WO2021112106A1 - Xeroderma pigmentosum group f therapeutic agent - Google Patents

Xeroderma pigmentosum group f therapeutic agent Download PDF

Info

Publication number
WO2021112106A1
WO2021112106A1 PCT/JP2020/044768 JP2020044768W WO2021112106A1 WO 2021112106 A1 WO2021112106 A1 WO 2021112106A1 JP 2020044768 W JP2020044768 W JP 2020044768W WO 2021112106 A1 WO2021112106 A1 WO 2021112106A1
Authority
WO
WIPO (PCT)
Prior art keywords
antisense oligonucleotide
pharmaceutically acceptable
acceptable salt
seq
xpf
Prior art date
Application number
PCT/JP2020/044768
Other languages
French (fr)
Japanese (ja)
Inventor
朋男 荻
由華 中沢
小泉 誠
貴生 小路
Original Assignee
第一三共株式会社
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一三共株式会社, 国立大学法人東海国立大学機構 filed Critical 第一三共株式会社
Priority to JP2021562674A priority Critical patent/JPWO2021112106A1/ja
Publication of WO2021112106A1 publication Critical patent/WO2021112106A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/712Nucleic acids or oligonucleotides having modified sugars, i.e. other than ribose or 2'-deoxyribose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7125Nucleic acids or oligonucleotides having modified internucleoside linkage, i.e. other than 3'-5' phosphodiesters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Definitions

