WO2021112028A1 - Storage container and electrode structure - Google Patents

Storage container and electrode structure Download PDF

Info

Publication number
WO2021112028A1
WO2021112028A1 PCT/JP2020/044445 JP2020044445W WO2021112028A1 WO 2021112028 A1 WO2021112028 A1 WO 2021112028A1 JP 2020044445 W JP2020044445 W JP 2020044445W WO 2021112028 A1 WO2021112028 A1 WO 2021112028A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
storage
fixed
electric field
container
Prior art date
Application number
PCT/JP2020/044445
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 大野
Original Assignee
株式会社MARS Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社MARS Company filed Critical 株式会社MARS Company
Priority to CN202080021017.9A priority Critical patent/CN113557202B/en
Publication of WO2021112028A1 publication Critical patent/WO2021112028A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/74Large containers having means for heating, cooling, aerating or other conditioning of contents
    • B65D88/745Large containers having means for heating, cooling, aerating or other conditioning of contents blowing or injecting heating, cooling or other conditioning fluid inside the container
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/26Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/74Large containers having means for heating, cooling, aerating or other conditioning of contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • B65D90/028Wall construction hollow-walled, e.g. double-walled with spacers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/48Arrangements of indicating or measuring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features

Definitions

  • the present invention relates to a storage and an electrode structure.
  • Patent Document 1 As described in Patent Document 1, by forming an electric field in the container (storage) and storing the fresh food in this electric field forming atmosphere, the freshness of the fresh food can be improved as compared with the case where the electric field is not formed. It is known that it can be kept for a long time.
  • a plate-shaped electrode in which a large number of small holes are regularly formed is used as an electrode for forming an electric field in the container, and this electrode is used as a floor surface, a side surface, or a ceiling in the container. It has a structure provided on the surface.
  • Patent Document 1 since the electrode for forming the electric field has a flat plate shape, the separation distance between the electrode and the inner surface of the container tends to be small. Therefore, an electric field is likely to be formed between the electrode and the inner surface of the container, and it is difficult to efficiently apply the electric field to the fresh food in the container.
  • An object of the present invention is to provide a storage and electrode structure capable of efficiently applying an electric field to a contained object (particularly fresh food) to keep the object fresh for a longer period of time. ..
  • the support portion includes a fixed portion fixed to the storage body and a fixed portion. It has a protruding portion that protrudes from the fixed portion toward the accommodation chamber and has the electrode arranged therein.
  • the storage is characterized in that the separation distance between the protruding portion and the storage main body is larger than the separation distance between the fixed portion and the storage main body.
  • the protruding portion has a flat plate-shaped base provided along the ceiling portion.
  • An electrode structure installed in the main body of the storage cabinet having a storage chamber for accommodating the object. Electrodes that form an electric field in the containment chamber and It has a support portion that is fixed to the storage body and supports the electrodes in the storage chamber.
  • the support portion includes a fixing portion fixed to the storage body and a fixing portion. In a state where the fixed portion is fixed to the storage body, the fixed portion has a protruding portion that protrudes from the fixed portion toward the storage chamber and has an electrode arranged therein.
  • An electrode structure characterized in that the distance between the protruding portion and the main body of the storage is larger than the distance between the fixed portion and the main body of the storage.
  • the separation distance between the storage chamber main body and the electrode can be increased, an electric field can be effectively formed in the storage chamber. Therefore, an electric field can be efficiently applied to the object (particularly fresh food) housed in the storage chamber, and the freshness of the object can be maintained for a longer period of time.
  • FIG. 1 is a perspective view showing the entire container according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the inside of the container body.
  • FIG. 3 is a cross-sectional view showing the electrode structure.
  • FIG. 4 is a cross-sectional view showing a modified example of the electrode structure shown in FIG.
  • FIG. 5 is a cross-sectional view showing a modified example of the electrode structure shown in FIG.
  • FIG. 6 is a cross-sectional view showing a modified example of the electrode structure shown in FIG.
  • FIG. 7 is a cross-sectional view showing a modified example of the electrode structure shown in FIG.
  • FIG. 8 is a cross-sectional view showing a modified example of the electrode structure shown in FIG. FIG.
  • FIG. 9 is a cross-sectional view for explaining the effect of the electrode structure.
  • FIG. 10 is a cross-sectional view showing an electrode structure of the container according to the second embodiment.
  • FIG. 11 is a cross-sectional view showing a modified example of the electrode structure shown in FIG.
  • FIG. 12 is a cross-sectional view showing an electrode structure of the container according to the third embodiment.
  • FIG. 13 is a diagram showing a voltage applied to the electrodes of the container according to the fourth embodiment.
  • FIG. 14 is a diagram showing a voltage applied to the electrodes of the container according to the fourth embodiment.
  • FIG. 15 is a diagram showing a voltage applied to the electrodes of the container according to the fourth embodiment.
  • FIG. 16 is a diagram showing a voltage applied to the electrodes of the container according to the fourth embodiment.
  • FIG. 17 is a cross-sectional view showing the inside of the container body according to the fifth embodiment.
  • FIG. 18 is a cross-sectional view showing a modified example of the electrode structure shown in FIG.
  • FIG. 19 is a cross-sectional view showing the inside of the container body according to the sixth embodiment.
  • FIG. 20 is a diagram showing a voltage applied to the electrodes.
  • the container 1 (storage) shown in FIG. 1 is a mobile container mounted on a truck, a ship, an airplane, or the like.
  • the container 1 of the present embodiment is a reefer container having a cooling function, and is a container main body 2 (storage main body) having a storage chamber 20 for accommodating an object X and a cooling device for cooling the inside of the storage chamber 20. 3 and an electric field forming device 4 for forming an electric field in the accommodation chamber 20.
  • the container 1 has, for example, a configuration conforming to an international standard (ISO standard), and is a “20-foot container” having a total length of 20 feet or a “40-foot container” having a total length of 40 feet.
  • ISO standard international standard
  • the container 1 having excellent convenience and versatility, and further having sufficient reliability has a configuration conforming to the international standard.
  • the container 1 does not necessarily have to comply with the international standard (ISO standard), and the shape of the container 1 is not particularly limited. Further, the container 1 may not be a mobile container but a fixed container used by being fixed to a store, a warehouse, or the like. Further, for example, it may be installed on a loading platform such as a truck. Further, the storage is not limited to the container 1, and can be applied to, for example, a cooling warehouse, a refrigerator, and the like.
  • ISO standard international standard
  • the shape of the container 1 is not particularly limited.
  • the container 1 may not be a mobile container but a fixed container used by being fixed to a store, a warehouse, or the like. Further, for example, it may be installed on a loading platform such as a truck. Further, the storage is not limited to the container 1, and can be applied to, for example, a cooling warehouse, a refrigerator, and the like.
  • the object X is not particularly limited, and for example, seafood such as fish, shrimp, crab, squid, octopus, and shellfish, processed foods thereof, and fruits such as strawberries, apples, bananas, tangerines, grapes, and pears. And these processed foods, vegetables such as cabbage, lettuce, cucumber, tomato, these processed foods, fresh foods such as meat such as beef, pork, chicken, horse meat, various dairy products such as milk, cheese, yogurt, various organs In particular, organs for transplantation and the like can be mentioned. Among these, the object X is particularly preferably fresh food. It is preferable that these objects X are stored in a refrigerator, that is, in a non-freezing (non-freezing) state.
  • the container body 2 has a substantially rectangular parallelepiped shape extending in the depth direction in FIG. 2, and a storage chamber 20 for accommodating the object X is provided inside the container body 2. Further, as shown in FIG. 2, the container main body 2 has an inner wall 21, an outer wall 22, and an insulating heat insulating material 23 provided between the inner wall 21 and the outer wall 22. As a result, the accommodation chamber 20 is sufficiently insulated so that it is not easily affected by the outside air temperature. Therefore, the inside of the accommodation chamber 20 can be efficiently cooled by the cooling device 3. Further, when the container 1 is used, the container body 2 is connected to the ground (constant potential). A member (not shown) may be interposed between the inner wall 21 and the heat insulating material 23, between the outer wall 22 and the heat insulating material 23, inside the inner wall 21 or outside the outer wall 22. Further, the function of this member is not particularly limited.
  • the constituent materials of the inner wall 21 and the outer wall 22 are not particularly limited, but various metals such as stainless steel, iron, and aluminum can be used, respectively. As a result, a robust and sturdy container body 2 can be obtained.
  • the heat insulating material 23 is not particularly limited, but for example, glass wool, cellulose fiber, foam (polyurethane foam, polyethylene foam, polypropylene foam, etc.) and the like can be used. As a result, excellent heat insulating properties can be exhibited.
  • the container body 2 is erected from the floor portion 24 located on the lower side in the vertical direction, the ceiling portion 25 located on the upper side of the floor portion 24 and facing the floor portion 24, and the floor portion 24, and is erected from the floor portion 24. It has a side wall portion 26 connecting the ceiling portion 25 and the ceiling portion 25, and the accommodation chamber 20 is formed by being surrounded by the side wall portion 26.
  • the floor portion 24, the ceiling portion 25, and the side wall portion 26 are connected and fixed to each other via the frame 27.
  • these connection and fixing methods are not particularly limited, and may be fixed by welding the outer walls to each other or the inner walls to each other, for example.
  • a pair of double doors 28 and 29 are provided at the front end of FIG. 1 of the container body 2 on the front side. Through the doors 28 and 29, the object X can be carried into the storage chamber 20 or the object X can be carried out from the storage chamber 20.
  • the arrangement and configuration of the doors 28 and 29 are not particularly limited.
  • a cooling device 3 is provided at the inner end of FIG. 1 of the container body 2.
  • the wall located at the inner end of FIG. 1 of the container body 2 is composed of the panel of the cooling device 3, but the present invention is not limited to this, and for example, the container body 2 It may be composed of the side wall portion 26 of the above.
  • the cooling device 3 is provided at the end of the accommodation chamber 20 on the back side when viewed from the doors 28 and 29, and has a suction unit 31 for sucking air in the accommodation chamber 20 and a suction unit 31 for sucking air.
  • a cooling device 32 that cools the air sucked from the unit 31, a blowout unit 33 that blows out the air (cold air) cooled by the cooling device 32 into the accommodation chamber 20, and a temperature sensor 34 that detects the temperature inside the accommodation chamber 20.
  • the blowout portion 33 is provided near the floor portion 24 of the accommodation chamber 20 and blows cold air toward the floor portion 24.
  • the cold air blown out from the blowout portion 33 flows along the plurality of grooves 241 formed in the floor portion 24 along the longitudinal direction of the container body 2, hits the doors 28 and 29, or rises in front of the doors 28 and 29, and is accommodated. It reaches the ceiling 25 of the room 20.
  • the suction unit 31 is provided in the vicinity of the ceiling portion 25, and sucks the cold air that has risen from the floor portion 24 to the ceiling portion 25 or its vicinity. Further, the temperature of the cold air and the air volume are controlled so that the temperature in the accommodation chamber 20 detected by the temperature sensor 34 becomes the target temperature.
  • the settable temperature in the accommodation chamber 20 is not particularly limited, but is preferably about ⁇ 30 ° C. to + 30 ° C., for example.
  • the configuration and arrangement of the cooling device 3 is not particularly limited as long as the inside of the accommodation chamber 20 can be cooled.
  • the electric field forming device 4 has a function of forming an electric field in the accommodating chamber 20 and causing the formed electric field to act on the object X accommodated in the accommodating chamber 20. As shown in FIG. 2, such an electric field forming device 4 forms an electric field in the support portion 6 installed on the ceiling portion 25 of the container main body 2, the electrode 5 supported by the support portion 6, and the electrode 5. It has a voltage applying device 7 for applying a driving voltage (alternate voltage Vac) for the purpose. In the present embodiment, among these, the support portion 6 and the electrode 5 constitute the electrode structure 10 of the present invention.
  • the support portion 6 is widely provided over almost the entire area of the ceiling portion 25. Further, the support portion 6 has a substantially “ ⁇ ” shape that is recessed downward from the ceiling portion 25.
  • the support portion 6 can be formed by, for example, deforming a plate-shaped member. Further, the support portion 6 can also be formed by injection molding. As shown in FIGS. 2 and 3, such a support portion 6 is provided between a pair of fixed portions 61, 62 arranged apart from each other in the width direction of the container 1 and the fixed portions 61, 62. It has a protrusion 63 protruding downward from the fixed portions 61, 62, that is, toward the inside of the accommodation chamber 20.
  • the support portion 6 is fixed to the ceiling portion 25 at the fixing portions 61 and 62.
  • the method of fixing to the ceiling portion 25 is not particularly limited, and for example, it can be fixed by screwing, welding, adhesive or the like.
  • the protruding portion 63 has a concave shape in which both ends in the width direction are bent upward, and is located between the base portion 631 located in the central portion in the width direction and the base portion 631 and the fixed portion 61. It has a connecting portion 632 that connects them, and a connecting portion 633 that is located between the base 631 and the fixing portion 62 and connects them.
  • the base portion 631 has a flat plate shape and is provided substantially parallel to the ceiling surface 251 which is the inner surface of the ceiling portion 25.
  • the electrode 5 is supported by the base 631. Further, the base portion 631 is located below the fixed portions 61 and 62, and a gap G is provided between the base portion 631 and the ceiling surface 251.
  • the separation distance D1 between the projecting portion 63 and the container body 2 is larger than the separation distance D2 between the fixing portions 61 and 62 and the container body 2. That is, the relationship is D1> D2.
  • the separation distance D1 is specifically the separation distance between the base 631 of the projecting portion 63 and the ceiling surface 251 which is the inner surface of the ceiling portion 25 to which the support portion 6 is fixed, and the separation distance D2 is specifically.
  • the distance between the fixed portions 61 and 62 and the ceiling surface 251 which is the inner surface of the ceiling portion 25 to which the support portion 6 is fixed.
  • the separation distance D2 is 0 (zero).
  • the shape of the protruding portion 63 is not particularly limited.
  • the connecting portions 632 and 633 may be curved in an arch shape, or as shown in FIG. 5, the protruding portion 63.
  • the entire 63 may be curved in a substantially "V" shape.
  • the base portion 631 has a positioning portion 64 for positioning the electrode 5.
  • the positioning portion 64 is formed of a recess 641 that opens on the upper surface of the base portion 631 and has a plan view shape corresponding to the plan view shape of the electrode 5, and the electrode 5 is provided in the recess 641.
  • the configuration of the positioning unit 64 becomes simple, and for example, the manufacturing cost of the support unit 6 can be reduced.
  • the configuration of the positioning portion 64 is not particularly limited as long as it can exhibit its function.
  • a frame-shaped protrusion 642 that protrudes upward from the base 631 and surrounds the electrode 5 It may be configured. In this case, the protrusion 642 may be partially missing. Further, the positioning unit 64 may be omitted.
  • the support portion 6 has an insulating property. As a result, it is possible to prevent the electrical connection between the electrode 5 and the container body 2 via the support portion 6.
  • the constituent material of the support portion 6 is not particularly limited as long as it has an insulating property, and for example, various resin materials, various glass materials, various ceramics, and the like can be used. Among these, it is preferable to use various resin materials because they have relatively high mechanical strength, have a certain degree of elasticity, and are relatively inexpensive.
  • the support portion 6 may have a configuration in which only a part thereof has an insulating property, for example, as long as the electrical connection between the electrode 5 and the container body 2 can be prevented.
  • the support portion 6 when an insulator such as an insulator is interposed between the support portion 6 and the container body 2, the support portion 6 may be made of a conductive material. In this case, the support portion 6 functions as an electrode together with the electrode 5. However, if an insulator such as an insulator is interposed, the support portion 6 protrudes into the accommodation chamber 20 by that amount, so that the volume (loading capacity) of the accommodation chamber 20 is reduced. Therefore, in order to secure a larger volume of the accommodation chamber 20, it is preferable to install the support portion 6 in contact with the ceiling surface 251 as in the present embodiment.
  • the electrode 5 arranged on the base 631 has a plate shape, particularly a flat plate shape, and is widely provided over almost the entire area of the base 631. As a result, the electric field can be evenly distributed over a wider range of the accommodation chamber 20. Further, since the electrode 5 is supported so that the base 631 is supported from below, the base 631 is interposed between the electrode 5 and the object X. Therefore, the support portion 6 can prevent the electrode 5 from coming into contact with the object X.
  • the thickness T of the electrode 5 can be suppressed, the separation distance D1 can be increased, and the degree of protrusion of the support portion 6 into the accommodation chamber 20 can be suppressed to be small. Therefore, it is possible to effectively suppress the decrease in the volume (loading capacity) of the accommodation chamber 20, and as will be described later, an electric field distributed in the accommodation chamber 20 is likely to be formed.
  • the thickness T of the electrode 5 is not particularly limited, but is preferably 2 mm or less, and more preferably 1 mm or less, for example. As a result, the electrode 5 becomes sufficiently thin, and the above-mentioned effect becomes remarkable.
  • the constituent material of the electrode 5 is not particularly limited as long as it has conductivity, and for example, various metal materials such as aluminum and copper can be used.
  • the shape of the electrode 5 is not particularly limited.
  • the electrode 5 may be in the form of a sheet (film) thinner than the above-mentioned plate.
  • the thickness T of the electrode 5 is further suppressed, and the above-mentioned effect becomes more remarkable.
  • the sheet-shaped electrode 5 for example, various metal foils such as aluminum foil and copper foil can be used.
  • plate-shaped and sheet-shaped there is no clear distinction between “plate-shaped” and “sheet-shaped”, but for example, a "plate-shaped” that is hard to some extent and does not substantially undergo deformation due to its own weight (excluding slight bending) is defined as “plate-shaped”. Those having flexibility and being deformed by its own weight can be distinguished as "sheet-like".
  • the electrode 5 may be provided so as to extend not only to the base portion 631 but also to the connecting portions 632 and 633. As a result, the area of the electrode 5 can be made larger.
  • the electrode 5 may have a corrugated plate shape. By forming irregularities on the surface of the electrode 5 in this way, the surface area of the electrode 5 becomes larger than that of, for example, the flat electrode 5. Therefore, an electric field distributed in the accommodation chamber 20 is likely to be formed.
  • the electrode 5 may be provided with a plurality of through holes that penetrate the electrode 5 in the thickness direction. In this case, the through holes may be regularly provided over the entire area of the electrode 5, or may be irregularly provided.
  • the shape of the through hole is not particularly limited, and may be, for example, a circle, a quadrangle, a triangle, or a slit shape extending in the width direction or the length direction of the container 1.
  • the number of electrodes 5 installed is not particularly limited, and may be two or more, for example, as described in the embodiments described later.
  • the electrode 5 of this embodiment may be divided into a plurality of electrodes.
  • the plurality of electrodes 5 may be arranged side by side in the width direction of the container 1, for example, may be arranged side by side in the longitudinal direction of the container 1, or may be arranged in a matrix in the longitudinal direction and the width direction. They may be arranged side by side in a shape.
  • the place where the electrode 5 is installed, that is, the place where the support portion 6 is fixed is not particularly limited, and may be, for example, the floor portion 24 or the side wall portion 26.
  • the electrode 5 is installed on the ceiling portion 25 as in the present embodiment.
  • the reason for this is that damage to the electrodes 5 and the support portion 6 can be suppressed.
