WO2021112174A1 - Optical antimicrobial therapeutic method - Google Patents

Optical antimicrobial therapeutic method Download PDF

Info

Publication number
WO2021112174A1
WO2021112174A1 PCT/JP2020/045022 JP2020045022W WO2021112174A1 WO 2021112174 A1 WO2021112174 A1 WO 2021112174A1 JP 2020045022 W JP2020045022 W JP 2020045022W WO 2021112174 A1 WO2021112174 A1 WO 2021112174A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
igy
infrared light
bacterium
specific complex
Prior art date
Application number
PCT/JP2020/045022
Other languages
French (fr)
Japanese (ja)
Inventor
和秀 佐藤
裕智 安井
善之 中川
朋浩 紅
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Priority to JP2021562713A priority Critical patent/JPWO2021112174A1/ja
Publication of WO2021112174A1 publication Critical patent/WO2021112174A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to photoantibacterial therapy. More specifically, the present invention relates to a target-specific complex that exhibits target-selective damaging activity using near-infrared light irradiation, its use, and the like.
  • NIR-PIT Near-infrared ray immunotherapy
  • IR-PIT is a monoclonal antibody bound to a photosensitizer (eg IRdye700DX (IR700)) that reacts with cancer cells and then is selectively irradiated with near-infrared light. It is a new cancer treatment that destroys the cancer cell membrane. Clinical trials have also been conducted for head and neck cancers targeting EGFR, with good results, and Phase 3 clinical trials are currently underway. Recently, it has been clarified that the mechanism showing the antitumor effect of NIR-PIT is a photochemical reaction completely different from the existing antitumor treatment (see Non-Patent Document 1). It should be noted that Patent Documents 1 to 3 propose that NIR-PIT is used for treatment of tumors and the like.
  • NIR-PIT is a technology with high potential due to its unique mechanism of action, and further application can be expected. Therefore, it is an object of the present invention to provide a new use of NIR-PIT.
  • IgG monoclonal antibody is usually used as an antibody that binds a photosensitizer.
  • IgY immunoglobulin
  • Y Tori egg yolk immunoglobulin
  • IgY is an antibody peculiar to birds.
  • Chicken IgY which can be said to be a representative of IgY, is the main immunoglobulin in spawning chickens and transfers from serum to egg yolk in order to impart passive immunity. Since chicken IgY can be collected from chicken eggs, it can be easily collected in high concentration. In other words, it can be prepared inexpensively and in large quantities.
  • IgY shows no side effects, resistance or toxic residues in contrast to antibiotics. Therefore, IgY is attracting attention as a new means of controlling infectious diseases, which is different from antibiotics. So far, it has been reported that IgY is suppressed against pathogens such as Escherichia coli, Salmonella typhimurium enterocolitica, Salmonella typhimurium enterocolitica, and Galibacterium analyst (see, for example, Non-Patent Document 2). ). However, it cannot be said that the effect is sufficiently high, and there are many practical problems such as the need for continuous administration in order to enhance the effect.
  • the present inventors considered that the combination of NIR-PIT and IgY would be an effective therapeutic means for infectious diseases, etc., and a target in which a near-infrared photosensitizer was linked to a chicken-derived IgY polyclonal antibody.
  • a specific structure was prepared and its effect and practicality were verified.
  • the antibacterial effect of NIR-PIT using IgY polyclonal antibody was exhibited very high and promptly. It can be said that obtaining a rapid effect is a particularly preferable feature as a means of attacking bacteria and fungi whose growth speed is high.
  • the target-specific structure is reactive with related species in addition to the specific Candida albicans, which is the original antigen of IgY used, but not with human cells. It was. These facts mean that they can be effective against a wide range of bacterial species while ensuring high safety, and support their high practicality. In addition, the fact that a bactericidal effect was confirmed against Candida, a fungus having a tough cell wall structure, indicates that the target-specific structure has a strong damaging activity and its application range is wide.
  • a target-specific complex having a structure in which a near-infrared light-sensitive substance is linked to a target-specific IgY classified as a bacterium, fungus or mold, virus, parasite, parasite or rickettsia.
  • Bacteria selected from the group consisting of Pseudomonas, Asinetobacter, Dactophila, Streptococcus, Enterococcus, Escherichia coli, Shigera, Salmonella, Enterobacter and Klebsiella.
  • the target-specific complex according to [2], wherein the fungus or mold is a bacterial species selected from the group consisting of Enterobacter, Aspergillus, Mucor and Cryptococcus fungi.
  • the target-specific complex according to any one of [1] to [3], wherein IgY is a polyclonal antibody.
  • a treatment method including the following steps (1) and (2): (1) A step of administering the composition according to [8] to a therapeutic subject and binding the target-specific complex to the target. (2) A step of irradiating the target with near-infrared light.
  • CA-IgY Candida albicans-IgY
  • IR700 Candida albicans-IgY
  • the binding between CA-IgY and IR700 was confirmed by protein staining (left) and fluorescence staining (right).
  • CA-IgY-IR700 was added to C. albicans seeded in tubes at each concentration, incubated at 37 ° C. for 1 hour, and then the fluorescence intensity was measured by flow cytometry.
  • CA-IgY-IR700 group with applying CA-IgY-IR700 and not irradiating near infrared light
  • Light group near red
  • the tumor area was compared and evaluated between the IgY-PAT group (irradiating near-infrared light after applying CA-IgY-IR700) and the IgY-PAT group (irradiation with external light only).
  • the first aspect of the present invention relates to a "target-specific complex", which is a structure that exhibits specific binding to a target (target of attack) and can exert damaging activity.
  • the target-specific complex of the present invention has a structure in which a near-infrared light-sensitive substance is linked to an antibody against the target.
  • the damaging activity is an action or effect that impairs (damages) the target, and brings about death of the target, suppression of proliferation, detoxification, removal, and the like. If the target is a bacterium or a fungus / mold, the term “damage activity" can be replaced with "antibacterial activity”.
  • IgY is used as the antibody.
  • IgY is an antibody characteristic of birds. For example, IgY of poultry such as chickens and quails can be adopted. IgY is abundantly contained in egg yolk in addition to serum, and is also called egg yolk antibody. Due to the high abundance in egg yolk, it is possible to relatively easily and in large quantities prepare target-specific IgY from the egg yolk of antigen-sensitized birds (typically chickens).
  • Target-specific IgY may be prepared by a conventional method. The following is an example of a method for preparing target-specific IgY.
  • antigens target bacteria, fungi, etc.
  • a part of bacteria, fungi and the like may be used as an antigen.
  • chickens are used as birds.
  • Immunization is repeated as necessary, and eggs are collected when the antibody titer rises sufficiently. It is advisable to check the antibody titer of serum and determine the time of egg collection. Usually, an increase in the IgY concentration in the egg yolk is observed 3 to 7 days after the IgY concentration in the serum reaches the peak. Therefore, it is advisable to collect eggs 10 to 20 days after the final sensitization (immunity) and extract and purify IgY.
  • monoclonal IgY can also be used.
  • Monoclonal IgY can also be prepared by conventional methods (for example, Nishinaka, S. et al. Int Arch Allergy Appl Immunol, 89, 416 (1989); Nishinaka, S. et al. J Immunol Methods, 139, 217 (1991). ); Nishinaka, S. et al. J Vet Med Sci, 58, 1053 (1996)).
  • An example of the preparation method of monoclonal IgY is shown. First, the immune operation is performed in the same procedure as described above.
  • Immunization is repeated as necessary, and when the antibody titer rises sufficiently, antibody-producing cells are removed from the immunized birds.
  • a hybridoma is obtained by a cell fusion method.
  • a clone that produces an antibody having high specificity for the antigen is selected.
  • the antibody of interest is obtained by purifying the culture medium of the selected clone.
  • the desired antibody can also be obtained by growing a desired number of hybridomas, transplanting them into the abdominal cavity of an animal (for example, a mouse), and growing them in ascites to purify the ascites.
  • Affinity chromatography on which an antigen is immobilized is preferably used for purification of the culture solution or ascites. Affinity chromatography in which an antigen is immobilized can also be used. Furthermore, methods such as ion exchange chromatography, gel filtration chromatography, ammonium sulfate fractionation, and centrifugation can also be used. These methods are used alone or in any combination.
  • the targets of attacks by the target-specific complex of the present invention are bacteria, fungi / molds, viruses, parasites, parasites and rickettsia. Infectious to humans or animals under human control (pet / companion animals, industrial animals such as livestock and poultry, laboratory animals, exhibited animals bred and stored in zoos and parks, etc.) Typical targets are those that show and have harmful effects, namely pathogens that can cause infectious diseases (bacteria, fungi / molds, viruses, parasites, parasites, liquettia).
  • the present invention targets the pathogen itself, not the cells infected with the pathogen.
  • IgY which can be prepared in large quantities relatively easily, it is possible to cope with the large number / amount of targets (bacteria, fungi, molds, etc.) and the rapid growth speed of the targets.
  • the target bacteria are not particularly limited, and various bacteria such as gram-negative bacilli, gram-negative cocci, gram-positive cocci, and gram-positive cocci can be targeted.
  • Specific examples of potential target bacteria include Escherichia coli, Shigella (S. dysenteriae, S. frexneri, S. sunnei, etc.), Salmonella (S. typh, S. paratyphi). -A, S. schottmuelleri, S. typhimurium, S. enteritidis, etc.), Enterobacter bacteria (E. aerogenes, E. cloacae, etc.), Klebsiella (K. pneumoniae, K.
  • viridans S. pneumoniae, S. mutans, S. sobrinus, etc.
  • Enterococcus E. faecalis, E. faecium
  • Bacillus B. subtilis, B. anthracis, B. cereus, etc.
  • Listeria L. monocytogenes, etc.
  • Clostridium C. difficile, C. botulinum, C. perfringens, C. tetani, etc.
  • Corynebacterium C. diphtheriae, etc.
  • Branhamella B. catarrhalis, etc.
  • Mycobacteria B. catarrhalis, etc.
  • Mycobacterium M.
  • tuberculosis tuberculosis, M. bovis, M. leprae, M. avium, M. intracellulare, M. kansasii, M. ulcerans, etc.
  • Peptcoccus P. anaerovius, etc.
  • Peptostreptococcus Bacteria Peptostreptococcus
  • Eubacterium E. lentum, etc.
  • Propionibacterium Propi, etc. onibacterium (P.acnes), Lactobacillus (L.plantarum, etc.)
  • Bacteroides B.fragilis, B.melaninogenicus, etc.
  • Fusobacterium F.gonidiaformans, etc.
  • Bacteria of the genus Porphyromonas P. gingivalis, etc.
  • Bacteria of the genus Prevotella Prevotella, intermediate, etc.
  • Aggregatibacter A. actinomycetemcomitans, etc.
  • Treponema genus Bacteria can be mentioned.
  • fungi and fungi examples are Candida (C. albicans, C. tropicalis, C. parapsilosis, C. glabrata, C. krusei, etc.), Aspergillus (A). Fumigatus, A. flavus, A. niger, etc.), Cryptococcus (C. neoformans, etc.), Mucor (M. circinelloides, etc.), Rhizopus (R. oryzae, etc.) R. microsporus, etc.), Cunninghamella (C. bertholletiae, etc.), Apophysomyces (A. elegans), Sakseneae (S.
  • viruses that can be targeted include natural pox virus, vactinia virus, infectious irritation virus, herpesvirus 1 (HSV-1), herpesvirus 2 (HSV-2), and varicella / herpesvirus 6 (HSV-2).
  • HHV-3 Cytomegalovirus
  • HHV-5 Human Herpesvirus 6
  • HHV-7 Human Herpesvirus 7
  • HHV-4 Epstein Bar Virus
  • HHV-4 Human Herpesvirus 8
  • HHV-8 also known as Kaposi sarcoma-related herpesvirus (KSHV)
  • KSHV Kaposi sarcoma-related herpesvirus
  • adenovirus human papillomavirus, parvovirus B19, dicavirus
  • hepatitis B virus influenza virus, measles virus, mumpsvirus, RS virus, human immunodeficiency virus (HIV), human T lymphophilic virus (HTLV-1), coronavirus, lassavirus, eczema virus, Japanese encephalitis virus, yellow fever virus, dengue fever virus, hepatitis C virus, huntervirus, poliovirus, coxsackie virus, echo Viruses, rhinoviruses, hepatitis A virus,
  • examples of parasites that can be targeted include malaria (P. falciparum, P. vivox, P. malariae, etc.), Leishimania (L. donovani, L braziliensis, etc.), and Cryptosporidium. (C.parvum, etc.), Trypanosoma (T.brucei, T, cruzi, etc.), Trichomonas (T.vaginalis, etc.), Toxoplasma (T.gondii, etc.), Babesia (B) Microti, etc.), Entamoeba (E.hitsolytica, etc.), Gicardia (G. intestinalis, G.muris, etc.), Cryptosporidium (C.parvum, etc.).
  • malaria P. falciparum, P. vivox, P. malariae, etc.
  • Leishimania L. donovani, L braziliensis, etc.
  • Cryptosporidium C.parvum, etc.
  • Trypanosoma T.
  • examples of parasites that can cause infectious diseases are roundworms (Ascaris) (Ascaris lumbricoides, etc.), Zubini worms (Ancylostomoa duodenale), Necator americanus, worms (Enterobius vermicularis), and threadworms (Strongyloides stercoralis).
  • Anisakis A. simplex, A. physeteris, etc.
  • Pseudoterranova P. decipiens
  • Wunchereri bancroft Brugia malayi
  • Gnathostoma G. nipponicum, G. spinigerum, etc.
  • Trichinella T. spiralis, T.
  • examples of rickettsia that can cause infectious diseases include rickettsia (R. rickettsia, R. prowazekii, R. typhi, etc.), Orientia (O. tsutsugamushi, etc.), and Ehrlichia. (E. chaffeensis, etc.), Anaplasma (A. phafocytophilum, etc.), Coxiella (C. burnetii, etc.) can be mentioned.
  • polyclonal IgY may be adopted.
  • polyclonal IgY it does not bind to the human body and can exhibit pathogen-selective yet damaging activity against a relatively wide range of targets.
  • monoclonal IgY is suitable when constructing a target-specific structure targeted to a specific pathogen (for example, a specific strain or strain), in other words, when it is necessary to enhance selectivity or specificity ( However, even in this case, polyclonal IgY may be used).
  • the present invention utilizes the principle of photoimmunotherapy (PIT). Therefore, a near-infrared light-sensitive substance is linked to the target-specific IgY.
  • a phthalocyanine dye is used as a near-infrared light sensitive substance.
  • Phthalocyanine pigments are a group of photosensitizer compounds having a phthalocyanine ring system. For example, WO 2005/099689 and US Pat. No. 7,005,518 can be referred to for the synthesis method and usage (use) of various phthalocyanine pigments.
  • a phthalocyanine pigment having an absorption peak in the near infrared (NIR) region and strongly absorbing near infrared rays to emit fluorescence is used. More specifically, a phthalocyanine dye having an absorption peak at 600 nm to 950 nm, more preferably 660 nm to 740 nm, and even more preferably 680 nm to 720 nm is used.
  • IR700 (IRDye® 700DX) can be mentioned as a particularly preferable phthalocyanine pigment.
  • IR700 is commercially available from LI-COR (LI-COR Biosciences).
  • Amino-reactive IR700 is a relatively hydrophilic dye that can be covalently bound to IgY using, for example, the NHS ester of IR700.
  • the near-infrared light-sensitive substance is directly or indirectly linked to the target-specific IgY via a covalent bond or a non-covalent bond.
  • Non-covalent bonds are achieved, for example, by electrostatic interactions, van der Waals forces, hydrophobic interactions, ⁇ effects, ionic interactions, hydrogen bonds or halogen bonds.
  • a linker is usually used for indirect concatenation.
  • compositions and its use can be formulated to prepare a pharmaceutical composition.
  • a pharmaceutically acceptable carrier carrier, vehicle
  • carriers include water, saline, balanced salt solution, aqueous dextrose, glycerol, mannitol, lactose, starch and magnesium stearate.
  • carriers include water, saline, balanced salt solution, aqueous dextrose, glycerol, mannitol, lactose, starch and magnesium stearate.
  • Remington's Pharmaceutical Sciences by E.W. Martin, Mack Publishing Co., Easton, Pa., 19th Edition (1995) can be referred to.
  • compositions include diluents (lactorose, sucrose, dicalcium phosphate, or carboxymethyl cellulose, etc.), excipients (starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, etc.) Sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene glycol, water, ethanol, etc.), lubricants (magnesium stearate, calcium stearate, talc, etc.), pH regulators (acetate, citrate, etc.) Sodium acid, cyclodextrin derivative, sorbitan monolaurate, triethanolamine sodium acetate, triethanolamine oleate, etc.), emulsifier, solubilizer, isotonic agent, preservative, preservative, etc. may be contained.
  • diluents lactorose, sucrose, dicalcium phosphate
  • the dosage form / shape when formulating is not particularly limited.
  • dosage forms are aerosols, liquids, suspensions, injections, syrups, emulsions, jellies, tablets, pills, powders, fine granules, granules, capsules, external preparations (ointments, patches). , Paps, lotions, pills, suppositories), inhalants, nasal drops and eye drops.
  • the pharmaceutical composition of the present invention contains an amount (that is, a therapeutically effective amount) of the active ingredient necessary for obtaining the expected therapeutic effect (or preventive effect).
  • the amount of the active ingredient in the pharmaceutical composition of the present invention generally varies depending on the dosage form, but the amount of the active ingredient is set in the range of, for example, about 0.001% by weight to about 99% by weight so that a desired dose can be achieved.
  • a further aspect of the present invention relates to the use of the pharmaceutical composition.
  • the pharmaceutical compositions of the present invention are used for the treatment, prevention or amelioration of diseases and conditions.
  • Treatment includes alleviating (mitigating) the symptomatology or concomitant symptom characteristic of the target disease, preventing or delaying the worsening of the symptomatology, and the like.
  • Prevention means preventing or delaying the onset / delay of a disease (disorder) or its symptoms, or reducing the risk of onset / onset.
  • improvement means that the disease (disorder) or its symptoms are alleviated (mild), improved, ameliorated, or cured (including partial cure).
  • treatment, prevention, and improvement are some overlapping concepts, which are difficult to distinguish and capture, and the benefits of doing so are small.
  • treatment for the purpose of prevention or improvement is also included in the concept of the term "therapeutic method”.
  • the pharmaceutical composition of the present invention is typically applied to the treatment, prevention or amelioration of infectious diseases caused by targets (bacteria, fungi / molds, viruses, parasites, parasites, rickettsia).
  • targets bacteria, fungi / molds, viruses, parasites, parasites, rickettsia
  • the pharmaceutical composition of the present invention is utilized for IgY-PAT therapy.
  • infectious diseases include infectious pyoderma (impetigo vesicular, impetigo crust), tan poison, bee folliculitis, folliculitis, furuncle, yo (furuncle).
  • the following steps (1) and (2) are performed.
  • (1) A step of administering the pharmaceutical composition of the present invention to a therapeutic subject and binding the target-specific complex of the present invention to the target (2)
  • the pharmaceutical composition of the present invention is administered to the therapeutic subject.
  • the route of administration may be selected according to the dosage form of the pharmaceutical composition, the treatment policy, and the like. Both oral and parenteral administration (intravenous, intraarterial, subcutaneous, intradermal, intramuscular, or intraperitoneal injection, transdermal, nasal, transmucosal, application to affected areas, application, spray, etc.) can be adopted. Is.
  • these administration routes are not mutually exclusive, and two or more arbitrarily selected administration routes can be used in combination (for example, intravenous injection or the like is performed at the same time as oral administration or after a lapse of a predetermined time). Both systemic administration and topical administration (for example, application, application, spray, etc.
  • animals under the control of humans can be adopted.
  • animals under the control of humans can also be treated.
  • animals under the control of humans can also be treated.
  • animals under the control of humans can also be treated.
  • animals under the control of humans can also be treated.
  • animals under the control of humans can also be treated.
  • the dose of the pharmaceutical composition is set so as to obtain the expected therapeutic effect.
  • Symptoms, patient age, gender, weight, etc. are generally considered in the setting of therapeutically effective doses.
  • Those skilled in the art can set an appropriate dose in consideration of these matters.
  • systemic administration for example, 0.1 to 1000 mg, 0.2 to 500 mg, 0.5 to 100 mg or 1 per 60 kg of body weight.
  • topical administration it is, for example, 0.01 to 50 mg, 0.03 to 30 mg, or 0.05 to 10 mg per 1 cm 2 of the application site.
  • the medical condition of the patient and the duration of effect of the active ingredient can be taken into consideration.
  • the target-specific complex which is the active ingredient thereof, is bound to the target, and then the target is irradiated with near-infrared light (step (2)).
  • irradiation with near-infrared light damages the surface structure of the target (for example, the cell wall in the case of bacteria), and exerts its effects (such as killing the target and suppressing its growth). ..
  • This mechanism of action is different from the mechanism of action of photodynamic therapy (PDT) (which exerts its effect by causing oxidative stress in mitochondria), and brings about a rapid effect.
  • PDT photodynamic therapy
  • the devices include, but are not limited to, a light guide catheter, an endoscopic light guide fiber, a puncture irradiation fiber, a blood vessel light guide catheter, a drain indwelling light guide device, an implantable type, and a sticking type. , A bracelet type device, etc. can be considered.
  • the irradiation conditions of near-infrared light are not particularly limited as long as the damaging activity based on the principle of NIR-PIT can be obtained, but the wavelength of near-infrared light used is, for example, 650 to 740 nm, preferably 670 to 720 nm, and further. It is preferably 680 to 710 nm.
  • the irradiation doses are, for example, at least 1 J cm -2 , at least 2 J cm -2 , at least 5 J cm -2 , at least 10 J cm -2 , at least 20 J cm -2 , at least 30 J cm -2 , at least 40 J cm -2.
  • the irradiation dose is, for example, 5 seconds to 1 hour, 5 seconds to 30 minutes, or 5 seconds to 15 minutes.
  • the irradiation time is preferably 10 seconds or longer, more preferably 1 minute or longer, and even more preferably 3 minutes or longer.
  • the pharmaceutical composition when the pharmaceutical composition is systemically administered by intravenous injection or the like, after administration of the pharmaceutical composition, for example, for 5 minutes to 48 hours, preferably 10 minutes to 24 hours. Irradiation with near-infrared light is carried out over time, more preferably between 15 minutes and 12 hours. In the case of topical administration, it is preferable to set the interval between administration of the pharmaceutical composition and irradiation of near-infrared light shorter than in the case of systemic administration (for example, 1 minute to 12 hours after administration of the pharmaceutical composition). Irradiate near-infrared light during).
  • the interval is not particularly limited. For example, multiple irradiations on the same day at predetermined intervals (for example, 5 minutes to 10 hours), daily irradiation, every other day or every few days, one week or every few weeks, one month or number.
  • Various irradiation schedules can be set, such as irradiation every month.
  • the administration schedule of the pharmaceutical composition in the case of multiple irradiations is not particularly limited. For example, if the interval between the first and second irradiations is short, the pharmaceutical composition is typically administered only prior to the first irradiation. To give another example, if the elapsed time from the previous irradiation is long (for example, one day to several months have passed), it is advisable to administer the pharmaceutical composition again and then perform irradiation. ..
  • antibacterial agents for example, penicillin antibacterial agents, cephem antibacterial agents, carbapenem antibacterial agents, penem antibacterial agents, tetracycline antibacterial agents, ⁇ Treatment with lactamase inhibitors, phosphomycin, vancomycin, aminoglycoside antibacterial agents, macrolide antibacterial agents
  • antibacterial agents for example, penicillin antibacterial agents, cephem antibacterial agents, carbapenem antibacterial agents, penem antibacterial agents, tetracycline antibacterial agents, ⁇ Treatment with lactamase inhibitors, phosphomycin, vancomycin, aminoglycoside antibacterial agents, macrolide antibacterial agents
  • a complex action / effect can be obtained and the therapeutic effect can be increased.
  • the target-specific complex of the present invention is contaminated with pathogens (bacteria, fungi / molds, viruses, parasites, parasites, rickettsia) that can cause infectious diseases (contaminants). ) Can also be used for disinfection or decontamination. That is, a composition for disinfection / decontamination (hereinafter, referred to as "disinfectant of the present invention" for convenience of explanation) can be prepared using the target-specific complex of the present invention.
  • the disinfectant of the present invention is, for example, various facilities / instruments / equipment in medical institutions (hospitals, clinics, nursing homes for the elderly, home-visit nursing care stations, midwifery centers, pharmacies, etc.), osteopathic clinics, osteopathic clinics, acupuncture and moxibustion clinics, etc. (Inspection or surgical equipment, instruments or devices, urinary organs, floors, walls, curtains, furniture, doors, windows, bedding, clothing, etc.) and spaces (in hospital rooms, operating rooms, clean rooms, clean benches, etc.) Disinfection or decontamination, various equipment, utensils, equipment, etc.
  • the disinfectant of the present invention is composed of, for example, a liquid (for example, a spray agent, a lotion), a gel form, or a solid form (for example, a powder), and is used by coating, spraying (spraying), spraying, dropping, or the like.
  • a liquid for example, a spray agent, a lotion
  • a gel form for example, a powder
  • a solid form for example, a powder
  • the disinfectant of the present invention is irradiated with near-infrared light to exert a damaging activity.
  • the irradiation conditions of near-infrared light are the same as in the case of treatment using a pharmaceutical composition.
  • CA-IgY-IR700 Preparation of Candida albicans-IgY (CA-IgY) -IR700 and confirmation of quality 1-1.
  • CA-IgY-IR700 was synthesized.
  • CA-IgY (1.0 mg, 5.4 nmol) and IR700 (47.8 ⁇ g, 24.5 nmol) were incubated with Na 2 HPO 4 (pH 8.5) 0.1 M for 1 hour at room temperature, followed by a Sephadex G50 column (PD-10; The mixture was collected through GE healthcare) (CA-IgY-IR700 solution).
  • the absorbance (wavelength 595 nm) was measured to determine the concentration (protein concentration) of CA-IgY-IR700.
  • concentration of IR700 was determined by measuring the absorbance (wavelength 698 nm), and the number of fluorescent molecules bound to the antibody was confirmed.
  • the above mixed solution was subjected to SDS-PAGE, and the binding between the antibody and IR700 was confirmed. Diluted CA-IgY was used for SDS-PAGE control, and imaging was performed with a Pearl imager (LICOR).
  • albicans species FC18, IFO579, IFO1060, and IFO1385), and related species such as Candida tropicalis (IFO1402), Candida guilliermondii (IFO838), Candida krusei (IFO1162), and A431 (human skin cancer cells).
  • Candida tropicalis IFO1402
  • Candida guilliermondii IFO838
  • Candida krusei IFO1162
  • A431 human skin cancer cells
  • C. albicans JCM1542 was cultured in a liquid medium for 24 hours, then seeded in a tube with 100 ⁇ L of medium in 1 ⁇ 10 5 each, and CA-IgY-IR700 was added. After incubation at room temperature for 4 hours (10 ⁇ g / mL, 50 ⁇ g / mL, 100 ⁇ g / mL, or 200 ⁇ g / mL), near-infrared light (256 J / cm 2 ) was irradiated using an LED with an emission wavelength of 690 nm.
  • CA-IgY-IR700 was adjusted to 200 ⁇ g / mL, and after incubation at room temperature for 4 hours, near-infrared light (32J, 64J,) using an LED with an emission wavelength of 690 nm was used. It was irradiated with 128J and 256J / cm 2). Those subjected to near-infrared light irradiation (256 J / cm 2 ) without adding CA-IgY-IR700 were also evaluated. After the treatment, the number of colonies was measured by the same method to evaluate the viable cell count (Fig. 4).
  • CA-IgY-IR700 200 ⁇ g / mL was reacted in the same manner, and 1 hour after irradiation with near infrared light 256 J / cm 2 1 hour, dead cell staining (Propiodium Iodide: PI staining) was used. It was observed with a confocal microscope and a scanning electron microscope.
  • the next day (Day 1) the emergency bond was removed, and it was evaluated by Pearl imager (LICOR) whether CA-IgY-IR700 could be confirmed in the ulcer area. Then, near infrared light (256 J / cm 2 ) was irradiated with a laser. The transition of the ulcer area was quantitatively evaluated with the ulcer area on the irradiation day as 100%. The ulcer area was photographed and calculated using Image J (open source).
  • the treatment group is the IgY-PAT group, which is a sterile group without C. albicans, a CA group with only C. albicans, and a CA-IgY-IR700 group with CA-IgY-IR700 applied and not irradiated with near-infrared light.
  • the target-specific complex of the present invention (a structure in which a near-infrared light-sensitive substance is linked to IgY) exhibits target-specific damaging activity according to the principle of NIR-PIT and exerts a therapeutic effect.
  • the present invention using IgY which is inexpensive and easy to prepare in large quantities, provides a new therapeutic means capable of coping with the explosive increase in targets in infectious diseases such as bacteria, fungi, and molds, and is effective against various infectious diseases. It is expected to be applied or applied.
  • the present invention is an innovative technique that is different from the conventional antibacterial therapy using IgY alone, and a high therapeutic effect can be obtained. In addition, due to its unique mechanism of action, rapid onset of effects can be expected.
  • the fact that the bactericidal effect on Candida having a tough cell wall structure has been confirmed means that the present invention can be an effective means of attack not only against various Gram-positive bacteria but also against various Gram-negative bacteria and various fungi. To support.
  • target-directing substances include commonly considered binding substances such as antibodies (IgG, IgM, antibody fragments, Minibody, Diabody, etc.), peptides, aptamers, etc., which can be used in place of IgY. ..
  • binding substances such as antibodies (IgG, IgM, antibody fragments, Minibody, Diabody, etc.), peptides, aptamers, etc., which can be used in place of IgY. ..
  • the contents of the articles, published patent gazettes, patent gazettes, etc. specified in this specification shall be cited by reference in their entirety.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Virology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Provided is a novel application of near-infrared ray immunological therapy. Specifically, provided are: a target-specific complex having a structure in which a near-infrared light sensitive substance is linked to IgY specific to targets classified as bacteria, fungi, molds, viruses, parasitic organisms, parasitic bugs, or Rickettsia; a therapeutic method using the target-specific complex; and the like.