  • the present invention relates to a therapeutic agent for group F of xeroderma pigmentosum, an antisense oligonucleotide as an active ingredient thereof, or a pharmaceutically acceptable salt thereof.
  • Xeroderma pigmentosum is a congenital gene involved in nucleotide excision repair mechanism (NER) that removes photoDNA damage caused by ultraviolet rays in sunlight from the genome and damage bypass synthesis (TLS). It develops due to an abnormality.
  • NER nucleotide excision repair mechanism
  • TLS damage bypass synthesis
  • XP patients have photosensitivity, xeroderma pigmentosum in the sun-exposed area, high cancer incidence, and neurological symptoms, and the prevalence of Japanese is estimated to be about 1 in 25,000 births. ..
  • the POHL gene encoding TLS polymerase is known.
  • XP cases with each mutation are classified into the complementarity group of XP-A to XP-G group and XP-V (variant) group.
  • the proportion of each complementary group in XP cases varies depending on the race, but in the Japanese population, there are many abnormalities in the XP-A group and then in the XP-V group.
  • NER deficiency is shown.
  • NER is divided into whole genome repair (GG-NER) and transcriptional conjugated repair (TC-NER) according to the recognition form of DNA damage.
  • the XP-C / E group shows a deficiency of only GG-NER
  • the XP-A / B / D / F / G group shows a deficiency of both GG-NER and TC-NER.
  • DNA damage accumulates in the genome due to these NER deficiencies, leading to genome instability, and skin cancer occurs frequently at a young age.
  • Neurological symptoms differ in onset time depending on the complementary group and disease-causing mutation, but especially in cases with group A Japanese founder mutation (IVS3-1G> C), loss of XPA protein expression results in the loss of XPA protein expression and the full function of NER. And show severe neurological symptoms.
  • XP is a systemic hereditary disease, and no effective treatment has been developed at present. XP is often diagnosed by visiting a dermatologist after a severe sunburn in infancy. In addition, a rough prognosis can be determined by genetic testing. Although it is possible to avoid exposure to sunlight and try to prevent skin cancer, there is no effective way to alleviate the progression of neurological symptoms that have a significant effect on prognosis and quality of life.
  • a method for measuring DNA repair activity using fibroblasts established from a patient's skin patch is known. These include the Irregular DNA Synthesis (UDS) test, which measures GG-NER activity by detecting repair DNA synthesis after removal of photoDNA damage, and RNA synthesis in regions of high transcriptional activity after DNA damage.
  • UDS Irregular DNA Synthesis
  • GG-NER activity by detecting repair DNA synthesis after removal of photoDNA damage
  • RNA synthesis in regions of high transcriptional activity after DNA damage There is a method for evaluating TC-NER activity by examining resilience (RRS) (Non-Patent Documents 1 and 2).
  • RRS resilience
  • Complementarity groups can be identified by evaluating UDS / RRS in patient-derived cells and investigating which known XP genes restore these activities (Non-Patent Documents 3 and 4).
  • An object of the present invention is to provide a therapeutic means for such XP-F group.
  • the present inventors have identified two novel internal mutations in introns that are the cause of the disease in patients in the XP-F group.
  • the first is a novel Japanese founder mutation that exists deep in the intron (about 100 bp downstream from the exon 1-intron 1 boundary) and gives rise to a new U1 nuclear small ribonuclear protein (U1 snRNP) binding sequence. It was shown that this caused a decrease in gene expression due to abnormal alternative splicing.
  • the second is a single base substitution mutation in the deep intron (several hundred bp downstream from the exon 8-intron 8 boundary site), which forms a pathological polyA addition sequence (cleaved / polyadenylation factor binding sequence). It has been shown that incomplete transcription termination and mRNA destabilization lead to disease onset.
  • the present inventors have further studied and completed the present invention.
  • the present invention includes the following inventions.
  • the antisense oligonucleotide or pharmaceutically acceptable salt thereof according to [1], which suppresses abnormal splicing using the 3'splice site on the 3'side of the second guanine.
  • Antisense oligonucleotides or pharmaceutically acceptable salts thereof [4] 90% or more, preferably 95% or more, optimally completely complementary to the sequence consisting of 15 to 30 nucleotides in the 155th to 217th base sequences in the base sequence represented by SEQ ID NO: 63.
  • the sugar-modified nucleoside is a nucleoside containing 4'-(CH 2 ) n- O-2'cross-linking (where n is 1 or 2 in the formula) or 2'-O-methylation, [6] ]
  • the antisense oligonucleotide or a pharmaceutically acceptable salt thereof [8] The antisense oligonucleotide according to any one of [1] to [7] or a pharmaceutically acceptable salt thereof, which comprises one or more modified nucleoside linkages.
  • [12] The description in [1] or [11], which can hybridize with a sequence consisting of 15 to 30 nucleotides in a row in the 309th to 343rd base sequences in the base sequence represented by SEQ ID NO: 64.
  • Antisense oligonucleotides or pharmaceutically acceptable salts thereof. [13] 90% or more, preferably 95% or more, optimally completely complementary to the sequence consisting of consecutive 15 to 30 nucleotides in the 309th to 343rd base sequences in the base sequence represented by SEQ ID NO: 64.
  • the antisense oligonucleotide according to any one of [1], [11] and [12] or a pharmaceutically acceptable salt thereof, which comprises a specific sequence.
  • the sugar-modified nucleoside is a nucleoside containing 4'-(CH 2 ) n- O-2'cross-linking (where n is 1 or 2 in the formula) and 2'-O-methylation, [15] ]
  • the antisense oligonucleotide or a pharmaceutically acceptable salt thereof [17] The antisense oligonucleotide according to any one of [1] and [11] to [16] or a pharmaceutically acceptable salt thereof, which comprises one or more modified nucleoside linkages.
  • a pharmaceutical composition for treating xeroderma pigmentosum F group which comprises the antisense oligonucleotide according to any one of [1] to [20] or a pharmaceutically acceptable salt thereof.
  • Xeroderma pigmentosum F which comprises administering to a patient an effective amount of the antisense oligonucleotide according to any one of [1] to [20] or a pharmaceutically acceptable salt thereof. How to treat the group.
  • the present invention also provides the following [A1] to [A20].
  • the antisense oligonucleotide or pharmaceutically acceptable salt thereof according to [A1], which suppresses abnormal splicing using the 3'splice site on the 3'side of the second guanine.
  • [A3] Described in [A1] or [A2], which can hybridize with a sequence consisting of 15 to 30 consecutive nucleotides in the 175th to 217th base sequences in the base sequence represented by SEQ ID NO: 63.
  • Antisense oligonucleotides or pharmaceutically acceptable salts thereof are examples of antisense oligonucleotides or pharmaceutically acceptable salts thereof.
  • the antisense oligonucleotide according to any one of [A1] to [A5] or a pharmaceutically acceptable salt thereof, which comprises one or more sugar-modified nucleosides.
  • the sugar-modified nucleoside is a nucleoside containing 4'-(CH 2 ) n- O-2'cross-linking (where n is 1 or 2 in the formula) or 2'-O-methylation, [A6].
  • the antisense oligonucleotide or a pharmaceutically acceptable salt thereof is a pharmaceutically acceptable salt thereof.
  • [A8] The antisense oligonucleotide according to any one of [A1] to [A7] or a pharmaceutically acceptable salt thereof, which comprises one or more modified nucleoside linkages.
  • [A9] The antisense oligonucleotide according to [A8] or a pharmaceutically acceptable salt thereof, wherein the modified nucleoside bond is a phosphorothioate bond.
  • [A10] The antisense oligonucleotide according to any one of [A1] to [A9] or a pharmaceutically acceptable salt thereof, which comprises the base sequence represented by any of SEQ ID NOs: 1 to 18 and 37 to 60.
  • [A11] In post-transcriptional modification of the XPF gene having the mutant intron 8 sequence represented by SEQ ID NO: 64, abnormal polyadenylation using the 324th to 329th polyA addition sequence in the nucleotide sequence represented by SEQ ID NO: 64.
  • [A12] Described in [A1] or [A11], which can hybridize with a sequence consisting of consecutive 15 to 30 nucleotides in the 309th to 343rd base sequences in the base sequence represented by SEQ ID NO: 64.
  • Antisense oligonucleotides or pharmaceutically acceptable salts thereof are examples of antisense oligonucleotides or pharmaceutically acceptable salts thereof.
  • [A13] 90% or more, preferably 95% or more, optimally completely complementary to the sequence consisting of consecutive 15 to 30 nucleotides in the 309th to 343rd base sequences in the base sequence represented by SEQ ID NO: 64.
  • [A14] Described in any of [A1] and [A11] to [A13], which comprises a base sequence represented by any of SEQ ID NOs: 83 to 100 (u may be replaced with t in the sequence).
  • Antisense oligonucleotide or pharmaceutically acceptable salt thereof is described in any of [A1] and [A11] to [A13]
  • the antisense oligonucleotide according to any one of [A1] and [A11] to [A14] or a pharmaceutically acceptable salt thereof, which comprises one or more sugar-modified nucleosides.
  • the sugar-modified nucleoside is a nucleoside containing 4'-(CH 2 ) n- O-2'cross-linking (where n is 1 or 2 in the formula) and 2'-O-methylation, [A15].
  • the antisense oligonucleotide or a pharmaceutically acceptable salt thereof is a nucleoside containing 4'-(CH 2 ) n- O-2'cross-linking (where n is 1 or 2 in the formula) and 2'-O-methylation, [A15].
  • [A17] The antisense oligonucleotide according to any one of [A1] and [A11] to [A16] or a pharmaceutically acceptable salt thereof, which comprises one or more modified nucleoside linkages.
  • [A18] The antisense oligonucleotide according to [A17] or a pharmaceutically acceptable salt thereof, wherein the modified nucleoside bond is a phosphorothioate bond.
  • [A19] The antisense oligonucleotide according to any one of [A1] and [A11] to [A18] or a pharmaceutically acceptable salt thereof, which comprises the base sequence represented by any of SEQ ID NOs: 19 to 36.
  • a therapeutic pharmaceutical composition for group F of xeroderma pigmentosum which comprises the antisense oligonucleotide according to any one of [A1] to [A19] or a pharmaceutically acceptable salt thereof.
  • FIG. 1A shows an increase in the amount of XPF mRNA splicing product in cells derived from an XPF patient transfected with the compound of Example 61. Black bars represent the correct amount of splicing products and white bars represent the amount of abnormal splicing products.
  • FIG. 1B shows an increase in XPF protein expression in cells derived from XPF patients transfected with the compound of Example 61.
  • FIG. 1C shows that DNA repair activity after UV irradiation is increased in cells derived from XPF patients transfected with the compound of Example 61.
  • FIG. 2A shows that DNA repair activity after UV irradiation is increased in cells derived from XPF patients transfected with the compounds of Examples 1-18.
  • FIG. 1A shows an increase in the amount of XPF mRNA splicing product in cells derived from an XPF patient transfected with the compound of Example 61. Black bars represent the correct amount of splicing products and white bars represent the amount of abnormal splicing products
  • FIG. 2B shows an increase in XPF protein expression in cells derived from XPF patients transfected with the compounds of Examples 1-18.
  • FIG. 3A shows that DNA repair activity after UV irradiation is increased in cells derived from XPF patients transfected with the compounds of Examples 11-14 and 37-60. Black bars represent the correct amount of splicing products and white bars represent the amount of abnormal splicing products.
  • FIG. 3B shows increased XPF protein expression levels in cells derived from XPF patients transfected with the compounds of Examples 11, 13, 37, 38, 44-46, and 53-60. The upper panel shows the expression level of XPF protein, and the lower panel shows the expression level of ⁇ -actin.
  • xeroderma pigmentosum F group (also referred to as XP-F group) is one of the complementary groups of xeroderma pigmentosum, and both GG-NER and TC-NER. Shows a defect.
  • the gene for which the causative mutation has been reported is the XPF gene.
  • the "XPF gene” is a human gene encoding an endonuclease involved in the nucleotide excision and repair mechanism.
  • the XPF gene is also referred to as the ERCC4 gene, ERCC11 gene, FANCQ gene, RAD1 gene, or XFEPS gene.
  • the sequence of the XPF gene is known as, for example, Homo sapiens ERCC excision repair 4, endonuclease catalytic subunit (ERCC4), RefSeqGene (LRG_463) on chromosome 16 (NCBI-GenBank accession No. NG_011442.1).
  • the "mutant intron 1 sequence” is the base sequence of intron 1 of the wild-type XPF gene (base sequence 5217 to 6874 in the above NG_011442.1), which is 196th from the 5'end of intron 1 (the base sequence of intron 1).
  • T of 5412 is a sequence mutated to A, and is a base sequence represented by SEQ ID NO: 63.
  • the mutation site corresponds to the 196th position in the base sequence represented by SEQ ID NO: 63.
  • the "mutant intron 8 sequence” refers to the 326th from the 5'end of the intron 8 in the base sequence of the wild-type XPF gene intron 8 (the base sequence of 20588 to 22609 in the above NG_011442.1).
  • C is the sequence mutated to T (20913th), and is the base sequence represented by SEQ ID NO: 64.
  • the mutation site corresponds to the 326th position in the base sequence represented by SEQ ID NO: 64.
  • post-transcriptional modification refers to the modification that pre-mRNA undergoes in the process of becoming a mature mRNA, which includes cap addition to the 5'end, polyadenylation at the 3'end, and splicing. included.
  • abnormal post-transcriptional modification refers to post-transcriptional modification that is not normally observed in post-transcriptional modification of wild-type genes, and includes, for example, abnormal splicing and abnormal polyadenylation.
  • abnormal splicing refers to splicing that is not normally found in post-transcriptional modification of wild-type genes.
  • mRNA splicing proceeds by recognizing the 5'splice site, branch site, and 3'splice site in the intron by the splicing factor, the small nuclear ribonuclear protein (snRNP).
  • the mutation at position 196 in the nucleotide sequence represented by SEQ ID NO: 63 gives rise to a new recognition sequence for the splicing factor U1 snRNP (GTATGTAA), which is number 193.
  • GTATGTAA splicing factor
  • the 5'side of guanine is the 5'splice site.
  • abnormal splicing occurs using the 5'splice site on the 5'side of the 193rd guanine and the 3'splice site on the 3'side of the 1658th guanine in the nucleotide sequence represented by SEQ ID NO: 63.
  • abnormal polyadenylation refers to polyadenylation that is not normally observed in post-transcriptional modification of wild-type genes.
  • Polyadenylation of mRNA occurs depending on the polyA addition sequence (also referred to as cleavage / polyadenylation factor binding sequence or polyadenylation signal).
  • Poly-A addition sequences in humans usually include AATAAA.
  • AATAAA poly A addition sequence
  • SEQ ID NO: 64 is generated by the 326th mutation in the nucleotide sequence represented by SEQ ID NO: 64.
  • abnormal polyadenylation using the 324th to 329th polyA addition sequences in the nucleotide sequence represented by SEQ ID NO: 64 occurs.
  • the "antisense oligonucleotide” is a single-stranded oligonucleotide having an ability to hybridize to a nucleotide containing a target base sequence. “Able to hybridize” means double-stranded with a target nucleotide by interaction between bases (AG (adenine-guanine) and CT / U (cytosine-thymine / uracil)). Means that can be formed. The antisense oligonucleotide need only have sequence complementarity with the target sequence to the extent that it can hybridize, and does not have to be a completely complementary sequence.
  • the antisense oligonucleotide can be a DNA, RNA, and DNA / RNA chimera.
  • the antisense oligonucleotide may also contain modifications such as modified nucleosides and bonds between modified nucleosides.
  • Hybridizing includes hybridizing under low stringent conditions, hybridizing under medium stringent conditions, and hybridizing under high stringent conditions.
  • Low stringent conditions can be, for example, 5 x SSC, 5 x Denhardt solution, 0.5% SDS, 50% formamide, 32 ° C., or equivalent.
  • Medium stringent conditions are, for example, 5 x SSC, 5 x Denhardt solution, 0.5% SDS, 50% formamide, 42 ° C, or 5 x SSC, 1% SDS, 50 mM Tris-HCl (pH 7.5). , 50% formamide, 42 ° C., or equivalent.
  • “High stringent conditions” are, for example, 5 ⁇ SSC, 5 ⁇ Denhardt solution, 0.5% SDS, 50% formamide, 50 ° C, or 0.2 ⁇ SSC, 0.1% SDS, 65 ° C, or equivalent conditions. Can be. Multiple factors such as temperature, probe concentration, probe length, ionic strength, time, and salt concentration can be considered as factors that affect the stringency of hybridization, and those skilled in the art will appropriately select these factors. By doing so, it is possible to achieve similar stringency. The above conditions can also be realized by using a commercially available hybridization reagent.
  • high stringent conditions can be defined as 0.7 in a commercially available hybridization solution ExpressHyb TM hybridization solution (manufactured by Clontech) by hybridizing at 68 ° C. or by using a filter on which DNA is fixed. After hybridization at 68 ° C. in the presence of ⁇ 1.0 M NaCl, a 0.1-2 times concentration SSC solution (1 time concentration SSC consists of 150 mM NaCl and 15 mM sodium citrate) was used at 68 ° C. It can be realized by cleaning with.
  • nucleosides include natural nucleosides and modified nucleosides.
  • Natural nucleosides are 2'-deoxy such as 2'-deoxyadenosine, 2'-deoxyguanosine, 2'-deoxycytidine, 2'-deoxy-5-methylcytidine, thymidine, 2'-deoxyuridine, etc.
  • Ribonucleosides such as nucleosides, adenosine, guanosine, thymidine, 5-methylcytidine, and uridine.
  • uracil (U) or (u) and thymine (T) or (t) are compatible, and either uracil (U) or (u) and thymine (T) or (t) It can be used for base pairing with the complementary strand adenine (A) or (a).
  • 2'-deoxy adenosine A t, 2'-deoxyguanosine and G t, 2'-deoxycytidine and C t, 2'-deoxy-5-methylcytidine 5meC t, thymidine T t, 2'-deoxyuridine may represent a U t.
  • nucleotides corresponding thereto in the present specification, 2'-deoxyadenosine nucleotide A p, 2'-deoxyguanosine nucleotides G p, 2'-deoxycytidine nucleotides C p, 2'-deoxy - 5meC 5-methyl cytidine nucleotides p, the thymidine nucleotides T p, sometimes a 2'-deoxyuridine nucleotide represented as U p.
  • sugar-modified nucleoside means a nucleoside in which the sugar portion of the nucleoside is modified.
  • Sugar-modified nucleosides include all forms of sugar modification known in the art to which the present invention belongs.
  • Sugar-modified nucleosides include, for example, 2'-modified nucleosides, 4'-thio-modified nucleosides, 4'-thio-2'-modified nucleosides and bicyclic sugar-modified nucleosides.
  • Examples of 2'-modified nucleotides are halo, allyl, amino, azide, O-allyl , OC 1- C 10 alkyl, OCF 3 , O- (CH 2 ) 2- O-CH 3 , 2'-.
  • O (CH 2 ) 2 SCH 3 , O- (CH 2 ) 2 -ON (R m ) (R n ), or O-CH 2- C ( O) -N (R m ) (R n )
  • Each R m and R n is H, an amino protecting group, or a substituted or unsubstituted C 1- C 10 alkyl individually.
  • 2'-O-methylguanosine 2'-O-methyladenosine, 2'-O-methylcytidine, and 2'-O-methyluridine.
  • 2'-O-aminoethylguanosine, 2'-O-aminoethyladenosine, 2'-O-aminoethylcytidine, and 2'-O-aminoethyluridine are described in the literature (Blommers et al. Biochemistry (1998), 37). , 17714-17725.).
  • 2'-O-propylguanosine, 2'-O-propyladenosine, 2'-O-propylcytidine, and 2'-O-propyluridine are described in the literature (Lesnik, EA et al. Biochemistry (1993), 32, 7832). -7838.) Can be synthesized according to. Commercially available reagents can be used for 2'-O-allyl guanosine, 2'-O-allyl adenosine, 2'-O-allyl cytidine, and 2'-O-allyl uridine.
  • 2'-O-Methoxyethyl guanosine, 2'-O-Methoxyethyl adenosine, 2'-O-Methoxyethyl cytidine, and 2'-O-Methoxyethyl uridine are available in the patent (US6261840) or in the literature (Martin, P. et al. Synthesized according to Helv. Chim. Acta. (1995) 78, 486-504.
  • 2'-O-butylguanosine, 2'-O-butyladenosine, 2'-O-butylcytidine, and 2'-O-butyl Uridine can be synthesized according to the literature (Lesnik, EA et al.
  • Examples of 4'-thio-modified nucleosides include ⁇ -D-ribonucleosides in which the 4'-oxygen atom is replaced by a sulfur atom (Hoshika, S. et al. FEBS Lett. 579, p. 3115). -3118, (2005); Dande, P. et al. J. Med. Chem. 49, p. 1624-1634 (2006); Hoshika, S. et al. ChemBioChem. 8, p. 2133-2138, (2007). )).
  • 4'-thio-2'-modified nucleosides examples include 2'-H or 4'-thio-2'-modified nucleosides carrying 2'-O-methyl (Matsugami, et.). al. Nucleic Acids Res. 36, 1805 (2008)).
  • bicyclic sugar-modified nucleosides include nucleosides that retain a second ring formed by cross-linking two atoms of the ribose ring, and examples of such nucleosides are 2'-. 2', 4'-BNA / LNA (bridged nucleoside acids / locked nucleoside acids) (Obika, S. et al. Tetrahedron Lett., 38, p. 8735-) in which an oxygen atom and a 4'-carbon atom are crosslinked with a methylene chain. (1997) .; Obika, S. et al., Tetrahedron Lett., 39, p.5401- (1998) .; A.A.
  • a sugar-modified nucleosides that include a 2'-O- methylation modification for example, those corresponding to A t A m1t, G m1t those corresponding to G t, those corresponding to the C t C M1T, may 5meC those corresponding to 5meC t M1T, those corresponding to U t is expressed as like U M1T.
  • sugar modified nucleotides containing 2'-O- methylation modification corresponding to them those corresponding to A p A m1p, G m1p those corresponding to G p, those corresponding to the C p C m1p , may represent 5meC m1p those corresponding to 5meC p, those corresponding to U p and U m1p.
  • a sugar-modified nucleosides that include a 2'-O- methoxyethyl of modifications, for example, those corresponding to A t A m2t, G m2t those corresponding to G t, those corresponding to 5meC t 5meC m2t, those corresponding to T t may be represented by such T m2t.
  • the sugar modified nucleosides containing 4'-CH 2 -0-2 'bridge correspond to one corresponding to A t A 1t, those corresponding to the G t in G 1t, 5meC t sometimes represent things C 1t, those corresponding to T t and T 1t.
  • the sugar-modified nucleotides comprising a 4'-CH 2 -0-2 'bridge their corresponding, which corresponds to that corresponding to A p A E1p, those corresponding to the G p G E1p, the 5meC p certain C E1p, also those corresponding to T p represents a T E1p.
  • 4 - as a sugar-modified nucleosides that include a '(CH 2) 2 -0-2' bridge for example, those corresponding to A t A 2t, those corresponding to the G t G 2t, 5meC t
  • the one corresponding to T t may be expressed as C 2t
  • the one corresponding to T t may be expressed as T 2t.
  • the "modified nucleoside bond” refers to a bond in which a naturally occurring nucleoside bond (that is, a phosphodiester nucleoside bond) is replaced or changed. That is, the antisense oligonucleotide containing the modified nucleoside linkage comprises the modification of the phosphate group of at least one nucleotide.
  • the modified nucleoside bond include a phosphorothioate bond, a phosphorodithioate bond, an alkylphosphonate bond, a boranophosphate bond, a phosphoramidate bond and the like.
  • phosphorothioate esters has a phosphorothioate ester in place of phosphoric acid esters of nucleotides, the one corresponding to A p A s, a G s which corresponds to G p, those corresponding to the C p some C s, 5meC those corresponding to 5meC p s, the T s corresponds to T p, also those corresponding to U p expressed as U s.
  • T For 2'-O- methoxyethyl of modified and sugar-modified nucleotides comprising a phosphorothioate, those corresponding to A s A m2s, those corresponding to the G s G m2s, 5meC those corresponding to 5meC s m2s, T The one corresponding to s may be expressed as T m2s.
  • the treatment of a disease or symptom includes prevention of the onset of the disease, suppression or inhibition of exacerbation or progression, alleviation or exacerbation or suppression of progression of one or more symptoms exhibited by an individual suffering from the disease. Includes treatment of secondary illnesses.
  • the pharmaceutical composition of the present invention and the antisense oligonucleotide relates to a pharmaceutical composition for treating xeroderma pigmentosum F group (XP-F group) (hereinafter referred to as the pharmaceutical composition of the present invention), and Provided is an antisense oligonucleotide which is an active ingredient thereof or a pharmaceutically acceptable salt thereof.
  • XP-F group xeroderma pigmentosum F group
  • the pharmaceutical composition of the present invention contains an antisense oligonucleotide that suppresses abnormal post-transcriptional modifications caused by disease-causing mutations in the XP-F group, particularly abnormal post-transcriptional modifications caused by two types of novel intron internal mutations.
  • an antisense oligonucleotide that suppresses abnormal post-transcriptional modifications caused by disease-causing mutations in the XP-F group, particularly abnormal post-transcriptional modifications caused by two types of novel intron internal mutations.
  • the two mutations that are the cause of the disease in the XP-F group newly identified by the present inventors are the introns in the base sequence of intron 1 of the wild XPF gene (base sequence 5217 to 6874 in the above NG_011442.1).
  • the application target of the pharmaceutical composition of the present invention is the XP-F group in which at least one of these two types of mutations is the cause of the disease.
  • the XPF gene contains the above-mentioned mutation, and as long as the above-mentioned abnormal splicing or abnormal polyadenylation can occur, the XPF gene is further mutated (for example, deletion or substitution of one or several nucleotides). Addition or insertion) may be included.
  • the antisense oligonucleotide of the present invention or a pharmaceutically acceptable salt thereof has a base sequence capable of hybridizing with a part of the intron region of the XPF gene. As long as the abnormal post-transcriptional modification of the XPF gene can be suppressed, a part of the intron region, that is, the range of the target sequence is not particularly limited. Whether or not the antisense oligonucleotide of the present invention or a pharmaceutically acceptable salt thereof can suppress abnormal post-transcriptional modification of the XPF gene is described in the following Examples, Evaluation of XPF mRNA Splicing Product Amount, Protein. It is determined by the same evaluation method as the expression level evaluation or the repair activity evaluation.
  • the antisense oligonucleotide or its pharmaceutically acceptable salt is abnormally transcribed of the XPF gene. It is judged to suppress post-modification.
  • the pharmaceutical composition of the present invention applies to the XP-F group whose disease cause is the above-mentioned mutation in intron 1.
  • the pharmaceutical composition of the present invention in this embodiment is referred to as the pharmaceutical composition I of the present invention.
  • the pharmaceutical composition I of the present invention is located on the 5'side of the 193rd guanine in the nucleotide sequence represented by SEQ ID NO: 63. It contains one or more antisense oligonucleotides that suppress abnormal splicing using the 5'splice site and the 3'splice site on the 3'side of position 1658 guanine.
  • SEQ ID NO: 63 "abnormal splicing using the 5'splice site on the 5'side of the 193rd guanine and the 3'splice site on the 3'side of the 1658th guanine in the nucleotide sequence represented by SEQ ID NO: 63" is referred to as "SEQ ID NO: It can also be rephrased as "abnormal splicing in which the 1st to 192nd adenine in the base sequence represented by 63 is recognized as an exon and the 1658th guanine from the 193rd guanine is recognized as an intron".
  • Whether or not the antisense oligonucleotide in the pharmaceutical composition I of the present invention suppresses abnormal splicing in intron 1 is determined by the XPF mRNA splicing product amount evaluation, protein expression level evaluation, or repair activity evaluation described in the following Examples. It is determined by a similar evaluation method. If an increase in the expression of the correctly spliced XPF gene or a recovery in the DNA repair activity is confirmed by any of the evaluation methods, it is judged that the antisense oligonucleotide suppresses the abnormal splicing in the intron 1.
  • ddPCR Droplet digital PCR
  • ddPCR can be performed using commercially available reagents and equipment (eg, QX100 TM Droplet Digital TM PCR system (Bio-Rad Laboratories, Inc.), etc.).
  • protein expression assessment whether or not transfection of antisense oligonucleotides increases correctly spliced XPF gene products in cells derived from patients in the XP-F group whose disease is caused by the above mutation in intron 1. Is confirmed by Western blotting.
  • the repair activity evaluation in cells derived from patients in the XP-F group caused by the above mutation in intron 1, the activity of repairing DNA damage caused by UV irradiation by transfecting an antisense oligonucleotide was found. Check if it recovers.
  • the antisense oligonucleotide in the pharmaceutical composition I of the present invention is not limited to a specific one as long as it suppresses abnormal splicing in intron 1, but for example, it is located at positions 155 to 217 (preferably) in the base sequence represented by SEQ ID NO: 63. Is a contiguous 15-30 nucleotides (preferably 15-23 nucleotides, more preferably 15) in the 175th-217th, more preferably 179th-213rd, even more preferably 183rd-203rd base sequence. A sequence consisting of ( ⁇ 18 nucleotides) can be targeted.
  • the base sequence targeted by the antisense oligonucleotide in the pharmaceutical composition I of the present invention is a base sequence represented by any one selected from SEQ ID NOs: 65 to 82, 101 to 108, and 124 to 135.
  • the antisense oligonucleotide in the pharmaceutical composition I of the present invention can hybridize with the sequence (ie, the target sequence).
  • the antisense oligonucleotide in the pharmaceutical composition I of the present invention can hybridize with the target sequence under highly stringent conditions.
  • the antisense oligonucleotide in the pharmaceutical composition I of the present invention may have a base sequence (tail sequence) that does not contribute to hybridization with the target sequence at its 5'end and / or 3'end.
  • the number of bases contained in each tail sequence is 5 or less (preferably 4, 3, 2 or 1), and those having no tail sequence are optimal.
  • the base sequence of the portion of the pharmaceutical composition I of the present invention excluding the tail sequence of the antisense oligonucleotide has a sequence complementarity of 70% or more with the target sequence as long as it retains the hybridization activity with the target sequence. It is preferably 80% or more, more preferably 90% or more, even more preferably 95% or more, and is optimally completely complementary.
  • the antisense oligonucleotides in pharmaceutical composition I of the present invention are SEQ ID NOs: 65-82, 101-108, and 124-135 (preferably SEQ ID NOs: 65-82, 101, and 105-108, more preferably. Includes a base sequence represented by any one selected from SEQ ID NOs: 65-82, and even more preferably SEQ ID NOs: 75-78).
  • the nucleotide sequences represented by SEQ ID NOs: 65 to 82, 101 to 108, and 124 to 135 are RNA sequences corresponding to SEQ ID NOs: 1 to 18, 53 to 60, and 112 to 123, respectively, which are described in Examples described later. It is described as.
  • the uridine residue in the antisense oligonucleotide may be replaced with a modified nucleotide based on the corresponding thymidine residue. Therefore, the base sequence in which "u” is replaced with "t” in the base sequences represented by SEQ ID NOs: 65 to 82, 101 to 108, and 124 to 135 is also included in this embodiment.
  • the base sequence of the portion of the pharmaceutical composition I of the present invention excluding the tail sequence of the antisense oligonucleotide is 5 bases or less (preferably) with the target sequence as long as it has hybrid activity with the target sequence. There may be a mismatch of 4 bases or less, more preferably 3 bases, 2 bases or 1 base), but optimally there is no mismatch.
  • the antisense oligonucleotide in the pharmaceutical composition I of the present invention is the recognition sequence GTAAGTAA of the 5'splice site newly generated in the mutant intron 1 sequence (No. 193 to 200 in the base sequence represented by SEQ ID NO: 63). It is considered that abnormal splicing is suppressed by inhibiting the binding of U1snRNP to (sequence).
  • U1 snRNP has a sequence that is almost complementary to the recognition sequence at the 5'splice site, and base pairs are formed during the splicing process.
  • the antisense oligonucleotide in the pharmaceutical composition I of the present invention is at least one base of the 193 to 200th sequence in the base sequence represented by SEQ ID NO: 63, for example, 2 bases, 3 bases, 4 bases. Sequences containing 5, 6 bases, 7 bases, or 8 bases can be targeted.
  • the length of the antisense oligonucleotide in the pharmaceutical composition I of the present invention is not particularly limited as long as it suppresses abnormal splicing in intron 1, and is, for example, 15 to 30 nucleotides, 15 to 23 nucleotides, or 15 to 18 nucleotides. obtain.
  • the pharmaceutical composition of the present invention applies to the XP-F group whose disease cause is the above-mentioned mutation in intron 8.
  • the pharmaceutical composition of the present invention in this embodiment is referred to as the pharmaceutical composition II of the present invention.
  • the pharmaceutical composition II of the present invention adds polyA at positions 324 to 329 in the base sequence represented by SEQ ID NO: 64. Includes one or more antisense oligonucleotides that suppress aberrant polyadenylation using sequences.
  • whether or not the antisense oligonucleotide in the pharmaceutical composition II of the present invention suppresses abnormal polyadenylation in intron 8 is determined by the same evaluation method as the protein expression level evaluation or repair activity evaluation described in the following Examples. It is determined. If an increase in the expression of the correctly spliced XPF gene or a recovery in the DNA repair activity is confirmed by any of the evaluation methods, it is judged that the antisense oligonucleotide suppresses the abnormal polyadenylation in the intron 8.
  • transfection of antisense oligonucleotides increases the polyadenylated XPF gene product at the correct location in cells from patients in the XP-F group whose disease is caused by the mutation in intron 8. Check if it is.
  • repair activity cells derived from patients in the XP-F group caused by the above mutation in intron 8 were found to have the activity of repairing DNA damage caused by UV irradiation by transfecting antisense oligonucleotides. Check if it recovers.
  • the antisense oligonucleotide in the pharmaceutical composition II of the present invention is not limited to a specific one as long as it suppresses abnormal polyadenylation in intron 8, but for example, the 309th to 343rd nucleotides in the nucleotide sequence represented by SEQ ID NO: 64.
  • a sequence consisting of 15 to 30 nucleotides, 15 to 23 nucleotides, or 15 to 18 nucleotides in a sequence within a base sequence can be targeted.
  • the antisense oligonucleotide in the pharmaceutical composition II of the present invention can hybridize with the above sequence (ie, the target sequence).
  • the antisense oligonucleotide in the pharmaceutical composition II of the present invention can hybridize with the target sequence under highly stringent conditions.
  • the antisense oligonucleotide in the pharmaceutical composition II of the present invention may have a base sequence (tail sequence) that does not contribute to hybridization with the target sequence at its 5'end and / or 3'end.
  • the number of bases contained in each tail sequence is 5 or less (preferably 4, 3, 2 or 1), and those having no tail sequence are optimal.
  • the base sequence of the portion of the pharmaceutical composition II of the present invention excluding the tail sequence of the antisense oligonucleotide has a sequence complementarity of 70% or more with the target sequence as long as it retains the hybridization activity with the target sequence. It is preferably 80% or more, more preferably 90% or more, even more preferably 95% or more, and is optimally completely complementary.
  • the antisense oligonucleotide in the pharmaceutical composition II of the present invention comprises the base sequence represented by SEQ ID NOs: 83-100.
  • the base sequences represented by SEQ ID NOs: 83 to 100 are described as RNA sequences corresponding to SEQ ID NOs: 19 to 36 described in Examples described later.
  • the uridine residue in the antisense oligonucleotide may be replaced with a modified nucleotide based on the corresponding thymidine residue. Therefore, the base sequence in which "u" is replaced with "t” in the base sequence represented by SEQ ID NOs: 83 to 100 is also included in this embodiment.
  • the base sequence of the portion of the pharmaceutical composition II of the present invention excluding the tail sequence of the antisense oligonucleotide is 5 bases or less (preferably) with the target sequence as long as it has hybrid activity with the target sequence. There may be a mismatch of 4 bases or less, more preferably 3 bases, 2 bases or 1 base), but optimally there is no mismatch.
  • the antisense oligonucleotide in the pharmaceutical composition II of the present invention is a polyA addition sequence AATAAA newly generated in the mutant intron 8 sequence (sequences 324 to 329 in the base sequence represented by SEQ ID NO: 64). It is thought that abnormal polyadenylation is suppressed by inhibiting cleavage and binding of polyadenylation factor (CPSF) to. Therefore, in a preferred embodiment, the antisense oligonucleotide in the pharmaceutical composition II of the present invention is at least one base of the 324 to 329th sequence in the base sequence represented by SEQ ID NO: 64, for example, 2 bases, 3 bases, 4 bases. Sequences containing 5, or 6 bases can be targeted.
  • the length of the antisense oligonucleotide in the pharmaceutical composition II of the present invention is not particularly limited as long as it suppresses abnormal polyadenylation in intron 1, but is, for example, 15 to 30 nucleotides, 15 to 23 nucleotides, or 15 to 18 nucleotides. possible.
  • the antisense oligonucleotide in the pharmaceutical composition of the present invention may be any of DNA, RNA, and DNA / RNA chimera. By making it a DNA / RNA chimera, the nuclease resistance of the antisense oligonucleotide can be increased and the stability in vivo can be enhanced.
  • the antisense oligonucleotide in the pharmaceutical composition of the present invention may contain one or more modifications to increase nuclease resistance and enhance in vivo stability.
  • Modifications include, for example, modification of the sugar moiety of the nucleoside and modification of the phosphate group of the nucleotide. Examples of the bond between the sugar-modified nucleoside and the modified nucleoside include those described in 1 above.
  • the antisense oligonucleotide comprises one or more sugar modified nucleosides. All of the nucleosides contained in the antisense oligonucleotide may be sugar-modified nucleosides.
  • the antisense oligonucleotide may contain two or more sugar-modified nucleosides containing modifications of different sugar moieties.
  • the sugar-modified nucleoside is preferably a nucleoside containing 4'-(CH 2 ) n- O-2'cross-linking (where n is 1 or 2 in the formula) or 2'-O-methylation.
  • the antisense oligonucleotide contains a sugar-modified nucleoside containing a 4'-(CH 2 ) 2- O-2'crosslink
  • the number is not particularly limited, but one or more, for example, two or more, or three. It can be 4 or more, 5 or more, or 6 or more, 12 or less, for example, 11 or less, 10 or less, or 9 or less.
  • all of the nucleosides contained in the antisense oligonucleotide are sugar-modified nucleosides, where the sugar-modified nucleoside is a sugar-modified nucleoside containing a 4'-(CH 2 ) 2- O-2'bridge, 2'-.
  • the antisense oligonucleotide comprises one or more modified nucleoside linkages. Different modified nucleoside linkages may be included in the antisense oligonucleotide. Further, all the nucleoside linkages in the antisense oligonucleotide may be modified nucleoside linkages. In a more preferred embodiment, the modified nucleoside bond is a phosphorothioate bond. In an even more preferred embodiment, all nucleoside linkages in the antisense oligonucleotide are modified nucleoside linkages and the modified nucleoside linkages are phosphorothioate linkages.
  • the antisense oligonucleotide in the pharmaceutical composition I of the present invention is selected from the group consisting of oligonucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1-18, 37-60 and 112-123.
  • the nucleosides contained in these oligonucleotides are either sugar-modified nucleosides containing 4'-(CH 2 ) 2 -O-2'crosslinks or sugar-modified nucleosides containing 2'-O-methylation.
  • all the nucleoside-to-nucleoside bonds in these oligonucleotides are phosphorothioate bonds.
  • More suitable antisense oligonucleotides in the pharmaceutical composition I of the present invention are the oligonucleotides shown below.
  • Example 11 (XPF-int1-011): HO -C m1s -C e2s -C m1s -U m1s -T e2s -A m1s -C m1s -T e2s -U m1s -A m1s -C e2s -G m1s -U m1s- C e2s- U m1s- G m1s- T e2s- G m1t- H (SEQ ID NO: 11)
  • Example 12 (XPF-int1-012): HO -C m1s -C e2s -U m1s -U m1s -A e2s -C m1s -U m1s -T e2s -A m1s -C m1s -G e2s -U m1s -C m1s- T
  • the antisense oligonucleotide in the pharmaceutical composition II of the present invention is selected from the group consisting of oligonucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 19 to 36.
  • the nucleosides contained in these oligonucleotides are either sugar-modified nucleosides containing 4'-(CH 2 ) 2 -O-2'crosslinks or sugar-modified nucleosides containing 2'-O-methylation.
  • all the nucleoside-to-nucleoside bonds in these oligonucleotides are phosphorothioate bonds.
  • the method for preparing the antisense oligonucleotide is not particularly limited, but a known chemical synthesis method (phosphoric acid triester method, phosphoramidite method, H-phosphonate method, etc.) can be used. It may be synthesized by using a commercially available nucleic acid synthesizer and using a commercially available reagent used for DNA / RNA synthesis. For example, after coupling a phosphoramidite reagent, a reagent such as sulfur, tetraethylthiura disulfide (TETD, Applied Biosystem), Beaucage reagent (Glen Research), or xanthan hydride is reacted to have a phosphorothioate bond.
  • TETD tetraethylthiura disulfide
  • Beaucage reagent Glen Research
  • xanthan hydride xanthan hydride
  • Antisense oligonucleotides can be synthesized (T
  • the oligonucleotide (antisense oligonucleotide) of the present invention may have a group having a desired chemical structure at the 5'end and / or 3'end to control the physical properties and pharmacokinetics of the oligonucleotide.
  • an aminoalkyl group can be introduced at the 5'end and / or 3'end of the oligonucleotide (antisense oligonucleotide) of the present invention, through which the desired chemical structure can be added.
  • the introduction of the aminoalkyl group into the oligonucleotide may be carried out by a method known in the art, or may be carried out using a commercially available reagent.
  • 5'-Amino-Modifier C6 Glen Research
  • 5'-TFA-Amino-Modifier C6-CE Phosphoramidite 5'-TFA-Amino-Modifier-
  • an amino modification reagent such as C5-CE Phosphoramidite (Link Technologies)
  • an oligonucleotide in which an aminoalkylphosphate group is bonded to the 5'end can be synthesized.
  • an oligonucleotide in which an aminoalkyl group is bonded to the 3'end can be synthesized.
  • oligonucleotide As a chemical structure that can be introduced into the 5'end and / or 3'end of the oligonucleotide (antisense oligonucleotide) of the present invention, it is known in the art that the physical properties and pharmacokinetics of the oligonucleotide can be controlled. Any chemical structure can be utilized, including, for example, fatty acids, cholesterol, GalNAc structures and the like.
  • antisense oligonucleotides can be synthesized using amidite compounds containing fatty acids that are useful for the transfer of nucleic acids to muscle tissue, and the transfer of antisense oligonucleotides to muscle tissue can be promoted.
  • amidite compounds containing fatty acids that are useful for the transfer of nucleic acids to muscle tissue, and the transfer of antisense oligonucleotides to muscle tissue can be promoted.
  • Known eg, Link Technologies products such as Nucleic Acids Res.
  • antisense oligonucleotides can be synthesized using amidite compounds containing a GalNAc structure, which is useful for the transfer of nucleic acids to hepatocytes, and that antisense oligonucleotides can be specifically delivered to hepatocytes.
  • the antisense oligonucleotide in the pharmaceutical composition of the present invention may be in the form of a pharmaceutically acceptable salt thereof.
  • the pharmaceutically acceptable salt means a salt of an oligonucleotide (antisense oligonucleotide), and examples of such a salt include alkali metal salts such as sodium salt, potassium salt and lithium salt, calcium salt and magnesium.
  • Alkaline earth metal salts such as salts, aluminum salts, iron salts, zinc salts, copper salts, nickel salts, cobalt salts and other metal salts; inorganic salts such as ammonium salts, t-octylamine salts, dibenzylamine salts , Morphorine salt, glucosamine salt, phenylglycine alkyl ester salt, ethylenediamine salt, N-methylglucamine salt, guanidine salt, diethylamine salt, triethylamine salt, dicyclohexylamine salt, N, N'-dibenzylethylenediamine salt, chloroprocine salt, Amine salts such as prokine salts, diethanolamine salts, N-benzyl-phenethylamine salts, piperazine salts, tetramethylammonium salts, organic salts such as tris (hydroxymethyl) aminomethane salts; hydrofluorates, hydrochlorides, bromide Hydroch
  • the antisense oligonucleotide of the pharmaceutical composition of the present invention and a pharmaceutically acceptable salt thereof may also exist as a solvate (for example, a hydrate), and even such a solvate may exist. Good.
  • the pharmaceutical composition of the present invention can be formulated by mixing an antisense oligonucleotide and an appropriate pharmaceutically acceptable additive.
  • the pharmaceutical composition of the present invention can be administered orally as a preparation such as tablets, capsules and granules, or parenterally as a preparation such as an injection and a transdermal absorbent.
  • formulations are excipients, binders, disintegrants, lubricants, emulsifiers, stabilizers, diluents, solvents for injections, solubilizers, suspending agents, isotonic agents, buffers, painless It can be produced by a well-known method using additives such as an agent, a preservative, and an antioxidant.
  • excipients examples include organic excipients and inorganic excipients.
  • examples of the organic excipient include sugar derivatives such as lactose and sucrose; starch derivatives such as corn starch and potato starch; cellulose derivatives such as crystalline cellulose; and gum arabic.
  • examples of the inorganic excipient include sulfates such as calcium sulfate.
  • binder examples include the above-mentioned excipients; gelatin; polyvinylpyrrolidone; polyethylene glycol and the like.
  • disintegrant examples include the above-mentioned excipients; chemically modified starch or cellulose derivatives such as croscarmellose sodium and sodium carboxymethyl starch; and crosslinked polyvinylpyrrolidone.
  • Lubricants include, for example, talc; stearic acid; colloidal silica; bead wax, waxes such as gay wax; sulfates such as sodium sulfate; lauryl sulfates such as sodium lauryl sulfate; in the above excipients.
  • examples include starch derivatives.
  • the emulsifiers include, for example, colloidal clays such as bentonite, beagum; anionic surfactants such as sodium lauryl sulfate; cationic surfactants such as benzalkonium chloride; nonionic surfactants such as polyoxyethylene alkyl ethers. Examples include ionic surfactants.
  • stabilizers examples include parahydroxybenzoic acid esters such as methylparaben and propylparaben; alcohols such as chlorobutanol; phenols and phenols such as cresol.
  • diluent examples include water, ethanol, propylene glycol and the like.
  • Examples of the solvent for injection include water, ethanol, glycerin and the like.
  • solubilizing agent examples include polyethylene glycol, propylene glycol, D-mannitol, benzyl benzoate, ethanol, trisaminomethane, cholesterol, triethanolamine, sodium carbonate, sodium citrate and the like.
  • suspending agent for example, surfactants such as stearyltriethanolamine, sodium lauryl sulfate, laurylaminopropionic acid, lecithin, benzalkonium chloride, benzethonium chloride, glycerin monostearate; for example, polyvinyl alcohol, polyvinylpyrrolidone, carboxy Examples thereof include hydrophilic polymers such as sodium methylcellulose, methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, and hydroxypropylcellulose.
  • tonicity agent examples include sodium chloride, glycerin, D-mannitol and the like.
  • the buffer examples include a buffer solution such as phosphate, acetate, carbonate, and citrate.
  • Examples of the pain-relieving agent include benzyl alcohol and the like.
  • preservatives include paraoxybenzoic acid esters, chlorobutanol, benzyl alcohol, phenethyl alcohol, dehydroacetic acid, sorbic acid and the like.
  • antioxidants examples include sulfites and ascorbic acid.
  • the subject to which the pharmaceutical composition of the present invention is administered is a human.
  • the route of administration of the pharmaceutical composition of the present invention may be either oral administration or parenteral administration, and a suitable administration route may be selected according to the target symptomatology.
  • the route of administration may be either systemic administration or topical administration.
  • parenteral administration include intravenous administration, intraarterial administration, intrathecal administration, intramuscular administration, intradermal administration, subcutaneous administration, intraperitoneal administration, transdermal administration, intraosseous administration, and intra-articular administration. be able to.
  • transdermal and subcutaneous administration may be selected for cutaneous symptoms
  • intrathecal administration may be selected for neurological symptoms.
  • the pharmaceutical composition of the present invention is administered to a subject in a therapeutically effective amount.
  • “Therapeutic effective amount” means the amount that exerts a therapeutic effect for a specific disease, administration form and administration route, depending on the target species, type of disease, symptom, gender, age, chronic disease, and other factors. Will be decided as appropriate.
  • the dose of the pharmaceutical composition of the present invention can be appropriately determined according to the target species, the type of disease, symptoms, gender, age, chronic disease, and other factors.
  • the pharmaceutical composition of the present invention may be used in combination with at least one known therapeutic agent or method.
  • the present invention also provides a method for treating xeroderma pigmentosum F group, which comprises administering a therapeutically effective amount of the pharmaceutical composition of the present invention to a subject in need thereof.
  • the "therapeutic effective amount” in the present invention means an amount that exerts a therapeutic effect for a specific disease or symptom, administration form and administration route, and refers to a target species, disease or symptom type, symptom, sex, age, chronic disease, etc. It is determined as appropriate according to other factors.
  • the reagent was activator solution-3 (0.25 mol / L). 5-benzylthio-1H-Tetrazole / acetonitrile solution, manufactured by Wako Pure Chemical Industries, Ltd., product No. 013-20011), CAP A for AKTA (1-methylimidazole / acetonitrile solution, manufactured by Sigma-Aldrich, product No. L040050), Cap B1 for AKTA (anhydrous acetic acid / acetonitrile solution, manufactured by Sigma-Aldrich, product No. L050050), Cap B2 for AKTA (pyridine / acetonitrile solution, manufactured by Sigma-Aldrich, product No.
  • the one manufactured by ChemGenes was used.
  • the non-natural phosphoramidite used was Example 14 (5'-O-dimethoxytrityl-2'-O, 4'-C-ethylene-6-N-) of JP-A-2000-297097.
  • Example 27 Benzoyladenosine-3'-O- (2-cyanoethyl N, N-diisopropyl) phosphoramidite
  • Example 27 (5'-O-dimethoxytrityl-2'-O, 4'-C-ethylene-2-N -Isobutyryl guanosine-3'-O- (2-Cyanoe) Phosphoramidite)
  • Example 22 (5'-O-dimethoxytrityl-2'-O, 4'-C-ethylene-4-N-benzoyl-5-methylcytidine-3'- O- (2-cyanoethyl N, N-diisopropyl) phosphoramidite)
  • Example 9 (5'-O-dimethoxytrityl-2'-O, 4'-C-ethylene-5-methyluridine-3'-O -(2-Cyanoethyl N, N-diisopropyl) phosphoramidite), compound was used.
  • the oligomer was excised from the support by treating the protected oligonucleotide analog having the target sequence with 600 ⁇ L of concentrated aqueous ammonia, and the protecting group cyanoethyl group on the phosphorus atom and the protecting group on the nucleic acid base were removed.
  • a mixed solution of oligomers was mixed with 300 ⁇ L of Clarity QSP DNA Loading Buffer (manufactured by Phenomenex) and charged onto a Clarity SPE 96 well plate (manufactured by Phenomenex).
  • the components extracted in the above were collected. After distilling off the solvent, the target compound was obtained.
  • This compound is a reverse phase HPLC (column (Phenomenex, Clarity 2.6 ⁇ m Oligo-MS 100A (2.1 ⁇ 50 mm)), solution A: 100 mM hexafluoroisopropanol (HFIP), aqueous solution 8 mM triethylamine, solution B: methanol, B. %: 10% ⁇ 25% (4min, linear gradient); 60 ° C; 0.5mL / min; 260nm), elution was performed at 2.78 minutes.
  • Compounds were identified by negative ion ESI mass spectrometry.
  • the base sequence of this compound is the 412th in the mRNA encoded by Homo sapiens ERCC excision repair 4, endonuclease catalytic subunit (ERCC4) (NCBI-GenBank accession No. NG_011442.1).
  • T is a sequence complementary to the 412-429th sequence of the sequence in which T is mutated to A.
  • Example 2 to 36 The compounds of Examples 2 to 36 were also synthesized in the same manner as the compounds of Example 1. Information on the compounds of Examples 1 to 36 is given in Table 1.
  • Examples 37 to 60 The compounds of Examples 37 to 60 were also synthesized in the same manner as in Example 1. Information on the compounds of Examples 37-60 is shown in Table 2.
  • sequence In the "sequence” in the table, uppercase letters indicate ENA and lowercase letters indicate 2'-OMeRNA. All bonds between nucleosides are phosphorothioate bonds. “Start” and “end” in the table indicate the nucleotide number of the base sequence represented by SEQ ID NO: 63, and “sequence” in the table is complementary to the base sequence from “start” to “end”. Shows the sequence. "Molecular weight” in the table indicates the measured value by negative ion ESI mass spectrometry.
  • Example 61 HO-C e1s -C s -T e1s -T s -A e1s -C s -T e1s -T s -A e1s -C s -G e1s -T s -C e1s -T s -G 1t -H (LNA) -int1-001) (SEQ ID NO: 61)
  • the compound of Example 61 was synthesized using the phosphoramidite method (Nucleic Acids Research, 12, 4539 (1984).
  • the LNA moiety was synthesized using the phosphoramidite compound described in WO99 / 14226. , Or, in the figure, it may be expressed as "LNA”.
  • This compound is a reverse phase HPLC (column (X-Bridge C18 2.5 ⁇ m (4.6 ⁇ 75 mm)), solution A: 100 mM hexafluoroisopropanol (HFIP), aqueous solution of 8 mM triethylamine, solution B: methanol, B%: 5 When analyzed at% ⁇ 30% (20 min, linear gradient); 60 ° C; 1 mL / min; 260 nm), elution was performed at 10.23 minutes. The compound was identified by negative ion ESI mass spectrometry (measured value: 4927.26).
  • This compound is a reverse phase HPLC (column (X-Bridge C18 2.5 ⁇ m (4.6 ⁇ 75 mm)), solution A: 100 mM hexafluoroisopropanol (HFIP), aqueous solution of 8 mM triethylamine, solution B: methanol, B%: 5 When analyzed at% ⁇ 30% (20 min, linear gradient); 60 ° C; 1 mL / min; 260 nm), elution was performed at 10.46 minutes. The compound was identified by negative ion ESI mass spectrometry (measured value: 4791.16).
  • Example 1 Analysis of XPF mRNA splicing product amount, XPF protein expression level, and DNA damage repair activity by Example compounds (1) 1-1. Evaluation of XPF mRNA splicing product amount Patient-derived cells (Matsumura et al. Hum. Mol. Genet. 1998, 7 (6), 969-974) were seeded in 5x10 4 cells per well on a 6-well plate. After 24 hours, LNA was transfected with Lipofectamine 2000 (Thermo Fisher Scientific) at a final concentration of 40 nM. After 4 hours, the medium was replaced with new medium (DMEM 10% FBS). Cells were harvested 24 hours after transfection. Total RNA was extracted with Direct-zol TM RNA MiniPrep (ZYMO RESEARCH).
  • CDNA was obtained from 100 ng of total RNA using SuperScript® IV (Thermo Fisher Scientific). Droplet digital PCR (ddPCR) was performed on the QX100 TM Droplet Digital TM PCR system (Bio-Rad Laboratories, Inc.) to quantify splicing products. Similarly, splicing products were quantified for healthy human-derived fibroblasts (48BR).
  • ddPCR Droplet digital PCR
  • ddPCR was performed according to the following procedure.
  • QX200 Eva Green ddPCR Supermix Bio-Rad Laboratories, Inc.
  • Forward primer and Reverse primer were added to a final concentration of 100 nM, respectively.
  • Sample cDNA total RNA adjusted to 100 ng
  • Sample cDNA total RNA adjusted to 100 ng
  • QX200 TM / QX100 put the sample and 70 ⁇ l of Droplet Generation oil for EvaGreen to DG8 cartridge for TM Droplet Generator was subjected to QX100 TM Droplet Generator.
  • the turbid solution was placed in a 96-well plate (Bio-Rad Laboratories, Inc.) and sealed using a PX1 PCR plate sealer. Analysis was performed using the QX100 TM Droplet Reader.
  • the value obtained by ddPCR using a combination of primers of XPF ex1-F and XPF ex2-R was used, and for the quantification of abnormal splicing products, XPF int1-F and XPF ex2-
  • the value obtained by ddPCR using the combination of R primers was used.
  • Fixative (3.7% formalin PBS solution) was added and allowed to stand for 20 minutes. The fixative was discarded and PBS was added. The average fluorescence intensity of 488 azide in the nucleus was calculated. The fluorescence value indicates the repair activity.
  • the repair activity of healthy human-derived fibroblasts (48BR) was also evaluated in the same manner.
  • Fig. 1C The result is shown in Fig. 1C.
  • the patient-derived cells transfected with the compound of Example 61 (LNA-int1-001) had a repair activity as compared with the patient-derived cells transfected with the compound of Reference Example 1 (LNA-int1-001S, control DNA).
  • LNA-int1-001S the compound of Reference Example 1
  • FIG. 2A the compounds of Examples 1 to 18 (XPF-int1-001 to XPF-int1-018) were similarly transfected into patient-derived cells and the repair activity was analyzed. An increase in repair activity was observed in all the compounds of Examples 1 to 18.
  • Example 62 to 73 The compounds of Examples 62 to 73 were also synthesized in the same manner as in Example 1. Examples 62 to 73 are shown in Table 3.
  • Reference example 2 The compound of Reference Example 2 was also synthesized in the same manner as in Example 1. Reference example 2 is shown in Table 4.
  • sequence of the compound of Reference Example 2 is a sequence complementary to the nucleotide sequence from the 223rd to the 240th of Musmusculus strain mdx dystrophin genes, partial cds (NCBI-GenBank accession No. AH007099.2).
  • Example 2 Analysis of XPF mRNA splicing product amount, XPF protein expression level, and DNA damage repair activity by Example compounds (2) 2-1. Evaluation of protein expression level The protein expression level of the example compound was evaluated in the same manner as in the test 1-2.
  • the pharmaceutical composition of the present invention can treat a specific XP-F group for which there has been no conventional therapeutic means.
  • SEQ ID NO: 1 to 61 oligonucleotide sequence of Examples Compounds 1 to 61 SEQ ID NO: 62: oligonucleotide sequence of Reference Example Compound 1 SEQ ID NO: 63: RNA sequence of XPF gene variant Intron 1 SEQ ID NO: 64: Mutation of XPF gene DNA sequence of type intron 8 SEQ ID NO: 65-100: RNA sequence corresponding to SEQ ID NO: 1-36 SEQ ID NO: 101-108: RNA sequence corresponding to SEQ ID NO: 53-60 SEQ ID NO: 109-111: Primer used for ddPCR DNA Sequence SEQ ID NOs: 112 to 123: Oligonucleotide Sequence of Examples Compounds 62 to 73 SEQ ID NOs: 124 to 135: RNA Sequence Corresponding to SEQ ID NOs: 112 to 123 SEQ ID NO: 136: Oligonucleotide Sequence of Reference Example Compound 2 SEQ ID NO: 137: RNA sequence corresponding

Abstract

To provide a means for treating xeroderma pigmentosum group F, for which no disease-causing mutation has been identified to date. The present invention provides: an antisense oligonucleotide having a base sequence capable of hybridizing with a portion of the intron region of an XPF gene and having activity to inhibit abnormal posttranscriptional modification of the XPF gene, or a pharmaceutically acceptable salt of said antisense oligonucleotide; and a therapeutic agent or a therapeutic composition for xeroderma pigmentosum group F containing said antisense oligonucleotide or pharmaceutically acceptable salt thereof as an active ingredient.

