WO2021111841A1 - Concentrator photovoltaic module, concentrator photovoltaic device, and method for manufacturing concentrator photovoltaic module - Google Patents

Concentrator photovoltaic module, concentrator photovoltaic device, and method for manufacturing concentrator photovoltaic module Download PDF

Info

Publication number
WO2021111841A1
WO2021111841A1 PCT/JP2020/042293 JP2020042293W WO2021111841A1 WO 2021111841 A1 WO2021111841 A1 WO 2021111841A1 JP 2020042293 W JP2020042293 W JP 2020042293W WO 2021111841 A1 WO2021111841 A1 WO 2021111841A1
Authority
WO
WIPO (PCT)
Prior art keywords
condensing
power generation
glass plate
housing
light receiving
Prior art date
Application number
PCT/JP2020/042293
Other languages
French (fr)
Japanese (ja)
Inventor
永井 陽一
充 稲垣
宗譜 上山
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2021111841A1 publication Critical patent/WO2021111841A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present disclosure relates to a method for manufacturing a concentrating photovoltaic power generation module, a concentrating photovoltaic power generation device, and a concentrating photovoltaic power generation module.
  • the concentrating photovoltaic power generation module is a device that condenses sunlight into a cell with a Fresnel lens to generate electricity (see, for example, Patent Document 1 (FIG. 1)).
  • Many Fresnel lenses are arranged in a matrix to form a single sheet, which is attached to a glass plate to form a condensing portion.
  • one area of the Fresnel lens is a square with a side of 50 mm, whereas the cell is a square with a side of 3.5 mm.
  • Patent Document 2 discloses a Fresnel lens structure in which a glass Fresnel lens and a cover glass are integrated.
  • Patent Document 3 discloses a technique for obtaining a Fresnel lens by press-molding a glass material. Examples of the press molding include direct press molding in which molten glass is directly poured into a mold and pressure molding is performed, and reheat press molding in which a molded product once vitrified is reheated to be softened and deformed.
  • the concentrating solar power generation module of the present disclosure includes a housing, a plurality of light receiving units provided on the bottom surface of the housing, and a condensing unit provided on the upper part of the housing.
  • the light unit has at least one glass plate, and the glass plate has a plurality of Fresnel lenses arranged so as to align the optical axis with each of the plurality of light receiving units, and is more average than the plurality of Fresnel lenses. It is a concentrating solar power generation module in which a thick reinforcing portion is formed.
  • a condensing portion having a glass plate on which a plurality of Fresnel lenses are arranged is aligned and placed on an upper portion of a housing having a plurality of light receiving portions on the bottom surface.
  • a method of manufacturing a condensing type solar power generation module including a step, wherein a plurality of the Fresnel lenses, a reinforcing portion having an average thickness thicker than the plurality of Fresnel lenses, and the condensing portion are provided in the housing.
  • the housing and the collection so that the plurality of the light receiving portions and the plurality of Fresnel lenses are arranged with their optical axes aligned with each other based on the positions of the light receiving portions stored in the second step.
  • Manufacture of a condensing solar power generation module comprising a third step of aligning the light portion, wherein the first step prepares the condensing portion having at least one of the alignment marks on the reinforcing portion. The method.
  • FIG. 11 It is a schematic diagram which shows the manufacturing apparatus which manufactures the condensing part which concerns on embodiment. It is a top view which shows the structure of the back surface of the condensing part which concerns on 1st modification. It is a top view which shows the structure of the back surface of the condensing part which concerns on 2nd modification. It is a top view which shows the part of the back surface of the condensing part which concerns on 2nd modification by enlarging. It is sectional drawing which shows the part on the cutting line shown by the arrow A2 of FIG. 11 enlarged. It is a top view which shows the structure of the back surface of the condensing part which concerns on 3rd modification. It is sectional drawing on the cutting line shown by the arrow A3 of FIG.
  • the plurality of Fresnel lenses included in the condensing unit are arranged so as to align the optical axis with each of the plurality of light receiving units.
  • the light collecting portion may be provided in a relatively thin flat plate shape (for example, a thickness of 3 mm) in order to reduce optical loss and manufacture at low cost. In this case, if many Fresnel lenses are arranged in the condensing portion, the area of the condensing portion becomes large, and the condensing portion may bend due to its own weight. Further, even when a strong wind blows on the condensing portion, the condensing portion may bend.
  • the present disclosure aims to suppress the bending of the condensing portion in the condensing type photovoltaic power generation module.
  • the embodiments of the present disclosure include at least the following as a gist thereof.
  • the condensing type solar power generation module of the present disclosure includes a housing, a plurality of light receiving portions provided on the bottom surface of the housing, and a condensing unit provided on the upper part of the housing.
  • the condensing unit has at least one glass plate, and the glass plate includes a plurality of Fresnel lenses arranged with their respective optical axes aligned with each of the plurality of light receiving units, and a plurality of the Fresnel lenses.
  • a reinforcing portion having a thicker average thickness than that of the reinforcing portion is formed.
  • the condensing unit of the condensing type photovoltaic power generation module of the present disclosure has at least one glass plate.
  • a plurality of Fresnel lenses and a reinforcing portion are formed on the glass plate. Since the average thickness of the reinforcing portion is thicker than the average thickness of the plurality of Fresnel lenses, the reinforcing portion can suppress the bending of the condensing portion.
  • the glass plate is located on the opposite side of the surface facing the sun and the back surface facing the light receiving portion.
  • the reinforcing portion has a tip surface provided along the back surface, and the plurality of Fresnel lenses are located on the front surface side of the tip surface or at the same height position as the tip surface.
  • Each of the convex end portions is provided, and the plurality of Fresnel lenses are provided so as to be recessed from the convex end portion toward the surface side.