Description

光抗菌療法Photoantibacterial therapy
 本発明は光抗菌療法に関する。詳しくは、近赤外光の照射を利用して標的選択的な障害活性を示す標的特異的複合体及びその用途等に関する。 The present invention relates to photoantibacterial therapy. More specifically, the present invention relates to a target-specific complex that exhibits target-selective damaging activity using near-infrared light irradiation, its use, and the like.
 近赤外光線免疫療法(NIR-PIT)はモノクローナル抗体に光感受性物質(例えばIRdye700DX(IR700))を結合させたものを癌細胞に反応させた後に、近赤外光を照射して選択的に癌細胞膜を破壊する、新しい癌治療法である。EGFRを標的とした頭頚部癌に対して臨床試験もされており、良好な成績を収め、現在第3相臨床試験が行われている。最近では、NIR-PITの抗腫瘍効果を示す機序が既存の抗腫瘍治療とは全く違う光化学反応であることが解明された(非特許文献1を参照)。尚、特許文献1~3には、NIR-PITを腫瘍の治療等に利用することが提案されている。 Near-infrared ray immunotherapy (NIR-PIT) is a monoclonal antibody bound to a photosensitizer (eg IRdye700DX (IR700)) that reacts with cancer cells and then is selectively irradiated with near-infrared light. It is a new cancer treatment that destroys the cancer cell membrane. Clinical trials have also been conducted for head and neck cancers targeting EGFR, with good results, and Phase 3 clinical trials are currently underway. Recently, it has been clarified that the mechanism showing the antitumor effect of NIR-PIT is a photochemical reaction completely different from the existing antitumor treatment (see Non-Patent Document 1). It should be noted that Patent Documents 1 to 3 propose that NIR-PIT is used for treatment of tumors and the like.
米国特許出願公開第2014/0120119号明細書U.S. Patent Application Publication No. 2014/01/2019 米国特許出願公開第2018/0150405号明細書U.S. Patent Application Publication No. 2018/015405 米国特許出願公開第2014/0120119号明細書U.S. Patent Application Publication No. 2014/01/2019
 NIR-PITはその特有の作用機序等から潜在能力の高い技術であり、更なる応用を期待できる。そこで本発明は、NIR-PITの新たな用途を提供することを課題とする。 NIR-PIT is a technology with high potential due to its unique mechanism of action, and further application can be expected. Therefore, it is an object of the present invention to provide a new use of NIR-PIT.
 癌細胞を標的とする従来のNIR-PITでは、通常、光感受性物質を結合させる抗体にはIgGモノクローナル抗体が用いられるが、NIR-PITの応用を模索する中で本発明者らはIgY(immunoglobulin Y: トリ卵黄免疫グロブリン)に着目した。IgYは鳥類に特有の抗体である。IgYの代表といえるニワトリIgYは、産卵ニワトリにおける主な免疫グロブリンであり、受動免疫を付与するために血清から卵黄に移行する。ニワトリIgYは鶏卵から採取できるため、高濃度で容易に収集することが可能である。言い換えれば、安価に且つ大量に調製することができる。また、IgYは抗生物質とは対照的に副作用や耐性、毒性残留物を示さない。そのため、IgYは抗生物質とは異なる、新たな感染症抑制手段として注目されている。これまでに、大腸菌、腸炎菌型サルモネラ・エンテロコリチカ、ネズミチフス菌型サルモネラ・エンテロコリチカ、ガリバクテリウム・アナリス等の病原菌に対するIgYの抑制効果が報告されている(例えば非特許文献2を参照)。しかしながら、その効果は十分に高いものとは言い難く、また、効果を高めるためには連続的な投与が必要であることなど、実用上の課題は多い。このような状況も踏まえ、本発明者らはNIR-PITとIgYを組み合わせれば感染症等に有効な治療手段になると考え、ニワトリ由来のIgYポリクローナル抗体に近赤外光感受物質を連結した標的特異的構造体を作製し、その効果や実用性を検証した。詳細な検証実験の結果、IgYポリクローナル抗体を利用したNIR-PITの抗菌効果は非常に高く且つ速やかに発揮された。速やかな効果が得られることは、その増殖スピードが速い細菌や真菌等に対する攻撃手段として特に好ましい特徴といえる。また、標的特異的構造体は、使用したIgYの本来の抗原である特定のカンジダ菌(C. albicans)に加えて近縁種にも反応性を示す一方、ヒト細胞には反応性を示さなかった。これらの事実は、高い安全性を担保しつつ幅広い菌種に対して効果を発揮できることを意味し、その実用性が高いことを裏付ける。また、強靱な細胞壁構造を備える真菌であるカンジダ菌に対して殺菌効果が確認されたことは、標的特異的構造体の障害活性が強力であり、その適用範囲が広いことを示す。 In conventional NIR-PIT that targets cancer cells, IgG monoclonal antibody is usually used as an antibody that binds a photosensitizer. However, while exploring the application of NIR-PIT, the present inventors have IgY (immunoglobulin). Y: Tori egg yolk immunoglobulin) was focused on. IgY is an antibody peculiar to birds. Chicken IgY, which can be said to be a representative of IgY, is the main immunoglobulin in spawning chickens and transfers from serum to egg yolk in order to impart passive immunity. Since chicken IgY can be collected from chicken eggs, it can be easily collected in high concentration. In other words, it can be prepared inexpensively and in large quantities. Also, IgY shows no side effects, resistance or toxic residues in contrast to antibiotics. Therefore, IgY is attracting attention as a new means of controlling infectious diseases, which is different from antibiotics. So far, it has been reported that IgY is suppressed against pathogens such as Escherichia coli, Salmonella typhimurium enterocolitica, Salmonella typhimurium enterocolitica, and Galibacterium analyst (see, for example, Non-Patent Document 2). ). However, it cannot be said that the effect is sufficiently high, and there are many practical problems such as the need for continuous administration in order to enhance the effect. Based on this situation, the present inventors considered that the combination of NIR-PIT and IgY would be an effective therapeutic means for infectious diseases, etc., and a target in which a near-infrared photosensitizer was linked to a chicken-derived IgY polyclonal antibody. A specific structure was prepared and its effect and practicality were verified. As a result of detailed verification experiments, the antibacterial effect of NIR-PIT using IgY polyclonal antibody was exhibited very high and promptly. It can be said that obtaining a rapid effect is a particularly preferable feature as a means of attacking bacteria and fungi whose growth speed is high. In addition, the target-specific structure is reactive with related species in addition to the specific Candida albicans, which is the original antigen of IgY used, but not with human cells. It was. These facts mean that they can be effective against a wide range of bacterial species while ensuring high safety, and support their high practicality. In addition, the fact that a bactericidal effect was confirmed against Candida, a fungus having a tough cell wall structure, indicates that the target-specific structure has a strong damaging activity and its application range is wide.
 以上の通り、NIR-PITにIgYを利用したターゲット光抗菌療法(Photoantibacterial target therapy; PAT)(以下、当該ターゲット光抗菌療法のことを「IgY-PAT療法」と呼ぶことがある)が、人体への影響がなく標的性があり、真菌や細菌等の感染症への対抗手段(感染症の治療・予防、感染の拡大防止等)として極めて有効であることが明らかとなった。この成果に基づき、以下の発明が提供される。
 [1]細菌、真菌若しくはカビ、ウイルス、寄生生物、寄生虫又はリケッチアに分類される標的に特異的なIgYに近赤外光感受物質が連結した構造の標的特異的複合体。
 [2]標的が細菌又は真菌若しくはカビである、[1]に記載の標的特異的複合体。
 [3]前記細菌がシュードモナス属、アシネトバクター属、ブドウ球菌属、レンサ球菌、腸球菌属細菌、大腸菌、シゲラ属細菌、サルモネラ属細菌、エンテロバクター属細菌及びクレブシエラ属細菌からなる群より選択される菌種であり、前記真菌若しくはカビがカンジダ属、アスペルギルス属、ムコール属及びクリプトコッカス属真菌からなる群より選択される菌種である、[2]に記載の標的特異的複合体。
 [4]前記IgYがポリクローナル抗体である、[1]~[3]のいずれか一項に記載の標的特異的複合体。
 [5]前記近赤外光感受物質がフタロシアニン色素である、[1]~[4]のいずれか一項に記載の標的特異的複合体。
 [6]前記フタロシアニン色素がIR700である、[5]に記載の標的特異的複合体。
 [7][1]~[6]のいずれか一項に記載の標的特異的複合体を含有する組成物。
 [8]前記標的による感染症の治療又は予防に使用される、[7]に記載の組成物。
 [9]以下のステップ(1)及び(2)を含む、治療方法:
 (1)[8]に記載の組成物を治療対象に投与し、前記標的特異的複合体を前記標的に結合させるステップ、
 (2)前記標的に近赤外光を照射するステップ。
 [10]前記近赤外光の波長が650~740nmである、[9]に記載の治療方法。
 [11]前記近赤外光の波長が670~720nmである、[9]に記載の治療方法。
 [12]前記近赤外光の照射線量が1J cm-2以上である、[9]~[11]のいずれか一項に記載の治療方法。
 [13]前記近赤外光の照射線量が2J cm-2~500J cm-2である、[9]~[11]のいずれか一項に記載の治療方法。
 [14]前記標的による汚染物の消毒又は除染に使用される、[7]に記載の組成物。
As described above, Photoantibacterial target therapy (PAT) using IgY for NIR-PIT (hereinafter, the target photoantibacterial therapy may be referred to as "IgY-PAT therapy") is applied to the human body. It has been clarified that it is extremely effective as a countermeasure against infectious diseases such as fungi and bacteria (treatment / prevention of infectious diseases, prevention of spread of infection, etc.). Based on this result, the following inventions are provided.
[1] A target-specific complex having a structure in which a near-infrared light-sensitive substance is linked to a target-specific IgY classified as a bacterium, fungus or mold, virus, parasite, parasite or rickettsia.
[2] The target-specific complex according to [1], wherein the target is a bacterium or fungus or mold.
[3] Bacteria selected from the group consisting of Pseudomonas, Asinetobacter, Dactophila, Streptococcus, Enterococcus, Escherichia coli, Shigera, Salmonella, Enterobacter and Klebsiella. The target-specific complex according to [2], wherein the fungus or mold is a bacterial species selected from the group consisting of Enterobacter, Aspergillus, Mucor and Cryptococcus fungi.
[4] The target-specific complex according to any one of [1] to [3], wherein IgY is a polyclonal antibody.
[5] The target-specific complex according to any one of [1] to [4], wherein the near-infrared light-sensitive substance is a phthalocyanine pigment.
[6] The target-specific complex according to [5], wherein the phthalocyanine pigment is IR700.
[7] A composition containing the target-specific complex according to any one of [1] to [6].
[8] The composition according to [7], which is used for treating or preventing an infectious disease caused by the target.
[9] A treatment method including the following steps (1) and (2):
(1) A step of administering the composition according to [8] to a therapeutic subject and binding the target-specific complex to the target.
(2) A step of irradiating the target with near-infrared light.
[10] The treatment method according to [9], wherein the wavelength of the near infrared light is 650 to 740 nm.
[11] The treatment method according to [9], wherein the wavelength of the near infrared light is 670 to 720 nm.
[12] The treatment method according to any one of [9] to [11], wherein the irradiation dose of the near infrared light is 1 J cm -2 or more.
[13] The treatment method according to any one of [9] to [11], wherein the irradiation dose of the near infrared light is 2 J cm -2 to 500 J cm -2.
[14] The composition according to [7], which is used for disinfecting or decontaminating contaminants by the target.
Candida albicans-IgY(CA-IgY)-IR700の調製と品質の確認。タンパク染色(左)と蛍光染色(右)でCA-IgYとIR700の結合を確認した。Preparation and quality confirmation of Candida albicans-IgY (CA-IgY) -IR700. The binding between CA-IgY and IR700 was confirmed by protein staining (left) and fluorescence staining (right). C. albicansに対するCA-IgY-IR700の結合性。チューブに播種したC. albicansに各濃度でCA-IgY-IR700を添加し、37℃で1時間インキュベートした後、フローサイトメトリーで蛍光強度を測定した。C. Binding of CA-IgY-IR700 to albicans. CA-IgY-IR700 was added to C. albicans seeded in tubes at each concentration, incubated at 37 ° C. for 1 hour, and then the fluorescence intensity was measured by flow cytometry. C. albicans及びその近縁種、並びにA431に対するCA-IgY-IR700の結合性。C. Albicans and its relatives, as well as the binding of CA-IgY-IR700 to A431. In vitro NIR-PATの実験方法。In vitro NIR-PAT experimental method. In vitro NIR-PATの実験結果。抗体濃度と治療効果の関係(左)、及び照射量と治療効果の関係(右)をコロニー数で評価した。Experimental results of In vitro NIR-PAT. The relationship between the antibody concentration and the therapeutic effect (left) and the relationship between the irradiation dose and the therapeutic effect (right) were evaluated by the number of colonies. In vitro NIR-PATの実験結果。IgY-PATの効果を共焦点顕微鏡(死細胞染色)(左)と走査型電子顕微鏡(右)で評価した。Experimental results of In vitro NIR-PAT. The effect of IgY-PAT was evaluated with a confocal microscope (dead cell staining) (left) and a scanning electron microscope (right). In vivo NIR-PITの実験方法。In vivo NIR-PIT experimental method. In vivo NIR-PITの実験結果。CA-IgY-IR700群(CA-IgY-IR700を塗布し近赤外光を照射しない)とIgY-PAT群(CA-IgY-IR700を塗布後に近赤外光を照射する)について、処置部位の蛍光を経時的に観察した。Experimental results of In vivo NIR-PIT. For the CA-IgY-IR700 group (CA-IgY-IR700 is applied and not irradiated with near-infrared light) and the IgY-PAT group (CA-IgY-IR700 is applied and then irradiated with near-infrared light), the treatment site Fluorescence was observed over time. In vivo NIR-PITの実験結果。無菌群(C. albicansを塗布しない)、CA群(C. albicansのみ)、CA-IgY-IR700群(CA-IgY-IR700を塗布し近赤外光を照射しない)、Light群(近赤外光の照射のみ)、IgY-PAT群(CA-IgY-IR700を塗布後に近赤外光を照射する)の間で腫瘍面積を比較評価した。Experimental results of In vivo NIR-PIT. Sterile group (without applying C. albicans), CA group (only with C. albicans), CA-IgY-IR700 group (with applying CA-IgY-IR700 and not irradiating near infrared light), Light group (near red) The tumor area was compared and evaluated between the IgY-PAT group (irradiating near-infrared light after applying CA-IgY-IR700) and the IgY-PAT group (irradiation with external light only). In vivo NIR-PITの実験結果。無菌群(C. albicansを塗布しない)、CA群(C. albicansのみ)、CA-IgY-IR700群(CA-IgY-IR700を塗布し近赤外光を照射しない)、Light群(近赤外光の照射のみ)、IgY-PAT群(CA-IgY-IR700を塗布後に近赤外光を照射する)の間で潰瘍部の膿性排泄物を比較評価した。Experimental results of In vivo NIR-PIT. Sterile group (without applying C. albicans), CA group (only with C. albicans), CA-IgY-IR700 group (with applying CA-IgY-IR700 and not irradiating near infrared light), Light group (near red) The purulent excrement of the ulcer was compared and evaluated between the IgY-PAT group (irradiating near-infrared light after applying CA-IgY-IR700) and the IgY-PAT group (irradiation with external light only). In vivo NIR-PITの実験結果。無菌群(C. albicansを塗布しない)、CA群(C. albicansのみ)、IgY-PAT群(CA-IgY-IR700を塗布後に近赤外光を照射する)の間でコロニー数を比較評価した。Experimental results of In vivo NIR-PIT. Comparative evaluation of the number of colonies among the sterile group (without applying C. albicans), CA group (only C. albicans), and IgY-PAT group (irradiating near infrared light after applying CA-IgY-IR700) did.
1.標的特異的複合体
 本発明の第1の局面は、標的(攻撃の対象)に特異的結合性を示し、障害活性を発揮し得る構造体である「標的特異的複合体」に関する。本発明の標的特異的複合体は、標的に対する抗体に近赤外光感受物質が連結した構造を有する。障害活性は、標的に対して障害(ダメージ)を加える作用ないし効果であり、標的の死滅、増殖の抑制、無害化、除去等をもたらす。尚、標的が細菌又は真菌/カビであれば、用語「障害活性」は「抗菌活性」と置換可能である。
1. 1. Target-Specific Complex The first aspect of the present invention relates to a "target-specific complex", which is a structure that exhibits specific binding to a target (target of attack) and can exert damaging activity. The target-specific complex of the present invention has a structure in which a near-infrared light-sensitive substance is linked to an antibody against the target. The damaging activity is an action or effect that impairs (damages) the target, and brings about death of the target, suppression of proliferation, detoxification, removal, and the like. If the target is a bacterium or a fungus / mold, the term "damage activity" can be replaced with "antibacterial activity".
 本発明の標的特異的複合体では、抗体を使用することで標的に対する指向性が付与される。抗体としてIgYが用いられる。IgYは鳥類に特徴的な抗体である。例えば、ニワトリやウズラ等の家禽のIgYを採用することができる。IgYは血清の他、卵黄中に豊富に含まれ、卵黄抗体とも呼ばれる。卵黄中の存在量が多いため、抗原を感作した鳥類(典型的にはニワトリ)の卵黄から標的特異的IgYを比較的簡単に且つ大量に調製することが可能である。標的特異的IgYは常法で調製すればよい。以下、標的特異的IgYの調製法の一例を示す。 In the target-specific complex of the present invention, directivity toward the target is imparted by using an antibody. IgY is used as the antibody. IgY is an antibody characteristic of birds. For example, IgY of poultry such as chickens and quails can be adopted. IgY is abundantly contained in egg yolk in addition to serum, and is also called egg yolk antibody. Due to the high abundance in egg yolk, it is possible to relatively easily and in large quantities prepare target-specific IgY from the egg yolk of antigen-sensitized birds (typically chickens). Target-specific IgY may be prepared by a conventional method. The following is an example of a method for preparing target-specific IgY.
