
  • the FD CRB configuration condition may be a condition for determining whether the CRB is an FD CRB.
  • the FD CRB configuration condition may mean information for FD operation.
  • the FD CRB configuration information may be information necessary to operate in the base station, and may include configuration information of the base station, environment information, and the like. In more detail, in the present disclosure, for convenience of description, a method of setting the FD CRB Set List has been described by limiting the transmission power.
  • the FD CRB configuration condition may include factors that can change the self-interference channel, such as transmission power, the number of ports, a combination of ports, a transmission beam shape of the base station, and precoding.
  • the FD CRB configuration condition may mean one configuration element or a combination of one or more configuration elements.
  • the index may be defined so that the index corresponds to the FD CRB setting condition.
  • the index may be defined such that one index corresponds to a combination of configuration factors such as transmission power, number of ports, ports, and the like. Therefore, the base station can make an FD CRB Set by measuring in advance factors that can change the self-interference channel, such as the transmission beam shape and precoding of the base station, rather than the transmit power, and the index of the FD CRB Set List described above is the base station. can be mapped according to the setting change of
  • the base station may transmit the FD CRB Set List to the terminal together with each index.
  • the meaning of transmission may include an operation of confirming that the terminal has received the FD CRB Set List by transmitting an ACK indicating that it has been completely received to the base station and receiving it from the base station.
  • 15 is a flowchart illustrating an operation of a terminal according to an embodiment of the present disclosure.
  • FIG. 15 is a flowchart of a process of performing an FD operation based on a CRB set list of a terminal according to an embodiment of the present disclosure, and the flowchart of FIG. 15 is a specific operation of the terminal corresponding to S1320 of FIG. 13. .
  • the terminal may receive the FD CRB Set List set by the base station from the base station.
  • the reception of the terminal may include an operation of confirming reception with the base station.
  • the terminal may store the FD CRB Set List received from the base station.
  • the UE may convert the FD CRB into a PRB number and store it.
  • the UE converts the FD CRB Set List into a PRB number and stores it
  • the UE may re-interpret the BWP and map the PRB.
  • the base station may retransmit the FD CRB Set List when the BWP of the terminal is converted.
  • step S1530 the UE may perform an FD operation.
  • performing the FD operation means a case in which the UE performs an operation different from the existing one by interpreting the FD CRB Set List after receiving the FD CRB Set List.
  • the UE may check the FD CRB set or the combination of CRBs corresponding to each index transmitted by the base station from the FD CRB set list received from the base station.
  • the UE may transmit the uplink using a combination of CRBs in the FD CRB set list or the FD CRB set based on the index transmitted by the base station. A detailed operation method for this will be described in detail in a later embodiment.
  • the following embodiment relates to a CQI measurement operation of the terminal when the base station notifies the terminal of the FD CRB and the transmission power mapped thereto in the first embodiment.
  • the UE may measure the CSI-RS to measure the channel between the base station and the UE.
  • the UE reports the CQI to the base station by converting it into CQI based on the measured CSI-RS level in order to transmit the channel state to the base station.
  • the embodiment below relates to a method for maintaining the transmission power of a time including a specific time point at which a CSI-RS is transmitted at a certain level in order for the base station to maintain the same CSI-RS transmission power to the UE.
  • 16 is a diagram illustrating an example of transmission power adjustment of a base station according to an embodiment of the present disclosure.
  • FIG. 16 is a diagram of a method in which a base station transmits a CSI-RS with the same CSI-RS transmit power in order for the UE to measure CQI during a change in transmit power of the base station according to an embodiment of the present disclosure
  • 16 is a diagram illustrating PDSCH transmission power and CSI-RS transmission power of a base station.
  • the PDSCH transmission power may mean transmission power used when the base station transmits data to the terminal.
  • the CSI-RS transmission power may mean the transmission power used at the moment when the base station transmits the CSI-RS to the terminal.
  • the base station can flexibly change the transmission power for transmitting data.
  • the CSI-RS may be transmitted with a preset transmission power.
  • the transmission power is transmitted according to the determination of the base station.
  • 17 is a flowchart of a method for a base station to determine transmission power according to an embodiment of the present disclosure.
  • FIG. 17 is a flowchart of a method for a base station to determine power for transmitting a CSI-RS, according to an embodiment of the present disclosure.
  • the base station may determine whether the CSI-RS is included in the symbol.
  • the base station may transmit the symbol with the CSI-RS transmission power in step S1720.
  • the base station may transmit the symbol with the transmission power according to the proposed operation in step S1730. More specifically, in step S1730, the base station may transmit a symbol with PDSCH transmission power.
  • the CSI-RS transmission power may be the CSI-RS transmission power agreed between the base station and the terminal.
  • the CSI-RS transmission power may be the maximum transmission power that the base station can transmit, or may be the transmission power previously notified to the terminal by the base station, but the CSI-RS transmission power is not limited to the above-described example.
  • the gist of this embodiment is that the base station constantly maintains the transmission power allocated at the time when the terminal measures the CQI.
  • the PDSCH transmission power means the transmission power used when the base station adjusts the transmission power as a means for adjusting the FD CRB for better full duplex operation, and corresponds to the transmission power of the base station described above in general. is a term that becomes
  • FIG. 18 is a flowchart illustrating a process of determining an operation of a terminal according to an embodiment of the present disclosure.
  • FIG. 18 is a flowchart of a method for performing an operation according to a CSI-RS received from a base station by a UE, according to an embodiment of the present disclosure.
  • the UE may determine whether the base station is the time to transmit the CSI-RS.
  • step S1820 the terminal performs the FD operation corresponding to the CSI-RS transmission power for the time point at which the base station transmits the CSI-RS and the symbol including the CSI-RS. can be done
  • the UE may lower the power of the corresponding symbol PDSCH RE in order to match the symbol power of the PDSCH with the CSI-RS.
  • the meaning that the UE performs the FD operation corresponding to the CSI-RS transmission power may mean that the downlink terminal receives its own downlink signal according to the CSI-RS transmission power.
  • the meaning that the terminal receives the signal may include an action of decoding data transmitted from the base station or collecting channel information by measuring CSI-RS.
  • the PUSCH symbol matching the CSI-RS may operate by puncturing and rate matching. More specifically, in terms of the uplink terminal, when the terminal performs the FD operation corresponding to the CSI-RS transmission power, the terminal assumes the transmission power as the CSI-RS transmission power when performing uplink transmission. can do.
  • the operation may include a method of not performing uplink transmission on a symbol for CSI-RS transmission, or operating assuming that the FD CRB is the FD CRB corresponding to the CSI-RS transmission power.
  • step S1830 the UE performs an FD operation corresponding to the PDSCH transmission power for the symbol at which the CSI-RS is not transmitted and the CSI-RS is not included.
  • the meaning that the UE performs the FD operation corresponding to the PDSCH transmission power may mean that the UE operates assuming transmission corresponding to the PDSCH.
  • a detailed operation for this may include the third embodiment.
  • the following embodiment relates to a method in which the base station informs the terminal of the transmission power of the CSI-RS as a separate indicator so that the terminal can refer to it when generating a CQI based on the CSI-RS.
  • 19 is a diagram illustrating a transmission message of a terminal in a base station according to an embodiment of the present disclosure.
  • FIG. 19 is a diagram illustrating a method in which a base station transmits its transmit power to a terminal through a separate indicator according to an embodiment of the present disclosure.
  • the base station may transmit a transmit power indicator in step S1910.
  • the base station may inform the transmission power by allocating a separate bit to transmit the transmission power to the terminal.
  • the transmit power indicator may be a signal for the base station to instruct the terminal to transmit power, and each transmit power indicator may indicate different transmit power.
  • the base station allocates two bits, and the lowest transmission power is 00, the second lowest transmission power, 01, the third lowest transmission power, and 11, the lowest transmission power
  • the UE may be informed that high transmission power has been allocated.
  • the transmit power indicator sent by the base station to the terminal Since the transmit power indicator sent by the base station to the terminal must be received by all terminals, it is natural to transmit it through the broadcasting channel or through the CSS (Common Search Space) that all terminals must look at, but each terminal receives each separately. It may be included in DCI and transmitted.
  • the method for the base station to transmit the transmit power indicator is not limited to the above-described example.
  • the time when the transmit power indicator is transmitted from the base station to the terminal is the time when the transmit power is changed, the time when every symbol is transmitted, or a time with a certain period (for example, every N symbol is transmitted) may be determined, but is not limited to the above-described example.
  • FIG. 20 is a diagram illustrating an operation of a base station according to an embodiment of the present disclosure.
  • FIG. 20 illustrates a method in which a base station transmits a transmit power indicator to a terminal and adjusts transmit power accordingly, according to an embodiment of the present disclosure.
  • step S2010 the base station notifies the terminal of the change in transmit power through the transmit power indicator, and in step S2020, the base station may change the transmit power to correspond to the transmitted transmit power indicator.
  • the base station may change the transmit power while transmitting the transmit power change indicator to the terminal. Also, according to another embodiment, the base station may change the transmit power at a time t+t' after a predetermined time t' has elapsed from the time t at which the transmit power indicator is transmitted in consideration of the decoding time of the terminal. After the base station transmits the transmit power indicator, it may transmit by setting the transmit power indicated by the transmit power indicator. In this case, that the base station transmits may include all transmission operations that the base station sends to the terminal. For example, it may include CSI-RS transmission, PDSCH transmission, PDCCH transmission, and the like.
  • 21 is a flowchart illustrating an operation of a terminal according to an embodiment of the present disclosure.
  • FIG. 21 illustrates that the terminal receives the transmit power indicator from the base station and performs the terminal operation accordingly.
  • the terminal may receive a transmit power indicator from the base station. At this time, the terminal may check the transmit power of the base station according to the transmit power indicator sent by the base station.
  • the terminal may perform the terminal operation assuming that the base station uses the transmit power mapped to the transmit power indicator.
  • the UE may measure the CQI assuming the transmission power mapped to the transmission power indicator, and may assume that the PDSCH or the like is received according to the transmission power indicated by the transmission power indicator.
  • the UE may operate under the assumption that an FD CRB set of transmit power mapped to a transmit power indicator is used. A detailed operation method for this will be described in a later embodiment. In this case, the time when the transmit power indicator received by the terminal is applied is the same time as the time at which the base station changes the transmit power described in FIG. 17 .
  • the following embodiment relates to a method in which the base station informs the terminal when the base station operates by fixing the change in the transmission power of the CSI-RS in several patterns and allows the terminal to refer to it in generating the CQI.
  • 22 is a diagram illustrating a transmission message of a terminal in a base station according to an embodiment of the present disclosure.
  • 22 is a diagram illustrating that the base station transmits a transmission power change pattern to the terminal at a specific time point and then transmits the transmission power change pattern as an indicator, according to an embodiment of the present disclosure.
  • the base station may transmit a transmission power change pattern to the terminal at a specific time.
  • the transmission power change pattern transmitted by the base station to the terminal in FIG. 22 may mean a pattern in which a change in transmission power that the base station can use is defined in advance.
  • the information on the transmission power change pattern may correspond to information on the transmission powers of the base station among the FD CRB configuration conditions for configuring the FD CRB.
  • information on the transmission power change pattern may be indicated by an index, and the information on the transmission power change pattern may include transmission power change information for sequential transmission time points. For example, when the base station has A transmit power that can be changed, the power of B sequential transmission time points may have a total of A ⁇ B candidate groups. If an index for all these sets or an index for the most usable candidate group is designated and informed to the terminal, the terminal may know the power change for the B sequential transmission points in the future.
  • the base station may transmit a transmit power change indicator to the terminal.
  • the transmit power change indicator may mean a signal for indicating a change in transmit power when the transmit power changes based on a transmit power change pattern transmitted by the base station to the terminal. That is, the transmission power change pattern preset by the base station may form a pattern by repeating a plurality of transmit powers, but the transmit power change indicator may mean an indicator for the base station to transmit to the terminal when each power is changed. have.
  • the terminal may check the transmission power of the base station based on the received transmission power change indicator, and measure the CQI corresponding to the transmission power of the base station. In addition, the terminal may measure each CQI corresponding to each transmission power of the base station, and report the measured CQI to the base station.
  • the terminal reports this as an average, maximum, minimum, etc. for a specific time, and the base station can estimate the CQI of the terminal, etc. from this.
  • the terminal may measure the SNR for a certain time and report it to the base station. In this case, the UE may report the average value, the highest value, the lowest value, etc.
  • the base station may inversely calculate the CQI based on the mapping information between the SNR and the corresponding CQI, and determine the MCS based on the CQI.
  • the embodiment below relates to a transmission method that the terminal can use as the FD CRB that the terminal can use simultaneously with the base station for uplink transmission is changed as the transmission power of the base station is changed.
  • FIG. 23 is a diagram for explaining a difference in an FD CRB between an uplink resource allocation time of a terminal and a transmission time, according to an embodiment of the present disclosure.
  • FIG. 23 shows the FD CRB changes according to the change in transmission power according to an embodiment of the present disclosure, and accordingly, the time point at which the base station schedules the uplink resource of the terminal and the time point at which the terminal actually performs uplink transmission. This is a figure showing that the available RBs are different.
  • This example shows when the base station transmits by changing the transmission power to 33 dBm, 23 dBm, 43 dBm, and 13 dBm according to time.
  • the list of FD CRBs that the UE can use for uplink transmission is ⁇ CRB 5-7 and CRB 11-15 ⁇ , ⁇ CRB 4-9 and CRB 11-17 ⁇ , ⁇ CRB 5-6 ⁇ , ⁇ CRB 0-19 ⁇ sequentially.
  • the base station may allocate a resource for uplink transmission of the terminal to the terminal at the terminal uplink RB scheduling time t.
  • the actual time point at which the terminal performs uplink transmission may be a time point t+t' after a predetermined time t' has passed. Therefore, a phenomenon may occur that the transmission power of the base station is different from the transmission power when the terminal receives the resource for uplink transmission from the base station and when the terminal actually performs uplink transmission.
  • the transmission power of the base station when the terminal receives the resource for uplink transmission from the base station is 33 dBm, whereas the transmission power of the base station when the terminal actually transmits the uplink is 43 dBm. change For this reason, if the terminal receives the remaining CRBs from the base station except for CRBs 5-6, which are effective at 43 dB, and performs uplink transmission, the base station may not properly receive data transmitted to the ineffective CRB. Therefore, the UE may consider not to transmit even if the CRB allocated from the base station at the uplink scheduling time is not valid at the uplink transmission time, according to the change in the transmission power of the base station.
  • 24 is a diagram illustrating a data transmission flow chart between a terminal and a base station according to an embodiment of the present disclosure.
  • the terminal can interpret the FD CRB set received from the base station by combining the transmit power of the base station and the effective part of the CRB will be described.
  • the base station may allocate an uplink resource allocated to the terminal.
  • the terminal may reinterpret the allocated resource to transmit the uplink.
  • a specific embodiment of reinterpreting the allocated resource corresponding to step S2420 and transmitting the uplink will be described.
  • the embodiment to be described below relates to a method for the terminal to use as a resource for uplink transmission by creating an intersection of an RB allocated from a base station and an FD CRB that is changed according to the transmission power of the base station.
  • 25 is a diagram illustrating a CRB interpretation method of a terminal according to an embodiment of the present disclosure.
  • the UL PDSCH region allocated as RIV (Resource Indication Value) or the access resource for Grant Free means that the base station transmits the resource allocated to the UE through the control channel regardless of the CRB FD region. Assuming that it is the same as the link resource, it may mean a transmission resource according to the analysis result.
  • the available area according to the Tx Power Level indicates a CRB that is useful when the terminal uses it for uplink transmission according to the transmission power of the base station.
  • the available area according to the Tx Power Level may be preset as an FD CRB list set.
  • the UE may identify the FD CRB set from the FD CRB information.
  • the UE may identify, as a resource element, an RB overlapping the FD CRB set and the UL PDSCH RB region allocated as a Resource Indication Value (RIV).
  • RIV Resource Indication Value
  • the UE performs uplink transmission only on the resource allocated through the control channel and the CRB that is simultaneously present in the FD CRB Set List. For example, even if the base station allocates a specific RB to the terminal through the control channel, if the corresponding RB does not exist in the CRB list corresponding to the transmission power of the base station at the time when the terminal actually performs uplink transmission, for the specific RB Uplink transmission may not be performed.
  • 26 is a diagram illustrating an example of interpretation according to a CRB interpretation method of a terminal according to an embodiment of the present disclosure.
  • 26 shows an example of actual transmission RBs according to the transmission power of the base station at the time of uplink transmission of the terminal when the terminal is allocated RBs 4-10 from the base station.
  • the terminal may be allocated RBs 4-10 from the base station.
  • the UE may assume that RBs 4-10 of the UL PDSCH region are allocated as a Resource Indication Value (RIV).
  • the UE may assume that RBs 4-10 are allocated as access resources for Grant Free.
  • the RBs of FIG. 26(b) may be divided into RBs that can use only DL and RBs that can use DL/UL at the same time.
  • the RB capable of simultaneously using DL/UL may mean an RB through which the base station can receive an uplink, and may mean an RB through which the terminal can transmit an uplink.
  • the base station may transmit downlink using the corresponding RB, and the terminal may receive the downlink using the corresponding RB.
  • the base station receives the uplink using the corresponding RB, it is not premised that the base station transmits the downlink using the corresponding RB.
  • the contents to be described in the following drawings may be equally applied.
  • the RBs of FIG. 26(b) may correspond to FD CRB sets configured in the FD CRB set list according to an embodiment of the present disclosure.
  • the transmission power of the base station is shown in FIG. 26, but other configuration elements included in the FD CRB configuration condition other than the transmission power of the base station may also be considered when the FD CRB set is configured.
  • the UE may transmit the uplink in the CRB determined by reinterpreting the allocated resource.
  • the terminal when the terminal receives the index FD RB #0, the terminal upgrades only in RBs corresponding to the intersection between the allocated RBs 4-10 of FIG. 26(a) and RBs 5-6 of FIG. 26(b). link can be sent.
  • the terminal when the terminal receives the index FD RB #2, the terminal is located at the intersection between RBs 4-10 of FIG. 26(a) and RBs 4-9 and 11-17 of FIG. 26(b). Only the corresponding RBs can transmit the uplink. That is, in this case, according to FIG. 26(b), RBs 11 to 17 are also allocated to transmit the uplink, but due to the time difference between when the base station schedules the uplink and when the terminal actually transmits the uplink, RB 11 17 through 17 may be RBs that are not available for transmitting the uplink.
  • An embodiment to be described below relates to a method for the UE to map and interpret a virtual resource block (VRB) number of an FD CRB that is changed according to the transmission power of the base station based on the RB number allocated from the base station.
  • this embodiment relates to a method of sequentially assigning and interpreting VRB numbers to the FD CRB Set List.
  • VRB virtual resource block
  • FIG. 27 is a diagram illustrating a CRB interpretation method of a terminal according to an embodiment of the present disclosure.
  • FIG. 27 shows an example of a method in which a terminal is assigned a number for a CRB usable in uplink according to each transmission power.
  • the UE may interpret the low CRB with respect to the transmission power of each base station by sequentially attaching the VRB number from the CRB having the number.
  • a VRB number of 0 may be assigned to a CRB having the lowest CRB number.
  • CRBs 5-6 may be mapped to VRBs 0-1, respectively. If the transmit power is changed to 23dBm, the same CRB 5-6 may be mapped to VRB 1-2, respectively. Therefore, in the present embodiment, the VRB number mapped to the CRB may be changed as the transmission power is changed.
  • the UE may identify the FD CRB set from the FD CRB information and sequentially determine the VRB number for each FD CRB included in the FD CRB set based on the CRB order.
  • the UE may identify, as a resource element, a CRB having a VRB number for an FD CRB corresponding to an RB number allocated to the UE as an uplink resource.
  • the UE may map the VRBs in the FD RB operation order, and even if the base station allocates continuous resources, the UE may reinterpret it as non-contiguous resources. When there is no RB number allocated according to the Tx power level of the base station, the UE may not perform UL transmission using the corresponding RB.
  • FIG. 28 is a diagram illustrating an example of an interpretation according to a CRB interpretation method of a terminal according to an embodiment of the present disclosure.
  • FIG. 28(a) shows the FD CRB and the HD CRB allocated to each transmission power of the base station.
  • RBs in which DL and UL transmission can be used simultaneously and RBs in which only DL can be used are preset.
  • the RBs of FIG. 28( a ) may correspond to FD CRB sets configured in the FD CRB set list according to an embodiment of the present disclosure described above.
  • the RBs of FIG. 28( a ) may correspond to FD CRB sets configured in the FD CRB set list according to an embodiment of the present disclosure described above.
  • other configuration elements included in the FD CRB configuration condition may also be considered when the FD CRB set is configured.
  • FIG. 28(b) is a diagram illustrating a result of re-interpreting the CRB for uplink transmission based on the transmission power of the base station currently received by the terminal.
  • the UE may check the FD CRB set in the allocated FD CRB set list, and may perform VRB numbering for each FD CRB based on the CRB order. For example, although the UE is allocated RB 4-10 from the base station, in the case of index FD RB #0, the UE does not have a CRB numbered VRB 4-10. Accordingly, in the case of FD RB #0, the UE does not transmit an uplink. As another example, in the case of index FD RB #1, VRB numbered CRBs 0-6 exist. In this case, since RBs 4-10 are allocated as ULs by the base station, the UE may transmit ULs using VRB-numbered CRBs 4-6.
  • An embodiment to be described below relates to a method for the UE to map and interpret the VRB number of the FD CRB that is changed according to the transmission power of the base station based on the RB number allocated from the base station.
  • this embodiment relates to a method of always mapping the same VRB number to the FD CRB Set List and operating the same.
  • 29 is a diagram illustrating a CRB interpretation method of a terminal according to an embodiment of the present disclosure.
  • 29 shows an example of a method in which a terminal is assigned a number for a CRB usable in uplink according to each transmission power.
  • the UE maps the unique VRB number from the CRB usable at all transmission powers in the CRB Set List of the base station. For example, in this example, CRBs 5-6 usable in all transmission powers are mapped to VRBs 1-2, respectively. At this time, even if the transmit power is changed, the VRB number mapped to the CRB is uniquely maintained.
  • the UE identifies the FD CRB set from the FD CRB information, and determines a Virtual Resource Block (VRB) number based on the uplink resource allocability for each FD CRB included in the FD CRB set.
  • the UE may identify, as a resource element, a CRB having a VRB number for the FD CRB corresponding to the RB number allocated to the UE as an uplink resource.
  • VRB Virtual Resource Block
  • the uplink resource allocation possibility may mean a possibility that each CRB is allocated as an uplink resource based on the FD CRB set list.
  • the uplink resource allocability means, based on the FD CRB set list, the probability that each FD CRB identified in the FD CRB set indicated by each index was included in the FD CRB set indicated by other indexes.
  • the uplink resource allocability means a frequency that can be set as an FD CRB calculated for each CRB or a frequency that can be allocated as an uplink resource, etc., based on the FD CRB set list indicated by each index. have.
  • the UE may map the VRBs in the FD RB operation order, and even if the base station allocates continuous resources, the UE may reinterpret it as non-contiguous resources. When there is no RB number allocated according to the Tx power level of the base station, the UE may not perform UL transmission using the corresponding RB.
  • FIG. 30 is a diagram illustrating an example of interpretation according to a CRB interpretation method of a terminal according to an embodiment of the present disclosure.
  • FIG. 30 illustrates an example of actual transmission RBs according to the transmission power of the base station at the time of uplink transmission of the terminal when the terminal receives RBs 4-10 from the base station.
  • FIG. 30(a) shows the FD CRB and the HD CRB allocated to each transmission power of the base station.
  • RBs for simultaneous use of DL and UL transmission and RBs for which only DL can be used are preset.
  • the RBs of FIG. 30( a ) may correspond to CRB sets configured in the FD CRB set list according to an embodiment of the present disclosure described above.
  • the RBs of FIG. 30( a ) may correspond to CRB sets configured in the FD CRB set list according to an embodiment of the present disclosure described above.
  • other configuration elements included in the FD CRB configuration condition may also be considered when the FD CRB set is configured.
  • FIG. 30(b) is a diagram illustrating a result of reinterpreting the CRB for UL transmission based on the transmission power of the base station currently received by the terminal.
  • the UE checks the FD CRB set in the FD CRB set list, and for each FD CRB, FD CRBs at specific positions included in the FD CRB set may be numbered so that the same VRB number can be determined.
  • the UE may perform VRB numbering for each FD CRB based on uplink resource allocability. That is, based on each FD CRB set list, the VRB number can be determined from FD CRBs of specific positions that can be most frequently allocated.
  • the UE transmits the uplink using the FD CRB corresponding to the VRB number determined by the above rule, it is possible to transmit the uplink using the FD CRB with high probability.
  • the UE may perform VRB numbering starting from RB 5 .
  • CRB No. 5 is most frequently allocated as an uplink resource for the FD CRB set list indicated by each index.
  • CRB 5 has been allocated as an uplink resource.
  • CRB 11 is checked, it can be confirmed that CRB 11 is allocated as an uplink resource only to the FD CRB set list indicated by the indexes FD RB #2 and FD RB #3. Accordingly, the uplink resource allocation possibility of CRB 5 is higher than that of CRB 11.
  • CRB 5 having a high uplink resource allocation possibility may be determined as a lower VRB number than CRB 11.
  • RB 5 is an RB commonly allocated as an FD RB in each FD CRB set list, and may be an RB determined to have the highest uplink resource allocation possibility.
  • RB 4 and 8 VRBs may be sequentially numbered for , 9, 11, 16, and 17.
  • the UE is allocated RB 4-10 from the base station, in case of index FD RB #0, the UE does not have a CRB numbered VRB 4-10. Therefore, in the case of FD RB #0, the UE does not transmit UL.
  • FD RB #1 there are 0-6 VRB numbered CRBs. In this case, since RBs 4-10 are allocated as ULs by the base station, the UE may transmit ULs using VRB-numbered CRBs 4-6.
  • 31 is a block diagram illustrating the structure of a terminal according to an embodiment of the present disclosure.
  • the terminal may include a transceiver 3110 , a memory 3120 , and a processor 3130 .
  • the transceiver 3110, the processor 3130, and the memory 3120 of the terminal may operate.
  • the components of the terminal are not limited to the above-described examples.
  • the terminal may include more or fewer components than the aforementioned components.
  • the transceiver 3110 , the processor 3130 , and the memory 3120 may be implemented in the form of a single chip.
  • the processor 3130 may include one or more processors.
  • the transceiver 3110 collectively refers to a receiver of a terminal and a transmitter of the terminal, and may transmit/receive a signal to and from a network entity, a base station, or another terminal.
  • a signal transmitted and received with a network entity, a base station, or another terminal may include control information and data.
  • the transceiver 3110 may include an RF transmitter that up-converts and amplifies the frequency of a transmitted signal, and an RF receiver that low-noise amplifies and down-converts a received signal.
  • this is only an example of the transceiver 3110, and components of the transceiver 3110 are not limited to the RF transmitter and the RF receiver.
  • the transceiver 3110 may receive a signal through a wireless channel, output it to the processor 3130 , and transmit a signal output from the processor 3130 through a wireless channel.
  • the memory 3120 may store programs and data necessary for the operation of the terminal. Also, the memory 3120 may store control information or data included in a signal obtained from the terminal.
  • the memory 3120 may be configured as a storage medium or a combination of storage media such as a ROM, a RAM, a hard disk, a CD-ROM, and a DVD. Also, the memory 3120 may not exist separately and may be included in the processor 3130 .
  • the processor 3130 may control a series of processes so that the terminal can operate according to the above-described embodiment of the present disclosure.
  • the processor 3130 may receive a control signal and a data signal through the transceiver 3110 and process the received control signal and data signal.
  • the processor 3130 may include the processed control signal and data signal.
  • a signal may be transmitted through the transceiver 3110 .
  • the processor 3130 may receive the DCI composed of two layers and control the components of the terminal to receive a plurality of PDSCHs at the same time.
  • At least one processor 3130 may control the transceiver 3110 to receive information on an FD CRB (Full Duplex Carrier Resource Block) from the base station.
  • the processor 3130 may identify a resource element available for uplink data transmission based on the information on the FD CRB.
  • the processor 3130 may control the transceiver 3110 to transmit uplink data using the identified resource element.
  • information on the FD CRB may be indicated by an index corresponding to the FD CRB configuration condition.
  • the FD CRB setting condition may include at least one or more of the number of ports, port types, and transmission power.
  • the processor 3130 may control the transceiver 3110 to receive through RRC (Radio Resource Control) signaling including information on the FD CRB or DCI (DownLink Control Information).
  • RRC Radio Resource Control
  • DCI DownLink Control Information
  • the processor 3130 may control the transceiver 3110 to receive a Channel Status Information-Reference Signal (CSI-RS) using the identified resource element.
  • the processor 3130 may control the transceiver 3110 to transmit a channel quality indicator (CQI) determined based on the received CSI-RS to the base station.
  • CQI channel quality indicator
  • the processor 3130 determines that among CSI-RS and PDSCH (Physical Downlink Shared Channel) received through the identified resource element, the PDSCH transmit power can be adjusted.
  • the processor 3130 may obtain information about a preset transmission power pattern from the base station.
  • the processor 3130 may control the transceiver 3110 to receive the transmit power change indicator from the base station at a time point identified based on the information on the transmit power pattern.
  • the processor 3130 may measure the CQI based on the CSI-RS transmitted with the transmission power changed based on the transmission power pattern.
  • the processor 3130 controls the transceiver 3110 to receive the transmit power indicator from the base station, and based on the CSI-RS transmitted based on the transmit power corresponding to the transmit power indicator. CQI can be measured.
  • the processor 3130 identifies the FD CRB set from information on the FD CRB, and based on the uplink resource allocability for each FD CRB included in the FD CRB set, Virtual Resource (VRB). Block) number is determined, and a CRB having a VRB number for an FD CRB corresponding to an RB number allocated to the UE as an uplink resource may be identified as a resource element.
  • VRB Virtual Resource
  • the processor 3130 identifies the FD CRB set from information on the FD CRB, and sequentially determines a VRB number for each FD CRB included in the FD CRB set based on the CRB order, and , a CRB having a VRB number for the FD CRB corresponding to the RB number allocated to the UE as an uplink resource may be identified as a resource element.
  • the processor 3130 identifies the FD CRB set from the information on the FD CRB, and uses the RB overlapping with the FD CRB set and the UL PDSCH RB region allocated as a Resource Indication Value (RIV) as a resource. elements can be identified.
  • RIV Resource Indication Value
  • 32 is a block diagram illustrating a structure of a base station according to an embodiment of the present disclosure.
  • the base station may include a transceiver 3210 , a memory 3220 , and a processor 3230 .
  • the transceiver 3210 , the processor 3230 , and the memory 3220 of the base station may operate.
  • the components of the base station are not limited to the above-described example.
  • the base station may include more or fewer components than the above-described components.
  • the transceiver 3210 , the processor 3230 , and the memory 3220 may be implemented in the form of a single chip.
  • the processor 3230 may include one or more processors.
  • the transceiver 3210 collectively refers to a receiver of a base station and a transmitter of the base station, and may transmit/receive a signal to and from a terminal or a network entity.
  • a signal transmitted and received with a terminal or a network entity may include control information and data.
  • the transceiver 3210 may include an RF transmitter for up-converting and amplifying the frequency of a transmitted signal, and an RF receiver for low-noise amplifying a received signal and down-converting the frequency.
  • this is only an exemplary embodiment of the transceiver 3210 and components of the transceiver 3210 are not limited to the RF transmitter and the RF receiver.
  • the transceiver 3210 may receive a signal through a wireless channel and output it to the processor 3230 , and transmit the signal output from the processor 3230 through a wireless channel.
  • the memory 3220 may store programs and data necessary for the operation of the base station. Also, the memory 3220 may store control information or data included in a signal obtained from the base station.
  • the memory 3220 may be configured as a storage medium or a combination of storage media, such as ROM, RAM, hard disk, CD-ROM, and DVD. Also, the memory 3220 may not exist separately and may be included in the processor 3230 .
  • the processor 3230 may control a series of processes so that the base station can operate according to the above-described embodiment of the present disclosure.
  • the processor 3230 may receive a control signal and a data signal through the transceiver 3210 and process the received control signal and data signal.
  • the processor 3230 may include the processed control signal and data signal.
  • a signal may be transmitted through the transceiver 3210 .
  • the processor 3230 may control each component of the base station to configure and transmit the DCI including the allocation information for the PDSCH.
  • At least one processor 3230 obtains information on the FD CRB, controls the transceiver 3210 to transmit information on the FD CRB, and based on the information on the FD CRB and may control the transceiver 3210 to receive uplink data by using the identified resource element available for uplink data transmission.
  • the information on the FD CRB may be indicated by an index corresponding to the FD CRB configuration condition, and the FD CRB configuration condition may include at least one of the number of ports, the type of port, and the transmission power. have.
  • the processor 3230 may control the transceiver 3210 to transmit information on the FD CRB through RRC signaling or DCI.
  • the information on the FD CRB may include information on transmit power adjusted in a resource element available for uplink data transmission.
  • the processor 3230 may adjust the transmission power of the PDSCH among the PDSCH and the CSI-RS transmitted using the identified resource element based on the adjusted transmission power, and based on the adjustment result, the PDSCH and the CSI-RS
  • the transceiver 3210 may be controlled to transmit .
  • the processor 3230 may control the transceiver 3210 to transmit the transmit power change indicator to the terminal at the time of the transmit power change, and based on the information on the preset transmit power pattern, The transmission power may be changed, and the transceiver 3210 may be controlled to transmit the CSI-RS based on the changed transmission power.
  • the processor 3230 may control the transceiver 3210 to transmit the transmit power indicator to the terminal, and transmit the CSI-RS based on the transmit power corresponding to the transmit power indicator.
  • the transceiver 3210 may be controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)