  • the ceiling portion 25 has less frequent contact with the object X, the container pallet on which the object X is loaded, the forklift for transporting the container pallet into the storage chamber 20, and the like. Therefore, by installing the electrode 5 on the ceiling portion 25, damage to the electrode 5 and the support portion 6 can be effectively suppressed.
  • the electrode structure 10 having the above configuration is fixed to the ceiling portion 25 with the electrode 5 installed on the support portion 6. That is, first, the electrode 5 is installed on the support portion 6, and then the support portion 6 is fixed to the ceiling portion 25. According to such a method, the electrode 5 can be easily installed on the ceiling portion 25. Therefore, the manufacturing cost of the container 1 can be reduced.
  • the present invention is not limited to this, and for example, the electrode 5 may be installed on the support portion 6 after the support portion 6 is fixed to the ceiling portion 25.
  • the voltage applying device 7 includes, for example, a high-voltage transformer, and as shown in FIG. 3, applies an alternating voltage Vac for forming an electric field to the electrode 5.
  • an electric field is formed in the accommodation chamber 20 based on the potential difference between the electrode 5 and the container body 2 connected to the ground.
  • this electric field is formed in the accommodation chamber 20 based on the potential difference between the electrode 5 and the container body 2 connected to the ground.
  • the freshness of the object X can be maintained. Therefore, the object X can be stored for a longer period of time as compared with the case where an electric field is not formed.
  • the electrodes 5 are provided so as to spread over almost the entire area of the ceiling surface 251, an electric field can be effectively formed over the entire area of the accommodation chamber 20.
  • the amplitude of the alternating voltage Vac is not particularly limited, but is preferably about 0.1 kV to 20 kV, for example.
  • an electric field having a sufficient strength can be formed in the accommodating chamber 20, and the above-mentioned effect can be more reliably exhibited.
  • the frequency of the alternating voltage Vac is not particularly limited, but is preferably about 5 Hz to 50 kHz, for example.
  • the waveform of the alternating voltage Vac may be any waveform such as a sine wave, a square wave, or a sawtooth wave.
  • the base portion 631 of the protruding portion 63 is located on the lower side with respect to the fixed portions 61 and 62, and the relationship between the separation distances D1 and D2 is D1> D2.
  • an air layer having a high insulating property between the base portion 631 and the ceiling surface 251 as compared with the conventional flat plate electrode 50A having the heights of the fixed portions 61 and 62 as shown by the chain line L1 in FIG. (Void G) can be formed with a sufficient thickness. Therefore, the capacitance C formed between the electrode 5 and the ceiling surface 251 becomes smaller than in the conventional case.
  • the volume of the accommodating chamber 20 is larger than that of the conventional flat plate electrode 50B adjusted to the height of the base portion 631 as shown by the chain line L2 in FIG. 9, for example.
  • the load capacity of the object X increases by that amount. Therefore, more objects X can be transported in one container 1, and the transport cost can be suppressed.
  • the separation distance D1 is not particularly limited, but is preferably, for example, about 3 cm to 10 cm, and more preferably 4 cm to 8 cm. According to such a lower limit value, the separation distance D1 can be sufficiently increased, and the above-mentioned effect becomes more remarkable. On the contrary, according to such an upper limit value, it is possible to suppress a decrease in the volume of the accommodation chamber 20 due to an excessively large separation distance D1, that is, a decrease in the maximum load capacity of the object X.
  • the separation distance D2 is not particularly limited as long as the relationship of D1> D2 is satisfied, but is preferably 1 cm or less, more preferably 0.5 cm or less, as in the present embodiment. It is more preferably 0 (zero). As a result, the separation distance D2 can be made sufficiently small, and the above-mentioned effect can be exhibited more remarkably.
  • the container 1 of the present embodiment has a covering portion 8 provided so as to sandwich the electrode 5 with the supporting portion 6.
  • the electrode structure 10 is composed of the support portion 6, the electrode 5, and the covering portion 8.
  • the entire area of the electrode 5 is covered by the support portion 6 and the covering portion 8. According to such a configuration, the electrode 5 is not exposed in the accommodation chamber 20, and the contact between the electrode 5 and the object X can be effectively prevented. Therefore, the safety of the container 1 is improved.
  • the covering portion 8 is fixed to the supporting portion 6 by screwing or the like.
  • the present invention is not limited to this, and the covering portion 8 may be fixed to the ceiling portion 25 by screwing or the like and may only be in contact with the supporting portion 6.
  • the covering portion 8 is located between the supporting portion 6 and the ceiling surface 251. In other words, the covering portion 8 is provided in the gap G.
  • This region is originally a region that is difficult to use as a space for accommodating the object X due to the problem of its size and position. Therefore, even if the covering portion 8 is arranged in this region, the volume (loading capacity) of the accommodating chamber 20 does not decrease. Therefore, the safety of the container 1 can be enhanced without reducing the volume of the storage chamber 20.
  • the support portion 6 can be reinforced by providing the covering portion 8. Therefore, damage, breakage, etc. of the support portion 6 can be suppressed.
  • the covering portion 8 is provided so as to fill the space between the supporting portion 6 and the ceiling surface 251, that is, the entire area of the gap G.
  • the support portion 6 can be reinforced more effectively.
  • cold air cannot enter the void G. Since the support portion 6 is interposed between the cold air flowing in the void G and the object X, it is less likely to contribute to cooling the object X than the cold air flowing below the support portion 6. Therefore, by filling the void G with the covering portion 8 to prevent the cold air from entering the void G, more cold air can be guided below the support portion 6 and used for cooling the object X. Therefore, the cooling efficiency of the object X is increased. Further, as the cooling efficiency is improved, the cooling unevenness can be reduced, and further, the power saving drive of the container 1 can be achieved.
  • the present invention is not limited to this, and the covering portion 8 does not have to fill the gap G, for example, as shown in FIG. According to such a configuration, the weight of the covering portion 8 can be suppressed as compared with the present embodiment.
  • Such a covering portion 8 has an insulating property. As a result, it is possible to prevent the electrical connection between the electrode 5 and the container body 2 via the covering portion 8.
  • the constituent material of the covering portion 8 is not particularly limited as long as it has an insulating property, and for example, various resin materials, various glass materials, various ceramics, and the like can be used. Among these, it is preferable to use various resin materials because of their relatively high mechanical strength, light weight, and relatively low cost.
  • the covering portion 8 may have a configuration in which only a part thereof has an insulating property, for example, as long as the electrical connection between the electrode 5 and the container body 2 can be prevented.
  • the container 1 of the present embodiment has a windbreak portion 9 for preventing the inflow of cold air into the gap G between the support portion 6 and the ceiling portion 25.
  • the windbreak portion 9 has a first wall portion 91 provided at the end portions of the support portion 6 on the door 28 and 29 sides, and a second wall portion 92 provided at the end portion on the cooling device 3 side.
  • the first and second wall portions 91 and 92 prevent the inflow of cold air into the gap G. Even with such a configuration, cold air cannot enter the void G as in the second embodiment described above. Therefore, more cold air can be guided below the support portion 6 and used for cooling the object X. Therefore, the cooling efficiency of the object X is increased.
  • the cooling efficiency is improved, the cooling unevenness can be reduced, and further, the power saving drive of the container 1 can be achieved. Further, according to such a configuration, since the electrode 5 is covered by the support portion 6, the ceiling portion 25, and the first and second wall portions 91 and 92, contact between the electrode 5 and the object X is prevented. You can also do it.
  • the voltage application device 7 changes the state of the electric field formed in the accommodation chamber 20 over time.
  • the state of the electric field in the containment chamber 20 for example, the growth (division) of microorganisms contained in the food can be increased as compared with the case where the state of the electric field in the containment chamber 20 is kept constant. It can be suppressed. Therefore, the freshness of the object X housed in the storage chamber 20 can be maintained for a longer period of time.
  • microorganisms The growth of microorganisms is suppressed by changing the state of the electric field in the accommodation chamber 20 over time because the microorganisms have the property of starting division after becoming accustomed to the environment to some extent.
  • the microorganisms can switch to a different environment before they become accustomed to the current environment, which can prevent the microorganisms from becoming accustomed to the environment, resulting in the growth of the microorganisms. It can be suppressed.
  • microorganisms contained in the object X include salmonella, enterohemorrhagic Escherichia coli (O157, O111, etc.), Vibrio parahaemolyticus, Clostridium perfringens, Staphylococcus aureus, Clostridium botulinum, and Bacillus cereus, which are considered to be the causes of food poisoning. Norovirus and the like can be mentioned.
  • changing the state of the electric field over time means, for example, changing at least one of the amplitude and frequency of the alternating voltage Vac applied to the electrode 5 over time.
  • the method of changing the state of the electric field over time is not particularly limited, and examples thereof include several methods shown below.
  • a method of intermittently applying an alternating voltage Vac having a reference of 0 V and a constant amplitude and frequency to the electrode 5 can be mentioned.
  • the voltage applying device 7 alternately repeats the first state in which the alternating voltage Vac is applied to the electrodes 5 and the second state in which the alternating voltage Vac is not applied to each electrode 5. That is, the first state in which the electric field is formed in the accommodation chamber 20 and the second state in which the electric field is not formed are alternately repeated. In this way, by alternately repeating the first state and the second state, the state of the electric field can be changed over time with relatively simple control.
  • the voltage application device 7 applies a first state in which an alternating voltage Vac having a reference of 0V and an amplitude of E1 is applied to the electrode 5, and an alternating voltage Vac having a reference of 0V and an amplitude of E2 ( ⁇ E1).
  • the second state applied to the electrode 5 is alternately repeated.
  • the amplitude E1 is preferably twice or more, more preferably three times or more, and even more preferably four times or more the amplitude E2.
  • the voltage applying device 7 has a first state in which an alternating voltage Vac having a frequency of f1 is applied to the electrode 5 and a second state in which an alternating voltage Vac having a frequency f2 ( ⁇ f1) is applied to the electrode 5. Repeat alternately. By alternately repeating the first state and the second state, the state of the electric field can be changed over time with relatively simple control.
  • the frequency f1 is preferably 10 times or more, more preferably 50 times or more, and further preferably 100 times or more the frequency f2.
  • a bias voltage Vb which is a constant voltage
  • the voltage applying device 7 alternately repeats the first state in which the superimposed voltage Vd of the alternating voltage Vac and the bias voltage Vb is applied to the electrode 5 and the second state in which the alternating voltage Vac is applied to the electrode 5. ..
  • the state of the electric field can be changed over time with relatively simple control.
  • the control becomes simpler than the second and third methods of changing the amplitude and frequency of the alternating voltage Vac.
  • the bias voltage Vb is smaller than the amplitude (maximum value) of the alternating voltage Vac. As a result, the superimposed voltage Vd can be used as an AC voltage. Therefore, in the first state, an electric field can be more reliably formed in the accommodation chamber 20.
  • the bias voltage Vb is preferably 0.1 to 0.6 times, more preferably 0.2 times to 0.5 times, and 0.3 times to 0 times the amplitude of the alternating voltage Vac. It is more preferable to be 4.4 times. This makes it possible to balance the time when the superimposed voltage Vd is on the positive side and the time when it is on the negative side, that is, it is possible to prevent one from becoming excessively longer than the other, and it is more efficient in the first state.
  • An electric field can be formed in the accommodation chamber 20.
  • the state of the electric field in the accommodation chamber 20 can be sufficiently different between the first state and the second state, and it is possible to effectively suppress the microorganisms from becoming accustomed to the environment.
  • the first to fourth methods have been described above as methods for changing the state of the electric field over time.
  • the state of the electric field is changed depending on the temperature in the containment chamber 20 and the type of the object X (the type of microorganisms contained in the food) contained in the containment chamber 20. It is preferable to change the temperature at intervals of 1 minute or more and 60 minutes or less, preferably at intervals of 2 minutes or more and 40 minutes or less, and preferably at intervals of 3 minutes or more and 30 minutes or less.
  • the time of the first state and the second state is preferably 1 minute or more and 60 minutes or less, more preferably 2 minutes or more and 40 minutes or less, and 3 minutes or more and 30 minutes or less, respectively.
  • the microorganism has (1) a division rate of about 10 to 40 minutes in a temperature range of about 10 ° C. to 40 ° C., (2) the lower the temperature, the lower the division rate, (3). It is known that (4) almost all microorganisms cannot grow at 0 ° C or lower, except for some microorganisms. Therefore, as described above, by changing the state of the electric field within 60 minutes, preferably within 40 minutes, more preferably within 30 minutes, the time until the microorganisms become accustomed to the environment (for example, about 10 minutes) can be increased. In addition, the state of the electric field can be changed at intervals sufficiently shorter than the division rate of microorganisms. Therefore, the growth of microorganisms can be suppressed more reliably.
  • the electric field may be changed periodically or irregularly.
  • the time of the first state and the time of the second state may be substantially the same each time, or the time of the first state and the time of the second state may change irregularly each time.
  • the drive control of the voltage applying device 7 becomes simpler than in the case where the electric field is changed irregularly.
  • the electric field irregularly there is a possibility that the growth of microorganisms can be suppressed more effectively than in the case where the electric field is changed periodically. It is speculated that if the electric field is changed periodically, the microorganisms may become accustomed to the periodic environmental change itself. In this way, even if the microorganisms may become accustomed to the periodic environmental changes themselves, if the electric field is changed irregularly, the growth of the microorganisms can be suppressed more effectively.
  • the above-mentioned first to fourth methods may be appropriately combined. Further, in each of the first to fourth methods described above, the first state and the second state are alternately repeated, but the present invention is not limited to this, and for example, the first state and the second state and the electric field state are used. May have at least one different state (third state, fourth state, fifth state, etc.), and these plurality of states may be repeated in order.
  • three support portions 6 are fixed to the ceiling portion 25.
  • these three support portions 6 are also referred to as support portions 6A, 6B, and 6C.
  • the three support portions 6A, 6B, and 6C are arranged side by side in the width direction of the container 1 and separated from each other. Further, the support portions 6A, 6B, and 6C each have a longitudinal shape extending in the longitudinal direction of the container 1, and extend over substantially the entire area from the doors 28 and 29 sides to the cooling device 3 side. Further, electrodes 5 are supported on each of these three support portions 6A, 6B, and 6C.
  • the electrode 5 supported by the support portion 6A is also referred to as an electrode 5A
  • the electrode 5 supported by the support portion 6B is also referred to as an electrode 5B
  • the electrode 5 supported by the support portion 6C is also referred to as an electrode 5C.
  • Electrodes 5A, 5B, and 5C are insulated from each other and are independently connected to the voltage applying device 7. As a result, three electric field forming systems can be provided, and even if one electric field forming system fails, an electric field can be formed by the other two electric field forming systems. As a result, the risk of not being able to form an electric field due to a failure is reduced, and high reliability can be exhibited.
  • the voltage applying device 7 can apply different voltages to the electrodes 5A, 5B, and 5C. By applying different voltages to the electrodes 5A, 5B, and 5C, the electric field can be changed periodically or irregularly as in the second embodiment described above.
  • the voltage applied to the electrodes 5A, 5B and 5C is not particularly limited.
  • the first alternating voltage Vac1 which is the voltage applied to the electrode 5A, the second alternating voltage Vac2 which is the voltage applied to the electrode 5B, and the third alternating voltage Vac3 which is the voltage applied to the electrode 5C mutually have frequencies. It may be different. Further, for example, the frequency and amplitude may be different between the first alternating voltage Vac1, the second alternating voltage Vac2, and the third alternating voltage Vac3. Further, for example, the same waveforms may be used for the first alternating voltage Vac1, the second alternating voltage Vac2, and the third alternating voltage Vac3, and their phases may be shifted from each other.
  • the electrodes 5A, 5B, and 5C are provided as a plurality of electrodes to which different voltages are applied, but at least two electrodes 5 are provided, and the same or different voltages are applied to these electrodes. If so, it is not limited to this. For example, any one of the electrodes 5A, 5B, and 5C may be omitted, or conversely, at least one electrode to which a voltage can be applied independently may be added.
  • the support portions 6A, 6B, 6C are arranged side by side in the width direction of the container 1, but the arrangement thereof is not particularly limited.
  • the support portions 6A, 6B, 6C may be arranged side by side in the longitudinal direction of the container 1.
  • the support portion 6A (electrode 5A) and the support portion 6B (electrode 5B) are arranged side by side in the width direction of the container 1, and the support portions 6A and 6B (electrodes 5A and 5B) and the support portion 6C (electrode 5C) are arranged. May be arranged side by side in the longitudinal direction of the container 1.
  • three support portions 6A, 6B, and 6C are provided to independently support the electrodes 5A, 5B, and 5C, respectively, but the present invention is not limited to this, and is shown in FIG. As described above, one support portion 6 may be configured to support the three electrodes 5A, 5B, and 5C.
  • the voltage applying device 7 applies the first alternating voltage Vac1 to the electrode 5A and applies the second alternating voltage Vac2 having the opposite phase to the first alternating voltage Vac1 to the electrode 5B.
  • the first alternating voltage Vac1 and the second alternating voltage Vac2 have the same waveform, and have the same frequency and amplitude.
  • the potential difference ⁇ V1 between the electrode 5A and the electrode 5B becomes equal to that of the electrode 5A by shifting the phase of the first alternating voltage Vac1 and the second alternating voltage Vac2 by 180 °. It is larger than the potential difference ⁇ V2 with the container body 2 and the potential difference ⁇ V3 between the electrode 5B and the container body 2. That is, the relationship is ⁇ V1> ⁇ V2 and ⁇ V1> ⁇ V3. Therefore, an electric field is more likely to be formed between the electrode 5A and the electrode 5B than between the electrode 5A and the container body 2 or between the electrode 5B and the container body 2.
  • the "opposite phase” refers to the case where the phase difference between the first alternating voltage Vac1 and the second alternating voltage Vac2 coincides with 180 °, and a slight error (for example, ⁇ 10%) that may occur in technology. It is a meaning including the case of having.
  • each part can be replaced with an arbitrary configuration that exhibits the same function, or an arbitrary configuration can be added.
  • each of the above-described embodiments can be combined as appropriate.
  • the container body 2 having the storage chamber 20 for accommodating the object X, the electrode 5 for forming an electric field in the storage chamber 20, and the electrode 5 fixed to the container body 2 in the storage chamber 20 to support the electrode 5.
  • It has a support portion 6 and a support portion 6.
  • the support portion 6 has fixed portions 61 and 62 fixed to the container main body 2 and a protruding portion 63 protruding from the fixed portions 61 and 62 toward the inside of the accommodation chamber 20 and in which the electrode 5 is arranged.
  • the separation distance D1 between the projecting portion 63 and the container body 2 is larger than the separation distance D2 between the fixing portions 61 and 62 and the container body 2.
  • the capacitance C formed between the electrode 5 and the container body 2 becomes small, and an electric field can be efficiently and effectively applied to the object X housed in the storage chamber 20. Further, the volume of the storage chamber 20 is increased, and the load capacity of the object X is increased accordingly. Therefore, more objects X can be transported in one container 1, and the transport cost can be suppressed.
  • Electrode structure 2 ... Container body, 20 ... Storage room, 21 ... Inner wall, 22 ... Outer wall, 23 ... Insulation material, 24 ... Floor, 241 ... Groove, 25 ... Ceiling, 251 ... Ceiling surface , 26 ... Side wall, 27 ... Frame, 28 ... Door, 29 ... Door, 3 ... Cooling device, 31 ... Suction part, 32 ... Cooling device, 33 ... Blowout part, 34 ... Temperature sensor, 4 ... Electrode forming device, 5 ... Electrode, 5A ... Electrode, 5B ... Electrode, 5C ... Electrode, 50A ... Flat plate electrode, 50B ... Flat plate electrode, 6 ... Support part, 6A ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