 まず、抗原(標的となる細菌や真菌等)を鳥類に免疫する(抗原による感作)。細菌や真菌等の一部を抗原として用いることにしてもよい。鳥類として例えばニワトリが用いられる。必要に応じて免疫を繰り返し、十分に抗体価が上昇した時点で採卵する。血清の抗体価を確認し、採卵時期を見極めるとよい。通常、血清中のIgY濃度がピークに達してから3~7日後に卵黄中のIgY濃度の上昇が見られる。そこで、最終感作(免疫)から10~20日後の卵を採取し、IgYの抽出・精製を行うと良い。卵からのIgYの抽出・精製には、超遠心分離法、有機溶媒を利用した脱脂法、デキストラン硫酸ナトリウム等を利用したリポタンパク質分離法等の方法を利用できる(例えばJensenius JC et al., J Immunol Methods 46: 63-68, 1981.; Hatta H. et al., Agric Biol Chem. 54: 2531-2535, 1990.; Polson A. Immunological Investigations 19: 253-258, 1990.等を参照)。尚、卵黄からIgYを精製するためのアフィニティーカラム(例えばグローバルライフサイエンステクノロジーズジャパン株式会社のHiTrap IgY Purification HP Column)やキットが市販されており、これらを利用することにしてもよい。 First, immunize birds with antigens (target bacteria, fungi, etc.) (sensitization by antigens). A part of bacteria, fungi and the like may be used as an antigen. For example, chickens are used as birds. Immunization is repeated as necessary, and eggs are collected when the antibody titer rises sufficiently. It is advisable to check the antibody titer of serum and determine the time of egg collection. Usually, an increase in the IgY concentration in the egg yolk is observed 3 to 7 days after the IgY concentration in the serum reaches the peak. Therefore, it is advisable to collect eggs 10 to 20 days after the final sensitization (immunity) and extract and purify IgY. For extraction and purification of IgY from eggs, methods such as ultracentrifugation, degreasing using an organic solvent, and lipoprotein separation using sodium dextran sulfate can be used (for example, Jensenius JC et al., J). Immunol Methods 46: 63-68, 1981 .; Hatta H. et al., Agric Biol Chem. 54: 2531-2535, 1990 .; Polson A. Immunological Investments 19: 253-258, 1990. Etc.). Affinity columns for purifying IgY from egg yolk (for example, HiTrap IgY Purification HP Column of Global Life Science Technologies Japan Co., Ltd.) and kits are commercially available, and these may be used.
 以上のようにして調製されるポリクローナルIgYの他、モノクローナルIgYを用いることもできる。モノクローナルIgYの調製も常法で行うことができる(例えばNishinaka, S. et al. Int Arch Allergy Appl Immunol, 89, 416(1989); Nishinaka, S. et al. J Immunol Methods, 139, 217(1991); Nishinaka, S. et al. J Vet Med Sci, 58, 1053(1996)を参照)。モノクローナルIgYの調製法の一例を示す。まず、上記と同様の手順で免疫操作を実施する。必要に応じて免疫を繰り返し、十分に抗体価が上昇した時点で、免疫した鳥類から抗体産生細胞を摘出する。次に、得られた抗体産生細胞を用い、細胞融合法によってハイブリドーマを得る。続いて、このハイブリドーマをモノクローナル化した後、抗原に対して高い特異性を有する抗体を産生するクローンを選択する。選択されたクローンの培養液を精製することによって目的の抗体が得られる。一方、ハイブリドーマを所望数以上に増殖させた後、これを動物(例えばマウス)の腹腔内に移植し、腹水内で増殖させて腹水を精製することにより目的の抗体を取得することもできる。上記培養液の精製又は腹水の精製には、抗原を固相化したアフィニティークロマトグラフィーが好適に用いられる。また、抗原を固相化したアフィニティークロマトグラフィーを用いることもできる。更には、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィー、硫安分画、及び遠心分離等の方法を用いることもできる。これらの方法は単独ないし任意に組み合わされて用いられる。 In addition to polyclonal IgY prepared as described above, monoclonal IgY can also be used. Monoclonal IgY can also be prepared by conventional methods (for example, Nishinaka, S. et al. Int Arch Allergy Appl Immunol, 89, 416 (1989); Nishinaka, S. et al. J Immunol Methods, 139, 217 (1991). ); Nishinaka, S. et al. J Vet Med Sci, 58, 1053 (1996)). An example of the preparation method of monoclonal IgY is shown. First, the immune operation is performed in the same procedure as described above. Immunization is repeated as necessary, and when the antibody titer rises sufficiently, antibody-producing cells are removed from the immunized birds. Next, using the obtained antibody-producing cells, a hybridoma is obtained by a cell fusion method. Subsequently, after monoclonalizing this hybridoma, a clone that produces an antibody having high specificity for the antigen is selected. The antibody of interest is obtained by purifying the culture medium of the selected clone. On the other hand, the desired antibody can also be obtained by growing a desired number of hybridomas, transplanting them into the abdominal cavity of an animal (for example, a mouse), and growing them in ascites to purify the ascites. Affinity chromatography on which an antigen is immobilized is preferably used for purification of the culture solution or ascites. Affinity chromatography in which an antigen is immobilized can also be used. Furthermore, methods such as ion exchange chromatography, gel filtration chromatography, ammonium sulfate fractionation, and centrifugation can also be used. These methods are used alone or in any combination.
 本発明の標的特異的複合体による攻撃の対象(標的)は細菌、真菌・カビ、ウイルス、寄生生物、寄生虫及びリケッチアである。特に、ヒト又はヒト(人間)の管理下にある動物(愛玩動物/コンパニオンアニマル、家畜や家禽等の産業動物、実験動物、動物園や公園等で飼育・保管される展示動物等)に感染性を示し、有害な影響を及ぼすもの、即ち感染症の原因となり得る病原体(細菌、真菌・カビ、ウイルス、寄生生物、寄生虫、リケッチア)が典型的な標的である。本発明は、病原体が感染した細胞ではなく、病原体自体を標的とする。 The targets of attacks by the target-specific complex of the present invention are bacteria, fungi / molds, viruses, parasites, parasites and rickettsia. Infectious to humans or animals under human control (pet / companion animals, industrial animals such as livestock and poultry, laboratory animals, exhibited animals bred and stored in zoos and parks, etc.) Typical targets are those that show and have harmful effects, namely pathogens that can cause infectious diseases (bacteria, fungi / molds, viruses, parasites, parasites, liquettia). The present invention targets the pathogen itself, not the cells infected with the pathogen.
 比較的簡単に且つ大量に調製できるIgYを用いることにより、標的(細菌や真菌・カビ等)の数/量が多いことと、標的の増殖のスピードが速いことに対応できる。 By using IgY, which can be prepared in large quantities relatively easily, it is possible to cope with the large number / amount of targets (bacteria, fungi, molds, etc.) and the rapid growth speed of the targets.
 標的となる細菌は特に限定されず、グラム陰性桿菌、グラム陰性球菌、グラム陽性桿菌、グラム陽性球菌等、様々な細菌を標的にすることができる。標的になり得る細菌の具体例として大腸菌(Escherichia coli)、シゲラ属細菌(Shigella)(S. dysenteriae、S. frexneri、S. sonnei等)、サルモネラ属細菌(Salmonella)(S. typh、S. paratyphi-A、S. schottmuelleri、S. typhimurium、S. enteritidis等)、エンテロバクター(Enterobacter)属細菌(E. aerogenes、E. cloacae等)、クレブシエラ属細菌(Klebsiella)(K. pneumoniae、K. oxytoca等)、セラチア属細菌(Serratia)(S.mmarcescens)、モルガネラ属細菌(Morganella)(M.morganii等)、プロビデンシア属細菌(Providencia)(P.rettgeri,m P.alcalifaciens, P.stuartii等)、ハフニア属細菌(Hafnia)(H.alvei等)、プロテウス属細菌(Proteus)(P. mirabilis、P. vulgaris等)、エルシニア属細菌(Yersinia)(Y. pestis、Y. enterocolitica等)、ビブリオ属細菌(Vibrio)(V. cholerae、V. parahaemolyticus等)、ヘモフィルス属細菌(Haemophilus)(H. influenzae、H. parainfluenzae、H. ducreyi等)、シュードモナス属細菌(Pseudomonas)(P. aeruginosa、P. cepacia、P. putida等)、エロモナス属細菌(Aeromonas)(A.hydrophilia等)、アシネトバクター属(Acinetobacter)細菌(A. calcoaceticus、A. baumannii、A. lwoffii等)、レジオネラ属細菌(Legionella)(L. pneumophila等)、ボルデテラ属細菌(Bordetella)(B. pertussis、B. parapertussis、B. bronchiseptica等)、ブルセラ属細菌(Brucella)(B. melitensis、B. abortus、B. suis等)、野兎病菌(Francisella tularensis)、バクテロイデス属細菌(Bacteroides)(B. fragilis、B. melaninogenicus等)、シトロバクター属細菌(Citrobacter)(C.freundii等)、キサントモナス属細菌(Xanthomonas)(X.maltophilia)、フラボバクテリウム属細菌(Flavobacterium)(F.meningosepticum等)、ナイセリア属細菌(Neisseria)(N. gonorrhoeae、N. meningitidis等)、ブドウ球菌属細菌(Staphylococcus)(S. aureus、S. epidermidis、S. saprophyticus等)、レンサ球菌属細菌(Streptococcus)(S. pyogenes、S. agalactiae、S. viridans、S. pneumoniae、S. mutans、S. sobrinus等)、腸球菌属細菌(Enterococcus)(E. faecalis、E. faecium、E. avium等)、バシラス属細菌(Bacillus)(B. subtilis、B. anthracis、B. cereus等)、リステリア属細菌(Listeria)(L. monocytogenes等)、クロストリジウム属細菌(Clostridium)(C. difficile、C. botulinum、C. perfringens、C. tetani等)、コリネバクテリウム属細菌(Corynebacterium)(C. diphtheriae等)、ブランハメラ属細菌(Branhamella)(B. catarrhalis等)、マイコバクテリウム属細菌(Mycobacterium)(M. tuberculosis、M. bovis、M. leprae、M. avium、M. intracellulare、M. kansasii、M. ulcerans等)、ペプトコッカス属細菌(Peptcoccus)(P. anaerobius等)、ペプトストレプトコッカス属細菌(Peptostreptococcus)(P. anaerobius等)、ユーバクテリウム属細菌(Eubacterium)(E. lentum等)、プロピオニバクテリウム属細菌(Propionibacterium)(P .acnes)、乳酸桿菌属細菌(Lactobacillus)(L.plantarum等)、バクテロイデス属細菌(Bacteroides)(B. fragilis, B. melaninogenicus等)、フソバクテリウム属細菌(Fusobacterium)(F. gonidiaformans, F. necrophorum, F. nucleatum等)、マイコプラズマ(Mycoplasma等)、ボレリア属細菌(Borrelia)(B. recurrentis、B. burgdoferi等)、梅毒トレポネーマ(Treponema palidum)、カンピロバクター属細菌(Campylobacter)(C. coli、C. jejuni、C. fetus等)、ヘリコバクター属細菌(Helicobacter)(H. pylori、H. heilmannii等)、リケッチア属細菌(Rickettsia)(R. prowazekil、R. mooseri、R. tsutsugamushi等)、クラミジア属細菌(Chlamydia)(C. trachomatis、C. psittaci等)、ポルフィロモナス属細菌(Porphyromonas)(P. gingivalis等)、プレボテラ属細菌(Prevotella)(Prevotella intermedia等)、アグリゲイティバクター属細菌(Aggregatibacter)(A. actinomycetemcomitans等)、トレポネーマ・デンティコーラ属細菌(Treponema)(T. denticola等)を挙げることができる。 The target bacteria are not particularly limited, and various bacteria such as gram-negative bacilli, gram-negative cocci, gram-positive cocci, and gram-positive cocci can be targeted. Specific examples of potential target bacteria include Escherichia coli, Shigella (S. dysenteriae, S. frexneri, S. sunnei, etc.), Salmonella (S. typh, S. paratyphi). -A, S. schottmuelleri, S. typhimurium, S. enteritidis, etc.), Enterobacter bacteria (E. aerogenes, E. cloacae, etc.), Klebsiella (K. pneumoniae, K. oxytoca, etc.) ), Serratia (S.mmarcescens), Morganella (M.morganii, etc.), Providencia (P.rettgeri, mP.alcalifaciens, P.stuartii, etc.), Hafnia Bacteria of the genus Hafnia (H.alvei, etc.), Bacteria of the genus Proteus (P. mirabilis, P. vulgaris, etc.), Bacteria of the genus Yersinia (Y. pestis, Y. Vibrio) (V. cholerae, V. parahaemolyticus, etc.), Hemophilus (Haemophilus) (H. influenzae, H. parainfluenzae, H. ducreyi, etc.), Pseudomonas (P. aeruginosa, P. cepacia, P. .Putida, etc.), Aeromonas (A.hydrophilia, etc.), Acinetobacter (A.calcoaceticus, A.baumannii, A.lwoffii, etc.), Legionella (L.pneumophila, etc.) ), Bordetella (B. pertussis, B. parapertussis, B. bronchiseptica, etc.), Brucella (B. melitensis, B. abortus, B. suis, etc.), Rabbit fungus (Franc) isella tularensis), Bacteroides (B. fragilis, B. melaninogenicus, etc.), Citrobacter (C. freundii, etc.), Xanthomonas (X. maltophilia), flavobacterium Flavobacterium (F.meningosepticum, etc.), Neisseria (N.gonorrhoeae, N.meningitidis, etc.), Staphylococcus (S.aureus, S.epidermidis, S.saprophyticus, etc.) , Streptococcus (S. pyogenes, S. agalactiae, S. viridans, S. pneumoniae, S. mutans, S. sobrinus, etc.), Enterococcus (E. faecalis, E. faecium) , E. avium, etc.), Bacillus (B. subtilis, B. anthracis, B. cereus, etc.), Listeria (L. monocytogenes, etc.), Clostridium (C. difficile, C. botulinum, C. perfringens, C. tetani, etc.), Corynebacterium (C. diphtheriae, etc.), Branhamella (B. catarrhalis, etc.), Mycobacteria (B. catarrhalis, etc.) Mycobacterium) (M. tuberculosis, M. bovis, M. leprae, M. avium, M. intracellulare, M. kansasii, M. ulcerans, etc.), Peptcoccus (P. anaerovius, etc.), Peptostreptococcus Bacteria (Peptostreptococcus) (P. anaerobius, etc.), Eubacterium (E. lentum, etc.), Propionibacterium (Propi, etc.) onibacterium (P.acnes), Lactobacillus (L.plantarum, etc.), Bacteroides (B.fragilis, B.melaninogenicus, etc.), Fusobacterium (F.gonidiaformans, etc.) F. necrophorum, F. nucleatum, etc.), Mycoplasma (Mycoplasma, etc.), Borrelia (B. recurrentis, B. burgdoferi, etc.), Treponema pyridum, Campylobacter (C. coli , C. jejuni, C. fetus, etc.), Helicobacter (H. pylori, H. heilmannii, etc.), Rickettsia (R. prowazekil, R. mooseri, R. tsutsugamushi, etc.), Chlamydia Bacteria of the genus (Chlamydia) (C. trachomatis, C. psittaci, etc.), Bacteria of the genus Porphyromonas (P. gingivalis, etc.), Bacteria of the genus Prevotella (Prevotella, intermediate, etc.) Aggregatibacter) (A. actinomycetemcomitans, etc.), Treponema genus Bacteria (Treponema, T. denticola, etc.) can be mentioned.
 同様に、標的になり得る真菌・カビの例としてカンジダ属真菌(Candida)(C. albicans, C. tropicalis, C. parapsilosis, C. glabrata, C. krusei等)、アスペルギルス属真菌(Aspergillus)(A. fumigatus, A. flavus, A. niger等)、クリプトコッカス属真菌(Cryptococcus)(C. neoformans等)、ムコール属真菌(Mucor)(M. circinelloides等)、リゾパス属真菌(Rhizopus)(R. oryzae, R. microsporus等)、クニンガメラ属真菌(Cunninghamella)(C. bertholletiae等)、アポフィソマイセス属真菌(Apophysomyces)(A. elegans)、サクスネア属真菌(Sakseneae)(S. vasiformis)、コクシジオイデス属真菌(Coccidioides)(C. immitis等)、ヒストプラズマ属真菌(Histoplasma)(H. capsulatum等)、パラコクシジオイデス属真菌(Paracoccidioides)(P. brasiliensis)、ペニシリウム属真菌(Penicilium)(P. marneffei)、ブラストミセス属真菌(Blastomyces)(B. dermatitidis)、スポロトリックス属真菌(Sporothix)(S. schenckii等)、クロモミコーシス属真菌(Fonsceaea)(F. pedrosoi等)、フィアロフォラ属真菌(Phialophora)(P. verrucosa等)、クラドフィアロフォラ属真菌(Cladophialophora)(C. carrinoii等)、マラセチア属真菌(Malassezia)(M. furfur, M. globasa等)、ニューモシスチス属真菌(Pneumocystis)(P. jirovecii等)を挙げることができる。 Similarly, examples of fungi and fungi that can be targeted are Candida (C. albicans, C. tropicalis, C. parapsilosis, C. glabrata, C. krusei, etc.), Aspergillus (A). Fumigatus, A. flavus, A. niger, etc.), Cryptococcus (C. neoformans, etc.), Mucor (M. circinelloides, etc.), Rhizopus (R. oryzae, etc.) R. microsporus, etc.), Cunninghamella (C. bertholletiae, etc.), Apophysomyces (A. elegans), Sakseneae (S. vasiformis), Coccidioides fungi (Coccidioides) (C. immitis, etc.), Histoplasma (H. capsuleum, etc.), Paracoccidioides (P. brasiliensis), Penicilium (P. marneffei), Blast Mrs. Blastomyces (B. dermatitidis), Sporothix (S. schenckii, etc.), Chromomycosis fungi (Fonsceaea) (F. pedrosoi, etc.), Phialophora (P. verrucosa, etc.) Etc.), Cladophialophora (C. carrinoii, etc.), Malassezia (M. furfur, M. globasa, etc.), Pneumocystis (P. jirovecii, etc.) Can be done.
 また、標的となり得るウイルスの例として天然痘ウイルス、ワクチニアウイルス、伝染性いぼウイルス、単純ヘルペスウイルス1型(HSV-1)、単純ヘルペスウイルス2型(HSV-2)、水痘・帯状疱疹ウイルス(HHV-3)、サイトメガロウイルス(HHV-5)、ヒトヘルペスウイルス6(HHV-6)、ヒトヘルペスウイルス7(HHV-7)、エプスタイン・バール・ウイルス(HHV-4)、ヒトヘルペスウイルス8(HHV-8、別名:カポジ肉腫関連ヘルペスウイルス(KSHV))、アデノウイルス、ヒトパピローマウイルス、パルボウイルスB19、ジカウィルス、B型肝炎ウイルス、インフルエンザウイルス、麻疹ウイルス、ムンプスウイルス、RSウイルス、ヒト免疫不全ウイルス(HIV)、ヒトTリンパ好性ウイルス(HTLV-1)、コロナウイルス、ラッサウイルス、風疹ウイルス、日本脳炎ウイルス、黄熱ウイルス、デング熱ウイルス、C型肝炎ウイルス、ハンタウイルス、ポリオウイルス、コクサッキーウイルス、エコーウイルス、ライノウイルス、A型肝炎ウイルス、E型肝炎ウイルス、ノーウォークウイルス、ヒトアストロウイルス、狂犬病ウイルス、マールブルグウイルス、エボラウイルス、レオウイルス、ロタウイルスを挙げることができる。 In addition, examples of viruses that can be targeted include natural pox virus, vactinia virus, infectious irritation virus, herpesvirus 1 (HSV-1), herpesvirus 2 (HSV-2), and varicella / herpesvirus 6 (HSV-2). HHV-3), Cytomegalovirus (HHV-5), Human Herpesvirus 6 (HHV-6), Human Herpesvirus 7 (HHV-7), Epstein Bar Virus (HHV-4), Human Herpesvirus 8 (HHV-4) HHV-8, also known as Kaposi sarcoma-related herpesvirus (KSHV)), adenovirus, human papillomavirus, parvovirus B19, dicavirus, hepatitis B virus, influenza virus, measles virus, mumpsvirus, RS virus, human immunodeficiency virus (HIV), human T lymphophilic virus (HTLV-1), coronavirus, lassavirus, eczema virus, Japanese encephalitis virus, yellow fever virus, dengue fever virus, hepatitis C virus, huntervirus, poliovirus, coxsackie virus, echo Viruses, rhinoviruses, hepatitis A virus, hepatitis E virus, nowalk virus, human astrovirus, mad dog disease virus, Marburg virus, ebora virus, leovirus, rotavirus can be mentioned.