Abstract

본 개시의 일 실시예에 따른 무선통신시스템에서 신호를 송수신하는 단말은 송수신부 및 상기 송수신부를 제어하는 적어도 하나 이상의 프로세서를 포함하고,상기 적어도 하나의 프로세서는 기지국으로부터 FD CRB(Full Duplex Carrier Resource Block)에 대한 정보를 수신하도록 상기 송수신부를 제어하고, 상기 FD CRB에 대한 정보에 기초하여 업링크 데이터 송신에 이용 가능한 적어도 하나의 리소스 블록을 식별하고, 상기 식별된 적어도 하나의 리소스 블록을 이용하여 업 링크 데이터를 송신하도록 상기 송수신부를 제어할 수 있다.

Description

무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
본 개시는 무선 통신 시스템에서 전이중 동작을 지원하기 위한 것으로, 보다 상세하게는 무선 통신 시스템에서 전이중동작을 효율적으로 활용하기 위한 전력 제어 방법 및 장치에 대한 것이다.
4G(4 th generation) 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G(5 th generation) 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(70GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non-orthogonal multiple access), 및 SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술인 빔 포밍, MIMO 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 3eG 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
상술한 것과 무선통신 시스템의 발전에 따라 다양한 서비스를 제공할 수 있게 됨으로써, 이러한 서비스들을 원활하게 제공하기 위한 방안이 요구되고 있다. 특히 더 오랜 시간 동안 사용자에게 서비스를 제공하기 위해 단말의 전력을 절약하는 통신 방법과 이를 고려한 채널상태정보 보고 방법이 요구되고 있다.
상술한 바와 같은 논의를 바탕으로, 본 개시(disclosure)는, 무선통신시스템에서 전이중 동작을 지원하는 단말이 신호를 송수신하는 방법을 제공하고자 한다.
본 개시의 일 실시예에 따르면, 무선통신시스템에서 신호를 송수신하는 단말 및 단말의 동작 방법이 제공될 수 있다. 무선통신시스템에서 신호를 송수신하는 단말에 있어서, 상기 단말은 송수신부; 및 상기 송수신부를 제어하는 적어도 하나 이상의 프로세서를 포함할 수 있다. 상기 적어도 하나 이상의 프로세서는 기지국으로부터 FD CRB(Full Duplex Carrier Resource Block)에 대한 정보를 수신하도록 상기 송수신부를 제어하고, 상기 FD CRB에 대한 정보에 기초하여 업링크 데이터 송신에 이용 가능한 리소스 엘리먼트를 식별하고, 상기 식별된 리소스 엘리먼트를 이용하여 업 링크 데이터를 송신하도록 상기 송수신부를 제어할 수 있다.
본 개시의 일 실시예에 따르면, 무선통신시스템에서 신호를 송수신하는 기지국 및 기지국의 동작 방법이 제공될 수 있다. 무선통신시스템에서 신호를 송수신하는 기지국은 송수신부; 및 상기 송수신부를 제어하는 적어도 하나 이상의 프로세서를 포함할 수 있다. 이때, 상기 적어도 하나 이상의 프로세서는 FD CRB에 대한 정보를 획득하고, 상기 FD CRB에 대한 정보를 송신하도록 상기 송수신부를 제어하고, 상기 FD CRB에 대한 정보에 기초하여 식별된 업링크 데이터 송신에 이용 가능한 리소스 엘리먼트를 이용하여 업링크 데이터를 수신하도록 상기 송수신부를 제어할 수 있다.
개시된 실시예에 따라 무선 통신 시스템에서 업링크로 이용할 수 있는 전송 자원을 추가적으로 확보할 수 있는바, 데이터를 효과적으로 송수신할 수 있다.
도 1는 LTE에서 시스템에서 데이터 혹은 제어채널이 전송되는 무선자원영역인 시간-주파수영역의 기본 구조를 나타낸 도면이다.
도 2는 LTE의 DCI가 전송되는 하향링크 물리채널인 PDCCH를 도시한 도면이다.
도 3은 5G에서 하향링크 제어채널을 구성하는 시간 및 주파수 자원의 기본단위의 일 예를 보여주는 도면이다.
도 4는 5G 무선통신 시스템에서 하향링크 제어채널이 전송되는 제어영역(CORESET; Control Resource Set)에 대한 일 예를 도시한 도면이다.
도 5는 5G에서 하향링크 RB 구조에 대한 설정의 일 예를 도시한 도면이다.
도 6은 본 개시의 일 실시예에 따라 전이중시스템의 주요 구성요소인 자기 간섭 제거 기능을 갖춘 송수신장치의 구성도이다.
도 7a 및 도 7b는 본 개시의 일 실시에에 따른 자기 간섭 제거부의 구성도이다.
도 8은 본 개시의 일 실시예에 따른 단말이 무선통신시스템에서 신호를 송수신하는 방법에 대한 흐름도이다.
도 9는 본 개시의 일 실시예에 따른 기지국이 무선통신시스템에서 신호를 송수신하는 방법에 대한 흐름도이다.
도 10은 본 개시의 일 실시예에 따른 전이중 동작을 지원하는 기지국이 전력을 제어하는 흐름도이다.
도 11a는 본 개시의 일 실시예에 따른 기지국의 송신 전력 변화 및 이에 따른 FD CRB의 변화를 나타낸 것이다.
도 11b는 본 개시의 일 실시예에 따른 FD CRB 세트 리스트를 설명한 도면이다.
도 12는 본 개시의 일 실시예에 따라 기지국과 단말간의 거리에 따라 기지국이 전송 전력을 조절하는 시나리오를 나타낸 도면이다.
도 13은 본 개시의 일 실시예에 따른 FD CRB 세트 리스트에 기초한 전송 전력을 변경하는 방법을 도시한 흐름도이다.
도 14는 본 개시의 일 실시 예에 따른 기지국의 동작을 도시한 흐름도이다.
도 15는 본 개시의 일 실시 예에 따른, 단말의 동작을 도시한 흐름도이다.
도 16은 본 개시의 일 실시 예에 따라, 기지국의 전송 전력 조정의 일례를 도시한 도면이다.
도 17은 본 개시의 일 실시 예에 따라, 기지국이 전송 전력을 결정하는 방법에 대한 흐름도이다.
도 18은 본 개시의 일 실시 예에 따른, 단말의 동작 결정 과정을 도시한 흐름도이다
도 19는 본 개시의 일 실시 예에 따라, 기지국에서 단말의 전송 메시지를 도시한 도면이다.
도 20은 본 개시의 일 실시 예에 따른, 기지국의 동작을 도시한 도면이다.
도 21은 본 개시의 일 실시 예에 따른, 단말의 동작을 도시한 흐름도이다.
도 22는 본 개시의 일 실시 예에 따라, 기지국에서 단말의 전송 메시지를 도시한 도면이다.
도 23은 본 개시의 일 실시 예에 따라, 단말의 상향링크 자원 할당 시점과 전송 시점 간 FD CRB의 차이를 설명하기 위한 도면이다.
도 24는 본 개시의 일 실시 예에 따라, 단말과 기지국간의 데이터 전송 흐름도를 도시한 도면이다.
도 25는 본 개시의 일 실시 예에 따른, 단말의 CRB 해석 방법을 도시한 도면이다.
도 26은 본 개시의 일 실시 예에 따른, 단말의 CRB 해석 방법에 따른 해석 예시를 도시한 도면이다.
도 27은 본 개시의 일 실시 예에 따를 때, 단말의 CRB 해석 방법을 도시한 도면이다.
도 28은 본 개시의 일 실시 예에 따른, 단말의 CRB 해석 방법에 따른 해석 예시를 도시한 도면이다.
도 29는 본 개시의 일 실시 예에 따른, 단말의 CRB 해석 방법을 도시한 도면이다.
도 30은 본 개시의 일 실시 예에 따른, 단말의 CRB 해석 방법에 따른 해석 예시를 도시한 도면이다.
도 31은 본 개시의 일 실시예에 따른 단말의 구조를 도시하는 블록도이다.
도 32는 본 개시의 일 실시예에 따른 기지국의 구조를 도시하는 블록도이다.
본 개시의 일 실시예에 따를 때, 무선통신시스템에서 신호를 송수신하는 단말이 제공될 수 있다. 단말은, 송수신부 및 상기 송수신부를 제어하는 적어도 하나 이상의 프로세서를 포함하고, 상기 적어도 하나의 프로세서는 기지국으로부터 FD CRB(Full Duplex Carrier Resource Block)에 대한 정보를 수신하도록 상기 송수신부를 제어하고, 상기 FD CRB에 대한 정보에 기초하여 업링크 데이터 송신에 이용 가능한 적어도 하나의 리소스 블록을 식별하고, 상기 식별된 적어도 하나의 리소스 블록을 이용하여 업 링크 데이터를 송신하도록 상기 송수신부를 제어할 수 있다.
일 실시예에 따를 때, 상기 FD CRB에 대한 정보는 FD CRB 설정 조건에 대응되는 인덱스로 지시되고, 상기 FD CRB 설정 조건은 자기 간섭 채널에 관련된 기지국의 특성을 포함할 수 있다.
일 실시예에 따를 때, 상기 FD CRB에 대한 정보에 기초하여 식별된 상기 업링크 데이터 송신에 이용 가능한 적어도 하나의 리소스 블록의 주파수 대역은, 상기 기지국으로부터 다운링크 데이터 수신에 이용 가능한 전체 주파수 대역 중 일부 주파수 대역에 대응될 수 있다.
일 실시예에 따를 때, 상기 적어도 하나의 프로세서는, 상기 업링크 데이터 송신에 이용 가능한 적어도 하나의 리소스 블록을 이용하여, 상기 기지국으로부터 다운링크 데이터를 수신하도록 상기 송수신부를 제어할 수 있다.
일 실시예에 따를 때, 상기 적어도 하나의 프로세서는, 상기 업링크 데이터 송신에 이용 가능한 적어도 하나의 리소스 블록을 이용하여, 상기 기지국으로부터 다운링크 데이터를 수신하지 않도록 상기 송수신부를 제어할 수 있다.
일 실시예에 따를 때, 상기 업링크 데이터 송신에 이용 가능한 적어도 하나의 리소스 블록의 주파수 대역은 상기 기지국의 전체 주파수 대역 중 일부 주파수 대역에 대응되고, 상기 전체 주파수 대역 중 상기 일부 주파수 대역을 제외한 주파수 대역은, 상기 기지국으로부터 다운링크 데이터 수신에 이용 가능한 주파수 대역일 수 있다.
일 실시예에 따를 때, 상기 FD CRB에 대한 정보는, 상기 단말의 업링크 데이터 송신에 이용 가능한 적어도 하나의 리소스 블록이 포함된 리소스 블록 세트에 대한 정보를 포함하고, 상기 리소스 블록 세트에 대한 정보는, 상기 적어도 하나의 리소스 블록의 위치 정보, 번호 정보 또는 상기 리소스 블록 세트를 지시하는 인덱스 정보 중 적어도 하나를 포함할 수 있다.
일 실시예에 따를 때, 상기 적어도 하나의 리소스 블록의 주파수 대역은 상기 기지국의 전체 주파수 대역 중 상기 단말이 업링크 데이터를 송신하기 위해 상기 기지국으로부터 할당된 일부 주파수 대역에 대응되고, 상기 적어도 하나의 리소스 블록의 주파수 대역은 FD CRB 설정 조건에 기초하여 할당될 수 있다.
본 개시의 일 실시예에 따를 때, 무선통신시스템에서 신호를 송수신하는 기지국이 제공될 수 있다. 기지국은, 송수신부 및 상기 송수신부를 제어하는 적어도 하나 이상의 프로세서를 포함하고, 상기 적어도 하나의 프로세서는 FD CRB에 대한 정보를 획득하고, 상기 FD CRB에 대한 정보를 송신하도록 상기 송수신부를 제어하고,상기 FD CRB에 대한 정보에 기초하여 식별된 업링크 데이터 수신에 이용 가능한 적어도 하나의 리소스 블록을 이용하여 업링크 데이터를 수신하도록 상기 송수신부를 제어할 수 있다.
일 실시예에 따를 때, 상기 FD CRB에 대한 정보는 FD CRB 설정 조건에 대응되는 인덱스로 지시되고, 상기 FD CRB 설정 조건은 자기 간섭 채널에 관련된 기지국의 특성을 포함할 수 있다.
일 실시예에 따를 때, 상기 FD CRB에 대한 정보에 기초하여 식별된 상기 업링크 데이터 수신에 이용 가능한 적어도 하나의 리소스 블록의 주파수 대역은, 단말로 다운링크 데이터 송신에 이용 가능한 전체 주파수 대역 중 일부 주파수 대역에 대응될 수 있다.
일 실시예에 따를 때, 상기 적어도 하나의 프로세서는, 상기 업링크 데이터 수신에 이용 가능한 적어도 하나의 리소스 블록을 이용하여, 단말로 다운링크 데이터를 송신하도록 상기 송수신부를 제어할 수 있다.
일 실시예에 따를 때, 상기 적어도 하나의 프로세서는, 상기 업링크 데이터 수신에 이용 가능한 적어도 하나의 리소스 블록을 이용하여, 단말로 다운링크 데이터를 송신하지 않도록 상기 송수신부를 제어할 수 있다.
일 실시예에 따를 때, 상기 FD CRB에 대한 정보는, 업링크 데이터 수신에 이용 가능한 적어도 하나의 리소스 블록이 포함된 리소스 블록 세트에 대한 정보를 포함하고, 상기 리소스 블록 세트에 대한 정보는, 상기 적어도 하나의 리소스 블록의 위치 정보, 번호 정보 또는 상기 리소스 블록 세트를 지시하는 인덱스 정보 중 적어도 하나를 포함할 수 있다.
본 개시의 일 실시예에 따를 때, 단말이 무선통신시스템에서 신호를 송수신하는 방법이 제공될 수 있다. 단말이 신호를 송수신하는 방법은, 기지국으로부터 FD CRB에 대한 정보를 수신하는 단계, 상기 FD CRB에 대한 정보에 기초하여 업링크 데이터 송신에 이용 가능한 적어도 하나의 리소스 블록을 식별하는 단계 및 상기 식별된 적어도 하나의 리소스 블록을 이용하여 업 링크 데이터를 송신하는 단계를 포함할 수 있다.
본 개시의 일 실시예에 따른 무선통신시스템에서 신호를 송수신하는 단말은 송수신부; 및 상기 송수신부를 제어하는 적어도 하나 이상의 프로세서를 포함하고 상기 적어도 하나 이상의 프로세서는 기지국으로부터 FD CRB(Full Duplex Carrier Resource Block)에 대한 정보를 수신하도록 상기 송수신부를 제어하고, 상기 FD CRB에 대한 정보에 기초하여 업링크 데이터 송신에 이용 가능한 리소스 엘리먼트를 식별하고, 상기 식별된 리소스 엘리먼트를 이용하여 업 링크 데이터를 송신하도록 상기 송수신부를 제어할 수 있다.
일 실시예에 따를 때, 상기 FD CRB에 대한 정보는 FD CRB 설정 조건에 대응되는 인덱스로 지시되고, 상기 FD CRB 설정 조건은 포트 개수, 포트 종류 또는 전송 전력 중 적어도 하나 이상을 포함할 수 있다.
일 실시예에 따를 때, 상기 프로세서는 상기 FD CRB에 대한 정보를 포함하는 RRC(Radio Resource Control) 시그널링 또는 DCI(DownLink Control Information)를 통해 상기 FD CRB에 대한 정보를 수신하도록 상기 송수신부를 제어할 수 있다.
일 실시예에 따를 때, 상기 프로세서는 상기 식별된 리소스 엘리먼트를 이용하여 CSI-RS(Channel Status Information-Reference Signal)를 수신하도록 상기 송수신부를 제어하고, 상기 수신된 CSI-RS에 기초하여 결정된 CQI(Channel Quality Indicator)를 상기 기지국으로 송신하도록 상기 송수신부를 제어하고, 상기 FD CRB에 대한 정보를 기초로 식별된 리소스 엘리먼트에 대한 전송 전력이 조정됨에 따라, 상기 식별된 리소스 엘리먼트를 통해 수신되는 상기 CSI-RS 및 PDSCH(Physical Downlink Shared Channel) 중, 상기 PDSCH의 전송 전력이 조정될 수 있다.
일 실시예에 따를 때, 상기 프로세서는 상기 기지국으로부터 기 설정된 전송 전력 패턴에 대한 정보를 획득하고, 상기 전송 전력 패턴에 대한 정보를 기초로 식별된 시점에 상기 기지국으로부터 전송 전력 변화 지시자를 수신하도록 상기 송수신부를 제어하고, 상기 전송 전력 패턴을 기초로 변경된 전송 전력으로 송신된 CSI-RS를 기초로 CQI를 측정할 수 있다.
일 실시예에 따를 때, 상기 프로세서는, 상기 기지국으로부터 전송 전력 지시자를 수신하도록 상기 송수신부를 제어하고, 상기 전송 전력 지시자에 대응되는 전송 전력에 기초하여 송신된 CSI-RS를 기초로 CQI를 측정할 수 있다.
일 실시예에 따를 때, 상기 프로세서는, 상기 FD CRB에 대한 정보로부터 FD CRB 세트를 식별하고, 상기 FD CRB 세트에 포함된 각 FD CRB에 대해 업링크 리소스 할당 가능성에 기초하여 VRB(Virtual Resource Block) 번호를 결정하고, 상기 단말이 업링크 자원으로 할당받은 RB 번호와 대응되는 상기 FD CRB에 대한 VRB 번호를 갖는 CRB를 상기 리소스 엘리먼트로 식별할 수 있다.
일 실시예에 따를 때, 상기 프로세서는, 상기 FD CRB에 대한 정보로부터 FD CRB 세트를 식별하고, CRB 순서에 기초하여 상기 FD CRB 세트에 포함된 각 FD CRB에 대한 VRB 번호를 순차적으로 결정하고, 상기 단말이 업링크 자원으로 할당받은 RB 번호와 대응되는 상기 FD CRB에 대한 VRB 번호를 갖는 CRB를 상기 리소스 엘리먼트로 식별할 수 있다.
일 실시예에 따를 때, 상기 프로세서는, 상기 FD CRB에 대한 정보로부터 FD CRB 세트를 식별하고, 상기 FD CRB 세트와 RIV(Resource Indication Value)로 할당된 UL PDSCH RB 영역과 중첩되는 RB를 상기 리소스 엘리먼트로 식별할 수 있다.
본 개시의 일 실시예에 따른 무선통신시스템에서 신호를 송수신하는 기지국에 있어서, 송수신부; 및 상기 송수신부를 제어하는 적어도 하나 이상의 프로세서를 포함하고, 상기 적어도 하나 이상의 프로세서는 FD CRB에 대한 정보를 획득하고, 상기 FD CRB에 대한 정보를 송신하도록 상기 송수신부를 제어하고, 상기 FD CRB에 대한 정보에 기초하여 식별된 업링크 데이터 송신에 이용 가능한 리소스 엘리먼트를 이용하여 업링크 데이터를 수신하도록 상기 송수신부를 제어할 수 있다.
일 실시예에 따를 때, 상기 FD CRB에 대한 정보는 FD CRB 설정 조건에 대응되는 인덱스로 지시되고, 상기 FD CRB 설정 조건은 포트 개수, 포트 종류 또는 전송 전력 중 적어도 하나 이상을 포함할 수 있다.
일 실시예에 따를 때, 상기 프로세서는 상기 FD CRB에 대한 정보를 RRC 시그널링 또는 DCI를 통해 송신하도록 상기 송수신부를 제어할 수 있다.
일 실시예에 따를 때, 상기 FD CRB에 대한 정보는, 상기 업링크 데이터 송신에 이용 가능한 리소스 엘리먼트에서 조정되는 전송 전력에 관한 정보를 포함하고, 상기 프로세서는 상기 조정된 전송 전력에 기초하여, 상기 식별된 리소스 엘리먼트를 이용하여 송신되는 PDSCH 및 CSI-RS 중 상기 PDSCH의 전송 전력을 조정하고, 상기 조정 결과에 기초하여, 상기 PDSCH 및 상기 CSI-RS를 송신하도록 상기 송수신부를 제어할 수 있다.
일 실시예에 따를 때, 상기 프로세서는, 전송 전력 변화 시점에 단말에 전송 전력 변화 지시자를 송신하도록 상기 송수신부를 제어하고, 기 설정된 전송 전력 패턴에 대한 정보에 기초하여 전송 전력을 변경하고, 변경된 전송 전력에 기초한 CSI-RS를 송신하도록 상기 송수신부를 제어할 수 있다.
일 실시예에 따를 때, 상기 프로세서는 전송 전력 지시자를 단말로 송신하도록 상기 송수신부를 제어하고, 상기 전송 전력 지시자에 대응되는 전송 전력에 기초하여 CSI-RS를 송신하도록 상기 송수신부를 제어할 수 있다.
이하, 본 개시의 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.
실시 예를 설명함에 있어서 본 개시가 속하는 기술 분야에 익히 알려져 있고 본 개시와 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 개시의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
마찬가지 이유로 첨부된 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 개시의 실시 예들은 본 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 개시의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능할 수 있다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능할 수 있다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능할 수 있다.
이때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일부 실시 예에 따르면 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 일부 실시 예에 따르면, '~부'는 하나 이상의 프로세서를 포함할 수 있다.
이하 첨부된 도면을 참조하여 본 개시의 동작 원리를 상세히 설명한다. 하기에서 본 개시를 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 이하, 기지국은 단말의 자원할당을 수행하는 주체로서, gNode B, eNode B, Node B, BS (Base Station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE (User Equipment), MS (Mobile Station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 물론 상기 예시에 제한되는 것은 아니다. 이하, 본 개시는 무선 통신 시스템에서 단말이 기지국으로부터 방송 정보를 수신하기 위한 기술에 대해 설명한다. 본 개시는 4G (4 th generation) 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G (5 th generation) 통신 시스템을 IoT (Internet of Things, 사물인터넷) 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스(예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 또는 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다.
이하 설명에서 사용되는 방송 정보를 지칭하는 용어, 제어 정보를 지칭하는 용어, 통신 커버리지(coverage)에 관련된 용어, 상태 변화를 지칭하는 용어(예: 이벤트(event)), 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 장치의 구성 요소를 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 개시가 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 다른 용어가 사용될 수 있다.
이하 설명의 편의를 위하여, 3GPP LTE (3rd generation partnership project long term evolution) 규격에서 정의하고 있는 용어 및 명칭들이 일부 사용될 수 있다. 하지만, 본 개시가 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다.
무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(High Speed Packet Access), LTE(Long Term Evolution 또는 E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced (LTE-A), LTE-Pro, 3GPP2의 HRPD(High Rate Packet Data), UMB (Ultra Mobile Broadband), 및 IEEE의 802.16e 등의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다.
광대역 무선 통신 시스템의 대표적인 예로, LTE 시스템에서는 하향링크(Downlink; DL)에서는 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 채용하고 있고, 상향링크(Uplink; UL)에서는 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식을 채용하고 있다. 상향링크는 단말(UE(User Equipment) 또는 MS(Mobile Station))이 기지국(eNode B, 또는 base station(BS))으로 데이터 또는 제어신호를 전송하는 무선링크를 뜻하고, 하향링크는 기지국이 단말로 데이터 또는 제어신호를 전송하는 무선링크를 뜻한다. 상기와 같은 다중 접속 방식은, 각 사용자 별로 데이터 또는 제어정보를 실어 보낼 시간-주파수 자원을 서로 겹치지 않도록, 즉 직교성 (Orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 또는 제어정보를 구분한다.
LTE 이후의 향후 통신 시스템으로서, 즉, 5G 통신시스템은 사용자 및 서비스 제공자 등의 다양한 요구 사항을 자유롭게 반영할 수 있어야 하기 때문에 다양한 요구사항을 만족하는 서비스가 지원되어야 한다. 5G 통신시스템을 위해 고려되는 서비스로는 증가된 모바일 광대역 통신(Enhanced Mobile BroadBand: eMBB), 대규모 기계형 통신(massive Machine Type Communication: mMTC), 초신뢰 저지연 통신(Ultra Reliability Low Latency Communciation: URLLC) 등이 있다.
일부 실시 예에 따르면, eMBB는 기존의 LTE, LTE-A 또는 LTE-Pro가 지원하는 데이터 전송 속도보다 더욱 향상된 데이터 전송 속도를 제공하는 것을 목표로 한다. 예를 들어, 5G 통신시스템에서 eMBB는 하나의 기지국 관점에서 하향링크에서는 20Gbps 최대 전송 속도(peak data rate), 상향링크에서는 10Gbps의 최대 전송 속도를 제공할 수 있어야 한다. 동시에, 증가된 단말의 실제 체감 전송 속도(User perceived data rate)를 제공해야 한다. 이와 같은 요구 사항을 만족시키기 위해, 더욱 향상된 다중 입력 다중 출력 (Multi Input Multi Output: MIMO) 전송 기술을 포함하여 송수신 기술의 향상을 요구한다. 또한 현재의 LTE가 사용하는 2GHz 대역 대신에 3~6GHz 또는 6GHz 이상의 주파수 대역에서 20MHz 보다 넓은 주파수 대역폭을 사용함으로써 5G 통신시스템에서 요구하는 데이터 전송 속도를 만족시킬 수 있다.
동시에, 5G 통신시스템에서 사물 인터넷(Internet of Thing: IoT)와 같은 응용 서비스를 지원하기 위해 mMTC가 고려되고 있다. mMTC는 효율적으로 사물 인터넷을 제공하기 위해 셀 내에서 대규모 단말의 접속 지원, 단말의 커버리지 향상, 향상된 배터리 시간, 단말의 비용 감소 등이 요구될 수 있다. 사물 인터넷은 여러 가지 센서 및 다양한 기기에 부착되어 통신 기능을 제공하므로 셀 내에서 많은 수의 단말(예를 들어, 1,000,000 단말/km2)을 지원할 수 있어야 한다. 또한 mMTC를 지원하는 단말은 서비스의 특성상 건물의 지하와 같이 셀이 커버하지 못하는 음영지역에 위치할 가능성이 높으므로 5G 통신시스템에서 제공하는 다른 서비스 대비 더욱 넓은 커버리지를 요구할 수 있다. mMTC를 지원하는 단말은 저가의 단말로 구성되어야 하며, 단말의 배터리를 자주 교환하기 힘들기 때문에 매우 긴 배터리 생명시간(battery life time)이 요구될 수 있다.
마지막으로, URLLC의 경우, 특정한 목적(mission-critical)으로 사용되는 셀룰러 기반 무선 통신 서비스로서, 로봇(Robot) 또는 기계 장치(Machinery)에 대한 원격 제어(remote control), 산업 자동화(industrial automation), 무인 비행장치(Unmaned Aerial Vehicle), 원격 건강 제어(Remote health care), 비상 상황 알림(emergency alert) 등에 사용되는 서비스로서, 초 저지연 및 초 신뢰도를 제공하는 통신을 제공해야 한다. 예를 들어, URLLC을 지원하는 서비스는 0.5 밀리초보다 작은 무선 접속 지연시간(Air interface latency)를 만족해야 하며, 동시에 10-5 이하의 패킷 오류율(Packet Error Rate)의 요구사항을 갖는다. 따라서, URLLC을 지원하는 서비스를 위해 5G 시스템은 다른 서비스보다 작은 전송 시간 구간(Transmit Time Interval: TTI)를 제공해야 하며, 동시에 주파수 대역에서 넓은 리소스를 할당해야 하는 설계사항이 요구된다. 다만, 전술한 mMTC, URLLC, eMBB는 서로 다른 서비스 유형의 일 예일 뿐, 본 개시의 적용 대상이 되는 서비스 유형이 전술한 예에 한정되는 것은 아니다.
상기에서 전술한 5G 통신시스템에서 고려되는 서비스들은 하나의 프레임워크 (Framework) 기반으로 서로 융합되어 제공되어야 한다. 즉, 효율적인 리소스 관리 및 제어를 위해 각 서비스들이 독립적으로 운영되기 보다는 하나의 시스템으로 통합되어 제어되고 전송되는 것이 바람직하다.
또한, 이하에서 LTE, LTE-A, LTE Pro 또는 NR 시스템을 일례로서 본 개시의 실시 예를 설명하지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 개시의 실시 예가 적용될 수 있다. 또한, 본 개시의 실시 예는 숙련된 기술적 지식을 가진 자의 판단으로써 본 개시의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.
이하 LTE 및 LTE-A 시스템의 프레임 구조에 대해 도면을 참조하여 보다 구체적으로 설명하고자 한다.
도 1는 LTE에서 시스템에서 상기 데이터 혹은 제어채널이 전송되는 무선자원영역인 시간-주파수영역의 기본 구조를 나타낸 도면이다.
도 1에서 가로축은 시간영역을, 세로축은 주파수영역을 나타낸다. 시간영역에서의 최소 전송단위는 OFDM 심벌(symbol)(101)로서, N symb 개의 OFDM 심벌(101)이 모여 하나의 슬롯(102)을 구성하고, 2개의 슬롯이 모여 하나의 서브프레임(103)을 구성한다. 슬롯(102)의 길이는 0.5ms이고, 서브프레임(103)의 길이는 1.0ms이다. 그리고 라디오 프레임(104)은 10개의 서브프레임(103)으로 구성되는 시간영역 단위이다. 주파수영역에서의 최소 전송단위는 서브캐리어(Subcarrier)(105)로서, 전체 시스템 전송 대역(Transmission Bandwidth)의 대역폭은 총 N BW개의 서브캐리어(105)로 구성된다.
시간-주파수영역에서 자원의 기본 단위는 리소스 엘리먼트(RE; Resource Element)(106)로서, 리소스 엘리먼트는 OFDM 심벌 인덱스 및 서브캐리어 인덱스로 나타낼 수 있다. 리소스 블록(RB; Resource Block 혹은 PRB; Physical Resource Block)(107)은 시간영역에서 N symb 개의 연속된 OFDM 심벌(101)과 주파수 영역에서 N RB개의 연속된 서브캐리어(108)로 정의된다. 따라서, 하나의 RB(107)는 N symb x N RB 개의 RE(106)로 구성된다. 일반적으로 데이터의 최소 전송단위는 상기 RB 단위이다. LTE 시스템에서 일반적으로 상기 N symb = 7, N RB=12 이고, N BW 및 N RB는 시스템 전송 대역의 대역폭에 비례한다.
다음으로 LTE 및 LTE-A 시스템에서의 하향링크 제어정보(DCI; Downlink Control Information)에 대해 구체적으로 설명하도록 한다.