The present invention makes it possible to efficiently apply an electric field to a stored object (particularly fresh food) to keep the object fresh for a longer period of time. A container 1 has: a container body 2 having a storage chamber 20 for storing an object X; an electrode 5 that forms an electric field in the storage chamber 20; and a support part 6 fixed to the container body 2 and supporting the electrode 5 in the storage chamber 20. Additionally, the support part 6 has: fixed sections 61, 62 fixed to the container body 2; and a protruding section 63 that protrudes from the fixed sections 61, 62 toward the inside of the storage chamber 20 and that has the electrode 5 disposed thereon. The separation distance D1 between the protruding section 63 and the container body 2 is larger than the separation distance D2 between the fixed sections 61, 62 and the container body 2.

Description

収容庫および電極構造Storage and electrode structure
 本発明は、収容庫および電極構造に関する。 The present invention relates to a storage and an electrode structure.
 特許文献1に記載されているように、コンテナ(収容庫)内に電界を形成し、この電界形成雰囲気内において生鮮食品を保存することにより、電界を形成しない場合と比べて生鮮食品の鮮度を長く保つことができることが知られている。特許文献1のコンテナでは、コンテナ内に電界を形成するための電極として、多数の小さな穴が規則的に形成された板状の電極が用いられ、この電極がコンテナ内の床面、側面または天井面に設けられた構成となっている。 As described in Patent Document 1, by forming an electric field in the container (storage) and storing the fresh food in this electric field forming atmosphere, the freshness of the fresh food can be improved as compared with the case where the electric field is not formed. It is known that it can be kept for a long time. In the container of Patent Document 1, a plate-shaped electrode in which a large number of small holes are regularly formed is used as an electrode for forming an electric field in the container, and this electrode is used as a floor surface, a side surface, or a ceiling in the container. It has a structure provided on the surface.
特開2012-250773号公報Japanese Unexamined Patent Publication No. 2012-250773
 しかしながら、特許文献1では、電界を形成するための電極が平板状であるため、電極とコンテナの内面との離間距離が小さくなり易い。そのため、電極とコンテナの内面との間に電界が形成され易く、電界をコンテナ内の生鮮食品に効率的に作用させることが困難である。 However, in Patent Document 1, since the electrode for forming the electric field has a flat plate shape, the separation distance between the electrode and the inner surface of the container tends to be small. Therefore, an electric field is likely to be formed between the electrode and the inner surface of the container, and it is difficult to efficiently apply the electric field to the fresh food in the container.
 本発明の目的は、収容された対象物(特に、生鮮食品)に対して効率的に電界を作用させ、対象物の鮮度をより長く保つことができる収容庫および電極構造を提供することにある。 An object of the present invention is to provide a storage and electrode structure capable of efficiently applying an electric field to a contained object (particularly fresh food) to keep the object fresh for a longer period of time. ..
 このような目的は、下記の本発明により達成される。 Such an object is achieved by the following invention.
 (1) 対象物を収容する収容室を有する収容庫本体と、
 前記収容室内に電界を形成する電極と、
 前記収容室内において前記収容庫本体に固定され、前記電極を支持する支持部と、を有し、
 前記支持部は、前記収容庫本体に固定された固定部と、
 前記固定部から前記収容室内に向けて突出し、前記電極が配置された突出部と、を有し、
 前記突出部と前記収容庫本体との離間距離は、前記固定部と前記収容庫本体との離間距離よりも大きいことを特徴とする収容庫。
(1) A storage body having a storage room for accommodating an object, and
Electrodes that form an electric field in the containment chamber and
It has a support portion that is fixed to the storage body and supports the electrodes in the storage chamber.
The support portion includes a fixed portion fixed to the storage body and a fixed portion.
It has a protruding portion that protrudes from the fixed portion toward the accommodation chamber and has the electrode arranged therein.
The storage is characterized in that the separation distance between the protruding portion and the storage main body is larger than the separation distance between the fixed portion and the storage main body.
 (2) 前記支持部は、前記収容室の天井部に固定されている上記(1)に記載の収容庫。 (2) The storage according to (1) above, wherein the support portion is fixed to the ceiling portion of the storage chamber.
 (3) 前記突出部は、前記天井部に沿って設けられた平板状の基部を有し、
 前記電極は、前記基部に配置されている上記(2)に記載の収容庫。
(3) The protruding portion has a flat plate-shaped base provided along the ceiling portion.
The storage according to (2) above, wherein the electrode is arranged at the base.
 (4) 前記基部は、前記電極を位置決めする位置決め部を有する上記(3)に記載の収容庫。 (4) The storage according to (3) above, wherein the base portion has a positioning portion for positioning the electrodes.
 (5) 前記位置決め部は、前記電極が配置される凹部を有する上記(4)に記載の収容庫。 (5) The storage according to (4) above, wherein the positioning portion has a recess in which the electrode is arranged.
 (6) 前記支持部との間に前記電極を挟み込むように設けられた被覆部を有する上記(1)から(5)のいずれかに記載の収容庫。 (6) The storage according to any one of (1) to (5) above, which has a covering portion provided so as to sandwich the electrode between the support portion and the support portion.
 (7) 前記被覆部は、前記支持部と前記収容庫本体との間の空隙を埋めるように設けられている上記(6)に記載の収容庫。 (7) The storage according to (6) above, wherein the covering portion is provided so as to fill a gap between the support portion and the storage main body.
 (8) 前記支持部は、絶縁性を有する上記(1)から(7)のいずれかに記載の収容庫。 (8) The storage according to any one of (1) to (7) above, wherein the support portion has an insulating property.
 (9) 対象物を収容する収容室を有する収容庫本体に設置される電極構造であって、
 前記収容室内に電界を形成する電極と、
 前記収容室内において前記収容庫本体に固定され、前記電極を支持する支持部と、を有し、
 前記支持部は、前記収容庫本体に固定される固定部と、
 前記固定部が前記収容庫本体に固定された状態で、前記固定部から前記収容室内に向けて突出し、前記電極が配置された突出部と、を有し、
 前記突出部と前記収容庫本体の離間距離が、前記固定部と前記収容庫本体との離間距離よりも大きくなるように設置されることを特徴とする電極構造。
(9) An electrode structure installed in the main body of the storage cabinet having a storage chamber for accommodating the object.
Electrodes that form an electric field in the containment chamber and
It has a support portion that is fixed to the storage body and supports the electrodes in the storage chamber.
The support portion includes a fixing portion fixed to the storage body and a fixing portion.
In a state where the fixed portion is fixed to the storage body, the fixed portion has a protruding portion that protrudes from the fixed portion toward the storage chamber and has an electrode arranged therein.
An electrode structure characterized in that the distance between the protruding portion and the main body of the storage is larger than the distance between the fixed portion and the main body of the storage.
 このような本発明によれば、収容庫本体と電極との離間距離を大きくすることができるため、収容室内に効果的に電界を形成することができる。そのため、収容室に収容された対象物(特に、生鮮食品)に対して効率的に電界を作用させることができ、対象物の鮮度をより長く保つことができる。 According to the present invention as described above, since the separation distance between the storage chamber main body and the electrode can be increased, an electric field can be effectively formed in the storage chamber. Therefore, an electric field can be efficiently applied to the object (particularly fresh food) housed in the storage chamber, and the freshness of the object can be maintained for a longer period of time.
図1は、第1実施形態に係るコンテナの全体を示す斜視図である。FIG. 1 is a perspective view showing the entire container according to the first embodiment. 図2は、コンテナ本体の内部を示す断面図である。FIG. 2 is a cross-sectional view showing the inside of the container body. 図3は、電極構造を示す断面図である。FIG. 3 is a cross-sectional view showing the electrode structure. 図4は、図3に示す電極構造の変形例を示す断面図である。FIG. 4 is a cross-sectional view showing a modified example of the electrode structure shown in FIG. 図5は、図3に示す電極構造の変形例を示す断面図である。FIG. 5 is a cross-sectional view showing a modified example of the electrode structure shown in FIG. 図6は、図3に示す電極構造の変形例を示す断面図である。FIG. 6 is a cross-sectional view showing a modified example of the electrode structure shown in FIG. 図7は、図3に示す電極構造の変形例を示す断面図である。FIG. 7 is a cross-sectional view showing a modified example of the electrode structure shown in FIG. 図8は、図3に示す電極構造の変形例を示す断面図である。FIG. 8 is a cross-sectional view showing a modified example of the electrode structure shown in FIG. 図9は、電極構造の効果を説明するための断面図である。FIG. 9 is a cross-sectional view for explaining the effect of the electrode structure. 図10は、第2実施形態に係るコンテナが有する電極構造を示す断面図である。FIG. 10 is a cross-sectional view showing an electrode structure of the container according to the second embodiment. 図11は、図10に示す電極構造の変形例を示す断面図である。FIG. 11 is a cross-sectional view showing a modified example of the electrode structure shown in FIG. 図12は、第3実施形態に係るコンテナが有する電極構造を示す断面図である。FIG. 12 is a cross-sectional view showing an electrode structure of the container according to the third embodiment. 図13は、第4実施形態に係るコンテナの電極に印加する電圧を示す図である。FIG. 13 is a diagram showing a voltage applied to the electrodes of the container according to the fourth embodiment. 図14は、第4実施形態に係るコンテナの電極に印加する電圧を示す図である。FIG. 14 is a diagram showing a voltage applied to the electrodes of the container according to the fourth embodiment. 図15は、第4実施形態に係るコンテナの電極に印加する電圧を示す図である。FIG. 15 is a diagram showing a voltage applied to the electrodes of the container according to the fourth embodiment. 図16は、第4実施形態に係るコンテナの電極に印加する電圧を示す図である。FIG. 16 is a diagram showing a voltage applied to the electrodes of the container according to the fourth embodiment. 図17は、第5実施形態に係るコンテナ本体の内部を示す断面図である。FIG. 17 is a cross-sectional view showing the inside of the container body according to the fifth embodiment. 図18は、図17に示す電極構造の変形例を示す断面図である。FIG. 18 is a cross-sectional view showing a modified example of the electrode structure shown in FIG. 図19は、第6実施形態に係るコンテナ本体の内部を示す断面図である。FIG. 19 is a cross-sectional view showing the inside of the container body according to the sixth embodiment. 図20は、電極に印加する電圧を示す図である。FIG. 20 is a diagram showing a voltage applied to the electrodes.
 <第1実施形態>
 図1に示すコンテナ1(収容庫)は、トラック、船舶、飛行機等に搭載される移動型コンテナである。特に、本実施形態のコンテナ1は、冷却機能を備えたリーファーコンテナであり、対象物Xを収容する収容室20を有するコンテナ本体2(収容庫本体)と、収容室20内を冷却する冷却装置3と、収容室20に電界を形成する電界形成装置4とを有する。コンテナ1は、例えば、国際規格(ISO規格)に準拠する構成であり、全長が20フィートの「20フィートコンテナ」または全長が40フィートの「40フィートコンテナ」である。このように、国際規格に準拠する構成とすることにより、利便性および汎用性に優れ、さらには十分な信頼性を有するコンテナ1となる。
<First Embodiment>
The container 1 (storage) shown in FIG. 1 is a mobile container mounted on a truck, a ship, an airplane, or the like. In particular, the container 1 of the present embodiment is a reefer container having a cooling function, and is a container main body 2 (storage main body) having a storage chamber 20 for accommodating an object X and a cooling device for cooling the inside of the storage chamber 20. 3 and an electric field forming device 4 for forming an electric field in the accommodation chamber 20. The container 1 has, for example, a configuration conforming to an international standard (ISO standard), and is a “20-foot container” having a total length of 20 feet or a “40-foot container” having a total length of 40 feet. As described above, the container 1 having excellent convenience and versatility, and further having sufficient reliability, has a configuration conforming to the international standard.
 ただし、コンテナ1は、必ずしも国際規格(ISO規格)に準拠する必要はなく、コンテナ1の形状は、特に限定されない。また、コンテナ1は、移動型コンテナではなく、店舗、倉庫等に固定して用いられる固定型コンテナであってもよい。また、例えば、トラック等の荷台に据え付けられたものであってもよい。また、収容庫としては、コンテナ1に限定されず、例えば、冷却倉庫、冷蔵庫等にも適用可能である。 However, the container 1 does not necessarily have to comply with the international standard (ISO standard), and the shape of the container 1 is not particularly limited. Further, the container 1 may not be a mobile container but a fixed container used by being fixed to a store, a warehouse, or the like. Further, for example, it may be installed on a loading platform such as a truck. Further, the storage is not limited to the container 1, and can be applied to, for example, a cooling warehouse, a refrigerator, and the like.
 また、対象物Xとしては、特に限定されず、例えば、魚、エビ、カニ、イカ、タコ、貝等の魚介類およびこれらの加工食品、イチゴ、リンゴ、バナナ、みかん、ぶどう、梨等の果物およびこれらの加工食品、キャベツ、レタス、キュウリ、トマト等の野菜およびこれらの加工食品、牛肉、豚肉、鶏肉、馬肉等の食肉等の生鮮食品、牛乳、チーズ、ヨーグルト等の各種乳製品、各種臓器、特に移植用の臓器等が挙げられる。これらの中でも、対象物Xとしては、特に、生鮮食品であることが好ましい。なお、これら対象物Xは、冷蔵状態、すなわち、非冷凍(非凍結)で冷却保存されることが好ましい。 The object X is not particularly limited, and for example, seafood such as fish, shrimp, crab, squid, octopus, and shellfish, processed foods thereof, and fruits such as strawberries, apples, bananas, tangerines, grapes, and pears. And these processed foods, vegetables such as cabbage, lettuce, cucumber, tomato, these processed foods, fresh foods such as meat such as beef, pork, chicken, horse meat, various dairy products such as milk, cheese, yogurt, various organs In particular, organs for transplantation and the like can be mentioned. Among these, the object X is particularly preferably fresh food. It is preferable that these objects X are stored in a refrigerator, that is, in a non-freezing (non-freezing) state.
 コンテナ本体2は、図2中の奥行き方向に延びた略直方体形状であり、その内部には対象物Xを収容する収容室20が設けられている。また、図2に示すように、コンテナ本体2は、内壁21と、外壁22と、内壁21と外壁22との間に設けられた絶縁性の断熱材23とを有する。これにより、収容室20が十分に断熱されて、外気温の影響を受け難い構成となる。そのため、冷却装置3によって収容室20内を効率的に冷却することができる。また、コンテナ1の使用時には、コンテナ本体2は、グランド(定電位)に接続される。なお、内壁21と断熱材23との間、外壁22と断熱材23との間、内壁21の内側または外壁22の外側に、図示しない部材が介在していてもよい。また、この部材の機能も特に限定されない。 The container body 2 has a substantially rectangular parallelepiped shape extending in the depth direction in FIG. 2, and a storage chamber 20 for accommodating the object X is provided inside the container body 2. Further, as shown in FIG. 2, the container main body 2 has an inner wall 21, an outer wall 22, and an insulating heat insulating material 23 provided between the inner wall 21 and the outer wall 22. As a result, the accommodation chamber 20 is sufficiently insulated so that it is not easily affected by the outside air temperature. Therefore, the inside of the accommodation chamber 20 can be efficiently cooled by the cooling device 3. Further, when the container 1 is used, the container body 2 is connected to the ground (constant potential). A member (not shown) may be interposed between the inner wall 21 and the heat insulating material 23, between the outer wall 22 and the heat insulating material 23, inside the inner wall 21 or outside the outer wall 22. Further, the function of this member is not particularly limited.
 ここで、内壁21および外壁22の構成材料としては、特に限定されないが、それぞれ、ステンレス鋼、鉄、アルミニウム等の各種金属を用いることができる。これにより、堅牢で頑丈なコンテナ本体2が得られる。また、断熱材23としては、特に限定されないが、例えば、グラスウール、セルロースファイバー、発泡体(発泡ポリウレタン、発泡ポリエチレン、発泡ポリプロピレン等)等を用いることができる。これにより、優れた断熱性を発揮することができる。 Here, the constituent materials of the inner wall 21 and the outer wall 22 are not particularly limited, but various metals such as stainless steel, iron, and aluminum can be used, respectively. As a result, a robust and sturdy container body 2 can be obtained. The heat insulating material 23 is not particularly limited, but for example, glass wool, cellulose fiber, foam (polyurethane foam, polyethylene foam, polypropylene foam, etc.) and the like can be used. As a result, excellent heat insulating properties can be exhibited.
 また、コンテナ本体2は、鉛直方向下側に位置する床部24と、床部24の上側に位置し、床部24と対向する天井部25と、床部24から立設し、床部24と天井部25とを接続する側壁部26とを有し、これらに囲まれることにより収容室20が形成されている。なお、床部24、天井部25および側壁部26は、骨組み27を介して互いに接続、固定されている。ただし、これらの接続、固定方法は、特に限定されず、例えば、互いの外壁同士、内壁同士を溶接することより固定してもよい。 Further, the container body 2 is erected from the floor portion 24 located on the lower side in the vertical direction, the ceiling portion 25 located on the upper side of the floor portion 24 and facing the floor portion 24, and the floor portion 24, and is erected from the floor portion 24. It has a side wall portion 26 connecting the ceiling portion 25 and the ceiling portion 25, and the accommodation chamber 20 is formed by being surrounded by the side wall portion 26. The floor portion 24, the ceiling portion 25, and the side wall portion 26 are connected and fixed to each other via the frame 27. However, these connection and fixing methods are not particularly limited, and may be fixed by welding the outer walls to each other or the inner walls to each other, for example.
 また、コンテナ本体2の図1中手前側の端部には観音開き型の一対の扉28、29が設けられている。この扉28、29を介して、収容室20への対象物Xの搬入または収容室20からの対象物Xの搬出が可能となる。ただし、扉28、29の配置や構成は、特に限定されない。一方、コンテナ本体2の図1中奥側の端部には冷却装置3が設けられている。なお、本実施形態のコンテナ1では、コンテナ本体2の図1中奥側の端部に位置する壁が冷却装置3のパネルで構成されているが、これに限定されず、例えば、コンテナ本体2の側壁部26で構成されていてもよい。 Further, a pair of double doors 28 and 29 are provided at the front end of FIG. 1 of the container body 2 on the front side. Through the doors 28 and 29, the object X can be carried into the storage chamber 20 or the object X can be carried out from the storage chamber 20. However, the arrangement and configuration of the doors 28 and 29 are not particularly limited. On the other hand, a cooling device 3 is provided at the inner end of FIG. 1 of the container body 2. In the container 1 of the present embodiment, the wall located at the inner end of FIG. 1 of the container body 2 is composed of the panel of the cooling device 3, but the present invention is not limited to this, and for example, the container body 2 It may be composed of the side wall portion 26 of the above.
 図2に示すように、冷却装置3は、収容室20の扉28、29側から見て奥側の端部に設けられており、収容室20内の空気を吸入する吸入部31と、吸入部31から吸入した空気を冷却する冷却装置32と、冷却装置32で冷却した空気(冷気)を収容室20内に吹き出す吹出部33と、収容室20内の温度を検出する温度センサー34と、を有する。 As shown in FIG. 2, the cooling device 3 is provided at the end of the accommodation chamber 20 on the back side when viewed from the doors 28 and 29, and has a suction unit 31 for sucking air in the accommodation chamber 20 and a suction unit 31 for sucking air. A cooling device 32 that cools the air sucked from the unit 31, a blowout unit 33 that blows out the air (cold air) cooled by the cooling device 32 into the accommodation chamber 20, and a temperature sensor 34 that detects the temperature inside the accommodation chamber 20. Has.
 吹出部33は、収容室20の床部24付近に設けられ、床部24に向けて冷気を吹き出す。吹出部33から吹き出した冷気は、床部24にコンテナ本体2の長手方向に沿って形成された複数の溝241に沿って流れ、扉28、29にぶつかって、或いはその手前で上昇し、収容室20の天井部25に達する。一方、吸入部31は、天井部25付近に設けられ、床部24から天井部25或いはその付近まで上昇してきた冷気を吸入する。また、温度センサー34で検出される収容室20内の温度が目標温度となるように冷気の温度や風量が制御される。 The blowout portion 33 is provided near the floor portion 24 of the accommodation chamber 20 and blows cold air toward the floor portion 24. The cold air blown out from the blowout portion 33 flows along the plurality of grooves 241 formed in the floor portion 24 along the longitudinal direction of the container body 2, hits the doors 28 and 29, or rises in front of the doors 28 and 29, and is accommodated. It reaches the ceiling 25 of the room 20. On the other hand, the suction unit 31 is provided in the vicinity of the ceiling portion 25, and sucks the cold air that has risen from the floor portion 24 to the ceiling portion 25 or its vicinity. Further, the temperature of the cold air and the air volume are controlled so that the temperature in the accommodation chamber 20 detected by the temperature sensor 34 becomes the target temperature.