 一方、標的になり得る寄生生物の例としてマラリア(Plasmodium)(P. falciparum, P. vivax, P. malariae等)、リーシュマニア(Leishimania)(L. donovani, L braziliensis等)、クリプトスポリジウム(Cryptosporidium)(C.parvum等)、トリパノソーマ(Trypanosoma)(T. brucei, T, cruzi等)、トリコモナス(Trichomonas)(T. vaginalis等)、トキソプラズマ(Toxoplasma)(T. gondii等)、バベシア(Babesia)(B. microti等)、赤痢アメーバ(Entamoeba)(E.hitsolytica等)、腸ジカルジア(Gicardia)(G. intestinalis, G.muris等)、クリプトスポリジウム(Cryptosporidium)(C. parvum等)を挙げることができる。 On the other hand, examples of parasites that can be targeted include malaria (P. falciparum, P. vivox, P. malariae, etc.), Leishimania (L. donovani, L braziliensis, etc.), and Cryptosporidium. (C.parvum, etc.), Trypanosoma (T.brucei, T, cruzi, etc.), Trichomonas (T.vaginalis, etc.), Toxoplasma (T.gondii, etc.), Babesia (B) Microti, etc.), Entamoeba (E.hitsolytica, etc.), Gicardia (G. intestinalis, G.muris, etc.), Cryptosporidium (C.parvum, etc.).
 一方、感染症の原因となりうる寄生虫の例として回虫(Ascaris)(Ascaris lumbricoides等)、ズビニ鉤虫(Ancylostomoa duodenale)、アメリカ鉤虫(Necator americanus)、蟯虫(Enterobius vermicularis)、糞線虫(Strongyloides stercoralis)、アニサキス(Anisakis)(A. simplex, A. physeteris等)、シュードテラノバ属(Pseudoterranova)(P. decipiens)、バンクロフト糸状虫(Wunchereri bancroft)、マレー糸状虫(Brugia malayi)、顎口虫(Gnathostoma)(G. nipponicum, G. spinigerum等)、旋毛虫(Trichinella)(T. spiralis, T. pseudospiralis等)、住血線虫(Angiostrongylus)(A. cantonesis. A. constaricensis)、肝吸虫(Clonorchis sinensis)、横川吸虫(Metagonimus yokokawai)、肺吸虫(Paragonimus)(P. westermani等)、裂頭条虫(Diphyllobothrium latum)、エキノコックス(Echinococcus)(E. granulosus, E. multilocularis)、縮小条虫(Hymenolepis diminuta)、小形条虫(Hymenolepis nana)、多頭条虫(Taniea multiceps)、アジア条虫(Taenia asiatica)、無鉤条虫(Taniea saginata)、有鈎条虫(Taenia solium)を挙げることができる。 On the other hand, examples of parasites that can cause infectious diseases are roundworms (Ascaris) (Ascaris lumbricoides, etc.), Zubini worms (Ancylostomoa duodenale), Necator americanus, worms (Enterobius vermicularis), and threadworms (Strongyloides stercoralis). , Anisakis (A. simplex, A. physeteris, etc.), Pseudoterranova (P. decipiens), Wunchereri bancroft, Brugia malayi, Gnathostoma ) (G. nipponicum, G. spinigerum, etc.), Trichinella (T. spiralis, T. pseudospiralis, etc.), Angiostrongylus (A. cantonesis. A. constaricensis), liver sucking insect (Clonorchis sinensis) ), Yokokawa worm (Metagonimus yokokawai), lung worm (Paragonimus) (P. westernmani, etc.), brugia malayi (Diphyllobothrium latum), Echinococcus (E. granulosus, E. multilocularis), reduced worm (Hymenolepis) ), Small worms (Hymenolepis nana), multi-headed worms (Taniea multiceps), Asian worms (Taenia asiatica), worms (Taniea saginata), and brugia malayi (Taenia solium).
 一方、感染症の原因となりうるリケッチアの例としてリケッチア属(Rickettsia)(R. rickettsia, R. prowazekii, R. typhi等)、オリエンティア属(Orientia)(O. tsutsugamushi等)、エーリキア属(Ehrlichia)(E. chaffeensis等)、アナプラズマ属(Anaplasma)(A. phafocytophilum等)、コクシエラ属(Coxiella)(C. burnetii等)を挙げることができる。 On the other hand, examples of rickettsia that can cause infectious diseases include rickettsia (R. rickettsia, R. prowazekii, R. typhi, etc.), Orientia (O. tsutsugamushi, etc.), and Ehrlichia. (E. chaffeensis, etc.), Anaplasma (A. phafocytophilum, etc.), Coxiella (C. burnetii, etc.) can be mentioned.
 抗原性が近い複数の病原体(例えば複数の近縁種)をまとめて標的にすることもできる。このように比較的広範囲の病原体を標的とする場合にはポリクローナルIgYを採用するとよい。ポリクローナルIgYを用いることにより、人体には結合せず、病原体選択的でありながらも比較的広範囲の標的に対して障害活性を示すことができる。他方、モノクローナルIgYは、特定の病原体(例えば特定の菌種又は菌株)に的を絞った標的特異的構造体を構築する場合、言い換えれば、選択性ないし特異性を高める必要がある場合に適する(但し、この場合においてもポリクローナルIgYを使用してもよい)。 It is also possible to collectively target multiple pathogens with similar antigenicity (for example, multiple closely related species). When targeting a relatively wide range of pathogens in this way, polyclonal IgY may be adopted. By using polyclonal IgY, it does not bind to the human body and can exhibit pathogen-selective yet damaging activity against a relatively wide range of targets. On the other hand, monoclonal IgY is suitable when constructing a target-specific structure targeted to a specific pathogen (for example, a specific strain or strain), in other words, when it is necessary to enhance selectivity or specificity ( However, even in this case, polyclonal IgY may be used).
 本発明は光免疫療法(PIT)の原理を利用する。そのため、標的特異的IgYには近赤外光感受物質が連結される。典型的には、近赤外光感受物質としてフタロシアニン色素が用いられる。フタロシアニン色素は、フタロシアニン環系を有する光増感剤化合物の一群である。各種フタロシアニン色素の合成方法や使用方法(用途)等について例えばWO 2005/099689号及び米国特許第7,005,518号が参考になる。 The present invention utilizes the principle of photoimmunotherapy (PIT). Therefore, a near-infrared light-sensitive substance is linked to the target-specific IgY. Typically, a phthalocyanine dye is used as a near-infrared light sensitive substance. Phthalocyanine pigments are a group of photosensitizer compounds having a phthalocyanine ring system. For example, WO 2005/099689 and US Pat. No. 7,005,518 can be referred to for the synthesis method and usage (use) of various phthalocyanine pigments.
 好ましくは、近赤外(NIR)領域に吸収ピークがあり、近赤外線を強く吸収して蛍光を発するフタロシアニン色素を用いる。より具体的には、好ましくは600nm~950nm、更に好ましくは、660nm~740nm、更に更に好ましくは680nm~720nmに吸収ピークがあるフタロシアニン色素を用いる。 Preferably, a phthalocyanine pigment having an absorption peak in the near infrared (NIR) region and strongly absorbing near infrared rays to emit fluorescence is used. More specifically, a phthalocyanine dye having an absorption peak at 600 nm to 950 nm, more preferably 660 nm to 740 nm, and even more preferably 680 nm to 720 nm is used.
 特に好ましいフタロシアニン色素としてIR700(IRDye(登録商標)700DX)を挙げることができる。IR700はLI-COR社(LI-COR Biosciences)から市販されている。アミノ反応性IR700は比較的親水性の色素であり、例えば、IR700のNHSエステルを用い、共有結合によってIgYに結合(コンジュゲート)させることができる。 IR700 (IRDye® 700DX) can be mentioned as a particularly preferable phthalocyanine pigment. IR700 is commercially available from LI-COR (LI-COR Biosciences). Amino-reactive IR700 is a relatively hydrophilic dye that can be covalently bound to IgY using, for example, the NHS ester of IR700.
 近赤外光感受物質は標的特異的IgYに共有結合又は非共有結合を介して直接的又は間接的に連結される。非共有結合は、例えば静電相互作用、ファンデルワールス力、疎水的相互作用、π効果、イオン性相互作用、水素結合又はハロゲン結合によって達成される。間接的な連結の場合、通常、リンカーが利用される。 The near-infrared light-sensitive substance is directly or indirectly linked to the target-specific IgY via a covalent bond or a non-covalent bond. Non-covalent bonds are achieved, for example, by electrostatic interactions, van der Waals forces, hydrophobic interactions, π effects, ionic interactions, hydrogen bonds or halogen bonds. For indirect concatenation, a linker is usually used.
2.医薬組成物及びその用途
 本発明の標的特異的複合体を製剤化し、医薬組成物を調製することができる。一般に、製剤化には薬学的に許容されるキャリア(担体、ビヒクル)が用いられる。キャリアの例として水、生理食塩水、平衡塩溶液、水性デキストロース、グリセロール、マンニトール、ラクトース、デンプン及びステアリン酸マグネシウムを挙げることができる。薬学的に許容されるキャリア及びその使用方法等については、例えばRemington's Pharmaceutical Sciences, by E. W. Martin, Mack Publishing Co., Easton, Pa., 19th Edition (1995)を参照することができる。
2. Pharmaceutical composition and its use The target-specific complex of the present invention can be formulated to prepare a pharmaceutical composition. Generally, a pharmaceutically acceptable carrier (carrier, vehicle) is used for formulation. Examples of carriers include water, saline, balanced salt solution, aqueous dextrose, glycerol, mannitol, lactose, starch and magnesium stearate. For pharmaceutically acceptable carriers and their usage, for example, Remington's Pharmaceutical Sciences, by E.W. Martin, Mack Publishing Co., Easton, Pa., 19th Edition (1995) can be referred to.
 キャリアの他、医薬組成物に希釈剤(ラクトース、スクロース、リン酸二カルシウム、又はカルボキシメチルセルロース等)、賦形剤(デンプン、グルコース、ラクトース、スクロース、ゼラチン、麦芽、コメ、小麦粉、チョーク、シリカゲル、ステアリン酸ナトリウム、モノステアリン酸グリセロール、タルク、塩化ナトリウム、乾燥スキムミルク、グリセロール、プロピレングリコール、水、エタノール等)、潤滑剤(ステアリン酸マグネシウム、ステアリン酸カルシウム、タルク等)、pH調整剤(酢酸塩、クエン酸ナトリウム、シクロデキストリン誘導体、ソルビタンモノラウレート、トリエタノールアミン酢酸ナトリウム、オレイン酸トリエタノールアミン等)、乳化剤、可溶化剤、等張剤、防腐剤、保存剤等を含有させてもよい。 In addition to carriers, pharmaceutical compositions include diluents (lactorose, sucrose, dicalcium phosphate, or carboxymethyl cellulose, etc.), excipients (starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, etc.) Sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene glycol, water, ethanol, etc.), lubricants (magnesium stearate, calcium stearate, talc, etc.), pH regulators (acetate, citrate, etc.) Sodium acid, cyclodextrin derivative, sorbitan monolaurate, triethanolamine sodium acetate, triethanolamine oleate, etc.), emulsifier, solubilizer, isotonic agent, preservative, preservative, etc. may be contained.
 製剤化する場合の剤形/形状も特に限定されない。剤形の例はエアゾール剤、液剤、懸濁剤、注射剤、シロップ剤、乳剤、ゼリー剤、錠剤、丸剤、散剤、細粒剤、顆粒剤、カプセル剤、外用剤(軟膏剤、貼付剤、パップ剤、ローション剤、リニメント剤、座剤)、吸入剤、点鼻剤及び点眼剤である。 The dosage form / shape when formulating is not particularly limited. Examples of dosage forms are aerosols, liquids, suspensions, injections, syrups, emulsions, jellies, tablets, pills, powders, fine granules, granules, capsules, external preparations (ointments, patches). , Paps, lotions, pills, suppositories), inhalants, nasal drops and eye drops.
 本発明の医薬組成物には、期待される治療効果(又は予防効果)を得るために必要な量(即ち治療上有効量)の有効成分が含有される。本発明の医薬組成物中の有効成分量は一般に剤形によって異なるが、所望の投与量を達成できるように有効成分量を例えば約0.001重量%~約99重量%の範囲内で設定する。 The pharmaceutical composition of the present invention contains an amount (that is, a therapeutically effective amount) of the active ingredient necessary for obtaining the expected therapeutic effect (or preventive effect). The amount of the active ingredient in the pharmaceutical composition of the present invention generally varies depending on the dosage form, but the amount of the active ingredient is set in the range of, for example, about 0.001% by weight to about 99% by weight so that a desired dose can be achieved.
 本発明の更なる局面は医薬組成物の用途に関する。典型的には疾患や病態の治療、予防又は改善に本発明の医薬組成物が用いられる。「治療」とは、標的疾患に特徴的な症状又は随伴症状を緩和すること(軽症化)、症状の悪化を阻止ないし遅延すること等が含まれる。「予防」とは、疾病(障害)又はその症状の発症/発現を防止又は遅延すること、或いは発症/発現の危険性を低下させることをいう。一方、「改善」とは、疾病(障害)又はその症状が緩和(軽症化)、好転、寛解、又は治癒(部分的な治癒を含む)することをいう。このように、治療、予防、改善は、一部において重複する概念であり、明確に区別して捉えることは困難であり、またそうすることの実益は少ない。本明細書では、予防又は改善の目的での処置も、用語「治療方法」の概念に含まれるものとする。 A further aspect of the present invention relates to the use of the pharmaceutical composition. Typically, the pharmaceutical compositions of the present invention are used for the treatment, prevention or amelioration of diseases and conditions. "Treatment" includes alleviating (mitigating) the symptomatology or concomitant symptom characteristic of the target disease, preventing or delaying the worsening of the symptomatology, and the like. "Prevention" means preventing or delaying the onset / delay of a disease (disorder) or its symptoms, or reducing the risk of onset / onset. On the other hand, "improvement" means that the disease (disorder) or its symptoms are alleviated (mild), improved, ameliorated, or cured (including partial cure). Thus, treatment, prevention, and improvement are some overlapping concepts, which are difficult to distinguish and capture, and the benefits of doing so are small. As used herein, treatment for the purpose of prevention or improvement is also included in the concept of the term "therapeutic method".
 本発明の医薬組成物は、典型的には、標的(細菌、真菌・カビ、ウイルス、寄生生物、寄生虫、リケッチア)による感染症の治療、予防又は改善に適用される。換言すれば、本発明の医薬組成物はIgY-PAT療法に利用される。治療等の対象になり得る感染症を例示すると、伝染性膿痂疹(水疱性膿痂疹、痂皮性膿痂疹)、丹毒、蜂窩織炎、毛包炎、せつ(furuncle)・よう(carbuncle)、可能性汗腺炎、ケロイド性毛包炎、殿部慢性膿皮症、細菌性爪囲炎、乳児多発性汗腺膿瘍、ブドウ球菌性熱傷様皮膚症候群、トキシックショック症候群、猩紅熱、壊死性筋膜炎、ガス壊疽、敗血症、Osler結節、黄菌毛、紅色陰癬(エリトラスマ)、猫ひっかき病、放線菌症、外歯瘻、ノカルジア症、MRSA感染症、緑膿菌感染症、セラチア感染症、腸管出血性大腸菌感染症、細菌性髄膜炎、結核、非結核性抗酸菌症、コレラ、ペスト、ジフテリア感染症、細菌性赤痢、猩紅熱、炭疽、梅毒、破傷風、ハンセン病、レジオネラ肺炎、レプトスピラ症、ライム病、野兎病、淋菌感染症、クラミジア感染症(クラミジア肺炎、トラコーマ、性器クラミジア感染症、オウム病等)、カルバペネム耐性腸内細菌科細菌感染症、齲歯、歯周病、眼内炎、カンジダ症、アスペルギルス症、ブラストミセス症、クリプトコッカス症、ムコール症、コクシジオイデス症、ヒストプラズマ症、パラコクシジオイデス症、スポロトリクム症、白癬、天然痘、ウイルス性いぼ、口唇ヘルペス、ヘルペス口内炎、角膜ヘルペス、陰部(性器)ヘルペス、帯状疱疹、カポジ肉腫、肝炎(A型、B型、C型、E型)、HIV、インフルエンザ、感冒、ノロウイルス感染症、ロタウイルス感染症、RSウイルス感染症、風疹、麻疹、流行性耳下腺炎(おたふくかぜ)、日本脳炎、黄熱、デング熱、エボラ出血熱、尖圭コンジローマ、咽頭乳頭腫、ポリオ、狂犬病、マラリア、リーシュマニア症、クリプトスポリジウム症、トリパノソーマ症、トリコモナス症、トキソプラズマ症、バベシア症、赤痢アメーバ症、腸ジカルジア症、クリプトスポリジウム症、回虫症、鉤虫症、蟯虫症、糞線虫症、アニサキス症、シュードテラノバ症、糸状虫症、顎口虫症、旋毛虫症、住血線虫症、肝吸虫症、横川吸虫症、肺吸虫症、裂頭条虫症、エキノコックス症、条虫症、リケッチア感染症、ツツガムシ病、日本紅斑熱、発疹チフス、エーリキア症、アナプラズマ症、Q熱である。本発明の医薬組成物は皮膚や粘膜等の局所の感染に特に有用である。また、本発明の医薬組成物は、細菌感染等によって引き起こされる膿瘍の治療等へも適用され得る。 The pharmaceutical composition of the present invention is typically applied to the treatment, prevention or amelioration of infectious diseases caused by targets (bacteria, fungi / molds, viruses, parasites, parasites, rickettsia). In other words, the pharmaceutical composition of the present invention is utilized for IgY-PAT therapy. Examples of infectious diseases that can be treated include infectious pyoderma (impetigo vesicular, impetigo crust), tan poison, bee folliculitis, folliculitis, furuncle, yo (furuncle). carbuncle), possible sweat adenitis, keroid impetigo, gluteal chronic pyoderma, bacterial impetigo, infant multiple sweat gland abscess, staphylococcal burn-like skin syndrome, toxic shock syndrome, red fever, necrotizing muscle Membranitis, gas necrosis, sepsis, Osler nodule, yellow fungus hair, erythroma, cat scratch disease, actinomycosis, external fistula, nocardiosis, MRSA infection, impetigo infection, seratia infection , Intestinal hemorrhagic Escherichia coli infection, bacterial meningitis, tuberculosis, non-tuberculous mycobacteriosis, cholera, pesto, diphtheria infection, bacterial erythema, erythema, charcoal, syphilis, tetanus, Hansen's disease, regionera pneumonia, leptspira Diseases, Lime's disease, rabbit disease, gonococcal infection, chlamydia infection (chlamydia pneumonia, tracoma, genital chlamydia infection, parrot disease, etc.), carbapenem-resistant enterobacteriaceae bacterial infection, rodent, periodontal disease, endophthalmitis , Candida disease, Aspergillosis, Blast Mres disease, Cryptococcus disease, Mucor disease, Coccidioides disease, Histoplasmosis, Paracoccidioides disease, Sporotricum disease, Scalyx, Natural pox, Viral irritation, Lip herpes, Herpes stomatitis, Corneal herpes (Genital) Herpes, herpes zoster, impetigo sarcoma, hepatitis (types A, B, C, E), HIV, influenza, sickness, norovirus infection, rotavirus infection, RS virus infection, wind rash, measles, Epidemic parotid adenitis (Otafukukaze), Japanese encephalitis, yellow fever, dengue fever, Ebola hemorrhagic fever, apex condyloma, pharyngeal papilloma, polio, mad dog disease, malaria, leash mania, cryptospolidium disease, tripanosomosis, trichomonas disease, toxoplasmosis , Babesia disease, erythema amoeba disease, intestinal dicardiosis, cryptospolidium disease, roundworm disease, worm disease, worm disease, fecal nematode disease, anisakis disease, pseudoteranova disease, filamentous worm disease, jaw worm disease, curly worm disease, Impetigo, hepatic impetigo, Yokokawa impetigo, pulmonary impetigo, fissure impetigo, echinocox disease, impetigo, liquettia infection, tsutsugamushi disease, Japanese erythema fever, rash typhoid, erikiosis, anaplasmosis , Q fever. The pharmaceutical composition of the present invention is particularly useful for local infections such as skin and mucous membranes. The pharmaceutical composition of the present invention can also be applied to the treatment of abscesses caused by bacterial infections and the like.
