WO2021112348A1 - Method for detecting drm signal of 30 mhz or lower using sliding scan technique - Google Patents

Method for detecting drm signal of 30 mhz or lower using sliding scan technique Download PDF

Info

Publication number
WO2021112348A1
WO2021112348A1 PCT/KR2020/006201 KR2020006201W WO2021112348A1 WO 2021112348 A1 WO2021112348 A1 WO 2021112348A1 KR 2020006201 W KR2020006201 W KR 2020006201W WO 2021112348 A1 WO2021112348 A1 WO 2021112348A1
Authority
WO
WIPO (PCT)
Prior art keywords
drm
sampling
signal
sliding
frequency band
Prior art date
Application number
PCT/KR2020/006201
Other languages
French (fr)
Korean (ko)
Inventor
김성준
윤성현
엄철용
김태훈
Original Assignee
주식회사알에프투디지털
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사알에프투디지털 filed Critical 주식회사알에프투디지털
Publication of WO2021112348A1 publication Critical patent/WO2021112348A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J1/00Details of adjusting, driving, indicating, or mechanical control arrangements for resonant circuits in general
    • H03J1/0008Details of adjusting, driving, indicating, or mechanical control arrangements for resonant circuits in general using a central processing unit, e.g. a microprocessor
    • H03J1/0058Details of adjusting, driving, indicating, or mechanical control arrangements for resonant circuits in general using a central processing unit, e.g. a microprocessor provided with channel identification means
    • H03J1/0066Details of adjusting, driving, indicating, or mechanical control arrangements for resonant circuits in general using a central processing unit, e.g. a microprocessor provided with channel identification means with means for analysing the received signal strength
    • H03J1/0075Details of adjusting, driving, indicating, or mechanical control arrangements for resonant circuits in general using a central processing unit, e.g. a microprocessor provided with channel identification means with means for analysing the received signal strength where the receiving frequencies of the stations are stored in a permanent memory, e.g. ROM
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J1/00Details of adjusting, driving, indicating, or mechanical control arrangements for resonant circuits in general
    • H03J1/0008Details of adjusting, driving, indicating, or mechanical control arrangements for resonant circuits in general using a central processing unit, e.g. a microprocessor
    • H03J1/0091Details of adjusting, driving, indicating, or mechanical control arrangements for resonant circuits in general using a central processing unit, e.g. a microprocessor provided with means for scanning over a band of frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H2201/00Aspects of broadcast communication
    • H04H2201/10Aspects of broadcast communication characterised by the type of broadcast system
    • H04H2201/12Aspects of broadcast communication characterised by the type of broadcast system digital radio mondiale [DRM]