 このような構成によれば、収容室20の全域にわたって効率的に冷気を循環させることができ、かつ、収容室20内の温度を目標温度に維持することができる。そのため、収容室20に収容された対象物Xをむらなく適切に冷却することができる。収容室20内の設定可能温度としては、特に限定されないが、例えば、-30℃~+30℃程度であることが好ましい。ただし、冷却装置3の構成や配置としては、収容室20内を冷却することができれば、特に限定されない。 According to such a configuration, cold air can be efficiently circulated over the entire area of the accommodation chamber 20, and the temperature inside the accommodation chamber 20 can be maintained at the target temperature. Therefore, the object X housed in the storage chamber 20 can be cooled evenly and appropriately. The settable temperature in the accommodation chamber 20 is not particularly limited, but is preferably about −30 ° C. to + 30 ° C., for example. However, the configuration and arrangement of the cooling device 3 is not particularly limited as long as the inside of the accommodation chamber 20 can be cooled.
 電界形成装置4は、収容室20内に電界を形成し、形成した電界を収容室20に収容された対象物Xに作用させる機能を有する。このような電界形成装置4は、図2に示すように、コンテナ本体2の天井部25に設置された支持部6と、支持部6に支持された電極5と、電極5に電界を形成するための駆動電圧(交番電圧Vac)を印加する電圧印加装置7と、を有する。なお、本実施形態では、これらのうち、支持部6と電極5とで本発明の電極構造10が構成されている。 The electric field forming device 4 has a function of forming an electric field in the accommodating chamber 20 and causing the formed electric field to act on the object X accommodated in the accommodating chamber 20. As shown in FIG. 2, such an electric field forming device 4 forms an electric field in the support portion 6 installed on the ceiling portion 25 of the container main body 2, the electrode 5 supported by the support portion 6, and the electrode 5. It has a voltage applying device 7 for applying a driving voltage (alternate voltage Vac) for the purpose. In the present embodiment, among these, the support portion 6 and the electrode 5 constitute the electrode structure 10 of the present invention.
 支持部6は、天井部25のほぼ全域にわたって広く設けられている。また、支持部6は、天井部25から下側に窪んだ略「Ω」状の形状となっている。支持部6は、例えば、板状の部材を変形させて形成することができる。また、支持部6は、射出成型によって形成することもできる。このような支持部6は、図2および図3に示すように、コンテナ1の幅方向に離間して配置された一対の固定部61、62と、固定部61、62の間に設けられ、固定部61、62から下方すなわち収容室20内に向けて突出した突出部63とを有する。そして、支持部6は、固定部61、62において天井部25に固定されている。天井部25への固定方法は、特に限定されず、例えば、ネジ止め、溶着、接着剤等で固定することができる。 The support portion 6 is widely provided over almost the entire area of the ceiling portion 25. Further, the support portion 6 has a substantially “Ω” shape that is recessed downward from the ceiling portion 25. The support portion 6 can be formed by, for example, deforming a plate-shaped member. Further, the support portion 6 can also be formed by injection molding. As shown in FIGS. 2 and 3, such a support portion 6 is provided between a pair of fixed portions 61, 62 arranged apart from each other in the width direction of the container 1 and the fixed portions 61, 62. It has a protrusion 63 protruding downward from the fixed portions 61, 62, that is, toward the inside of the accommodation chamber 20. The support portion 6 is fixed to the ceiling portion 25 at the fixing portions 61 and 62. The method of fixing to the ceiling portion 25 is not particularly limited, and for example, it can be fixed by screwing, welding, adhesive or the like.
 図3に示すように、突出部63は、幅方向両端部が上側に向けて屈曲した凹形状をなし、幅方向中央部に位置する基部631と、基部631と固定部61との間に位置し、これらを接続する接続部632と、基部631と固定部62との間に位置し、これらを接続する接続部633とを有する。基部631は、平板状をなし、天井部25の内面である天井面251と略平行に設けられている。そして、この基部631に電極5が支持されている。また、基部631は、固定部61、62よりも下方側に位置し、基部631と天井面251との間には空隙Gが設けられている。また、突出部63とコンテナ本体2との離間距離D1は、固定部61、62とコンテナ本体2との離間距離D2よりも大きい。つまり、D1>D2の関係となっている。なお、離間距離D1は、具体的には、突出部63の基部631と支持部6が固定されている天井部25の内面である天井面251との離間距離であり、離間距離D2は、具体的には、固定部61、62と支持部6が固定されている天井部25の内面である天井面251との離間距離である。また、図示の構成では、固定部61、62と天井面251とが接触しているため、離間距離D2は、0(ゼロ)である。 As shown in FIG. 3, the protruding portion 63 has a concave shape in which both ends in the width direction are bent upward, and is located between the base portion 631 located in the central portion in the width direction and the base portion 631 and the fixed portion 61. It has a connecting portion 632 that connects them, and a connecting portion 633 that is located between the base 631 and the fixing portion 62 and connects them. The base portion 631 has a flat plate shape and is provided substantially parallel to the ceiling surface 251 which is the inner surface of the ceiling portion 25. The electrode 5 is supported by the base 631. Further, the base portion 631 is located below the fixed portions 61 and 62, and a gap G is provided between the base portion 631 and the ceiling surface 251. Further, the separation distance D1 between the projecting portion 63 and the container body 2 is larger than the separation distance D2 between the fixing portions 61 and 62 and the container body 2. That is, the relationship is D1> D2. The separation distance D1 is specifically the separation distance between the base 631 of the projecting portion 63 and the ceiling surface 251 which is the inner surface of the ceiling portion 25 to which the support portion 6 is fixed, and the separation distance D2 is specifically. The distance between the fixed portions 61 and 62 and the ceiling surface 251 which is the inner surface of the ceiling portion 25 to which the support portion 6 is fixed. Further, in the illustrated configuration, since the fixing portions 61 and 62 and the ceiling surface 251 are in contact with each other, the separation distance D2 is 0 (zero).
 なお、突出部63の形状としては、特に限定されず、例えば、図4に示すように、接続部632、633がアーチ状に湾曲していてもよいし、図5に示すように、突出部63全体が略「V」字状に湾曲していてもよい。 The shape of the protruding portion 63 is not particularly limited. For example, as shown in FIG. 4, the connecting portions 632 and 633 may be curved in an arch shape, or as shown in FIG. 5, the protruding portion 63. The entire 63 may be curved in a substantially "V" shape.
 また、図3に示すように、基部631は、電極5の位置決めを行うための位置決め部64を有する。位置決め部64は、基部631の上面に開口し、電極5の平面視形状に対応する平面視形状を有する凹部641で構成され、この凹部641に電極5が設けられている。これにより、電極5を支持部6の正しい位置に、簡単に設置することができる。また、位置決め部64の構成が簡単なものとなり、例えば、支持部6の製造コストを削減することができる。ただし、位置決め部64の構成としては、その機能を発揮することができれば、特に限定されず、例えば、図6に示すように、基部631から上側に突出し、電極5を囲む枠状の突起642で構成されていてもよい。この場合、突起642は、一部が欠損していてもよい。また、位置決め部64は、省略してもよい。 Further, as shown in FIG. 3, the base portion 631 has a positioning portion 64 for positioning the electrode 5. The positioning portion 64 is formed of a recess 641 that opens on the upper surface of the base portion 631 and has a plan view shape corresponding to the plan view shape of the electrode 5, and the electrode 5 is provided in the recess 641. As a result, the electrode 5 can be easily installed at the correct position of the support portion 6. Further, the configuration of the positioning unit 64 becomes simple, and for example, the manufacturing cost of the support unit 6 can be reduced. However, the configuration of the positioning portion 64 is not particularly limited as long as it can exhibit its function. For example, as shown in FIG. 6, a frame-shaped protrusion 642 that protrudes upward from the base 631 and surrounds the electrode 5 It may be configured. In this case, the protrusion 642 may be partially missing. Further, the positioning unit 64 may be omitted.
 また、支持部6は、絶縁性を有する。これにより、支持部6を介した電極5とコンテナ本体2との電気的な接続を防ぐことができる。支持部6の構成材料としては、絶縁性を有していれば、特に限定されないが、例えば、各種樹脂材料、各種ガラス材料、各種セラミックス等を用いることができる。この中でも、機械的強度が比較的高いこと、ある程度の弾性を有すること、比較的安価であることら、各種樹脂材料を用いることが好ましい。なお、支持部6は、電極5とコンテナ本体2との電気的な接続を防ぐことができれば、例えば、その一部のみが絶縁性を有する構成であってもよい。また、例えば、支持部6とコンテナ本体2との間に碍子等の絶縁体を介在させる場合には、支持部6を導電性材料で構成してもよい。この場合は、支持部6は、電極5と共に電極としての機能を発揮する。ただし、碍子等の絶縁体を介在させれば、その分、支持部6が収容室20内に突出してしまうため、収容室20の容積(積載量)が減少する。そのため、収容室20の容積をより大きく確保するためにも、本実施形態のように、支持部6を天井面251と接触させて設置することが好ましい。 Further, the support portion 6 has an insulating property. As a result, it is possible to prevent the electrical connection between the electrode 5 and the container body 2 via the support portion 6. The constituent material of the support portion 6 is not particularly limited as long as it has an insulating property, and for example, various resin materials, various glass materials, various ceramics, and the like can be used. Among these, it is preferable to use various resin materials because they have relatively high mechanical strength, have a certain degree of elasticity, and are relatively inexpensive. The support portion 6 may have a configuration in which only a part thereof has an insulating property, for example, as long as the electrical connection between the electrode 5 and the container body 2 can be prevented. Further, for example, when an insulator such as an insulator is interposed between the support portion 6 and the container body 2, the support portion 6 may be made of a conductive material. In this case, the support portion 6 functions as an electrode together with the electrode 5. However, if an insulator such as an insulator is interposed, the support portion 6 protrudes into the accommodation chamber 20 by that amount, so that the volume (loading capacity) of the accommodation chamber 20 is reduced. Therefore, in order to secure a larger volume of the accommodation chamber 20, it is preferable to install the support portion 6 in contact with the ceiling surface 251 as in the present embodiment.
 基部631に配置された電極5は、板状、特に平板状であり、基部631のほぼ全域にわたって広く設けられている。これにより、収容室20のより広い範囲に電界をむらなく分布させることができる。また、基部631が下方から支えるようにして電極5を支持するため、電極5と対象物Xとの間に基部631が介在する。そのため、支持部6によって、電極5と対象物Xとの接触を防ぐこともできる。 The electrode 5 arranged on the base 631 has a plate shape, particularly a flat plate shape, and is widely provided over almost the entire area of the base 631. As a result, the electric field can be evenly distributed over a wider range of the accommodation chamber 20. Further, since the electrode 5 is supported so that the base 631 is supported from below, the base 631 is interposed between the electrode 5 and the object X. Therefore, the support portion 6 can prevent the electrode 5 from coming into contact with the object X.
 特に、電極5を板状とすることにより、電極5の厚さTが抑えられ、離間距離D1を大きくしつつ、支持部6の収容室20内への突出の程度を小さく抑えることができる。そのため、収容室20の容積(積載量)の減少を効果的に抑制することができると共に、後述するように、収容室20内に分布する電界が形成され易くなる。電極5の厚さTとしては、特に限定されないが、例えば、2mm以下であることが好ましく、1mm以下であることがより好ましい。これにより、十分に薄い電極5となり、上述した効果が顕著となる。なお、電極5の構成材料としては、導電性を有していれば、特に限定されず、例えば、アルミニウム、銅等の各種金属材料を用いることができる。 In particular, by making the electrode 5 plate-shaped, the thickness T of the electrode 5 can be suppressed, the separation distance D1 can be increased, and the degree of protrusion of the support portion 6 into the accommodation chamber 20 can be suppressed to be small. Therefore, it is possible to effectively suppress the decrease in the volume (loading capacity) of the accommodation chamber 20, and as will be described later, an electric field distributed in the accommodation chamber 20 is likely to be formed. The thickness T of the electrode 5 is not particularly limited, but is preferably 2 mm or less, and more preferably 1 mm or less, for example. As a result, the electrode 5 becomes sufficiently thin, and the above-mentioned effect becomes remarkable. The constituent material of the electrode 5 is not particularly limited as long as it has conductivity, and for example, various metal materials such as aluminum and copper can be used.
 ただし、電極5の形状は、特に限定されない。例えば、電極5は、上述の板状よりもさらに薄いシート状(フィルム状)であってもよい。これにより、電極5の厚さTがさらに抑えられ、上述した効果がさらに顕著となる。シート状の電極5としては、例えば、アルミニウム箔、銅箔等の各種金属箔を用いることができる。なお、「板状」と「シート状」との明確な区別はないが、例えば、ある程度硬質で、自重による変形(軽度な撓みは除く)が実質的に生じないものを「板状」とし、可撓性を有し、自重による変形が生じるものを「シート状」として、区別することができる。 However, the shape of the electrode 5 is not particularly limited. For example, the electrode 5 may be in the form of a sheet (film) thinner than the above-mentioned plate. As a result, the thickness T of the electrode 5 is further suppressed, and the above-mentioned effect becomes more remarkable. As the sheet-shaped electrode 5, for example, various metal foils such as aluminum foil and copper foil can be used. There is no clear distinction between "plate-shaped" and "sheet-shaped", but for example, a "plate-shaped" that is hard to some extent and does not substantially undergo deformation due to its own weight (excluding slight bending) is defined as "plate-shaped". Those having flexibility and being deformed by its own weight can be distinguished as "sheet-like".
 また、例えば、図7に示すように、電極5が基部631のみならず、接続部632、633にまで広がって設けられていてもよい。これにより、電極5の面積をより大きくすることができる。 Further, for example, as shown in FIG. 7, the electrode 5 may be provided so as to extend not only to the base portion 631 but also to the connecting portions 632 and 633. As a result, the area of the electrode 5 can be made larger.
 また、例えば、図8に示すように、電極5は、波板状であってもよい。このように、電極5の表面に凹凸を形成することにより、例えば、平板状の電極5と比べて、電極5の表面積が大きくなる。そのため、収容室20に分布する電界が形成され易くなる。また、例えば、電極5に、電極5を厚さ方向に貫通する複数の貫通孔が設けられていてもよい。この場合、貫通孔は、電極5の全域に広がって規則的に設けられていてもよいし、不規則に設けられていてもよい。また、貫通孔の形状は、特に限定されず、例えば、円形、四角形、三角形であってもよいし、コンテナ1の幅方向または長さ方向に延びるスリット状であってもよい。 Further, for example, as shown in FIG. 8, the electrode 5 may have a corrugated plate shape. By forming irregularities on the surface of the electrode 5 in this way, the surface area of the electrode 5 becomes larger than that of, for example, the flat electrode 5. Therefore, an electric field distributed in the accommodation chamber 20 is likely to be formed. Further, for example, the electrode 5 may be provided with a plurality of through holes that penetrate the electrode 5 in the thickness direction. In this case, the through holes may be regularly provided over the entire area of the electrode 5, or may be irregularly provided. The shape of the through hole is not particularly limited, and may be, for example, a circle, a quadrangle, a triangle, or a slit shape extending in the width direction or the length direction of the container 1.
 また、電極5の設置数は、特に限定されず、例えば、後述する実施形態でも述べるように、2つ以上であってもよい。言い換えると、本実施形態の電極5を複数の電極に分割してもよい。この場合、複数の電極5は、例えば、コンテナ1の幅方向に並んで配置されていてもよいし、コンテナ1の長手方向に並んで配置されていてもよいし、長手方向および幅方向に行列状に並んで配置されていてもよい。また、電極5の設置場所、すなわち、支持部6を固定する場所は、特に限定されず、例えば、床部24であってもよいし、側壁部26であってもよい。ただし、電極5は、本実施形態のように天井部25に設置するのが好ましい。この理由として、電極5や支持部6の損傷を抑えられる点がある。天井部25は、床部24や側壁部26と比べて、対象物X、対象物Xを積載するコンテナパレット、コンテナパレットを収容室20内に搬送するフォークリフト等との接触頻度が少ない。そのため、天井部25に電極5を設置することにより、電極5や支持部6の損傷を効果的に抑制することができる。 Further, the number of electrodes 5 installed is not particularly limited, and may be two or more, for example, as described in the embodiments described later. In other words, the electrode 5 of this embodiment may be divided into a plurality of electrodes. In this case, the plurality of electrodes 5 may be arranged side by side in the width direction of the container 1, for example, may be arranged side by side in the longitudinal direction of the container 1, or may be arranged in a matrix in the longitudinal direction and the width direction. They may be arranged side by side in a shape. Further, the place where the electrode 5 is installed, that is, the place where the support portion 6 is fixed is not particularly limited, and may be, for example, the floor portion 24 or the side wall portion 26. However, it is preferable that the electrode 5 is installed on the ceiling portion 25 as in the present embodiment. The reason for this is that damage to the electrodes 5 and the support portion 6 can be suppressed. Compared with the floor portion 24 and the side wall portion 26, the ceiling portion 25 has less frequent contact with the object X, the container pallet on which the object X is loaded, the forklift for transporting the container pallet into the storage chamber 20, and the like. Therefore, by installing the electrode 5 on the ceiling portion 25, damage to the electrode 5 and the support portion 6 can be effectively suppressed.
 以上のような構成の電極構造10は、支持部6に電極5を設置した状態で、天井部25に固定される。つまり、まず、電極5を支持部6に設置し、次いで、支持部6を天井部25に固定する。このような方法によれば、簡単に、電極5を天井部25に設置することができる。そのため、コンテナ1の製造コストの削減を図ることができる。ただし、これに限定されず、例えば、支持部6を天井部25に固定した後に、支持部6に電極5を設置してもよい。 The electrode structure 10 having the above configuration is fixed to the ceiling portion 25 with the electrode 5 installed on the support portion 6. That is, first, the electrode 5 is installed on the support portion 6, and then the support portion 6 is fixed to the ceiling portion 25. According to such a method, the electrode 5 can be easily installed on the ceiling portion 25. Therefore, the manufacturing cost of the container 1 can be reduced. However, the present invention is not limited to this, and for example, the electrode 5 may be installed on the support portion 6 after the support portion 6 is fixed to the ceiling portion 25.
 電圧印加装置7は、例えば、高圧トランスを備え、図3に示すように、電極5に電界形成用の交番電圧Vacを印加する。電極5に交番電圧Vacを印加することにより、電極5とグランドに接続されたコンテナ本体2との間の電位差に基づいて収容室20内に電界が形成される。この電界を収容室20に収容された対象物Xに作用させることにより、対象物Xの鮮度を保つことができる。そのため、電界を形成しない場合と比べて対象物Xをより長期間保存することができる。特に、本実施形態では、電極5が天井面251のほぼ全域に広がって設けられているため、収容室20の全域に効果的に電界を形成することができる。 The voltage applying device 7 includes, for example, a high-voltage transformer, and as shown in FIG. 3, applies an alternating voltage Vac for forming an electric field to the electrode 5. By applying the alternating voltage Vac to the electrode 5, an electric field is formed in the accommodation chamber 20 based on the potential difference between the electrode 5 and the container body 2 connected to the ground. By applying this electric field to the object X housed in the storage chamber 20, the freshness of the object X can be maintained. Therefore, the object X can be stored for a longer period of time as compared with the case where an electric field is not formed. In particular, in the present embodiment, since the electrodes 5 are provided so as to spread over almost the entire area of the ceiling surface 251, an electric field can be effectively formed over the entire area of the accommodation chamber 20.
 交番電圧Vacの振幅としては、特に限定されないが、例えば、0.1kV~20kV程度とすることが好ましい。このような振幅の交番電圧Vacを電極5に印加することにより、収容室20内に十分な強度の電界を形成することができ、上述した効果をより確実に発揮することができる。また、交番電圧Vacの周波数としては、特に限定されないが、例えば、5Hz~50kHz程度とすることが好ましい。なお、交番電圧Vacの波形は、例えば、正弦波、矩形波、のこぎり波等どのような波形であってもよい。 The amplitude of the alternating voltage Vac is not particularly limited, but is preferably about 0.1 kV to 20 kV, for example. By applying an alternating voltage Vac having such an amplitude to the electrode 5, an electric field having a sufficient strength can be formed in the accommodating chamber 20, and the above-mentioned effect can be more reliably exhibited. The frequency of the alternating voltage Vac is not particularly limited, but is preferably about 5 Hz to 50 kHz, for example. The waveform of the alternating voltage Vac may be any waveform such as a sine wave, a square wave, or a sawtooth wave.