 本発明の医薬組成物を用いた治療方法では、以下のステップ(1)及び(2)が行われる。
 (1)本発明の医薬組成物を治療対象に投与し、本発明の標的特異的複合体を標的に結合させるステップ
 (2)前記標的に近赤外光を照射するステップ。
In the therapeutic method using the pharmaceutical composition of the present invention, the following steps (1) and (2) are performed.
(1) A step of administering the pharmaceutical composition of the present invention to a therapeutic subject and binding the target-specific complex of the present invention to the target (2) A step of irradiating the target with near-infrared light.
 ステップ(1)では本発明の医薬組成物を治療対象に投与する。投与経路は医薬組成物の剤形、治療方針等に応じて選択すればよい。経口投与と非経口投与(静脈内、動脈内、皮下、皮内、筋肉内、又は腹腔内注射、経皮、経鼻、経粘膜、患部への塗布、貼付、スプレー等)のいずれも採用可能である。また、これらの投与経路は互いに排他的なものではなく、任意に選択される二つ以上を併用することもできる(例えば、経口投与と同時に又は所定時間経過後に静脈注射等を行う等)。全身投与と局所投与(例えば感染部位他はその周囲への塗布、貼付、スプレー等)のいずれも採用可能である。ヒトに限らず、ヒト(人)の管理下にある動物(愛玩動物/コンパニオンアニマル、家畜や家禽等の産業動物、実験動物、動物園や公園等で飼育・保管される展示動物等。具体例は各種サル、チンパンジー、ゴリラ、オラウータン、ウシ、ブタ、ヤギ、ヒツジ、ウマ、ロバ、ラクダ、ダチョウ、ニワトリ、ウズラ、アヒル、イヌ、ネコ、マウス、ラット、モルモット、ハムスター、ウサギ、ゾウ、キリン、クマ、シマウマ、カバ、サイ、ペンギンである)も治療対象になり得る。 In step (1), the pharmaceutical composition of the present invention is administered to the therapeutic subject. The route of administration may be selected according to the dosage form of the pharmaceutical composition, the treatment policy, and the like. Both oral and parenteral administration (intravenous, intraarterial, subcutaneous, intradermal, intramuscular, or intraperitoneal injection, transdermal, nasal, transmucosal, application to affected areas, application, spray, etc.) can be adopted. Is. In addition, these administration routes are not mutually exclusive, and two or more arbitrarily selected administration routes can be used in combination (for example, intravenous injection or the like is performed at the same time as oral administration or after a lapse of a predetermined time). Both systemic administration and topical administration (for example, application, application, spray, etc. to the infected area and the like) can be adopted. Not limited to humans, animals under the control of humans (pets / companion animals, industrial animals such as livestock and poultry, experimental animals, exhibited animals bred and stored in zoos and parks, etc. Specific examples are Various monkeys, chimpanzees, gorillas, orautans, cows, pigs, goats, sheep, horses, donkeys, camels, ostriches, chickens, quail, ducks, dogs, cats, mice, rats, guinea pigs, hamsters, rabbits, elephants, giraffes, bears. , Shimauma, hippo, rhinoceros, and penguins) can also be treated.
 医薬組成物の投与量は、期待される治療効果が得られるように設定される。治療上有効な投与量の設定においては一般に症状、患者の年齢、性別、及び体重などが考慮される。当業者であればこれらの事項を考慮して適当な投与量を設定することが可能である。投与量(有効成分、即ち、標的特異的複合体の量として)の例を挙げると、全身投与の場合には、体重60kg当たり例えば0.1~1000 mg、0.2~500 mg、0.5~100 mg又は1~20 mgであり、局所投与の場合には、適用部位1cm2当たり例えば0.01~50mg、0.03~30mg又は0.05~10mgである。また、投与スケジュールの作成においては、患者の病状や有効成分の効果持続時間などを考慮することができる。 The dose of the pharmaceutical composition is set so as to obtain the expected therapeutic effect. Symptoms, patient age, gender, weight, etc. are generally considered in the setting of therapeutically effective doses. Those skilled in the art can set an appropriate dose in consideration of these matters. For example, in the case of systemic administration, for example, 0.1 to 1000 mg, 0.2 to 500 mg, 0.5 to 100 mg or 1 per 60 kg of body weight. In the case of topical administration, it is, for example, 0.01 to 50 mg, 0.03 to 30 mg, or 0.05 to 10 mg per 1 cm 2 of the application site. In addition, in creating the administration schedule, the medical condition of the patient and the duration of effect of the active ingredient can be taken into consideration.
 医薬組成物の投与によって、その有効成分である標的特異的複合体を標的に結合させた後、標的に対して近赤外光を照射する(ステップ(2))。理論に拘泥する訳ではないが、近赤外光の照射によって、標的の表面構造(例えば、細菌であれば細胞壁)を障害し、その効果(標的の死滅や増殖の抑制等)が発揮される。この作用機序は、光線力学療法(Photodynamic Therapy: PDT)の作用機序(ミトコンドリア内に酸化ストレスを生じさせることによって効果を発揮する)と相違し、速やかな効果をもたらす。 By administration of the pharmaceutical composition, the target-specific complex, which is the active ingredient thereof, is bound to the target, and then the target is irradiated with near-infrared light (step (2)). Although not bound by theory, irradiation with near-infrared light damages the surface structure of the target (for example, the cell wall in the case of bacteria), and exerts its effects (such as killing the target and suppressing its growth). .. This mechanism of action is different from the mechanism of action of photodynamic therapy (PDT) (which exerts its effect by causing oxidative stress in mitochondria), and brings about a rapid effect.
 近赤外光の照射には例えばLED、LEDレーザー、フィルターを通した光線等を利用すればよい。直接照射する以外にも、これらに限定するものではないが、デバイスとして導光カテーテル、内視鏡導光ファイバー、穿刺照射ファイバー、血管導光カテーテル、ドレーン留置型導光デバイス、体内埋め込み型、貼付型、ブレスレット型デバイス等が考えられる。また、近赤外光の照射条件は、NIR-PITの原理による障害活性が得られる限り特に限定されないが、使用する近赤外光の波長は、例えば650~740nm、好ましくは670~720nm、更に好ましくは680~710nmである。また、照射線量は例えば、少なくとも1J cm-2、少なくとも2 J cm-2、少なくとも5 J cm-2、少なくとも10J cm-2、少なくとも20J cm-2、少なくとも30J cm-2、少なくとも40J cm-2、少なくとも50J cm-2、少なくとも60J cm-2、少なくとも70J cm-2、少なくとも80J cm-2、少なくとも90J cm-2又は少なくとも100J cm-2である。より具体的には、例えば1~1000J cm-2、2~500J cm-2、5~300J cm-2又は10~100J cm-2の照射線量とする。照射時間は例えば、5秒~1時間、5秒~30分又は5秒~15分である。好ましくは照射時間を10秒以上、更に好ましくは1分以上、更に更に好ましくは3分以上とする。また、この例に限定されるわけではないが、医薬組成物を静脈注射等により全身投与する場合には、医薬組成物の投与後、例えば5分~48時間の間、好ましくは10分~24時間の間、更に好ましくは15分~12時間の間に近赤外光の照射が行われる。局所投与の場合には、全身投与の場合よりも、医薬組成物の投与と近赤外光の照射の間隔を短く設定することが好ましい(例えば、医薬組成物の投与後、1分~12時間の間に近赤外光を照射する)。 For irradiation of near-infrared light, for example, an LED, an LED laser, a light beam through a filter, or the like may be used. Other than direct irradiation, the devices include, but are not limited to, a light guide catheter, an endoscopic light guide fiber, a puncture irradiation fiber, a blood vessel light guide catheter, a drain indwelling light guide device, an implantable type, and a sticking type. , A bracelet type device, etc. can be considered. The irradiation conditions of near-infrared light are not particularly limited as long as the damaging activity based on the principle of NIR-PIT can be obtained, but the wavelength of near-infrared light used is, for example, 650 to 740 nm, preferably 670 to 720 nm, and further. It is preferably 680 to 710 nm. Also, the irradiation doses are, for example, at least 1 J cm -2 , at least 2 J cm -2 , at least 5 J cm -2 , at least 10 J cm -2 , at least 20 J cm -2 , at least 30 J cm -2 , at least 40 J cm -2. , at least 50 J cm -2, at least 60 J cm -2, at least 70 J cm -2, at least 80 J cm -2, at least 90 J cm -2, or at least 100 J cm -2. More specifically, for example, 1 ~ 1000J cm -2, 2 ~ 500J cm -2, the irradiation dose of 5 ~ 300 J cm -2 or 10 ~ 100J cm -2. The irradiation time is, for example, 5 seconds to 1 hour, 5 seconds to 30 minutes, or 5 seconds to 15 minutes. The irradiation time is preferably 10 seconds or longer, more preferably 1 minute or longer, and even more preferably 3 minutes or longer. Further, although not limited to this example, when the pharmaceutical composition is systemically administered by intravenous injection or the like, after administration of the pharmaceutical composition, for example, for 5 minutes to 48 hours, preferably 10 minutes to 24 hours. Irradiation with near-infrared light is carried out over time, more preferably between 15 minutes and 12 hours. In the case of topical administration, it is preferable to set the interval between administration of the pharmaceutical composition and irradiation of near-infrared light shorter than in the case of systemic administration (for example, 1 minute to 12 hours after administration of the pharmaceutical composition). Irradiate near-infrared light during).
 単回の照射ではなく、複数回の照射を行うことにしてもよい。複数回の照射の場合、その間隔は特に限定されない。例えば、所定の間隔(例えば5分~10時間)を空けて同日に複数回照射する、連日照射する、隔日又は数日ごとに照射する、1週間又は数週間ごとに照射する、1月又は数ヶ月ごとに照射する等、様々な照射スケジュールを設定することができる。複数回の照射を行う場合の医薬組成物の投与スケジュールは特に限定されない。例えば、1回目の照射と2回目の照射の間隔が短い場合、典型的には1回目の照射の前だけに医薬組成物の投与を行う。別の例を挙げれば、前回の照射からの経過時間が長い場合(例えば1日~数ヶ月後が経過している場合)には、改めて医薬組成物を投与し、その後、照射を行うとよい。 It is possible to perform multiple irradiations instead of a single irradiation. In the case of multiple irradiations, the interval is not particularly limited. For example, multiple irradiations on the same day at predetermined intervals (for example, 5 minutes to 10 hours), daily irradiation, every other day or every few days, one week or every few weeks, one month or number. Various irradiation schedules can be set, such as irradiation every month. The administration schedule of the pharmaceutical composition in the case of multiple irradiations is not particularly limited. For example, if the interval between the first and second irradiations is short, the pharmaceutical composition is typically administered only prior to the first irradiation. To give another example, if the elapsed time from the previous irradiation is long (for example, one day to several months have passed), it is advisable to administer the pharmaceutical composition again and then perform irradiation. ..
 本発明の医薬組成物による治療又は予防に並行して他の医薬、例えば抗菌薬(例えば、ペニシリン系抗菌薬、セフェム系抗菌薬、カルバペネム系抗菌薬、ペネム系抗菌薬、テトラサイクリン系抗菌薬、βラクタマーゼ阻害剤、ホスホマイシン、バンコマイシン、アミノグリコシド系抗菌薬、マクロライド系抗菌薬)による処置を施すことにしてもよい。本発明の医薬組成物と作用機序の異なる医薬を併用すれば、複合的な作用/効果が得られ、治療効果の増大を図ることができる。 In parallel with the treatment or prevention with the pharmaceutical composition of the present invention, other medicines such as antibacterial agents (for example, penicillin antibacterial agents, cephem antibacterial agents, carbapenem antibacterial agents, penem antibacterial agents, tetracycline antibacterial agents, β Treatment with lactamase inhibitors, phosphomycin, vancomycin, aminoglycoside antibacterial agents, macrolide antibacterial agents) may be used. When the pharmaceutical composition of the present invention and a drug having a different mechanism of action are used in combination, a complex action / effect can be obtained and the therapeutic effect can be increased.
3.消毒・除染用組成物
 本発明の標的特異的複合体を、感染症の原因になり得る病原体(細菌、真菌・カビ、ウイルス、寄生生物、寄生虫、リケッチア)に汚染されたもの(汚染物)の消毒又は除染に利用することもできる。即ち、本発明の標的特異的複合体を用い、消毒・除染用組成物(以下、説明の便宜上、「本発明の消毒剤」と称する)を調製することができる。本発明の消毒剤は、例えば、医療機関(病院、診療所、介護老人保健施設、訪問介護ステーション、助産所、薬局等)や整骨院、接骨院、鍼灸院等における各種設備・器具・備品等(検査又は手術用の機器や器具又は装置、尿器、床、壁、カーテン、家具、ドア、窓、寝具、衣類等)や空間(病室内、手術室内、クリーンルーム内、クリーンベンチ内等)の消毒又は除染、医薬品、化粧品又は医療機器の製造所又は研究機関における各種設備・器具・備品等(製造装置、作業台、床、壁、カーテン、家具、ドア、窓、作業着、手袋等)や空間(工場内、クリーンルーム内、クリーンベンチ内等)の消毒又は除染、調理室、トイレ、洗面所又は浴室の消毒又は除染、食器、カトラリー(ナイフ、フォーク、スプーン等)又は調理器具(包丁、ナイフ、鍋、ミキサー、電子レンジ、オーブン等)の消毒又は除染、手、指先又は口腔(例えば歯周病や齲歯の治療又は予防、或いはインプラント術後の殺菌)の消毒又は除染、に利用可能である。
3. 3. Disinfectant / Decontamination Composition The target-specific complex of the present invention is contaminated with pathogens (bacteria, fungi / molds, viruses, parasites, parasites, rickettsia) that can cause infectious diseases (contaminants). ) Can also be used for disinfection or decontamination. That is, a composition for disinfection / decontamination (hereinafter, referred to as "disinfectant of the present invention" for convenience of explanation) can be prepared using the target-specific complex of the present invention. The disinfectant of the present invention is, for example, various facilities / instruments / equipment in medical institutions (hospitals, clinics, nursing homes for the elderly, home-visit nursing care stations, midwifery centers, pharmacies, etc.), osteopathic clinics, osteopathic clinics, acupuncture and moxibustion clinics, etc. (Inspection or surgical equipment, instruments or devices, urinary organs, floors, walls, curtains, furniture, doors, windows, bedding, clothing, etc.) and spaces (in hospital rooms, operating rooms, clean rooms, clean benches, etc.) Disinfection or decontamination, various equipment, utensils, equipment, etc. at manufacturing plants or research institutions of pharmaceuticals, cosmetics or medical equipment (manufacturing equipment, worktables, floors, walls, curtains, furniture, doors, windows, work clothes, gloves, etc.) Disinfection or decontamination of spaces (in factories, clean rooms, clean benches, etc.), disinfection or decontamination of kitchens, toilets, washrooms or bathrooms, tableware, cutlery (knives, forks, spoons, etc.) or cooking utensils (knives, forks, spoons, etc.) Disinfection or decontamination of kitchenware, knives, pots, mixers, microwaves, ovens, etc., disinfection or decontamination of hands, fingertips or oral cavity (eg, treatment or prevention of periodontal disease and rodents, or sterilization after implant), It is available for.
 本発明の消毒剤は、例えば、液状(例えばスプレー剤、ローション)、ゲル状、固形状(例えば粉末)に構成され、塗布、スプレー(噴霧)、散布、滴下等によって使用される。本発明の消毒剤の使用にあたっては、例えば、塗布等によって汚染対象物に本発明の消毒剤を適用した後、近赤外光を照射して障害活性を発揮させる。近赤外光の照射条件は、医薬組成物を利用した治療の場合に準ずる。 The disinfectant of the present invention is composed of, for example, a liquid (for example, a spray agent, a lotion), a gel form, or a solid form (for example, a powder), and is used by coating, spraying (spraying), spraying, dropping, or the like. In using the disinfectant of the present invention, for example, after applying the disinfectant of the present invention to a contaminated object by application or the like, the disinfectant of the present invention is irradiated with near-infrared light to exert a damaging activity. The irradiation conditions of near-infrared light are the same as in the case of treatment using a pharmaceutical composition.
<新規光抗菌療法の開発>
1.Candida albicans-IgY(CA-IgY)-IR700の調製と品質の確認
1-1.実験方法
 まず、CA-IgY-IR700の合成を行った。CA-IgY(1.0mg, 5.4 nmol)とIR700(47.8 μg, 24.5 nmol)をNa2HPO4(pH8.5) 0.1Mとともに室温下で1時間インキュベートし、その後、Sephadex G50カラム(PD-10; GE healthcare)に通して混合液を回収した(CA-IgY-IR700溶液)。クマシー染色後に吸光度(波長595nm)を測定し、CA-IgY-IR700の濃度(タンパク濃度)の求めた。また、吸光度(波長698nm)の測定によってIR700の濃度を求め、抗体に結合した蛍光分子の数を確認した。一方、上記混合液をSDS-PAGEに供し、抗体とIR700の結合を確認した。SDS-PAGEでのコントロールには希釈したCA-IgYを用い、撮影はPearl imager(LICOR)で行った。
<Development of new photoantibacterial therapy>