Description

色素性乾皮症F群治療薬Xeroderma pigmentosum group F therapeutic agent
 本発明は、色素性乾皮症F群の治療薬、その有効成分であるアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩などに関する。 The present invention relates to a therapeutic agent for group F of xeroderma pigmentosum, an antisense oligonucleotide as an active ingredient thereof, or a pharmaceutically acceptable salt thereof.
 色素性乾皮症(XP)は、太陽光中の紫外線に起因する光DNA損傷などをゲノム中から取り除くヌクレオチド除去修復機構(NER)や、損傷バイパス合成(TLS)に関与する遺伝子の先天的な異常により発症する。XP患者は、光線過敏、日光露光部の色素異常、および高いがん発生率のほか、神経症状などを有し、日本人の有病率は出生25,000人に1名程度と見積もられている。これまでに疾患原因変異が報告されている遺伝子としては、XPA~XPG遺伝子のほか、TLSポリメラーゼをコードするPOLH遺伝子が知られている。それぞれの変異を有するXP症例は、XP-A~XP-G群およびXP-V(バリアント)群の相補性群に分類される。XP症例中に占める各相補群の割合は人種により異なるが、日本人集団では、XP-A群、ついでXP-V群の異常が多く見られる。 Xeroderma pigmentosum (XP) is a congenital gene involved in nucleotide excision repair mechanism (NER) that removes photoDNA damage caused by ultraviolet rays in sunlight from the genome and damage bypass synthesis (TLS). It develops due to an abnormality. XP patients have photosensitivity, xeroderma pigmentosum in the sun-exposed area, high cancer incidence, and neurological symptoms, and the prevalence of Japanese is estimated to be about 1 in 25,000 births. .. As genes for which disease-causing mutations have been reported so far, in addition to the XPA to XPG genes, the POHL gene encoding TLS polymerase is known. XP cases with each mutation are classified into the complementarity group of XP-A to XP-G group and XP-V (variant) group. The proportion of each complementary group in XP cases varies depending on the race, but in the Japanese population, there are many abnormalities in the XP-A group and then in the XP-V group.
 XPの相補性群のうち、TLS欠損となるバリアント群以外は、NERの欠損を示す。NERは、DNA損傷の認識形態により、全ゲノム修復(GG-NER)と転写共役修復(TC-NER)に分かれる。XP-C/E群ではGG-NERのみの欠損を示し、XP-A/B/D/F/G群ではGG-NERおよびTC-NER両方の欠損を示す。XP症例では、これらNERの欠損によりDNA損傷がゲノム中に蓄積することでゲノムの不安定化を招き、若年で皮膚がんを好発する。神経症状は相補性群や疾患原因変異により発症時期が異なるが、特にA群日本人創始者変異(IVS3-1G>C)を持つ症例では、XPAタンパク質の発現が喪失することでNERの全機能を失い、重篤な神経症状を示す。 Of the XP complementarity group, except for the variant group that is TLS deficient, NER deficiency is shown. NER is divided into whole genome repair (GG-NER) and transcriptional conjugated repair (TC-NER) according to the recognition form of DNA damage. The XP-C / E group shows a deficiency of only GG-NER, and the XP-A / B / D / F / G group shows a deficiency of both GG-NER and TC-NER. In XP cases, DNA damage accumulates in the genome due to these NER deficiencies, leading to genome instability, and skin cancer occurs frequently at a young age. Neurological symptoms differ in onset time depending on the complementary group and disease-causing mutation, but especially in cases with group A Japanese founder mutation (IVS3-1G> C), loss of XPA protein expression results in the loss of XPA protein expression and the full function of NER. And show severe neurological symptoms.
 XPは全身性の遺伝性疾患であり、現在有効な治療法は開発されていない。乳幼児期の重度な日焼けを発端に皮膚科を受診することで、XPと診断されることが多い。また遺伝子検査等により大まかな予後が判明する。日光暴露を避け皮膚がんの予防に努めることが可能であるが、予後やQOLに大きな影響を与える神経症状の進行緩和については、有効な手立ては存在しない。 XP is a systemic hereditary disease, and no effective treatment has been developed at present. XP is often diagnosed by visiting a dermatologist after a severe sunburn in infancy. In addition, a rough prognosis can be determined by genetic testing. Although it is possible to avoid exposure to sunlight and try to prevent skin cancer, there is no effective way to alleviate the progression of neurological symptoms that have a significant effect on prognosis and quality of life.
 XPの確定診断に関しては、患者の皮膚パッチより樹立した線維芽細胞を用いたDNA修復活性測定法が知られている。これには、光DNA損傷箇所の除去の後の修復DNA合成を検出することでGG-NERの活性を測定する不定期DNA合成(UDS)試験と、DNA損傷後に転写活性の高い領域のRNA合成回復能(RRS)を検討することでTC-NER活性を評価する方法がある(非特許文献1および2)。患者由来細胞でUDS/RRSを評価し、あわせて既知のどのXP遺伝子でこれらの活性が回復するかを調査することで、相補性群の特定が可能である(非特許文献3および4)。 For the definitive diagnosis of XP, a method for measuring DNA repair activity using fibroblasts established from a patient's skin patch is known. These include the Irregular DNA Synthesis (UDS) test, which measures GG-NER activity by detecting repair DNA synthesis after removal of photoDNA damage, and RNA synthesis in regions of high transcriptional activity after DNA damage. There is a method for evaluating TC-NER activity by examining resilience (RRS) (Non-Patent Documents 1 and 2). Complementarity groups can be identified by evaluating UDS / RRS in patient-derived cells and investigating which known XP genes restore these activities (Non-Patent Documents 3 and 4).
 XP-F群患者が保持する遺伝子変異については、非特許文献5において、患者個別の変異としてXPF遺伝子(ERCC4)のエキソン領域における変異が報告されている。しかし、XPF遺伝子のイントロン領域における変異については開示されていない。 Regarding gene mutations carried by XP-F group patients, mutations in the exon region of the XPF gene (ERCC4) are reported as individual patient mutations in Non-Patent Document 5. However, mutations in the intron region of the XPF gene are not disclosed.
 XP-F群については、疾患原因変異が特定されていない症例があり、これまでその治療を行うことはできなかった。本発明の目的は、そのようなXP-F群の治療手段を提供することにある。 For the XP-F group, there were cases in which the disease-causing mutation was not identified, and it was not possible to treat it so far. An object of the present invention is to provide a therapeutic means for such XP-F group.
 本発明者らは、XP-F群患者の疾患原因である2種類の新規イントロン内部変異を同定した。1つ目は、新規日本人創始者変異であり、イントロン深部(エキソン1-イントロン1境界から約100bp下流)に存在し、新たにU1核内低分子リボ核タンパク質(U1 snRNP)結合配列を生じさせることで、異常な代替スプライシングによる遺伝子発現量低下を引き起こしていることが示された。2つ目は、イントロン深部(エキソン8-イントロン8境界部位から数百bp下流)の1塩基置換変異であり、それにより病的なポリA付加配列(切断・ポリアデニル化因子結合配列)が形成され、不完全な転写終結とmRNAの不安定化が引き起こされることで疾患発症に至ることが示された。本発明者らは、さらに鋭意研究し、本発明を完成させた。 The present inventors have identified two novel internal mutations in introns that are the cause of the disease in patients in the XP-F group. The first is a novel Japanese founder mutation that exists deep in the intron (about 100 bp downstream from the exon 1-intron 1 boundary) and gives rise to a new U1 nuclear small ribonuclear protein (U1 snRNP) binding sequence. It was shown that this caused a decrease in gene expression due to abnormal alternative splicing. The second is a single base substitution mutation in the deep intron (several hundred bp downstream from the exon 8-intron 8 boundary site), which forms a pathological polyA addition sequence (cleaved / polyadenylation factor binding sequence). It has been shown that incomplete transcription termination and mRNA destabilization lead to disease onset. The present inventors have further studied and completed the present invention.
 すなわち、本発明は、以下の発明を包含する。
[1]XPF遺伝子のイントロン領域の一部とハイブリダイズすることができる塩基配列を有し、XPF遺伝子の異常な転写後修飾を抑制する活性を有するアンチセンスオリゴヌクレオチドであって、その5’末端及び/又は3’末端が化学修飾されていても良いアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[2]配列番号63で表される変異型イントロン1配列を有するXPF遺伝子の転写後修飾において、配列番号63で表される塩基配列における193番目のグアニンの5’側の5’スプライス部位および1658番目のグアニンの3’側の3’スプライス部位を用いる異常スプライシングを抑制する、[1]に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[3]配列番号63で表される塩基配列における155番目~217番目の塩基配列内の、連続する15~30ヌクレオチドからなる配列とハイブリダイズすることができる、[1]または[2]に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[4]配列番号63で表される塩基配列における155番目~217番目の塩基配列内の、連続する15~30ヌクレオチドからなる配列に90%以上、好ましくは95%以上、最適には完全に相補的な配列を含む、[1]~[3]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[5]配列番号65~82および101~108のいずれかで表される塩基配列(配列中、uはtに置き換えても良い。)を含む、[1]~[4]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[6]1つ以上の糖修飾ヌクレオシドを含む、[1]~[5]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[7]糖修飾ヌクレオシドが、4’-(CH-O-2’架橋(式中、nは1または2である)または2’-O-メチル化を含むヌクレオシドである、[6]に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[8]1つ以上の修飾ヌクレオシド間結合を含む、[1]~[7]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[9]修飾ヌクレオシド間結合が、ホスホロチオエート結合である、[8]に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[10]配列番号1~18、37~60および112~123のいずれかで表される塩基配列からなる、[1]~[9]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[11]配列番号64で表される変異型イントロン8配列を有するXPF遺伝子の転写後修飾において、配列番号64で表される塩基配列における324番目~329番目のポリA付加配列を用いる異常ポリアデニル化を抑制する、[1]に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[12]配列番号64で表される塩基配列における309番目~343番目の塩基配列内の、連続する15~30ヌクレオチドからなる配列とハイブリダイズすることができる、[1]または[11]に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[13]配列番号64で表される塩基配列における309番目~343番目の塩基配列内の、連続する15~30ヌクレオチドからなる配列に90%以上、好ましくは95%以上、最適には完全に相補的な配列を含む、[1]、[11]および[12]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[14]配列番号83~100のいずれかで表される塩基配列(配列中、uはtに置き換えても良い。)を含む、[1]および[11]~[13]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[15]1つ以上の糖修飾ヌクレオシドを含む、[1]および[11]~[14]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[16]糖修飾ヌクレオシドが、4’-(CH-O-2’架橋(式中、nは1または2である)および2’-O-メチル化を含むヌクレオシドである、[15]に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[17]1つ以上の修飾ヌクレオシド間結合を含む、[1]および[11]~[16]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[18]修飾ヌクレオシド間結合が、ホスホロチオエート結合である、[17]に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[19]配列番号19~36のいずれかで表される塩基配列からなる、[1]および[11]~[18]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[20]化学修飾が、オリゴヌクレオチドの輸送に適した分子構造体の付加である、[1]~[19]のいずれか一項に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[21][1]~[20]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩を含む、色素性乾皮症F群の治療用医薬組成物。
[22]患者に対して[1]~[20]のいずれか一項に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩の有効量を投与することを含む、色素性乾皮症F群の治療方法。
[23]色素性乾皮症F群の治療に使用するための[1]~[20]のいずれか一項に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[24]色素性乾皮症F群の治療用医薬組成物の製造のための、[1]~[20]のいずれか一項に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩の使用。
That is, the present invention includes the following inventions.
[1] An antisense oligonucleotide having a base sequence capable of hybridizing with a part of the intron region of the XPF gene and having an activity of suppressing abnormal post-transcriptional modification of the XPF gene, the 5'end thereof. An antisense oligonucleotide or a pharmaceutically acceptable salt thereof, which may be chemically modified at the 3'end.
[2] In post-transcriptional modification of the XPF gene having the mutant intron 1 sequence represented by SEQ ID NO: 63, the 5'splice site on the 5'side of the 193rd guanine and 1658 in the base sequence represented by SEQ ID NO: 63. The antisense oligonucleotide or pharmaceutically acceptable salt thereof according to [1], which suppresses abnormal splicing using the 3'splice site on the 3'side of the second guanine.
[3] Described in [1] or [2], which can hybridize with a sequence consisting of consecutive 15 to 30 nucleotides in the 155th to 217th base sequences in the base sequence represented by SEQ ID NO: 63. Antisense oligonucleotides or pharmaceutically acceptable salts thereof.
[4] 90% or more, preferably 95% or more, optimally completely complementary to the sequence consisting of 15 to 30 nucleotides in the 155th to 217th base sequences in the base sequence represented by SEQ ID NO: 63. The antisense oligonucleotide according to any one of [1] to [3] or a pharmaceutically acceptable salt thereof, which comprises a specific sequence.
[5] Described in any of [1] to [4], which comprises a base sequence represented by any of SEQ ID NOs: 65 to 82 and 101 to 108 (u may be replaced with t in the sequence). Antisense oligonucleotide or pharmaceutically acceptable salt thereof.
[6] The antisense oligonucleotide according to any one of [1] to [5] or a pharmaceutically acceptable salt thereof, which comprises one or more sugar-modified nucleosides.
[7] The sugar-modified nucleoside is a nucleoside containing 4'-(CH 2 ) n- O-2'cross-linking (where n is 1 or 2 in the formula) or 2'-O-methylation, [6] ] The antisense oligonucleotide or a pharmaceutically acceptable salt thereof.
[8] The antisense oligonucleotide according to any one of [1] to [7] or a pharmaceutically acceptable salt thereof, which comprises one or more modified nucleoside linkages.
[9] The antisense oligonucleotide according to [8] or a pharmaceutically acceptable salt thereof, wherein the modified nucleoside bond is a phosphorothioate bond.
[10] The antisense oligonucleotide according to any one of [1] to [9] or pharmaceutically acceptable thereof, which comprises the base sequence represented by any of SEQ ID NOs: 1 to 18, 37 to 60 and 112 to 123. Salt to be done.
[11] In post-transcriptional modification of the XPF gene having the mutant intron 8 sequence represented by SEQ ID NO: 64, abnormal polyadenylation using the 324th to 329th polyA addition sequence in the nucleotide sequence represented by SEQ ID NO: 64. The antisense oligonucleotide according to [1] or a pharmaceutically acceptable salt thereof.
[12] The description in [1] or [11], which can hybridize with a sequence consisting of 15 to 30 nucleotides in a row in the 309th to 343rd base sequences in the base sequence represented by SEQ ID NO: 64. Antisense oligonucleotides or pharmaceutically acceptable salts thereof.
[13] 90% or more, preferably 95% or more, optimally completely complementary to the sequence consisting of consecutive 15 to 30 nucleotides in the 309th to 343rd base sequences in the base sequence represented by SEQ ID NO: 64. The antisense oligonucleotide according to any one of [1], [11] and [12] or a pharmaceutically acceptable salt thereof, which comprises a specific sequence.
[14] Described in any of [1] and [11] to [13], which comprises a base sequence represented by any of SEQ ID NOs: 83 to 100 (u may be replaced with t in the sequence). Antisense oligonucleotide or pharmaceutically acceptable salt thereof.
[15] The antisense oligonucleotide according to any one of [1] and [11] to [14] or a pharmaceutically acceptable salt thereof, which comprises one or more sugar-modified nucleosides.
[16] The sugar-modified nucleoside is a nucleoside containing 4'-(CH 2 ) n- O-2'cross-linking (where n is 1 or 2 in the formula) and 2'-O-methylation, [15] ] The antisense oligonucleotide or a pharmaceutically acceptable salt thereof.
[17] The antisense oligonucleotide according to any one of [1] and [11] to [16] or a pharmaceutically acceptable salt thereof, which comprises one or more modified nucleoside linkages.
[18] The antisense oligonucleotide of [17] or a pharmaceutically acceptable salt thereof, wherein the modified nucleoside bond is a phosphorothioate bond.
[19] The antisense oligonucleotide according to any one of [1] and [11] to [18] or a pharmaceutically acceptable salt thereof, which comprises the base sequence represented by any of SEQ ID NOs: 19 to 36.
[20] The antisense oligonucleotide or a pharmaceutically acceptable salt thereof according to any one of [1] to [19], wherein the chemical modification is the addition of a molecular structure suitable for transporting the oligonucleotide.
[21] A pharmaceutical composition for treating xeroderma pigmentosum F group, which comprises the antisense oligonucleotide according to any one of [1] to [20] or a pharmaceutically acceptable salt thereof.
[22] Xeroderma pigmentosum F, which comprises administering to a patient an effective amount of the antisense oligonucleotide according to any one of [1] to [20] or a pharmaceutically acceptable salt thereof. How to treat the group.
[23] The antisense oligonucleotide according to any one of [1] to [20] or a pharmaceutically acceptable salt thereof for use in the treatment of xeroderma pigmentosum group F.
[24] The antisense oligonucleotide according to any one of [1] to [20] or a pharmaceutically acceptable salt thereof for producing a therapeutic pharmaceutical composition for group F xeroderma pigmentosum. use.
 また本発明は、以下の[A1]~[A20]を提供するものである。
[A1]XPF遺伝子のイントロン領域の一部とハイブリダイズすることができる塩基配列を有し、XPF遺伝子の異常な転写後修飾を抑制する活性を有する、アンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[A2]配列番号63で表される変異型イントロン1配列を有するXPF遺伝子の転写後修飾において、配列番号63で表される塩基配列における193番目のグアニンの5’側の5’スプライス部位および1658番目のグアニンの3’側の3’スプライス部位を用いる異常スプライシングを抑制する、[A1]に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[A3]配列番号63で表される塩基配列における175番目~217番目の塩基配列内の、連続する15~30ヌクレオチドからなる配列とハイブリダイズすることができる、[A1]または[A2]に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[A4]配列番号63で表される塩基配列における175番目~217番目の塩基配列内の、連続する15~30ヌクレオチドからなる配列に90%以上、好ましくは95%以上、最適には完全に相補的な配列を含む、[A1]~[A3]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[A5]配列番号65~82および101~108のいずれかで表される塩基配列(配列中、uはtに置き換えても良い。)を含む、[A1]~[A4]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[A6]1つ以上の糖修飾ヌクレオシドを含む、[A1]~[A5]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[A7]糖修飾ヌクレオシドが、4’-(CH-O-2’架橋(式中、nは1または2である)または2’-O-メチル化を含むヌクレオシドである、[A6]に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[A8]1つ以上の修飾ヌクレオシド間結合を含む、[A1]~[A7]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[A9]修飾ヌクレオシド間結合が、ホスホロチオエート結合である、[A8]に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[A10]配列番号1~18および37~60のいずれかで表される塩基配列からなる、[A1]~[A9]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[A11]配列番号64で表される変異型イントロン8配列を有するXPF遺伝子の転写後修飾において、配列番号64で表される塩基配列における324番目~329番目のポリA付加配列を用いる異常ポリアデニル化を抑制する、[A1]に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[A12]配列番号64で表される塩基配列における309番目~343番目の塩基配列内の、連続する15~30ヌクレオチドからなる配列とハイブリダイズすることができる、[A1]または[A11]に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[A13]配列番号64で表される塩基配列における309番目~343番目の塩基配列内の、連続する15~30ヌクレオチドからなる配列に90%以上、好ましくは95%以上、最適には完全に相補的な配列を含む、[A1]、[A11]および[A12]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[A14]配列番号83~100のいずれかで表される塩基配列(配列中、uはtに置き換えても良い。)を含む、[A1]および[A11]~[A13]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[A15]1つ以上の糖修飾ヌクレオシドを含む、[A1]および[A11]~[A14]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[A16]糖修飾ヌクレオシドが、4’-(CH-O-2’架橋(式中、nは1または2である)および2’-O-メチル化を含むヌクレオシドである、[A15]に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[A17]1つ以上の修飾ヌクレオシド間結合を含む、[A1]および[A11]~[A16]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[A18]修飾ヌクレオシド間結合が、ホスホロチオエート結合である、[A17]に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[A19]配列番号19~36のいずれかで表される塩基配列からなる、[A1]および[A11]~[A18]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。
[A20][A1]~[A19]のいずれかに記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩を含む、色素性乾皮症F群の治療用医薬組成物。
The present invention also provides the following [A1] to [A20].
[A1] An antisense oligonucleotide or a pharmaceutically acceptable antisense oligonucleotide having a base sequence capable of hybridizing with a part of the intron region of the XPF gene and having an activity of suppressing abnormal post-transcriptional modification of the XPF gene. salt.
[A2] In the post-transcriptional modification of the XPF gene having the mutant intron 1 sequence represented by SEQ ID NO: 63, the 5'splice site on the 5'side of the 193rd guanine and 1658 in the base sequence represented by SEQ ID NO: 63. The antisense oligonucleotide or pharmaceutically acceptable salt thereof according to [A1], which suppresses abnormal splicing using the 3'splice site on the 3'side of the second guanine.
[A3] Described in [A1] or [A2], which can hybridize with a sequence consisting of 15 to 30 consecutive nucleotides in the 175th to 217th base sequences in the base sequence represented by SEQ ID NO: 63. Antisense oligonucleotides or pharmaceutically acceptable salts thereof.
[A4] 90% or more, preferably 95% or more, optimally completely complementary to the sequence consisting of 15 to 30 nucleotides in the 175th to 217th base sequences in the base sequence represented by SEQ ID NO: 63. The antisense oligonucleotide according to any one of [A1] to [A3] or a pharmaceutically acceptable salt thereof, which comprises a specific sequence.
[A5] Described in any of [A1] to [A4], which comprises a base sequence represented by any of SEQ ID NOs: 65 to 82 and 101 to 108 (u may be replaced with t in the sequence). Antisense oligonucleotide or pharmaceutically acceptable salt thereof.
[A6] The antisense oligonucleotide according to any one of [A1] to [A5] or a pharmaceutically acceptable salt thereof, which comprises one or more sugar-modified nucleosides.
[A7] The sugar-modified nucleoside is a nucleoside containing 4'-(CH 2 ) n- O-2'cross-linking (where n is 1 or 2 in the formula) or 2'-O-methylation, [A6]. ] The antisense oligonucleotide or a pharmaceutically acceptable salt thereof.
[A8] The antisense oligonucleotide according to any one of [A1] to [A7] or a pharmaceutically acceptable salt thereof, which comprises one or more modified nucleoside linkages.
[A9] The antisense oligonucleotide according to [A8] or a pharmaceutically acceptable salt thereof, wherein the modified nucleoside bond is a phosphorothioate bond.
[A10] The antisense oligonucleotide according to any one of [A1] to [A9] or a pharmaceutically acceptable salt thereof, which comprises the base sequence represented by any of SEQ ID NOs: 1 to 18 and 37 to 60.
[A11] In post-transcriptional modification of the XPF gene having the mutant intron 8 sequence represented by SEQ ID NO: 64, abnormal polyadenylation using the 324th to 329th polyA addition sequence in the nucleotide sequence represented by SEQ ID NO: 64. The antisense oligonucleotide according to [A1] or a pharmaceutically acceptable salt thereof.
[A12] Described in [A1] or [A11], which can hybridize with a sequence consisting of consecutive 15 to 30 nucleotides in the 309th to 343rd base sequences in the base sequence represented by SEQ ID NO: 64. Antisense oligonucleotides or pharmaceutically acceptable salts thereof.
[A13] 90% or more, preferably 95% or more, optimally completely complementary to the sequence consisting of consecutive 15 to 30 nucleotides in the 309th to 343rd base sequences in the base sequence represented by SEQ ID NO: 64. The antisense oligonucleotide according to any one of [A1], [A11] and [A12] or a pharmaceutically acceptable salt thereof, which comprises a specific sequence.
[A14] Described in any of [A1] and [A11] to [A13], which comprises a base sequence represented by any of SEQ ID NOs: 83 to 100 (u may be replaced with t in the sequence). Antisense oligonucleotide or pharmaceutically acceptable salt thereof.
[A15] The antisense oligonucleotide according to any one of [A1] and [A11] to [A14] or a pharmaceutically acceptable salt thereof, which comprises one or more sugar-modified nucleosides.
[A16] The sugar-modified nucleoside is a nucleoside containing 4'-(CH 2 ) n- O-2'cross-linking (where n is 1 or 2 in the formula) and 2'-O-methylation, [A15]. ] The antisense oligonucleotide or a pharmaceutically acceptable salt thereof.
[A17] The antisense oligonucleotide according to any one of [A1] and [A11] to [A16] or a pharmaceutically acceptable salt thereof, which comprises one or more modified nucleoside linkages.
[A18] The antisense oligonucleotide according to [A17] or a pharmaceutically acceptable salt thereof, wherein the modified nucleoside bond is a phosphorothioate bond.
[A19] The antisense oligonucleotide according to any one of [A1] and [A11] to [A18] or a pharmaceutically acceptable salt thereof, which comprises the base sequence represented by any of SEQ ID NOs: 19 to 36.
[A20] A therapeutic pharmaceutical composition for group F of xeroderma pigmentosum, which comprises the antisense oligonucleotide according to any one of [A1] to [A19] or a pharmaceutically acceptable salt thereof.
 本発明によれば、従来その治療手段が存在しなかった特定のXP-F群について治療が可能となる。 According to the present invention, it is possible to treat a specific XP-F group for which a therapeutic means has not existed in the past.
図1Aは、実施例61の化合物をトランスフェクトしたXPF患者由来細胞においてXPF mRNAスプライシング産物量が増加することを示す。黒色のバーは正しいスプライシング産物の量を表し、白抜きのバーは異常スプライシング産物の量を表す。FIG. 1A shows an increase in the amount of XPF mRNA splicing product in cells derived from an XPF patient transfected with the compound of Example 61. Black bars represent the correct amount of splicing products and white bars represent the amount of abnormal splicing products. 図1Bは、実施例61の化合物をトランスフェクトしたXPF患者由来細胞においてXPFタンパク質発現量が増加することを示す。FIG. 1B shows an increase in XPF protein expression in cells derived from XPF patients transfected with the compound of Example 61. 図1Cは、実施例61の化合物をトランスフェクトしたXPF患者由来細胞においてUV照射後のDNA修復活性が増加することを示す。FIG. 1C shows that DNA repair activity after UV irradiation is increased in cells derived from XPF patients transfected with the compound of Example 61. 図2Aは、実施例1~18の化合物をトランスフェクトしたXPF患者由来細胞においてUV照射後のDNA修復活性が増加することを示す。FIG. 2A shows that DNA repair activity after UV irradiation is increased in cells derived from XPF patients transfected with the compounds of Examples 1-18. 図2Bは、実施例1~18の化合物をトランスフェクトしたXPF患者由来細胞においてXPFタンパク質発現量が増加することを示す。FIG. 2B shows an increase in XPF protein expression in cells derived from XPF patients transfected with the compounds of Examples 1-18. 図3Aは、実施例11~14、37~60の化合物をトランスフェクトしたXPF患者由来細胞においてUV照射後のDNA修復活性が増加することを示す。黒色のバーは正しいスプライシング産物の量を表し、白抜きのバーは異常スプライシング産物の量を表す。FIG. 3A shows that DNA repair activity after UV irradiation is increased in cells derived from XPF patients transfected with the compounds of Examples 11-14 and 37-60. Black bars represent the correct amount of splicing products and white bars represent the amount of abnormal splicing products. 図3Bは、実施例11、13、37、38、44乃至46、及び53乃至60の化合物をトランスフェクトしたXPF患者由来細胞においてXPFタンパク質発現量が増加することを示す。上のパネルはXPFタンパク質の発現量を示し、下のパネルはβアクチンの発現量を示す。FIG. 3B shows increased XPF protein expression levels in cells derived from XPF patients transfected with the compounds of Examples 11, 13, 37, 38, 44-46, and 53-60. The upper panel shows the expression level of XPF protein, and the lower panel shows the expression level of β-actin.
1.定義
 本明細書中、「色素性乾皮症F群」(XP-F群ともいう)とは、色素性乾皮症の相補性群の一つであり、GG-NERおよびTC-NER両方の欠損を示す。その原因変異が報告されている遺伝子は、XPF遺伝子である。
1. 1. Definitions In the present specification, "xeroderma pigmentosum F group" (also referred to as XP-F group) is one of the complementary groups of xeroderma pigmentosum, and both GG-NER and TC-NER. Shows a defect. The gene for which the causative mutation has been reported is the XPF gene.
 本明細書中、「XPF遺伝子」とは、ヌクレオチド除去修復機構に関与するエンドヌクレアーゼをコードするヒト遺伝子である。XPF遺伝子は、ERCC4遺伝子、ERCC11遺伝子、FANCQ遺伝子、RAD1遺伝子、またはXFEPS遺伝子とも称される。XPF遺伝子の配列は、例えばHomo sapiens ERCC excision repair 4, endonuclease catalytic subunit (ERCC4), RefSeqGene (LRG_463) on chromosome 16(NCBI-GenBank accession No. NG_011442.1)などとして知られている。 In the present specification, the "XPF gene" is a human gene encoding an endonuclease involved in the nucleotide excision and repair mechanism. The XPF gene is also referred to as the ERCC4 gene, ERCC11 gene, FANCQ gene, RAD1 gene, or XFEPS gene. The sequence of the XPF gene is known as, for example, Homo sapiens ERCC excision repair 4, endonuclease catalytic subunit (ERCC4), RefSeqGene (LRG_463) on chromosome 16 (NCBI-GenBank accession No. NG_011442.1).
 本明細書中、「変異型イントロン1配列」は、野生型XPF遺伝子のイントロン1の塩基配列(前記NG_011442.1では5217~6874番目の塩基配列)において、イントロン1の5’末端から196番目(NG_011442.1では5412番目)のTがAに変異した配列であり、配列番号63で表される塩基配列である。当該変異部位は、配列番号63で表される塩基配列においては196番目に当たる。 In the present specification, the "mutant intron 1 sequence" is the base sequence of intron 1 of the wild-type XPF gene (base sequence 5217 to 6874 in the above NG_011442.1), which is 196th from the 5'end of intron 1 (the base sequence of intron 1). In NG_011442.1, T of 5412) is a sequence mutated to A, and is a base sequence represented by SEQ ID NO: 63. The mutation site corresponds to the 196th position in the base sequence represented by SEQ ID NO: 63.
 本明細書中、「変異型イントロン8配列」は、野生型XPF遺伝子のイントロン8の塩基配列(前記NG_011442.1では20588~22609番目の塩基配列)において、イントロン8の5’末端から326番目(NG_011442.1では20913番目)のCがTに変異した配列であり、配列番号64で表される塩基配列である。当該変異部位は、配列番号64で表される塩基配列においては326番目に当たる。 In the present specification, the "mutant intron 8 sequence" refers to the 326th from the 5'end of the intron 8 in the base sequence of the wild-type XPF gene intron 8 (the base sequence of 20588 to 22609 in the above NG_011442.1). In NG_011442.1, C is the sequence mutated to T (20913th), and is the base sequence represented by SEQ ID NO: 64. The mutation site corresponds to the 326th position in the base sequence represented by SEQ ID NO: 64.
 本明細書中、「転写後修飾」は、mRNA前駆体(pre-mRNA)が成熟mRNAとなる過程において受ける修飾をいい、5'末端へのキャップ付加、3'末端のポリアデニル化、およびスプライシングが含まれる。 As used herein, "post-transcriptional modification" refers to the modification that pre-mRNA undergoes in the process of becoming a mature mRNA, which includes cap addition to the 5'end, polyadenylation at the 3'end, and splicing. included.
 本明細書中、「異常な転写後修飾」とは、野生型遺伝子の転写後修飾においては通常みられない転写後修飾をいい、例えば、異常スプライシング、異常ポリアデニル化などが含まれる。 In the present specification, "abnormal post-transcriptional modification" refers to post-transcriptional modification that is not normally observed in post-transcriptional modification of wild-type genes, and includes, for example, abnormal splicing and abnormal polyadenylation.
 本明細書中、「異常スプライシング」とは、野生型遺伝子の転写後修飾においては通常みられないスプライシングをいう。mRNAのスプライシングは、イントロン中の5'スプライス部位、ブランチ部位、および3'スプライス部位が、スプライシング因子である核内低分子リボ核タンパク質(snRNP)によって認識されることにより進行する。変異型イントロン1配列を有するXPF遺伝子の転写後修飾においては、配列番号63で表される塩基配列における196番目の変異により、新たにスプライシング因子U1 snRNPの認識配列(GTATGTAA)が生じ、193番目のグアニンの5’側が5'スプライス部位となる。その結果、配列番号63で表される塩基配列における193番目のグアニンの5’側の5'スプライス部位および1658番目のグアニンの3'側の3'スプライス部位を用いる異常スプライシングが起こる。 In the present specification, "abnormal splicing" refers to splicing that is not normally found in post-transcriptional modification of wild-type genes. mRNA splicing proceeds by recognizing the 5'splice site, branch site, and 3'splice site in the intron by the splicing factor, the small nuclear ribonuclear protein (snRNP). In the post-transcriptional modification of the XPF gene having the mutant intron 1 sequence, the mutation at position 196 in the nucleotide sequence represented by SEQ ID NO: 63 gives rise to a new recognition sequence for the splicing factor U1 snRNP (GTATGTAA), which is number 193. The 5'side of guanine is the 5'splice site. As a result, abnormal splicing occurs using the 5'splice site on the 5'side of the 193rd guanine and the 3'splice site on the 3'side of the 1658th guanine in the nucleotide sequence represented by SEQ ID NO: 63.
 本明細書中、「異常ポリアデニル化」とは、野生型遺伝子の転写後修飾においては通常みられないポリアデニル化をいう。mRNAのポリアデニル化は、ポリA付加配列(切断・ポリアデニル化因子結合配列またはポリアデニル化シグナルともいう)に依存して起こる。ヒトにおけるポリA付加配列は、通常AATAAAを含む。変異型イントロン8配列を有するXPF遺伝子の転写後修飾においては、配列番号64で表される塩基配列における326番目の変異により、新たにポリA付加配列(AATAAA)が生じる。その結果、配列番号64で表される塩基配列における324番目~329番目のポリA付加配列を用いる異常ポリアデニル化が起こる。 In the present specification, "abnormal polyadenylation" refers to polyadenylation that is not normally observed in post-transcriptional modification of wild-type genes. Polyadenylation of mRNA occurs depending on the polyA addition sequence (also referred to as cleavage / polyadenylation factor binding sequence or polyadenylation signal). Poly-A addition sequences in humans usually include AATAAA. In post-transcriptional modification of the XPF gene having a mutant intron 8 sequence, a new poly A addition sequence (AATAAA) is generated by the 326th mutation in the nucleotide sequence represented by SEQ ID NO: 64. As a result, abnormal polyadenylation using the 324th to 329th polyA addition sequences in the nucleotide sequence represented by SEQ ID NO: 64 occurs.
 本明細書中、「アンチセンスオリゴヌクレオチド」は、標的とする塩基配列を含むヌクレオチドに対してハイブリダイズする能力を有する一本鎖オリゴヌクレオチドである。「ハイブリダイズすることができる」とは、塩基間(A-G(アデニンーグアニン)間及びC-T/U(シトシン-チミン/ウラシル)間)の相互作用により標的とするヌクレオチドと二本鎖を形成できることを意味する。アンチセンスオリゴヌクレオチドは、ハイブリダイズできる程度に標的配列との配列相補性を有していれば良く、完全に相補的な配列である必要はない。また、アンチセンスオリゴヌクレオチドは、DNA、RNA、およびDNA/RNAキメラであり得る。またアンチセンスオリゴヌクレオチドは、修飾ヌクレオシドおよび修飾ヌクレオシド間結合などの修飾を含んでいてもよい。 In the present specification, the "antisense oligonucleotide" is a single-stranded oligonucleotide having an ability to hybridize to a nucleotide containing a target base sequence. “Able to hybridize” means double-stranded with a target nucleotide by interaction between bases (AG (adenine-guanine) and CT / U (cytosine-thymine / uracil)). Means that can be formed. The antisense oligonucleotide need only have sequence complementarity with the target sequence to the extent that it can hybridize, and does not have to be a completely complementary sequence. Also, the antisense oligonucleotide can be a DNA, RNA, and DNA / RNA chimera. The antisense oligonucleotide may also contain modifications such as modified nucleosides and bonds between modified nucleosides.