 ここで、前述した電極5の構成によれば、固定部61、62に対して突出部63の基部631が下側に位置し、離間距離D1、D2の関係がD1>D2となっているため、例えば、図9中の鎖線L1で示すような固定部61、62の高さに合わせた従来型の平板電極50Aと比べて、基部631と天井面251との間に絶縁性の高い空気層(空隙G)を十分な厚さで形成することができる。そのため、従来と比べて、電極5と天井面251との間に形成される容量Cが小さくなる。その結果、基部631と天井部25との間に分布する電界が形成され難くなる一方、基部631と床部24や側壁部26との間に分布する電界が形成され易くなる。そのため、収容室20に収容された対象物Xに対して効率的かつ効果的に電界を作用させることができる。また、D1>D2となっているため、例えば、図9中の鎖線L2で示すような基部631の高さに合わせた従来型の平板電極50Bと比べて、収容室20の容積が大きくなり、その分、対象物Xの積載量が増加する。そのため、1つのコンテナ1でより多くの対象物Xを搬送でき、搬送コストを抑えることができる。 Here, according to the configuration of the electrode 5 described above, the base portion 631 of the protruding portion 63 is located on the lower side with respect to the fixed portions 61 and 62, and the relationship between the separation distances D1 and D2 is D1> D2. For example, an air layer having a high insulating property between the base portion 631 and the ceiling surface 251 as compared with the conventional flat plate electrode 50A having the heights of the fixed portions 61 and 62 as shown by the chain line L1 in FIG. (Void G) can be formed with a sufficient thickness. Therefore, the capacitance C formed between the electrode 5 and the ceiling surface 251 becomes smaller than in the conventional case. As a result, it becomes difficult to form an electric field distributed between the base portion 631 and the ceiling portion 25, while it becomes easy to form an electric field distributed between the base portion 631 and the floor portion 24 or the side wall portion 26. Therefore, an electric field can be efficiently and effectively applied to the object X housed in the storage chamber 20. Further, since D1> D2, the volume of the accommodating chamber 20 is larger than that of the conventional flat plate electrode 50B adjusted to the height of the base portion 631 as shown by the chain line L2 in FIG. 9, for example. The load capacity of the object X increases by that amount. Therefore, more objects X can be transported in one container 1, and the transport cost can be suppressed.
 なお、離間距離D1としては、特に限定されないが、例えば、3cm~10cm程度であることが好ましく、4cm~8cmであることがより好ましい。このような下限値によれば、離間距離D1を十分に大きくすることができ、上述した効果がより顕著となる。反対に、このような上限値によれば、離間距離D1が過度に大きくなることによる収容室20の容積の減少、すなわち、対象物Xの最大積載量の減少を抑制することができる。一方、離間距離D2としては、D1>D2の関係を満足していれば特に限定されないが、例えば、1cm以下であることが好ましく、0.5cm以下であることがより好ましく、本実施形態のように0(ゼロ)であることがさらに好ましい。これにより、離間距離D2を十分に小さくすることができ、上述した効果をより顕著に発揮することができる。 The separation distance D1 is not particularly limited, but is preferably, for example, about 3 cm to 10 cm, and more preferably 4 cm to 8 cm. According to such a lower limit value, the separation distance D1 can be sufficiently increased, and the above-mentioned effect becomes more remarkable. On the contrary, according to such an upper limit value, it is possible to suppress a decrease in the volume of the accommodation chamber 20 due to an excessively large separation distance D1, that is, a decrease in the maximum load capacity of the object X. On the other hand, the separation distance D2 is not particularly limited as long as the relationship of D1> D2 is satisfied, but is preferably 1 cm or less, more preferably 0.5 cm or less, as in the present embodiment. It is more preferably 0 (zero). As a result, the separation distance D2 can be made sufficiently small, and the above-mentioned effect can be exhibited more remarkably.
 <第2実施形態>
 次に、第2実施形態のコンテナ1について、主に、前述した第1実施形態と異なる部分を説明する。
<Second Embodiment>
Next, with respect to the container 1 of the second embodiment, a part different from the above-described first embodiment will be mainly described.
 図10に示すように、本実施形態のコンテナ1は、支持部6との間に電極5を挟み込むようにして設けられた被覆部8を有する。そして、支持部6と電極5と被覆部8とで電極構造10が構成されている。 As shown in FIG. 10, the container 1 of the present embodiment has a covering portion 8 provided so as to sandwich the electrode 5 with the supporting portion 6. The electrode structure 10 is composed of the support portion 6, the electrode 5, and the covering portion 8.
 電極5は、支持部6と被覆部8とによって、その全域が覆われている。このような構成によれば、電極5が収容室20内に剥き出しにならず、電極5と対象物Xとの接触を効果的に防ぐことができる。そのため、コンテナ1の安全性が向上する。なお、被覆部8は、ネジ止め等によって支持部6に固定されている。ただし、これに限定されず、被覆部8は、ネジ止め等によって天井部25に固定されており、支持部6とは当接しているだけであってもよい。 The entire area of the electrode 5 is covered by the support portion 6 and the covering portion 8. According to such a configuration, the electrode 5 is not exposed in the accommodation chamber 20, and the contact between the electrode 5 and the object X can be effectively prevented. Therefore, the safety of the container 1 is improved. The covering portion 8 is fixed to the supporting portion 6 by screwing or the like. However, the present invention is not limited to this, and the covering portion 8 may be fixed to the ceiling portion 25 by screwing or the like and may only be in contact with the supporting portion 6.
 被覆部8は、支持部6と天井面251との間に位置している。言い換えると、被覆部8は、空隙G内に設けられている。この領域は、その大きさや位置の問題から、もともと対象物Xを収容する空間として用いることが困難な領域である。そのため、この領域に被覆部8を配置しても収容室20の容積(積載量)の低下にはつながらない。したがって、収容室20の容積を減らすことなく、コンテナ1の安全性を高めることができる。また、被覆部8を設けることにより、支持部6を補強することができる。そのため、支持部6の損傷、破損等を抑制することができる。 The covering portion 8 is located between the supporting portion 6 and the ceiling surface 251. In other words, the covering portion 8 is provided in the gap G. This region is originally a region that is difficult to use as a space for accommodating the object X due to the problem of its size and position. Therefore, even if the covering portion 8 is arranged in this region, the volume (loading capacity) of the accommodating chamber 20 does not decrease. Therefore, the safety of the container 1 can be enhanced without reducing the volume of the storage chamber 20. Further, the support portion 6 can be reinforced by providing the covering portion 8. Therefore, damage, breakage, etc. of the support portion 6 can be suppressed.
 特に、本実施形態では、被覆部8は、支持部6と天井面251との間、すなわち、空隙Gの全域を埋めるように設けられている。これにより、支持部6をさらに効果的に補強することができる。また、空隙Gを被覆部8で埋めることにより、冷気が空隙G内に侵入できなくなる。空隙G内を流れる冷気は、対象物Xとの間に支持部6が介在するため、支持部6よりも下方を流れる冷気と比べて対象物Xの冷却に寄与し難い。そこで、空隙Gを被覆部8で埋めて、冷気を空隙G内に侵入できなくすることにより、より多くの冷気を支持部6の下方へ導いて対象物Xの冷却に用いることができる。したがって、対象物Xの冷却効率が高まる。また、冷却効率が向上する分、冷却ムラを低減することができ、さらには、コンテナ1の省電力駆動を図ることもできる。 In particular, in the present embodiment, the covering portion 8 is provided so as to fill the space between the supporting portion 6 and the ceiling surface 251, that is, the entire area of the gap G. Thereby, the support portion 6 can be reinforced more effectively. Further, by filling the void G with the covering portion 8, cold air cannot enter the void G. Since the support portion 6 is interposed between the cold air flowing in the void G and the object X, it is less likely to contribute to cooling the object X than the cold air flowing below the support portion 6. Therefore, by filling the void G with the covering portion 8 to prevent the cold air from entering the void G, more cold air can be guided below the support portion 6 and used for cooling the object X. Therefore, the cooling efficiency of the object X is increased. Further, as the cooling efficiency is improved, the cooling unevenness can be reduced, and further, the power saving drive of the container 1 can be achieved.
 ただし、これに限定されず、被覆部8は、例えば、図11に示すように、空隙Gを埋めなくてもよい。このような構成によれば、本実施形態と比べて、被覆部8の重量を抑えることができる。 However, the present invention is not limited to this, and the covering portion 8 does not have to fill the gap G, for example, as shown in FIG. According to such a configuration, the weight of the covering portion 8 can be suppressed as compared with the present embodiment.
 このような被覆部8は、絶縁性を有する。これにより、被覆部8を介した電極5とコンテナ本体2との電気的な接続を防ぐことができる。被覆部8の構成材料としては、絶縁性を有していれば、特に限定されないが、例えば、各種樹脂材料、各種ガラス材料、各種セラミックス等を用いることができる。この中でも、機械的強度が比較的高いこと、軽量であること、比較的安価であることから、各種樹脂材料を用いることが好ましい。なお、被覆部8は、電極5とコンテナ本体2との電気的な接続を防ぐことができれば、例えば、その一部のみが絶縁性を有する構成であってもよい。 Such a covering portion 8 has an insulating property. As a result, it is possible to prevent the electrical connection between the electrode 5 and the container body 2 via the covering portion 8. The constituent material of the covering portion 8 is not particularly limited as long as it has an insulating property, and for example, various resin materials, various glass materials, various ceramics, and the like can be used. Among these, it is preferable to use various resin materials because of their relatively high mechanical strength, light weight, and relatively low cost. The covering portion 8 may have a configuration in which only a part thereof has an insulating property, for example, as long as the electrical connection between the electrode 5 and the container body 2 can be prevented.
 このような第2実施形態によっても、前述した第1実施形態と同様の効果を発揮することができる。 Even with such a second embodiment, the same effect as that of the first embodiment described above can be exhibited.
 <第3実施形態>
 次に、第3実施形態のコンテナ1について、主に、前述した第1実施形態と異なる部分を説明する。
<Third Embodiment>
Next, with respect to the container 1 of the third embodiment, a part different from the above-described first embodiment will be mainly described.
 図12に示すように、本実施形態のコンテナ1は、支持部6と天井部25との間の空隙G内への冷気の流入を防ぐ防風部9を有する。防風部9は、支持部6の扉28、29側の端部に設けられた第1壁部91と、冷却装置3側の端部に設けられた第2壁部92とを有し、これら第1、第2壁部91、92によって、空隙Gへの冷気の流入を防いでいる。このような構成によっても、前述した第2実施形態と同様に、冷気が空隙G内に侵入できなくなる。そのため、より多くの冷気を支持部6の下方へ導いて対象物Xの冷却に用いることができる。したがって、対象物Xの冷却効率が高まる。また、冷却効率が向上する分、冷却ムラを低減することができ、さらには、コンテナ1の省電力駆動を図ることもできる。また、このような構成によれば、支持部6と、天井部25と、第1、第2壁部91、92とによって電極5が覆われるため、電極5と対象物Xとの接触を防ぐこともできる。 As shown in FIG. 12, the container 1 of the present embodiment has a windbreak portion 9 for preventing the inflow of cold air into the gap G between the support portion 6 and the ceiling portion 25. The windbreak portion 9 has a first wall portion 91 provided at the end portions of the support portion 6 on the door 28 and 29 sides, and a second wall portion 92 provided at the end portion on the cooling device 3 side. The first and second wall portions 91 and 92 prevent the inflow of cold air into the gap G. Even with such a configuration, cold air cannot enter the void G as in the second embodiment described above. Therefore, more cold air can be guided below the support portion 6 and used for cooling the object X. Therefore, the cooling efficiency of the object X is increased. Further, as the cooling efficiency is improved, the cooling unevenness can be reduced, and further, the power saving drive of the container 1 can be achieved. Further, according to such a configuration, since the electrode 5 is covered by the support portion 6, the ceiling portion 25, and the first and second wall portions 91 and 92, contact between the electrode 5 and the object X is prevented. You can also do it.
 このような第3実施形態によっても、前述した第1実施形態と同様の効果を発揮することができる。 Even with such a third embodiment, the same effect as that of the first embodiment described above can be exhibited.
 <第4実施形態>
 次に、第4実施形態のコンテナ1について、主に、前述した第1実施形態と異なる部分を説明する。
<Fourth Embodiment>
Next, with respect to the container 1 of the fourth embodiment, a part different from the above-described first embodiment will be mainly described.
 第4実施形態では、電圧印加装置7は、収容室20内に形成された電界の状態を経時的に変化させる。収容室20内の電界の状態を経時的に変化させることにより、例えば、収容室20内の電界の状態を一定に保った場合と比較して、食品中に含まれる微生物の増殖(分裂)を抑制することができる。そのため、収容室20内に収容された対象物Xの鮮度をより長く保つことができる。 In the fourth embodiment, the voltage application device 7 changes the state of the electric field formed in the accommodation chamber 20 over time. By changing the state of the electric field in the containment chamber 20 over time, for example, the growth (division) of microorganisms contained in the food can be increased as compared with the case where the state of the electric field in the containment chamber 20 is kept constant. It can be suppressed. Therefore, the freshness of the object X housed in the storage chamber 20 can be maintained for a longer period of time.
 なお、収容室20内の電界の状態を経時的に変化させることにより微生物の増殖が抑えられるのは、微生物がある程度その環境に慣れてから分裂を開始するという性質を有するためである。電界の状態を経時的に変化させることにより、微生物が現在の環境に慣れる前に異なる環境に切り替えることができ、これにより、微生物が環境に慣れるのを抑制でき、その結果として、微生物の増殖が抑えられる。なお、対象物X中に含まれる微生物としては、例えば、食中毒の原因として考えられるサルモネラ、腸管出血性大腸菌(O157、O111等)、腸炎ビブリオ、ウェルシュ菌、黄色ブドウ球菌、ボツリヌス菌、セレウス菌、ノロウイルス等が挙げられる。 The growth of microorganisms is suppressed by changing the state of the electric field in the accommodation chamber 20 over time because the microorganisms have the property of starting division after becoming accustomed to the environment to some extent. By changing the state of the electric field over time, the microorganisms can switch to a different environment before they become accustomed to the current environment, which can prevent the microorganisms from becoming accustomed to the environment, resulting in the growth of the microorganisms. It can be suppressed. Examples of the microorganisms contained in the object X include salmonella, enterohemorrhagic Escherichia coli (O157, O111, etc.), Vibrio parahaemolyticus, Clostridium perfringens, Staphylococcus aureus, Clostridium botulinum, and Bacillus cereus, which are considered to be the causes of food poisoning. Norovirus and the like can be mentioned.
 ここで、「電界の状態を経時的に変化させる」とは、例えば、電極5に印加する交番電圧Vacの振幅および周波数の少なくとも一方を経時的に変化させることを言う。電界の状態を経時的に変化させる方法としては、特に限定されないが、例えば、以下に示す幾つかの方法が挙げられる。 Here, "changing the state of the electric field over time" means, for example, changing at least one of the amplitude and frequency of the alternating voltage Vac applied to the electrode 5 over time. The method of changing the state of the electric field over time is not particularly limited, and examples thereof include several methods shown below.
 第1の方法として、図13に示すように、基準が0Vで、振幅および周波数が一定の交番電圧Vacを電極5に間欠的に印加する方法が挙げられる。図13では、電圧印加装置7は、交番電圧Vacを電極5に印加する第1状態と、交番電圧Vacを各電極5に印加しない第2状態とを交互に繰り返す。すなわち、収容室20内に電界が形成されている第1状態と、電界が形成されていない第2状態とを交互に繰り返す。このように、第1状態と第2状態とを交互に繰り返すことにより、比較的簡単な制御で電界の状態を経時的に変化させることができる。 As a first method, as shown in FIG. 13, a method of intermittently applying an alternating voltage Vac having a reference of 0 V and a constant amplitude and frequency to the electrode 5 can be mentioned. In FIG. 13, the voltage applying device 7 alternately repeats the first state in which the alternating voltage Vac is applied to the electrodes 5 and the second state in which the alternating voltage Vac is not applied to each electrode 5. That is, the first state in which the electric field is formed in the accommodation chamber 20 and the second state in which the electric field is not formed are alternately repeated. In this way, by alternately repeating the first state and the second state, the state of the electric field can be changed over time with relatively simple control.
 第2の方法として、図14に示すように、電極5に印加する交番電圧Vacの振幅を経時的に変化させる方法が挙げられる。なお、交番電圧Vacの振幅を経時的に変化させるとは、交番電圧Vacの振幅を周期的に変化させてもよいし、不規則に変化させてもよいことを意味する。図14では、電圧印加装置7は、基準が0Vで、振幅がE1の交番電圧Vacを電極5に印加する第1状態と、基準が0Vで、振幅がE2(≠E1)の交番電圧Vacを電極5に印加する第2状態とを交互に繰り返す。第1状態と第2状態とを交互に繰り返すことにより、比較的簡単な制御で、電界の状態を経時的に変化させることができる。 As a second method, as shown in FIG. 14, there is a method of changing the amplitude of the alternating voltage Vac applied to the electrode 5 over time. Note that changing the amplitude of the alternating voltage Vac over time means that the amplitude of the alternating voltage Vac may be changed periodically or irregularly. In FIG. 14, the voltage application device 7 applies a first state in which an alternating voltage Vac having a reference of 0V and an amplitude of E1 is applied to the electrode 5, and an alternating voltage Vac having a reference of 0V and an amplitude of E2 (≠ E1). The second state applied to the electrode 5 is alternately repeated. By alternately repeating the first state and the second state, the state of the electric field can be changed over time with relatively simple control.
 振幅E1は、振幅E2の2倍以上であることが好ましく、3倍以上であることがより好ましく、4倍以上であることがさらに好ましい。これにより、第1状態と第2状態とで収容室20内の電界の状態を十分に異ならせることができ、微生物の環境への慣れを効果的に抑制することができる。 The amplitude E1 is preferably twice or more, more preferably three times or more, and even more preferably four times or more the amplitude E2. As a result, the state of the electric field in the accommodation chamber 20 can be sufficiently different between the first state and the second state, and the acclimatization of microorganisms to the environment can be effectively suppressed.
 第3の方法として、図15に示すように、電極5に印加する交番電圧Vacの周波数を経時的に変化させる方法が挙げられる。なお、交番電圧Vacの周波数を経時的に変化させるとは、交番電圧Vacの周波数を周期的に変化させてもよいし、不規則に変化させてもよいことを意味する。図15では、電圧印加装置7は、周波数がf1の交番電圧Vacを電極5に印加する第1状態と、周波数がf2(≠f1)の交番電圧Vacを電極5に印加する第2状態とを交互に繰り返す。第1状態と第2状態とを交互に繰り返すことにより、比較的簡単な制御で、電界の状態を経時的に変化させることができる。 As a third method, as shown in FIG. 15, a method of changing the frequency of the alternating voltage Vac applied to the electrode 5 over time can be mentioned. Note that changing the frequency of the alternating voltage Vac over time means that the frequency of the alternating voltage Vac may be changed periodically or irregularly. In FIG. 15, the voltage applying device 7 has a first state in which an alternating voltage Vac having a frequency of f1 is applied to the electrode 5 and a second state in which an alternating voltage Vac having a frequency f2 (≠ f1) is applied to the electrode 5. Repeat alternately. By alternately repeating the first state and the second state, the state of the electric field can be changed over time with relatively simple control.
 周波数f1は、周波数f2の10倍以上であることが好ましく、50倍以上であることがより好ましく、100倍以上であることがさらに好ましい。これにより、第1状態と第2状態とで収容室20内の電界の状態を十分に異ならせることができ、微生物が環境に慣れてしまうことを効果的に抑制することができる。 The frequency f1 is preferably 10 times or more, more preferably 50 times or more, and further preferably 100 times or more the frequency f2. As a result, the state of the electric field in the accommodation chamber 20 can be sufficiently different between the first state and the second state, and it is possible to effectively suppress the microorganisms from becoming accustomed to the environment.
 第4の方法として、図16に示すように、電極5に対して、基準が0Vで振幅および周波数が一定である交番電圧Vacを印加しつつ、定電圧であるバイアス電圧Vbを間欠的に印加する方法が挙げられる。図16では、電圧印加装置7は、交番電圧Vacとバイアス電圧Vbとの重畳電圧Vdを電極5に印加する第1状態と、交番電圧Vacを電極5に印加する第2状態とを交互に繰り返す。第1状態と第2状態とを交互に切り替えることにより、比較的簡単な制御で、電界の状態を経時的に変化させることができる。特に、この方法では、交番電圧Vacを一定に保つことができるため、交番電圧Vacの振幅や周波数を変更する第2、第3の方法と比べて、より簡単な制御となる。 As a fourth method, as shown in FIG. 16, a bias voltage Vb, which is a constant voltage, is intermittently applied to the electrode 5 while applying an alternating voltage Vac whose reference is 0 V and whose amplitude and frequency are constant. There is a way to do it. In FIG. 16, the voltage applying device 7 alternately repeats the first state in which the superimposed voltage Vd of the alternating voltage Vac and the bias voltage Vb is applied to the electrode 5 and the second state in which the alternating voltage Vac is applied to the electrode 5. .. By alternately switching between the first state and the second state, the state of the electric field can be changed over time with relatively simple control. In particular, in this method, since the alternating voltage Vac can be kept constant, the control becomes simpler than the second and third methods of changing the amplitude and frequency of the alternating voltage Vac.