1. 1. Preparation of Candida albicans-IgY (CA-IgY) -IR700 and confirmation of quality 1-1. Experimental method First, CA-IgY-IR700 was synthesized. CA-IgY (1.0 mg, 5.4 nmol) and IR700 (47.8 μg, 24.5 nmol) were incubated with Na 2 HPO 4 (pH 8.5) 0.1 M for 1 hour at room temperature, followed by a Sephadex G50 column (PD-10; The mixture was collected through GE healthcare) (CA-IgY-IR700 solution). After Coomassie staining, the absorbance (wavelength 595 nm) was measured to determine the concentration (protein concentration) of CA-IgY-IR700. In addition, the concentration of IR700 was determined by measuring the absorbance (wavelength 698 nm), and the number of fluorescent molecules bound to the antibody was confirmed. On the other hand, the above mixed solution was subjected to SDS-PAGE, and the binding between the antibody and IR700 was confirmed. Diluted CA-IgY was used for SDS-PAGE control, and imaging was performed with a Pearl imager (LICOR).
1-2.結果と考察
 タンパク質染色(図1左)のバンドの高さでCA-IgY-IR700のみに蛍光を認め(図1右)、CA-IgYとIR700が結合(コンジュゲート)したことを確認した。
1-2. Results and discussion Fluorescence was observed only in CA-IgY-IR700 at the band height of protein staining (Fig. 1, left) (Fig. 1, right), and it was confirmed that CA-IgY and IR700 were bound (conjugated).
2.CA-IgY-IR700のCandida albicans(C. albicans)抗原結合性の評価
2-1.実験方法
 C. albicans(JCM1542)を1×105ずつチューブに播種し、作製したCA-IgY-IR700(10μg/mL、50μg/mL、100 μg/mL、又は200μg/mL)と37℃で1時間インキュベートした後、フローサイトメトリーで蛍光強度を測定した。また、他のC. albicans 4種(FC18、IFO579、IFO1060、及びIFO1385)、その近縁種としてCandida tropicalis (IFO1402)、Candida guilliermondii (IFO838)、Candida krusei(IFO1162)と、A431(ヒト皮膚癌細胞)をそれぞれ200μg/mLのCA-IgY-IR700を用いて同様に測定した。
2. Evaluation of Candida albicans (C. albicans) antigen binding of CA-IgY-IR700 2-1. Experimental method C. albicans (JCM1542) was seeded in tubes in 1 × 10 5 increments, and the prepared CA-IgY-IR700 (10 μg / mL, 50 μg / mL, 100 μg / mL, or 200 μg / mL) and 1 at 37 ° C. After time incubation, the fluorescence intensity was measured by flow cytometry. In addition, four other C. albicans species (FC18, IFO579, IFO1060, and IFO1385), and related species such as Candida tropicalis (IFO1402), Candida guilliermondii (IFO838), Candida krusei (IFO1162), and A431 (human skin cancer cells). ) Were measured in the same manner using CA-IgY-IR700 of 200 μg / mL.
2-2.結果と考察
 CA-IgY-IR700の抗体濃度と比例して蛍光が増強した(図2)。従来のNIR-PITの既報では10μg/mLで用いられるが、C. albicansでは10μg/mLでは不足と考えられた。これは増殖速度が速く1時間のインキュベーション中にC. albicansが増え、相対的に抗体が不足することが一つの要因と考えられた。すべてのC. albicans、及びその近縁種について蛍光の増強を認めたが、A431では蛍光の増強は認められなかった(図3)。よって、Candida全般に対してCA-IgY-IR700が結合したが、ヒト細胞には結合していないと考えられる。
2-2. Results and discussion Fluorescence was enhanced in proportion to the antibody concentration of CA-IgY-IR700 (Fig. 2). Previously reported NIR-PIT used 10 μg / mL, but C. albicans was considered to be insufficient at 10 μg / mL. It was considered that one of the reasons for this was that the growth rate was high, C. albicans increased during the 1-hour incubation, and the antibody was relatively deficient. Fluorescence enhancement was observed for all C. albicans and related species, but no fluorescence enhancement was observed for A431 (Fig. 3). Therefore, it is considered that CA-IgY-IR700 bound to Candida in general, but not to human cells.
3.In vitro NIR-PAT
3-1.実験方法
 抗体濃度と治療効果を評価するために、C. albicans(JCM1542)を液体培地にて24時間培養後に、1×105ずつ100μLの培地とともにチューブに播種し、CA-IgY-IR700を加え(10μg/mL、50μg/mL、100 μg/mL、又は200μg/mL)、室温4時間のインキュベーション後、発光波長690nmのLEDを用いて近赤外光(256J/cm2)を照射した。治療後、即座に菌体300個を10cmディッシュに播種し、24時間培養後にコロニー数を計測して生菌数を評価した。抗体添加と近赤外光照射のいずれも行わないものをコントロールとした。
3. 3. In vitro NIR-PAT
3-1. Experimental method In order to evaluate the antibody concentration and therapeutic effect, C. albicans (JCM1542) was cultured in a liquid medium for 24 hours, then seeded in a tube with 100 μL of medium in 1 × 10 5 each, and CA-IgY-IR700 was added. After incubation at room temperature for 4 hours (10 μg / mL, 50 μg / mL, 100 μg / mL, or 200 μg / mL), near-infrared light (256 J / cm 2 ) was irradiated using an LED with an emission wavelength of 690 nm. Immediately after the treatment, 300 bacterial cells were inoculated on a 10 cm dish, and after culturing for 24 hours, the number of colonies was measured to evaluate the viable cell count. The control was one in which neither antibody addition nor near-infrared light irradiation was performed.
 次いで、照射量と治療効果について評価するためにCA-IgY-IR700が200μg/mLとなるようにし、室温4時間のインキュベーション後、発光波長690nmのLEDを用いて近赤外光(32J、64J、128J、及び256J/cm2)を照射した。CA-IgY-IR700を加えず近赤外光照射(256J/cm2)を行ったものも併せて評価した。治療後、同様の手法でコロニー数を計測して生菌数を評価した(図4)。肉眼的に測定するために、同様の手法でCA-IgY-IR700 200μg/mLを反応し、近赤外光256J/cm2照射1時間後に、死細胞染色(Propiodium Iodide: PI染色)を用いて共焦点顕微鏡及び走査型電子顕微鏡で観察した。 Next, in order to evaluate the irradiation dose and therapeutic effect, CA-IgY-IR700 was adjusted to 200 μg / mL, and after incubation at room temperature for 4 hours, near-infrared light (32J, 64J,) using an LED with an emission wavelength of 690 nm was used. It was irradiated with 128J and 256J / cm 2). Those subjected to near-infrared light irradiation (256 J / cm 2 ) without adding CA-IgY-IR700 were also evaluated. After the treatment, the number of colonies was measured by the same method to evaluate the viable cell count (Fig. 4). For macroscopic measurement, CA-IgY-IR700 200 μg / mL was reacted in the same manner, and 1 hour after irradiation with near infrared light 256 J / cm 2 1 hour, dead cell staining (Propiodium Iodide: PI staining) was used. It was observed with a confocal microscope and a scanning electron microscope.
3-2.結果と考察
 抗体濃度と治療効果についての評価では、C. albicansの生菌数はCA-IgY-IR700濃度に依存的に減少した(図5左)。10μg/mLでは治療効果は乏しく、50μg/mL以上で効果を認めた。また、照射量と治療効果についての評価では、照射量に依存的に生菌数は減少し、近赤外光照射のみでは生菌数は変わらなかった(図5右)。CA-IgY-IR700のみでも生菌数が減少したことは、IgY本来の抗菌作用によるものと考えられる。IgY-PATはIgYの抗菌効果を大幅に増強すると考えられる。
3-2. Results and discussion In the evaluation of antibody concentration and therapeutic effect, the viable cell count of C. albicans decreased in a CA-IgY-IR700 concentration-dependent manner (Fig. 5, left). The therapeutic effect was poor at 10 μg / mL, and the effect was observed at 50 μg / mL or higher. In the evaluation of the irradiation dose and the therapeutic effect, the viable cell count decreased depending on the irradiation dose, and the viable cell count did not change only by near-infrared light irradiation (Fig. 5, right). The decrease in the viable cell count with CA-IgY-IR700 alone is considered to be due to the original antibacterial action of IgY. IgY-PAT is thought to significantly enhance the antibacterial effect of IgY.
 また、共焦点顕微鏡による観察では、CA-IgY-IR700のみ反応した場合に700nmの蛍光が観察でき、IgY-PATを行ったものでは死細胞染色が陽性となり、700nmの蛍光は減弱していた(図6左)。これは、IR700が近赤外光照射により分解され、菌体を破壊したためと推測された。走査型電子顕微鏡画像では、コントロールとCA-IgY-IR700のみでは変化が見られないが、IgY-PATを行ったものでは菌体の表面に孔や、菌体の変形が認められた(図6右)。これは、菌体の表面がIgY-PATにより破壊され、菌体が破裂したことによる変形と考えられる。 In addition, observation with a confocal microscope revealed fluorescence at 700 nm when only CA-IgY-IR700 reacted, and death cell staining was positive when IgY-PAT was performed, and fluorescence at 700 nm was attenuated (). FIG. 6 left). It was speculated that this was because IR700 was decomposed by near-infrared irradiation and destroyed the bacterial cells. In the scanning electron microscope image, no change was observed only with the control and CA-IgY-IR700, but with IgY-PAT, holes and deformation of the cells were observed on the surface of the cells (Fig. 6). right). This is considered to be the deformation caused by the destruction of the surface of the cells by IgY-PAT and the rupture of the cells.
4.In vivo NIR-PIT
4-1.実験方法(図7)
 8-10週齢のBALC slcマウスの両腰部を除毛後に6mmの皮膚生検パンチにて左右2カ所に皮膚欠損部位を作った。C. albicans (JCM1542)をPBSで洗浄後、PBSで1x109/mLに濃縮したものを皮膚欠損部に100μLを塗布し、応急絆にて潰瘍部を保護した(Day -1と設定)。翌日(Day 0)、水溶性ゼリーで希釈した200μg/mLのCA-IgY-IR700を潰瘍部に100μL塗布して、応急絆にて潰瘍部を保護した。翌日(Day 1)に応急絆を取り除き、Pearl imager(LICOR)で潰瘍部にCA-IgY-IR700が確認できるか評価した。その後、近赤外光(256J/cm2)をレーザーにて照射した。照射日の潰瘍面積を100%として、潰瘍面積の推移を定量評価した。潰瘍面積は写真撮影を行い、Image J(オープンソース)にて算出を行った。治療群をIgY-PAT群として、対象としてC. albicansを塗布しない無菌群、C. albicansのみのCA群、CA-IgY-IR700を塗布し近赤外光を照射しないCA-IgY-IR700群、近赤外光照射のみのLight群とした。潰瘍面積はDay 14まで評価した。細菌数の評価のため、Day 2に無菌群、CA群、IgY-PAT群の潰瘍部の皮下組織を滅菌した6mm皮膚生検パンチで摘出し、組織を撹拌し培地に播種してコロニー数の計測を行った。CA群のコロニー数を100%とした。
4. In vivo NIR-PIT
4-1. Experimental method (Fig. 7)
After hair removal from both lumbar regions of 8- to 10-week-old BALC slc mice, two skin defect sites were created on the left and right with a 6 mm skin biopsy punch. C. albicans (JCM1542) was washed with PBS, then concentrated to 1x10 9 / mL with PBS, 100 μL was applied to the skin defect, and the ulcer was protected with an emergency bond (set as Day -1). The next day (Day 0), 100 μL of 200 μg / mL CA-IgY-IR700 diluted with water-soluble jelly was applied to the ulcer, and the ulcer was protected by an emergency bond. The next day (Day 1), the emergency bond was removed, and it was evaluated by Pearl imager (LICOR) whether CA-IgY-IR700 could be confirmed in the ulcer area. Then, near infrared light (256 J / cm 2 ) was irradiated with a laser. The transition of the ulcer area was quantitatively evaluated with the ulcer area on the irradiation day as 100%. The ulcer area was photographed and calculated using Image J (open source). The treatment group is the IgY-PAT group, which is a sterile group without C. albicans, a CA group with only C. albicans, and a CA-IgY-IR700 group with CA-IgY-IR700 applied and not irradiated with near-infrared light. , Light group with only near-infrared light irradiation. The ulcer area was evaluated until Day 14. To evaluate the number of bacteria, on Day 2, the subcutaneous tissue of the ulcer part of the sterile group, CA group, and IgY-PAT group was removed with a sterilized 6 mm skin biopsy punch, and the tissue was stirred and seeded in the medium to inoculate the number of colonies. Was measured. The number of colonies in the CA group was set to 100%.
4-2.結果と考察
 CA-IgY-IR700を塗布した群で、塗布部の蛍光が観察され、近赤外光照射後では蛍光が減弱した(図8)。これは、潰瘍面に抗体が付着しており、in vitroと同様に近赤外光と反応してCA-IgY-IR700が分解されたためと推測される。潰瘍面積は無菌群が最も小さく、次いでIgY-PAT群、CA-IgY-IR700群であり、CA群とLight群はほぼ同等であった。無菌群とIgY-PAT群間では有意差を認めず、IgY-PAT群とCA-IgY-IR700群間では有意差を認めた。CA-IgY-IR700群とCA群でも有意差を認めた(図9)。また、潰瘍部の膿性排泄物は無菌群、CA-IgY-IR700群、IgY-PAT群で少なかった(図10)。これらの結果から、in vitroの結果と同様、CA-IgY-IR700単独でも抗菌効果を認めるが、IgY-PATにより抗菌効果が増強しており、無菌群と同様の経過となったと推測された。また、熱傷などの有害事象がなく、総合的に潰瘍治癒に寄与したと考えらた。コロニー数はCA群と比較して無菌群、IgY-PAT群で有意に少なかった(図11)。常在菌が混入するため無菌群でもコロニーを認めている。この結果から、IgY-PATはin vivoでも抗菌効果を示し、潰瘍面積の減少は細菌数と関連があると推測された。
4-2. Results and Discussion In the group coated with CA-IgY-IR700, fluorescence of the coated part was observed, and the fluorescence was attenuated after irradiation with near-infrared light (Fig. 8). It is presumed that this is because the antibody adhered to the ulcer surface and reacted with near-infrared light to decompose CA-IgY-IR700 as in vitro. The ulcer area was the smallest in the sterile group, followed by the IgY-PAT group and the CA-IgY-IR700 group, and the CA group and the Light group were almost the same. No significant difference was observed between the sterile group and the IgY-PAT group, and a significant difference was observed between the IgY-PAT group and the CA-IgY-IR700 group. A significant difference was also observed between the CA-IgY-IR700 group and the CA group (Fig. 9). In addition, the amount of purulent excrement in the ulcer part was small in the sterile group, CA-IgY-IR700 group, and IgY-PAT group (Fig. 10). From these results, it was presumed that the antibacterial effect was observed by CA-IgY-IR700 alone as in the in vitro result, but the antibacterial effect was enhanced by IgY-PAT, and the course was similar to that of the sterile group. .. In addition, there were no adverse events such as burns, and it was considered that it contributed to the overall healing of the ulcer. The number of colonies was significantly smaller in the sterile group and the IgY-PAT group than in the CA group (Fig. 11). Colonies are also observed in the sterile group due to the contamination of indigenous bacteria. From this result, it was speculated that IgY-PAT also showed an antibacterial effect in vivo, and that the decrease in ulcer area was associated with the number of bacteria.
5.まとめ
 CA-IgYとIR700を結合(コンジュゲート)した複合体を用いたIgY-PATは高い抗菌効果を発揮した。この革新的な治療法によれば、多くの難治性感染症、薬剤耐性菌に対して対処できる。
5. Summary IgY-PAT using a complex that combines CA-IgY and IR700 exhibited a high antibacterial effect. This innovative treatment can combat many refractory infections and drug-resistant bacteria.
 本発明の標的特異的複合体(IgYに近赤外光感受物質が連結した構造体)は、NIR-PITの原理によって標的特異的な障害活性を示し、治療効果を発揮する。安価に且つ大量に調製することが容易なIgYを利用した本発明は、細菌や真菌・カビ等の感染症における標的の爆発的増加に対処できる、新たな治療手段となり、様々な感染症に対して適用ないし応用が想定される。本発明は、IgYを単独で用いた従来の抗菌療法とは一線を画する革新的な技術であり、高い治療効果が得られる。また、その特有の作用機序により、迅速な効果の発現を期待できる。強靱な細胞壁構造を備えるカンジダに対して殺菌効果が確認されたことは、本発明が、各種グラム陽性細菌はもとより、各種グラム陰性細菌や各種真菌等に対しても有効な攻撃手段になり得ることを裏付ける。 The target-specific complex of the present invention (a structure in which a near-infrared light-sensitive substance is linked to IgY) exhibits target-specific damaging activity according to the principle of NIR-PIT and exerts a therapeutic effect. The present invention using IgY, which is inexpensive and easy to prepare in large quantities, provides a new therapeutic means capable of coping with the explosive increase in targets in infectious diseases such as bacteria, fungi, and molds, and is effective against various infectious diseases. It is expected to be applied or applied. The present invention is an innovative technique that is different from the conventional antibacterial therapy using IgY alone, and a high therapeutic effect can be obtained. In addition, due to its unique mechanism of action, rapid onset of effects can be expected. The fact that the bactericidal effect on Candida having a tough cell wall structure has been confirmed means that the present invention can be an effective means of attack not only against various Gram-positive bacteria but also against various Gram-negative bacteria and various fungi. To support.
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。たとえば、標的に対する指向性物質としては、一般に考えられる抗体(IgG、IgM、抗体断片、Minibody、Diabodyなど)、ペプチド、アプタマーなどの結合性物質があげられ、これらをIgYに代えて用いることもできる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。 The present invention is not limited to the description of the embodiments and examples of the above invention. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims. For example, examples of target-directing substances include commonly considered binding substances such as antibodies (IgG, IgM, antibody fragments, Minibody, Diabody, etc.), peptides, aptamers, etc., which can be used in place of IgY. .. The contents of the articles, published patent gazettes, patent gazettes, etc. specified in this specification shall be cited by reference in their entirety.