 「ハイブリダイズすること」には、低ストリンジェントな条件でハイブリダイズすること、中ストリンジェントな条件でハイブリダイズすること、および高ストリンジェントな条件でハイブリダイズすることが含まれる。「低ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、32℃の条件、またはそれと同等の条件であり得る。「中ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、42℃、または5×SSC、1% SDS、50 mM Tris-HCl(pH7.5)、50%ホルムアミド、42℃の条件、あるいはそれと同等の条件であり得る。「高ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、50℃、または0.2×SSC、0.1% SDS、65℃の条件、あるいはそれと同等の条件であり得る。ハイブリダイゼーションのストリンジェンシーに影響する要素としては、温度、プローブ濃度、プローブの長さ、イオン強度、時間、塩濃度などの複数の要素が考えられ、当業者であればこれらの要素を適宜選択することで同様のストリンジェンシーを実現することが可能である。市販のハイブリダイゼーション試薬を用いて、上記の条件を実現することもできる。例えば、「高ストリンジェントな条件」は、市販のハイブリダイゼーション溶液ExpressHybTMハイブリダイゼーション溶液(クロンテック社製)中、68℃でハイブリダイズすることにより、または、DNAを固定したフィルターを用いて0.7-1.0MのNaCl存在下68℃でハイブリダイゼーションを行なった後、0.1-2倍濃度のSSC溶液(1倍濃度SSCとは150mM NaCl、15mMクエン酸ナトリウムからなる)を用い、68℃で洗浄することにより、実現することが可能である。 "Hybridizing" includes hybridizing under low stringent conditions, hybridizing under medium stringent conditions, and hybridizing under high stringent conditions. "Low stringent conditions" can be, for example, 5 x SSC, 5 x Denhardt solution, 0.5% SDS, 50% formamide, 32 ° C., or equivalent. "Medium stringent conditions" are, for example, 5 x SSC, 5 x Denhardt solution, 0.5% SDS, 50% formamide, 42 ° C, or 5 x SSC, 1% SDS, 50 mM Tris-HCl (pH 7.5). , 50% formamide, 42 ° C., or equivalent. “High stringent conditions” are, for example, 5 × SSC, 5 × Denhardt solution, 0.5% SDS, 50% formamide, 50 ° C, or 0.2 × SSC, 0.1% SDS, 65 ° C, or equivalent conditions. Can be. Multiple factors such as temperature, probe concentration, probe length, ionic strength, time, and salt concentration can be considered as factors that affect the stringency of hybridization, and those skilled in the art will appropriately select these factors. By doing so, it is possible to achieve similar stringency. The above conditions can also be realized by using a commercially available hybridization reagent. For example, "high stringent conditions" can be defined as 0.7 in a commercially available hybridization solution ExpressHyb TM hybridization solution (manufactured by Clontech) by hybridizing at 68 ° C. or by using a filter on which DNA is fixed. After hybridization at 68 ° C. in the presence of −1.0 M NaCl, a 0.1-2 times concentration SSC solution (1 time concentration SSC consists of 150 mM NaCl and 15 mM sodium citrate) was used at 68 ° C. It can be realized by cleaning with.
 本明細書中、ヌクレオシドには、天然型のヌクレオシドおよび修飾ヌクレオシドが含まれる。「天然型のヌクレオシド」とは、2’-デオキシアデノシン、2’-デオキシグアノシン、2’-デオキシシチジン、2’-デオキシ-5-メチルシチジン、チミジン、2’-デオキシウリジン等の2’-デオキシヌクレオシド、アデノシン、グアノシン、シチジン、5-メチルシチジン、ウリジン等のリボヌクレオシドをいう。核酸塩基のうち、ウラシル(U)又は(u)とチミン(T)又は(t)は、互換性があり、ウラシル(U)又は(u)とチミン(T)又は(t)のどちらも、相補鎖のアデニン(A)又は(a)との塩基対形成に使うことができる。 In the present specification, nucleosides include natural nucleosides and modified nucleosides. "Natural nucleosides" are 2'-deoxy such as 2'-deoxyadenosine, 2'-deoxyguanosine, 2'-deoxycytidine, 2'-deoxy-5-methylcytidine, thymidine, 2'-deoxyuridine, etc. Ribonucleosides such as nucleosides, adenosine, guanosine, thymidine, 5-methylcytidine, and uridine. Of the nucleobases, uracil (U) or (u) and thymine (T) or (t) are compatible, and either uracil (U) or (u) and thymine (T) or (t) It can be used for base pairing with the complementary strand adenine (A) or (a).
 本明細書中、2’-デオキシアデノシンをA、2’-デオキシグアノシンをG、2’-デオキシシチジンをC、2’-デオキシ-5-メチルシチジンを5meC、チミジンをT、2’-デオキシウリジンをUと表すこともある。またそれらに対応するヌクレオチドとして、本明細書中においては、2’-デオキシアデノシンヌクレオチドをA、2’-デオキシグアノシンヌクレオチドをG、2’-デオキシシチジンヌクレオチドをC、2’-デオキシ-5-メチルシチジンヌクレオチドを5meC、チミジンヌクレオチドをT、2’-デオキシウリジンヌクレオチドをUと表すこともある。 Herein, 2'-deoxy adenosine A t, 2'-deoxyguanosine and G t, 2'-deoxycytidine and C t, 2'-deoxy-5-methylcytidine 5meC t, thymidine T t, 2'-deoxyuridine may represent a U t. As nucleotides corresponding thereto, in the present specification, 2'-deoxyadenosine nucleotide A p, 2'-deoxyguanosine nucleotides G p, 2'-deoxycytidine nucleotides C p, 2'-deoxy - 5meC 5-methyl cytidine nucleotides p, the thymidine nucleotides T p, sometimes a 2'-deoxyuridine nucleotide represented as U p.
 本明細書中、「糖修飾ヌクレオシド」とは、ヌクレオシドの糖部分が修飾されているヌクレオシドをいう。糖修飾ヌクレオシドには、本発明の属する技術分野で知られている糖修飾の全ての様式が含まれる。糖修飾ヌクレオシドには、例えば2’-修飾ヌクレオシド、4’-チオ修飾ヌクレオシド、4’-チオ-2’-修飾ヌクレオシドおよび二環式糖修飾ヌクレオシドが含まれる。 In the present specification, the "sugar-modified nucleoside" means a nucleoside in which the sugar portion of the nucleoside is modified. Sugar-modified nucleosides include all forms of sugar modification known in the art to which the present invention belongs. Sugar-modified nucleosides include, for example, 2'-modified nucleosides, 4'-thio-modified nucleosides, 4'-thio-2'-modified nucleosides and bicyclic sugar-modified nucleosides.
 2’-修飾ヌクレオチドの例としては、ハロ、アリル、アミノ、アジド、O-アリル、O-C-C10アルキル、OCF、O-(CH-O-CH、2’-O(CHSCH、O-(CH-O-N(R)(R)、またはO-CH-C(=O)-N(R)(R)が挙げられ、各RとRは個別にH、アミノ保護基、または置換あるいは非置換C-C10アルキルである。2'-O-メチルグアノシン、2'-O-メチルアデノシン、2'-O-メチルシチジン、および2'-O-メチルウリジンについては、市販の試薬を用いることができる。2'-O-アミノエチルグアノシン、2'-O-アミノエチルアデノシン、2'-O-アミノエチルシチジン、および2'-O-アミノエチルウリジンは、文献(Blommers et al. Biochemistry (1998), 37, 17714-17725.)に従って合成できる。2'-O-プロピルグアノシン、2'-O-プロピルアデノシン、2'-O-プロピルシチジン、および2'-O-プロピルウリジンは、文献(Lesnik,E.A. et al. Biochemistry (1993), 32, 7832-7838.)に従って合成できる。2'-O-アリルグアノシン、2'-O-アリルアデノシン、2'-O-アリルシチジン、および2'-O-アリルウリジンについては、市販の試薬を用いることができる。2'-O-メトキシエチルグアノシン、2'-O-メトキシエチルアデノシン、2'-O-メトキシエチルシチジン、および2'-O-メトキシエチルウリジンは、特許(US6261840)または、文献(Martin, P. Helv. Chim. Acta. (1995) 78, 486-504.に従って合成できる。2'-O-ブチルグアノシン、2'-O-ブチルアデノシン、2'-O-ブチルシチジン、および2'-O-ブチルウリジンは、文献(Lesnik,E.A. et al. Biochemistry (1993), 32, 7832-7838.)に従って合成できる。2'-O-ペンチルグアノシン、2'-O-ペンチルアデノシン、2'-O-ペンチルシチジン、および2'-O-ペンチルウリジンは、文献(Lesnik,E.A. et al. Biochemistry (1993), 32, 7832-7838.)に従って合成できる。2'-O-プロパルギルグアノシン、2'-O-プロパルギルアデノシン、2'-O-プロパルギルシチジン、および2'-O-プロパルギルウリジンについては、市販の試薬を用いることができる。 Examples of 2'-modified nucleotides are halo, allyl, amino, azide, O-allyl , OC 1- C 10 alkyl, OCF 3 , O- (CH 2 ) 2- O-CH 3 , 2'-. O (CH 2 ) 2 SCH 3 , O- (CH 2 ) 2 -ON (R m ) (R n ), or O-CH 2- C (= O) -N (R m ) (R n ) Each R m and R n is H, an amino protecting group, or a substituted or unsubstituted C 1- C 10 alkyl individually. Commercially available reagents can be used for 2'-O-methylguanosine, 2'-O-methyladenosine, 2'-O-methylcytidine, and 2'-O-methyluridine. 2'-O-aminoethylguanosine, 2'-O-aminoethyladenosine, 2'-O-aminoethylcytidine, and 2'-O-aminoethyluridine are described in the literature (Blommers et al. Biochemistry (1998), 37). , 17714-17725.). 2'-O-propylguanosine, 2'-O-propyladenosine, 2'-O-propylcytidine, and 2'-O-propyluridine are described in the literature (Lesnik, EA et al. Biochemistry (1993), 32, 7832). -7838.) Can be synthesized according to. Commercially available reagents can be used for 2'-O-allyl guanosine, 2'-O-allyl adenosine, 2'-O-allyl cytidine, and 2'-O-allyl uridine. 2'-O-Methoxyethyl guanosine, 2'-O-Methoxyethyl adenosine, 2'-O-Methoxyethyl cytidine, and 2'-O-Methoxyethyl uridine are available in the patent (US6261840) or in the literature (Martin, P. et al. Synthesized according to Helv. Chim. Acta. (1995) 78, 486-504. 2'-O-butylguanosine, 2'-O-butyladenosine, 2'-O-butylcytidine, and 2'-O-butyl Uridine can be synthesized according to the literature (Lesnik, EA et al. Biochemistry (1993), 32, 7832-7838.). 2'-O-pentylguanosine, 2'-O-pentyladenosine, 2'-O-pentylcytidine , And 2'-O-pentyluridine can be synthesized according to the literature (Lesnik, EA et al. Biochemistry (1993), 32, 7832-7838.). 2'-O-propargylguanosine, 2'-O-propargyl adenosine. , 2'-O-propargylcytidine, and 2'-O-propargyluridine, commercially available reagents can be used.
 4’-チオ修飾ヌクレオシドの例としては、4’-酸素原子が硫黄原子で置換されたβ-D-リボヌクレオシドを挙げることができる(Hoshika,S. et al. FEBS Lett.579,p.3115-3118,(2005);Dande,P.et al.J.Med.Chem.49,p.1624-1634(2006);Hoshika,S.et al.ChemBioChem.8,p.2133-2138,(2007))。 Examples of 4'-thio-modified nucleosides include β-D-ribonucleosides in which the 4'-oxygen atom is replaced by a sulfur atom (Hoshika, S. et al. FEBS Lett. 579, p. 3115). -3118, (2005); Dande, P. et al. J. Med. Chem. 49, p. 1624-1634 (2006); Hoshika, S. et al. ChemBioChem. 8, p. 2133-2138, (2007). )).
 4’-チオ-2’-修飾ヌクレオシドの例としては、2’-H、または、2’-O-メチルを保持する4’-チオ-2’-修飾ヌクレオシドを挙げることができ(Matsugami,et al.Nucleic Acids Res.36,1805(2008))。 Examples of 4'-thio-2'-modified nucleosides include 2'-H or 4'-thio-2'-modified nucleosides carrying 2'-O-methyl (Matsugami, et.). al. Nucleic Acids Res. 36, 1805 (2008)).
 二環式糖修飾ヌクレオシドの例としては、リボース環の2原子を架橋することによって形成された第二の環を保持するヌクレオシドを挙げることができ、そのようなヌクレオシドの例としては、2’-酸素原子と4’-炭素原子をメチレン鎖で架橋した2’,4’-BNA/LNA(bridged nucleic acids/locked nucleic acids)(Obika, S. et al. Tetrahedron Lett., 38, p.8735-(1997).; Obika, S. et al.,Tetrahedron Lett., 39, p.5401-(1998).; A. A. Koshkin, A.A. et al.Tetrahedron, 54, p.3607(1998).; Obika, S. Bioorg. Med. Chem., 9,p.1001(2001).)、2’,4’-BNA/LNAのメチレン鎖を一炭素延ばしたエチレン鎖で架橋したENA(2’-O,4’-C-ethylene-bridged nucleic acids)を挙げることができる(Morita, K. et al. Bioorg. Med. Chem. Lett., 12, p.73(2002).; Morita, K. et al. Bioorg. Med. Chem., 11,p.2211(2003).)。また、WO2014/109384記載のAmNA、又は、文献(Seth,P.P. et al. J.Org.Chem (2010), 75, 1569-1581.)記載のS-cEt(2’,4’-constrained ethyl)も例として挙げることができる。 Examples of bicyclic sugar-modified nucleosides include nucleosides that retain a second ring formed by cross-linking two atoms of the ribose ring, and examples of such nucleosides are 2'-. 2', 4'-BNA / LNA (bridged nucleoside acids / locked nucleoside acids) (Obika, S. et al. Tetrahedron Lett., 38, p. 8735-) in which an oxygen atom and a 4'-carbon atom are crosslinked with a methylene chain. (1997) .; Obika, S. et al., Tetrahedron Lett., 39, p.5401- (1998) .; A.A. Koshkin, A.A. et al. Tetrahedron, 54, p.3607 (1998). ) .; Obika, S. Bioorg. Med. Chem., 9, p.1001 (2001).), ENA (2) in which the methylene chain of 2', 4'-BNA / LNA is cross-linked with an ethylene chain extended by one carbon. '-O, 4'-C-ethylene-bridged nucleic acids) can be mentioned (Morita, K. et al. Bioorg. Med. Chem. Lett., 12, p.73 (2002) .; Morita, K. . Et al. Bioorg. Med. Chem., 11, p. 2211 (2003).). In addition, AmNA described in WO2014 / 109384 or S-cEt (2', 4'-constrained ethyl) described in the literature (Seth, PP et al. J.Org.Chem (2010), 75, 1569-1581.) Can also be given as an example.
 本明細書中、2’-O-メチル化修飾を含む糖修飾ヌクレオシドとして、例えば、Aに対応するものをAm1t、Gに対応するものをGm1t、Cに対応するものをCm1t、5meCに対応するものを5meCm1t、Uに対応するものをUm1tなどと表すことがある。またそれらに対応する2’-O-メチル化修飾を含む糖修飾ヌクレオチドについては、Aに対応するものをAm1p、Gに対応するものをGm1p、Cに対応するものをCm1p、5meCに対応するものを5meCm1p、Uに対応するものをUm1pと表すこともある。 In the specification, a sugar-modified nucleosides that include a 2'-O- methylation modification, for example, those corresponding to A t A m1t, G m1t those corresponding to G t, those corresponding to the C t C M1T, may 5meC those corresponding to 5meC t M1T, those corresponding to U t is expressed as like U M1T. As for the sugar modified nucleotides containing 2'-O- methylation modification corresponding to them, those corresponding to A p A m1p, G m1p those corresponding to G p, those corresponding to the C p C m1p , may represent 5meC m1p those corresponding to 5meC p, those corresponding to U p and U m1p.
 本明細書中、2’-O-メトキシエチル化修飾を含む糖修飾ヌクレオシドとして、例えば、Aに対応するものをAm2t、Gに対応するものをGm2t、5meCに対応するものを5meCm2t、Tに対応するものをTm2tなどと表すことがある。またそれらに対応する2’-O-メトキシエチル化修飾を含む糖修飾ヌクレオチドについては、Aに対応するものをAm2p、Gに対応するものをGm2p、5meCに対応するものを5meCm2p、Tに対応するものをTm2pと表すこともある。 In the specification, a sugar-modified nucleosides that include a 2'-O- methoxyethyl of modifications, for example, those corresponding to A t A m2t, G m2t those corresponding to G t, those corresponding to 5meC t 5meC m2t, those corresponding to T t may be represented by such T m2t. As for the sugar modified nucleotides containing 2'-O- methoxyethyl of modifying their corresponding, 5meC those corresponding ones corresponding to A p A m2p, those corresponding to the G p G m2p, the 5meC p m2p, sometimes those corresponding to T p represents a T m2p.
 本明細書中、4’-CH-0-2’架橋を含む糖修飾ヌクレオシドとして、例えば、Aに対応するものをA1t、Gに対応するものをG1t、5meCに対応するものをC1t、Tに対応するものをT1tと表すこともある。またそれらに対応する4’-CH-0-2’架橋を含む糖修飾ヌクレオチドについては、Aに対応するものをAe1p、Gに対応するものをGe1p、5meCに対応するものをCe1p、Tに対応するものをTe1pと表すこともある。 In the present specification, the sugar modified nucleosides containing 4'-CH 2 -0-2 'bridge, for example, correspond to one corresponding to A t A 1t, those corresponding to the G t in G 1t, 5meC t sometimes represent things C 1t, those corresponding to T t and T 1t. As for the sugar-modified nucleotides comprising a 4'-CH 2 -0-2 'bridge their corresponding, which corresponds to that corresponding to A p A E1p, those corresponding to the G p G E1p, the 5meC p certain C E1p, also those corresponding to T p represents a T E1p.
 本明細書中、4’-(CH-0-2’架橋を含む糖修飾ヌクレオシドとして、例えば、Aに対応するものをA2t、Gに対応するものをG2t、5meCに対応するものをC2t、Tに対応するものをT2tと表すこともある。またそれらに対応する4’-(CH-0-2’架橋を含む糖修飾ヌクレオチドについては、Aに対応するものをAe2p、Gに対応するものをGe2p、5meCに対応するものをCe2p、Tに対応するものをTe2pと表すこともある。 Herein, 4 - as a sugar-modified nucleosides that include a '(CH 2) 2 -0-2' bridge, for example, those corresponding to A t A 2t, those corresponding to the G t G 2t, 5meC t The one corresponding to T t may be expressed as C 2t , and the one corresponding to T t may be expressed as T 2t. The 4 corresponding to them - for '(CH 2) 2 -0-2' sugar modified nucleotides comprising a bridge, the one corresponding to A p A e2p, those corresponding to the G p G e2p, the 5meC p It may represent corresponding ones C e2p, those corresponding to T p and T e2p.
 本明細書中、「修飾ヌクレオシド間結合」とは、天然に存在するヌクレオシド間結合(すなわち、ホスホジエステルヌクレオシド間結合)に置換または変化が加えられた結合をいう。すなわち、修飾ヌクレオシド間結合を含むアンチセンスオリゴヌクレオチドは、少なくとも1つのヌクレオチドのリン酸基の修飾を含む。修飾ヌクレオシド間結合としては、例えばホスホロチオエート結合、ホスホロジチオエート結合、アルキルホスホネート結合、ボラノホスフェート結合、ホスホロアミデート結合などが挙げられる。 In the present specification, the "modified nucleoside bond" refers to a bond in which a naturally occurring nucleoside bond (that is, a phosphodiester nucleoside bond) is replaced or changed. That is, the antisense oligonucleotide containing the modified nucleoside linkage comprises the modification of the phosphate group of at least one nucleotide. Examples of the modified nucleoside bond include a phosphorothioate bond, a phosphorodithioate bond, an alkylphosphonate bond, a boranophosphate bond, a phosphoramidate bond and the like.
 本明細書中、ヌクレオチドのリン酸エステルの代わりにホスホロチオエートエステルとなっているホスホロチオエートエステルについて、Aに対応するものをA、Gに対応するものをG、Cに対応するものをC、5meCに対応するものを5meC、Tに対応するものをT、Uに対応するものをUと表すこともある。
 2’-O-メチル化修飾およびホスホロチオエートを含む糖修飾ヌクレオチドについては、Aに対応するものをAm1s、Gに対応するものをGm1s、Cに対応するものをCm1s、5meCに対応するものを5meCm1s、Uに対応するものをUm1sと表わすこともある。
 2’-O-メトキシエチル化修飾およびホスホロチオエートを含む糖修飾ヌクレオチドについては、Aに対応するものをAm2s、Gに対応するものをGm2s、5meCに対応するものを5meCm2s、Tに対応するものをTm2sと表すこともある。
 4’-CH-0-2’架橋およびホスホロチオエートを含む糖修飾ヌクレオチドを、Aに対してAe1s、Gに対してGe1s、5meCに対してCe1s、Tに対してTe1sと表わすこともある。
 4’-(CH-0-2’架橋およびホスホロチオエートを含む糖修飾ヌクレオチドを、Aに対してAe2s、Gに対してGe2s、5meCに対してCe2s、Tに対してはTe2sと表わすこともある。
In the present specification, phosphorothioate esters has a phosphorothioate ester in place of phosphoric acid esters of nucleotides, the one corresponding to A p A s, a G s which corresponds to G p, those corresponding to the C p some C s, 5meC those corresponding to 5meC p s, the T s corresponds to T p, also those corresponding to U p expressed as U s.
2'-O- For methylation modifications and sugar modified nucleotides containing phosphorothioate, A s to the corresponding ones A m1s, those corresponding to the G s G m1s, those corresponding to the C s C m1s, 5meC s 5meC m1s those corresponding to, sometimes those corresponding to U s expressed as U m1s.
For 2'-O- methoxyethyl of modified and sugar-modified nucleotides comprising a phosphorothioate, those corresponding to A s A m2s, those corresponding to the G s G m2s, 5meC those corresponding to 5meC s m2s, T The one corresponding to s may be expressed as T m2s.
T the 4'-CH 2 -0-2 'bridge and sugar modified nucleotides containing phosphorothioate, A E 1 s relative to A s, G e1s against G s, C e1s respect 5meC s, with respect to T s It may also be expressed as e1s.
4 - a '(CH 2) 2 -0-2' bridge and sugar modified nucleotides containing phosphorothioate, A E2S against A s, G e2s against G s, C e2s respect 5meC s, the T s On the other hand, it may be expressed as Te2s.
 At、Gt、5meCt、Ct、Tt、Ut、Ap、Gp、5meCp、Cp、Tp、Up、As、Gs、5meCs、Cs、Ts、Us、Am1t、Gm1t、Cm1t、5meCm1t、Um1t、Am1p、Gm1p、Cm1p、5meCm1p、Um1p、Am1s、Gm1s、Cm1s、5meCm1s、Um1s、A2t、G2t、C2t、T2t、Ae2p、Ge2p、Ce2p、Te2p、Ae2s、Ge2s、Ce2s、Te2s、A1t、G1t、C1t、T1t、Ae1p、Ge1p、Ce1p、Te1p、Ae1s、Ge1s、Ce1s、Te1s、Am2t、Gm2t、5meCm2t、Tm2t、Am2p、Gm2p、5meCm2p、Tm2p、Am2s、Gm2s、5meCm2s、およびTm2sの構造を下記に示す。 A t, G t, 5meC t , C t, T t, U t, A p, G p, 5meC p, C p, T p, U p, A s, G s, 5meC s, C s, T s , U s, A m1t, G m1t, C m1t, 5meC m1t, U m1t, A m1p, G m1p, C m1p, 5meC m1p, U m1p, A m1s, G m1s, C m1s, 5meC m1s, U m1s, A 2t , G 2t , C 2t , T 2t , A e2p , G e2p , C e2p , T e2p , A e2s , G e2s , C e2s , T e2s , A 1t , G 1t , C 1t , T 1t , A e1p , G e1p, C e1p, T e1p , A e1s, G e1s, C e1s, T e1s, A m2t, G m2t, 5meC m2t, T m2t, A m2p, G m2p, 5meC m2p, T m2p, A m2s, G m2s , 5meC m2s , and T m2s are shown below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 本明細書中、疾患または症状の治療には、該疾患の発症の予防、増悪または進行の抑制または阻害、該疾患に罹患した個体が呈する一つ以上の症状の軽減または増悪もしくは進行の抑制、二次性疾患の治療などが含まれる。 As used herein, the treatment of a disease or symptom includes prevention of the onset of the disease, suppression or inhibition of exacerbation or progression, alleviation or exacerbation or suppression of progression of one or more symptoms exhibited by an individual suffering from the disease. Includes treatment of secondary illnesses.
2.本発明の医薬組成物、および、アンチセンスオリゴヌクレオチド
 本発明は、色素性乾皮症F群(XP-F群)の治療用医薬組成物(以下、本発明の医薬組成物という)、および、その有効成分であるアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩を提供する。
2. The pharmaceutical composition of the present invention and the antisense oligonucleotide The present invention relates to a pharmaceutical composition for treating xeroderma pigmentosum F group (XP-F group) (hereinafter referred to as the pharmaceutical composition of the present invention), and Provided is an antisense oligonucleotide which is an active ingredient thereof or a pharmaceutically acceptable salt thereof.
 本発明の医薬組成物は、XP-F群の疾患原因変異によって生じる異常な転写後修飾、特に2種類の新規イントロン内部変異によって生じる転写後修飾の異常を抑制するアンチセンスオリゴヌクレオチドを有効成分として含有することにより、当該変異を有するXP-F群におけるXPF遺伝子の発現量の低下を抑制し、当該変異を有するXP-F群の治療を可能にする。 The pharmaceutical composition of the present invention contains an antisense oligonucleotide that suppresses abnormal post-transcriptional modifications caused by disease-causing mutations in the XP-F group, particularly abnormal post-transcriptional modifications caused by two types of novel intron internal mutations. By containing the mutation, it is possible to suppress a decrease in the expression level of the XPF gene in the XP-F group having the mutation and to treat the XP-F group having the mutation.
 本発明者らが新規に同定したXP-F群の疾患原因である2種類の変異は、野生型XPF遺伝子のイントロン1の塩基配列(前記NG_011442.1では5217~6874番目の塩基配列)におけるイントロン1の5’末端から196番目(NG_011442.1では5412番目)のTからAへの変異(配列番号63で表される塩基配列においては196番目に当たる)、および野生型XPF遺伝子のイントロン8の塩基配列(前記NG_011442.1では20588~22609番目の塩基配列)におけるイントロン8の5’末端から326番目(NG_011442.1では20913番目)のCからTへの変異(配列番号64で表される塩基配列においては326番目に当たる)である。前者によりXPF遺伝子の異常スプライシングが起こり、後者によりXPF遺伝子の異常ポリアデニル化が起こる。その結果、XPF遺伝子の発現量の低下が生じ、XP-F群の症状が引き起こされると考えられる。したがって、一態様において、本発明の医薬組成物の適用対象は、これら2種類の変異のうち少なくとも一方を疾患原因とするXP-F群である。なお本発明においては、XPF遺伝子に上記変異が含まれており、それにより上記異常スプライシングまたは異常ポリアデニル化が起こり得る限り、XPF遺伝子がさらに変異(例えば1もしくは数個のヌクレオチドの欠失、置換、付加または挿入)を含んでいてもよい。 The two mutations that are the cause of the disease in the XP-F group newly identified by the present inventors are the introns in the base sequence of intron 1 of the wild XPF gene (base sequence 5217 to 6874 in the above NG_011442.1). The mutation from the 5'end of 1 to the 196th position (5412th in NG_011442.1) from T to A (corresponding to the 196th position in the nucleotide sequence represented by SEQ ID NO: 63), and the base of Intron 8 of the wild XPF gene. Mutation from C to T (base sequence represented by SEQ ID NO: 64) at position 326 from the 5'end of Intron 8 (position 20913 in NG_011442.1) in the sequence (base sequence 20588 to 22609 in the above NG_011442.1) It corresponds to the 326th in.). The former causes abnormal splicing of the XPF gene, and the latter causes abnormal polyadenylation of the XPF gene. As a result, the expression level of the XPF gene is reduced, which is considered to cause the symptoms of the XP-F group. Therefore, in one aspect, the application target of the pharmaceutical composition of the present invention is the XP-F group in which at least one of these two types of mutations is the cause of the disease. In the present invention, the XPF gene contains the above-mentioned mutation, and as long as the above-mentioned abnormal splicing or abnormal polyadenylation can occur, the XPF gene is further mutated (for example, deletion or substitution of one or several nucleotides). Addition or insertion) may be included.
 本発明のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩は、XPF遺伝子のイントロン領域の一部とハイブリダイズすることができる塩基配列を有する。XPF遺伝子の異常な転写後修飾を抑制することができる限り、当該イントロン領域の一部、すなわち標的配列の範囲は特に限定されない。本発明のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩がXPF遺伝子の異常な転写後修飾を抑制することができるか否かは、下記実施例に記載した、XPF mRNAスプライシング産物量評価、タンパク質発現量評価、または修復活性評価と同様の評価法により決定される。いずれかの評価法で正しく転写後修飾がなされたXPF遺伝子の発現の増加またはDNA修復活性の回復が確認された場合、アンチセンスオリゴヌクレオチドまたはその薬学上許容される塩がXPF遺伝子の異常な転写後修飾を抑制すると判断される。 The antisense oligonucleotide of the present invention or a pharmaceutically acceptable salt thereof has a base sequence capable of hybridizing with a part of the intron region of the XPF gene. As long as the abnormal post-transcriptional modification of the XPF gene can be suppressed, a part of the intron region, that is, the range of the target sequence is not particularly limited. Whether or not the antisense oligonucleotide of the present invention or a pharmaceutically acceptable salt thereof can suppress abnormal post-transcriptional modification of the XPF gene is described in the following Examples, Evaluation of XPF mRNA Splicing Product Amount, Protein. It is determined by the same evaluation method as the expression level evaluation or the repair activity evaluation. If either evaluation method confirms increased expression of the correctly post-transcriptionally modified XPF gene or recovery of DNA repair activity, the antisense oligonucleotide or its pharmaceutically acceptable salt is abnormally transcribed of the XPF gene. It is judged to suppress post-modification.
 一態様において、本発明の医薬組成物は、イントロン1における上記変異を疾患原因とするXP-F群を適用対象とする。この態様における本発明の医薬組成物を、本発明の医薬組成物Iという。本発明の医薬組成物Iは、配列番号63で表される変異型イントロン1配列を有するXPF遺伝子の転写後修飾において、配列番号63で表される塩基配列における193番目のグアニンの5’側の5’スプライス部位および1658番目のグアニンの3’側の3’スプライス部位を用いる異常スプライシングを抑制する1つ以上のアンチセンスオリゴヌクレオチドを含む。なお、「配列番号63で表される塩基配列における193番目のグアニンの5’側の5’スプライス部位および1658番目のグアニンの3’側の3’スプライス部位を用いる異常スプライシング」は、「配列番号63で表される塩基配列における1番目のグアニンから192番目のアデニンをエキソンとして認識し、193番目のグアニンから1658番目のグアニンをイントロンとして認識する異常スプライシング」と言い換えることもできる。 In one aspect, the pharmaceutical composition of the present invention applies to the XP-F group whose disease cause is the above-mentioned mutation in intron 1. The pharmaceutical composition of the present invention in this embodiment is referred to as the pharmaceutical composition I of the present invention. In the post-transcriptional modification of the XPF gene having the mutant intron 1 sequence represented by SEQ ID NO: 63, the pharmaceutical composition I of the present invention is located on the 5'side of the 193rd guanine in the nucleotide sequence represented by SEQ ID NO: 63. It contains one or more antisense oligonucleotides that suppress abnormal splicing using the 5'splice site and the 3'splice site on the 3'side of position 1658 guanine. In addition, "abnormal splicing using the 5'splice site on the 5'side of the 193rd guanine and the 3'splice site on the 3'side of the 1658th guanine in the nucleotide sequence represented by SEQ ID NO: 63" is referred to as "SEQ ID NO: It can also be rephrased as "abnormal splicing in which the 1st to 192nd adenine in the base sequence represented by 63 is recognized as an exon and the 1658th guanine from the 193rd guanine is recognized as an intron".
 本発明の医薬組成物Iにおけるアンチセンスオリゴヌクレオチドがイントロン1における異常スプライシングを抑制するか否かは、下記実施例に記載した、XPF mRNAスプライシング産物量評価、タンパク質発現量評価、または修復活性評価と同様の評価法により決定される。いずれかの評価法で正しくスプライシングされたXPF遺伝子の発現の増加またはDNA修復活性の回復が確認された場合、アンチセンスオリゴヌクレオチドがイントロン1における異常スプライシングを抑制すると判断される。XPF mRNAスプライシング産物量評価では、イントロン1における上記変異を疾患原因とするXP-F群の患者由来の細胞において、アンチセンスオリゴヌクレオチドをトランスフェクトすることにより正しくスプライシングされたXPF mRNAが増加するか否かをDroplet digital PCR(ddPCR)により確認する。ddPCRは、限界希釈したcDNAを微小区画内に分散させてPCR増幅を行い、増幅シグナルがポジティブとなった微小区画の数を直接カウントすることで、サンプル中のターゲットの濃度を絶対的に測定する方法である。ddPCRは、市販の試薬および機器(例えば、QX100TMDroplet DigitalTM PCR システム(Bio-Rad Laboratories, Inc.)など)を用いて行うことができる。タンパク質発現量評価では、イントロン1における上記変異を疾患原因とするXP-F群の患者由来の細胞において、アンチセンスオリゴヌクレオチドをトランスフェクトすることにより正しくスプライシングされたXPF遺伝子産物が増加するか否かをウエスタンブロッティングにより確認する。また修復活性評価では、イントロン1における上記変異を疾患原因とするXP-F群の患者由来の細胞において、アンチセンスオリゴヌクレオチドをトランスフェクトすることにより、UV照射により生じたDNA損傷を修復する活性が回復するか否かを確認する。 Whether or not the antisense oligonucleotide in the pharmaceutical composition I of the present invention suppresses abnormal splicing in intron 1 is determined by the XPF mRNA splicing product amount evaluation, protein expression level evaluation, or repair activity evaluation described in the following Examples. It is determined by a similar evaluation method. If an increase in the expression of the correctly spliced XPF gene or a recovery in the DNA repair activity is confirmed by any of the evaluation methods, it is judged that the antisense oligonucleotide suppresses the abnormal splicing in the intron 1. In the XPF mRNA splicing product amount evaluation, whether or not correctly spliced XPF mRNA is increased by transfecting antisense oligonucleotide in cells derived from patients in the XP-F group whose disease is caused by the above mutation in intron 1. This is confirmed by Droplet digital PCR (ddPCR). In ddPCR, the concentration of the target in the sample is absolutely measured by dispersing the limitingly diluted cDNA in the micro-compartment, performing PCR amplification, and directly counting the number of micro-compartments in which the amplification signal is positive. The method. ddPCR can be performed using commercially available reagents and equipment (eg, QX100 TM Droplet Digital TM PCR system (Bio-Rad Laboratories, Inc.), etc.). In protein expression assessment, whether or not transfection of antisense oligonucleotides increases correctly spliced XPF gene products in cells derived from patients in the XP-F group whose disease is caused by the above mutation in intron 1. Is confirmed by Western blotting. In the repair activity evaluation, in cells derived from patients in the XP-F group caused by the above mutation in intron 1, the activity of repairing DNA damage caused by UV irradiation by transfecting an antisense oligonucleotide was found. Check if it recovers.
 本発明の医薬組成物Iにおけるアンチセンスオリゴヌクレオチドは、イントロン1における異常スプライシングを抑制する限り特定のものに限定されないが、例えば、配列番号63で表される塩基配列における155番目~217番目(好ましくは175番目~217番目、より好ましくは179番目~213番目、さらにより好ましくは183番目~203番目)の塩基配列内の、連続する15~30ヌクレオチド(好ましくは15~23ヌクレオチド、より好ましくは15~18ヌクレオチド)からなる配列を標的とし得る。例えば、本発明の医薬組成物Iにおけるアンチセンスオリゴヌクレオチドが標的とする塩基配列は、配列番号65~82、101~108、および124~135から選択されるいずれか1つで表される塩基配列に相補的な配列であり得、好ましくは配列番号65~82、101、および105~108から選択されるいずれか1つで表される塩基配列に相補的な配列であり得、より好ましくは配列番号65~82から選択されるいずれか1つで表される塩基配列に相補的な配列であり得、さらにより好ましくは配列番号75~78から選択されるいずれか1つで表される塩基配列に相補的な配列であり得る。換言すれば、本発明の医薬組成物Iにおけるアンチセンスオリゴヌクレオチドは、前記配列(すなわち標的配列)とハイブリダイズすることができる。好ましい態様において、本発明の医薬組成物Iにおけるアンチセンスオリゴヌクレオチドは、前記標的配列と高ストリンジェントな条件でハイブリダイズすることができる。 The antisense oligonucleotide in the pharmaceutical composition I of the present invention is not limited to a specific one as long as it suppresses abnormal splicing in intron 1, but for example, it is located at positions 155 to 217 (preferably) in the base sequence represented by SEQ ID NO: 63. Is a contiguous 15-30 nucleotides (preferably 15-23 nucleotides, more preferably 15) in the 175th-217th, more preferably 179th-213rd, even more preferably 183rd-203rd base sequence. A sequence consisting of (~ 18 nucleotides) can be targeted. For example, the base sequence targeted by the antisense oligonucleotide in the pharmaceutical composition I of the present invention is a base sequence represented by any one selected from SEQ ID NOs: 65 to 82, 101 to 108, and 124 to 135. Can be a sequence complementary to, preferably a sequence complementary to the base sequence represented by any one selected from SEQ ID NOs: 65-82, 101, and 105-108, more preferably a sequence. It can be a sequence complementary to the base sequence represented by any one selected from Nos. 65 to 82, and even more preferably the base sequence represented by any one selected from SEQ ID NOs: 75 to 78. Can be a complementary sequence to. In other words, the antisense oligonucleotide in the pharmaceutical composition I of the present invention can hybridize with the sequence (ie, the target sequence). In a preferred embodiment, the antisense oligonucleotide in the pharmaceutical composition I of the present invention can hybridize with the target sequence under highly stringent conditions.
 本発明の医薬組成物Iにおけるアンチセンスオリゴヌクレオチドは、標的配列とのハイブリダイゼーションに寄与しない塩基配列(テール配列)をその5'末端および/または3'末端に有していても良い。それぞれのテール配列に含まれる塩基数は5以下(好ましくは4、3、2または1)であり、テール配列を有しないものが最適である。 The antisense oligonucleotide in the pharmaceutical composition I of the present invention may have a base sequence (tail sequence) that does not contribute to hybridization with the target sequence at its 5'end and / or 3'end. The number of bases contained in each tail sequence is 5 or less (preferably 4, 3, 2 or 1), and those having no tail sequence are optimal.
 本発明の医薬組成物Iにおけるアンチセンスオリゴヌクレオチドのテール配列を除いた部分の塩基配列は、前記標的配列とのハイブリダイズ活性を保持する限り、標的配列との配列相補性が70%以上であってよく、好ましくは80%以上、より好ましくは90%以上、さらにより好ましくは95%以上であり、最適には完全に相補的である。 The base sequence of the portion of the pharmaceutical composition I of the present invention excluding the tail sequence of the antisense oligonucleotide has a sequence complementarity of 70% or more with the target sequence as long as it retains the hybridization activity with the target sequence. It is preferably 80% or more, more preferably 90% or more, even more preferably 95% or more, and is optimally completely complementary.