 バイアス電圧Vbは、交番電圧Vacの振幅(最大値)よりも小さい。これにより、重畳電圧Vdを交流電圧とすることができる。そのため、第1状態において、より確実に収容室20内に電界を形成することができる。また、バイアス電圧Vbは、交番電圧Vacの振幅の0.1倍~0.6倍であることが好ましく、0.2倍~0.5倍であることがより好ましく、0.3倍~0.4倍であることがさらに好ましい。これにより、重畳電圧Vdがプラス側にある時間とマイナス側にある時間とのバランスを取ることができ、すなわち、一方が他方に比べて過度に長くなることを防止でき、第1状態においてより効率的に収容室20内に電界を形成することができる。また、第1状態と第2状態とで収容室20内の電界の状態を十分に異ならせることができ、微生物が環境に慣れてしまうことを効果的に抑制することができる。 The bias voltage Vb is smaller than the amplitude (maximum value) of the alternating voltage Vac. As a result, the superimposed voltage Vd can be used as an AC voltage. Therefore, in the first state, an electric field can be more reliably formed in the accommodation chamber 20. The bias voltage Vb is preferably 0.1 to 0.6 times, more preferably 0.2 times to 0.5 times, and 0.3 times to 0 times the amplitude of the alternating voltage Vac. It is more preferable to be 4.4 times. This makes it possible to balance the time when the superimposed voltage Vd is on the positive side and the time when it is on the negative side, that is, it is possible to prevent one from becoming excessively longer than the other, and it is more efficient in the first state. An electric field can be formed in the accommodation chamber 20. In addition, the state of the electric field in the accommodation chamber 20 can be sufficiently different between the first state and the second state, and it is possible to effectively suppress the microorganisms from becoming accustomed to the environment.
 以上、電界の状態を経時的に変化させる方法として、第1~第4の方法について説明した。第1~第4の方法のいずれにおいても、収容室20内の温度や収容室20内に収容された対象物Xの種類(食品に含まれる微生物の種類)によっても異なるが、電界の状態を1分以上60分以内の間隔で変化させることが好ましく、2分以上40分以内の間隔で変化させることが好ましく、3分以上30分以下の間隔で変化させることが好ましい。言い換えると、第1状態および第2状態の時間は、それぞれ、1分以上60分以下であることが好ましく、2分以上40分以下であることがより好ましく、3分以上30分以下であることがさらに好ましい。これにより、第1状態の時間および第2状態の時間がそれぞれ十分に短くなり、より確実に、微生物が現在の環境に慣れる前に別の環境に切り替えることができる。また、第1状態の時間および第2状態の時間がそれぞれ過度に短くなることを防止でき、微生物が新たな環境への対応を始める前に元の環境に戻ってしまうことを効果的に防止することができる。つまり、微生物の分裂速度よりも僅かに短い時間間隔で電界の状態を変化させることができる。これにより、微生物の分裂をより効果的に抑制することができる。なお、第1状態の時間と第2状態の時間とは、同じであってもよいし、異なっていてもよい。 The first to fourth methods have been described above as methods for changing the state of the electric field over time. In any of the first to fourth methods, the state of the electric field is changed depending on the temperature in the containment chamber 20 and the type of the object X (the type of microorganisms contained in the food) contained in the containment chamber 20. It is preferable to change the temperature at intervals of 1 minute or more and 60 minutes or less, preferably at intervals of 2 minutes or more and 40 minutes or less, and preferably at intervals of 3 minutes or more and 30 minutes or less. In other words, the time of the first state and the second state is preferably 1 minute or more and 60 minutes or less, more preferably 2 minutes or more and 40 minutes or less, and 3 minutes or more and 30 minutes or less, respectively. Is even more preferable. This makes the time of the first state and the time of the second state sufficiently short, respectively, and more reliably allows the microorganism to switch to another environment before it becomes accustomed to the current environment. In addition, it is possible to prevent the time of the first state and the time of the second state from becoming excessively short, respectively, and effectively prevent the microorganisms from returning to the original environment before starting to respond to the new environment. be able to. That is, the state of the electric field can be changed at intervals slightly shorter than the division rate of the microorganism. Thereby, the division of microorganisms can be suppressed more effectively. The time in the first state and the time in the second state may be the same or different.
 ここで、微生物は、(1)10℃~40℃程度の温度帯において概ね10分~40分程度の分裂速度を有すること、(2)温度が低い程、分裂速度が低下すること、(3)10℃以下では一部の微生物を除いてほとんど増殖できないこと、(4)0℃以下ではほぼ全ての微生物が増殖できないこと、が知られている。そのため、上述したように、電界の状態を60分以内、好ましくは40分以内、より好ましくは30分以内の間隔で変化させることにより、微生物が環境に慣れるまでの時間(例えば10分程度)を加味すれば、微生物の分裂速度よりも十分に短い時間間隔で、電界の状態を変化させることができる。そのため、微生物の増殖をより確実に抑制することができる。 Here, the microorganism has (1) a division rate of about 10 to 40 minutes in a temperature range of about 10 ° C. to 40 ° C., (2) the lower the temperature, the lower the division rate, (3). It is known that (4) almost all microorganisms cannot grow at 0 ° C or lower, except for some microorganisms. Therefore, as described above, by changing the state of the electric field within 60 minutes, preferably within 40 minutes, more preferably within 30 minutes, the time until the microorganisms become accustomed to the environment (for example, about 10 minutes) can be increased. In addition, the state of the electric field can be changed at intervals sufficiently shorter than the division rate of microorganisms. Therefore, the growth of microorganisms can be suppressed more reliably.
 また、第1~第4の方法のいずれにおいても、電界を周期的に変化させてもよいし、不規則に変化させてもよい。言い換えると、第1状態の時間および第2状態の時間がそれぞれ毎回ほぼ同じであってもよいし、第1状態の時間および第2状態の時間が各回でそれぞれ不規則に変化してもよい。電界を周期的に変化させることにより、電界を不規則に変化させる場合と比べて、電圧印加装置7の駆動制御が簡単となる。一方、電界を不規則に変化させることにより、電界を周期的に変化させる場合と比べて、微生物の増殖をより効果的に抑制できる可能性がある。推測ではあるが、電界を周期的に変化させた場合、微生物がその周期的な環境変化自体に慣れてしまうおそれが考えられる。このように、微生物が周期的な環境変化自体に慣れてしまうことがあったとしても、電界を不規則に変化させていれば、微生物の増殖をより効果的に抑制できる。 Further, in any of the first to fourth methods, the electric field may be changed periodically or irregularly. In other words, the time of the first state and the time of the second state may be substantially the same each time, or the time of the first state and the time of the second state may change irregularly each time. By changing the electric field periodically, the drive control of the voltage applying device 7 becomes simpler than in the case where the electric field is changed irregularly. On the other hand, by changing the electric field irregularly, there is a possibility that the growth of microorganisms can be suppressed more effectively than in the case where the electric field is changed periodically. It is speculated that if the electric field is changed periodically, the microorganisms may become accustomed to the periodic environmental change itself. In this way, even if the microorganisms may become accustomed to the periodic environmental changes themselves, if the electric field is changed irregularly, the growth of the microorganisms can be suppressed more effectively.
 なお、電界の状態を経時的に変化させる方法として、上記第1~第4の方法を適宜組み合わせてもよい。また、上述した第1~第4の方法では、いずれも、第1状態および第2状態を交互に繰り返しているが、これに限定されず、例えば、第1状態および第2状態と電界の状態が異なる少なくとも1つの状態(第3状態、第4状態、第5状態…)を有し、これら複数の状態を順番に繰り返すようになっていてもよい。 As a method of changing the state of the electric field with time, the above-mentioned first to fourth methods may be appropriately combined. Further, in each of the first to fourth methods described above, the first state and the second state are alternately repeated, but the present invention is not limited to this, and for example, the first state and the second state and the electric field state are used. May have at least one different state (third state, fourth state, fifth state, etc.), and these plurality of states may be repeated in order.
 <第5実施形態>
 次に、第5実施形態のコンテナ1について、主に、前述した第1実施形態と異なる部分を説明する。
<Fifth Embodiment>
Next, with respect to the container 1 of the fifth embodiment, a part different from the above-described first embodiment will be mainly described.
 図17に示すように、本実施形態のコンテナ1では、3つの支持部6が天井部25に固定されている。以下では、説明の便宜上、これら3つの支持部6を支持部6A、6B、6Cとも言う。 As shown in FIG. 17, in the container 1 of the present embodiment, three support portions 6 are fixed to the ceiling portion 25. Hereinafter, for convenience of explanation, these three support portions 6 are also referred to as support portions 6A, 6B, and 6C.
 3つの支持部6A、6B、6Cは、コンテナ1の幅方向に並んで、互いに離間して配置されている。また、支持部6A、6B、6Cは、それぞれ、コンテナ1の長手方向に延びる長手形状となっており、扉28、29側から冷却装置3側までのほぼ全域に延在している。また、これら3つの支持部6A、6B、6Cには、それぞれ、電極5が支持されている。以下では、説明の便宜上、支持部6Aに支持された電極5を電極5Aとも言い、支持部6Bに支持された電極5を電極5Bとも言い、支持部6Cに支持された電極5を電極5Cとも言う。 The three support portions 6A, 6B, and 6C are arranged side by side in the width direction of the container 1 and separated from each other. Further, the support portions 6A, 6B, and 6C each have a longitudinal shape extending in the longitudinal direction of the container 1, and extend over substantially the entire area from the doors 28 and 29 sides to the cooling device 3 side. Further, electrodes 5 are supported on each of these three support portions 6A, 6B, and 6C. In the following, for convenience of explanation, the electrode 5 supported by the support portion 6A is also referred to as an electrode 5A, the electrode 5 supported by the support portion 6B is also referred to as an electrode 5B, and the electrode 5 supported by the support portion 6C is also referred to as an electrode 5C. To tell.
 これら電極5A、5B、5Cは、互いに絶縁されており、それぞれ独立して電圧印加装置7に接続されている。これにより、3つの電界形成系統を設けることができ、1つの電界形成系統が故障しても、他の2つの電界形成系統によって電界を形成することができる。これにより、故障によって電界を形成できなくなるリスクが低減され、高い信頼性を発揮することができる。 These electrodes 5A, 5B, and 5C are insulated from each other and are independently connected to the voltage applying device 7. As a result, three electric field forming systems can be provided, and even if one electric field forming system fails, an electric field can be formed by the other two electric field forming systems. As a result, the risk of not being able to form an electric field due to a failure is reduced, and high reliability can be exhibited.
 また、電圧印加装置7は、電極5A、5B、5Cに互いに異なる電圧を印加することもできる。電極5A、5B、5Cに互いに異なる電圧を印加することにより、前述した第2実施形態と同様に、電界を周期的または不規則に変化させることができる。 Further, the voltage applying device 7 can apply different voltages to the electrodes 5A, 5B, and 5C. By applying different voltages to the electrodes 5A, 5B, and 5C, the electric field can be changed periodically or irregularly as in the second embodiment described above.
 電極5A、5B、5Cに印加する電圧としては、特に限定されない。例えば、電極5Aに印加する電圧である第1交番電圧Vac1と、電極5Bに印加する電圧である第2交番電圧Vac2と、電極5Cに印加する電圧である第3交番電圧Vac3とで互いに周波数を異ならせてもよい。また、例えば、第1交番電圧Vac1と、第2交番電圧Vac2と、第3交番電圧Vac3とで周波数および振幅を異ならせてもよい。また、例えば、第1交番電圧Vac1と、第2交番電圧Vac2と、第3交番電圧Vac3とで互いに同じ波形を用い、これらの位相を互いにずらしてもよい。 The voltage applied to the electrodes 5A, 5B and 5C is not particularly limited. For example, the first alternating voltage Vac1 which is the voltage applied to the electrode 5A, the second alternating voltage Vac2 which is the voltage applied to the electrode 5B, and the third alternating voltage Vac3 which is the voltage applied to the electrode 5C mutually have frequencies. It may be different. Further, for example, the frequency and amplitude may be different between the first alternating voltage Vac1, the second alternating voltage Vac2, and the third alternating voltage Vac3. Further, for example, the same waveforms may be used for the first alternating voltage Vac1, the second alternating voltage Vac2, and the third alternating voltage Vac3, and their phases may be shifted from each other.
 なお、本実施形態では互いに異なる電圧が印加される複数の電極として電極5A、5B、5Cを有するが、少なくとも2つの電極5を有し、これら電極に同一或いは互いに異なる電圧が印加される構成となっていれば、これに限定されない。例えば、電極5A、5B、5Cのいずれか1つを省略してもよいし、反対に、これらとは別に独立して電圧を印加することのできる少なくとも1つの電極を追加してもよい。 In this embodiment, the electrodes 5A, 5B, and 5C are provided as a plurality of electrodes to which different voltages are applied, but at least two electrodes 5 are provided, and the same or different voltages are applied to these electrodes. If so, it is not limited to this. For example, any one of the electrodes 5A, 5B, and 5C may be omitted, or conversely, at least one electrode to which a voltage can be applied independently may be added.
 また、本実施形態では支持部6A、6B、6C(電極5A、5B、5C)がコンテナ1の幅方向に並んで配置されているが、これらの配置としては、特に限定されない。例えば、支持部6A、6B、6C(電極5A、5B、5C)がコンテナ1の長手方向に並んで配置されていてもよい。また、支持部6A(電極5A)と支持部6B(電極5B)とがコンテナ1の幅方向に並んで配置され、支持部6A、6B(電極5A、5B)と支持部6C(電極5C)とがコンテナ1の長手方向に並んで配置されていてもよい。 Further, in the present embodiment, the support portions 6A, 6B, 6C ( electrodes 5A, 5B, 5C) are arranged side by side in the width direction of the container 1, but the arrangement thereof is not particularly limited. For example, the support portions 6A, 6B, 6C ( electrodes 5A, 5B, 5C) may be arranged side by side in the longitudinal direction of the container 1. Further, the support portion 6A (electrode 5A) and the support portion 6B (electrode 5B) are arranged side by side in the width direction of the container 1, and the support portions 6A and 6B ( electrodes 5A and 5B) and the support portion 6C (electrode 5C) are arranged. May be arranged side by side in the longitudinal direction of the container 1.
 また、本実施形態では、電極5A、5B、5Cをそれぞれ独立して支持するために3つの支持部6A、6B、6Cが設けられているが、これに限定されず、例えば、図18に示すように、1つの支持部6が3つの電極5A、5B、5Cを支持する構成であってもよい。 Further, in the present embodiment, three support portions 6A, 6B, and 6C are provided to independently support the electrodes 5A, 5B, and 5C, respectively, but the present invention is not limited to this, and is shown in FIG. As described above, one support portion 6 may be configured to support the three electrodes 5A, 5B, and 5C.
 <第6実施形態>
 次に、第6実施形態のコンテナ1について、主に、前述した第1実施形態と異なる部分を説明する。
<Sixth Embodiment>
Next, with respect to the container 1 of the sixth embodiment, a part different from the above-described first embodiment will be mainly described.
 図19に示すように、本実施形態のコンテナ1では、2つの支持部6が天井部25に固定されている。以下では、説明の便宜上、これら3つの支持部6を支持部6A、6Bとも言う。また、これら2つの支持部6A、6Bは、それぞれ、電極5が支持されている。以下では、説明の便宜上、支持部6Aに支持された電極5を電極5Aとも言い、支持部6Bに支持された電極5を電極5Bとも言う。そして、電圧印加装置7は、図20に示すように、電極5Aに第1交番電圧Vac1を印加し、電極5Bに第1交番電圧Vac1と逆位相の第2交番電圧Vac2を印加する。第1交番電圧Vac1と第2交番電圧Vac2とは、同じ波形であり、互いに周波数および振幅が同じである。 As shown in FIG. 19, in the container 1 of the present embodiment, two support portions 6 are fixed to the ceiling portion 25. Hereinafter, for convenience of explanation, these three support portions 6 are also referred to as support portions 6A and 6B. Further, the electrodes 5 are supported on the two support portions 6A and 6B, respectively. Hereinafter, for convenience of explanation, the electrode 5 supported by the support portion 6A is also referred to as an electrode 5A, and the electrode 5 supported by the support portion 6B is also referred to as an electrode 5B. Then, as shown in FIG. 20, the voltage applying device 7 applies the first alternating voltage Vac1 to the electrode 5A and applies the second alternating voltage Vac2 having the opposite phase to the first alternating voltage Vac1 to the electrode 5B. The first alternating voltage Vac1 and the second alternating voltage Vac2 have the same waveform, and have the same frequency and amplitude.
 コンテナ本体2は、グランドに接続されるため、第1交番電圧Vac1と第2交番電圧Vac2とを逆位相すなわち位相を180°ずらすことにより、電極5Aと電極5Bとの電位差ΔV1が、電極5Aとコンテナ本体2との電位差ΔV2および電極5Bとコンテナ本体2との電位差ΔV3よりも大きくなる。すなわち、ΔV1>ΔV2、ΔV1>ΔV3の関係となる。そのため、電極5Aとコンテナ本体2との間や、電極5Bとコンテナ本体2との間よりも、電極5Aと電極5Bとの間に電界が形成され易くなる。 Since the container body 2 is connected to the ground, the potential difference ΔV1 between the electrode 5A and the electrode 5B becomes equal to that of the electrode 5A by shifting the phase of the first alternating voltage Vac1 and the second alternating voltage Vac2 by 180 °. It is larger than the potential difference ΔV2 with the container body 2 and the potential difference ΔV3 between the electrode 5B and the container body 2. That is, the relationship is ΔV1> ΔV2 and ΔV1> ΔV3. Therefore, an electric field is more likely to be formed between the electrode 5A and the electrode 5B than between the electrode 5A and the container body 2 or between the electrode 5B and the container body 2.
 したがって、電界を収容室20のより広範囲にわたって形成することができ、収容室20内のどの位置に載置された対象物Xにも効率的に電界を作用させることができる。なお、前記「逆位相」とは、第1交番電圧Vac1と第2交番電圧Vac2との位相差が180°と一致している場合の他、技術上生じ得るわずかな誤差(例えば±10%)を有する場合も含む意味である。 Therefore, the electric field can be formed over a wider area of the accommodation chamber 20, and the electric field can be efficiently applied to the object X placed at any position in the accommodation chamber 20. The "opposite phase" refers to the case where the phase difference between the first alternating voltage Vac1 and the second alternating voltage Vac2 coincides with 180 °, and a slight error (for example, ± 10%) that may occur in technology. It is a meaning including the case of having.
 以上、本発明の収容庫および電極構造について、図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではない。例えば、各部の構成は、同様の機能を発揮する任意の構成のものに置換することができ、また、任意の構成を付加することもできる。また、前述した各実施形態を適宜組み合わせることもできる。 The storage and electrode structure of the present invention have been described above based on the illustrated embodiment, but the present invention is not limited thereto. For example, the configuration of each part can be replaced with an arbitrary configuration that exhibits the same function, or an arbitrary configuration can be added. In addition, each of the above-described embodiments can be combined as appropriate.
 以上のように、対象物Xを収容する収容室20を有するコンテナ本体2と、収容室20内に電界を形成する電極5と、収容室20内においてコンテナ本体2に固定され、電極5を支持する支持部6と、を有する。また、支持部6は、コンテナ本体2に固定された固定部61、62と、固定部61、62から収容室20内に向けて突出し、電極5が配置された突出部63と、を有し、突出部63とコンテナ本体2との離間距離D1は、固定部61、62とコンテナ本体2との離間距離D2よりも大きい。そのため、電極5とコンテナ本体2との間に形成される容量Cが小さくなり、収容室20に収容された対象物Xに対して効率的かつ効果的に電界を作用させることができる。また、収容室20の容積が大きくなり、その分、対象物Xの積載量が増加する。そのため、1つのコンテナ1でより多くの対象物Xを搬送でき、搬送コストを抑えることができる。 As described above, the container body 2 having the storage chamber 20 for accommodating the object X, the electrode 5 for forming an electric field in the storage chamber 20, and the electrode 5 fixed to the container body 2 in the storage chamber 20 to support the electrode 5. It has a support portion 6 and a support portion 6. Further, the support portion 6 has fixed portions 61 and 62 fixed to the container main body 2 and a protruding portion 63 protruding from the fixed portions 61 and 62 toward the inside of the accommodation chamber 20 and in which the electrode 5 is arranged. The separation distance D1 between the projecting portion 63 and the container body 2 is larger than the separation distance D2 between the fixing portions 61 and 62 and the container body 2. Therefore, the capacitance C formed between the electrode 5 and the container body 2 becomes small, and an electric field can be efficiently and effectively applied to the object X housed in the storage chamber 20. Further, the volume of the storage chamber 20 is increased, and the load capacity of the object X is increased accordingly. Therefore, more objects X can be transported in one container 1, and the transport cost can be suppressed.
 1…コンテナ、10…電極構造、2…コンテナ本体、20…収容室、21…内壁、22…外壁、23…断熱材、24…床部、241…溝、25…天井部、251…天井面、26…側壁部、27…骨組み、28…扉、29…扉、3…冷却装置、31…吸入部、32…冷却装置、33…吹出部、34…温度センサー、4…電界形成装置、5…電極、5A…電極、5B…電極、5C…電極、50A…平板電極、50B…平板電極、6…支持部、6A…支持部、6B…支持部、6C…支持部、61…固定部、62…固定部、63…突出部、631…基部、632…接続部、633…接続部、64…位置決め部、641…凹部、642…突起、7…電圧印加装置、8…被覆部、9…防風部、91…第1壁部、92…第2壁部、C…容量、D1…離間距離、D2…離間距離、G…空隙、T…厚さ、X…対象物