Claims (14)

  1.  細菌、真菌若しくはカビ、ウイルス、寄生生物、寄生虫又はリケッチアに分類される標的に特異的なIgYに近赤外光感受物質が連結した構造の標的特異的複合体。 A target-specific complex with a structure in which a near-infrared light-sensitive substance is linked to a target-specific IgY classified as a bacterium, fungus or mold, virus, parasite, parasite or rickettsia.
  2.  標的が細菌又は真菌若しくはカビである、請求項1に記載の標的特異的複合体。 The target-specific complex according to claim 1, wherein the target is a bacterium or a fungus or a mold.
  3.  前記細菌がシュードモナス属、アシネトバクター属、ブドウ球菌属、レンサ球菌、腸球菌属細菌、大腸菌、シゲラ属細菌、サルモネラ属細菌、エンテロバクター属細菌及びクレブシエラ属細菌からなる群より選択される菌種であり、前記真菌若しくはカビがカンジダ属、アスペルギルス属、ムコール属及びクリプトコッカス属真菌からなる群より選択される菌種である、請求項2に記載の標的特異的複合体。 The bacterium is a bacterial species selected from the group consisting of Pseudomonas genus, Acinetobacter genus, Bacillus subtilis, Streptococcus, Enterococcus bacterium, Escherichia coli, Shigera bacterium, Salmonella bacterium, Enterobacter bacterium and Klebsiella bacterium. The target-specific complex according to claim 2, wherein the bacterium or mold is a bacterial species selected from the group consisting of Enterobacter, Aspergillus, Mucor and Cryptococcus.
  4.  前記IgYがポリクローナル抗体である、請求項1~3のいずれか一項に記載の標的特異的複合体。 The target-specific complex according to any one of claims 1 to 3, wherein the IgY is a polyclonal antibody.
  5.  前記近赤外光感受物質がフタロシアニン色素である、請求項1~4のいずれか一項に記載の標的特異的複合体。 The target-specific complex according to any one of claims 1 to 4, wherein the near-infrared light-sensitive substance is a phthalocyanine pigment.
  6.  前記フタロシアニン色素がIR700である、請求項5に記載の標的特異的複合体。 The target-specific complex according to claim 5, wherein the phthalocyanine pigment is IR700.
  7.  請求項1~6のいずれか一項に記載の標的特異的複合体を含有する組成物。 A composition containing the target-specific complex according to any one of claims 1 to 6.
  8.  前記標的による感染症の治療又は予防に使用される、請求項7に記載の組成物。 The composition according to claim 7, which is used for treating or preventing an infectious disease caused by the target.
  9.  以下のステップ(1)及び(2)を含む、治療方法:
     (1)請求項8に記載の組成物を治療対象に投与し、前記標的特異的複合体を前記標的に結合させるステップ、
     (2)前記標的に近赤外光を照射するステップ。
    Therapeutic methods, including the following steps (1) and (2):
    (1) A step of administering the composition according to claim 8 to a therapeutic subject and binding the target-specific complex to the target.
    (2) A step of irradiating the target with near-infrared light.
  10.  前記近赤外光の波長が650~740nmである、請求項9に記載の治療方法。 The treatment method according to claim 9, wherein the wavelength of the near-infrared light is 650 to 740 nm.
  11.  前記近赤外光の波長が670~720nmである、請求項9に記載の治療方法。 The treatment method according to claim 9, wherein the wavelength of the near-infrared light is 670 to 720 nm.
  12.  前記近赤外光の照射線量が1J cm-2以上である、請求項9~11のいずれか一項に記載の治療方法。 The treatment method according to any one of claims 9 to 11, wherein the irradiation dose of the near-infrared light is 1 J cm- 2 or more.
  13.  前記近赤外光の照射線量が2J cm-2~500J cm-2である、請求項9~11のいずれか一項に記載の治療方法。 The treatment method according to any one of claims 9 to 11, wherein the irradiation dose of the near-infrared light is 2 J cm -2 to 500 J cm -2.
  14.  前記標的による汚染物の消毒又は除染に使用される、請求項7に記載の組成物。  The composition according to claim 7, which is used for disinfecting or decontaminating contaminants by the target.
PCT/JP2020/045022 2019-12-03 2020-12-03 Optical antimicrobial therapeutic method WO2021112174A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021562713A JPWO2021112174A1 (en) 2019-12-03 2020-12-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019219011 2019-12-03
JP2019-219011 2019-12-03