LTE 시스템에서 하향링크 데이터 혹은 상향링크 데이터에 대한 스케줄링 정보는 DCI를 통해 기지국으로부터 단말에게 전달된다. DCI는 상향링크 데이터에 대한 스케줄링 정보인지 하향링크 데이터에 대한 스케줄링 정보인지 여부, 제어정보의 크기가 작은 컴팩트 DCI 인지 여부, 다중안테나를 사용한 공간 다중화 (spatial multiplexing)을 적용하는지 여부, 전력제어 용 DCI 인지 여부 등에 대한 정보를 포함할 수 있다. 또한, 상술한 정보들에 따라 정의된 DCI 포맷이 적용되어 운용될 수 있다. 예컨대, 하향링크 데이터에 대한 스케줄링 제어정보인 DCI format 1은 적어도 다음과 같은 제어정보들을 포함하도록 구성된다.
- 자원 할당 유형 0/1 플래그(Resource allocation type 0/1 flag): 리소스 할당 방식이 유형 0 인지 유형 1 인지 통지한다. 유형 0 은 비트맵 방식을 적용하여 RBG(resource block group) 단위로 리소스를 할당한다. LTE 시스템에서 스케줄링의 기본 단위는 시간 및 주파수 영역 리소스로 표현되는 RB(resource block)이고, RBG는 복수개의 RB로 구성되어 유형 0 방식에서의 스케줄링의 기본 단위가 된다. 유형 1 은 RBG 내에서 특정 RB를 할당하도록 한다.
- 자원 블록 할당(Resource block assignment): 데이터 전송에 할당된 RB를 통지한다. 시스템 대역폭 및 리소스 할당 방식에 따라 표현되는 리소스가 결정된다.
- 변조 및 코딩 방식(MCS; Modulation and Coding Scheme): 데이터 전송에 사용된 변조방식과 전송하고자 하는 데이터인 transport block의 크기를 통지한다.
- HARQ 프로세스 번호(HARQ process number): HARQ의 프로세스 번호를 통지한다.
- 새로운 데이터 지시자(New data indicator): HARQ 초기전송인지 재전송인지를 통지한다.
- 중복 버전(Redundancy version): HARQ의 중복 버전을 통지한다.
- PUCCH를 위한 전송 전력 제어 명령(TPC(Transmit Power Control) command for PUCCH(Physical Uplink Control CHannel)): 상향링크 제어채널인 PUCCH에 대한 전송 전력 제어 명령을 통지한다.
상기 DCI는 채널코딩 및 변조과정을 거쳐 하향링크 물리제어채널인 PDCCH(Physical Downlink Control CHannel)를 통해 전송된다.
DCI 메시지 payload에는 CRC(Cyclic Redundancy Check)가 붙으며, CRC는 단말의 신원에 해당하는 RNTI(Radio Network Temporary Identifier)로 스크램블링(scrambling) 된다. DCI 메시지의 목적, 예를 들어 단말-특정(UE-specific)의 데이터 전송, 전력제어 명령 혹은 랜덤 엑세스 응답 등에 따라 서로 다른 RNTI 들이 사용된다. 곧, RNTI가 명시적으로 전송되지 않고 CRC 계산과정에 포함되어 전송된다. PDCCH 상으로 전송되는 DCI 메시지를 수신하면 단말은 할당 받은 RNTI를 사용하여 CRC를 확인하여 CRC 확인 결과가 맞으면 해당 메시지는 그 단말에게 전송된 것임을 알 수 있다.
도 2는 LTE의 DCI가 전송되는 하향링크 물리채널인 PDCCH를 도시한 도면이다.
도 2에 따르면, PDCCH(201)은 데이터 전송 채널인 PDSCH(Physical Downlink Shared Channel)(202)와 시간다중화 되고, 전 시스템 대역폭에 걸쳐 전송된다. PDCCH(201)의 영역은 OFDM 심볼 개수로 표현이 되며 이는 PCFICH(Physical Control Format Indicator CHannel)을 통해 전송되는 CFI(Control Format Indicator)로 단말에게 지시된다.
PDCCH(201)는 서브프레임의 앞부분에 오는 OFDM 심볼에 할당됨으로써, 단말이 최대한 빨리 하향링크 스케줄링 할당을 디코딩할 수 있도록 하고, 이를 통해 DL-SCH(DownLink Shared CHannel)에 대한 디코딩 지연, 즉 전체적인 하향링크 전송 지연을 감소시킬 수 있는 장점이 있다.
하나의 PDCCH는 하나의 DCI 메시지를 운반하고, 하향링크와 상향링크에 다수의 단말들이 동시에 스케줄링될 수 있으므로, 각 셀 내에서는 다수개의 PDCCH의 전송이 동시에 이루어진다. PDCCH(201)의 디코딩을 위한 레퍼런스 신호로는 CRS(Cell-specific Reference Signal)(203)가 사용된다. CRS(203)는 전대역에 걸쳐 매 서브프레임마다 전송되고 셀 ID(IDentity)에 따라 스크램블링 및 자원 맵핑이 달라진다. CRS(203)는 모든 단말들이 공통으로 사용하는 레퍼런스 신호이기 때문에 단말-특정 빔포밍이 사용될 수 없다. 따라서 LTE의 PDCCH에 대한 다중안테나 송신기법은 개루프 송신 다이버시티로 한정된다. CRS의 포트 수는 PBCH(Physical Broadcast CHannel)의 디코딩으로부터 암묵적으로 단말에게 알려진다.
PDCCH(201)의 자원 할당은 CCE(Control-Channel Element)를 기반으로 하며, 하나의 CCE는 9개의 REG(Resource Element Group), 즉 총 36개의 RE(Resource Element)들로 구성되어 있다. 특정 PDCCH(201)를 위해 필요한 CCE의 개수는 1, 2, 4, 8개가 될 수 있으며, 이는 DCI 메시지 payload의 채널 코딩율에 따라 달라진다. 상술한 바와 같이 서로 다른 CCE 개수는 PDCCH(201)의 링크 적응(link adaptation)을 구현하기 위해 사용된다.
단말은 PDCCH(201)에 대한 정보를 모르는 상태에서 신호를 검출해야 하는데, LTE에서는 블라인드 디코딩을 위해 CCE들의 집합을 나타내는 탐색공간(search space)를 정의하였다. 탐색공간은 각 CCE의 aggregation level(AL)에 복수 개의 집합으로 구성되어 있으며, 탐색 공간은 명시적으로 시그널링되지 않고 단말 신원에 의한 함수 및 서브프레임 번호를 통해 암묵적으로 정의된다. 각 서브프레임 내에서 단말은 설정된 탐색공간 내의 CCE들로부터 만들어질 수 있는 가능한 모든 자원 후보군(candidate)에 대하여 PDCCH(201)에 대한 디코딩을 수행하고, CRC 확인을 통해 해당 단말에게 유효하다고 선언된 정보를 처리한다.
탐색공간은 단말-특정 탐색공간과 공통(Common) 탐색공간으로 분류된다. 일정 그룹의 단말들 혹은 모든 단말들이 시스템정보에 대한 동적인 스케줄링이나 페이징 메시지와 같은 셀 공통의 제어정보를 수신하기 위해 PDCCH(201)의 공통 탐색 공간을 조사할 수 있다. 예를 들어 셀의 사업자 정보 등을 포함하는 SIB(System Information Block)-1의 전송을 위한 DL-SCH의 스케줄링 할당 정보는 PDCCH(201)의 공통 탐색 공간을 조사하여 수신할 수 있다.
LTE에서 전체 PDCCH 영역은 논리영역에서의 CCE의 집합으로 구성되며, CCE들의 집합으로 이루어진 탐색공간이 존재한다. 탐색 공간은 공통 탐색공간과 단말-특정 탐색공간으로 구분되고, LTE PDCCH에 대한 탐색공간은 하기와 같이 정의된다.
모니터링 할 PDCCH 후보 세트는 탐색공간(search spaces) 측면에서 정의되며, aggregation level
Figure PCTKR2020017646-appb-img-000001
에서 탐색공간
Figure PCTKR2020017646-appb-img-000002
은 PDCCH 후보 세트에 의해 정의된다. (The set of PDCCH candidates to monitor are defined in terms of search spaces, where a search space
Figure PCTKR2020017646-appb-img-000003
at aggregation level
Figure PCTKR2020017646-appb-img-000004
is defined by a set of PDCCH candidates.) PDCCH가 모니터링되는 각각의 서빙 셀(serving cell)에 대해, 탐색공간
Figure PCTKR2020017646-appb-img-000005
의 PDCCH 후보 m에 대응하는 CCE는 다음과 같이 주어진다.(For each serving cell on which PDCCH is monitored, the CCEs corresponding to PDCCH candidate m of the search space
Figure PCTKR2020017646-appb-img-000006
are given by)
Figure PCTKR2020017646-appb-img-000007
Y k는 하기에 정의되어 있고, i=0,L,L-1이다. (where Y k is defined below, i=0,…,L-1.) 공통 탐색공간(common search space)에 대해 m'=m 이다.(For the common search space m'=m.)
PDCCH UE 특정 탐색공간에서, PDCCH가 모니터링되는 서빙 셀에 대해, 만약 모니터링 UE가 반송파 지시자 필드(carrier indicator field)로 구성되면
Figure PCTKR2020017646-appb-img-000008
이고, 여기서 n CI 는 반송파 지시자 필드 값이다. 만약 모니터링 UE가 반송파 지시자 필드로 구성되지 않으면 m'=m이고, 여기서 m=0, …, M (L)-1 이고, M (L)는 주어진 탐색공간에서 모니터링 할 PDCCH 후보의 수이다. (For the PDCCH UE specific search space, for the serving cell on which PDCCH is monitored, if the monitoring UE is configured with carrier indicator field then
Figure PCTKR2020017646-appb-img-000009
, where n CI is the carrier indicator field value, else if the monitoring UE is not configured with carrier indicator field then m'=m, where m=0, …, M (L)-1. M (L) is the number of PDCCH candidates to monitor in the given search space.)
반송파 지시자 필드 값은 ServCellIndex와 동일하다.(Note that the carrier indicator field value is the same as ServCellIndex.)
공통 탐색공간들의 경우, Y k는 두 aggregation level L=4 및 L=8에 대해 0으로 설정된다.(For the common search spaces, Y k is set to 0 for the two aggregation levels L=4 and L=8.)
aggregation level L 에서의 UE 특정 탐색공간
Figure PCTKR2020017646-appb-img-000010
에 대해, 변수 Y k 는 다음과 같이 정의된다.(For the UE-specific search space
Figure PCTKR2020017646-appb-img-000011
at aggregation level L, the variable Y k is defined by)
Figure PCTKR2020017646-appb-img-000012
여기서 Y -1=n RNTI≠0, A=39827, D=65537 이고
Figure PCTKR2020017646-appb-img-000013
이며, n s는 무선 프레임 내의 슬롯 번호이다.(where Y -1=n RNTI≠0, A=39827, D=65537 and
Figure PCTKR2020017646-appb-img-000014
, n s is the slot number within a radio frame.) n RNTI에 사용 된 RNTI 값은 하향 링크 7.1 항과 상향 링크 8 항에 정의되어 있다.(The RNTI value used for n RNTI is defined in subclause 7.1 in downlink and subclause 8 in uplink.)
상기에 기술한 PDCCH에 대한 탐색공간의 정의에 따르면 단말-특정 탐색공간은 명시적으로 시그널링되지 않고 단말 신원에 의한 함수 및 서브프레임 번호를 통해 암묵적으로 정의된다. 다시 말하자면, 단말-특정의 탐색공간이 서브프레임 번호에 따라 바뀔 수 있으므로 이는 시간에 따라 바뀔 수 있다는 것을 의미하며 이를 통하여 단말들 사이에서 다른 단말들에 의하여 특정 단말이 탐색공간을 사용하지 못하는 문제(Blocking 문제)를 해결해준다.
일 실시예에 따라, 특정 단말이 조사하는 모든 CCE들이 이미 같은 서브프레임 내에서 스케줄링된 다른 단말들에 의하여 사용되고 있기 때문에 해당 서브프레임에서 어떠한 단말이 스케줄링되지 못한다면, 이러한 탐색공간은 시간에 따라 변하기 때문에, 그 다음 서브프레임에서는 이와 같은 문제가 발생하지 않게 될 수 있다. 예컨대, 특정 서브프레임에서 단말#1과 단말#2의 단말-특정 탐색공간의 일부가 중첩되어 있을지라도, 서브프레임 별로 단말-특정 탐색공간이 변하기 때문에, 다음 서브프레임에서의 중첩은 이와는 다를 것으로 예상할 수 있다.
상기에 기술한 PDCCH에 대한 탐색공간의 정의에 따르면 공통 탐색공간의 경우 일정 그룹의 단말들 혹은 모든 단말들이 PDCCH를 수신해야 하므로 기 약속된 CCE의 집합으로 정의된다. 다시 말하자면, 공통 탐색공간은 단말의 신원이나 서브프레임 번호 등에 따라 변동되지 않는다. 공통 탐색공간이 비록 다양한 시스템 메시지의 전송을 위해 존재하지만, 개별적인 단말의 제어정보를 전송하는데도 사용할 수 있다. 이를 통해 공통 탐색공간은 단말-특정 탐색공간에서 가용한 자원이 부족하여 단말이 스케줄링 받지 못하는 현상에 대한 해결책으로도 사용될 수 있다.
탐색공간은 주어진 aggregation level 상에서 단말이 디코딩을 시도해야 하는 CCE들로 이루어진 후보 제어채널들의 집합이며, 1, 2, 4, 8 개의 CCE로 하나의 묶음을 만드는 여러 가지 aggregation level이 있으므로 단말은 복수개의 탐색공간을 갖는다. LTE PDCCH에서 aggregation level에 따라 정의되는 탐색공간 내의 단말이 모니터링(monitoring)해야 하는 PDCCH 후보군들(candidates)의 수는 하기의 표로 정의된다.
[표 1]
Figure PCTKR2020017646-appb-img-000015
표 1에 따르면 단말-특정 탐색공간의 경우, aggregation level {1, 2, 4, 8}을 지원하며, 이 때 각각 {6, 6, 2, 2}개의 PDCCH 후보군들을 갖는다. 공통 탐색공간의 경우, aggregation level {4, 8}을 지원하며, 이 때 각각 {4, 2}개의 PDCCH 후보군들을 갖는다. 공통 탐색공간이 aggregation level이 {4, 8}만을 지원하는 이유는 시스템 메시지가 일반적으로 셀 가장자리까지 도달해야 하기 때문에 커버리지(coverage) 특성을 좋게 하기 위함이다.
공통 탐색공간으로 전송되는 DCI는 시스템 메시지나 단말 그룹에 대한 전력 조정(Power control) 등의 용도에 해당하는 0/1A/3/3A/1C와 같은 특정 DCI 포맷에 대해서만 정의된다. 공통 탐색공간 내에서는 공간다중화(Spatial Multiplexing)를 갖는 DCI 포맷은 지원하지 않는다. 단말-특정 탐색 공간에서 디코딩해야 하는 하향링크 DCI 포맷은 해당 단말에 대하여 설정된 전송 모드(Transmission Mode)에 따라 달라진다. 전송모드의 설정은 RRC(Radio Resource Control) 시그널링을 통하여 이루어지기 대문에, 해당 설정이 해당 단말에 대하여 효력을 발휘하는 지에 대한 정확한 서브프레임 번호가 지정되어 있지 않다. 따라서, 단말은 전송모드와 상관없이 DCI 포맷 1A에 대하여 항상 디코딩을 수행함으로써 통신을 잃지 않도록 동작될 수 있다.
상기에서는 종래 LTE 및 LTE-A에서의 하향링크 제어채널 및 하향링크 제어정보를 송수신하는 방법 및 탐색공간에 대하여 기술하였다.
하기에서는 현재 논의되고 있는 5G 통신 시스템에서의 하향링크 제어채널에 대하여 도면을 참조하여 보다 구체적으로 설명하고자 한다.
도 3은 5G에서 하향링크 제어채널을 구성하는 시간 및 주파수 자원의 기본단위의 일 예를 보여주는 도면이다.
도 3에 따르면 제어채널을 구성하는 시간 및 주파수 자원의 기본 단위인 REG(Resource Element Group)(303)는 시간 축으로는 1 OFDM 심볼(301)로 구성되어 있고, 주파수 축으로는 12개의 서브캐리어(302) 즉 1 RB(Resource Block)으로 구성되어 있다. 제어채널의 기본 단위를 구성하는 데 있어서 시간 축 기본 단위를 1 OFDM 심볼(301)로 가정함으로써 한 서브프레임 내에서 데이터채널과 제어채널이 시간다중화 될 수 있다. 데이터채널보다 제어채널을 앞에 위치시킴으로써 사용자의 프로세싱 시간을 감소시킬 수 있어 지연시간 요구사항을 만족시키기에 용이하다. 제어채널의 주파수축 기본 단위를 1 RB(302)로 설정함으로써 제어채널과 데이터채널 사이의 주파수 다중화를 보다 효율적으로 수행할 수 있다.
도 3에 도시되어 있는 REG(303)를 연접함으로써 다양한 크기의 제어채널 영역을 설정할 수 있다. 일 예로 5G에서 하향링크 제어채널이 할당되는 기본 단위를 CCE(Control Channel Element)(304)라고 할 경우, 1 CCE(304)는 다수의 REG(303)로 구성될 수 있다. 도 3에 도시된 REG(303)를 예를 들어 설명하면, REG(303)는 12개의 RE로 구성될 수 있고 1 CCE(304)가 6개의 REG(303)로 구성된다면 1 CCE(304)는 72개의 RE로 구성될 수 있음을 의미한다. 하향링크 제어영역이 설정되면 해당 영역은 다수의 CCE(304)로 구성될 수 있으며, 특정 하향링크 제어채널은 제어영역 내의 aggregation level (AL)에 따라 하나 또는 다수의 CCE(304)로 맵핑 되어 전송될 수 있다. 제어영역내의 CCE(304)들은 번호로 구분되며 이 때 번호는 논리적인 맵핑 방식에 따라 부여될 수 있다.
도 3에 도시된 하향링크 제어채널의 기본 단위, 즉 REG(303)에는 DCI가 맵핑되는 RE들과 이를 디코딩하기 위한 레퍼런스 신호인 DMRS(Demodulation Reference Signal)(305)가 맵핑되는 RE들이 모두 포함될 수 있다. 도 3에서와 같이 1 REG(303) 내에 3개의 RE에서 DMRS(305)가 전송될 수 있다. 참고로 DMRS(305)는 REG(303)내 맵핑되는 제어신호와 같은 프리코딩을 사용하여 전송되기 때문에 단말은 기지국이 어떤 프리코딩을 적용하였는지에 대한 정보가 없어도 제어 정보를 디코딩할 수 있다.
도 4는 5G 무선통신 시스템에서 하향링크 제어채널이 전송되는 제어영역(CORESET; Control Resource Set)에 대한 일 예를 도시한 도면이다.
도 4의 일 예시는 1 슬롯이 7 OFDM 심볼로 가정된 경우이다. 도 4는 주파수 축으로 시스템 대역폭(410), 시간축으로 1 슬롯(420) 내에 2개의 제어영역(제어영역#1(401), 제어영역#2(402))이 설정되어 있는 일 예를 보여준다. 제어영역(401, 402)의 주파수는 전체 시스템 대역폭(410) 내에서 특정 서브밴드(403)로 설정될 수 있다. 제어영역(401, 402)의 시간 길이는 하나 혹은 다수 개의 OFDM 심볼로 설정될 수 있고, 또한 제어영역(401, 402)의 시간 길이는 제어영역 길이 (Control Resource Set Duration)(404)로 정의될 수 있다. 도 4의 일 예에서 제어영역#1(401)은 2 심볼의 제어영역 길이로 설정되어 있고, 제어영역#2(402)는 1 심볼의 제어영역 길이로 설정되어 있다.
상기에서 설명한 5G에서의 제어영역은 기지국이 단말에게 상위 계층 시그널링(예컨대 시스템 정보(System Information), MIB(Master Information Block), RRC 시그널링)을 통해 설정될 수 있다. 단말에게 제어영역을 설정한다는 것은 제어영역의 위치, 서브밴드, 제어영역의 자원할당, 제어영역 길이 등의 정보를 제공하는 것을 의미한다. 예컨대 표 2의 정보들을 포함할 수 있다.
[표 2]
Figure PCTKR2020017646-appb-img-000016
[표 2]의 설정정보는 본 개시의 일 예시이며, [표 2]의 설정정보 외에도 하향링크 제어채널을 전송하는데 필요한 다양한 정보들이 단말에 설정될 수 있다.
다음으로 5G에서의 하향링크 제어정보(DCI; Downlink Control Information)에 대해 구체적으로 설명하도록 한다.
5G 시스템에서 상향링크 데이터(PUSCH; Physical Uplink Shared CHannel) 혹은 하향링크 데이터(PDSCH; Physical Downlink Shared CHannel)에 대한 스케줄링 정보는 DCI를 통해 기지국으로부터 단말에게 전달된다.
단말은 PUSCH 또는 PDSCH에 대하여 대비책(fallback)용 DCI 포맷과 비대비책(non-fallback)용 DCI 포맷을 모니터링(monitoring)할 수 있다. 대비책 용 DCI 포맷은 기지국과 단말 사이에서 고정된 필드로 구성될 수 있고, 비대비책용 DCI 포맷은 설정 가능한 필드를 포함할 수 있다.
본 개시의 일 실시예에 따라, PUSCH를 스케줄링하는 대비책용 DCI는 표 3의 정보들을 포함할 수 있다.
[표 3]
Figure PCTKR2020017646-appb-img-000017
본 개시의 일 실시예에 따라, PUSCH를 스케줄링하는 비대비책용 DCI는 표 4의 정보들을 포함할 수 있다.
[표 4]
Figure PCTKR2020017646-appb-img-000018
Figure PCTKR2020017646-appb-img-000019
본 개시의 일 실시예에 따라, PDSCH를 스케줄링하는 대비책용 DCI는 표 5의 정보들을 포함할 수 있다.
[표 5]
Figure PCTKR2020017646-appb-img-000020
본 개시의 일 실시예에 따라, PDSCH를 스케줄링하는 비대비책용 DCI는 표 6의 정보들을 포함할 수 있다.
[표 6]
Figure PCTKR2020017646-appb-img-000021
Figure PCTKR2020017646-appb-img-000022
상기 DCI는 채널코딩 및 변조과정을 거쳐 하향링크 물리제어채널인 PDCCH(Physical Downlink Control CHannel)을 통해 전송될 수 있다. DCI 메시지 payload에는 CRC(Cyclic Redundancy Check)가 붙으며, CRC는 단말의 신원에 해당하는 RNTI(Radio Network Temporary Identifier)로 스크램블링(scrambling) 된다.
DCI 메시지의 목적, 예를 들어 단말-특정(UE-specific)의 데이터 전송, 전력제어 명령 혹은 랜덤 엑세스 응답 등에 따라 서로 다른 RNTI 들이 사용된다. 곧, RNTI가 명시적으로 전송되지 않고 CRC 계산과정에 포함되어 전송된다. 단말이 PDCCH 상으로 전송되는 DCI 메시지를 수신하면, 단말은 할당 받은 RNTI를 사용하여 CRC를 확인할 수 있다. CRC 확인 결과가 맞으면, 단말은 해당 메시지가 그 단말에게 전송된 것임을 알 수 있다.
예컨대 시스템 정보(SI; System Information)에 대한 PDSCH를 스케줄링하는 DCI는 SI-RNTI로 스크램블링될 수 있다. RAR(Random Access Response) 메시지에 대한 PDSCH를 스케줄링하는 DCI는 RA-RNTI로 스크램블링 될 수 있다. Paging 메시지에 대한 PDSCH를 스케줄링하는 DCI는 P-RNTI로 스크램블링 될 수 있다. SFI(Slot Format Indicator)를 통지하는 DCI는 SFI-RNTI로 스크램블링 될 수 있다. TPC(Transmit Power Control)를 통지하는 DCI는 TPC-RNTI로 스크램블링 될 수 있다. 단말-특정의 PDSCH 또는 PUSCH를 스케줄링하는 DCI는 C-RNTI(Cell RNTI)로 스크램블링 될 수 있다.
특정 단말이 상기 PDCCH를 통해 데이터 채널, 즉 PUSCH 또는 PDSCH를 스케줄링 받으면, 해당 스케줄링된 자원 영역 내에서 데이터들이 DMRS와 함께 송수신된다.
도 5는 5G에서 하향링크 RB 구조에 대한 설정의 일 예를 도시한 도면이다.
보다 상세하게, 도 5는 특정 단말이 하향링크에서 14개의 OFDM 심볼을 하나의 슬롯(또는 서브프레임)으로 사용하고 초기 두 개의 OFDM 심볼로 PDCCH가 전송되며 세 번째 심볼에서 DMRS가 전송되도록 설정된 경우를 나타낸다. 도 5의 경우에 PDSCH가 스케줄링 된 특정 RB 내에서 PDSCH는 세 번째 심볼에서 DMRS가 전송되지 않는 RE들과 이후 네 번째부터 마지막 심볼까지의 RE들에 데이터가 맵핑되어 전송된다. 도 5에서 표현된 부반송파 간격 Δf는 LTE/LTE-A 시스템의 경우에 15kHz이고 5G 시스템의 경우 {15, 30, 60, 120, 240, 480}kHz 중 하나가 사용된다.
한편, 상술한 바와 같이 셀룰러 시스템에서 하향링크 채널 상태를 측정하기 위하여 기지국은 기준신호(reference signal)을 전송해야 한다. 3GPP의 LTE-A(Long Term Evolution Advanced) 시스템의 경우 기지국이 전송하는 CRS 또는 CSI-RS를 이용하여 단말은 기지국과 단말 사이의 채널 상태를 측정할 수 있다.
상기 채널 상태는 다양한 요소를 고려하여 측정되어야 하며 여기에는 하향링크에서의 간섭량이 포함될 수 있다. 상기 하향 링크에서의 간섭량에는 인접 기지국에 속한 안테나 의하여 발생되는 간섭신호 및 열잡음 등이 포함되며, 하향링크에서의 간섭량은 단말이 하향링크의 채널 상황을 판단하는데 중요하다. 일 예로 송신안테나가 한 개인 기지국에서 수신안테나가 한 개인 단말로 신호를 전송할 경우, 단말은 기지국으로부터 수신된 기준신호에서 하향링크로 수신할 수 있는 심볼당 에너지와 해당 심볼을 수신하는 구간에서 동시에 수신될 간섭량을 판단하여 Es/Io를 결정해야 한다. 결정된 Es/Io는 데이터전송 속도 또는 그에 상응하는 값으로 변환되어 기지국으로 채널 품질 지시자(CQI; Channel Quality Indicator)의 형태로 전송되며, 기지국이 단말에게 어떤 데이터 전송속도로 전송을 수행 할지를 판단하는 데 사용될 수 있다.
보다 상세하게, LTE-A 시스템의 경우 단말은 하향링크의 채널 상태에 대한 정보를 기지국에게 피드백하여 기지국의 하향링크 스케줄링에 활용할 수 있도록 한다. 즉, 단말은 하향링크로 기지국이 전송하는 기준 신호를 측정하고 여기에서 추출한 정보를 LTE/LTE-A 표준에서 정의하는 형태로 기지국으로 피드백하는 것이다. 상술한 바와 같이 LTE/LTE-A에서 단말이 피드백하는 정보는 채널 상태 정보라 칭할 수 있으며, 채널 상태 정보는 다음의 세가지 정보를 포함할 수 있다.
- 랭크 지시자(RI; Rank Indicator): 단말이 현재의 채널상태에서 수신할 수 있는 공간 레이어(spatial layer)의 개수
- 프리코딩 매트릭스 지시자(PMI; Precoding Matrix Indicator): 단말이 현재의 채널상태에서 선호하는 프리코딩 행렬(precoding matrix)에 대한 지시자
- 채널 품질 지시자(CQI; Channel Quality Indicator): 단말이 현재의 채널상태에서 수신할 수 있는 최대 데이터 전송률(data rate)
CQI는 최대 데이터 전송률과 유사하게 활용될 수 있는 신호 대 간섭 잡음비(SINR; Signal to Interference plus Noise Ratio), 최대의 오류정정 부호화율(code rate) 및 변조 방식, 주파수당 데이터 효율 등으로 대체될 수도 있다.
상기 RI, PMI, CQI는 서로 연관되어 의미를 갖는다. 일 예로 LTE/LTE-A에서 지원하는 프리코딩 행렬(precoding matrix)은 rank별로 다르게 정의되어 있다. 따라서, RI가 1의 값을 가질 때의 PMI 값 X와 RI가 2의 값을 가질 때의 PMI 값 X는 다르게 해석이 될 수 있다
또한 일 예로, 단말이 CQI를 결정할 때에도 자신이 기지국에 통보한 PMI 값 X가 기지국에서 적용되었다는 가정을 한다. 즉, 단말이 RI_X, PMI_Y, CQI_Z를 기지국에 보고한 것은 랭크(rank)를 RI_X로 하고 PMI를 PMI_Y로 할 때 CQI_Z에 해당하는 데이터 전송률을 해당 단말이 수신할 수 있다고 보고하는 것과 같다. 이와 같이 단말은 CQI를 계산할 때에 기지국에 어떤 전송방식을 수행할 지를 가정하여 해당 전송방식으로 실제 전송을 수행하였을 때 최적화된 성능을 얻을 수 있도록 한다.
LTE/LTE-A에서 단말이 피드백하는 채널상태 정보인 RI, PMI, CQI는 주기적 또는 비주기적 형태로 피드백 될 수 있다. 기지국이 특정 단말의 채널 상태 정보를 비주기적으로 획득하고자 하는 경우, 기지국은 단말에 대한 하향링크 제어정보(DCI; Downlink Control Information)에 포함된 비주기적 피드백 지시자(또는 채널 상태 정보 요청 필드, 채널 상태 정보 요청 정보)를 이용하여 비주기적 피드백(또는 비주기적인 채널 상태 정보 보고)을 수행하도록 설정할 수 있다. 또한, 단말은 비주기적 피드백을 수행하도록 설정된 지시자를 n번째 서브프레임에서 수신하면 n+k번째 서브프레임에서의 데이터 전송에 비주기적 피드백 정보(또는, 채널 상태 정보)를 포함하여 상향링크 전송을 수행할 수 있다. 여기서 k는 3GPP LTE Release 11 표준에 정의된 파라미터로 FDD(Frequency Division Duplexing)에서는 4이며 TDD(Time Division Duplexing)에서는 [표 7]과 같이 정의될 수 있다.
[표 7]
TDD UL/DL configuration에서 각 서브프레임 번호 n에 대한 k 값
비주기적 피드백이 설정된 경우에 피드백 정보(또는 채널 상태 정보)는 RI, PMI, CQI를 포함하며 피드백 설정 (또는, 채널 상태 보고 설정)에 따라 RI와 PMI는 피드백 되지 않을 수도 있다.
본 개시에서, 동일대역전이중(In-band Full duplex, 이하 전이중이라 칭함)시스템이란 시분할송수신 (TDD: Time Division Duplexing)이나 주파수분할송수신(FDD: Frequency Division Duplexing) 시스템과는 다르게 동일 대역, 동일 시간 자원 내에서 동일 셀의 상향링크 신호와 하향링크 신호가 동시에 전송되는 시스템이다. 즉 전이중시스템은 상향링크와 하향링크의 신호가 같은 셀 내에서 혼재되어 존재하게 되고, 이는 간섭으로 작용하게 된다.