Definitions

  • the present invention relates to a method for detecting a DRM signal using a sliding scan technique, and more particularly, to a method for detecting a DRM signal using a sliding scan technique capable of rapidly scanning and detecting a wideband signal in a single DRM receiver.
  • DRM Digital Radio Mondiale
  • DRM AM broadcasting includes digital DRM AM broadcasting and DRM FM broadcasting technology that can be used in FM band and Band III used in short, medium, and long wave bands below 30MHz.
  • DRM AM broadcasting has sound quality close to FM, multilingual audio broadcasting, data and text transmission are possible, and has various advantages of broadcasting within the existing AM broadcasting frequency band, so it is currently standardized mainly in Europe and the United States. The work is complete.
  • This DRM uses OFDM (Orthogonal Frequency Division Multiplexing) transmission method that is robust to the effect of multipath fading, which is a characteristic of a mobile environment transmission channel, and can be received without performance degradation in order to stably provide various services even when moving.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the conventional DRM of 30 MHz or less has a disadvantage that it takes a lot of time to scan a wideband signal because the physical frame length is standardized as 400 ms.
  • an RSSI-based signal detection method can be applied through an RF tuner
  • audio decoding is possible even with sensitivity of about -110dBm, so it is not suitable as an RSSI-based signal detection method.
  • the search time can be physically reduced, but there is a problem in that the cost for using the DRM service increases because multiple receivers are used.
  • the above-mentioned background technology is technical information that the inventor possessed for the derivation of the present invention or acquired during the derivation process of the present invention, and it cannot be said that it is necessarily known technology disclosed to the general public before the filing of the present invention. .
  • One aspect of the present invention provides a method for detecting a DRM signal below 30 MHz using a sliding scan technique capable of rapidly scanning and detecting a wideband signal with only a single DRM receiver.
  • a DRM signal detection method using a sliding scan technique of searching a DRM broadcast channel by scanning a plurality of DRM signals received for each frequency band in a single DRM (Digital Radio Mondiale) receiver is received by frequency band Sliding sampling step of collecting sampling data while sliding the plurality of DRM signals along the time axis and the frequency axis; a data storage step of temporarily storing the sampling data collected in the sliding sampling step for each frequency band; and a signal detecting step of determining whether to detect a signal for each frequency band based on the sampling data for each frequency band temporarily stored in the data storage step.
  • the sampling data collected for each frequency band is sequentially signal-processed for each frequency size, and the intermediate result is temporarily stored in a memory provided in the DRM receiver, but the temporary storage It is characterized in that, while the sliding sampling step is performed, a memory area allocated to a main service channel (MSC) including audio and data is allocated as an area for storing the sampling data,
  • MSC main service channel
  • the signal detecting step may include detecting parameter characteristics of the DRM signal through auto-correlation of the signal processing result for each frequency band temporarily stored in the memory.
  • the time required for DRM channel search can be drastically reduced, and the signal-processed Data processing efficiency can be improved by allocating memory not used in the process of temporarily storing sampling data as a memory area for temporarily storing signals.
  • FIG. 1 is a flowchart illustrating a schematic flow of a method for detecting a DRM signal using a sliding scan technique according to an embodiment of the present invention.
  • FIG. 2 to 5 are diagrams illustrating specific examples of detecting a signal according to the DRM signal detection method using the sliding scan technique of FIG. 1 .
  • FIG. 1 is a flowchart illustrating a schematic flow of a method for detecting a DRM signal using a sliding scan technique according to an embodiment of the present invention.
  • the DRM signal detection method using the sliding scan technique according to the present invention may be performed by a DRM receiver.
  • the DRM signal detection method using the sliding scan technique according to the present invention simultaneously samples a plurality of DRM signals collected through the RF tuner of the DRM receiver, thereby reducing the time required for channel search of the DRM even when using one RF tuner. can be shortened drastically.
  • the DRM signal detection method using the scan technique may include a sliding sampling step (S10), a data storage step (S20), and a signal detection step (S30).
  • sampling data may be collected while sliding the plurality of DRM signals received for each frequency band along the time axis and the frequency axis.
  • sampling time set based on the frame length of the DRM signal a plurality of DRM signals simultaneously received for each frequency band through the RF tuner of the DRM receiver are sequentially sampled according to the frequency size, and the sampling process is performed by N It may be characterized in that sampling data is collected by performing iteration times. In this regard, it will be described with reference to FIG. 2 .
  • FIG. 2 is a conceptual diagram illustrating a specific example of the sampling step ( S10 ).
  • the RF tuner to support the AM Band may support a bandwidth that can include a number of frequency signals of DRM, from a signal output from the RF tuner, the frequency f 1 of the DRM AM as shown in Figure 2, to f N It contains N signals.
  • DRM uses an Orthogonal Frequency Division Multiplexing (OFDM) transmission method, and defines four robustness modes A, B, C, and D according to the conditions of a transmission channel.
  • OFDM parameters and lengths of OFDM symbols are different according to robustness modes, and transmission parameters corresponding to modes are shown in Table 1 below.
  • DRM has different OFDM parameters and OFDM symbol lengths depending on the robustness mode, and all DRM signal frame lengths are fixed (standardized) to 400ms, and frame synchronization and FAC ( Fast Access Channel) is decoded. Therefore, if the sampling rate is 48KHz, 1280 sampling data can be collected for 26,6667ms by dividing N frequency band signals into 15 units of 400ms, and the frequency and time of the input sample can be collected. Each signal can be inspected separately.
  • the sliding sampling step can be performed at each reception time of the FAC (Fast Access Channel) data in which the DRM signal having a frame length of 400 ms is received every 400 ms. , the sampling time is set to 26.667 ms, and the sampling process is repeated 15 times.
  • FAC Fast Access Channel
  • the baseband signal of f n collected during the sampling time (26.667ms) can be expressed as follows.
  • the signal of fn coming from the RF Tuner is the frequency offset of the signal in fn, can be defined as the baseband signal of the signal of fn coming from the RF tuner.
  • the number N of the maximum frequencies that can be simultaneously sampled in the above-described sliding sampling step S10 may be calculated as follows.
  • the sampling data collected in the sliding sampling step S10 may be temporarily stored for each frequency band.
  • the sampling data collected for each frequency band is sequentially signal-processed for each frequency size, and the intermediate result is temporarily stored in the memory provided in the DRM receiver.
  • a memory area allocated to a main service channel (MSC) including audio and data may be allocated as an area for storing the sampling data.
  • MSC main service channel
  • the DRM signal includes a Fast Access Channel (FAC) including synchronization information required by the receiver and information related to a transport channel, a channel encoding parameter of the MSC, and a Service Description Channel (SDC) including information on a multiplexing structure of audio and data signals. ), data such as a Main Service Channel (MSC) including audio and data, and the like, and the DRM receiver may allocate a memory area for decoding each data.
  • FAC Fast Access Channel
  • SDC Service Description Channel
  • the DRM receiver allocates the intermediate result information of 26.667ms signal processing to the memory area allocated for MSC decoding, so that the state and memory buffer of each slid signal utilizes the area for MSC without additional memory allocation. Memory usage can be kept to a minimum.
  • the signal detecting step (S30) it is determined whether to detect a signal for each frequency band based on the sampling data for each frequency band temporarily stored in the data storage step.
  • the signal processing result for each frequency band temporarily stored in the memory is characterized in that the parameter characteristic of the DRM signal is detected through auto-correlation.
  • the signal processing block of fn is a block for searching for a signal and determining a robustness mode as shown in FIG. 3, which is a block that performs auto-correlation on a received signal and is configured as follows.
  • FIG. 4 is a diagram showing an example of a case in which a DRM signal is not detected in the signal detection process.
  • the DRM receiver receives the FAC included in the next received DRM signal and then in the next signal.
  • the DRM signal detection method using the sliding scan technique of can be re-performed.
  • FIG. 5 is a diagram illustrating a first example in which it is determined that a DRM signal is detected in a specific frequency band during a signal detection process. After the signal is detected primarily at fN, OFDM symbol synchronization and frame synchronization of DRM AM are performed.
  • FIG. 6 is a diagram illustrating a second example in which it is determined that a DRM signal is detected in a specific frequency band during the signal detection process. Similar to FIG. 5, after the signal is primarily detected at fn, OFDM symbol synchronization and frame of DRM AM proceed with motivation.
  • the present invention by simultaneously sampling a plurality of DRM signals collected through the RF tuner, even if a single RF tuner is used, the time required for channel search of the DRM can be drastically reduced, and in the process of temporarily storing the signal-processed sampling data, Data processing efficiency can be improved by allocating an unused memory as a memory area for temporary storage of a signal, so that it can be applied to a DRM (Digital Radio Mondiale) receiving apparatus.
  • DRM Digital Radio Mondiale

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

A method for detecting a DRM signal using a sliding scan technique according to an embodiment of the present invention may comprise: a sliding sampling step for collecting sampling data from a plurality of DRM signals, received for each frequency band, while sliding and moving along a time axis and a frequency axis; a data storage step for temporarily storing, for each frequency band, the sampling data collected in the sliding sampling step; and a signal detection step for determining whether to detect a signal for each frequency band on the basis of the sampling data temporarily stored for each frequency band in the data storage step.