 好ましい態様において、本発明の医薬組成物Iにおけるアンチセンスオリゴヌクレオチドは、配列番号65~82、101~108、および124~135(好ましくは配列番号65~82、101、および105~108、より好ましくは配列番号65~82、さらにより好ましくは配列番号75~78)から選択されるいずれか1つで表される塩基配列を含む。配列番号65~82、101~108、および124~135で表される塩基配列は、後述の実施例に記載された配列番号1~18、53~60、および112~123にそれぞれ対応するRNA配列として記載されている。なお、アンチセンスオリゴヌクレオチドにおけるウリジン残基は、それに対応するチミジン残基をもとにした修飾ヌクレオチドに置換される場合がある。したがって、配列番号65~82、101~108、および124~135で表される塩基配列において「u」を「t」に置き換えた塩基配列も本態様に含まれる。 In a preferred embodiment, the antisense oligonucleotides in pharmaceutical composition I of the present invention are SEQ ID NOs: 65-82, 101-108, and 124-135 (preferably SEQ ID NOs: 65-82, 101, and 105-108, more preferably. Includes a base sequence represented by any one selected from SEQ ID NOs: 65-82, and even more preferably SEQ ID NOs: 75-78). The nucleotide sequences represented by SEQ ID NOs: 65 to 82, 101 to 108, and 124 to 135 are RNA sequences corresponding to SEQ ID NOs: 1 to 18, 53 to 60, and 112 to 123, respectively, which are described in Examples described later. It is described as. The uridine residue in the antisense oligonucleotide may be replaced with a modified nucleotide based on the corresponding thymidine residue. Therefore, the base sequence in which "u" is replaced with "t" in the base sequences represented by SEQ ID NOs: 65 to 82, 101 to 108, and 124 to 135 is also included in this embodiment.
 また、本発明の医薬組成物Iにおけるアンチセンスオリゴヌクレオチドのテール配列を除いた部分の塩基配列は、前記標的配列とのハイブリダイズ活性を有する限り、標的配列との間で5塩基以下(好ましくは4塩基以下、より好ましくは3塩基、2塩基または1塩基)のミスマッチがあっても良いが、最適にはミスマッチを有しない。 In addition, the base sequence of the portion of the pharmaceutical composition I of the present invention excluding the tail sequence of the antisense oligonucleotide is 5 bases or less (preferably) with the target sequence as long as it has hybrid activity with the target sequence. There may be a mismatch of 4 bases or less, more preferably 3 bases, 2 bases or 1 base), but optimally there is no mismatch.
 ここで、本発明の医薬組成物Iにおけるアンチセンスオリゴヌクレオチドは、変異型イントロン1配列において新たに生じた5’スプライス部位の認識配列GTAAGTAA(配列番号63で表される塩基配列における193~200番目の配列)へのU1snRNPの結合を阻害することで、異常スプライシングを抑制すると考えられる。U1 snRNPは5’スプライス部位の認識配列とほぼ相補的な配列を持ち、スプライシングの過程で塩基対が形成される。したがって、好ましい態様において、本発明の医薬組成物Iにおけるアンチセンスオリゴヌクレオチドは、配列番号63で表される塩基配列における193~200番目の配列の少なくとも1塩基、例えば2塩基、3塩基、4塩基、5塩基、6塩基、7塩基、または8塩基を含む配列を標的とし得る。 Here, the antisense oligonucleotide in the pharmaceutical composition I of the present invention is the recognition sequence GTAAGTAA of the 5'splice site newly generated in the mutant intron 1 sequence (No. 193 to 200 in the base sequence represented by SEQ ID NO: 63). It is considered that abnormal splicing is suppressed by inhibiting the binding of U1snRNP to (sequence). U1 snRNP has a sequence that is almost complementary to the recognition sequence at the 5'splice site, and base pairs are formed during the splicing process. Therefore, in a preferred embodiment, the antisense oligonucleotide in the pharmaceutical composition I of the present invention is at least one base of the 193 to 200th sequence in the base sequence represented by SEQ ID NO: 63, for example, 2 bases, 3 bases, 4 bases. Sequences containing 5, 6 bases, 7 bases, or 8 bases can be targeted.
 本発明の医薬組成物Iにおけるアンチセンスオリゴヌクレオチドの長さは、イントロン1における異常スプライシングを抑制する限り特に限定されないが、例えば、15~30ヌクレオチド、15~23ヌクレオチド、または15~18ヌクレオチドであり得る。 The length of the antisense oligonucleotide in the pharmaceutical composition I of the present invention is not particularly limited as long as it suppresses abnormal splicing in intron 1, and is, for example, 15 to 30 nucleotides, 15 to 23 nucleotides, or 15 to 18 nucleotides. obtain.
 また別の態様において、本発明の医薬組成物は、イントロン8における上記変異を疾患原因とするXP-F群を適用対象とする。この態様における本発明の医薬組成物を、本発明の医薬組成物IIという。本発明の医薬組成物IIは、配列番号64で表される変異型イントロン8配列を有するXPF遺伝子の転写後修飾において、配列番号64で表される塩基配列における324番目~329番目のポリA付加配列を用いる異常ポリアデニル化を抑制する1つ以上のアンチセンスオリゴヌクレオチドを含む。 In yet another aspect, the pharmaceutical composition of the present invention applies to the XP-F group whose disease cause is the above-mentioned mutation in intron 8. The pharmaceutical composition of the present invention in this embodiment is referred to as the pharmaceutical composition II of the present invention. In the post-transcriptional modification of the XPF gene having the mutant intron 8 sequence represented by SEQ ID NO: 64, the pharmaceutical composition II of the present invention adds polyA at positions 324 to 329 in the base sequence represented by SEQ ID NO: 64. Includes one or more antisense oligonucleotides that suppress aberrant polyadenylation using sequences.
 ここで本発明の医薬組成物IIにおけるアンチセンスオリゴヌクレオチドがイントロン8における異常ポリアデニル化を抑制するか否かは、下記実施例に記載した、タンパク質発現量評価または修復活性評価と同様の評価法により決定される。いずれかの評価法で正しくスプライシングされたXPF遺伝子の発現の増加またはDNA修復活性の回復が確認された場合、アンチセンスオリゴヌクレオチドがイントロン8における異常ポリアデニル化を抑制すると判断される。タンパク質発現量評価では、イントロン8における上記変異を疾患原因とするXP-F群の患者由来の細胞において、アンチセンスオリゴヌクレオチドをトランスフェクトすることにより正しい位置でポリアデニル化されたXPF遺伝子産物が増加するか否かを確認する。また修復活性評価では、イントロン8における上記変異を疾患原因とするXP-F群の患者由来の細胞において、アンチセンスオリゴヌクレオチドをトランスフェクトすることにより、UV照射により生じたDNA損傷を修復する活性が回復するか否かを確認する。 Here, whether or not the antisense oligonucleotide in the pharmaceutical composition II of the present invention suppresses abnormal polyadenylation in intron 8 is determined by the same evaluation method as the protein expression level evaluation or repair activity evaluation described in the following Examples. It is determined. If an increase in the expression of the correctly spliced XPF gene or a recovery in the DNA repair activity is confirmed by any of the evaluation methods, it is judged that the antisense oligonucleotide suppresses the abnormal polyadenylation in the intron 8. In protein expression assessment, transfection of antisense oligonucleotides increases the polyadenylated XPF gene product at the correct location in cells from patients in the XP-F group whose disease is caused by the mutation in intron 8. Check if it is. In the evaluation of repair activity, cells derived from patients in the XP-F group caused by the above mutation in intron 8 were found to have the activity of repairing DNA damage caused by UV irradiation by transfecting antisense oligonucleotides. Check if it recovers.
 本発明の医薬組成物IIにおけるアンチセンスオリゴヌクレオチドは、イントロン8における異常ポリアデニル化を抑制する限り特定のものに限定されないが、例えば、配列番号64で表される塩基配列における309番目~343番目の塩基配列内の、連続する15~30ヌクレオチド、15~23ヌクレオチド、または15~18ヌクレオチドからなる配列を標的とし得る。換言すれば、本発明の医薬組成物IIにおけるアンチセンスオリゴヌクレオチドは、前記配列(すなわち標的配列)とハイブリダイズすることができる。好ましい態様において、本発明の医薬組成物IIにおけるアンチセンスオリゴヌクレオチドは、前記標的配列と高ストリンジェントな条件でハイブリダイズすることができる。 The antisense oligonucleotide in the pharmaceutical composition II of the present invention is not limited to a specific one as long as it suppresses abnormal polyadenylation in intron 8, but for example, the 309th to 343rd nucleotides in the nucleotide sequence represented by SEQ ID NO: 64. A sequence consisting of 15 to 30 nucleotides, 15 to 23 nucleotides, or 15 to 18 nucleotides in a sequence within a base sequence can be targeted. In other words, the antisense oligonucleotide in the pharmaceutical composition II of the present invention can hybridize with the above sequence (ie, the target sequence). In a preferred embodiment, the antisense oligonucleotide in the pharmaceutical composition II of the present invention can hybridize with the target sequence under highly stringent conditions.
 本発明の医薬組成物IIにおけるアンチセンスオリゴヌクレオチドは、標的配列とのハイブリダイゼーションに寄与しない塩基配列(テール配列)をその5'末端および/または3'末端に有していても良い。それぞれのテール配列に含まれる塩基数は5以下(好ましくは4、3、2または1)であり、テール配列を有しないものが最適である。 The antisense oligonucleotide in the pharmaceutical composition II of the present invention may have a base sequence (tail sequence) that does not contribute to hybridization with the target sequence at its 5'end and / or 3'end. The number of bases contained in each tail sequence is 5 or less (preferably 4, 3, 2 or 1), and those having no tail sequence are optimal.
 本発明の医薬組成物IIにおけるアンチセンスオリゴヌクレオチドのテール配列を除いた部分の塩基配列は、前記標的配列とのハイブリダイズ活性を保持する限り、標的配列との配列相補性が70%以上であってよく、好ましくは80%以上、より好ましくは90%以上、さらにより好ましくは95%以上であり、最適には完全に相補的である。 The base sequence of the portion of the pharmaceutical composition II of the present invention excluding the tail sequence of the antisense oligonucleotide has a sequence complementarity of 70% or more with the target sequence as long as it retains the hybridization activity with the target sequence. It is preferably 80% or more, more preferably 90% or more, even more preferably 95% or more, and is optimally completely complementary.
 好ましい態様において、本発明の医薬組成物IIにおけるアンチセンスオリゴヌクレオチドは、配列番号83~100で表される塩基配列を含む。配列番号83~100で表される塩基配列は、後述の実施例に記載された配列番号19~36にそれぞれ対応するRNA配列として記載されている。なお、アンチセンスオリゴヌクレオチドにおけるウリジン残基は、それに対応するチミジン残基をもとにした修飾ヌクレオチドに置換される場合がある。したがって、配列番号83~100で表される塩基配列おいて「u」を「t」に置き換えた塩基配列も本態様に含まれる。 In a preferred embodiment, the antisense oligonucleotide in the pharmaceutical composition II of the present invention comprises the base sequence represented by SEQ ID NOs: 83-100. The base sequences represented by SEQ ID NOs: 83 to 100 are described as RNA sequences corresponding to SEQ ID NOs: 19 to 36 described in Examples described later. The uridine residue in the antisense oligonucleotide may be replaced with a modified nucleotide based on the corresponding thymidine residue. Therefore, the base sequence in which "u" is replaced with "t" in the base sequence represented by SEQ ID NOs: 83 to 100 is also included in this embodiment.
 また、本発明の医薬組成物IIにおけるアンチセンスオリゴヌクレオチドのテール配列を除いた部分の塩基配列は、前記標的配列とのハイブリダイズ活性を有する限り、標的配列との間で5塩基以下(好ましくは4塩基以下、より好ましくは3塩基、2塩基または1塩基)のミスマッチがあっても良いが、最適にはミスマッチを有しない。 In addition, the base sequence of the portion of the pharmaceutical composition II of the present invention excluding the tail sequence of the antisense oligonucleotide is 5 bases or less (preferably) with the target sequence as long as it has hybrid activity with the target sequence. There may be a mismatch of 4 bases or less, more preferably 3 bases, 2 bases or 1 base), but optimally there is no mismatch.
 ここで、本発明の医薬組成物IIにおけるアンチセンスオリゴヌクレオチドは、変異型イントロン8配列において新たに生じたポリA付加配列AATAAA(配列番号64で表される塩基配列における324~329番目の配列)への切断・ポリアデニル化因子(CPSF)の結合を阻害することで、異常ポリアデニル化を抑制すると考えられる。したがって、好ましい態様において、本発明の医薬組成物IIにおけるアンチセンスオリゴヌクレオチドは、配列番号64で表される塩基配列における324~329番目の配列の少なくとも1塩基、例えば2塩基、3塩基、4塩基、5塩基、または6塩基を含む配列を標的とし得る。 Here, the antisense oligonucleotide in the pharmaceutical composition II of the present invention is a polyA addition sequence AATAAA newly generated in the mutant intron 8 sequence (sequences 324 to 329 in the base sequence represented by SEQ ID NO: 64). It is thought that abnormal polyadenylation is suppressed by inhibiting cleavage and binding of polyadenylation factor (CPSF) to. Therefore, in a preferred embodiment, the antisense oligonucleotide in the pharmaceutical composition II of the present invention is at least one base of the 324 to 329th sequence in the base sequence represented by SEQ ID NO: 64, for example, 2 bases, 3 bases, 4 bases. Sequences containing 5, or 6 bases can be targeted.
 本発明の医薬組成物IIにおけるアンチセンスオリゴヌクレオチドの長さは、イントロン1における異常ポリアデニル化を抑制する限り特に限定されないが、例えば、15~30ヌクレオチド、15~23ヌクレオチド、または15~18ヌクレオチドであり得る。 The length of the antisense oligonucleotide in the pharmaceutical composition II of the present invention is not particularly limited as long as it suppresses abnormal polyadenylation in intron 1, but is, for example, 15 to 30 nucleotides, 15 to 23 nucleotides, or 15 to 18 nucleotides. possible.
 本発明の医薬組成物におけるアンチセンスオリゴヌクレオチドは、DNA、RNA、およびDNA/RNAキメラのいずれであってもよい。DNA/RNAキメラとすることにより、アンチセンスオリゴヌクレオチドのヌクレアーゼ耐性を増加させ、生体内での安定性を高めることができる。 The antisense oligonucleotide in the pharmaceutical composition of the present invention may be any of DNA, RNA, and DNA / RNA chimera. By making it a DNA / RNA chimera, the nuclease resistance of the antisense oligonucleotide can be increased and the stability in vivo can be enhanced.
 本発明の医薬組成物におけるアンチセンスオリゴヌクレオチドは、ヌクレアーゼ耐性を増加させ、生体内での安定性を高めるように、1つ以上の修飾を含んでいてもよい。修飾としては、例えば、ヌクレオシドの糖部分の修飾およびヌクレオチドのリン酸基の修飾が挙げられる。糖修飾ヌクレオシドおよび修飾ヌクレオシド間結合の例としては、上記1に記載したものが挙げられる。 The antisense oligonucleotide in the pharmaceutical composition of the present invention may contain one or more modifications to increase nuclease resistance and enhance in vivo stability. Modifications include, for example, modification of the sugar moiety of the nucleoside and modification of the phosphate group of the nucleotide. Examples of the bond between the sugar-modified nucleoside and the modified nucleoside include those described in 1 above.
 好ましい態様において、アンチセンスオリゴヌクレオチドは、1つ以上の糖修飾ヌクレオシドを含む。アンチセンスオリゴヌクレオチドに含まれるヌクレオシドのすべてが、糖修飾ヌクレオシドであってもよい。アンチセンスオリゴヌクレオチド中に、異なる糖部分の修飾を含む2種類以上の糖修飾ヌクレオシドが含まれていてもよい。糖修飾ヌクレオシドは、4’-(CH-O-2’架橋(式中、nは1または2である)または2’-O-メチル化を含むヌクレオシドであることが好ましく、4’-(CH-O-2’架橋または2’-O-メチル化を含むヌクレオシドであることがより好ましい。アンチセンスオリゴヌクレオチド中に4’-(CH-O-2’架橋を含む糖修飾ヌクレオシドが含まれる場合、その数は、特に限定されないが、1個以上、例えば2個以上、3個以上、4個以上、5個以上、または6個以上、12個以下、例えば11個以下、10個以下、または9個以下であり得る。 In a preferred embodiment, the antisense oligonucleotide comprises one or more sugar modified nucleosides. All of the nucleosides contained in the antisense oligonucleotide may be sugar-modified nucleosides. The antisense oligonucleotide may contain two or more sugar-modified nucleosides containing modifications of different sugar moieties. The sugar-modified nucleoside is preferably a nucleoside containing 4'-(CH 2 ) n- O-2'cross-linking (where n is 1 or 2 in the formula) or 2'-O-methylation. -(CH 2 ) 2 -O-2'crosslinking or 2'-O-methylation-containing nucleosides are more preferred. When the antisense oligonucleotide contains a sugar-modified nucleoside containing a 4'-(CH 2 ) 2- O-2'crosslink, the number is not particularly limited, but one or more, for example, two or more, or three. It can be 4 or more, 5 or more, or 6 or more, 12 or less, for example, 11 or less, 10 or less, or 9 or less.
 より好ましい態様において、アンチセンスオリゴヌクレオチドに含まれるヌクレオシドのすべてが糖修飾ヌクレオシドであり、糖修飾ヌクレオシドは、4’-(CH-O-2’架橋を含む糖修飾ヌクレオシド、2’-O-メチル化を含む糖修飾ヌクレオシド、またはそれらの組み合わせである。 In a more preferred embodiment, all of the nucleosides contained in the antisense oligonucleotide are sugar-modified nucleosides, where the sugar-modified nucleoside is a sugar-modified nucleoside containing a 4'-(CH 2 ) 2- O-2'bridge, 2'-. A sugar-modified nucleoside containing O-methylation, or a combination thereof.
 好ましい態様において、アンチセンスオリゴヌクレオチドは、1つ以上の修飾ヌクレオシド間結合を含む。アンチセンスオリゴヌクレオチド中に、異なる修飾ヌクレオシド間結合が含まれていてもよい。またアンチセンスオリゴヌクレオチド中のヌクレオシド間結合すべてが、修飾ヌクレオシド間結合であってもよい。より好ましい態様において、修飾ヌクレオシド間結合は、ホスホロチオエート結合である。さらにより好ましい態様において、アンチセンスオリゴヌクレオチド中のヌクレオシド間結合すべてが修飾ヌクレオシド間結合であり、修飾ヌクレオシド間結合はホスホロチオエート結合である。 In a preferred embodiment, the antisense oligonucleotide comprises one or more modified nucleoside linkages. Different modified nucleoside linkages may be included in the antisense oligonucleotide. Further, all the nucleoside linkages in the antisense oligonucleotide may be modified nucleoside linkages. In a more preferred embodiment, the modified nucleoside bond is a phosphorothioate bond. In an even more preferred embodiment, all nucleoside linkages in the antisense oligonucleotide are modified nucleoside linkages and the modified nucleoside linkages are phosphorothioate linkages.
 好ましい態様において、本発明の医薬組成物Iにおけるアンチセンスオリゴヌクレオチドは、配列番号1~18、37~60および112~123で表される塩基配列からなるオリゴヌクレオチドからなる群より選択される。これらのオリゴヌクレオチドに含まれるヌクレオシドは、4’-(CH-O-2’架橋を含む糖修飾ヌクレオシドおよび2’-O-メチル化を含む糖修飾ヌクレオシドのいずれかである。またこれらのオリゴヌクレオチド中のヌクレオシド間結合は、全てホスホロチオエート結合である。本発明の医薬組成物Iにおけるアンチセンスオリゴヌクレオチドとしてより好適なものは以下に示されるオリゴヌクレオチドである。 In a preferred embodiment, the antisense oligonucleotide in the pharmaceutical composition I of the present invention is selected from the group consisting of oligonucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1-18, 37-60 and 112-123. The nucleosides contained in these oligonucleotides are either sugar-modified nucleosides containing 4'-(CH 2 ) 2 -O-2'crosslinks or sugar-modified nucleosides containing 2'-O-methylation. Moreover, all the nucleoside-to-nucleoside bonds in these oligonucleotides are phosphorothioate bonds. More suitable antisense oligonucleotides in the pharmaceutical composition I of the present invention are the oligonucleotides shown below.
実施例11(XPF-int1-011):HO-Cm1s-Ce2s-Cm1s-Um1s-Te2s-Am1s-Cm1s-Te2s-Um1s-Am1s-Ce2s-Gm1s-Um1s-Ce2s-Um1s-Gm1s-Te2s-Gm1t-H(配列番号11)
実施例12(XPF-int1-012):HO-Cm1s-Ce2s-Um1s-Um1s-Ae2s-Cm1s-Um1s-Te2s-Am1s-Cm1s-Ge2s-Um1s-Cm1s-Te2s-Gm1s-Um1s-Ge2s-Um1t-H(配列番号12)
実施例13(XPF-int1-013):HO-Cm1s-Te2s-Um1s-Am1s-Ce2s-Um1s-Um1s-Ae2s-Cm1s-Gm1s-Te2s-Cm1s-Um1s-Ge2s-Um1s-Gm1s-Te2s-Um1t-H(配列番号13)
実施例14(XPF-int1-014):HO-Um1s-Te2s-Am1s-Cm1s-Te2s-Um1s-Am1s-Ce2s-Gm1s-Um1s-Ce2s-Um1s-Gm1s-Te2s-Gm1s-Um1s-Te2s-Cm1t-H(配列番号14)
実施例45(XPF-int1-013_1):HO-Cm1s-Te2s-Um1s-Am1s-Ce2s-Um1s-Um1s-Am1s-Cm1s-Gm1s-Te2s-Cm1s-Um1s-Gm1s-Um1s-Gm1s-Te2s-Um1t-H(配列番号45)
実施例46(XPF-int1-013_2):HO-Cm1s-Te2s-Um1s-Am1s-Ce2s-Um1s-Um1s-Ae2s-Cm1s-Gm1s-Te2s-Cm1s-Um1s-Gm1s-Um1s-Gm1s-Te2s-Um1t-H(配列番号46)
実施例62(XPF-int1-013_5):HO-Cm1s-Te2s-Um1s-Am1s-Ce2s-Um1s-Um1s-Ae2s-Cm1s-Gm1s-Te2s-Cm1s-Te2s-Gm1s-Um1s-Gm1s-Te2s-Um1t-H(配列番号112)
実施例63(XPF-int1-013_6):HO-Cm1s-Te2s-Um1s-Am1s-Ce2s-Um1s-Um1s-Ae2s-Cm1s-Gm1s-Te2s-Cm1s-Um1s-Gm1s-Te2s-Gm1s-Te2s-Um1t-H(配列番号113)
Example 11 (XPF-int1-011): HO -C m1s -C e2s -C m1s -U m1s -T e2s -A m1s -C m1s -T e2s -U m1s -A m1s -C e2s -G m1s -U m1s- C e2s- U m1s- G m1s- T e2s- G m1t- H (SEQ ID NO: 11)
Example 12 (XPF-int1-012): HO -C m1s -C e2s -U m1s -U m1s -A e2s -C m1s -U m1s -T e2s -A m1s -C m1s -G e2s -U m1s -C m1s- T e2s- G m1s- U m1s- G e2s- U m1t- H (SEQ ID NO: 12)
Example 13 (XPF-int1-013): HO-C m1s - Te2s- U m1s- A m1s- C e2s- U m1s- U m1s- A e2s- C m1s- G m1s- T e2s- C m1s- U m1s- G e2s- U m1s- G m1s- T e2s- U m1t- H (SEQ ID NO: 13)
Example 14 (XPF-int1-014): HO-U m1s- T e2s- A m1s- C m1s- T e2s- U m1s- A m1s- C e2s- G m1s- U m1s- C e2s- U m1s- G m1s- T e2s- G m1s- U m1s- T e2s- C m1t- H (SEQ ID NO: 14)
Example 45 (XPF-int1-013_1): HO-C m1s - Te2s- U m1s- A m1s- C e2s- U m1s- U m1s- A m1s- C m1s- G m1s- T e2s- C m1s- U m1s- G m1s- U m1s- G m1s - Te2s- U m1t- H (SEQ ID NO: 45)
Example 46 (XPF-int1-013_2): HO-C m1s- T e2s- U m1s- A m1s- C e2s- U m1s- U m1s- A e2s- C m1s- G m1s- T e2s- C m1s- U m1s- G m1s- U m1s- G m1s - Te2s- U m1t- H (SEQ ID NO: 46)
Example 62 (XPF-int1-013_5): HO-C m1s- T e2s- U m1s- A m1s- C e2s- U m1s- U m1s- A e2s- C m1s- G m1s- T e2s- C m1s- T e2s- G m1s- U m1s- G m1s- T e2s- U m1t- H (SEQ ID NO: 112)
Example 63 (XPF-int1-013_6): HO-C m1s- T e2s- U m1s- A m1s- C e2s- U m1s- U m1s- A e2s- C m1s- G m1s- T e2s- C m1s- U m1s- G m1s- T e2s- G m1s- T e2s- U m1t- H (SEQ ID NO: 113)
 好ましい態様において、本発明の医薬組成物IIにおけるアンチセンスオリゴヌクレオチドは、配列番号19~36で表される塩基配列からなるオリゴヌクレオチドからなる群より選択される。これらのオリゴヌクレオチドに含まれるヌクレオシドは、4’-(CH-O-2’架橋を含む糖修飾ヌクレオシドおよび2’-O-メチル化を含む糖修飾ヌクレオシドのいずれかである。またこれらのオリゴヌクレオチド中のヌクレオシド間結合は、全てホスホロチオエート結合である。 In a preferred embodiment, the antisense oligonucleotide in the pharmaceutical composition II of the present invention is selected from the group consisting of oligonucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 19 to 36. The nucleosides contained in these oligonucleotides are either sugar-modified nucleosides containing 4'-(CH 2 ) 2 -O-2'crosslinks or sugar-modified nucleosides containing 2'-O-methylation. Moreover, all the nucleoside-to-nucleoside bonds in these oligonucleotides are phosphorothioate bonds.
 アンチセンスオリゴヌクレオチドの調製方法としては特に制限はないが、既知の化学合成法(リン酸トリエステル法、ホスホロアミダイト法、H-ホスホネート法など)を用いることができる。市販の核酸合成機を用いて、市販のDNA/RNA合成に使われる試薬を用いて合成してもよい。例えば、ホスホロアミダイト試薬をカップリング後、硫黄、テトラエチルチウラムジスルフィド(TETD、アプライドバイオシステム社)、Beaucage試薬(Glen Research社)、または、キサンタンヒドリドなどの試薬を反応させることにより、ホスホロチオエート結合を有するアンチセンスオリゴヌクレオチドを合成することができる(Tetrahedron Letters, 32, 3005 (1991), J. Am. Chem. Soc. 112, 1253 (1990), PCT/WO98/54198)。 The method for preparing the antisense oligonucleotide is not particularly limited, but a known chemical synthesis method (phosphoric acid triester method, phosphoramidite method, H-phosphonate method, etc.) can be used. It may be synthesized by using a commercially available nucleic acid synthesizer and using a commercially available reagent used for DNA / RNA synthesis. For example, after coupling a phosphoramidite reagent, a reagent such as sulfur, tetraethylthiura disulfide (TETD, Applied Biosystem), Beaucage reagent (Glen Research), or xanthan hydride is reacted to have a phosphorothioate bond. Antisense oligonucleotides can be synthesized (Tetrahedron Letters, 32, 3005 (1991), J. Am. Chem. Soc. 112, 1253 (1990), PCT / WO98 / 54198).
 本発明のオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)は、5’末端および/または3’末端に、オリゴヌクレオチドの物性や体内動態を制御するための所望の化学構造を有する基を有してもよい。例えば、本発明のオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)の5’末端および/または3’末端にアミノアルキル基を導入し、それを介して前記所望の化学構造を付加することができる。 The oligonucleotide (antisense oligonucleotide) of the present invention may have a group having a desired chemical structure at the 5'end and / or 3'end to control the physical properties and pharmacokinetics of the oligonucleotide. For example, an aminoalkyl group can be introduced at the 5'end and / or 3'end of the oligonucleotide (antisense oligonucleotide) of the present invention, through which the desired chemical structure can be added.
 オリゴヌクレオチドへのアミノアルキル基の導入は、当該技術分野において知られた方法によって行えばよく、市販の試薬を用いて行ってもよい。例えば、目的配列を有するオリゴヌクレオチドの鎖伸長が終了した後に、5'-Amino-Modifier C6 (Glen Research)、5'-TFA-Amino-Modifier C6-CE Phosphoramidite、5'-TFA-Amino-Modifier-C5-CE Phosphoramidite(Link Technologies)などのアミノ修飾試薬と反応させることにより、5'末端にアミノアルキルリン酸基が結合したオリゴヌクレオチドを合成できる。また3'-amino-Modifier C3 CPG、3'-amino-Modifier C7 CPG(Glen Research)などのアミノ修飾試薬と反応させることにより、3’末端にアミノアルキル基が結合したオリゴヌクレオチドを合成できる。 The introduction of the aminoalkyl group into the oligonucleotide may be carried out by a method known in the art, or may be carried out using a commercially available reagent. For example, after the strand extension of the oligonucleotide having the target sequence is completed, 5'-Amino-Modifier C6 (Glen Research), 5'-TFA-Amino-Modifier C6-CE Phosphoramidite, 5'-TFA-Amino-Modifier- By reacting with an amino modification reagent such as C5-CE Phosphoramidite (Link Technologies), an oligonucleotide in which an aminoalkylphosphate group is bonded to the 5'end can be synthesized. Further, by reacting with an amino modification reagent such as 3'-amino-Modifier C3 CPG and 3'-amino-Modifier C7 CPG (Glen Research), an oligonucleotide in which an aminoalkyl group is bonded to the 3'end can be synthesized.
 本発明のオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)の5’末端および/または3’末端に導入し得る化学構造としては、当該技術分野においてオリゴヌクレオチドの物性や体内動態を制御し得ることが知られた任意の化学構造を利用することができ、例えば、脂肪酸、コレステロール、GalNAc構造などが挙げられる。例えば、核酸の筋肉組織への移行に有用とされる脂肪酸を含むアミダイト化合物を用いてアンチセンスオリゴヌクレオチドを合成することができ、アンチセンスオリゴヌクレオチドの筋肉組織への移行を促進することができることが知られている(例えば、Nucleic Acids Res. (2020) 47, 6029-6044、5'-Palmitate-C6-CE PhosphoramiditeなどのLink Technologies製品など)。また、コレステロールを結合したsiRNAが脳内で作用することは、公知文献(例えば、Mol. Cancer Ther. (2018) 17, 1251-1258)に記載されている。また、核酸の肝臓細胞への移行に有用とされるGalNAc構造を含むアミダイト化合物を用いてアンチセンスオリゴヌクレオチドを合成することができ、アンチセンスオリゴヌクレオチドを肝臓細胞に特異的に送達できることが知られている(例えば、Methods in Enzymology、1999年、313巻、297~321頁、WO2009/073809、WO2014/076196、WO2014/179620、WO2015/006740、WO2015/105083、WO2016/055601、WO2017/023817、WO2017/084987、WO2017/131236、WO2019/172286など)。 As a chemical structure that can be introduced into the 5'end and / or 3'end of the oligonucleotide (antisense oligonucleotide) of the present invention, it is known in the art that the physical properties and pharmacokinetics of the oligonucleotide can be controlled. Any chemical structure can be utilized, including, for example, fatty acids, cholesterol, GalNAc structures and the like. For example, antisense oligonucleotides can be synthesized using amidite compounds containing fatty acids that are useful for the transfer of nucleic acids to muscle tissue, and the transfer of antisense oligonucleotides to muscle tissue can be promoted. Known (eg, Link Technologies products such as Nucleic Acids Res. (2020) 47, 6029-6044, 5'-Palmitate-C6-CE Phosphoramidite). In addition, it is described in publicly known literature (for example, Mol. Cancer Ther. (2018) 17, 1251-1258) that cholesterol-bound siRNA acts in the brain. It is also known that antisense oligonucleotides can be synthesized using amidite compounds containing a GalNAc structure, which is useful for the transfer of nucleic acids to hepatocytes, and that antisense oligonucleotides can be specifically delivered to hepatocytes. (For example, Methods in Enzymology, 1999, 313, 297-321, WO2009 / 073809, WO2014 / 076196, WO2014 / 179620, WO2015 / 006740, WO2015 / 105083, WO2016 / 055601, WO2017 / 023817, WO2017 / 084987, WO2017 / 131236, WO2019 / 172286, etc.).
 本発明の医薬組成物におけるアンチセンスオリゴヌクレオチドは、その薬学上許容できる塩の形態であってもよい。「その薬学上許容できる塩」とは、オリゴヌクレオチド(アンチセンスオリゴヌクレオチド)の塩をいい、そのような塩としては、ナトリウム塩、カリウム塩、リチウム塩のようなアルカリ金属塩、カルシウム塩、マグネシウム塩のようなアルカリ土類金属塩、アルミニウム塩、鉄塩、亜鉛塩、銅塩、ニッケル塩、コバルト塩などの金属塩;アンモニウム塩のような無機塩、t-オクチルアミン塩、ジベンジルアミン塩、モルホリン塩、グルコサミン塩、フェニルグリシンアルキルエステル塩、エチレンジアミン塩、N-メチルグルカミン塩、グアニジン塩、ジエチルアミン塩、トリエチルアミン塩、ジシクロヘキシルアミン塩、N,N’-ジベンジルエチレンジアミン塩、クロロプロカイン塩、プロカイン塩、ジエタノールアミン塩、N-ベンジル-フェネチルアミン塩、ピペラジン塩、テトラメチルアンモニウム塩、トリス(ヒドロキシメチル)アミノメタン塩のような有機塩などのアミン塩;弗化水素酸塩、塩酸塩、臭化水素酸塩、沃化水素酸塩のようなハロゲン化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、燐酸塩などの無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩のような低級アルカンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩のようなアリールスルホン酸塩、酢酸塩、りんご酸塩、フマル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、蓚酸塩、マレイン酸塩などの有機酸塩;グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩のようなアミノ酸塩などを挙げることができる。これらの塩は、公知の方法で製造することができる。 The antisense oligonucleotide in the pharmaceutical composition of the present invention may be in the form of a pharmaceutically acceptable salt thereof. "The pharmaceutically acceptable salt" means a salt of an oligonucleotide (antisense oligonucleotide), and examples of such a salt include alkali metal salts such as sodium salt, potassium salt and lithium salt, calcium salt and magnesium. Alkaline earth metal salts such as salts, aluminum salts, iron salts, zinc salts, copper salts, nickel salts, cobalt salts and other metal salts; inorganic salts such as ammonium salts, t-octylamine salts, dibenzylamine salts , Morphorine salt, glucosamine salt, phenylglycine alkyl ester salt, ethylenediamine salt, N-methylglucamine salt, guanidine salt, diethylamine salt, triethylamine salt, dicyclohexylamine salt, N, N'-dibenzylethylenediamine salt, chloroprocine salt, Amine salts such as prokine salts, diethanolamine salts, N-benzyl-phenethylamine salts, piperazine salts, tetramethylammonium salts, organic salts such as tris (hydroxymethyl) aminomethane salts; hydrofluorates, hydrochlorides, bromide Hydrochloride, halogenated hydrorates such as hydroiodide, inorganic acid salts such as nitrates, perchlorates, sulfates, phosphates; methanesulfonates, trifluoromethanesulfonates, ethanesulfonic acid Lower alkane sulfonates such as salts, benzene sulfonates, aryl sulfonates such as p-toluene sulfonates, acetates, apple salts, fumarates, succinates, citrates, tartrates , Organic salts such as oxalate, maleate; amino acid salts such as glycine salt, lysine salt, arginine salt, ornithine salt, glutamate, asparaginate and the like. These salts can be produced by known methods.
 また、本発明の医薬組成物のアンチセンスオリゴヌクレオチド及びその薬学上許容できる塩は、溶媒和物(例えば、水和物)としても存在することがあり、そのような溶媒和物であってもよい。 In addition, the antisense oligonucleotide of the pharmaceutical composition of the present invention and a pharmaceutically acceptable salt thereof may also exist as a solvate (for example, a hydrate), and even such a solvate may exist. Good.
 本発明の医薬組成物は、アンチセンスオリゴヌクレオチドと、適宜の製薬上許容される添加剤とを混合して製剤化することができる。例えば、本発明の医薬組成物は、錠剤、カプセル剤、顆粒剤などの製剤として経口的に、または、注射剤、経皮吸収剤などの製剤として非経口的に投与することができる。 The pharmaceutical composition of the present invention can be formulated by mixing an antisense oligonucleotide and an appropriate pharmaceutically acceptable additive. For example, the pharmaceutical composition of the present invention can be administered orally as a preparation such as tablets, capsules and granules, or parenterally as a preparation such as an injection and a transdermal absorbent.
 これらの製剤は、賦形剤、結合剤、崩壊剤、滑沢剤、乳化剤、安定剤、希釈剤、注射剤用溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛化剤、防腐剤、抗酸化剤などの添加剤を用いて、周知の方法で製造され得る。 These formulations are excipients, binders, disintegrants, lubricants, emulsifiers, stabilizers, diluents, solvents for injections, solubilizers, suspending agents, isotonic agents, buffers, painless It can be produced by a well-known method using additives such as an agent, a preservative, and an antioxidant.
 賦形剤としては、例えば、有機系賦形剤または無機系賦形剤が挙げられる。有機系賦形剤としては、例えば、乳糖、白糖のような糖誘導体;トウモロコシデンプン、馬鈴薯デンプンのようなデンプン誘導体;結晶セルロースのようなセルロース誘導体;アラビアゴムなどが挙げられる。無機系賦形剤としては、例えば、硫酸カルシウムのような硫酸塩が挙げられる。 Examples of excipients include organic excipients and inorganic excipients. Examples of the organic excipient include sugar derivatives such as lactose and sucrose; starch derivatives such as corn starch and potato starch; cellulose derivatives such as crystalline cellulose; and gum arabic. Examples of the inorganic excipient include sulfates such as calcium sulfate.
 結合剤としては、例えば、上記の賦形剤;ゼラチン;ポリビニルピロリドン;ポリエチレングリコールなどが挙げられる。 Examples of the binder include the above-mentioned excipients; gelatin; polyvinylpyrrolidone; polyethylene glycol and the like.
 崩壊剤としては、例えば、上記の賦形剤;クロスカルメロースナトリウム、カルボキシメチルスターチナトリウムのような化学修飾された、デンプンまたはセルロース誘導体;架橋ポリビニルピロリドンなどが挙げられる。 Examples of the disintegrant include the above-mentioned excipients; chemically modified starch or cellulose derivatives such as croscarmellose sodium and sodium carboxymethyl starch; and crosslinked polyvinylpyrrolidone.
 滑沢剤としては、例えば、タルク;ステアリン酸;コロイドシリカ;ビーズワックス、ゲイロウのようなワックス類;硫酸ナトリウムのような硫酸塩;ラウリル硫酸ナトリウムのようなラウリル硫酸塩;上記の賦形剤におけるデンプン誘導体などが挙げられる。 Lubricants include, for example, talc; stearic acid; colloidal silica; bead wax, waxes such as gay wax; sulfates such as sodium sulfate; lauryl sulfates such as sodium lauryl sulfate; in the above excipients. Examples include starch derivatives.
 乳化剤としては、例えば、ベントナイト、ビーガムのようなコロイド性粘土;ラウリル硫酸ナトリウムのような陰イオン界面活性剤;塩化ベンザルコニウムのような陽イオン界面活性剤;ポリオキシエチレンアルキルエーテルのような非イオン界面活性剤などが挙げられる。 The emulsifiers include, for example, colloidal clays such as bentonite, beagum; anionic surfactants such as sodium lauryl sulfate; cationic surfactants such as benzalkonium chloride; nonionic surfactants such as polyoxyethylene alkyl ethers. Examples include ionic surfactants.
 安定剤としては、例えば、メチルパラベン、プロピルパラベンのようなパラヒドロキシ安息香酸エステル類;クロロブタノールのようなアルコール類;フェノール、クレゾールのようなフェノール類などが挙げられる。 Examples of stabilizers include parahydroxybenzoic acid esters such as methylparaben and propylparaben; alcohols such as chlorobutanol; phenols and phenols such as cresol.
 希釈剤としては、例えば、水、エタノール、プロピレングリコールなどが挙げられる。 Examples of the diluent include water, ethanol, propylene glycol and the like.
 注射剤用溶剤としては、例えば、水、エタノール、グリセリンなどが挙げられる。 Examples of the solvent for injection include water, ethanol, glycerin and the like.
 溶解補助剤としては、例えば、ポリエチレングリコール、プロピレングリコール、D-マンニトール、安息香酸ベンジル、エタノール、トリスアミノメタン、コレステロール、トリエタノールアミン、炭酸ナトリウム、クエン酸ナトリウムなどが挙げられる。 Examples of the solubilizing agent include polyethylene glycol, propylene glycol, D-mannitol, benzyl benzoate, ethanol, trisaminomethane, cholesterol, triethanolamine, sodium carbonate, sodium citrate and the like.
 懸濁化剤としては、例えばステアリルトリエタノールアミン、ラウリル硫酸ナトリウム、ラウリルアミノプロピオン酸、レシチン、塩化ベンザルコニウム、塩化ベンゼトニウム、モノステアリン酸グリセリンなどの界面活性剤;例えばポリビニルアルコール、ポリビニルピロリドン、カルボキシメチルセルロースナトリウム、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどの親水性高分子などが挙げられる。 As the suspending agent, for example, surfactants such as stearyltriethanolamine, sodium lauryl sulfate, laurylaminopropionic acid, lecithin, benzalkonium chloride, benzethonium chloride, glycerin monostearate; for example, polyvinyl alcohol, polyvinylpyrrolidone, carboxy Examples thereof include hydrophilic polymers such as sodium methylcellulose, methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, and hydroxypropylcellulose.
 等張化剤としては、例えば塩化ナトリウム、グリセリン、D-マンニトールなどが挙げられる。 Examples of the tonicity agent include sodium chloride, glycerin, D-mannitol and the like.
 緩衝剤としては、例えばリン酸塩、酢酸塩、炭酸塩、クエン酸塩などの緩衝液などが挙げられる。 Examples of the buffer include a buffer solution such as phosphate, acetate, carbonate, and citrate.