Publications (1)

Publication Number Publication Date
WO2021112174A1 true WO2021112174A1 (en) 2021-06-10

Family

ID=76221101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045022 WO2021112174A1 (en) 2019-12-03 2020-12-03 Optical antimicrobial therapeutic method

Country Status (2)

Country Link
JP (1) JPWO2021112174A1 (en)
WO (1) WO2021112174A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114164215A (en) * 2020-09-11 2022-03-11 吉林大学 Anti-trichina small heat shock protein egg yolk antibody and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004534752A (en) * 2001-05-15 2004-11-18 スロカ・ヨアヒム Immunoconjugates from yolk antibody (IGY), their conjugation and methods for use in diagnosis and therapy
US20060134101A1 (en) * 2003-01-30 2006-06-22 Immun System I.M.S. Ab Use of avian antibodies
JP2009511456A (en) * 2005-10-07 2009-03-19 フォトバイオティクス・リミテッド Biological substances and their use
JP2010536932A (en) * 2007-08-30 2010-12-02 ベンクト・オーゲルプ Topical administration of chicken yolk immunoglobulin (IgY) to treat and prevent fungal infections
JP2018528267A (en) * 2015-08-18 2018-09-27 アスピリアン セラピューティクス インコーポレイテッド Phthalocyanine dye conjugate and storage method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004534752A (en) * 2001-05-15 2004-11-18 スロカ・ヨアヒム Immunoconjugates from yolk antibody (IGY), their conjugation and methods for use in diagnosis and therapy
US20060134101A1 (en) * 2003-01-30 2006-06-22 Immun System I.M.S. Ab Use of avian antibodies
JP2009511456A (en) * 2005-10-07 2009-03-19 フォトバイオティクス・リミテッド Biological substances and their use
JP2010536932A (en) * 2007-08-30 2010-12-02 ベンクト・オーゲルプ Topical administration of chicken yolk immunoglobulin (IgY) to treat and prevent fungal infections
JP2018528267A (en) * 2015-08-18 2018-09-27 アスピリアン セラピューティクス インコーポレイテッド Phthalocyanine dye conjugate and storage method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KYOTO JOSHI DAIGAKU SHOKUMOTSUGAKU KASIHI: "Eating antibodies : Prevention of infections disease using IgY", JOURNAL OF FOOD SCIENCE, vol. 53, 1998, pages 1 - 11, XP003010851 *
OLIVEIRA TAISE MARIA DOS ANJOS, BEZERRA FÁBIO CASTRO, GAMBARINI MARIA LÚCIA, TELES AMANDA VARGAS, CUNHA PAULO HENRIQUE JORGE DA, B: "Immunoconjugates to increase photoinactivation of bovine alphaherpesvirus 1 in semen", VETERINARY MICROBIOLOGY, vol. 247, no. 108780, August 2020 (2020-08-01), pages 1 - 6, XP086237884 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114164215A (en) * 2020-09-11 2022-03-11 吉林大学 Anti-trichina small heat shock protein egg yolk antibody and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2021112174A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
US20220175916A1 (en) Methods and compositions for treating chronic effects of radiation and chemical exposure
JP6694269B2 (en) S. Antibodies to S. aureus surface determinants
AU2005211890B2 (en) Highly concentrated liquid formulations of anti-EGFR antibodies
RU2431638C2 (en) Monoclonal antibodies against interferon-alpha and application methods
US20050036904A1 (en) Methods for eradication of nanobacteria
US9249215B2 (en) Human monoclonal antibody against S. aureus derived alpha-toxin and its use in treating or preventing abscess formation
ES2247817T3 (en) METHOD FOR THE ERADICATION OF NANOBACTERIES.
WO2021112174A1 (en) Optical antimicrobial therapeutic method
KR20070038464A (en) Methods for reducing bioflim formation in infectious bacteria
TW202126684A (en) Antibody against alpha-hemolysin and application thereof
AU2021373703A1 (en) Antigen-binding molecules that bind to porphyromonas gingivalis
JP2013531686A (en) Toxoidization method
AU2019202858A1 (en) Methods for treating clostridium difficile infection and associated disease
Cometta et al. Polyclonal intravenous immune globulin for prevention and treatment of infections in critically ill patients.
CN114466862A (en) Parvovirus antibody for animals
JP2021502410A (en) Composition for the treatment of intracellular bacterial infection
WO2019178954A1 (en) Application of succinic acid in improving sensitivity of bacteria on antibiotic
EP4426732A2 (en) Antigen-binding molecules that bind to porphyromonas gingivalis
TW202045137A (en) Methods for treating tnfα-related diseases
WO2020246350A1 (en) Bactericide
JP2021501186A (en) Compositions and Methods for Multi-Adjuvant Only Approach to Immune Prevention to Prevent Infection
Raut et al. Control of Syphacia obvelata in mice using a combination therapy of albendazole and ivermectin
RU2683650C1 (en) Method for treating combined body damage caused by anthrax and ionizing radiation
Mori et al. Venom and antivenom of the redback spider (Latrodectus hasseltii) in Japan. Part II. Experimental production of equine antivenom against the redback spider
Cooper et al. Clearance of bacteria from lungs of mice after opsonising with IgG or IgA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897415

Country of ref document: EP

Kind code of ref document: A1