Description

[규칙 제26조에 의한 보정 16.06.2020] 슬라이딩 스캔 기법을 이용한 30MHz이하 DRM 신호 검출 방법[Correction 16.06.2020 according to Rule 26] DRM signal detection method below 30MHz using sliding scan technique
본 발명은 슬라이딩 스캔 기법을 이용한 DRM 신호 검출 방법에 관한 것으로, 더욱 상세하게는 단일 DRM 수신기에서 광대역 신호를 신속하게 스캐닝하여 검출할 수 있는 슬라이딩 스캔 기법을 이용한 DRM 신호 검출 방법에 관한 것이다.The present invention relates to a method for detecting a DRM signal using a sliding scan technique, and more particularly, to a method for detecting a DRM signal using a sliding scan technique capable of rapidly scanning and detecting a wideband signal in a single DRM receiver.
DRM(Digital Radio Mondiale)은 30MHz이하의 단파, 중파, 장파대에서 사용하는 디지털 DRM AM 방송 및 FM 밴드 및 Band III에서 사용할 수 있는 DRM FM방송 기술을 포함한다. 이 중 DRM AM방송은 FM에 근접하는 음질을 가지며, 다중언어 오디오 방송, 데이타 및 텍스트 전송도 가능하며, 기존 AM 방송 주파수 밴드내에서 방송이 송출된다는 다양한 이점이 있어 현재 유럽과 미국을 중심으로 표준화 작업이 완료되어 있다.DRM (Digital Radio Mondiale) includes digital DRM AM broadcasting and DRM FM broadcasting technology that can be used in FM band and Band III used in short, medium, and long wave bands below 30MHz. Among them, DRM AM broadcasting has sound quality close to FM, multilingual audio broadcasting, data and text transmission are possible, and has various advantages of broadcasting within the existing AM broadcasting frequency band, so it is currently standardized mainly in Europe and the United States. The work is complete.
이러한 DRM은 다양한 서비스를 이동시에도 안정적으로 제공하기 위하여 이동 환경 전송 채널의 특성인 다중 경로 페이딩(multipath fading) 영향에 강건하고 성능 열화 없이 수신 가능한 OFDM(Orthogonal Frequency Division Multiplexing) 전송방식을 사용하고 있다.This DRM uses OFDM (Orthogonal Frequency Division Multiplexing) transmission method that is robust to the effect of multipath fading, which is a characteristic of a mobile environment transmission channel, and can be received without performance degradation in order to stably provide various services even when moving.
하지만, 종래의 30MHz 이하의 DRM은 물리적인 FRAME 길이가 400ms로 표준화되어 있어 광대역 신호를 스캐닝하는 많은 시간이 걸리다는 단점이 있다.However, the conventional DRM of 30 MHz or less has a disadvantage that it takes a lot of time to scan a wideband signal because the physical frame length is standardized as 400 ms.
한편, RF 튜너를 통하여 RSSI기반의 신호 검출기법을 적용할 수는 있지만, DRM AM의 경우, sensitivity가 약 -110dBm에서도 오디오 디코딩이 가능하기 때문에 RSSI기반의 신호 검출기법으로는 적절하지 않으며, 복수의 DRM 수신기를 병렬로 연결하는 경우 물리적으로 검색시간을 줄일 수는 있지만, 수신기가 다중으로 들어가기 때문에, DRM 서비스를 이용하기 위한 비용이 증가하게 되는 문제점이 있다.On the other hand, although an RSSI-based signal detection method can be applied through an RF tuner, in the case of DRM AM, audio decoding is possible even with sensitivity of about -110dBm, so it is not suitable as an RSSI-based signal detection method. When the DRM receivers are connected in parallel, the search time can be physically reduced, but there is a problem in that the cost for using the DRM service increases because multiple receivers are used.
한편, 전술한 배경 기술은 발명자가 본 발명의 도출을 위해 보유하고 있었거나, 본 발명의 도출 과정에서 습득한 기술 정보로서, 반드시 본 발명의 출원 전에 일반 공중에게 공개된 공지기술이라 할 수는 없다.On the other hand, the above-mentioned background technology is technical information that the inventor possessed for the derivation of the present invention or acquired during the derivation process of the present invention, and it cannot be said that it is necessarily known technology disclosed to the general public before the filing of the present invention. .
본 발명의 일측면은 단일 DRM 수신기만으로도 광대역 신호를 신속하게 스캐닝하여 검출할 수 있는 슬라이딩 스캔 기법을 이용한 30MHz이하 DRM 신호 검출 방법을 제공한다.One aspect of the present invention provides a method for detecting a DRM signal below 30 MHz using a sliding scan technique capable of rapidly scanning and detecting a wideband signal with only a single DRM receiver.
본 발명의 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The technical problems of the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 일 실시예에 따른 단일 DRM(Digital Radio Mondiale) 수신기에 주파수 대역별로 수신된 복수의 DRM 신호를 스캐닝하여 DRM 방송 채널을 검색하는 슬라이딩 스캔 기법을 이용한 DRM 신호 검출 방법은, 주파수 대역별로 수신된 복수의 DRM 신호를 시간축 및 주파수축을 따라 슬라이딩 이동하면서 샘플링 데이터를 수집하는 슬라이딩 샘플링 단계; 상기 슬라이딩 샘플링 단계에서 수집된 상기 샘플링 데이터를 주파수 대역별로 임시 저장하는 데이터 저장 단계; 및 상기 데이터 저장 단계에서 임시 저장된 주파수 대역별 샘플링 데이터를 기초로 주파수 대역별 신호 검출 여부를 판단하는 신호 검출 단계를 포함한다.A DRM signal detection method using a sliding scan technique of searching a DRM broadcast channel by scanning a plurality of DRM signals received for each frequency band in a single DRM (Digital Radio Mondiale) receiver according to an embodiment of the present invention is received by frequency band Sliding sampling step of collecting sampling data while sliding the plurality of DRM signals along the time axis and the frequency axis; a data storage step of temporarily storing the sampling data collected in the sliding sampling step for each frequency band; and a signal detecting step of determining whether to detect a signal for each frequency band based on the sampling data for each frequency band temporarily stored in the data storage step.
상기 슬라이딩 샘플링 단계는, 상기 DRM 신호의 프레임 길이를 기초로 설정되는 샘플링 시간동안 상기 DRM 수신기의 RF 튜너를 통해 주파수 대역별로 동시에 수신되는 복수의 DRM 신호를 주파수 크기에 따라 순차적으로 샘플링하고, 상기 샘플링 과정을 N회 반복 수행하여 샘플링 데이터를 수집하는 것을 특징으로 하되, 400ms의 프레임 길이를 갖는 상기 DRM 신호가 400ms 마다 수신되는 FAC(Fast Access Channel) 데이터의 수신 시점마다 상기 슬라이딩 샘플링 단계가 수행될 수 있도록, 상기 샘플링 시간은 26.667ms(26.667ms x 15=400ms)로 설정되고, 상기 샘플링 과정은 15회 반복 수행하는 것을 특징으로 하고,In the sliding sampling step, a plurality of DRM signals simultaneously received for each frequency band through the RF tuner of the DRM receiver for a sampling time set based on the frame length of the DRM signal are sequentially sampled according to the frequency size, and the sampling It is characterized in that the process is repeated N times to collect sampling data, but the sliding sampling step may be performed at each reception time of FAC (Fast Access Channel) data in which the DRM signal having a frame length of 400 ms is received every 400 ms. So, the sampling time is set to 26.667ms (26.667ms x 15 = 400ms), and the sampling process is characterized in that it is repeated 15 times,
상기 데이터 저장 단계는, 상기 슬라이딩 샘플링 단계가 수행되는 동안, 주파수 대역별로 수집되는 샘플링 데이터를 주파수 크기별로 순차적으로 신호 처리하여 중간 결과를 상기 DRM 수신기에 구비된 메모리에 임시 저장하되, 상기 임시 저장하는 것은, 상기 슬라이딩 샘플링 단계가 수행되는 동안, 오디오와 데이터를 포함하는 MSC(Main Service Channel)에 할당된 메모리 영역을 상기 샘플링 데이터를 저장하기 위한 영역으로 할당하는 것을 특징으로 하고,In the data storage step, while the sliding sampling step is performed, the sampling data collected for each frequency band is sequentially signal-processed for each frequency size, and the intermediate result is temporarily stored in a memory provided in the DRM receiver, but the temporary storage It is characterized in that, while the sliding sampling step is performed, a memory area allocated to a main service channel (MSC) including audio and data is allocated as an area for storing the sampling data,