 無痛化剤としては、例えばベンジルアルコールなどが挙げられる。 Examples of the pain-relieving agent include benzyl alcohol and the like.
 防腐剤としては、例えばパラオキシ安息香酸エステル類、クロロブタノール、ベンジルアルコール、フェネチルアルコール、デヒドロ酢酸、ソルビン酸などが挙げられる。 Examples of preservatives include paraoxybenzoic acid esters, chlorobutanol, benzyl alcohol, phenethyl alcohol, dehydroacetic acid, sorbic acid and the like.
 抗酸化剤としては、例えば亜硫酸塩、アスコルビン酸などが挙げられる。 Examples of antioxidants include sulfites and ascorbic acid.
 本発明の医薬組成物が投与される対象は、ヒトである。 The subject to which the pharmaceutical composition of the present invention is administered is a human.
 本発明の医薬組成物の投与径路としては、経口投与および非経口投与のいずれでもよく、対象となる症状に応じて好適な投与経路を選択すればよい。また投与経路は、全身投与および局所投与のいずれであってもよい。非経口投与としては、例えば、静脈内投与、動脈内投与、髄腔内投与、筋肉内投与、皮内投与、皮下投与、腹腔内投与、経皮投与、骨内投与、関節内投与などを挙げることができる。例えば、皮膚症状に対しては経皮投与および皮下投与が、神経症状に対しては、髄腔内投与が選択され得る。 The route of administration of the pharmaceutical composition of the present invention may be either oral administration or parenteral administration, and a suitable administration route may be selected according to the target symptomatology. The route of administration may be either systemic administration or topical administration. Examples of parenteral administration include intravenous administration, intraarterial administration, intrathecal administration, intramuscular administration, intradermal administration, subcutaneous administration, intraperitoneal administration, transdermal administration, intraosseous administration, and intra-articular administration. be able to. For example, transdermal and subcutaneous administration may be selected for cutaneous symptoms, and intrathecal administration may be selected for neurological symptoms.
 本発明の医薬組成物は、治療に有効な量で対象に投与される。「治療に有効な量」とは、特定の疾患、投与形態および投与径路につき治療効果を奏する量を意味し、対象の種、疾患の種類、症状、性別、年齢、持病、その他の要素に応じて適宜決定される。 The pharmaceutical composition of the present invention is administered to a subject in a therapeutically effective amount. "Therapeutic effective amount" means the amount that exerts a therapeutic effect for a specific disease, administration form and administration route, depending on the target species, type of disease, symptom, gender, age, chronic disease, and other factors. Will be decided as appropriate.
 本発明の医薬組成物の投与量は、対象の種、疾患の種類、症状、性別、年齢、持病、その他の要素に応じて適宜決定され得る。 The dose of the pharmaceutical composition of the present invention can be appropriately determined according to the target species, the type of disease, symptoms, gender, age, chronic disease, and other factors.
 本発明の医薬組成物は、少なくとも1つの既知の治療剤または治療法と併用してもよい。 The pharmaceutical composition of the present invention may be used in combination with at least one known therapeutic agent or method.
 また本発明は、本発明の医薬組成物の治療有効量を、それを必要とする対象に投与することを含む、色素性乾皮症F群の治療のための方法を提供する。 The present invention also provides a method for treating xeroderma pigmentosum F group, which comprises administering a therapeutically effective amount of the pharmaceutical composition of the present invention to a subject in need thereof.
 本発明における「治療有効量」とは、特定の疾患または症状、投与形態および投与径路につき治療効果を奏する量を意味し、対象の種、疾患または症状の種類、症状、性別、年齢、持病、その他の要素に応じて適宜決定される。 The "therapeutic effective amount" in the present invention means an amount that exerts a therapeutic effect for a specific disease or symptom, administration form and administration route, and refers to a target species, disease or symptom type, symptom, sex, age, chronic disease, etc. It is determined as appropriate according to other factors.
 以下、本発明を実施例によって具体的に説明する。なお、これらの実施例は、本発明を説明するためのものであって、本発明の範囲を限定するものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. It should be noted that these examples are for explaining the present invention and do not limit the scope of the present invention.
(実施例1)
HO-Um1s-Ce2s-Cm1s-Um1s-Ae2s-Gm1s-Cm1s-Ge2s-Am1s-Cm1s-Ce2s-Cm1s-Cm1s-Te2s-Um1s-Am1s-Ce2s-Um1t-H(XPF-int1-001)(配列番号1)
 核酸自動合成機(BioAutomation製MerMade 192X)を用い、ホスホロアミダイト法(Nucleic Acids Research, 12, 4539 (1984)を用いて合成を行った。試薬としては、アクチベーター溶液-3 (0.25 mol/L 5-ベンジルチオ-1H-テトラゾール・アセトニトリル溶液、和光純薬工業製、product No. 013-20011)、CAP A for AKTA (1-メチルイミダゾール・アセトニトリル溶液、Sigma-Aldrich製、product No. L040050)、Cap B1 for AKTA (無水酢酸・アセトニトリル溶液、Sigma-Aldrich製、product No. L050050)、Cap B2 for AKTA (ピリジン・アセトニトリル溶液、Sigma-Aldrich製、product No. L050150)、DCA Deblock (ジクロロ酢酸・トルエン溶液、Sigma-Aldrich製、product No. L023050)を用いた。ホスホロチオエート結合を形成するためのチオ化試薬として、0.2 Mになるようにフェニルアセチルジスルフィド(CARBOSYNTH製、product No. FP07495)を、アセトニトリル (脱水、関東化学製、product No. 01837-05)、ピリジン (脱水、関東化学製、product No. 11339-05)1:1(v/v)溶液を用いて溶解して用いた。アミダイト試薬としては、2'-O-Meヌクレオシドのホスホロアミダイト(アデノシン体product No. ANP-5751, シチジン体product No. ANP-5752,グアノシン体product No. ANP-5753, ウリジン体product No. ANP-5754)はChemGenes製のものを用いた。非天然型のホスホロアミダイトは特開2000-297097の実施例14(5'-O-ジメトキシトリチル-2'-O,4'-C-エチレン-6-N-ベンゾイルアデノシン-3'-O-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)、実施例27 (5'-O-ジメトキシトリチル-2'-O,4'-C-エチレン-2-N-イソブチリルグアノシン-3'-O-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)、実施例22(5'-O-ジメトキシトリチル-2'-O,4'-C-エチレン-4-N-ベンゾイル-5-メチルシチジン-3'-O-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)、実施例9(5'-O-ジメトキシトリチル-2'-O,4'-C-エチレン-5-メチルウリジン-3'-O-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)、の化合物を用いた。固相担体として、Glen Unysupport FC 96ウェルフォーマット0.2 μmol(GlenResearch製)を用い、実施例1の化合物を合成した。但し、アミダイト体の縮合に要する時間は、約9分とした。
(Example 1)
HO-U m1s -C e2s -C m1s -U m1s -A e2s -G m1s -C m1s -G e2s -A m1s -C m1s -C e2s -C m1s -C m1s -T e2s -U m1s -A m1s- C e2s -U m1t -H (XPF-int1-001) (SEQ ID NO: 1)
Synthesis was performed using an automatic nucleic acid synthesizer (MerMade 192X manufactured by BioAutomation) and a phosphoramidite method (Nucleic Acids Research, 12, 4539 (1984). The reagent was activator solution-3 (0.25 mol / L). 5-benzylthio-1H-Tetrazole / acetonitrile solution, manufactured by Wako Pure Chemical Industries, Ltd., product No. 013-20011), CAP A for AKTA (1-methylimidazole / acetonitrile solution, manufactured by Sigma-Aldrich, product No. L040050), Cap B1 for AKTA (anhydrous acetic acid / acetonitrile solution, manufactured by Sigma-Aldrich, product No. L050050), Cap B2 for AKTA (pyridine / acetonitrile solution, manufactured by Sigma-Aldrich, product No. L050150), DCA Deblock (dichloroacetic acid / toluene solution) , Sigma-Aldrich, product No. L023050) was used. As a thiolation reagent for forming a phosphorothioate bond, phenylacetyldisulfide (CARBOSYNTH, product No. FP07495) was dehydrated to 0.2 M. , Kanto Kagaku, product No. 01837-05), pyridine (dehydration, Kanto Kagaku, product No. 11339-05) 1: 1 (v / v) solution was used to dissolve and use. , 2'-O-Me nucleoside phosphoramidite (adenosine product No. ANP-5751, citidine product No. ANP-5752, guanosine product No. ANP-5753, uridine product No. ANP-5754) The one manufactured by ChemGenes was used. The non-natural phosphoramidite used was Example 14 (5'-O-dimethoxytrityl-2'-O, 4'-C-ethylene-6-N-) of JP-A-2000-297097. Benzoyladenosine-3'-O- (2-cyanoethyl N, N-diisopropyl) phosphoramidite), Example 27 (5'-O-dimethoxytrityl-2'-O, 4'-C-ethylene-2-N -Isobutyryl guanosine-3'-O- (2-Cyanoe) Phosphoramidite), Example 22 (5'-O-dimethoxytrityl-2'-O, 4'-C-ethylene-4-N-benzoyl-5-methylcytidine-3'- O- (2-cyanoethyl N, N-diisopropyl) phosphoramidite), Example 9 (5'-O-dimethoxytrityl-2'-O, 4'-C-ethylene-5-methyluridine-3'-O -(2-Cyanoethyl N, N-diisopropyl) phosphoramidite), compound was used. The compound of Example 1 was synthesized using Glen Unysupport FC 96-well format 0.2 μmol (manufactured by Glen Research) as a solid phase carrier. However, the time required for condensation of the amidite compound was about 9 minutes.
 目的配列を有する保護されたオリゴヌクレオチド類縁体を600 μLの濃アンモニア水で処理することによってオリゴマーを支持体から切り出すとともに、リン原子上の保護基シアノエチル基と核酸塩基上の保護基をはずした。オリゴマーの混合溶液を、Clarity QSP DNA Loading Buffer(Phenomenex製)300 μLを混合し、Clarity SPE 96 well plate(Phenomenex製)上にチャージした。Clarity QSP DNA Loading Buffer:水 = 1:1溶液1 mL、水3 mL、3%ジクロロ酢酸(DCA)水溶液3 mL、水6 mLの順に添加した後、20 mM Tris水溶液:アセトニトリル = 9:1溶液にて抽出される成分を集めた。溶媒留去後、目的化合物を得た。本化合物は、逆相HPLC(カラム(Phenomenex, Clarity 2.6 μm Oligo-MS 100A (2.1×50 mm))、A溶液:100 mMヘキサフルオロイソプロパノール(HFIP)、8 mMトリエチルアミン水溶液、B溶液:メタノール、B%:10% → 25%(4min, linear gradient);60℃;0.5 mL/min;260nm)で分析すると、2.78分に溶出された。化合物は負イオンESI質量分析により同定した。 The oligomer was excised from the support by treating the protected oligonucleotide analog having the target sequence with 600 μL of concentrated aqueous ammonia, and the protecting group cyanoethyl group on the phosphorus atom and the protecting group on the nucleic acid base were removed. A mixed solution of oligomers was mixed with 300 μL of Clarity QSP DNA Loading Buffer (manufactured by Phenomenex) and charged onto a Clarity SPE 96 well plate (manufactured by Phenomenex). Clarity QSP DNA Loading Buffer: Water = 1: 1 solution 1 mL, water 3 mL, 3% dichloroacetic acid (DCA) aqueous solution 3 mL, water 6 mL in that order, then 20 mM Tris aqueous solution: acetonitrile = 9: 1 solution The components extracted in the above were collected. After distilling off the solvent, the target compound was obtained. This compound is a reverse phase HPLC (column (Phenomenex, Clarity 2.6 μm Oligo-MS 100A (2.1 × 50 mm)), solution A: 100 mM hexafluoroisopropanol (HFIP), aqueous solution 8 mM triethylamine, solution B: methanol, B. %: 10% → 25% (4min, linear gradient); 60 ° C; 0.5mL / min; 260nm), elution was performed at 2.78 minutes. Compounds were identified by negative ion ESI mass spectrometry.
 本化合物の塩基配列は、Homo sapiens ERCC excision repair 4, endonuclease catalytic subunit (ERCC4)(NCBI-GenBank accession No. NG_011442.1)にコードされるmRNA(NG_011442.1の5001~37192番目に当たる)において412番目のTがAに変異した配列の412~429番目の配列に相補的な配列である。 The base sequence of this compound is the 412th in the mRNA encoded by Homo sapiens ERCC excision repair 4, endonuclease catalytic subunit (ERCC4) (NCBI-GenBank accession No. NG_011442.1). T is a sequence complementary to the 412-429th sequence of the sequence in which T is mutated to A.
(実施例2~36)
 実施例2乃至36の化合物も実施例1の化合物と同様に合成した。実施例1乃至36の化合物の情報を表1に記載する。
(Examples 2 to 36)
The compounds of Examples 2 to 36 were also synthesized in the same manner as the compounds of Example 1. Information on the compounds of Examples 1 to 36 is given in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表中の「配列」において、大文字はENA、小文字は2’-OMe RNAを示す。ヌクレオシド間の結合は、すべてホスホロチオエート結合である。表中の「開始」および「終了」は、実施例1~18については配列番号63、実施例19~36については配列番号64で表される塩基配列におけるヌクレオチド番号を示す。表中の「配列」は、実施例17を除き、「開始」から「終了」までの塩基配列に相補的な配列を示す。実施例17の「配列」は、「開始」から「終了」までの塩基配列に相補的な配列の3’末端に「c」が付加された配列を示す。表中の「分子量」は、負イオンESI質量分析による実測値を示す。 In the "sequence" in the table, uppercase letters indicate ENA and lowercase letters indicate 2'-OMeRNA. All bonds between nucleosides are phosphorothioate bonds. “Start” and “end” in the table indicate nucleotide numbers in the base sequence represented by SEQ ID NO: 63 for Examples 1 to 18 and SEQ ID NO: 64 for Examples 19 to 36. “Sequence” in the table indicates a sequence complementary to the base sequence from “start” to “end” except for Example 17. The "sequence" of Example 17 indicates a sequence in which "c" is added to the 3'end of a sequence complementary to the base sequence from "start" to "end". "Molecular weight" in the table indicates the measured value by negative ion ESI mass spectrometry.
(実施例37~60)
 実施例37乃至60の化合物も実施例1と同様に合成した。実施例37乃至60の化合物の情報を表2に記載する。
(Examples 37 to 60)
The compounds of Examples 37 to 60 were also synthesized in the same manner as in Example 1. Information on the compounds of Examples 37-60 is shown in Table 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表中の「配列」において、大文字はENA、小文字は2’-OMe RNAを示す。ヌクレオシド間の結合は、すべてホスホロチオエート結合である。表中の「開始」および「終了」は、配列番号63で表される塩基配列のヌクレオチド番号を示し、表中の「配列」は、「開始」から「終了」までの塩基配列に相補的な配列を示す。表中の「分子量」は、負イオンESI質量分析による実測値を示す。 In the "sequence" in the table, uppercase letters indicate ENA and lowercase letters indicate 2'-OMeRNA. All bonds between nucleosides are phosphorothioate bonds. “Start” and “end” in the table indicate the nucleotide number of the base sequence represented by SEQ ID NO: 63, and “sequence” in the table is complementary to the base sequence from “start” to “end”. Shows the sequence. "Molecular weight" in the table indicates the measured value by negative ion ESI mass spectrometry.
(実施例61)
HO-Ce1s-Cs-Te1s-Ts-Ae1s-Cs-Te1s-Ts-Ae1s-Cs-Ge1s-Ts-Ce1s-Ts-G1t-H(LNA-int1-001)(配列番号61)
 実施例61の化合物は、ホスホロアミダイト法(Nucleic Acids Research, 12, 4539 (1984)を用いて合成した。LNA部分は、WO99/14226に記載されたホスホロアミダイト体を用いて合成した。以下、または、図の中で、「LNA」と表すことがある。
(Example 61)
HO-C e1s -C s -T e1s -T s -A e1s -C s -T e1s -T s -A e1s -C s -G e1s -T s -C e1s -T s -G 1t -H (LNA) -int1-001) (SEQ ID NO: 61)
The compound of Example 61 was synthesized using the phosphoramidite method (Nucleic Acids Research, 12, 4539 (1984). The LNA moiety was synthesized using the phosphoramidite compound described in WO99 / 14226. , Or, in the figure, it may be expressed as "LNA".
 本化合物は、逆相HPLC(カラム(X-Bridge C18 2.5 μm (4.6×75 mm))、A溶液:100 mMヘキサフルオロイソプロパノール(HFIP)、8 mMトリエチルアミン水溶液、B溶液:メタノール、B%:5% → 30%(20min, linear gradient);60℃;1 mL/min;260nm)で分析すると、10.23分に溶出された。化合物は負イオンESI質量分析により同定した(実測値:4972.26)。 This compound is a reverse phase HPLC (column (X-Bridge C18 2.5 μm (4.6 × 75 mm)), solution A: 100 mM hexafluoroisopropanol (HFIP), aqueous solution of 8 mM triethylamine, solution B: methanol, B%: 5 When analyzed at% → 30% (20 min, linear gradient); 60 ° C; 1 mL / min; 260 nm), elution was performed at 10.23 minutes. The compound was identified by negative ion ESI mass spectrometry (measured value: 4927.26).
(参考例1)
HO-Ge1s-Ts-Te1s-Cs-Ae1s-Ts-Ce1s-Cs-Ge1s-Ts-Ae1s-Cs-Te1s-Ts-C1t-H(LNA-int1-001S)(配列番号62)
 参考例1の化合物は、実施例61の化合物と同様に合成した。以下、または、図の中で、「control DNA」と表すことがある。
(Reference example 1)
HO-G e1s -T s -T e1s -C s -A e1s -T s -C e1s -C s -G e1s -T s -A e1s -C s -T e1s -T s -C 1t -H (LNA) -int1-001S) (SEQ ID NO: 62)
The compound of Reference Example 1 was synthesized in the same manner as the compound of Example 61. Hereinafter, or in the figure, it may be expressed as "control DNA".
 本化合物は、逆相HPLC(カラム(X-Bridge C18 2.5 μm (4.6×75 mm))、A溶液:100 mMヘキサフルオロイソプロパノール(HFIP)、8 mMトリエチルアミン水溶液、B溶液:メタノール、B%:5% → 30%(20min, linear gradient);60℃;1 mL/min;260nm)で分析すると、10.46分に溶出された。化合物は負イオンESI質量分析により同定した(実測値:4971.16)。 This compound is a reverse phase HPLC (column (X-Bridge C18 2.5 μm (4.6 × 75 mm)), solution A: 100 mM hexafluoroisopropanol (HFIP), aqueous solution of 8 mM triethylamine, solution B: methanol, B%: 5 When analyzed at% → 30% (20 min, linear gradient); 60 ° C; 1 mL / min; 260 nm), elution was performed at 10.46 minutes. The compound was identified by negative ion ESI mass spectrometry (measured value: 4791.16).
(試験例1) 実施例化合物によるXPF mRNAスプライシング産物量、XPFタンパク質発現量、及びDNA損傷修復活性の解析(1)
1-1.XPF mRNAスプライシング産物量評価
 6 wellプレートに、患者由来細胞(Matsumura et al. Hum. Mol. Genet. 1998, 7(6), 969-974)を、1 wellあたり5x104個ずつ播種した。24時間後、LNAを最終濃度40 nMで、Lipofectamine 2000 (Thermo Fisher Scientific)にてトランスフェクションした。4時間後に新しい培地 (DMEM 10%FBS)に交換した。トランスフェクションから24時間後に細胞を回収した。Direct-zolTM RNA MiniPrep (ZYMO RESEARCH)でトータルRNAを抽出した。100 ngのトータルRNAからSuperScript(登録商標)IV(Thermo Fisher Scientific)を用いてcDNAを得た。QX100TM Droplet DigitalTM PCR システム (Bio-Rad Laboratories, Inc.)にて、Droplet digital PCR (ddPCR)を行い、スプライシング産物を定量した。健常人由来線維芽細胞(48BR)についても同様にスプライシング産物を定量した。
(Test Example 1) Analysis of XPF mRNA splicing product amount, XPF protein expression level, and DNA damage repair activity by Example compounds (1)
1-1. Evaluation of XPF mRNA splicing product amount Patient-derived cells (Matsumura et al. Hum. Mol. Genet. 1998, 7 (6), 969-974) were seeded in 5x10 4 cells per well on a 6-well plate. After 24 hours, LNA was transfected with Lipofectamine 2000 (Thermo Fisher Scientific) at a final concentration of 40 nM. After 4 hours, the medium was replaced with new medium (DMEM 10% FBS). Cells were harvested 24 hours after transfection. Total RNA was extracted with Direct-zol TM RNA MiniPrep (ZYMO RESEARCH). CDNA was obtained from 100 ng of total RNA using SuperScript® IV (Thermo Fisher Scientific). Droplet digital PCR (ddPCR) was performed on the QX100 TM Droplet Digital TM PCR system (Bio-Rad Laboratories, Inc.) to quantify splicing products. Similarly, splicing products were quantified for healthy human-derived fibroblasts (48BR).
 ddPCRは、以下の手順に従って行った。QX200 Eva Green ddPCR Supermix (Bio-Rad Laboratories, Inc.) を10 μl、Forward primerとReverse primerをそれぞれFinal Concentration 100 nMとなるように添加した。サンプルcDNA(トータルRNAを100 ngに調整したもの)を5 μl、waterを適量入れてTotal volumeを20 μlとなるようにした。QX200TM/QX100TMDroplet Generator用のDG8 cartridgeにサンプルと70 μlのDroplet Generation oil for EvaGreenを入れてQX100TM Droplet Generatorにかけた。混濁液を96-well plate (Bio-Rad Laboratories, Inc.)に入れてPX1 PCR plate sealerを用いてシールした。QX100TMDroplet Readerにかけて解析を行った。なお、正しいスプライシング産物の定量には、XPF ex1-FおよびXPF ex2-Rのプライマーの組み合わせを用いてddPCRを行った値を用い、異常スプライシング産物の定量には、XPF int1-FおよびXPF ex2-Rのプライマーの組み合わせを用いてddPCRを行った値を用いた。
Forward primer
XPF ex1-F: 5'-CTCCTCTACCACTTTCTCCAGCTG-3'(配列番号109)
XPF int1-F: 5'-CGCGATGACACAGAGAAGGATG-3'(配列番号110)
Reverse primer
XPF ex2-R: 5'-GAGGGAGGTGTTCAACTCCTTC-3'(配列番号111)
ddPCR was performed according to the following procedure. QX200 Eva Green ddPCR Supermix (Bio-Rad Laboratories, Inc.) was added to 10 μl, and Forward primer and Reverse primer were added to a final concentration of 100 nM, respectively. Sample cDNA (total RNA adjusted to 100 ng) was added to 5 μl, and an appropriate amount of water was added to bring the total volume to 20 μl. QX200 TM / QX100 put the sample and 70 μl of Droplet Generation oil for EvaGreen to DG8 cartridge for TM Droplet Generator was subjected to QX100 TM Droplet Generator. The turbid solution was placed in a 96-well plate (Bio-Rad Laboratories, Inc.) and sealed using a PX1 PCR plate sealer. Analysis was performed using the QX100 TM Droplet Reader. For the correct quantification of splicing products, the value obtained by ddPCR using a combination of primers of XPF ex1-F and XPF ex2-R was used, and for the quantification of abnormal splicing products, XPF int1-F and XPF ex2- The value obtained by ddPCR using the combination of R primers was used.
Forward primer
XPF ex1-F: 5'-CTCCTCTACCACTTTCTCCAGCTG-3' (SEQ ID NO: 109)
XPF int1-F: 5'-CGCGATGACACAGAGAAGGATG-3' (SEQ ID NO: 110)
Reverse primer
XPF ex2-R: 5'-GAGGGAGGTGTTCAACTCCTTC-3'(SEQ ID NO: 111)
 結果を図1Aに示す。患者由来細胞のmRNAを解析した結果、正しくスプライシングされた産物は少なかったのに対し、実施例61の化合物(LNA-int1-001)をトランスフェクトした細胞においては、正しくスプライシングされた産物の増加が認められた。 The results are shown in Fig. 1A. As a result of analyzing the mRNA of patient-derived cells, the number of correctly spliced products was small, whereas in the cells transfected with the compound of Example 61 (LNA-int1-001), the number of correctly spliced products increased. Admitted.
1-2.タンパク質発現量評価
 6 wellプレートに、患者由来細胞(Matsumura et al. Hum. Mol. Genet. 1998, 7(6), 969-974)を、1 wellあたり16x104個ずつ播種した。24時間後、実施例化合物または参考例化合物を最終濃度40nMで、Lipofectamine 2000 (Thermo Fisher Scientific)にてトランスフェクションした(トランスフェクションの方法は製品の説明書の通りの方法に従った)。4時間後に新しい培地に交換した。トランスフェクションから24時間後、タンパク質を回収し、ウエスタンブロッティング(XPF Ab-1 (Cat. #MS-1381, Thermo Fisher Scientific製)およびβ-Actin抗体 (sc-47778, Santa Crus製)を使用した)でタンパク質発現量を調べた。
1-2. Protein expression evaluation Patient-derived cells (Matsumura et al. Hum. Mol. Genet. 1998, 7 (6), 969-974) were seeded on 6-well plates at a rate of 16x10 4 cells per well. After 24 hours, the Example compound or Reference Example compound was transfected with Lipofectamine 2000 (Thermo Fisher Scientific) at a final concentration of 40 nM (the transfection method was as described in the product instructions). After 4 hours, the medium was replaced with new medium. Twenty-four hours after transfection, protein was recovered and Western blotting (using XPF Ab-1 (Cat. # MS-1381, Thermo Fisher Scientific) and β-Actin antibody (sc-47778, Santa Crus)). The protein expression level was examined in.
 結果を、図1Bに示す。患者由来線維芽細胞のXPFタンパク質の量を解析した結果、健常人由来線維芽細胞(48BR)に比べて少なかった。実施例61の化合物(LNA-int1-001)をトランスフェクトした細胞において、XPFタンパク質の量の増加が認められた。一方、参考例1の化合物(LNA-int1-001S, control DNA)をトランスフェクトした細胞において、XPFタンパク質の量の増加は認められなかった。また、図2Bに示したように、実施例1から実施例18の化合物を用いて(XPF-int1-001~XPF-int1-018)を同様に患者由来細胞にトランスフェクトしXPFタンパク質の量を解析した結果、実施例1から実施例18の化合物すべてにおいて、XPFタンパク質の量の増加が認められた。特に実施例11から実施例14の化合物を用いた場合に、その増加量が多かった。 The results are shown in FIG. 1B. As a result of analyzing the amount of XPF protein in patient-derived fibroblasts, it was lower than that in healthy human-derived fibroblasts (48BR). An increase in the amount of XPF protein was observed in cells transfected with the compound of Example 61 (LNA-int1-001). On the other hand, no increase in the amount of XPF protein was observed in the cells transfected with the compound of Reference Example 1 (LNA-int1-001S, control DNA). Further, as shown in FIG. 2B, (XPF-int1-001 to XPF-int1-018) were similarly transfected into patient-derived cells using the compounds of Examples 1 to 18 to determine the amount of XPF protein. As a result of the analysis, an increase in the amount of XPF protein was observed in all the compounds of Examples 1 to 18. In particular, when the compounds of Examples 11 to 14 were used, the amount of increase was large.
1-3.修復活性評価
 96 wellプレートに、患者由来細胞 (Matsumura et al. Hum. Mol. Genet. 1998, 7(6), 969-974)を、1 wellあたり1x104個ずつ播種した。合計10well(5 well x 2セット)に同一患者由来細胞を播種した。24時間後、実施例化合物または参考例化合物を最終濃度40nMで、Lipofectamine 2000(Thermo Fisher Scientific)にてトランスフェクションした(トランスフェクションの方法は製品の説明書の通りの方法に従った)。4時間後に新しい培地(DMEM 10%FBS)に交換した。トランスフェクションから24時間後、5well x 1セットにUV-Cを20J/m2照射した(残り5well x 1セットは非照射)。培地を捨て、PBSで1回洗浄し、PBSを捨てたのち、wellに液体が入っていない状態でUV照射した。UV照射後の細胞に、最終濃度5 μMで5-エチニル-2'-デオキシウリジン(EdU)を加えた血清抜き培地を添加した。EdU入り培地で4時間培養後、細胞をPBSで1回洗浄し、固定液(300mM スクロース、2% ホルマリン、0.5% TritonX-100 のPBS溶液)を添加し、4度で20分静置して細胞を固定した。細胞をPBSで3回洗浄した。染色液 (50 mM Tris pH7.3、4 mM CuSO4、10 mM Sodium L-ascorbate、10 μM Fluorescent dye 488 azide、0.03 mg/ml DAPIの水溶液)を添加し、室温で遮光して1時間静置した。細胞をPBS-T (0.05% tween20のPBS溶液)で3回洗浄した。固定液 (3.7% ホルマリンのPBS溶液)を添加して、20分静置した。固定液を捨て、PBSを添加した。核内の488 azideの平均蛍光強度を計算した。蛍光値は、修復活性を示す。健常人由来線維芽細胞(48BR)についても同様に修復活性を評価した。
1-3. Evaluation of repair activity 96 patient-derived cells (Matsumura et al. Hum. Mol. Genet. 1998, 7 (6), 969-974) were seeded in 1x10 4 cells per well. Cells derived from the same patient were seeded in a total of 10 wells (5 wells x 2 sets). After 24 hours, the Example compound or Reference Example compound was transfected with Lipofectamine 2000 (Thermo Fisher Scientific) at a final concentration of 40 nM (the transfection method was as described in the product instructions). After 4 hours, the medium was replaced with new medium (DMEM 10% FBS). Twenty-four hours after transfection, 5 well x 1 set was irradiated with 20 J / m 2 of UV-C (the remaining 5 well x 1 set was unirradiated). The medium was discarded, washed once with PBS, the PBS was discarded, and then UV irradiation was performed with no liquid in the well. Serum-free medium containing 5-ethynyl-2'-deoxyuridine (EdU) at a final concentration of 5 μM was added to the cells after UV irradiation. After culturing in medium containing EdU for 4 hours, the cells were washed once with PBS, fixed solution (300 mM sucrose, 2% formalin, 0.5% TritonX-100 PBS solution) was added, and the cells were allowed to stand at 4 degrees for 20 minutes. The cells were fixed. The cells were washed 3 times with PBS. Add stain (50 mM Tris pH 7.3, 4 mM CuSO 4, 10 mM Sodium L-ascorbate, 10 μM Fluorescent dye 488 azide, 0.03 mg / ml DAPI aqueous solution), and leave at room temperature for 1 hour. did. Cells were washed 3 times with PBS-T (0.05% tween 20 PBS solution). Fixative (3.7% formalin PBS solution) was added and allowed to stand for 20 minutes. The fixative was discarded and PBS was added. The average fluorescence intensity of 488 azide in the nucleus was calculated. The fluorescence value indicates the repair activity. The repair activity of healthy human-derived fibroblasts (48BR) was also evaluated in the same manner.
 図1Cにその結果を示す。患者由来細胞の修復活性を解析した結果、健常人由来細胞に比べて低かった。実施例61の化合物(LNA-int1-001)をトランスフェクトした患者由来細胞は、参考例1の化合物(LNA-int1-001S, control DNA)をトランスフェクトした患者由来細胞と比較して、修復活性の増加が認められた。また、図2Aに示したように、実施例1から実施例18の化合物(XPF-int1-001~XPF-int1-018)を同様に患者由来細胞にトランスフェクトし修復活性を解析した結果、実施例1から実施例18の化合物すべてにおいて、修復活性の増加が認められた。 The result is shown in Fig. 1C. As a result of analyzing the repair activity of patient-derived cells, it was lower than that of healthy human-derived cells. The patient-derived cells transfected with the compound of Example 61 (LNA-int1-001) had a repair activity as compared with the patient-derived cells transfected with the compound of Reference Example 1 (LNA-int1-001S, control DNA). Was observed to increase. Further, as shown in FIG. 2A, the compounds of Examples 1 to 18 (XPF-int1-001 to XPF-int1-018) were similarly transfected into patient-derived cells and the repair activity was analyzed. An increase in repair activity was observed in all the compounds of Examples 1 to 18.
(実施例62~73)
 実施例62乃至73の化合物も実施例1と同様に合成した。実施例62乃至73について表3に記載する。
(Examples 62 to 73)
The compounds of Examples 62 to 73 were also synthesized in the same manner as in Example 1. Examples 62 to 73 are shown in Table 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表中の「配列」において大文字はENA、小文字は2’-OMe RNAを示す。ヌクレオシド間の結合は、すべてホスホロチオエート結合である。表中の「開始」および「終了」は、Homo sapiens ERCC excision repair 4, endonuclease catalytic subunit (ERCC4), RefSeqGene (LRG_463) on chromosome 16(NCBI-GenBank accession No. NG_011442.1)の412番目のTがAに変異した配列のヌクレオチド番号を示し、表中の「配列」は、「開始」から「終了」までのヌクレオチド配列に相補的な配列を示す。表中の「分子量」は、負イオンESI質量分析による実測値を示す。 In the "sequence" in the table, uppercase letters indicate ENA and lowercase letters indicate 2'-OMeRNA. All bonds between nucleosides are phosphorothioate bonds. "Start" and "End" in the table are the 412th T of Homo sapiens ERCC excision repair 4, endonuclease catalytic subunit (ERCC4), RefSeqGene (LRG_463) on chromosome 16 (NCBI-GenBank accession No. NG_011442.1). The nucleotide number of the sequence mutated to A is shown, and the "sequence" in the table indicates a sequence complementary to the nucleotide sequence from "start" to "end". "Molecular weight" in the table indicates the measured value by negative ion ESI mass spectrometry.
(参考例2)
 参考例2の化合物も実施例1と同様に合成した。参考例2について表4に記載する。
(Reference example 2)
The compound of Reference Example 2 was also synthesized in the same manner as in Example 1. Reference example 2 is shown in Table 4.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表中の「配列」において大文字はENA、小文字は2’-OMe RNAを示す。ヌクレオシド間の結合は、すべてホスホロチオエート結合である。参考例2の化合物の配列は、Mus musculus strain mdx dystrophin genes, partial cds(NCBI-GenBank accession No. AH007099.2)の223番目から240番目までのヌクレオチド配列に相補的な配列である。 In the "sequence" in the table, uppercase letters indicate ENA and lowercase letters indicate 2'-OMeRNA. All bonds between nucleosides are phosphorothioate bonds. The sequence of the compound of Reference Example 2 is a sequence complementary to the nucleotide sequence from the 223rd to the 240th of Musmusculus strain mdx dystrophin genes, partial cds (NCBI-GenBank accession No. AH007099.2).
(試験例2) 実施例化合物によるXPF mRNAスプライシング産物量、XPFタンパク質発現量、及びDNA損傷修復活性の解析(2)
2-1.タンパク質発現量評価
 1-2の試験と同様に実施例化合物のタンパク質発現量評価を行った。実施例37、38、44乃至46、および53乃至60の化合物(XPF-int1-011_1、XPF-int1-011_2、XPF-int1-012_4、XPF-int1-013_1、XPF-int1-013_2、XPF-int1-0-1、XPF-int1-0-2、XPF-int1-0-3、XPF-int1-0-4、XPF-int1-19~22)ならびに実施例11及び14の化合物(XPF-int1-11及びXPF-int1-14)を患者由来細胞にトランスフェクトしXPFタンパク質の量を解析した。ネガティブコントロールとして、参考例2の化合物を用いた。結果を図3Bに示す。実施例37、38、44乃至46、53、57乃至60、11、及び14の化合物は、ネガティブコントロール(図中、nega con.)及び実施例化合物を添加していないもの(図中、w/o)と比較してXPFタンパク質の量の増加が認められた。
2-2.修復活性評価
 1-3の試験と同様に実施例化合物の修復活性評価を行った。実施例37から実施例60の化合物(XPF-int1-011_1~4、XPF-int1-012_1~4、XPF-int1-013_1~4、XPF-int1-014_1~4、XPF-int1-0-1~4、XPF-int1-019~022)ならびに実施例11乃至14の化合物(XPF-int1-11~14)を患者由来細胞にトランスフェクトし修復活性を解析した。ネガティブコントロールとして、参考例2の化合物を用いた。結果を図3Aに示す。実施例37乃至53、57乃至60、及び11乃至14の化合物は、ネガティブコントロール(図中、nega con.)及び実施例化合物を添加していないもの(図中、w/o)と比較して修復活性の増加が認められた。
(Test Example 2) Analysis of XPF mRNA splicing product amount, XPF protein expression level, and DNA damage repair activity by Example compounds (2)
2-1. Evaluation of protein expression level The protein expression level of the example compound was evaluated in the same manner as in the test 1-2. Compounds of Examples 37, 38, 44-46, and 53-60 (XPF-int1-011_1, XPF-int1-011_2, XPF-int1-012_4, XPF-int1-013_1, XPF-int1-013_2, XPF-int1 -0-1, XPF-int1-0-2, XPF-int1-0-3, XPF-int1-0-4, XPF-int1-19-22) and the compounds of Examples 11 and 14 (XPF-int1- 11 and XPF-int1-14) were transfected into patient-derived cells and the amount of XPF protein was analyzed. As a negative control, the compound of Reference Example 2 was used. The results are shown in FIG. 3B. The compounds of Examples 37, 38, 44 to 46, 53, 57 to 60, 11, and 14 did not contain the negative control (nega con. In the figure) and the compound of Example (w / in the figure). An increase in the amount of XPF protein was observed compared to o).
2-2. Evaluation of repair activity The repair activity of the example compound was evaluated in the same manner as in the tests 1-3. Compounds of Examples 37 to 60 (XPF-int1-011_1-4, XPF-int1-012_1-4, XPF-int1-013_1-4, XPF-int1-014_1-4, XPF-int1-0-1- 4, XPF-int1-019 to 022) and the compounds of Examples 11 to 14 (XPF-int1-11 to 14) were transfected into patient-derived cells and their repair activity was analyzed. As a negative control, the compound of Reference Example 2 was used. The results are shown in FIG. 3A. The compounds of Examples 37 to 53, 57 to 60, and 11 to 14 were compared with those to which the negative control (nega con. In the figure) and the compound of Example were not added (w / o in the figure). An increase in repair activity was observed.
 本発明の医薬組成物により、従来その治療手段が存在しなかった特定のXP-F群を治療し得る。 The pharmaceutical composition of the present invention can treat a specific XP-F group for which there has been no conventional therapeutic means.
 配列番号1~61:実施例化合物1~61のオリゴヌクレオチド配列
 配列番号62:参考例化合物1のオリゴヌクレオチド配列
 配列番号63:XPF遺伝子の変異型イントロン1のDNA配列
 配列番号64:XPF遺伝子の変異型イントロン8のDNA配列
 配列番号65~100:配列番号1~36に対応するRNA配列
 配列番号101~108:配列番号53~60に対応するRNA配列
 配列番号109~111:ddPCRに用いたプライマーのDNA配列
 配列番号112~123:実施例化合物62~73のオリゴヌクレオチド配列
 配列番号124~135:配列番号112~123に対応するRNA配列
 配列番号136:参考例化合物2のオリゴヌクレオチド配列
 配列番号137:配列番号136に対応するRNA配列
 配列表中、Am1s、Gm1s、Cm1s、Um1s、Ae2s、Ge2s、Ce2s、Te2s、Ae1s、Ge1s、Ce1s、Te1s、Cs、Ts、Am1t、Gm1t、Cm1t、Um1t、T2t、G1t、およびC1tは、それぞれAm1s、Gm1s、Cm1s、Um1s、Ae2s、Ge2s、Ce2s、Te2s、Ae1s、Ge1s、Ce1s、Te1s、Cs、Ts、Am1t、Gm1t、Cm1t、Um1t、T2t、G1t、およびC1tを表す。
SEQ ID NO: 1 to 61: oligonucleotide sequence of Examples Compounds 1 to 61 SEQ ID NO: 62: oligonucleotide sequence of Reference Example Compound 1 SEQ ID NO: 63: RNA sequence of XPF gene variant Intron 1 SEQ ID NO: 64: Mutation of XPF gene DNA sequence of type intron 8 SEQ ID NO: 65-100: RNA sequence corresponding to SEQ ID NO: 1-36 SEQ ID NO: 101-108: RNA sequence corresponding to SEQ ID NO: 53-60 SEQ ID NO: 109-111: Primer used for ddPCR DNA Sequence SEQ ID NOs: 112 to 123: Oligonucleotide Sequence of Examples Compounds 62 to 73 SEQ ID NOs: 124 to 135: RNA Sequence Corresponding to SEQ ID NOs: 112 to 123 SEQ ID NO: 136: Oligonucleotide Sequence of Reference Example Compound 2 SEQ ID NO: 137: RNA sequence corresponding to SEQ ID NO: 136 Am1s, Gm1s, Cm1s, Um1s, Ae2s, Ge2s, Ce2s, Te2s, Ae1s, Ge1s, Ce1s, Te1s, Cs, Ts, Am1t, Gm1t, Cm1t, Um1t G1t and C1t are A m1s , G m1s , C m1s , U m1s , A e2s , G e2s , C e2s , Te2s , A e1s , G e1s , C e1s , Te1s , C s , T s , A, respectively. Represents m1t , G m1t , C m1t , U m1t , T 2t , G 1t , and C 1t .