 
1 ... Container, 10 ... Electrode structure, 2 ... Container body, 20 ... Storage room, 21 ... Inner wall, 22 ... Outer wall, 23 ... Insulation material, 24 ... Floor, 241 ... Groove, 25 ... Ceiling, 251 ... Ceiling surface , 26 ... Side wall, 27 ... Frame, 28 ... Door, 29 ... Door, 3 ... Cooling device, 31 ... Suction part, 32 ... Cooling device, 33 ... Blowout part, 34 ... Temperature sensor, 4 ... Electrode forming device, 5 ... Electrode, 5A ... Electrode, 5B ... Electrode, 5C ... Electrode, 50A ... Flat plate electrode, 50B ... Flat plate electrode, 6 ... Support part, 6A ... Support part, 6B ... Support part, 6C ... Support part, 61 ... Fixing part, 62 ... Fixed part, 63 ... Projection part, 631 ... Base part, 632 ... Connection part, 633 ... Connection part, 64 ... Positioning part, 641 ... Recession, 642 ... Projection, 7 ... Voltage application device, 8 ... Cover part, 9 ... Windbreak part, 91 ... 1st wall part, 92 ... 2nd wall part, C ... Capacity, D1 ... Separation distance, D2 ... Separation distance, G ... Void, T ... Thickness, X ... Object