상기 신호 검출 단계는, 상기 메모리에 임시 저장된 주파수 대역별 신호처리 결과를 자기 유도(auto-correlation)를 통해 상기 DRM 신호의 파라미터 특성을 검출하는 것을 특징으로 할 수 있다.The signal detecting step may include detecting parameter characteristics of the DRM signal through auto-correlation of the signal processing result for each frequency band temporarily stored in the memory.
상술한 본 발명의 일측면에 따르면, RF 튜너를 통해 수집되는 복수의 DRM 신호를 동시에 샘플링함으로써 하나의 RF 튜너를 이용하더라도 DRM의 채널 검색에 소요되는 시간을 비약적으로 단축시킬 수 있으며, 신호 처리된 샘플링 데이터의 임시 저장 과정에서 사용되지 않은 메모리를 신호의 임시 저장을 위한 메모리 영역으로 할당함으로써 데이터 처리 효율을 향상시킬 수 있다.According to the above-described aspect of the present invention, by simultaneously sampling a plurality of DRM signals collected through the RF tuner, even if a single RF tuner is used, the time required for DRM channel search can be drastically reduced, and the signal-processed Data processing efficiency can be improved by allocating memory not used in the process of temporarily storing sampling data as a memory area for temporarily storing signals.
도 1은 본 발명의 일 실시예에 따른 슬라이딩 스캔 기법을 이용한 DRM 신호 검출 방법의 개략적인 흐름이 도시된 순서도이다.1 is a flowchart illustrating a schematic flow of a method for detecting a DRM signal using a sliding scan technique according to an embodiment of the present invention.
도 2 내지 도 5는 도 1의 슬라이딩 스캔 기법을 이용한 DRM 신호 검출 방법에 따라 신호를 검출하는 구체적인 예시들이 도시된 도면들이다.2 to 5 are diagrams illustrating specific examples of detecting a signal according to the DRM signal detection method using the sliding scan technique of FIG. 1 .
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예와 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0010] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0010] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0023] Reference is made to the accompanying drawings, which show by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present invention. It should be understood that the various embodiments of the present invention are different but need not be mutually exclusive. For example, certain shapes, structures, and characteristics described herein with respect to one embodiment may be implemented in other embodiments without departing from the spirit and scope of the invention. In addition, it should be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the present invention. Accordingly, the following detailed description is not intended to be taken in a limiting sense, and the scope of the present invention, if properly described, is limited only by the appended claims, along with all scope equivalents to those as claimed. Like reference numerals in the drawings refer to the same or similar functions throughout the various aspects.
이하, 도면들을 참조하여 본 발명의 바람직한 실시예들을 보다 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the drawings.
도 1은 본 발명의 일 실시예에 따른 슬라이딩 스캔 기법을 이용한 DRM 신호 검출 방법의 개략적인 흐름이 도시된 순서도이다.1 is a flowchart illustrating a schematic flow of a method for detecting a DRM signal using a sliding scan technique according to an embodiment of the present invention.
본 발명에 따른 슬라이딩 스캔 기법을 이용한 DRM 신호 검출 방법은 DRM 수신장치에 의해 수행될 수 있다. The DRM signal detection method using the sliding scan technique according to the present invention may be performed by a DRM receiver.
특히, 본 발명에 따른 슬라이딩 스캔 기법을 이용한 DRM 신호 검출 방법은 DRM 수신장치의 RF 튜너를 통해 수집되는 복수의 DRM 신호를 동시에 샘플링함으로써 하나의 RF 튜너를 이용하더라도 DRM의 채널 검색에 소요되는 시간을 비약적으로 단축시킬 수 있다.In particular, the DRM signal detection method using the sliding scan technique according to the present invention simultaneously samples a plurality of DRM signals collected through the RF tuner of the DRM receiver, thereby reducing the time required for channel search of the DRM even when using one RF tuner. can be shortened drastically.
구체적으로, 본 발명의 일 실시예에 따른 스캔 기법을 이용한 DRM 신호 검출 방법은 슬라이딩 샘플링 단계(S10), 데이터 저장 단계(S20) 및 신호 검출 단계(S30)를 포함할 수 있다.Specifically, the DRM signal detection method using the scan technique according to an embodiment of the present invention may include a sliding sampling step (S10), a data storage step (S20), and a signal detection step (S30).
샘플링 단계(S10)에서는 주파수 대역별로 수신된 복수의 DRM 신호를 시간축 및 주파수축을 따라 슬라이딩 이동하면서 샘플링 데이터를 수집할 수 있다.In the sampling step (S10), sampling data may be collected while sliding the plurality of DRM signals received for each frequency band along the time axis and the frequency axis.
구체적으로, 상기 DRM 신호의 프레임 길이를 기초로 설정되는 샘플링 시간동안 상기 DRM 수신기의 RF 튜너를 통해 주파수 대역별로 동시에 수신되는 복수의 DRM 신호를 주파수 크기에 따라 순차적으로 샘플링하고, 상기 샘플링 과정을 N회 반복 수행하여 샘플링 데이터를 수집하는 것을 특징으로 할 수 있다. 이와 관련하여, 도 2를 함께 참조하여 설명하기로 한다.Specifically, for a sampling time set based on the frame length of the DRM signal, a plurality of DRM signals simultaneously received for each frequency band through the RF tuner of the DRM receiver are sequentially sampled according to the frequency size, and the sampling process is performed by N It may be characterized in that sampling data is collected by performing iteration times. In this regard, it will be described with reference to FIG. 2 .
도 2는 샘플링 단계(S10)의 구체적인 일 예가 도시된 개념도이다.2 is a conceptual diagram illustrating a specific example of the sampling step ( S10 ).
AM Band를 지원하는 RF 튜너의 경우, DRM의 여러 주파수 신호를 포함할 수 있는 대역폭을 지원할 수 있는데, 도 2에 도시된 바와 같이 RF 튜너에서 출력되는 신호가 DRM AM의 주파수 f1부터 fN까지 N개의 신호를 포함한다.For the RF tuner to support the AM Band, may support a bandwidth that can include a number of frequency signals of DRM, from a signal output from the RF tuner, the frequency f 1 of the DRM AM as shown in Figure 2, to f N It contains N signals.
상술한 바와 같이, DRM은 OFDM(Orthogonal Frequency Division Multiplexing) 전송방식을 사용하고 있으며, 전송 채널의 상황에 따라 A, B, C, D의 4가지 robustness 모드를 정의하고 있다. Robustness모드에 따라 OFDM 파라미터가 및 OFDM 심벌의 길이가 다르며, 모드에 해당하는 전송 파라미터는 아래의 표 1과 같다.As described above, DRM uses an Orthogonal Frequency Division Multiplexing (OFDM) transmission method, and defines four robustness modes A, B, C, and D according to the conditions of a transmission channel. OFDM parameters and lengths of OFDM symbols are different according to robustness modes, and transmission parameters corresponding to modes are shown in Table 1 below.
OFDM 파라미터OFDM parameters Robustness Mode for DRM AMRobustness Mode for DRM AM