전이중시스템을 사용함으로 인해 추가로 나타나는 간섭의 유형은 자기간섭(Self-interference)과 교차간섭(Cross-link interference) 두가지로 분류된다.
자기간섭은 기지국이 단말의 상향링크 수신 시 같은 대역에 수신되는 기지국 자신의 하향링크 전송으로부터 수신되는 간섭과 단말이 전이중동작 기능을 갖춘 경우 하향링크 수신 시 자신의 상향링크 전송으로부터 수신되는 간섭을 의미한다. 자기간섭은 희망 신호(desired signal)에 비해 가까운 거리에서 송신 및 수신이 일어나기 때문에 희망 신호의 신호 대 간섭 및 잡음 비 (Signal to interference and noise ratio, 이하 SINR)을 크게 감소시킨다. 따라서 전이중시스템의 전송 성능은 자기간섭 제거 기술의 성능에 의해 크게 영향을 받는다.
교차간섭은 기지국이 단말의 상향링크 수신 시 같은 대역에 수신되는 다른 기지국의 하향링크 전송으로부터 수신되는 간섭과 단말이 하향링크 수신 시 다른 단말의 상향링크 전송으로부터 수신되는 간섭을 의미한다. 상향링크 신호를 수신하는 기지국이 다른 기지국의 하향링크 전송으로부터 수신하는 교차간섭의 경우 간섭 송신 단으로부터 간섭 수신 단의 거리는 기지국의 요구 신호를 송신하는 단말과 기지국의 수신 단의 거리보다는 멀지만, 간섭 송신 파워가 단말의 송신 파워에 비해 일반적으로 10-20dB 이상 크므로, 기지국이 수신하는 단말의 상향링크 희망 신호의 수신 SINR 성능에 영향을 크게 미칠 수 있다. 또한 하향링크를 수신하는 단말은 같은 대역에서 상향링크를 사용하는 다른 단말로부터 교차간섭을 수신할 수 있다. 이 때, 간섭을 미치는 단말과 하향링크를 수신하는 단말 간의 거리가 기지국과 하향링크를 수신하는 단말 간의 거리보다 의미 있게 가까운 경우, 단말의 하향링크 희망 신호 수신 SINR 성능을 낮출 수 있다. 이 때, 의미 있게 가까운 경우라 함은 하향링크 수신 단말에서 상향링크 단말로부터 오는 간섭의 수신 파워가 하향링크 수신 단말에서 기지국으로부터 수신 신호보다 크거나 비슷해서 단말의 하향링크 수신 SINR의 성능을 낮출 수 있을 정도로 가까운 상태를 의미한다.
셀룰러 기반의 이동통신 시스템에서 전이중시스템의 유형은 전이중동작을 지원하기 위한 자기 간섭 제거 기능 (Self-interference cancellation)을 기지국만 지원하는 유형 및 기지국과 단말이 모두 지원하는 유형으로 나뉜다. 단말만 간섭 제거 기능을 갖춘 경우를 고려하지 않는 이유는 구성요소인 안테나 분리 자기 간섭 제거와 RF-서킷 자기 간섭 제거, 디지털 자기 간섭 제거 기능의 구현이 폼팩터 사이즈 및 서킷 구조 등의 측면에서 기지국이 단말 보다 용이하게 구현 가능하기 때문이다.
본 개시에서 고려하는 전이중시스템의 유형은 기본적으로 기지국만 자기 간섭 제거 기능을 갖춘 경우를 고려하지만, 본 개시는 단말과 기지국이 모두 자기 간섭 제거 기능을 갖춘 경우에 대해서도 동일하게 적용하여 동작 할 수 있다.
도 6은 본 개시의 일 실시예에 따라 전이중시스템의 주요 구성요소인 자기 간섭 제거 기능을 갖춘 송수신장치의 구성도이다.
이 때, 송수신장치(600)의 구조는 기지국과 단말에 동일하게 적용 가능하며, 기지국과 단말 중 어느 하나의 구조를 특정하지 않는다. 단, 본 개시에서는 기본적으로 기지국이 자기 간섭 제거 기능을 갖추고 전이중시스템을 구성하는 것을 가정하고 있으므로, 편의상 송수신장치(600)를 기지국이라고 가정하고 설명한다.
도 6에서 기지국(600)은 단말로 하향링크 신호를 송신하기 위한 송신부(610), 자기 간섭 제거를 위한 자기 간섭 제거부(620) 및 단말로부터 상향링크 신호 수신을 위한 수신부(630)를 포함할 수 있다. 이 때, 기지국(600)의 각 구성 요소의 세부 구성 방법은 기지국의 구현 방법에 따라 달라질 수 있다.
상술한 바와 마찬가지로, 송수신 장치(600)는 단말에 대응될 수 있으며, 이때 단말 역시 기지국으로 상향링크 신호를 송신하기 위한 송신부(610), 자기 간섭 제거를 위한 자기 간섭 제거부(620) 및 기지국으로부터 하향링크 신호 수신을 위한 수신부(630)를 포함할 수 있다.
도 7은 본 개시의 일 실시에에 따른 자기 간섭 제거부의 구성도이다.
상술한 바와 같이 자기 간섭 제거부(700)는 자기 간섭 제거를 수행할 수 있다. 도 7a의 자기 간섭 제거부(700)는 안테나 분리 자기간섭 제거부(710), RF-서킷 자기 간섭 제거부(720) 및 디지털 자기 간섭 제거부(730)를 포함할 수 있으나 자기 간섭 제거부(700)의 구성이 전술한 예에 한정되는 것은 아니다.
또한, 도 7b는 본 개시의 일 실시예에 따른, Full Duplex 송수신기 블록 다이어그램(block diagram)을 나타낸 도면이다. 도 7b의 Antenna SIC는 본 개시의 안테나 분리 자기간섭 제거부(710)에 대응될 수 있고, RF SIC는 RF-서킷 자기 간섭 제거부(720)에 대응될 수 있고, Digital SIC는 디지털 자기 간섭 제거부(730)에 대응될 수 있다.
안테나 분리 자기간섭 제거부(710)는 기지국의 송신단과 수신단의 안테나를 물리적으로 분리하여, 자기 간섭이 기지국의 수신단에 충분히 감쇄되어 수신할 수 있도록 한다. 이 때, 송신단의 안테나와 수신단의 안테나를 물리적으로 분리하는 것은, 기지국의 하향링크 송신 신호가 기지국의 상향링크 수신단 측에서 작게 수신되도록 하기 위하여 안테나의 상쇄 간섭을 이용한 분리 방법, 동일 안테나에 순환기를 사용하는 방법, 크로스 폴 구조를 사용한 방법, 아이솔레이터를 이용한 방법 등을 사용하여 분리함을 의미할 수 있다. 다만, 물리적 분리가 상술한 예에 한정되는 것은 아니며, 기지국의 하향링크 송신 신호가 기지국의 상향링크 수신 단 측에서 작게 수신될 수 있는 분리 방법들을 의미할 수 있다.
RF-서킷 자기 간섭 제거부(720)는, ADC(Analog to digital converter)로 자기간섭 신호가 양자화 되기 이전에 신호의 세기를 감쇄 시켜주는 역할을 수행할 수 있다. RF-서킷 자기 간섭 제거부(720)의 RF-서킷은 기지국의 송신단에서 전송된 자기 간섭 신호가 무선 채널과 안테나 자기 간섭 제거부(710)를 통과 하여 RF-서킷 자기 간섭 제거부(720)에 도착한 자기 간섭 신호가 겪은 채널을 모사할 수 있다.
예컨대, 기지국의 아날로그 도메인 송신 신호 x(t)에 대하여 안테나 자기 간섭 제거부(710)와 무선 채널을 통과한 수신 신호 y(t)는 다음의 수학식 1으로 표현할 수 있다.
[수학식 1]
y(t)=x(t)*h(t)+n(t)
위 식에서 h(t)는 무선 채널과 안테나 자기 간섭 제거부(710)의 시간 도메인 임펄스 응답을 나타내며, n(t)는 백색 잡음을 나타낸다. 이 때 RF-서킷 자기 간섭 제거부(720)의 RF-서킷은 시간 지연 모듈, 위상 전이 모듈, 앰프 모듈등을 사용하여 h(t)를 모사한 유사채널 h'(t)를 생성할 수 있다. 이후에 송신단으로부터 얻을 수 있는 송신 신호 x(t)를 RF-서킷에 통과 시켜 자기 간섭 신호를 모사한다. 이후에 자기 간섭 신호에 마이너스 부호를 붙여 더해지며 이는 아래 수학식 2와 같은 결과로서 자기 간섭 신호를 감쇄 시키는 역할을 한다.
[수학식 2]
y^'(t)=x(t)*h(t)-x(t)*h'(t)+n(t)
이 때, RF-서킷 자기 간섭 제거부(720)의 성능이 유지되는 대역폭은 상술한 RF-서킷의 구성 요소들, 예컨대, 시간 지연 모듈, 위상 전이 모듈, 앰프 모듈 등의 대역폭에 따라 다르게 나타날 수 있다. 예를 들어, 시스템 대역폭 보다 RF-서킷의 자기 간섭 제거부(720)의 성능이 유지되는 대역폭이 작은 경우, 이러한 자기 간섭 제거부의 대역폭 제한은 아날로그 서킷의 한계로 인하여 나타나는 것이다.
마지막으로, 디지털 자기 간섭 제거부(720)는, RF-자기 간섭부를 통과한 이후의 신호 y'(t)가 ADC를 통과한 후에 주파수 도메인으로 전환된 Y[n] 에서 자기간섭 신호 X[n]을 제거할 수 있다. 예컨대 아래 수학식 3에서처럼 송신 신호 X[n]이 겪은 디지털 도메인 채널 H[n]을 추정하여, 이를 수신 신호 Y[n]에서 빼준다. 이 때 디지털 자기 간섭 제거부의 성능은 추정 채널 H'[n]과 실제 채널 H[n]의 유사도에 의해 결정된다. 즉 H'[n]과 H[n]의 유사도가 높을수록 디지털 자기 간섭 제거부의 성능이 높게 나타난다.
[수학식 3]
Y^' [n]=X[n]H[n]-X[n]H'[n]+n(t)
이하 본 개시의 실시 예를 첨부한 도면과 함께 상세히 설명한다.
이하에서 LTE 혹은 LTE-A 시스템을 일례로서 본 개시의 실시예를 설명하지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 개시의 실시예가 적용될 수 있다. 예를 들어 본 개시의 실시예가 적용되는 통신시스템에는 LTE-A 이후에 개발되는 5세대 이동통신 기술(5G, new radio, NR)도 포함될 수 있을 것이다. 따라서, 본 개시의 실시예는 숙련된 기술적 지식을 가진자의 판단으로써 본 개시의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.
또한, 본 개시를 설명함에 있어서 관련된 기능 혹은 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 8은 본 개시의 일 실시예에 따른 단말이 무선통신시스템에서 신호를 송수신하는 방법에 대한 흐름도이다.
단계 S810에서, 단말은 기지국으로부터 FD CRB(Full Duplex Carrier Resource Block)에 대한 정보를 수신할 수 있다.
이 때, 본 개시에서 FD CRB(Full Duplex Carrier Resource Block)라 함은 기지국이 사용할 수 있는 대역을 일정 단위로 나눈 CRB중 기지국이 업링크 신호를 수신할 수 있는 대역을 의미할 수 있다. 또한, FD CRB는 단말이 사용할 수 있는 대역을 일정 단위로 나눈 CRB 중 단말이 업링크 신호를 송신할 수 있는 대역을 의미할 수도 있다. 이때, FD CRB는 기지국이 다운링크 신호를 송신할 수 있는 대역일 수 있다. 다만, FD CRB는 기지국이 업링크 신호를 수신할 수 있는 대역 또는 단말이 사용할 수 있는 대역을 일정 단위로 나눈 CRB 중 단말이 업링크 신호를 송신할 수 있는 대역을 의미하는 것일 뿐, 기지국이 FD CRB를 사용하여 다운링크 신호를 송신하는 것을 전제하지 않는다.
또한, 본 개시에서, FD CRB는 FD RB(Full Duplex Resource Block)에 대응될 수 있다. FD CRB에 대한 보다 자세한 내용은 도 10에서 후술된다.
이때, 본 개시에서 FD CRB에 대한 정보란, 후술하는 FD CRB와 관련된 정보일 수 있다. 즉, FD CRB에 대한 정보는, FD CRB로 설정된 CRB들에 대한 정보, FD CRB로 설정된 CRB들을 지시하는 인덱스에 대한 정보 등을 포함할 수 있다. 또한, FD CRB에 대한 정보는 후술하는 FD CRB 세트 리스트에 대응될 수 있다. 또한, FD CRB에 대한 정보는 후술하는 FD CRB 세트 리스트 또는 FD CRB 세트에 대한 정보를 포함할 수 있다. FD CRB 세트 리스트 및 FD CRB 세트 등에 대한 설명은 본 개시의 도 11a 및 도 11b에서 보다 자세히 후술된다.
또한, FD CRB에 대한 정보는 하나의 인덱스에 대응되는 FD CRB들에 대한 정보만을 포함할 수 있다. 또한, 다른 일 예로, FD CRB에 대한 정보는 수개의 인덱스에 대해, 각 인덱스가 지시하는 FD CRB들에 대한 정보들을 포함할 수 도 있다. 본 개시의 일 실시예에 따라, 단말은 FD CRB에 대한 정보를 포함하는 RRC(Radio Resource Control) 시그널링 또는 DCI(DownLink Control Information)를 통해 FD CRB에 대한 정보를 수신할 수 있다.
먼저, 기존 DCI의 경우, 리소스 할당 타입(resource allocation type) 0 또는 1에 따라, 각각 하기의 수학식과 같이 PUSCH Scheduling을 할당하는 비트의 값이 정의되었다.
[수학식 4]
For resource allocation type 0,
Figure PCTKR2020017646-appb-img-000023
bits
For resource allocation type 1,
Figure PCTKR2020017646-appb-img-000024
bits
본 개시의 일 실시예에 따라, 단말이 DCI를 통해 FD CRB에 대한 정보(또는 본 개시에서 FD CRB set list)를 수신하는 경우, DCI 중 PUSCH Scheduling을 할당하는 비트(bit)의 값이 단말이 사용 가능한 대역폭에 따라 변경될 수 있다. 보다 상세하게, 기지국의 설정 또는 FD CRB 설정 조건 등에 따라 FD CRB에 대한 정보가 변경되는 경우, 최대 CRB 개수가 변경될 수 있다.
이때, [수학식 4]에서 DCI의 bit를 할당하는 부분의 변수에 해당되는 값인
Figure PCTKR2020017646-appb-img-000025
가 본 개시의 일 실시예에 따라, 하기의 수학식과 같이
Figure PCTKR2020017646-appb-img-000026
로 정의될 수 있다.
[수학식 5]
For resource allocation type 0,
Figure PCTKR2020017646-appb-img-000027
bits
For resource allocation type 1,
Figure PCTKR2020017646-appb-img-000028
bits
이때,
Figure PCTKR2020017646-appb-img-000029
는 단말이 BWP 내에서 스케쥴링 받을 수 있는 최대 FD CRB 개수 또는 스케쥴링 시점의 최대 CRB 개수를 의미할 수 있다.
단계 S820에서, 단말은 FD CRB에 대한 정보에 기초하여 업링크 데이터 송신에 이용 가능한 리소스 엘리먼트를 식별할 수 있다.
본 개시의 일 실시예에 따라, FD CRB에 대한 정보는 FD CRB 설정 조건에 대응되는 인덱스로 지시될 수 있다. FD CRB 설정 조건은 FD CRB에 대한 정보를 설정하기 위한 조건들에 대한 정보일 수 있으며, FD CRB를 설정 또는 결정할 때 고려되는 기지국의 설정 정보, 환경 정보 등을 포함할 수 있다.
FD CRB 설정 조건에는 전송 전력, 포트의 수, 포트의 조합, 기지국의 전송 빔 형태, 프리코딩 등 자기 간섭 채널을 변화시킬 수 있는 요소들 등이 포함될 수 있다. 이때, FD CRB 설정 조건은, 하나의 설정 요소를 의미할 수도 있고, 하나 이상의 설정 요소들의 조합을 의미할 수도 있다. 이때, FD CRB 설정 조건은 포트 개수, 포트 종류 또는 전송 전력 중 적어도 하나 이상을 포함하나, 이에 한정되지 않는다. FD CRB 설정 조건에 대한 보다 자세한 사항은 도 14에서 후술된다.
단계 S830에서, 단말은 식별된 리소스 엘리먼트를 이용하여 업 링크 데이터를 송신할 수 있다.
본 개시의 일 실시예에 따라, 필터의 변경, 빔의 변경 등에 따라 단말에서 사용 가능한 리소스 영역이 바뀔 수 있다. 변경된 설정에 따라 변경된 단말의 리소스 영역은 단말에 대한 업 링크 스케쥴링에 반영될 수 있다. 또한, 단말은 업 링크 스케쥴링에 따라 업링크 자원으로 할당받은 RB 넘버를 확인할 수 있다.
본 개시의 일 실시예에 따라, 단말은 FD CRB에 대한 정보로부터 FD CRB 세트를 식별할 수 있다. 또한, 단말은 FD CRB 세트에 포함된 각 FD CRB에 대해 업링크 리소스 할당 가능성에 기초하여 VRB(Virtual Resource Block) 번호를 결정할 수 있다. 그 후 단말은 단말이 업링크 자원으로 할당받은 RB 넘버와 대응되는 FD CRB에 대한 VRB 번호를 갖는 CRB를 리소스 엘리먼트로 식별할 수 있다.
본 개시의 일 실시예에 따라, 단말은 FD CRB에 대한 정보로부터 FD CRB 세트를 식별하고, CRB 순서에 기초하여 FD CRB 세트에 포함된 각 FD CRB에 대한 VRB 번호를 순차적으로 결정할 수 있다. 또한, 단말은 단말이 업링크 자원으로 할당받은 RB 넘버와 대응되는 FD CRB에 대한 VRB 번호를 갖는 CRB를 상기 리소스 엘리먼트로 식별할 수 있다.
본 개시의 일 실시예에 따라, 단말은 상기 FD CRB에 대한 정보로부터 FD CRB 세트를 식별하고, FD CRB 세트와 RIV(Resource Indication Value)로 할당된 UL PDSCH RB 영역과 중첩되는 RB를 리소스 엘리먼트로 식별할 수 있다.
또한, 단말은 기지국으로부터 CSI-RS(Channel Status Information-Reference Signal)를 수신할 수 있다.
본 개시의 일 실시예에 따라, 단말은 식별된 리소스 엘리먼트를 이용하여 CSI-RS를 수신할 수 있다. 이때, 단말은 기 설정된 CSI-RS에 대한 전송 전력에 기초하여 기지국으로부터 CSI-RS를 수신할 수 있다. 또한, 단말은 FD CRB에 대한 정보를 기초로 식별된 리소스 엘리먼트에 대한 전송 전력이 조정됨에 따라, 식별된 리소스 엘리먼트를 통해 수신되는 CSI-RS 및 PDSCH(Physical Downlink Shared Channel) 중, PDSCH의 전송 전력을 조정할 수 있다.
본 개시의 다른 일 실시예에 따라, 단말은 기지국으로부터 기 설정된 전송 전력 패턴에 대한 정보를 획득하고, 전송 전력 패턴에 대한 정보를 기초로 식별된 시점에 기지국으로부터 전송 전력 변화 지시자를 수신할 수 있다. 또한, 단말은 전송 전력 패턴을 기초로 변경된 전송 전력으로 송신된 CSI-RS를 수신할 수 있다. 이때, 본 개시에서 기 설정된 전송 전력 패턴에 대한 정보는 FD CRB를 설정하기 위한 FD CRB 설정 조건 중 기지국의 전송 전력 들에 대한 정보에 대응될 수 있다. 또한, 기 설정된 전송 전력 패턴에 대한 정보는 이전에 신호 전송 시 설정된 시간-주파수 자원에 따른 전력 크기, 포트의 수, 조합, 프리코딩, 전송 빔 형태를 기초로 결정될 수 있다.
본 개시의 다른 일 실시예에 따라, 단말은 기지국으로부터 전송 전력 지시자를 수신할 수 있다. 또한, 단말은 전송 전력 지시자에 대응되는 전송 전력에 기초하여 송신된 CSI-RS를 수신할 수 있다.
또한, 단말은 수신된 CSI-RS에 기초하여 결정된 CQI(Channel Quality Indicator)를 상기 기지국으로 송신할 수 있다.
본 개시의 일 실시예에 따라, 기 설정된 CSI-RS에 대한 전송 전력에 따라 기지국으로부터 송신된 CSI-RS에 기초하여 CQI를 측정할 수 있다.
본 개시의 다른 일 실시예에 따라, 단말은 전송 전력 패턴을 기초로 변경된 전송 전력으로 기지국으로부터 송신된 CSI-RS를 기초로 CQI를 측정할 수 있다.
본 개시의 다른 일 실시예에 따라, 단말은 전송 전력 지시자에 대응되는 전송 전력에 기초하여 송신된 CSI-RS를 기초로 CQI를 측정할 수 있다.
도 9는 본 개시의 일 실시예에 따른 기지국이 무선통신시스템에서 신호를 송수신하는 방법에 대한 흐름도이다.
단계 S910에서, 기지국은 FD CRB에 대한 정보를 획득할 수 있다.
본 개시의 일 실시예에 따라, FD CRB에 대한 정보는 FD CRB 설정 조건에 대응되는 인덱스로 지시될 수 있다. 또한, FD CRB 설정 조건은 포트 개수, 포트 종류 또는 전송 전력 중 적어도 하나 이상을 포함할 수 있다.
단계 S920에서, 기지국은 FD CRB에 대한 정보를 송신할 수 있다.
본 개시의 일 실시예에 따라, 기지국은 FD CRB에 대한 정보를 포함하는 RRC 시그널링 또는 DCI를 통해 송신할 수 있다.
단계 S930에서, 기지국은 FD CRB에 대한 정보에 기초하여 식별된 업링크 데이터 송신에 이용 가능한 리소스 엘리먼트를 이용하여 업링크 데이터를 수신할 수 있다.
또한, 기지국은 단말로 CSI-RS(Channel Status Information-Reference Signal)를 송신할 수 있다.
본 개시의 일 실시예에 따라, FD CRB에 대한 정보는, 업링크 데이터 송신에 이용 가능한 리소스 엘리먼트에서 조정되는 전송 전력에 관한 정보를 포함할 수 있다. 이때, 기지국은 조정된 전송 전력에 기초하여, 식별된 리소스 엘리먼트를 이용하여 송신되는 PDSCH 및 CSI-RS 중 상기 PDSCH의 전송 전력을 조정할 수 있다. 또한, 기지국은 조정 결과에 기초하여, PDSCH 및 CSI-RS를 송신할 수 있다.
본 개시의 다른 일 실시예에 따라, 기지국은 전송 전력 변화 시점에 단말에 전송 전력 변화 지시자를 송신할 수 있다. 또한, 기지국은 기 설정된 전송 전력 패턴에 대한 정보에 기초하여 전송 전력을 변경할 수 있다. 또한, 기지국은 변경된 전송 전력에 기초한 CSI-RS를 송신할 수 있다.
본 개시의 다른 일 실시예에 따라, 기지국은 전송 전력 지시자를 단말로 송신할 수 있다. 또한, 기지국은 전송 전력 지시자에 대응되는 전송 전력에 기초하여 CSI-RS를 송신할 수 있다.
그 후, 기지국은 송신된 CSI-RS에 기초하여 결정된 CQI(Channel Quality Indicator)를 단말로부터 수신할 수 있다.
도 10은 본 개시의 일 실시예에 따른 전이중 동작을 지원하는 기지국이 전력을 제어하는 흐름도이다.
도 10을 참고할 때, 단계 S1010에서기지국은 FD CRB(Full Duplex Carrier Resource Block)를 설정할 수 있다.
본 개시에서 CRB(Carrier Resource Block)는 각 기지국이 동작하는 대역(bandwidth)을 RB(Resource Block) 단위로 구분하여 번호를 붙인 것을 의미할 수 있다.
또한, 본 개시에서 PRB(Physical Resource Block)라 함은 기지국이 아닌 단말(UE)이 할당 받은 대역을 RB 단위로 구분하여 번호를 붙인 것을 의미할 수 있다.
이 때, 기지국과 UE는 각각 CRB 번호 또는 PRB 번호를 통해 의사소통 할 수 있으며, 한 UE의 PRB는 기지국의 CRB에 일대일로 대응될 수 있다. 따라서, CRB와 PRB에 대한 매핑은 관점의 차이에 따라 달라지는 것일 뿐이며, 본 개시의 내용을 토대로 CRB에 대한 적용과 PRB에 대한 적용을 쉽게 유도할 수 있다.
일 실시예에 따른 단계 S1010에서 기지국이 FD CRB를 설정하는 것은 기지국이 FD 기능을 지원 할 때, 실제로 의미 있게 FD 동작이 수행될 수 있는 CRB 등을 결정하는 것을 의미할 수 있다. 일 실시예에 따른 기지국은 기지국이 업링크 신호를 수신할 수 있는 대역에 대응되는 CRB를 FD CRB로 설정할 수 있다. 또한, 기지국은 단말이 업링크 신호를 송신할 수 있는 대역에 대응되는 CRB를 FD CRB로 설정할 수 있다.
FD 기능을 지원하기 위해선 도 6 내지 도 7a, 도 7b에서 기술한 자기 간섭 제거 기능 (Self-interference cancellation)을 위한 SIC 동작이 기지국에서 수행되어야 한다. 그러나, RF SIC의 아날로그 컴포넌트 등의 한계로 인하여 전체 동작 CRB 영역 중 일부 CRB만 FD 동작을 수행 할 수 있는 SIC Gain을 얻을 수 있게 된다. 따라서, 본 개시에서 FD CRB는 이에 대응하여 전체 기지국의 CRB 중 기지국이 의미 있는 수준에서 FD 동작을 할 수 있는 CRB를 정의 한 것을 의미할 수 있다. FD CRB는 기지국이 임의로 설정한 것이며, 기지국의 동작 능력 등으로 인해 결정될 수 있다. 다만, FD CRB는 채널 환경의 변화 등으로 인하여 재 설정될 수 있으며, 재설정 된 이후에 FD CRB의 목록이 업데이트 되어 재설정된 FD CRB를 이용하여 기지국 및 단말은 기존과 동일한 동작을 수행할 수 있다.
기지국의 FD CRB는 다음과 같은 사항을 고려하여 결정될 수 있다. 예를 들자면, 기지국은 특정 RB에 대하여 기지국의 남은 자기 간섭 레벨이 특정 수치 이하로 측정 될 경우 특정 RB를 FD CRB로 결정할 수 있다. 또한, 기지국은 특정 RB에 대하여 기지국의 남은 자기 간섭 레벨이 특정 수준 이상의 자기 간섭인 경우, 특정 RB를 HD CRB(Half Duplex Carrier Resource Block)로 결정할 수 있다. 따라서 기지국이 하향링크 송신 전력을 조절 할 수 있는 경우, 기지국의 하향링크 송신 전력에 따라 설정될 수 있는 FD CRB의 목록은 변할 수 있다. 본 개시에서 FD CRB의 목록은 후술하는 FD CRB 세트 리스트(FD CRB set list)에 대응될 수 있다. FD CRB 세트 리스트는 보다 자세히 후술된다.
그 후, 단계 S1020에서 기지국은 상술한 방법으로 설정된 FD CRB를 단말에게 알릴 수 있다.
도 11a는 본 개시의 일 실시예에 따른 기지국의 송신 전력 변화 및 이에 따른 FD CRB의 변화를 나타낸 것이다.
이 도면의 예시에서 기지국의 CRB 개수는 20개이나, 이에 한정되지 않으며, 기지국의 CRB의 개수가 임의의 N개인 경우에도 본 개시는 동일하게 적용 가능하다. 또한 본 예시에서 기지국의 송신 전력은 43dBm, 33dBm, 23dBm 및 13dBm의 총 4단계로 구성되어 있으며, 각 송신 전력이 10dBm 단위의 차이가 되도록 조절되었다. 하지만, 도 11a의 예시는 본 개시의 일 실시예 일 뿐 인 바, 기지국의 전송 전력의 단계는 4단계로 고정된 것이 아니며, 그 간격 또한 10dBm에 국한 된 것이 아니다. 이는 본 개시의 요지를 간단하게 설명하기 위한 하나의 예시에 지나지 아니하며 기지국의 전송 전력 조절 단계의 수 및 전송 전력의 설정 등은 유연하게 조절 될 수 있을 것이다.
도 11a의 (a)에는 기지국의 전송 전력의 일 예시가 도시되었다. 본 예시에서 기지국의 전송 전력은 시간에 따라 33dBm, 23dBm, 43dBm, 13dBm으로 변화될 수 있다. 본 도면에서 각 전송 전력은 동일한 시간 간격으로 변화하였지만, 이는 하나의 예시를 위한 것에 불과하며, 각 전송 전력은 유연하게 변화할 수 있다. 또한 기지국의 전송 전력들은 일정한 패턴을 가지고 변화하였지만, 기지국의 전송 전력은 기지국의 결정에 따라 임의로 결정될 수 있다. 전송 전력의 변화의 대한 상세한 정의는 다른 실시 예에서 다룰 것이다.
도 12는 본 개시의 일 실시예에 따라 기지국과 단말 간의 거리에 따라 기지국이 전송 전력을 조절하는 시나리오를 나타낸 도면이다.
도 12의 (a)를 참고할 때, 본 개시의 일 실시예에 따라 기지국이 기지국으로부터 멀리 떨어져 있는 단말을 서비스 해야 하는 경우는 기지국이 큰 전송 전력을 가지고 서비스 할 수 있다. 이때, 기지국은 기지국으로부터 멀리 떨어져 있는 단말에 본 예시의 최대 전송 전력에 해당 하는 43dBm으로 서비스 할 수 있다.
도 12의 (b)를 참고할 때, 본 개시의 일 실시예에 따라 기지국이 기지국으로부터 가까이 있는 단말을 서비스 하는 경우, 기지국은 낮은 전송 전력인 13dBm으로 단말을 서비스 할 수 있다. 또한 도 11a의 (a) 및 도 11a의 (b)를 참고할 때, 전송 전력을 낮추는 경우 기지국이 FD 동작을 할 수 있는 FD CRB가 증가할 수 있다. 따라서, 상향링크 수요가 많은 경우, 기지국은 가까운 거리에 있는 하향링크 단말을 전송 전력을 낮춰 서비스 하면서, FD CRB를 증가 시켜 더 많은 자원을 상향링크 단말에게 할당 할 수 있다. 즉, 기지국의 전송 전력은 하향링크 단말과 상향링크 단말의 링크 요구 수요, 하향링크 단말의 위치, 기지국과 단말의 거리 등을 고려하여 결정 될 수 있다.
이 때, 기지국과 단말의 거리는 다음과 같은 사항을 고려 할 수 있다. 본 예시에서 기지국과 단말의 거리는 기지국과 단말의 실제 물리적 거리에 한정되지 않는다. 본 예시의 기지국과 단말의 거리는 단말과 기지국 사이의 수신 전력에 따라 환산한 거리를 의미할 수 있으며, 이와 같은 환산 거리가 물리적 거리 보다 더 큰 의미가 있을 수 있다. 예를 들자면 임의의 하향링크 단말 A에 대하여 기지국의 설정 가능한 최대 송신 전력 (본 예시에서는 43dBm)으로 설정한 경우에만 단말이 하향링크 수신이 가능하다면, 기지국은 단말 A를 먼 거리에 있는 단말로 설정할 수 있을 것이다. 또한 임의의 하향링크 단말 B에 대하여 기지국의 최소 전송 전력 (본 예시에서는 13dBm)으로 설정한 경우에도 단말이 하향링크 수신이 가능한 경우, 기지국은 단말 B를 가까운 거리에 있는 단말로 설정할 것이다. 이 때, 단말 B가 최소 전송 전력으로 수신 가능하다고 하여 단말 B를 항상 최소 전송 전력으로 서비스하는 것은 아니며, 단말 B가 보다 높은 변조 및 코딩 방식(MCS; Modulation and Coding Scheme)로 서비스 받고 싶은 경우, 기지국은 기지국의 전송 전력을 높일 수 있다. 이를 위한 MCS 설정 및 과정은 다른 실시 예에서 다룰 것이다.
도 11a의 (b)는 기지국의 전송 전력에 따른 CRB의 유형을 나타낸 것이다. 이때, CRB의 유형이란, HD CRB 또는 FD CRB을 의미할 수 있다. 도면 설명을 위해서, 각 CRB의 번호는 아래서부터 0번부터 19번으로 순차적으로 부여한다.
본 예시에서 기지국이 가장 낮은 전송 전력인 13dBm으로 전송 전력을 설정한 경우, CRB 0에서 CRB 19까지 모든 CRB가 FD CRB로 동작 할 수 있다. 즉, CRB 0에서 CRB 19까지 모든 CRB가 FD CRB로 설정될 수 있다. 따라서, 기지국은 CRB 0에서 CRB 19를 이용하여 업링크 신호를 수신할 수 있다. 또한, 단말은 CRB 0에서 CRB 19를 이용하여 업링크 신호를 송신할 수 있다. 반면에, 기지국이 가장 높은 전송 전력인 43dBm으로 전송 전력을 설정한 경우, CRB 5-6만 FD CRB로 동작 할 수 있다. 즉, CRB 5-6만 FD CRB로 설정될 수 있으며, CRB 0-4 및 CRB 7-19는 HD CRB로 설정될 수 있다. 따라서, 이 경우, 기지국은 CRB 5-6를 이용하여 업링크 신호를 수신할 수 있다. 또한, 단말은 CRB 5-6를 이용하여 업링크 신호를 송신할 수 있다. 기지국의 전송 전력이 23dBm 혹은 33dBm으로 설정된 경우, 기지국은 각각 {CRB 4-9, CRB 11-17} 혹은 {CRB 5-7, CRB 11-15}을 FD CRB로 사용할 수 있다.
본 예시에서는, 설명의 편의를 위하여 기지국 전송 전력에 따라 사용 가능한 FD CRB를 도 11a와 같이 특정한 위치의 CRB들로 고정하였다. 그러나, 각 전송 전력에 따라 설정된 FD CRB들은 도 11a와 같은 CRB들로 한정 또는 구성되는 것이 아니며, 기지국의 자기간섭제거 기능의 성능에 따라 달라질 수 있고, 기지국의 자기간섭채널의 변화에 따라 바뀔 수 있다. 예를 들어, 특정 경우에는 기지국의 자기간섭제거 성능이 우수하여 기지국은 기지국의 모든 송신 전력에 대하여 모든 CRB를 FD 동작을 위하여 사용할 수 있을 수 있으며, 반대로 특정 경우에는 기지국의 자기간섭제거 성능이 높지 않아 기지국은 모든 전송 전력에서 모든 CRB를 FD CRB로 사용할 수 없을 수도 있다.
또한 자기간섭채널 변화에 따라 특정 시간 t에서는 FD CRB로 사용되었던 CRB가 다른 시간 t'에서는 HD CRB로 사용 될 수도 있다.