Claims (9)

  1.  対象物を収容する収容室を有する収容庫本体と、
     前記収容室内に電界を形成する電極と、
     前記収容室内において前記収容庫本体に固定され、前記電極を支持する支持部と、を有し、
     前記支持部は、前記収容庫本体に固定された固定部と、
     前記固定部から前記収容室内に向けて突出し、前記電極が配置された突出部と、を有し、
     前記突出部と前記収容庫本体との離間距離は、前記固定部と前記収容庫本体との離間距離よりも大きいことを特徴とする収容庫。
    The main body of the vault, which has a containment chamber for accommodating the object,
    Electrodes that form an electric field in the containment chamber and
    It has a support portion that is fixed to the storage body and supports the electrodes in the storage chamber.
    The support portion includes a fixed portion fixed to the storage body and a fixed portion.
    It has a protruding portion that protrudes from the fixed portion toward the accommodation chamber and has the electrode arranged therein.
    The storage is characterized in that the separation distance between the protruding portion and the storage main body is larger than the separation distance between the fixed portion and the storage main body.
  2.  前記支持部は、前記収容室の天井部に固定されている請求項1に記載の収容庫。 The storage according to claim 1, wherein the support portion is fixed to the ceiling portion of the storage chamber.
  3.  前記突出部は、前記天井部に沿って設けられた平板状の基部を有し、
     前記電極は、前記基部に配置されている請求項2に記載の収容庫。
    The protrusion has a flat plate-like base provided along the ceiling.
    The storage according to claim 2, wherein the electrode is arranged at the base.
  4.  前記基部は、前記電極を位置決めする位置決め部を有する請求項3に記載の収容庫。 The storage according to claim 3, wherein the base portion has a positioning portion for positioning the electrodes.
  5.  前記位置決め部は、前記電極が配置される凹部を有する請求項4に記載の収容庫。 The storage according to claim 4, wherein the positioning portion has a recess in which the electrode is arranged.
  6.  前記支持部との間に前記電極を挟み込むように設けられた被覆部を有する請求項1から5のいずれか1項に記載の収容庫。 The storage according to any one of claims 1 to 5, which has a covering portion provided so as to sandwich the electrode between the support portion and the support portion.
  7.  前記被覆部は、前記支持部と前記収容庫本体との間の空隙を埋めるように設けられている請求項6に記載の収容庫。 The storage according to claim 6, wherein the covering portion is provided so as to fill a gap between the support portion and the storage main body.
  8.  前記支持部は、絶縁性を有する請求項1から7のいずれか1項に記載の収容庫。 The storage according to any one of claims 1 to 7, wherein the support portion has an insulating property.
  9.  対象物を収容する収容室を有する収容庫本体に設置される電極構造であって、
     前記収容室内に電界を形成する電極と、
     前記収容室内において前記収容庫本体に固定され、前記電極を支持する支持部と、を有し、
     前記支持部は、前記収容庫本体に固定される固定部と、
     前記固定部が前記収容庫本体に固定された状態で、前記固定部から前記収容室内に向けて突出し、前記電極が配置された突出部と、を有し、
     前記突出部と前記収容庫本体との離間距離が、前記固定部と前記収容庫本体との離間距離よりも大きくなるように設置されることを特徴とする電極構造。

     
    An electrode structure installed in the main body of a storage cabinet having a storage chamber for accommodating an object.
    Electrodes that form an electric field in the containment chamber and
    It has a support portion that is fixed to the storage body and supports the electrodes in the storage chamber.
    The support portion includes a fixing portion fixed to the storage body and a fixing portion.
    In a state where the fixed portion is fixed to the storage body, the fixed portion has a protruding portion that protrudes from the fixed portion toward the storage chamber and has an electrode arranged therein.
    An electrode structure characterized in that the distance between the protruding portion and the main body of the storage is larger than the distance between the fixed portion and the main body of the storage.

PCT/JP2020/044445 2019-12-02 2020-11-30 Storage container and electrode structure WO2021112028A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080021017.9A CN113557202B (en) 2019-12-02 2020-11-30 Storage library and electrode structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-217861 2019-12-02
JP2019217861A JP7441438B2 (en) 2019-12-02 2019-12-02 Housing and electrode structure

Publications (1)

Publication Number Publication Date
WO2021112028A1 true WO2021112028A1 (en) 2021-06-10

Family

ID=76219187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044445 WO2021112028A1 (en) 2019-12-02 2020-11-30 Storage container and electrode structure

Country Status (3)

Country Link
JP (1) JP7441438B2 (en)
CN (1) CN113557202B (en)
WO (1) WO2021112028A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113942728A (en) * 2021-09-13 2022-01-18 住友商事株式会社 Storage warehouse
CN114715516A (en) * 2021-09-15 2022-07-08 住友商事株式会社 Storage warehouse

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7340133B2 (en) * 2020-07-03 2023-09-07 株式会社O′s&Asset container
JP7091532B1 (en) 2021-09-13 2022-06-27 住友商事株式会社 Containment vault
JP7091537B1 (en) * 2021-10-12 2022-06-27 住友商事株式会社 Containment vault
CN114212151B (en) * 2021-11-18 2023-05-09 浙江双友物流器械股份有限公司 Carriage plate structure of cold chain carriage
CN114630796B (en) * 2021-12-10 2023-10-10 奥姆乐科技(上海)有限公司 container

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998041115A1 (en) * 1997-03-17 1998-09-24 Akinori Ito Method and equipment for treating electrostatic field and electrode used therein
JP2007212046A (en) * 2006-02-09 2007-08-23 Mitsubishi Electric Corp Refrigerator
JP2014159896A (en) * 2013-02-19 2014-09-04 Haier Asia International Co Ltd Refrigerator
CN108657666A (en) * 2018-05-04 2018-10-16 扬州通利冷藏集装箱有限公司 Frozen products insulated container
JP3218536U (en) * 2017-08-30 2018-10-25 株式会社スーパークーリングラボ Electric field forming panel used for home refrigerator, and home refrigerator
JP6499366B1 (en) * 2018-12-06 2019-04-10 日通商事株式会社 Electrostatic field generation container

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3566212B2 (en) * 2001-01-12 2004-09-15 株式会社 ケイ・エス・エイ refrigerator
JP4932260B2 (en) * 2006-01-17 2012-05-16 学校法人早稲田大学 Electric field processing device
JP2008273622A (en) 2007-04-04 2008-11-13 Mitsui O S K Lines Ltd Electrostatic field generation sheet and electrostatic field generation container
JP2010142446A (en) * 2008-12-19 2010-07-01 Takenaka Komuten Co Ltd Pulse electric field sterilization apparatus
JP5683032B1 (en) * 2014-02-17 2015-03-11 錦隆 後藤 Freshness maintaining device using space potential generator
JP3218534U (en) * 2017-08-30 2018-10-25 株式会社スーパークーリングラボ Electric field forming panels used for large refrigerated rooms and large refrigerated rooms
US20220034573A1 (en) * 2018-12-06 2022-02-03 Nittsu Shoji Co., Ltd. Electric Field-Generating Repository

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998041115A1 (en) * 1997-03-17 1998-09-24 Akinori Ito Method and equipment for treating electrostatic field and electrode used therein
JP2007212046A (en) * 2006-02-09 2007-08-23 Mitsubishi Electric Corp Refrigerator
JP2014159896A (en) * 2013-02-19 2014-09-04 Haier Asia International Co Ltd Refrigerator
JP3218536U (en) * 2017-08-30 2018-10-25 株式会社スーパークーリングラボ Electric field forming panel used for home refrigerator, and home refrigerator
CN108657666A (en) * 2018-05-04 2018-10-16 扬州通利冷藏集装箱有限公司 Frozen products insulated container
JP6499366B1 (en) * 2018-12-06 2019-04-10 日通商事株式会社 Electrostatic field generation container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113942728A (en) * 2021-09-13 2022-01-18 住友商事株式会社 Storage warehouse
CN114715516A (en) * 2021-09-15 2022-07-08 住友商事株式会社 Storage warehouse

Also Published As

Publication number Publication date
CN113557202B (en) 2023-03-24
JP2021088370A (en) 2021-06-10
JP7441438B2 (en) 2024-03-01
CN113557202A (en) 2021-10-26

Similar Documents

Publication Publication Date Title
WO2021112028A1 (en) Storage container and electrode structure
WO2021079772A1 (en) Storage container
JP5682037B2 (en) Electric field forming panel and electric field forming method for causing supercooling
KR101759099B1 (en) Spatial electric potential generator, Freshness keeping device using Spatial electric potential generator and Fryer with Spatial electric potential generator
JP2020106152A (en) Refrigerating storage
WO2021112027A1 (en) Storage chamber
JP5288286B2 (en) Food thawing / refrigerated storage equipment
JP2013169194A (en) Freshness retaining apparatus
JP7091536B1 (en) Containment vault
CN114701727B (en) Storage warehouse
JP7091532B1 (en) Containment vault
WO2020230437A1 (en) Storage cabinet and storage method
JP7244831B2 (en) Storage and electric field generator
JP3125784U (en) Food storage facility
JP7009670B1 (en) Containment vault
CN114630796A (en) Container, especially container for transporting goods
JP5886536B2 (en) Electric field processing apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897099

Country of ref document: EP

Kind code of ref document: A1