AA BB CC DD
TFFT (ms)T FFT (ms) 2424 21.33321.333 14.66714.667 9.3339.333
TGI (ms)T GI (ms) 2.6672.667 5.3335.333 5.3335.333 7.3337.333
TOFDM= TFFT + TGI (ms)T OFDM = T FFT + T GI (ms) 26.66726.667 26.66726.667 2020 16.66716.667
Frame당 심벌 수Number of symbols per frame 1515 1515 2020 2424
Frame길이(ms)Frame length (ms) 400400
상기 표 1에 나타난 바와 같이, DRM은 Robustness모드에 따라 OFDM 파라미터가 및 OFDM 심벌의 길이가 상이하고, DRM 신호의 프레임 길이는 모두 400ms로 고정(표준화)되어 있으며, 400ms단위로 Frame동기 및 FAC(Fast Access Channel)가 디코딩 된다.따라서, sampling Rate가 48KHz인 경우 N개의 주파수 대역 신호를400ms단위를 15개로 나눈 26,6667ms동안 1280개의 샘플링 데이터를 수집할 수 있으며, 입력된 샘플을 주파수 및 시간을 나눠 각각의 신호를 검사할 수 있다.As shown in Table 1 above, DRM has different OFDM parameters and OFDM symbol lengths depending on the robustness mode, and all DRM signal frame lengths are fixed (standardized) to 400ms, and frame synchronization and FAC ( Fast Access Channel) is decoded. Therefore, if the sampling rate is 48KHz, 1280 sampling data can be collected for 26,6667ms by dividing N frequency band signals into 15 units of 400ms, and the frequency and time of the input sample can be collected. Each signal can be inspected separately.
따라서, 본 발명에 따른 슬라이딩 스캔 기법을 이용한 DRM 신호 검출 방법에서는 400ms의 프레임 길이를 갖는 상기 DRM 신호가 400ms 마다 수신되는 FAC(Fast Access Channel) 데이터의 수신 시점마다 상기 슬라이딩 샘플링 단계가 수행될 수 있도록, 상기 샘플링 시간은 26.667ms로 설정되고, 상기 샘플링 과정은 15회 반복 수행하는 것을 특징으로 한다.Therefore, in the DRM signal detection method using the sliding scan technique according to the present invention, the sliding sampling step can be performed at each reception time of the FAC (Fast Access Channel) data in which the DRM signal having a frame length of 400 ms is received every 400 ms. , the sampling time is set to 26.667 ms, and the sampling process is repeated 15 times.
샘플링 시간(26.667ms) 동안의 수집되는 fn의 Baseband 신호는 다음과 같이 표현할 수 있다. The baseband signal of f n collected during the sampling time (26.667ms) can be expressed as follows.
[수학식 1][Equation 1]
Figure PCTKR2020006201-appb-I000001
Figure PCTKR2020006201-appb-I000001
여기서,
Figure PCTKR2020006201-appb-I000002
는 RF Tuner로부터 들어오는 fn의 신호이고,
Figure PCTKR2020006201-appb-I000003
은 fn의 신호의 주파수 오프셋이고,
Figure PCTKR2020006201-appb-I000004
는 RF Tuner로부터 들어오는 fn의 신호의 Baseband 신호로 정의될 수 있다.
here,
Figure PCTKR2020006201-appb-I000002
is the signal of fn coming from the RF Tuner,
Figure PCTKR2020006201-appb-I000003
is the frequency offset of the signal in fn,
Figure PCTKR2020006201-appb-I000004
can be defined as the baseband signal of the signal of fn coming from the RF tuner.
또한, 상술한 슬라이딩 샘플링 단계(S10)에서 동시에 샘플링 할 수 있는 최대 주파수의 수 N은 다음과 같이 산출될 수 있다.In addition, the number N of the maximum frequencies that can be simultaneously sampled in the above-described sliding sampling step S10 may be calculated as follows.
[수학식 2][Equation 2]
Figure PCTKR2020006201-appb-I000005
Figure PCTKR2020006201-appb-I000005
여기서,
Figure PCTKR2020006201-appb-I000006
은 물리적으로 RF튜너의 대역폭에 들어갈 수 있는 DRM 신호의 수이고,
Figure PCTKR2020006201-appb-I000007
은 fn에 있는 신호 처리하는데 걸리는 시간으로 정의될 수 있다.
here,
Figure PCTKR2020006201-appb-I000006
is the number of DRM signals that can physically fit into the bandwidth of the RF tuner,
Figure PCTKR2020006201-appb-I000007
can be defined as the time it takes to process the signal in fn.
데이터 저장 단계(S20)에서는 상기 슬라이딩 샘플링 단계(S10)에서 수집된 상기 샘플링 데이터를 주파수 대역별로 임시 저장할 수 있다.In the data storage step S20 , the sampling data collected in the sliding sampling step S10 may be temporarily stored for each frequency band.
이때, 데이터 저장 단계(S20)에서는 상기 슬라이딩 샘플링 단계가 수행되는 동안, 주파수 대역별로 수집되는 샘플링 데이터를 주파수 크기별로 순차적으로 신호 처리하여 중간 결과를 상기 DRM 수신기에 구비된 메모리에 임시 저장하하는 것을 특징으로 할 수 있다.At this time, in the data storage step (S20), while the sliding sampling step is performed, the sampling data collected for each frequency band is sequentially signal-processed for each frequency size, and the intermediate result is temporarily stored in the memory provided in the DRM receiver. can be characterized.
또한, 상기 슬라이딩 샘플링 단계가 수행되는 동안, 오디오와 데이터를 포함하는 MSC(Main Service Channel)에 할당된 메모리 영역을 상기 샘플링 데이터를 저장하기 위한 영역으로 할당하는 것을 특징으로 할 수 있다.Also, while the sliding sampling step is performed, a memory area allocated to a main service channel (MSC) including audio and data may be allocated as an area for storing the sampling data.
DRM 신호는, 수신기에서 요구되는 동기 정보와 전송 채널과 관련된 정보를 포함하는 FAC(Fast Access Channel), MSC의 채널 부호화 파라미터, 오디오 및 데이터 신호의 다중화 구조에 대한 정보를 포함하는 SDC(Service Description Channel), 오디오와 데이터를 포함하는 MSC(Main Service Channel) 등과 같은 데이터를 포함할 수 있으며, DRM 수신기는 각 데이터를 디코딩하기 위한 메모리 영역을 할당할 수 있다.The DRM signal includes a Fast Access Channel (FAC) including synchronization information required by the receiver and information related to a transport channel, a channel encoding parameter of the MSC, and a Service Description Channel (SDC) including information on a multiplexing structure of audio and data signals. ), data such as a Main Service Channel (MSC) including audio and data, and the like, and the DRM receiver may allocate a memory area for decoding each data.
이때, DRM 수신기는 방송 채널의 검색 시에는 오디오를 디코딩할 필요가 없으며, FAC 및 SDC만 디코딩 하면 되기 때문에 MSC 디코딩을 위한 버퍼 메모리가 사용되지 않는다.At this time, since the DRM receiver does not need to decode audio when searching for a broadcast channel, and only needs to decode FAC and SDC, a buffer memory for MSC decoding is not used.
이러한 경우, DRM 수신기는 26.667ms신호 처리의 중간 결과정보를 MSC 디코딩에 할당된 메모리 영역에 할당함으로써, 여러 슬라이딩 된 각 신호의 상태 및 메모리 버퍼는 추가적인 메모리 활당없이, MSC를 위한 영역을 활용함으로써, 메모리 사용량을 최소한으로 할 수 있다.In this case, the DRM receiver allocates the intermediate result information of 26.667ms signal processing to the memory area allocated for MSC decoding, so that the state and memory buffer of each slid signal utilizes the area for MSC without additional memory allocation. Memory usage can be kept to a minimum.
신호 검출 단계(S30)는 상기 데이터 저장 단계에서 임시 저장된 주파수 대역별 샘플링 데이터를 기초로 주파수 대역별 신호 검출 여부를 판단한다.In the signal detecting step (S30), it is determined whether to detect a signal for each frequency band based on the sampling data for each frequency band temporarily stored in the data storage step.
구체적으로, 신호 검출 단계에서는 상기 메모리에 임시 저장된 주파수 대역별 신호처리 결과를 자기 유도(auto-correlation)를 통해 상기 DRM 신호의 파라미터 특성을 검출하는 것을 특징으로 한다.Specifically, in the signal detection step, the signal processing result for each frequency band temporarily stored in the memory is characterized in that the parameter characteristic of the DRM signal is detected through auto-correlation.