또한, 본 개시에서 CRB가 FD CRB로 사용될 수 있다는 의미는 특정 CRB에 대해서 기지국의 자기간섭제거 기능 동작을 통해 자기간섭이 충분히 제거된다는 의미일 수 있다. 즉, FD CRB로 사용되는 CRB는 기지국이 단말의 상향링크를 수신 할 수 있을만큼 자기간섭이 충분히 제거된다는 의미일 수 있다. 보다 상세하게, 본 개시에 있어 기지국이 특정 CRB를 FD CRB로 사용할 수 있다는 것의 의미는 단말이 상향링크를 송신한 경우, 기지국에서 하향링크를 동시 전송하였을 때 발생하는 자기간섭이 충분히 제거 되어 기지국이 상향링크 신호를 문제 없이 디코딩을 할 수 있음을 의미하는 것이다. 또한, FD CRB로 사용되는 CRB는 업링크로 사용했을 때 효율이 있는 CRB를 의미할 수 있다.
또한 특정 CRB가 HD CRB로 사용된다는 것은 특정 CRB에 대하여 자기간섭이 너무 커 기지국이 상향링크를 수신 하더라도 기지국에서 상향링크 신호를 디코딩 할 수 없는 경우를 의미할 수 있다. 보다 상세하게, 자기 간섭이 너무 큰 경우 기지국이 상향 링크 신호를 디코딩할 수 없어 단말은 단말의 상향링크를 재전송해야 하므로, 단말의 자원관리 및 전력 사용을 고려할 때, 단말이 상향링크를 송신하지 않는 것이 유리하다는 것을 의미할 수 있다.
도 11a에서 나타난 것처럼 기지국이 기지국의 전송 전력을 임의로 변화시키면 기지국이 FD CRB로 사용할 수 있는 CRB가 변화하게 된다. 각 전력에 따른 FD CRB는 기지국의 성능과 자기간섭채널에 의해 결정되는 값이므로, 전송 전력을 바꾸기 전에 정의 될 수 있다. 따라서 기지국은 사전에 각 전송전력에 대한 FB CRB Set List(FB CRB 세트 리스트)를 확보할 수 있으며, 이를 활용하여 단말과 통신에 사용할 수 있다.
다만, 도 11a는 설명의 편의를 위해, 기지국이 업링크를 수신하기 위해 사용 가능한 FD CRB들을 각 기지국 전송 전력에 따라서 구분하였으나, 기지국이 업링크를 수신하기 위해 사용 가능한 FD CRB들은 기지국 전송 전력에 대해서만 구분되는 것이 아니다. FD CRB들은 기지국 전송 전력을 포함하는 FD CRB 설정 조건에 기초하여 구성 및 설정될 수 있다. 전술한 바와 같이, 일 예로, FD CRB 설정 조건은 전송 빔 형태, 프리코딩, 안테나 포트의 개수, 안테나 포트의 종류 등을 포함할 수 있다.
이에 대한 자세한 사항은 다른 실시 예에서 다룰 것이다.
<제 1 실시 예>
아래 실시 예는 단말에게 기지국이 기지국의 전송 전력에 따라 FD CRB로 사용할 수 있는 FD CRB 세트 리스트를 전달하는 과정에 대한 것이다.
Full Duplex 동작을 수행하기 위하여, 기지국은 자기간섭을 제거할 수 있다. 이때, 자기간섭을 제거하기 위하여 기지국은 사전에 자기간섭채널 및 자기간섭레벨을 측정할 수 있다. 이 때, 기지국의 각 Sub-carrier 마다 수신되는 자기간섭의 양은 달라 질 수 있다. 이 뿐만 아니라 기지국이 자기간섭제거 기능을 수행한 이후에 각 Sub-carrier마다 남는 자기간섭의 양 또한 각 Sub-carrier마다 다를 수 있다. 이는 자기간섭제거 기능이 각 Sub-carrier에 대해서 다른 Level로 수행될 수 있기 때문인데, 이는 채널 Selectivity 및 RF 자기간섭제거 기능을 구현하는 소자의 한계로부터 기인한다.
앞서 정의한 것처럼 기지국이 단말에게 할당하는 자원의 최소단위인 RB단위로 Full Duplex 동작에 활용하였을 때 효용을 얻을 수 있는 RB를 FD CRB, 그렇지 않은 RB를 HD CRB로 정의할 수 있다. 또한, RB단위로 업링크 송수신에 활용하였을 때 효용을 얻을 수 있는 RB를 FD CRB, 그렇지 않은 RB를 HD CRB로 정의할 수 있다. 여기서 효용을 얻을 수 있다는 것은 앞서 정의한 '사용할 수 있는'의 의미와 동일하게 FD동작으로 사용시 기지국에서 상향링크 데이터를 수신할 수 있음을 의미한다.
기지국은 단말에게 FD CRB 세트 리스트를 전송할 수 있다. 본 개시의 일 실시예에 따른 기지국은 각 인덱스(index)에 대응되는 FD CRB들의 목록을 단말에 전송할 수 있다. 일 예로, 기지국은 단말에게 각 인덱스에 대응되는 FD CRB 세트를 각 인덱스 별로 각각 전송할 수 있다. 또한, 다른 일 예시에 따라, 기지국은 각 인덱스에 대응되는 FD CRB 세트를 수 개 인덱스에 대해 전송할 수도 있다. 이때, FD CRB 세트는, FD CRB 설정 조건에 기초하여 FD CRB로 결정된 하나 이상의 CRB들을 의미할 수 있다.
또한, 기지국은 FD CRB 세트 리스트와 함께 또는 별도로 각 FD CRB 세트를 지시하는 인덱스를 통보하여, 단말에게 현재 FD CRB 설정 조건에 따른 FD CRB를 알려줄 수 있다. 보다 상세하게, 기지국은 FD CRB 설정 조건에 기초하여 결정된 FD CRB 세트를 지시하기 위해, 인덱스를 단말에 전송할 수 있다.
본 개시에서, 각 인덱스는 FD CRB 설정 조건에 대응될 수 있다. 즉, FD CRB 설정 조건에 따라 FD CRB로 사용될 수 있는 CRB들이 결정되면, 단말에게 결정된 FD CRB 세트를 지시하기 위해 FD CRB 설정 조건에 대응되도록 인덱스가 할당될 수 있다.
이때, FD CRB 설정 조건 중 기지국의 전송 전력이 포함될 뿐이며, FD CRB 설정 조건은 기지국의 전송 전력으로 한정되지 않는다.
앞서 설명한 일 예시와 같이 기지국의 전송전력 등에 따라 FD CRB로 설정되는 CRB들은 변경될 수 있다. 도 11a의 예시처럼 기지국이 전송 전력을 변화시킴에 따라 각 전송 전력에 따른 FD CRB는 다르게 변경될 수 있다.
보다 상세하게 도 11b를 참고할 때, 본 개시에서 FD CRB 세트 리스트란, 각 인덱스에 대응되는 FD CRB로 사용할 수 있는 CRB 목록의 집합 또는 FD CRB 세트의 목록을 의미할 수 있다. 즉, FD CRB 세트 리스트는 기지국의 설정에 따른 FD CRB 설정 조건에 따라 결정된 FD CRB 세트에 어떠한 CRB들이 포함되어 있는지에 대한 정보 및 결정된 FD CRB 세트를 지시하기 위한 인덱스가 어떤 것인지에 대한 정보가 포함될 수 있다. 따라서, FD CRB 세트 리스트는 FD CRB 설정 조건에 기초하여 결정된 FD CRB의 CRB 위치 정보, CRB의 번호 정보, 각 FD CRB 세트를 지시하는 인덱스 정보 등을 포함할 수 있다. 또한, 본 개시에서, FD RB 세트 리스트는 FD CRB 세트 리스트에 대응될 수 있다.
또한, 이때, FD CRB 세트 리스트에 포함된 FD CRB 세트는 FD CRB 설정 조건에 기초하여 결정되는 것이나, 단말은 FD CRB 설정 조건을 모두 알 필요는 없을 수 있다. 따라서, 기지국은 FD CRB 설정 조건을 단말에 FD CRB 세트 리스트와 함께 전송할 수 있고, FD CRB 세트 리스트와 별도로 FD CRB 설정 조건 중 필요한 정보만 전송할 수도 있다. 또한, 기지국은 단말에게 FD CRB 설정 조건을 전송하지 않을 수도 있다.
도 11b를 참고할 때, FD CRB 세트 리스트의 인덱스 1에 대응되는 FD CRB 세트는 CRB 5-CRB 7 및 CRB 11-CRB 15일 수 있다. 이때, 인덱스 1에 대응되는 FD CRB 설정 조건에는, 한정되지 않은 일 예시에 따라 전송 전력, 포트의 수, 포트의 조합, 전송 빔 형태, 프리코딩 등이 포함될 수 있으며, 일 예시로 도 11a의 (b)를 참고할 때, 기지국의 전송 전력은 33dBm일 수 있다. FD CRB 설정 조건에 대한 자세한 설명은 도 14에서 후술한다.
또한, 도 11b의 FD CRB 세트 리스트의 각 인덱스 2 내지 4에 대응되는 FD CRB들이 FD CRB 세트로 정의될 수 있다 이때, 인덱스는 한 개 이상일 수 있으며, 하나의 인덱스는 하나의 FD CRB 세트를 지시할 수 있다.
도 13은 본 개시의 일 실시예에 따른 FD CRB 세트 리스트에 기초한 전송 전력을 변경하는 방법을 도시한 흐름도이다.
도 13을 참고할 때, 단계 S1310에서 기지국은 단말에게 FD CRB 세트 리스트(FD CRB Set List)를 전달할 수 있고, 단계 S1320에서 단말은 FD CRB 세트 리스트를 수신한 이후 수신 확인을 기지국에 전송할 수 있다. 단계 S1310에서 단말에게 FD CRB 세트 리스트가 전송되는 시점은 다음과 같은 세가지 경우를 고려할 수 있으나, 이에 한정되지는 않는다. 이때, 본 개시의 일 실시예에 따라, 단말에게 FD CRB 세트 리스트가 전송되는 시점은 초기 접속한 경우, 기지국 내에서 FD CRB 세트 리스트가 변화되는 경우 및 단말이 속한 기지국이 변하는 경우로 구분될 수 있으며, 자세한 내용을 후술한다.
본 개시의 일 실시예에 따라, 단말에게 FD CRB 세트 리스트가 전송되는 시점은 단말의 초기 접속 이후일 수 있다. 단말은 초기 접속 이후 기지국으로부터 기지국과 송수신에 필요한 부가 정보를 수신 받을 수 있다. 이 때, 기지국은 단말에게 FD CRB 세트 리스트를 전달할 수 있다. 단말은 기지국으로부터 FD CRB 세트 리스트를 수신 받는 경우 해당 기지국이 Full Duplex 기능을 지원함을 인지할 수 있다. 만일 기지국이 FD CRB 세트 리스트를 전송하지 않는 경우, 단말은 기지국이 Half Duplex로만 동작함으로 인식 할 수 있다. 위와 같은 일 예시에 따라, 기지국이 단말에게 FD CRB 세트 리스트를 전송 혹은 전송하지 않음을 통해 Full Duplex 동작을 지원여부를 알려주는 방법 이외에도 기지국은 단말에 별도의 지시자를 전송하여 Full Duplex 동작의 활성 여부를 알려줄 수 있다.
또한 본 개시의 일 실시예에 따라 단말이 기지국으로부터 복수개의 FD CRB 세트 리스트를 수신한 경우, 단말은 기지국이 전송전력 조절, 혹은 Full Duplex 기능 조절을 통하여 FD CRB를 변화시킴을 인식할 수 있다. 다른 일예로, 단말이 기지국으로부터 하나의 FD CRB 세트 리스트를 수신한 경우, 단말은 기지국이 FD CRB 세트 리스트를 변화시키지 않고 동작함을 인식할 수 있다.
본 개시의 다른 일 실시예에 따라, 단말에게 FD CRB 세트 리스트가 전송되는 시점은 단말이 속한 기지국이 변하지 않았음에도 불구하고 기지국 내에서 FD CRB 세트 리스트가 변화 되는 경우일 수 있다. 기지국의 자기간섭채널 변화 혹은 자기간섭제거 기능의 변화 등으로 인해 기지국에서 생성된 FD CRB 세트 리스트가 변화하는 경우, 기지국은 변경된 FD CRB 세트 리스트를 단말에게 알려주어야 한다. 단말은 기지국으로부터 새로운 FD CRB 세트 리스트를 수신하면, 단말은 기존 FD CRB 세트 리스트를 파기하고, 새로운 FD CRB 세트 리스트를 적용하여 동작할 수 있다. 이 때, 단말이 FD CRB 세트 리스트를 파기하고, 새로운 FD CRB 세트 리스트를 적용하는 시점은 단말과 기지국 간에 상호 합의된 사항을 따른다. 이 때, 단말은 새로운 전송 시점까지 FD CRB에 대한 상향링크 동작을 중지할 수 있다.
세번째 본 개시의 다른 일 실시예에 따라, 단말에게 FD CRB 세트 리스트가 전송되는 시점은 단말이 속한 기지국이 변하는 경우일 수 있다. 단말이 이동하거나, 기지국이 꺼지거나 하는 등과 같이 단말이 속한 기지국이 변화하는 경우, 단말은 새로운 기지국으로부터 FD CRB 세트 리스트를 수신 받을 수 있다. 이 때 단말은 새로운 기지국의 FD CRB 세트 리스트에 대해 초기 접속 시 FD CRB 세트 리스트를 해석하는 것과 동일하게 해석할 수 있다.
이외에도 필요에 따라 기지국은 단말에게 새로운 FD CRB Set List를 전송할 수 있으며, 단말은 새로운 FD CRB Set List를 수신하여 저장한 뒤 FD 동작에 활용할 수 있다. 앞서 기술한 것처럼 새로운 FD CRB Set List를 적용하는 시점은 단말과 기지국의 약속에 따라 달라질 수 있다.
기지국에서 FD CRB Set List를 전송하기 위해 단말에게 알려주는 정보들은 다음의 정보들을 포함할 수 있다.
기지국은 필수적인 정보인 기지국의 총 CRB중 FD CRB로 사용할 수 있는 CRB들의 위치에 대한 정보 및 해당 FD CRB Set에 대응하는 인덱스를 단말에게 전송할 수 있다.
이 때, FD CRB로 사용할 수 있는 CRB들의 위치는 FD CRB 설정 조건에 기초하여 FD CRB로 설정된 CRB들의 위치를 의미할 수 있다. 이때, 하나의 FD CRB의 설정 조건에 기초하여 FD CRB 세트가 결정될 수 있다. 이 때, 일 예시로, FD CRB로 사용할 수 있는 CRB들인 FD CRB 세트는 기지국이 설정할 수 있는 기지국의 전송 전력에 대하여 일대일로 매핑될 수 있다. 예컨대 앞서 도 11a에서 기술된 예시처럼, 기지국의 전송 전력이 43dBm인 경우 CRB 5-6번, 33dBm인 경우 CRB 5-7번과 CRB 11-15번, 23dBm인 경우 CRB 4-9번과 CRB 11-17번, 13dBm인 경우 CRB 0-19번을 FD CRB로 매핑 할 수 있다. 상기 예시에서 각 전송 전력과 CRB 번호는 어떤 의미를 갖는 것이 아닌 설명의 편의를 위하여 임의로 설정된 값이다.
또한 기지국은 FD 동작을 위한 정보인 FD CRB 설정 조건을 상기 FD CRB Set List 전송과 동시에 혹은 분리하여 전송 할 수 있다. 예컨대 기지국은 단말에게 FD CRB Set List의 인덱스에 매핑되는 전송 전력 등을 따로 전송할 수 있다.
도 14는 본 개시의 일 실시 예에 따른 기지국의 동작을 도시한 흐름도이다.
보다 상세하게, 도 14는 본 개시의 일 실시에에 따른 기지국이 CRB 세트 리스트를 결정 하고 전송하는 방법에 대한 흐름도이다. 또한, 도 14의 흐름도는 도 13의 단계 S1310에 대응되는 기지국의 구체적인 동작일 수 있다.
단계 S1410에서, 기지국은 우선적으로 FD CRB Set List를 결정할 수 있다. 또는, 기지국은 우선적으로 FD CRB Set List를 획득할 수 있다.
앞서 기술한 것처럼 FD CRB Set List에는 기지국의 특정 전송 전력에 따라 결정된 FD CRB들을 포함할 수 있으나, FD CRB 설정 조건은 기지국의 전송 전력에 한정되지 않는다.
본 개시에서, FD CRB 설정 조건은 FD CRB Set List를 설정하기 위한 조건을 의미할 수 있다. 또한, FD CRB 설정 조건은 CRB가 FD CRB인지 판단하기 위한 조건일 수 있다. 또한, FD CRB 설정 조건은 FD 동작을 위한 정보를 의미할 수도 있다. FD CRB 설정 정보는 기지국에서 동작하기 위해 필요한 정보일 수 있고, 기지국의 설정 정보, 환경 정보 등을 포함할 수 있다. 보다 상세하게, 본 개시에서는 설명의 편의를 위해, FD CRB Set List를 설정하는 방법을 전송 전력에 한정 하여 설명하였다.
FD CRB 설정 조건에는 전송 전력, 포트의 수, 포트의 조합, 기지국의 전송 빔 형태, 프리코딩 등 자기 간섭 채널을 변화시킬 수 있는 요소들 등이 포함될 수 있다. 이때, FD CRB 설정 조건은, 하나의 설정 요소를 의미할 수도 있고, 하나 이상의 설정 요소들의 조합을 의미할 수도 있다.
상술한 예시와 같이, 인덱스는 FD CRB 설정 조건에 대해 인덱스가 대응되도록 정의될 수 있다. 또한, 인덱스는 전송 전력, 포트의 수, 포트 등과 같은 설정 요소들의 조합에 대해 하나의 인덱스가 대응되도록 정의될 수도 있다. 따라서, 전송 전력이 아닌 기지국의 전송 빔 형태, 프리코딩 등 자기 간섭 채널을 변화시킬 수 있는 요소들에 대하여 기지국이 미리 측정하여 FD CRB Set를 만들 수 있으며, 앞서 설명한 FD CRB Set List의 인덱스는 기지국의 설정 변화에 따라 매핑 될 수 있다.
단계 S1420에서, 기지국은 단말에 FD CRB Set List를 각 인덱스와 함께 전송할 수 있다. 본 도 14에서 전송의 의미는 단말이 기지국에 완벽히 수신함을 알려주는 ACK를 전송하고 이를 기지국에서 수신하여 단말에게 FD CRB Set List를 수신하였다는 것을 확인하는 동작을 포함할 수 있다.
도 15는 본 개시의 일 실시 예에 따른, 단말의 동작을 도시한 흐름도이다.
보다 상세하게, 도 15 는 본 개시의 일 실시에에 따른 단말의 CRB 세트 리스트에 기초한 FD 동작 수행 과정에 대한 흐름도이고, 도 15의 흐름도는 도 13의 S1320에 대응되는 단말의 구체적인 동작일 수 있다.
단계 S1510 단계에서 단말은 기지국으로부터 기지국이 설정한 FD CRB Set List를 수신할 수 있다. 이 때 앞서 기술한 것과 마찬가지로 단말의 수신은 기지국에 수신을 확인하는 동작을 포함할 수 있다.
단계 S1520에서 단말은 기지국으로부터 수신한 FD CRB Set List를 저장할 수 있다.
이 때 본 개시의 일 실시예에 따라, 단말은 FD CRB를 PRB 번호로 변환하여 저장할 수도 있다. 다만 단말이 FD CRB Set List를 PRB 번호로 변환하여 저장하였는데, 단말의 BWP(BandWidth Part)가 변환되는 경우, 단말은 BWP를 다시 해석하여 PRB를 매핑 할 수 있다. 또한 기지국은 단말의 BWP가 변환되는 경우에 대해서 FD CRB Set List를 재전송해 줄 수 있다.
단계 S1530에서 단말은 FD 동작을 수행할 수 있다. 본 개시에서 FD 동작을 수행한다는 것은 단말이 FD CRB Set List를 수신 받은 후에, 해당 FD CRB Set List를 해석하여 기존과 다른 동작을 하는 경우를 의미한다. 보다 상세하게, 단말은 기지국으로부터 수신한 FD CRB 세트 리스트로부터 기지국이 송신하는 각 인덱스에 대응하는 CRB의 조합 또는 FD CRB 세트를 확인할 수 있다. 또한, 단말은 기지국이 송신한 인덱스에 기초하여 FD CRB 세트 리스트 내의 CRB의 조합 또는 FD CRB 세트를 이용하여 업 링크를 송신할 수 있다. 이에 대한 상세한 동작 방법은 이후 실시 예에서 상세하게 기술한다.
<제 2 실시 예>
아래 실시 예는 실시 예 1에서 기지국이 단말에게 FD CRB 및 이에 매핑되는 전송 전력을 알려주는 경우 단말의 CQI 측정 동작에 관한 것이다.
앞서 기술한 것처럼 단말은 기지국과 단말 사이의 채널을 측정하기 위해 CSI-RS를 측정할 수 있다. 또한, 단말은 채널 상태를 기지국에 전달하기 위하여 측정된 CSI-RS Level를 토대로 CQI로 환산하여 기지국에 CQI를 리포팅 한다.
이 때, 본 개시에 따른 기지국이 하향링크 전송 전력을 바꾸어 동작하는 경우 단말은 CSI-RS를 측정함에 있어 서로 다른 전송 전력에 대해 측정할 가능성이 생긴다. 이는 단말로 하여금 잘못된 CQI를 생성할 가능성을 야기하며, 이를 해결 하기 위한 수단으로써 아래 실시 예를 설명한다
<제 2-1 실시 예>
아래 실시 예는 단말에게 기지국이 같은 CSI-RS 전송 전력을 유지하기 위하여 CSI-RS가 전송되는 특정 시점이 포함된 시간의 전송 전력을 일정 수준으로 유지하는 방법에 대한 것이다.
도 16은 본 개시의 일 실시 예에 따라, 기지국의 전송 전력 조정의 일례를 도시한 도면이다.
보다 상세하게, 도 16은 본 개시의 일 실시예에 따라 기지국의 전송 전력 변경 중에 단말이 CQI를 측정하기 위해 기지국이 동일한 CSI-RS 전송 전력으로 CSI-RS를 전송하는 방법에 대한 도면이다 또한, 도 16은 기지국의 PDSCH 전송 전력과 CSI-RS 전송 전력을 나타낸 그림이다.
본 실시 예에서 PDSCH 전송 전력은 기지국이 단말에게 데이터를 전송할 때 사용하는 전송 전력을 의미할 수 있다. 또한 CSI-RS 전송 전력은 기지국이 단말에게 CSI-RS를 전송하는 순간에 사용하는 전송 전력을 의미할 수 있다.
본 실시 예에서, 기지국은 데이터를 전송하기 위한전송 전력을 유연하게 변화시킬 수 있다. 그러나, 기지국이 단말에게 CSI-RS를 전송하는 시점에 대해서는 CSI-RS를 미리 설정된 전송 전력으로 전송할 수 있다. 반대로 CSI-RS가 전송 되지 않는 시점에 대해서는 전송 전력을 기지국의 판단에 따라 전송하게 된다.
본 개시에 따라, 기지국의 전송 전력이 변화함에도 불구하고, CQI 측정에 대한 정확도를 유지할 수 있다.
도 17은 본 개시의 일 실시 예에 따라, 기지국이 전송 전력을 결정하는 방법에 대한 흐름도이다.
보다 상세하게 도 17은 본 개시의 일 실시에에 따라, 기지국이 CSI-RS를 전송하기 위한 전력을 결정하는 방법의 흐름도이다.
먼저, 단계 S1710에서 기지국은 심볼에 CSI-RS가 포함되어 있는지 여부를 판단할 수 있다.
이때, 기지국이 전송하는 심볼에 CSI-RS가 포함되어 있는 경우, 단계 S1720에서 기지국은 CSI-RS 전송 전력으로 심볼을 전송할 수 있다.
또한, 기지국이 전송하는 심볼에 CSI-RS가 포함되어 있지 않은 경우, 단계 S1730에서 기지국은 제안 동작에 따른 전송 전력으로 심볼을 전송할 수 있다. 보다 상세하게, 단계 S1730에서 기지국은 PDSCH 전송 전력으로 심볼을 전송할 수 있다.
본 개시에서, CSI-RS 전송 전력은 기지국과 단말 사이에 합의된 CSI-RS 전송 전력일 수 있다. 또한, CSI-RS 전송 전력은 기지국이 전송할 수 있는 최대 전송 전력일 수 있고, 또는 기지국이 단말에게 미리 알려준 전송 전력일 수 있으나, 상술한 예에 CSI-RS 전송 전력이 한정되지 않는다. 본 실시 예의 요지는 기지국이 단말이 CQI를 측정하는 시점에 할당한 전송 전력을 일정하게 유지 시켜주는 데에 있다.
또한 본 도면에서 PDSCH 전송 전력은 기지국이 보다 나은 Full Duplex 동작을 위하여 FD CRB를 조절하기 위한 수단으로써 전송 전력을 조절 할 때 사용하는 전송 전력을 의미하며, 앞서 일반적으로 기술한 기지국의 전송 전력에 해당되는 용어이다.
도 18은 본 개시의 일 실시 예에 따른, 단말의 동작 결정 과정을 도시한 흐름도이다.
보다 상세하게 도 18은 본 개시의 일 실시예에 따라, 단말이 기지국으로부터 수신한 CSI-RS 에 따른 동작 수행 방법의 흐름도이다.
먼저, 단계 S1810에서 단말은 기지국이 CSI-RS를 전송할 시점인지 여부를 판단할 수 있다.
단말이 기지국으로부터 CSI-RS를 수신할 시점으로 판단한 경우, 단계 S1820에서 단말은 기지국이 CSI-RS를 전송하는 시점 및 CSI-RS가 포함된 심볼에 대해서 CSI-RS 전송 전력에 해당되는 FD 동작을 수행할 수 있다.
이때, 단말은 CSI-RS가 있는 PDSCH 의 심볼 파워를 맞춰주기 위하여 해당 심볼 PDSCH RE의 파워를 낮춰줄수 있다. 보다 상세하게, 단말이 CSI-RS 전송 전력에 해당되는 FD 동작을 수행한다는 의미는 하향링크 단말 측면에서는 본인의 하향링크 신호를 CSI-RS 전송 전력에 맞춰 수신하는 것을 의미할 수 있다. 이 때, 단말이 신호를 수신한다는 의미는 기지국으로부터 전송된 데이터를 디코딩 하거나, CSI-RS를 측정하여 채널 정보를 수집하는 행동을 포함할 수 있다.
이때, CSI-RS에 매칭되는 PUSCH 심볼은 Puncturing 및 Rate matchig하여 동작할 수 있다. 보다 상세하게, 상향링크 단말 측면에서, 단말이 CSI-RS 전송 전력에 해당되는 FD 동작을 수행하는 것은 단말이 상향링크 전송을 수행함에 있어 전송 전력을 CSI-RS 전송 전력으로 가정하고 동작하는 것을 의미할 수 있다. 상기 동작은 CSI-RS 전송이 되는 심볼에 대해서 상향링크 전송을 수행하지 않는다거나, FD CRB를 CSI-RS 전송 전력 시 해당되는 FD CRB로 가정하여 동작하는 방법을 포함할 수 있다.
단말이 기지국으로부터 CSI-RS를 수신하지 않는 시점으로 판단한 경우, 단계 S1830에서 단말은 CSI-RS 전송하지 않는 시점 및 CSI-RS가 포함되지 않은 심볼에 대해서 PDSCH 전송 전력에 해당되는 FD 동작을 수행할 수 있다.
이때, 단말이 PDSCH 전송 전력에 해당되는 FD 동작을 수행한다는 의미는 단말이 PDSCH에 해당되는 전송을 가정하고 동작함을 의미할 수 있다. 이에 대한 상세한 동작은 실시 예 3을 포함할 수 있다.
<제 2-2 실시 예>
아래 실시 예는 단말에게 기지국이 CSI-RS의 전송전력을 별도의 지시자로 알려주어 단말이 CSI-RS를 토대로 CQI를 생성함에 있어 참고하도록 한 방법에 대한 것이다.
도 19는 본 개시의 일 실시 예에 따라, 기지국에서 단말의 전송 메시지를 도시한 도면이다.
보다 상세하게, 도 19는 본 개시의 일 실시예에 따라 기지국이 단말에게 자신의 전송 전력을 별도의 지시자를 통하여 전송하는 방법을 나타내는 그림이다.
본 개시의 일 실시예에 따를 때, 단계 S1910에서 기지국은 전송 전력 지시자를 전송할 수 있다. 보다 상세하게, 기지국은 단말에게 전송 전력을 전달하기 위하여 별도의 비트를 할당하여 전송 전력을 알려줄 수 있다.
이때, 전송 전력 지시자란, 기지국이 단말에게 전송 전력을 지시하기 위한 신호일 수 있으며, 각 전송 전력 지시자는 서로 다른 전송 전력을 지시할 수 있다.
예를 들어 기지국의 전송 전력이 총 4단계인 경우, 기지국은 2개의 비트를 할당하여 00인 경우 가장 낮은 전송 전력, 01인 경우 두번째 낮은 전송전력, 10인 경우 세번째 낮은 전송 전력, 11인 경우 가장 높은 전송 전력을 할당 했다고 단말에게 알려줄 수 있다.
기지국이 단말에게 보내는 전송 전력 지시자는 모든 단말이 수신해야 하므로 브로드캐스팅 채널을 통하여 전송하거나, 모든 단말이 살펴봐야하는 CSS(Common Search Space)를 통하여 전송되는 것이 자연스러우나, 각 단말이 별도로 각각 수신하는 DCI에 포함되어 전송될 수도 있다. 또한, 기지국이 전송 전력 지시자를 송신하는 방법은 상술한 예에 한정되지 않는다.
본 개시의 일 실시예에 따라, 전송 전력 지시자가 기지국으로부터 단말로 전송되는 시점은 전송 전력의 변경 시점, 매 심볼이 전송되는 시점, 또는 일정 주기를 가진 시점 (예를 들자면 매 N 심볼마다 전송)으로 결정 될 수 있으나, 상술한 예에 한정하지 않는다.
도 20은 본 개시의 일 실시 예에 따른, 기지국의 동작을 도시한 도면이다. 보다 상세하게, 도 20은 본 개시의 일 실시예에 따라, 기지국이 전송 전력 지시자를 단말에게 전송하고, 이에 맞춰 전송 전력을 조절하는 방법을 나타낸 것이다.
앞서 설명한 것처럼, 단계 S2010에서 기지국은 단말에게 전송 전력의 변경을 전송 전력 지시자를 통해 알려주고, 단계 S2020에서 기지국은 송신한 전송 전력 지시자에 대응되도록 전송 전력을 변화시킬 수 있다.
이때, 일 실시예에 따라, 기지국은 단말에게 전송 전력 변경 지시자를 전달 함과 동시에 전송 전력을 변화시킬 수 있다. 또한 다른 일 실시예에 따라, 기지국은 단말의 디코딩 시간을 고려하여 전송 전력 지시자를 전송한 시점 t로부터 일정시간 t'이 지난 시간 t+t'에 전송 전력을 변경 할 수도 있다. 기지국은 전송 전력 지시자를 전송한 후에는 전송 전력 지시자가 지시하는 전송 전력으로 설정하여 송신할 수 있다. 이 때, 기지국이 송신한다는 것은 기지국이 단말에게 보내는 모든 송신 동작을 포함할 수 있다. 예컨대, CSI-RS 전송, PDSCH 전송, PDCCH 전송 등을 포함할 수 있다.
도 21은 본 개시의 일 실시 예에 따른, 단말의 동작을 도시한 흐름도이다.
보다 상세하게, 도 21은 단말이 기지국으로부터 전송 전력 지시자를 수신하고, 이에 맞춰 단말 동작을 수행하는 것을 나타낸 것이다.
단계 S2110에서 단말은 기지국으로부터 전송 전력 지시자를 수신할 수 있다. 이 때, 단말은 기지국이 보낸 전송 전력 지시자에 따라 기지국의 전송 전력을 확인 할 수 있다.
단계 S2120에서 단말은 전송 전력 지시자에 매핑된 전송 전력을 기지국이 사용한다고 가정하고 단말 동작을 수행할 수 있다.
보다 상세하게, 하향링크 측면에서 단말은 전송 전력 지시자에 매핑된 전송 전력을 가정하고 CQI를 측정할 수 있고, 전송 전력 지시자가 지시하는 전송 전력에 맞춰 PDSCH등을 수신한다고 가정할 수 있다. 또한 상향링크 측면에서 단말은 전송 전력 지시자에 매핑된 전송 전력의 FD CRB Set이 사용된다고 가정하고 동작할 수 있다. 이에 대한 상세한 동작 방법은 이후 실시 예에서 기술한다. 이 때, 단말이 수신한 전송 전력 지시자가 적용되는 시점은 도 17에서 설명한 기지국이 전송 전력을 바꾸는 시점과 동일한 시점이다.
<제 2-3 실시 예>
아래 실시 예는 단말에게 기지국이 CSI-RS의 전송 전력의 변화를 몇가지 패턴으로 고정하여 동작하는 경우, 이를 단말에게 알려주고 단말이 CQI를 생성함에 있어 참고하도록 한 방법에 대한 것이다.
도 22는 본 개시의 일 실시 예에 따라, 기지국에서 단말의 전송 메시지를 도시한 도면이다.
도 22는 본 개시의 일 실시예에 따라, 기지국이 단말에게 전송 전력 변화 패턴을 특정 시점에 전송하고 이후에 전송 전력 변화 패턴을 지시자로 전송하는 것을 나타낸 그림이다.
단계 S2210에서 기지국은 단말에게 전송 전력 변화 패턴을 특정 시점에 전송할 수 있다.
이때, 도 22에서 기지국이 단말에게 전송하는 전송 전력 변화 패턴은 기지국이 사용할 수 있는 전송 전력의 변화를 미리 정의해 놓은 패턴을 의미할 수 있다. 또한, 전송 전력 변화 패턴에 대한 정보는 정보는 FD CRB를 설정하기 위한 FD CRB 설정 조건 중 기지국의 전송 전력 들에 대한 정보에 대응될 수 있다. 또한, 전송 전력 변화 패턴에 대한 정보는 인덱스로 지시될 수 있으며, 전송 전력 변화 패턴에 대한 정보는 순차적인 전송 시점에 대한 전송 전력 변화 정보를 포함할 수 있다. 예를 들어, 기지국이 변화할 수 있는 A개의 전송 전력을 가진 경우 B개의 순차적인 전송 시점의 전력은 총 A^B개의 후보군을 가질 수 있다. 이 모든 셋(Set)에 대한 인덱스 혹은 가장 많이 사용할 수 있은 후보군에 대한 인덱스를 지정하여 단말에게 알려주면, 단말은 앞으로 B개의 순차적인 전송 시점에 대한 전력 변화를 알고 있을 수 있다.
단계 S2220에서 기지국은 단말에게 전송 전력 변화 지시자를 전송할 수 있다. 이때, 전송 전력 변화 지시자란, 기지국이 단말에게 전송하는 전송 전력 변화 패턴에 기초하여 전송 전력이 변화할 때, 전송 전력의 변화를 지시하기 위한 신호를 의미할 수 있다. 즉, 기지국이 기 설정한 전송 전력 변화 패턴은 복수 개의 전송 전력이 반복되어 패턴을 형성할 수 있으나, 전송 전력 변화 지시자는 각 전력이 변화될 때 이를 기지국이 단말에 전송하기 위한 지시자를 의미할 수 있다.
이때 단말은 수신한 전송 전력 변화 지시자에 기초하여, 기지국의 전송 전력을 확인하고, 기지국의 전송 전력에 대응하는 CQI를 측정할 수 있다. 또한, 단말은 기지국의 각 전송 전력에 대응하는 CQI를 각각 측정하고, 측정한 CQI를 기지국으로 리포팅할 수 있다.
이외의 과정은 제 2-2 실시 예의 동작 방법을 따른다.