Claims (24)

  1.  XPF遺伝子のイントロン領域の一部とハイブリダイズすることができる塩基配列を有し、XPF遺伝子の異常な転写後修飾を抑制する活性を有するアンチセンスオリゴヌクレオチドであって、その5’末端及び/又は3’末端が化学修飾されていても良いアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 An antisense oligonucleotide having a base sequence capable of hybridizing with a part of the intron region of the XPF gene and having an activity of suppressing abnormal post-transcriptional modification of the XPF gene, at the 5'end and / or An antisense oligonucleotide or a pharmaceutically acceptable salt thereof, which may be chemically modified at the 3'end.
  2.  配列番号63で表される変異型イントロン1配列を有するXPF遺伝子の転写後修飾において、配列番号63で表される塩基配列における193番目のグアニンの5’側の5’スプライス部位および1658番目のグアニンの3’側の3’スプライス部位を用いる異常スプライシングを抑制する、請求項1に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 In the post-transcription modification of the XPF gene having the mutant intron 1 sequence represented by SEQ ID NO: 63, the 5'splice site on the 5'side of the 193rd guanine and the 1658th guanine in the nucleotide sequence represented by SEQ ID NO: 63. The antisense oligonucleotide of claim 1 or a pharmaceutically acceptable salt thereof, which suppresses abnormal splicing using the 3'splice site on the 3'side of.
  3.  配列番号63で表される塩基配列における155番目~217番目の塩基配列内の、連続する15~30ヌクレオチドからなる配列とハイブリダイズすることができる、請求項1または2に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 The antisense oligonucleotide according to claim 1 or 2, which can hybridize with a sequence consisting of consecutive 15 to 30 nucleotides in the 155th to 217th base sequences in the base sequence represented by SEQ ID NO: 63. Or its pharmaceutically acceptable salt.
  4.  配列番号63で表される塩基配列における155番目~217番目の塩基配列内の、連続する15~30ヌクレオチドからなる配列に90%以上相補的な配列を含む、請求項1~3のいずれか一項に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 Any one of claims 1 to 3, which comprises a sequence consisting of 90% or more complementary to a sequence consisting of consecutive 15 to 30 nucleotides in the 155th to 217th base sequences in the base sequence represented by SEQ ID NO: 63. The antisense oligonucleotide described in the section or a pharmaceutically acceptable salt thereof.
  5.  配列番号65~82および101~108のいずれかで表される塩基配列(配列中、uはtに置き換えても良い。)を含む、請求項1~4のいずれか一項に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 The antisense according to any one of claims 1 to 4, which comprises the base sequence represented by any of SEQ ID NOs: 65 to 82 and 101 to 108 (u may be replaced with t in the sequence). Oligonucleotides or pharmaceutically acceptable salts thereof.
  6.  1つ以上の糖修飾ヌクレオシドを含む、請求項1~5のいずれか一項に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 The antisense oligonucleotide according to any one of claims 1 to 5, or a pharmaceutically acceptable salt thereof, which comprises one or more sugar-modified nucleosides.
  7.  糖修飾ヌクレオシドが、4’-(CH-O-2’架橋(式中、nは1または2である)または2’-O-メチル化を含むヌクレオシドである、請求項6に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 6. The sugar-modified nucleoside is a nucleoside comprising 4'-(CH 2 ) n- O-2'cross-linking (where n is 1 or 2 in the formula) or 2'-O-methylation. Antisense oligonucleotide or pharmaceutically acceptable salt thereof.
  8.  1つ以上の修飾ヌクレオシド間結合を含む、請求項1~7のいずれか一項に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 The antisense oligonucleotide according to any one of claims 1 to 7, or a pharmaceutically acceptable salt thereof, which comprises one or more modified nucleoside linkages.
  9.  修飾ヌクレオシド間結合が、ホスホロチオエート結合である、請求項8に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 The antisense oligonucleotide of claim 8 or a pharmaceutically acceptable salt thereof, wherein the modified nucleoside bond is a phosphorothioate bond.
  10.  配列番号1~18、37~60および112~123のいずれかで表される塩基配列からなる、請求項1~9のいずれか一項に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 The antisense oligonucleotide according to any one of claims 1 to 9, which comprises the base sequence represented by any of SEQ ID NOs: 1 to 18, 37 to 60 and 112 to 123, or a pharmaceutically acceptable salt thereof. ..
  11.  配列番号64で表される変異型イントロン8配列を有するXPF遺伝子の転写後修飾において、配列番号64で表される塩基配列における324番目~329番目のポリA付加配列を用いる異常ポリアデニル化を抑制する、請求項1に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 Post-transcriptional modification of the XPF gene having the mutant intron 8 sequence represented by SEQ ID NO: 64 suppresses abnormal polyadenylation using the 324th to 329th polyA addition sequences in the nucleotide sequence represented by SEQ ID NO: 64. , The antisense oligonucleotide of claim 1 or a pharmaceutically acceptable salt thereof.
  12.  配列番号64で表される塩基配列における309番目~343番目の塩基配列内の、連続する15~30ヌクレオチドからなる配列とハイブリダイズすることができる、請求項1または11に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 The antisense oligonucleotide according to claim 1 or 11, which can hybridize with a sequence consisting of consecutive 15 to 30 nucleotides in the 309th to 343rd base sequences in the base sequence represented by SEQ ID NO: 64. Or its pharmaceutically acceptable salt.
  13.  配列番号64で表される塩基配列における309番目~343番目の塩基配列内の、連続する15~30ヌクレオチドからなる配列に90%以上相補的な配列を含む、請求項1、11および12のいずれか一項に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 Any of claims 1, 11 and 12, which comprises a sequence consisting of 90% or more complementary to a sequence consisting of consecutive 15 to 30 nucleotides in the 309th to 343rd base sequences in the base sequence represented by SEQ ID NO: 64. The antisense oligonucleotide or a pharmaceutically acceptable salt thereof according to the above item.
  14.  配列番号83~100のいずれかで表される塩基配列(配列中、uはtに置き換えても良い。)を含む、請求項1および11~13のいずれか一項に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 The antisense oligonucleotide according to any one of claims 1 and 11 to 13, which comprises the base sequence represented by any of SEQ ID NOs: 83 to 100 (u may be replaced with t in the sequence). Or its pharmaceutically acceptable salt.
  15.  1つ以上の糖修飾ヌクレオシドを含む、請求項1および11~14のいずれか一項に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 The antisense oligonucleotide according to any one of claims 1 and 11 to 14, or a pharmaceutically acceptable salt thereof, which comprises one or more sugar-modified nucleosides.
  16.  糖修飾ヌクレオシドが、4’-(CH-O-2’架橋(式中、nは1または2である)および2’-O-メチル化を含むヌクレオシドである、請求項15に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 15. The sugar-modified nucleoside is a nucleoside comprising 4'-(CH 2 ) n- O-2'cross-linking (where n is 1 or 2 in the formula) and 2'-O-methylation. Antisense oligonucleotide or pharmaceutically acceptable salt thereof.
  17.  1つ以上の修飾ヌクレオシド間結合を含む、請求項1および11~16のいずれか一項に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 The antisense oligonucleotide according to any one of claims 1 and 11 to 16, or a pharmaceutically acceptable salt thereof, which comprises one or more modified nucleoside linkages.
  18.  修飾ヌクレオシド間結合が、ホスホロチオエート結合である、請求項17に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 The antisense oligonucleotide of claim 17, or a pharmaceutically acceptable salt thereof, wherein the modified nucleoside bond is a phosphorothioate bond.
  19.  配列番号19~36のいずれかで表される塩基配列からなる、請求項1および11~18のいずれか一項に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 The antisense oligonucleotide according to any one of claims 1 and 11 to 18, or a pharmaceutically acceptable salt thereof, which comprises the base sequence represented by any of SEQ ID NOs: 19 to 36.
  20.  化学修飾が、オリゴヌクレオチドの輸送に適した分子構造体の付加である、請求項1~19のいずれか一項に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 The antisense oligonucleotide or a pharmaceutically acceptable salt thereof according to any one of claims 1 to 19, wherein the chemical modification is the addition of a molecular structure suitable for transporting the oligonucleotide.
  21.  請求項1~20のいずれか一項に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩を含む、色素性乾皮症F群の治療用医薬組成物。 A pharmaceutical composition for treating xeroderma pigmentosum F group, which comprises the antisense oligonucleotide according to any one of claims 1 to 20 or a pharmaceutically acceptable salt thereof.
  22.  患者に対して請求項1~20のいずれか一項に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩の有効量を投与することを含む、色素性乾皮症F群の治療方法。 A method for treating xeroderma pigmentosum F group, which comprises administering to a patient an effective amount of the antisense oligonucleotide according to any one of claims 1 to 20 or a pharmaceutically acceptable salt thereof.
  23.  色素性乾皮症F群の治療に使用するための請求項1~20のいずれか一項に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩。 The antisense oligonucleotide according to any one of claims 1 to 20 or a pharmaceutically acceptable salt thereof for use in the treatment of xeroderma pigmentosum group F.
  24.  色素性乾皮症F群の治療用医薬組成物の製造のための、請求項1~20のいずれか一項に記載のアンチセンスオリゴヌクレオチドまたはその薬学上許容される塩の使用。
     