여기서, fn의 신호처리 블록은 도 3에 도시된 바와 같이 신호 검색 및 Robustness Mode를 판별하기 위한 블록으로, 수신신호에서 auto-correlation을 하는 블록이며 아래처럼 구성되어 있다.Here, the signal processing block of fn is a block for searching for a signal and determining a robustness mode as shown in FIG. 3, which is a block that performs auto-correlation on a received signal and is configured as follows.
그리고, 자기 상관 과정을 수학식으로 나타내면 다음과 같다.Then, the autocorrelation process is expressed as an equation as follows.
[수학식 3][Equation 3]
Figure PCTKR2020006201-appb-I000008
Figure PCTKR2020006201-appb-I000008
여기서,
Figure PCTKR2020006201-appb-I000009
은 mode M에서OFDM심벌의 Guide Interval 길이이고,
Figure PCTKR2020006201-appb-I000010
은 mode M에서 OFDM심벌의 FFT길이를 의미한다.
here,
Figure PCTKR2020006201-appb-I000009
is the guide interval length of OFDM symbol in mode M,
Figure PCTKR2020006201-appb-I000010
is the FFT length of the OFDM symbol in mode M.
도 4는 신호 검출 과정에서 DRM 신호가 검출되지 않은 경우의 일 예가 도시된 도면으로, DRM 수신기는 400ms동안 신호가 검출되지 않은 것으로 확인되면 다음 수신되는 DRM 신호에 포함된 FAC를 수신하여 다음 신호에서의 슬라이딩 스캔 기법을 이용한 DRM 신호 검출 방법을 재수행할 수 있다.4 is a diagram showing an example of a case in which a DRM signal is not detected in the signal detection process. When it is confirmed that a signal is not detected for 400 ms, the DRM receiver receives the FAC included in the next received DRM signal and then in the next signal. The DRM signal detection method using the sliding scan technique of can be re-performed.
도 5는 신호 검출 과정에서 특정 주파수 대역에서 DRM 신호가 검출된 것으로 판단된 제1 예가 도시된 도면으로, 1 차적으로 fN에 신호 검출 이후, DRM AM의 OFDM 심벌 동기 및 프레임 동기를 진행한다.FIG. 5 is a diagram illustrating a first example in which it is determined that a DRM signal is detected in a specific frequency band during a signal detection process. After the signal is detected primarily at fN, OFDM symbol synchronization and frame synchronization of DRM AM are performed.
또한, FAC Decoding을 통하여 신호 검출의 False Alarm을 확인하여 FAC CRC Error가 나는 경우, 주파수 fN에 DRM AM신호가 있다고 판단한 것을 거짓으로 판단할 수 있다. 최종적으로 N개의 신호에 DRM AM이 없다고 판단되면, 다음 N개 주파수의 DRM AM 신호 검사 준비할 수 있다.In addition, when FAC CRC Error occurs by checking False Alarm of signal detection through FAC Decoding, it can be determined that there is a DRM AM signal at frequency fN as false. Finally, if it is determined that there is no DRM AM in the N signals, it is possible to prepare for the DRM AM signal inspection of the next N frequencies.
도 6은 신호 검출 과정에서 특정 주파수 대역에서 DRM 신호가 검출된 것으로 판단된 제2 예가 도시된 도면으로, 도 5에서와 유사하게 1차적으로 fn에 신호 검출 이후, DRM AM의 OFDM 심벌 동기 및 프레임 동기를 진행한다.6 is a diagram illustrating a second example in which it is determined that a DRM signal is detected in a specific frequency band during the signal detection process. Similar to FIG. 5, after the signal is primarily detected at fn, OFDM symbol synchronization and frame of DRM AM proceed with motivation.
이 과정에서, FAC Decoding에서 CRC Error가 나지 않는 경우, 신호가 있다고 판단하여 SDC를 디코딩하여 서비스 리스트를 구성하고 서비스 리스트 구성이후, 다음N개 주파수 신호 검사 준비한다.In this process, if there is no CRC error in FAC decoding, it is determined that there is a signal, and the SDC is decoded to configure a service list, and after configuring the service list, the next N frequency signals are prepared for inspection.
따라서, 본 발명에 따른 슬라이딩 스캔 기법을 이용한 DRM 신호 검출 방법을 이용하게 되면 RF 튜너를 통해 수집되는 복수의 DRM 신호를 동시에 샘플링함으로써 하나의 RF 튜너를 이용하더라도 DRM의 채널 검색에 소요되는 시간을 비약적으로 단축시킬 수 있으며, 신호 처리된 샘플링 데이터의 임시 저장 과정에서 사용되지 않은 메모리를 신호의 임시 저장을 위한 메모리 영역으로 할당함으로써 데이터 처리 효율을 향상시킬 수 있는 효과를 가지게 된다.Therefore, when the DRM signal detection method using the sliding scan technique according to the present invention is used, a plurality of DRM signals collected through the RF tuner are simultaneously sampled, thereby dramatically reducing the time required for channel search of the DRM even when using one RF tuner. , and allocating memory not used in the process of temporarily storing the signal-processed sampling data as a memory area for temporarily storing the signal has the effect of improving data processing efficiency.
이상에서는 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to the embodiments, those skilled in the art will understand that various modifications and changes can be made to the present invention without departing from the spirit and scope of the present invention as set forth in the following claims. will be able
[이 발명을 지원한 국가연구개발사업][National R&D project supporting this invention]
[과제고유번호] 20190017340011001[Project unique number] 20190017340011001
[과제번호] 2019001734[task number] 2019001734
[부처명] 중소기업개발팀[Ministry Name] Small and Medium Business Development Team
[과제관리(전문)기관명] 정보통신기획평가원[Name of task management (specialized) institution] Information and Communication Planning and Evaluation Institute
[연구사업명] ICT혁신기업기술개발지원[Research project name] Technology development support for ICT innovative companies
[연구과제명] (2단계:기술개발)운전자 지향형 차세대 차량용 DRM 인포테인먼트 솔루션개발[Research Project Title] (Phase 2: Technology Development) Driver-oriented DRM infotainment solution development for next-generation vehicles
[기여율] 1/1[Contribution rate] 1/1
[과제수행기관명] (주)알에프투디지털[Name of the organization performing the task] RF2Digital Co., Ltd.
[연구기간] 2020.01.01 ~ 2020.12.31[Research period] 2020.01.01 ~ 2020.12.31
본 발명은 RF 튜너를 통해 수집되는 복수의 DRM 신호를 동시에 샘플링함으로써 하나의 RF 튜너를 이용하더라도 DRM의 채널 검색에 소요되는 시간을 비약적으로 단축시킬 수 있으며, 신호 처리된 샘플링 데이터의 임시 저장 과정에서 사용되지 않은 메모리를 신호의 임시 저장을 위한 메모리 영역으로 할당함으로써 데이터 처리 효율을 향상시킬 수 있어 DRM(Digital Radio Mondiale) 수신 장치에 적용될 수 있다.According to the present invention, by simultaneously sampling a plurality of DRM signals collected through the RF tuner, even if a single RF tuner is used, the time required for channel search of the DRM can be drastically reduced, and in the process of temporarily storing the signal-processed sampling data, Data processing efficiency can be improved by allocating an unused memory as a memory area for temporary storage of a signal, so that it can be applied to a DRM (Digital Radio Mondiale) receiving apparatus.
한편, 본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 자명하며, 따라서 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.On the other hand, it is apparent to those skilled in the art that various changes and modifications can be made in the present invention without departing from the spirit or scope of the present invention, and therefore, the present invention includes the changes and modifications of the present invention provided within the scope of the appended claims and their equivalents. it is intended to be