위 실시 예들에서 나타난 방법 이외에, 만일 단말에게 기지국이 CSI-RS의 전송 전력을 별도로 알려주지 않는 경우 (지시자로 지정하지 않거나, CSI-RS의 전송전력을 고정시키지 않거나, CSI-RS 전송전력 패턴을 고정시키지 않거나 하는 경우) 단말은 이를 특정 타임에 대한 평균, 최고값, 최저값 등으로 보고하고 기지국은 이로부터 단말의 CQI등을 추정할 수 있다. 보다 상세하게, 단말은 일정한 시간 동안의 SNR을 측정하여 기지국에 보고할 수 있다. 이때, 단말은 일정 시간 동안의 SNR의 평균값, 최고값, 최저값 등을 보고할 수 있으며, 기지국은 단말이 보고 하는 값이 평균값, 최고값, 최저값 중 어디에 대응되는지 알고 있어야 한다. 이때, 기지국은 SNR과 대응되는 CQI와의 맵핑 정보에 기초하여, CQI를 역산하고, CQI에 기초하여 MCS를 결정할 수 있다.
<제 3 실시 예>
아래 실시 예는 기지국의 전송 전력을 변화 시킴에 따라 단말이 상향링크 전송에 기지국과 동시에 사용할 수 있는 FD CRB가 변화함에 따라 단말이 사용할 수 있는 전송 방법에 대한 것이다.
도 23은 본 개시의 일 실시 예에 따라, 단말의 상향링크 자원 할당 시점과 전송 시점 간 FD CRB의 차이를 설명하기 위한 도면이다.
보다 상세하게, 도 23은 본 개시의 일 실시예에 따라 전송 전력이 변화함에 따라 FD CRB가 변화하고, 이에 따라 기지국이 단말의 상향링크 자원을 스케쥴링 한 시점과 단말이 실제로 상향링크 전송을 하는 시점에 사용 가능한 RB가 다름을 나타내는 그림이다.
본 예시는 기지국이 전송 전력을 시간에 따라 33dBm, 23dBm, 43dBm, 13dBm으로 바꾸어 전송하였을 때를 나타낸다. 이 예시에서 기지국의 전송 전력이 변화함에 따라 단말이 상향링크 전송에 사용 가능한 FD CRB의 리스트는 {CRB 5-7번과 CRB 11-15번}, {CRB 4-9번과 CRB 11-17번}, {CRB 5-6번}, {CRB 0-19번}으로 순차적으로 변화한다.
이 때, 도 23을 참고할 때, 기지국은 단말 상향링크 RB 스케쥴링 시점 t에서 단말에게 단말의 상향링크 전송을 위한 리소스를 할당할 수 있다. 그러나, 실제 단말이 상향링크 전송을 하는 시점은 일정 시간 t'가 지난 t+t' 시점일 수 있다. 따라서 단말이 기지국으로부터 상향링크 전송을 위한 리소스를 할당 받은 시점의 전송 전력과 실제 단말이 상향링크 전송을 하는 시점에 기지국의 전송 전력이 서로 다른 현상이 발생할 수 있다.
일 예시에 따라 도 23을 참고하면, 단말이 상향링크 전송을 위한 리소스를 기지국으로부터 전송 받은 시점의 기지국의 전송 전력은 33dBm인데 반해 단말이 실제로 상향링크를 전송하는 시점의 기지국의 전송 전력은 43dBm으로 변화한다. 이로 인해 43dB에서 효용성이 있는 CRB 5-6번을 제외한 나머지 CRB를 단말이 기지국으로부터 할당 받아 상향링크 전송을 할 경우, 효용성이 없는 CRB에 전송한 데이터의 경우 기지국에서 제대로 수신 받지 못할 수 있다. 따라서 단말은 기지국의 전송 전력 변화에 따라 기지국으로부터 상향링크 스케쥴링 시점에서 할당 받은 CRB라고 할 지라도, 상향링크 송신시점에서 유효하지 않다면 전송을 하지 않는 것을 고려할 수 있다.
도 24는 본 개시의 일 실시 예에 따라, 단말과 기지국간의 데이터 전송 흐름도를 도시한 도면이다.
도 24에 나타난 것처럼, 본 실시 예 들에서는 단말이 기지국으로부터 전송 받은 FD CRB Set를 기지국의 전송 전력과 CRB의 유효 부분을 합쳐 해석 할 수 있는 방법에 대해서 설명한다
단계 S2410에서, 기지국은 단말에게 할당된 상향링크 리소스를 할당할 수 있다. 또한, 단계 S2420에서, 단말은 할당된 리소스를 재해석하여 상향링크를 전송할 수 있다. 하기에서는 단계 S2420에 대응되는, 할당된 리소스를 재해석하여 상향링크를 전송하는 구체적인 실시예를 설명한다.
<실시 예 3-1>
아래 설명하는 실시 예는 단말이 기지국으로부터 할당 받은 RB와 기지국의 전송 전력에 따라 바뀌는 FD CRB의 교집합으로 만들어 상향링크 전송용 리소스로 사용하는 방법에 대한 것이다.
도 25는 본 개시의 일 실시 예에 따른, 단말의 CRB 해석 방법을 도시한 도면이다.
도 25(a)를 참고할 때, RIV(Resource Indication Value)로 할당된 UL PDSCH 영역 또는 Grant Free용 접속 자원이라 함은 기지국이 단말에게 제어채널을 통해 할당된 리소스를 CRB FD 영역에 상관없이 기존 상향링크 자원과 동일하다고 가정하여 해석한 결과에 따른 전송 자원을 의미할 수 있다.
도 25(b)를 참고할 때, Tx Power Level에 따른 가능 영역이라 함은, 기지국의 전송 전력에 따라 단말이 상향링크 전송에 사용하였을 때 효용이 있는 CRB를 나타낸 것이다.
이때, 본 개시의 일 실시예에 따라, Tx Power Level에 따른 가능 영역은 FD CRB 리스트 세트로 기 설정될 수 있다.
본 개시의 일 실시예에 따라, 단말은 FD CRB 정보로부터 FD CRB 세트를 식별할 수 있다. 또한, 단말은 FD CRB 세트와 RIV(Resource Indication Value)로 할당된 UL PDSCH RB 영역과 중첩되는 RB를 리소스 엘리먼트로 식별할 수 있다.
본 실시 예에서 단말은 제어채널을 통해 할당된 리소스와 FD CRB Set List에 동시에 존재하는 CRB에 대해서만 상향링크 전송을 수행한다. 예컨대, 기지국이 단말에게 제어채널을 통해 특정 RB를 할당하였다고 하더라도, 단말이 실제 상향링크 전송을 수행하는 시점의 기지국의 전송 전력에 해당되는 CRB 리스트에 해당 RB가 존재 하지 않는다면, 그 특정 RB에 대해서 상향링크 전송을 수행하지 않을 수 있다.
도 26은 본 개시의 일 실시 예에 따른, 단말의 CRB 해석 방법에 따른 해석 예시를 도시한 도면이다.
도 26은 단말이 기지국으로부터 4-10번 RB를 할당 받았을 경우 단말의 상향링크 전송 시점의 기지국의 전송 전력에 따른 실제 전송 RB의 예시를 나타낸 것이다.
즉, 도 26(a)를 참고할 때, 단말은 기지국으로부터 4-10번 RB를 할당받을 수 있다. 일 예로, 단말은 UL PDSCH 영역의 4-10번 RB를 RIV(Resource Indication Value)로 할당 받았다고 가정할 수 있다. 또는 단말은 4-10번 RB를 Grant Free용 접속 자원으로 할당 받았다고 가정할 수 있다.
도 26(b)를 참고할 때, 기지국의 각 전송 전력 별로 UL이 스케쥴링된 영역을 확인할 수 있다. 보다 상세하게, 도 26(b)의 RB들은 DL만 사용 가능한 RB 및 DL/UL 동시 사용 가능한 RB로 구분될 수 있다. 이때, DL/UL 동시 사용 가능한 RB는 기지국이 상향링크를 수신할 수 있는 RB를 의미할 수 있으며, 단말이 상향링크를 전송할 수 있는 RB를 의미할 수 있다. 또한, 해당 RB를 이용하여 기지국이 하향링크를 송신할 수도 있으며, 해당 RB를 이용하여 단말이 하향링크를 수신할 수 있다. 다만, 반드시 해당 RB를 이용하여 기지국이 상향링크를 수신할 때, 해당 RB를 이용하여 기지국이 하향링크를 송신하는 것을 전제하는 것은 아니다. 이하의 도면에서 상술할 내용은 동일하게 적용될 수 있다.
또한, 도 26(b)의 RB들은 상술한 본 개시의 일 실시예에 따라 FD CRB 세트 리스트에서 설정된 FD CRB 세트들에 해당될 수 있다. 또한, 상술한 바와 같이 도 26에는 기지국의 전송 전력만 도시되어 있으나, 기지국의 전송 전력 외의 FD CRB 설정 조건에 포함되는 다른 설정 요소들 역시 FD CRB 세트가 설정될 때 고려될 수 있을 것이다.
도 26(c)를 참고할 때, 단말이 UL를 수행하기 위한 CRB를 결정하기 위해 할당된 리소스를 재해석한 예시를 확인할 수 있다. 본 개시의 실시예에 따를 때, 단말은 할당된 리소스를 재해석하여 결정된 CRB에서 업 링크를 전송할 수 있다.
예로, 단말이 인덱스 FD RB #0를 수신한 경우, 단말은 도 26(a)의 할당된 4-10번 RB와 도 26(b)의 5-6번 RB 간의 교집합에 해당되는 RB들에서만 업 링크를 전송할 수 있다.
또한, 다른 예로, 단말이 인덱스 FD RB #2를 수신한 경우, 단말은 도 26(a)의 4-10번 RB와 도 26(b)의 4-9번 및 11-17번 RB간의 교집합에 해당되는 RB들에서만 업 링크를 전송할 수 있다. 즉, 이 경우는 도 26(b)에 따를 때 RB 11 내지 17도 업 링크가 전송되도록 할당되었으나, 기지국이 업 링크를 스케쥴링하는 시점과 단말이 업 링크를 실제로 전송할 때의 시간 차이로 인해 RB 11 내지 17는 업 링크를 전송하기 위해 이용할 수 없는 RB들이 될 수 있다.
<실시 예 3-2>
아래 설명하는 실시 예는 단말이 기지국으로부터 할당 받은 RB 번호를 토대로 기지국의 전송 전력에 따라 바뀌는 FD CRB의 VRB(Virtual Resource Block) 번호에 매핑하여 해석하는 방법에 대한 것이다. 특히 본 실시 예는 FD CRB Set List에 대하여 VRB 번호를 순차적으로 부여하여 해석하는 방법에 대한 것이다.
도 27은 본 개시의 일 실시 예에 따를 때, 단말의 CRB 해석 방법을 도시한 도면이다.
도 27에서 나타낸 것은, 단말이 각 전송 전력에 따라 상향링크로 사용 가능한 CRB에 대한 번호를 부여 받는 방법의 예시를 나타낸 것이다.
단말은 각 기지국의 전송 전력에 대해서 낮은 CRB를 번호를 갖는 CRB부터 순차적으로 VRB 번호를 붙여 해석할 수 있다. 본 개시의 한정되지 않은 일 실시예로써, 가장 낮은 CRB 번호를 갖는 CRB에 대해 VRB 번호를 0을 할당할 수 있다. 예컨대, 본 예시에서 전송전력이 43dBm인 경우 CRB 5-6번은 VRB 0-1번에 각각 매핑 될 수 있다. 만일 전송 전력이 23dBm으로 변경되었다면 같은 CRB 5-6번은 VRB 1-2번에 각각 매핑 될 수 있다. 따라서 본 실시 예에서는 전송 전력이 바뀜에 따라 CRB에 매핑된 VRB 번호가 바뀔 수 있다.
본 개시의 일 실시예에 따라, 단말은 FD CRB 정보로부터 FD CRB 세트를 식별하고, CRB 순서에 기초하여 FD CRB 세트에 포함된 각 FD CRB에 대한 VRB 번호를 순차적으로 결정할 수 있다. 또한, 단말은 단말이 업링크 자원으로 할당받은 RB 번호와 대응되는 FD CRB에 대한 VRB 번호를 갖는 CRB를 리소스 엘리먼트로 식별할 수 있다.
즉, 본 예시에서, 단말은 FD RB 동작 순서로 VRB를 매핑할 수 있으며, 기지국이 연속적인 리소스를 할당하더라도, 단말은 비연속적인 리소스로 재해석할 수 있다. 기지국의 전송 전력(Tx power level)에 따라 할당된 RB 번호가 없는 경우, 단말은 해당 RB를 이용하여 UL 전송을 수행하지 않을 수 있다.
도 28은 본 개시의 일 실시 예에 따른, 단말의 CRB 해석 방법에 따른 해석 예시를 도시한 도면이다.
도 28은 단말이 기지국으로부터 4-10번 RB를 할당 받았을 경우 단말의 상향링크 전송 시점의 기지국의 전송 전력에 따른 실제 전송 RB를 예시를 나타낸 것이다.
이때, 도 28(a)는 기지국의 각 전송 전력별로 할당된 FD CRB 및 HD CRB를 나타낸 것이다. 보다 상세하게, 도 28(a)를 참고할 때, DL 및 UL 전송이 동시 사용 가능한 RB들과 DL만 사용 가능할 RB들이 기 설정된 것을 확인할 수 있다.
이때, 도 28(a)의 RB들은 상술한 본 개시의 일 실시예에 따라 FD CRB 세트 리스트에서 설정된 FD CRB 세트들에 해당될 수 있다. 또한, 상술한 바와 같이 도 28에는 기지국의 전송 전력만 도시되어 있으나, FD CRB 설정 조건에 포함되는 다른 설정 요소들 역시 FD CRB 세트가 설정될 때 고려될 수 있을 것이다.
이때, 도 28(b)는 단말이 현재 수신하는 기지국의 전송 전력을 기준으로 업링크 송신을 위한 CRB를 재해석한 결과를 나타낸 도면이다.
단말은 할당받은 FD CRB 세트 리스트에서 FD CRB 세트를 확인하고, 각 FD CRB에 대해 CRB 순서에 기초하여 VRB 넘버링을 수행할 수 있다. 예로, 단말이 기지국으로부터 4-10번 RB를 할당받았으나, 인덱스 FD RB #0의 경우 단말은 4-10번으로 VRB 넘버링된 CRB가 존재하지 않는다. 따라서, FD RB #0의 경우 단말은 업링크를 전송하지 않는다. 다른 예로, 인덱스 FD RB #1의 경우 VRB 넘버링된 0-6번 CRB가 존재한다. 이 경우, 단말은 기지국으로부터 4-10번 RB를 UL로 할당 받았으므로, VRB 넘버링된 4-6번의 CRB를 사용하여 UL을 전송할 수 있다.
<실시 예 3-3>
아래 설명하는 실시 예는 단말이 기지국으로부터 할당 받은 RB 번호를 토대로 기지국의 전송 전력에 따라 바뀌는 FD CRB의 VRB 번호에 매핑하여 해석하는 방법에 대한 것이다. 특히 본 실시 예는 FD CRB Set List에 대하여 항상 동일한 VRB 번호를 매핑하여 동작하는 방법에 대한 것이다.
도 29는 본 개시의 일 실시 예에 따른, 단말의 CRB 해석 방법을 도시한 도면이다.
도 29에서 나타낸 것은, 단말이 각 전송 전력에 따라 상향링크로 사용 가능한 CRB에 대한 번호를 부여 받는 방법의 예시를 나타낸 것이다.
단말은 기지국의 CRB Set List에서 모든 전송전력에서 사용 가능한 CRB 부터 고유 VRB 번호를 매핑한다. 예컨대, 본 예시에서 모든 전송전력에서 사용가능한 CRB 5-6번은 VRB 1-2번에 각각 매핑 된다. 이때 전송 전력이 변화하더라도, CRB에 매핑된 VRB 번호는 고유하게 유지된다.
본 개시의 일 실시예에 따라, 단말은 FD CRB 정보로부터 FD CRB 세트를 식별하고, FD CRB 세트에 포함된 각 FD CRB에 대해 업링크 리소스 할당 가능성에 기초하여 VRB(Virtual Resource Block) 번호를 결정할 수 있다. 이때, 단말은 단말이 업링크 자원으로 할당받은 RB 번호와 대응되는 FD CRB에 대한 VRB 번호를 갖는 CRB를 리소스 엘리먼트로 식별할 수 있다.
이때, 업링크 리소스 할당 가능성이란, FD CRB 세트 리스트에 기초할 때, 각 CRB가 업링크 리소스로 할당될 가능성을 의미할 수 있다. 보다 상세하게, 업링크 리소스 할당 가능성이란, FD CRB 세트 리스트에 기초할 때, 각 인덱스가 지시하는 FD CRB 세트에서 식별된 각 FD CRB가 다른 인덱스들이 지시하는 FD CRB 세트에 포함되었을 확률을 의미할 수 있다. 또한, 업링크 리소스 할당 가능성이란 각 인덱스가 지시하는 FD CRB 세트 리스트에 기초할 때, 각 CRB별로 계산되는 FD CRB로 설정될 수 있는 빈도수 또는 업링크 리소스로 할당될 수 있는 빈도수 등을 의미할 수 있다.
즉, 본 예시에서, 단말은 FD RB 동작 순서로 VRB를 매핑할 수 있으며, 기지국이 연속적인 리소스를 할당하더라도, 단말은 비연속적인 리소스로 재해석할 수 있다. 기지국의 전송 전력(Tx power level)에 따라 할당된 RB 번호가 없는 경우, 단말은 해당 RB를 이용하여 UL 전송을 수행하지 않을 수 있다.
도 30은 본 개시의 일 실시 예에 따른, 단말의 CRB 해석 방법에 따른 해석 예시를 도시한 도면이다.
도 30은 단말이 기지국으로부터 4-10번 RB를 할당 받았을 경우 단말의 상향링크 전송 시점의 기지국의 전송 전력에 따른 실제 전송 RB를 예시를 나타낸 것이다.
이때, 도 30(a)는 기지국의 각 전송 전력별로 할당된 FD CRB 및 HD CRB를 나타낸 것이다. 보다 상세하게, 도 30(a)를 참고할 때, DL 및 UL 전송이 동시 사용 가능한 RB들과 DL만 사용 가능할 RB들이 기 설정된 것을 확인할 수 있다.
이때, 도 30(a)의 RB들은 상술한 본 개시의 일 실시예에 따라 FD CRB 세트 리스트에서 설정된 CRB 세트들에 해당될 수 있다. 또한, 상술한 바와 같이 도 30에는 기지국의 전송 전력만 도시되어 있으나, FD CRB 설정 조건에 포함되는 다른 설정 요소들 역시 FD CRB 세트가 설정될 때 고려될 수 있을 것이다.
이때, 도 30(b)는 단말이 현재 수신하는 기지국의 전송 전력을 기준으로 UL 송신을 위한 CRB를 재해석한 결과를 나타낸 도면이다.
단말은 FD CRB 세트 리스트에서 FD CRB 세트를 확인하고, 각 FD CRB에 대해 FD CRB 세트에 포함된 특정 위치들의 FD CRB가 동일한 VRB 번호로 결정될 수 있도록 FD CRB에 번호를 붙일 수 있다. 이때, 일 예로, 단말은 업링크 리소스 할당 가능성에 기초하여 각 FD CRB에 대해 VRB 넘버링을 수행할 수 있다. 즉, 각 FD CRB 세트 리스트에 기초할 때 가장 빈번하게 할당될 수 있는 특정 위치들의 FD CRB들부터 VRB 번호를 결정 할 수 있다. 이와 같은 규칙으로 결정 된 VRB 번호에 대응되는 FD CRB를 이용하여 단말이 업링크를 송신하는 경우, 높은 확률로 해당 FD CRB를 이용하여 업링크를 송신할 수 있게 된다.
예로, 도 30(b)를 참고할 때, 단말은 RB 5번부터 VRB 넘버링을 수행할 수 있다. 이때, 일 예로, CRB 5번이 각 인덱스가 지시하는 FD CRB 세트 리스트에 대해 가장 빈번하게 업링크 리소스로 할당된 것을 확인할 수 있다. 보다 상세하게, 인덱스 FD RB #0, FD RB #1, FD RB #2 및 FD RB #3가 지시하는 각 FD CRB 세트 리스트들에는 CRB 5번이 업링크 자원으로 할당된바 있다. 또한, CRB 11번을 확인하면, 인덱스 FD RB #2 및 FD RB #3가 지시하는 FD CRB 세트 리스트에만 CRB 11번이 업링크 리소스로 할당된 것을 확인할 수 있다. 따라서, CRB 5번의 업링크 리소스 할당 가능성이 CRB 11번보다 높다. 이 경우, 본 개시의 일 실시예에 따를 때, 업링크 리소스 할당 가능성이 높은 CRB 5번이 CRB 11번보다 낮은 VRB 번호로 결정될 수 있다.
또한, 도 30(b)에 따를 때, RB 5번은 각 FD CRB 세트 리스트에 공통적으로 FD RB로 할당되어 있는 RB로, 업링크 리소스 할당 가능성이 가장 높은 것으로 판단된 RB일 수 있다.
또한, 인덱스 FD RB #2가 지시하는 FD CRB 세트 리스트를 확인하면, 인덱스 FD RB #1이 지시하는 FD CRB 세트 리스트보다 RB 4번, RB 8번, RB 9번, RB 11번, RB 16번 및 RB 17번이 추가적으로 더 설정된 것을 확인할 수 있다. 즉, RB 5번, 6번, 7번 및 RB 12번, 13번, 14번, 15번은 인덱스 FD RB #1이 지시하는 FD CRB 세트 리스트에서 FD CRB로 설정된바 있어, RB 4번, 8번, 9번, 11번, 16번 및 17번보다 큰 업링크 리소스 할당 가능성을 갖게 된다. 따라서, 도 30(b)를 참고 할 때, RB 5번, 6번, 7번 및 RB 12번, 13번, 14번, 15번에 대해 순차적으로 VRB가 결정 된 후, RB 4번, 8번, 9번, 11번, 16번 및 17번에 대해 순차적으로 VRB가 넘버링될 수 있다.
이때, 단말이 기지국으로부터 4-10번 RB를 할당받았으나, 인덱스 FD RB #0의 경우 단말은 4-10번으로 VRB 넘버링된 CRB가 존재하지 않는다. 따라서, FD RB #0의 경우 단말은 UL을 전송하지 않는다. 다른 예로, FD RB #1의 경우 VRB 넘버링된 CRB가 0-6 이 존재한다. 이 경우, 단말은 기지국으로부터 4-10번 RB를 UL로 할당 받았으므로, VRB 넘버링된 4-6번의 CRB를 사용하여 UL을 전송할 수 있다.
도 31은 본 개시의 일 실시예에 따른 단말의 구조를 도시하는 블록도이다.
도 31을 참조하면, 단말은 송수신부(3110), 메모리(3120) 및 프로세서(3130)로 구성될 수 있다. 전술한 단말의 통신 방법에 따라, 단말의 송수신부(3110), 프로세서(3130) 및 메모리(3120)가 동작할 수 있다. 다만, 단말의 구성 요소가 전술한 예에 한정되는 것은 아니다. 예를 들어, 단말은 전술한 구성 요소들 보다 더 많은 구성 요소를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 뿐만 아니라 송수신부(3110), 프로세서(3130) 및 메모리(3120)가 하나의 칩(chip) 형태로 구현될 수도 있다. 또한, 프로세서(3130)는 하나 이상의 프로세서를 포함할 수 있다.
송수신부(3110)는 단말의 수신부와 단말의 송신부를 통칭한 것으로서, 네트워크 엔티티(Network Entity), 기지국 또는 다른 단말과 신호를 송수신할 수 있다. 네트워크 엔티티, 기지국 또는 다른 단말과 송수신하는 신호는 제어 정보 및 데이터를 포함할 수 있다. 이를 위해, 송수신부(3110)는 전송되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 다만, 이는 송수신부(3110)의 일 실시예일뿐이며, 송수신부(3110)의 구성 요소가 RF 송신기 및 RF 수신기에 한정되는 것은 아니다.
또한, 송수신부(3110)는 무선 채널을 통해 신호를 수신하여 프로세서(3130)로 출력하고, 프로세서(3130)로부터 출력되는 신호를 무선 채널을 통해 전송할 수 있다.
메모리(3120)는 단말의 동작에 필요한 프로그램 및 데이터를 저장할 수 있다. 또한, 메모리(3120)는 단말에서 획득되는 신호에 포함된 제어 정보 또는 데이터를 저장할 수 있다. 메모리(3120)는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다. 또한, 메모리(3120)는 별도로 존재하지 않고 프로세서(3130)에 포함되어 구성될 수도 있다.
프로세서(3130)는 상술한 본 개시의 실시예에 따라 단말이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 예를 들면, 프로세서(3130)는 송수신부(3110)를 통해 제어 신호와 데이터 신호를 수신하고, 수신한 제어 신호와 데이터 신호를 처리할 수 있다 또한, 프로세서(3130)는 처리한 제어 신호와 데이터 신호를 송수신부(3110)를 통해 송신할 수 있다. 또한, 프로세서(3130)는 두 가지 계층으로 구성되는 DCI를 수신하여 동시에 다수의 PDSCH를 수신하도록 단말의 구성 요소를 제어할 수 있다.
본 개시의 일 실시예에 따라, 적어도 하나 이상의 프로세서(3130)는 기지국으로부터 FD CRB(Full Duplex Carrier Resource Block)에 대한 정보를 수신하도록 송수신부(3110)를 제어할 수 있다. 또한, 프로세서(3130)는 FD CRB에 대한 정보에 기초하여 업링크 데이터 송신에 이용 가능한 리소스 엘리먼트를 식별할 수 있다. 또한, 프로세서(3130)는 식별된 리소스 엘리먼트를 이용하여 업 링크 데이터를 송신하도록 송수신부(3110)를 제어할 수 있다.
본 개시의 일 실시예에 따라, FD CRB에 대한 정보는 FD CRB 설정 조건에 대응되는 인덱스로 지시될 수 있다. 또한, FD CRB 설정 조건은 포트 개수, 포트 종류 또는 전송 전력 중 적어도 하나 이상을 포함할 수 있다.
본 개시의 일 실시예에 따라, 프로세서(3130)는 상기 FD CRB에 대한 정보를 포함하는 RRC(Radio Resource Control) 시그널링 또는 DCI(DownLink Control Information)를 통해 수신하도록 송수신부(3110)를 제어할 수 있다.
본 개시의 일 실시예에 따라, 프로세서(3130)는 식별된 리소스 엘리먼트를 이용하여 CSI-RS(Channel Status Information-Reference Signal)를 수신하도록 송수신부(3110)를 제어할 수 있다. 또한, 프로세서(3130)는 수신된 CSI-RS에 기초하여 결정된 CQI(Channel Quality Indicator)를 기지국으로 송신하도록 송수신부(3110)를 제어할 수 있다. 또한, 프로세서(3130)는 FD CRB에 대한 정보를 기초로 식별된 리소스 엘리먼트에 대한 전송 전력이 조정됨에 따라, 식별된 리소스 엘리먼트를 통해 수신되는 CSI-RS 및 PDSCH(Physical Downlink Shared Channel) 중, PDSCH의 전송 전력을 조정할 수 있다.
본 개시의 일 실시예에 따라, 프로세서(3130)는 기지국으로부터 기 설정된 전송 전력 패턴에 대한 정보를 획득할 수 있다. 또한, 프로세서(3130)는 전송 전력 패턴에 대한 정보를 기초로 식별된 시점에 기지국으로부터 전송 전력 변화 지시자를 수신하도록 송수신부(3110)를 제어할 수 있다. 또한, 프로세서(3130)는 전송 전력 패턴을 기초로 변경된 전송 전력으로 송신된 CSI-RS를 기초로 CQI를 측정할 수 있다.
본 개시의 일 실시예에 따라, 프로세서(3130)는 기지국으로부터 전송 전력 지시자를 수신하도록 송수신부(3110)를 제어하고, 전송 전력 지시자에 대응되는 전송 전력에 기초하여 송신된 CSI-RS를 기초로 CQI를 측정할 수 있다.
본 개시의 일 실시예에 따라, 프로세서(3130)는 FD CRB에 대한 정보로부터 FD CRB 세트를 식별하고, FD CRB 세트에 포함된 각 FD CRB에 대해 업링크 리소스 할당 가능성에 기초하여 VRB(Virtual Resource Block) 번호를 결정하고, 단말이 업링크 자원으로 할당받은 RB 번호와 대응되는 FD CRB에 대한 VRB 번호를 갖는 CRB를 리소스 엘리먼트로 식별할 수 있다.
본 개시의 일 실시예에 따라, 프로세서(3130)는 FD CRB에 대한 정보로부터 FD CRB 세트를 식별하고, CRB 순서에 기초하여 FD CRB 세트에 포함된 각 FD CRB에 대한 VRB 번호를 순차적으로 결정하고, 단말이 업링크 자원으로 할당받은 RB 번호와 대응되는 FD CRB에 대한 VRB 번호를 갖는 CRB를 리소스 엘리먼트로 식별할 수 있다.
본 개시의 일 실시예에 따라, 프로세서(3130)는 FD CRB에 대한 정보로부터 FD CRB 세트를 식별하고, FD CRB 세트와 RIV(Resource Indication Value)로 할당된 UL PDSCH RB 영역과 중첩되는 RB를 리소스 엘리먼트로 식별할 수 있다.
도 32는 본 개시의 일 실시예에 따른 기지국의 구조를 도시하는 블록도이다.
도 32를 참조하면, 기지국은 송수신부(3210)와 메모리(3220) 및 프로세서 (3230)로 구성될 수 있다. 전술한 기지국의 통신 방법에 따라, 기지국의 송수신부(3210), 프로세서(3230) 및 메모리(3220)가 동작할 수 있다. 다만, 기지국의 구성 요소가 전술한 예에 한정되는 것은 아니다. 예를 들어, 기지국은 전술한 구성 요소들 보다 더 많은 구성 요소를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 뿐만 아니라 송수신부(3210), 프로세서(3230) 및 메모리(3220)가 하나의 칩(chip) 형태로 구현될 수도 있다. 또한, 프로세서(3230)는 하나 이상의 프로세서를 포함할 수 있다.
송수신부(3210)는 기지국의 수신부와 기지국의 송신부를 통칭한 것으로서, 단말 또는 네트워크 엔티티(Network Entity)와 신호를 송수신할 수 있다. 단말 또는 네트워크 엔티티와 송수신하는 신호는 제어 정보 및 데이터를 포함할 수 있다. 이를 위해, 송수신부(3210)는 전송되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 다만, 이는 송수신부(3210)의 일 실시예일뿐이며, 송수신부(3210)의 구성 요소가 RF 송신기 및 RF 수신기에 한정되는 것은 아니다.
또한, 송수신부(3210)는 무선 채널을 통해 신호를 수신하여 프로세서(3230)로 출력하고, 프로세서(3230)로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다.
메모리(3220)는 기지국의 동작에 필요한 프로그램 및 데이터를 저장할 수 있다. 또한, 메모리 (3220)는 기지국에서 획득되는 신호에 포함된 제어 정보 또는 데이터를 저장할 수 있다. 메모리(3220)는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다. 또한, 메모리(3220)는 별도로 존재하지 않고 프로세서(3230)에 포함되어 구성될 수도 있다.
프로세서(3230)는 상술한 본 개시의 실시예에 따라 기지국이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 예를 들면, 프로세서(3230)는 송수신부(3210)를 통해 제어 신호와 데이터 신호를 수신하고, 수신한 제어 신호와 데이터 신호를 처리할 수 있다 또한, 프로세서(3230)는 처리한 제어 신호와 데이터 신호를 송수신부(3210)를 통해 송신할 수 있다. 또한, 프로세서(3230)는 PDSCH에 대한 할당 정보를 포함하는 DCI를 구성하고 이를 전송하기 위해 기지국의 각 구성 요소를 제어할 수 있다.
본 개시의 일 실시예에 있어서, 적어도 하나 이상의 프로세서(3230)는 FD CRB에 대한 정보를 획득하고, FD CRB에 대한 정보를 송신하도록 송수신부(3210)를 제어하고, FD CRB에 대한 정보에 기초하여 식별된 업링크 데이터 송신에 이용 가능한 리소스 엘리먼트를 이용하여 업링크 데이터를 수신하도록 송수신부(3210)를 제어할 수 있다.
본 개시의 일 실시예에 있어서, FD CRB에 대한 정보는 FD CRB 설정 조건에 대응되는 인덱스로 지시될 수 있고, FD CRB 설정 조건은 포트 개수, 포트 종류 또는 전송 전력 중 적어도 하나 이상을 포함할 수 있다.
본 개시의 일 실시예에 있어서, 프로세서(3230)는 FD CRB에 대한 정보를 RRC 시그널링 또는 DCI를 통해 송신하도록 송수신부(3210)를 제어할 수 있다.
본 개시의 일 실시예에 있어서, FD CRB에 대한 정보는, 업링크 데이터 송신에 이용 가능한 리소스 엘리먼트에서 조정되는 전송 전력에 관한 정보를 포함할 수 있다. 이때, 프로세서(3230)는 조정된 전송 전력에 기초하여, 식별된 리소스 엘리먼트를 이용하여 송신되는 PDSCH 및 CSI-RS 중 PDSCH의 전송 전력을 조정할 수 있고, 조정 결과에 기초하여, PDSCH 및 CSI-RS를 송신하도록 송수신부(3210)를 제어할 수 있다.
본 개시의 일 실시예에 있어서, 프로세서(3230)는 전송 전력 변화 시점에 단말에 전송 전력 변화 지시자를 송신하도록 송수신부(3210)를 제어할 수 있고, 기 설정된 전송 전력 패턴에 대한 정보에 기초하여 전송 전력을 변경할 수 있고, 변경된 전송 전력에 기초한 CSI-RS를 송신하도록 송수신부(3210)를 제어할 수 있다.
본 개시의 일 실시예에 있어서, 프로세서(3230)는 전송 전력 지시자를 단말로 송신하도록 송수신부(3210)를 제어할 수 있고, 전송 전력 지시자에 대응되는 전송 전력에 기초하여 CSI-RS를 송신하도록 송수신부(3210)를 제어할 수 있다.
한편, 본 명세서와 도면에 개시된 본 개시의 실시예들은 본 개시의 기술 내용을 쉽게 설명하고 본 개시의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 즉 본 개시의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 개시의 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한 상기 각각의 실시 예는 필요에 따라 서로 조합되어 운용할 수 있다. 예컨대, 본 개시의 실시예 1 내지 실시예 3의 일부분들이 서로 조합되어 기지국과 단말이 운용될 수 있다.