     
     
    Use of the antisense oligonucleotide according to any one of claims 1 to 20, or a pharmaceutically acceptable salt thereof, for producing a therapeutic pharmaceutical composition for xeroderma pigmentosum group F.


PCT/JP2020/044768 2019-12-02 2020-12-02 Xeroderma pigmentosum group f therapeutic agent WO2021112106A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021562674A JPWO2021112106A1 (en) 2019-12-02 2020-12-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-218038 2019-12-02
JP2019218038 2019-12-02

Publications (1)

Publication Number Publication Date
WO2021112106A1 true WO2021112106A1 (en) 2021-06-10

Family

ID=76221697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044768 WO2021112106A1 (en) 2019-12-02 2020-12-02 Xeroderma pigmentosum group f therapeutic agent

Country Status (3)

Country Link
JP (1) JPWO2021112106A1 (en)
TW (1) TW202134438A (en)
WO (1) WO2021112106A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510130A (en) * 1993-05-11 1996-10-29 ザ・ユニヴァーシティ・オヴ・ノース・キャロライナ・アト・チャペル・ヒル Antisense oligonucleotides that inhibit aberrant splicing and methods of using the same
JP2017519766A (en) * 2014-06-16 2017-07-20 ユニバーシティ・オブ・サザンプトン Reduced intron retention

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510130A (en) * 1993-05-11 1996-10-29 ザ・ユニヴァーシティ・オヴ・ノース・キャロライナ・アト・チャペル・ヒル Antisense oligonucleotides that inhibit aberrant splicing and methods of using the same
JP2017519766A (en) * 2014-06-16 2017-07-20 ユニバーシティ・オブ・サザンプトン Reduced intron retention

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MARÍN MARIA, RAMÍREZ MARÍA JOSÉ, CARMONA MIRIAM AZA, JIA NAN, OGI TOMOO, BOGLIOLO MASSIMO, SURRALLÉS JORDI: "Functional Comparison of XPF Missense Mutations Associated to Multiple DNA Repair Disorders", GENES, vol. 10, no. 1, 17 January 2019 (2019-01-17), pages 1 - 15, XP055832162 *
PARK, J. E. ET AL.: "In Vitro Modulation of Endogenous Alternative Splicing Using Splice- Switching Antisense Oligonucleotides", METHODS IN MOLECULAR BIOLOGY, vol. 1648, 2017, pages 39 - 52 *
SENJU, CHIKAKO ET AL.: "A Novel Gene Mutation Of Japanese Xeroderma Pigmentosum Group F Patients", CONSORTIUM OF BIOLOGICAL SCIENCES, 2017 *

Also Published As

Publication number Publication date
TW202134438A (en) 2021-09-16
JPWO2021112106A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
JP6701139B2 (en) Antisense nucleic acid
RU2730681C2 (en) Antisense nucleic acids
JP6851201B2 (en) Antisense oligonucleotides useful in the treatment of Pompe disease
KR102473431B1 (en) Antisense nucleic acids
US7947658B2 (en) RNA interference for the treatment of gain-of-function disorders
JP2017163994A (en) Antisense nucleic acids
US20140303238A1 (en) Oligonucleotides for treating expanded repeat diseases
JP6326433B2 (en) Tricyclic nucleosides and oligomeric compounds prepared therefrom
AU2011276365B2 (en) Methods and compositions for the specific inhibition of beta-catenin by double-stranded RNA
TW201803990A (en) Antisense oligonucleotides for modulating HTRA1 expression
WO2021112106A1 (en) Xeroderma pigmentosum group f therapeutic agent
CA3062590A1 (en) Antisense oligonucleotides for modulating htra1 expression
CA3206925A1 (en) Antisense oligonucleotides increasing foxg1 expression
EP3998108A1 (en) Antisense oligonucleotide capable of altering splicing of dux4 pre-mrna
JP6934695B2 (en) Nucleic acid medicine and its use
US20230022489A1 (en) Identifying non-productive splice sites
JP2022514648A (en) Antisense oligonucleotides targeting CARD9
EP3628737A1 (en) Ena antisense oligonucleotide for inhibition of alpha-synuclein expression
WO2020007772A1 (en) Antisense oligonucleotides targeting gbp-1
CN115605592A (en) Complement component C1R inhibitors for treating neurological diseases and related compositions, systems and methods of using the same
KR20170058979A (en) Allele-specific therapy for huntington disease haplotypes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562674

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896063

Country of ref document: EP

Kind code of ref document: A1