Claims (2)

  1. 단일 DRM(Digital Radio Mondiale) 수신기에 주파수 대역별로 수신된 복수의 DRM 신호를 스캐닝하여 DRM 방송 채널을 검색하는 슬라이딩 스캔 기법을 이용한 DRM 신호 검출 방법에 있어서,A method for detecting a DRM signal using a sliding scan technique for searching a DRM broadcasting channel by scanning a plurality of DRM signals received for each frequency band in a single DRM (Digital Radio Mondiale) receiver, the method comprising:
    주파수 대역별로 수신된 복수의 DRM 신호를 시간축 및 주파수축을 따라 슬라이딩 이동하면서 샘플링 데이터를 수집하는 슬라이딩 샘플링 단계;A sliding sampling step of collecting sampling data while sliding a plurality of DRM signals received for each frequency band along a time axis and a frequency axis;
    상기 슬라이딩 샘플링 단계에서 수집된 상기 샘플링 데이터를 주파수 대역별로 임시 저장하는 데이터 저장 단계; 및a data storage step of temporarily storing the sampling data collected in the sliding sampling step for each frequency band; and
    상기 데이터 저장 단계에서 임시 저장된 주파수 대역별 샘플링 데이터를 기초로 주파수 대역별 신호 검출 여부를 판단하는 신호 검출 단계를 포함하는, 슬라이딩 스캔 기법을 이용한 DRM 신호 검출 방법.and a signal detection step of determining whether to detect a signal for each frequency band based on the sampling data for each frequency band temporarily stored in the data storage step.
  2. 제1항에 있어서,According to claim 1,
    상기 슬라이딩 샘플링 단계는, The sliding sampling step is
    상기 DRM 신호의 프레임 길이를 기초로 설정되는 샘플링 시간동안 상기 DRM 수신기의 RF 튜너를 통해 주파수 대역별로 동시에 수신되는 복수의 DRM 신호를 주파수 크기에 따라 순차적으로 샘플링하고, 상기 샘플링 과정을 N회 반복 수행하여 샘플링 데이터를 수집하는 것을 특징으로 하되,During a sampling time set based on the frame length of the DRM signal, a plurality of DRM signals simultaneously received for each frequency band through the RF tuner of the DRM receiver are sequentially sampled according to the frequency size, and the sampling process is repeated N times. characterized in that sampling data is collected by
    400ms의 프레임 길이를 갖는 상기 DRM 신호가 400ms 마다 수신되는 FAC(Fast Access Channel) 데이터의 수신 시점마다 상기 슬라이딩 샘플링 단계가 수행될 수 있도록, 상기 샘플링 시간은 26.667ms로 설정되고, 상기 샘플링 과정은 15회 반복 수행하는 것을 특징으로 하고,The sampling time is set to 26.667 ms so that the sliding sampling step can be performed every time FAC (Fast Access Channel) data is received in which the DRM signal having a frame length of 400 ms is received every 400 ms, and the sampling process is 15 It is characterized in that it is performed repeatedly,
    상기 데이터 저장 단계는,The data storage step is
    상기 슬라이딩 샘플링 단계가 수행되는 동안, 주파수 대역별로 수집되는 샘플링 데이터를 주파수 크기별로 순차적으로 신호 처리하여 중간 결과를 상기 DRM 수신기에 구비된 메모리에 임시 저장하되, While the sliding sampling step is performed, sampling data collected for each frequency band is sequentially signal-processed for each frequency size, and an intermediate result is temporarily stored in a memory provided in the DRM receiver,
    상기 임시 저장하는 것은, 상기 슬라이딩 샘플링 단계가 수행되는 동안, 오디오와 데이터를 포함하는 MSC(Main Service Channel)에 할당된 메모리 영역을 상기 샘플링 데이터를 저장하기 위한 영역으로 할당하는 것을 특징으로 하고,The temporary storage is characterized in that, while the sliding sampling step is performed, a memory area allocated to a main service channel (MSC) including audio and data is allocated as an area for storing the sampling data,
    상기 신호 검출 단계는, The signal detection step is
    상기 메모리에 임시 저장된 주파수 대역별 신호처리 결과를 자기 유도(auto-correlation)를 통해 상기 DRM 신호의 파라미터 특성을 검출하는 것을 특징으로 하는, 슬라이딩 스캔 기법을 이용한 DRM 신호 검출 방법.A method for detecting a DRM signal using a sliding scan technique, characterized in that the parameter characteristic of the DRM signal is detected through auto-correlation of the signal processing result for each frequency band temporarily stored in the memory.
PCT/KR2020/006201 2019-12-06 2020-05-12 Method for detecting drm signal of 30 mhz or lower using sliding scan technique WO2021112348A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190161662A KR102146510B1 (en) 2019-12-06 2019-12-06 Method for detecting a Digital Radio Mondiale signal under 30MHz using a sliding scan technique
KR10-2019-0161662 2019-12-06