Claims (15)

  1. 무선통신시스템에서 신호를 송수신하는 단말에 있어서,
    송수신부; 및
    상기 송수신부를 제어하는 적어도 하나 이상의 프로세서를 포함하고
    상기 적어도 하나의 프로세서는
    기지국으로부터 FD CRB(Full Duplex Carrier Resource Block)에 대한 정보를 수신하도록 상기 송수신부를 제어하고,
    상기 FD CRB에 대한 정보에 기초하여 업링크 데이터 송신에 이용 가능한 적어도 하나의 리소스 블록을 식별하고,
    상기 식별된 적어도 하나의 리소스 블록을 이용하여 업 링크 데이터를 송신하도록 상기 송수신부를 제어하는, 단말.
  2. 제1 항에 있어서,
    상기 FD CRB에 대한 정보는 FD CRB 설정 조건에 대응되는 인덱스로 지시되고, 상기 FD CRB 설정 조건은 자기 간섭 채널에 관련된 기지국의 특성을 포함하는, 단말.
  3. 제1 항에 있어서,
    상기 FD CRB에 대한 정보에 기초하여 식별된 상기 업링크 데이터 송신에 이용 가능한 적어도 하나의 리소스 블록의 주파수 대역은, 상기 기지국으로부터 다운링크 데이터 수신에 이용 가능한 전체 주파수 대역 중 일부 주파수 대역에 대응되는, 단말.
  4. 제1 항에 있어서,
    상기 적어도 하나의 프로세서는, 상기 업링크 데이터 송신에 이용 가능한 적어도 하나의 리소스 블록을 이용하여, 상기 기지국으로부터 다운링크 데이터를 수신하도록 상기 송수신부를 제어하는, 단말.
  5. 제 1항에 있어서,
    상기 적어도 하나의 프로세서는, 상기 업링크 데이터 송신에 이용 가능한 적어도 하나의 리소스 블록을 이용하여, 상기 기지국으로부터 다운링크 데이터를 수신하지 않도록 상기 송수신부를 제어하는, 단말.
  6. 제1 항에 있어서,
    상기 업링크 데이터 송신에 이용 가능한 적어도 하나의 리소스 블록의 주파수 대역은 상기 기지국의 전체 주파수 대역 중 일부 주파수 대역에 대응되고,
    상기 전체 주파수 대역 중 상기 일부 주파수 대역을 제외한 주파수 대역은, 상기 기지국으로부터 다운링크 데이터 수신에 이용 가능한 주파수 대역인, 단말.
  7. 제1 항에 있어서,
    상기 FD CRB에 대한 정보는, 상기 단말의 업링크 데이터 송신에 이용 가능한 적어도 하나의 리소스 블록이 포함된 리소스 블록 세트에 대한 정보를 포함하고,
    상기 리소스 블록 세트에 대한 정보는, 상기 적어도 하나의 리소스 블록의 위치 정보, 번호 정보 또는 상기 리소스 블록 세트를 지시하는 인덱스 정보 중 적어도 하나를 포함하는, 단말.
  8. 제 7항에 있어서,
    상기 적어도 하나의 리소스 블록의 주파수 대역은 상기 기지국의 전체 주파수 대역 중 상기 단말이 업링크 데이터를 송신하기 위해 상기 기지국으로부터 할당된 일부 주파수 대역에 대응되고,
    상기 적어도 하나의 리소스 블록의 주파수 대역은 FD CRB 설정 조건에 기초하여 할당되는, 단말.
  9. 무선통신시스템에서 신호를 송수신하는 기지국에 있어서,
    송수신부; 및
    상기 송수신부를 제어하는 적어도 하나 이상의 프로세서를 포함하고,
    상기 적어도 하나의 프로세서는
    FD CRB에 대한 정보를 획득하고,
    상기 FD CRB에 대한 정보를 송신하도록 상기 송수신부를 제어하고,
    상기 FD CRB에 대한 정보에 기초하여 식별된 업링크 데이터 수신에 이용 가능한 적어도 하나의 리소스 블록을 이용하여 업링크 데이터를 수신하도록 상기 송수신부를 제어하는, 기지국.
  10. 제 9항에 있어서,
    상기 FD CRB에 대한 정보는 FD CRB 설정 조건에 대응되는 인덱스로 지시되고, 상기 FD CRB 설정 조건은 자기 간섭 채널에 관련된 기지국의 특성을 포함하는, 기지국.
  11. 제 9항에 있어서,
    상기 FD CRB에 대한 정보에 기초하여 식별된 상기 업링크 데이터 수신에 이용 가능한 적어도 하나의 리소스 블록의 주파수 대역은, 단말로 다운링크 데이터 송신에 이용 가능한 전체 주파수 대역 중 일부 주파수 대역에 대응되는, 기지국.
  12. 제 9항에 있어서,
    상기 적어도 하나의 프로세서는, 상기 업링크 데이터 수신에 이용 가능한 적어도 하나의 리소스 블록을 이용하여, 단말로 다운링크 데이터를 송신하도록 상기 송수신부를 제어하는, 기지국.
  13. 제 9항에 있어서,
    상기 적어도 하나의 프로세서는, 상기 업링크 데이터 수신에 이용 가능한 적어도 하나의 리소스 블록을 이용하여, 단말로 다운링크 데이터를 송신하지 않도록 상기 송수신부를 제어하는, 기지국.
  14. 제 9항에 있어서,
    상기 FD CRB에 대한 정보는, 업링크 데이터 수신에 이용 가능한 적어도 하나의 리소스 블록이 포함된 리소스 블록 세트에 대한 정보를 포함하고,
    상기 리소스 블록 세트에 대한 정보는, 상기 적어도 하나의 리소스 블록의 위치 정보, 번호 정보 또는 상기 리소스 블록 세트를 지시하는 인덱스 정보 중 적어도 하나를 포함하는, 단말.
  15. 단말이 무선통신시스템에서 신호를 송수신하는 방법에 있어서,
    기지국으로부터 FD CRB에 대한 정보를 수신하는 단계;
    상기 FD CRB에 대한 정보에 기초하여 업링크 데이터 송신에 이용 가능한 적어도 하나의 리소스 블록을 식별하는 단계; 및
    상기 식별된 적어도 하나의 리소스 블록을 이용하여 업 링크 데이터를 송신하는 단계를 포함하는, 신호 송수신 방법.
PCT/KR2020/017646 2019-12-06 2020-12-04 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치 WO2021112622A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/756,801 US20230031806A1 (en) 2019-12-06 2020-12-04 Method and device for transmitting/receiving signal in wireless communication system
EP20897025.1A EP4064600A4 (en) 2019-12-06 2020-12-04 METHOD AND DEVICE FOR TRANSMITTING/RECEIVING A SIGNAL IN A WIRELESS COMMUNICATION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0161675 2019-12-06
KR1020190161675A KR20210071470A (ko) 2019-12-06 2019-12-06 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2021112622A1 true WO2021112622A1 (ko) 2021-06-10

Family

ID=76222593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017646 WO2021112622A1 (ko) 2019-12-06 2020-12-04 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치

Country Status (4)

Country Link
US (1) US20230031806A1 (ko)
EP (1) EP4064600A4 (ko)
KR (1) KR20210071470A (ko)
WO (1) WO2021112622A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210999A1 (ko) * 2022-04-27 2023-11-02 엘지전자 주식회사 하향링크 신호를 측정하는 방법 및 이를 위한 장치
EP4443988A1 (en) * 2023-04-05 2024-10-09 Nokia Technologies Oy Devices for transmit power change indication

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140056312A (ko) * 2011-07-29 2014-05-09 퀄컴 인코포레이티드 다수의 무선 액세스 기술들의 캐리어들을 어그리게이션하는 방법 및 장치
JP2015512577A (ja) * 2012-03-23 2015-04-27 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 帯域幅適応参照信号
KR20150058543A (ko) * 2011-04-13 2015-05-28 모토로라 모빌리티 엘엘씨 무선 통신 시스템에서 채널들 사이의 간섭 감소와 연계하여 채널의 전송 대역폭 구성을 검출하는 방법 및 장치
KR20160019431A (ko) * 2013-06-10 2016-02-19 엘지전자 주식회사 자기 간섭 채널을 측정하는 방법 및 단말
US20160095118A1 (en) * 2013-04-23 2016-03-31 Sony Corporation Communication control apparatus, communication control method, radio communication system and terminal apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017024441A1 (zh) * 2015-08-07 2017-02-16 华为技术有限公司 一种全双工传输的控制方法和用户设备以及基站
US10993239B2 (en) * 2016-06-12 2021-04-27 Lg Electronics Inc. Method for performing HARQ procedure in environment operating in FDR mode and apparatus therefor
KR102595684B1 (ko) * 2018-05-11 2023-10-31 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 공간 다양성과 관련된 지점 대 다중 지점 공유 액세스(access) 전이중(全二重) 무선 이중화 방식

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150058543A (ko) * 2011-04-13 2015-05-28 모토로라 모빌리티 엘엘씨 무선 통신 시스템에서 채널들 사이의 간섭 감소와 연계하여 채널의 전송 대역폭 구성을 검출하는 방법 및 장치
KR20140056312A (ko) * 2011-07-29 2014-05-09 퀄컴 인코포레이티드 다수의 무선 액세스 기술들의 캐리어들을 어그리게이션하는 방법 및 장치
JP2015512577A (ja) * 2012-03-23 2015-04-27 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 帯域幅適応参照信号
US20160095118A1 (en) * 2013-04-23 2016-03-31 Sony Corporation Communication control apparatus, communication control method, radio communication system and terminal apparatus
KR20160019431A (ko) * 2013-06-10 2016-02-19 엘지전자 주식회사 자기 간섭 채널을 측정하는 방법 및 단말

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4064600A4 *

Also Published As

Publication number Publication date
KR20210071470A (ko) 2021-06-16
EP4064600A4 (en) 2022-12-28
US20230031806A1 (en) 2023-02-02
EP4064600A1 (en) 2022-09-28

Similar Documents

Publication Publication Date Title
WO2021034120A1 (en) Method and apparatus for indicating beam failure recovery operation of terminal in wireless communication system
WO2021206485A1 (en) Method and device for transmitting and receiving signal in wireless communication system
WO2021172942A1 (en) Method and apparatus for supporting beam indication channel
WO2020017893A1 (en) Adaptation of communication parameters for a user equipment
WO2020060285A1 (en) Method and apparatus for transmitting and receiving physical-layer channel in consideration of priority in wireless communication system
WO2018097586A1 (en) Method and apparatus for multiplexing uplink channels in wireless cellular communication system
WO2021141444A1 (ko) 무선 통신 시스템에서 기준 신호 송수신 방법 및 장치
WO2018030783A1 (ko) 무선 셀룰라 통신 시스템에서 채널 전송 방법 및 장치
WO2019050381A1 (ko) 무선 통신시스템에서 상향링크 전송 및 하향링크 수신방법, 장치 및 시스템
WO2023014064A1 (en) Method and apparatus for measuring and reporting interference signal in wireless communication systems
WO2021025362A1 (ko) 무선 통신 시스템에서 안테나 적응 방법 및 장치
WO2022154582A1 (en) Method and apparatus for configuration of repetitive transmission and reception of downlink control information in wireless communication system
WO2018016904A1 (ko) 무선 셀룰라 통신 시스템에서 다수의 dmrs 구조에 대한 설정 방법 및 장치
WO2022146082A1 (en) Method and apparatus for determining processing time of ue in wireless communication system
WO2021071260A1 (ko) 무선 통신 시스템에서 상향링크 전송 취소 방법, 장치 및 시스템
WO2022025628A1 (ko) 무선 협력 통신 시스템에서 제어 정보 송수신 방법 및 장치
WO2023068709A1 (en) Method and device for estimating self-interference channel in full-duplex communication system
WO2021066536A1 (ko) 무선 통신을 위한 데이터 전송 방법 및 장치
WO2021112622A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2022225336A1 (en) Method and device for self-interference cancellation in wireless communication system
EP4275321A1 (en) Method and apparatus for selecting default beam and pathloss reference signal for transmission of sounding reference signal in wireless communication systems
WO2021201554A1 (ko) 무선 통신 시스템에서 기준 신호 송수신 방법 및 장치
WO2021054810A1 (ko) 무선 통신 시스템에서 제어 및 데이터 신호 송수신 방법 및 장치
WO2022260498A1 (ko) 무선 통신 시스템에서 하향링크 제어 정보 및 데이터를 전송 및 수신하기 위한 방법 및 장치
WO2022103151A1 (ko) 무선 통신 시스템에서 pdcch 반복 송수신을 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020897025

Country of ref document: EP

Effective date: 20220622

NENP Non-entry into the national phase

Ref country code: DE