Publications (1)

Publication Number Publication Date
WO2021112348A1 true WO2021112348A1 (en) 2021-06-10

Family

ID=72235772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006201 WO2021112348A1 (en) 2019-12-06 2020-05-12 Method for detecting drm signal of 30 mhz or lower using sliding scan technique

Country Status (2)

Country Link
KR (1) KR102146510B1 (en)
WO (1) WO2021112348A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080039595A (en) * 2006-11-01 2008-05-07 엘지전자 주식회사 Method and apparatus for scanning channel in digital receiver
JP2008283728A (en) * 2001-03-28 2008-11-20 Robert Bosch Gmbh Transmitter and receiver for ofdm signal
JP2010016779A (en) * 2008-07-07 2010-01-21 Alpine Electronics Inc Wireless receiving terminal device, and scan method for receiving channel
KR101277979B1 (en) * 2011-12-21 2013-06-27 피앤피네트워크 주식회사 Simultaneous receiving system of multi channel for drm receiver and method therefor
KR101327959B1 (en) * 2011-12-27 2013-11-12 전자부품연구원 Appratus and Method for Detecting Broadcasting Signal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101537557B1 (en) 2013-12-24 2015-07-20 전자부품연구원 Transmitter of DRM broadcasting system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283728A (en) * 2001-03-28 2008-11-20 Robert Bosch Gmbh Transmitter and receiver for ofdm signal
KR20080039595A (en) * 2006-11-01 2008-05-07 엘지전자 주식회사 Method and apparatus for scanning channel in digital receiver
JP2010016779A (en) * 2008-07-07 2010-01-21 Alpine Electronics Inc Wireless receiving terminal device, and scan method for receiving channel
KR101277979B1 (en) * 2011-12-21 2013-06-27 피앤피네트워크 주식회사 Simultaneous receiving system of multi channel for drm receiver and method therefor
KR101327959B1 (en) * 2011-12-27 2013-11-12 전자부품연구원 Appratus and Method for Detecting Broadcasting Signal

Also Published As

Publication number Publication date
KR102146510B1 (en) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2013032188A2 (en) Apparatus and method for selecting best beam in wireless communication system
CN1192668C (en) GSM transceiver unit equiped for time of arrival measurements
CN1106131C (en) Automatic control channel planning in a daptive channel allocation systems
WO2009110731A2 (en) Method and apparatus for transmitting and receiving in-band signaling information in a wireless broadcasting system
WO2009104927A2 (en) Apparatus and method for transmitting and receiving a frame including control information in a broadcasting system
WO2011031064A2 (en) Method and apparatus for transceiving a signal in a communication system
WO2012043937A1 (en) Automatic detection apparatus for ul/dl configuration in lte-tdd signal and the method thereby
WO2012118328A2 (en) Apparatus and method for providing frequency hopping scheme in broadcast communication system
CN1823512A (en) Method and apparatus for coarse and fine frequency and timing synchronisation
US20070098096A1 (en) Wireless transmitter, signal to subcarrier allocation method for synchronizing symbol, and wireless receiver
KR20120054670A (en) Apparatus, processes, and articles of manufacture for fast fourier transformation and beacon searching
CN116347616A (en) Data transmission method and related device
WO2021112348A1 (en) Method for detecting drm signal of 30 mhz or lower using sliding scan technique
WO2010036079A2 (en) Method for allocating physical layer control information for mbms and method for receiving physical layer control information for mbms therefor
CN102421163A (en) Method and device for sequencing frequency points of LTE (Long Term Evolution) system
CN1960554A (en) Device and method capable of detecting and receiving multicarrier jointly
WO2010032969A2 (en) Method and apparatus for data transmission/reception in a communication system using multiple carriers
JP6777297B2 (en) Signal transmitters, signal receivers, and methods
CN101771432B (en) Demodulation method and system used in hybrid transmission of uplink pilot signal and service signal
CN1409574A (en) Measuring method in radio trminal and radio terminal
US20060268922A1 (en) Apparatus and method for channel allocation in a wireless local area network mesh communication system
RU2565475C2 (en) Method, device and terminal for indicating multi-port frequency domain resource location allocation information
CN101040454A (en) Tone detection using a CDMA receiver
WO2019013438A1 (en) Digital down converter for wban using parallel mixer
WO2010101428A2 (en) Method and apparatus for two-way broadcasting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896406

Country of ref document: EP

Kind code of ref document: A1