  • the plurality of Fresnel lenses are provided so as to be recessed on the surface side of the tip surface of the reinforcing portion, and the convex end portion of the Fresnel lens does not protrude from the tip surface of the reinforcing portion.
  • the Fresnel lens is connected to each other with a plurality of first convex portions which are convex regions formed concentrically.
  • the reinforcing portion has a plurality of first groove portions which are grooves located between the adjacent first convex portions, and the reinforcing portion is a plurality of second convex portions which are convex regions formed concentrically.
  • a plurality of second groove portions, which are grooves located between the second convex portions adjacent to each other, and the depth of the second groove portion from the second convex portion is the first groove portion. It is shallower than the depth from the first convex portion of the above.
  • the reinforcing portion has a plurality of second groove portions having a depth shallower than that of the first groove portion of the Fresnel lens, and the reinforcing portion also collects light to the light receiving portion. While suppressing it, the light intensity that the condensing unit condenses on the light receiving unit can be further increased.
  • the plurality of the first convex portions and the plurality of the second convex portions are concentric circles centered on the central portion of the Fresnel lens.
  • the plurality of second convex portions are formed, and the plurality of second convex portions are provided outside the central portion with respect to the plurality of the first convex portions.
  • a reinforcing portion is provided on the outside of the Fresnel lens.
  • the concentrating photovoltaic power generation module preferably, at least a part of the reinforcing portions of the Fresnel lens adjacent to each other among the plurality of Fresnel lenses. It is provided between them.
  • the reinforcing portion provided between the Fresnel lenses reinforces the central portion of the condensing portion, the bending rigidity of the condensing portion becomes stronger, and the bending of the condensing portion can be suppressed more reliably. ..
  • the reinforcing portion is provided on the peripheral edge portion of the glass plate.
  • the bending rigidity of the condensing portion becomes stronger, and the bending of the condensing portion can be suppressed more reliably. ..
  • the housing has a support portion that supports the glass plate upward, and the glass plate is
  • the contact portion has a contact portion that comes into contact with the support portion, and the contact portion has a fitting portion that fits with the support portion.
  • the fitting portion facilitates the alignment between the housing and the glass plate, and it is possible to suppress a decrease in light collection performance and a decrease in yield due to a misalignment between the housing and the glass plate.
  • the glass plate is at least used for positioning when the condensing portion is provided in the housing. It has two alignment marks, and at least one of the alignment marks is provided on the reinforcing portion. In this case, by forming the alignment mark on the reinforcing portion, it is possible to facilitate the alignment between the condensing portion and the light receiving portion when the condensing portion is provided on the upper part of the housing. Further, since at least one alignment mark is formed on the reinforcing portion, it is possible to suppress light scattering due to the alignment mark and optical loss due to shading.
  • the concentrating photovoltaic power generation device of the present disclosure includes a concentrating solar power plant including an array formed by assembling a plurality of concentrating photovoltaic power generation modules according to any one of (1) to (8) above. It is a photovoltaic power generation device.
  • a concentrating solar power plant including an array formed by assembling a plurality of concentrating photovoltaic power generation modules according to any one of (1) to (8) above. It is a photovoltaic power generation device.
  • the condensing solar power generation device of the present disclosure since a plurality of Fresnel lenses and reinforcing portions are formed in the condensing portion, it is possible to suppress bending of the condensing portion.
  • a condensing portion having a glass plate on which a plurality of Fresnel lenses are arranged is aligned on an upper portion of a housing having a plurality of light receiving portions on the bottom surface.
  • the housing Based on the position of the mark and the position of the light receiving unit stored in the second step, the housing so that the plurality of light receiving units and the plurality of Fresnel lenses are arranged so that their optical axes are aligned with each other.
  • a third step of aligning the light collecting portion with the light collecting portion is provided, and the first step prepares the light collecting portion having at least one alignment mark on the reinforcing portion.
  • the concentrating photovoltaic module manufactured by the manufacturing method of the present disclosure has at least one glass plate.
  • a plurality of Fresnel lenses and a reinforcing portion are formed on the glass plate. Since the average thickness of the reinforcing portion is thicker than the average thickness of the plurality of Fresnel lenses, the reinforcing portion can suppress the bending of the condensing portion. Further, in the manufacturing method of the present disclosure, since the alignment mark is formed on the reinforcing portion, it is possible to facilitate the alignment between the condensing portion and the light receiving portion when the condensing portion is provided on the upper part of the housing. .. Further, since at least one alignment mark is formed on the reinforcing portion, it is possible to suppress light scattering due to the alignment mark and optical loss due to shading.
  • FIG. 1 shows a photovoltaic power generation device 100 in a completed state
  • FIG. 2 shows a photovoltaic power generation device 100 in a state in the middle of assembly.
  • FIG. 2 shows a state in which the skeleton of the tracking mount 25 can be seen in the right half, and a state in which a concentrating photovoltaic power generation module (hereinafter, also simply referred to as “module”) 1M is attached in the left half.
  • module 1M a concentrating photovoltaic power generation module
  • the photovoltaic power generation device 100 includes an array (solar power generation panel) 1 which is continuous on the upper side and is divided into left and right on the lower side to form a planar light receiving surface as a whole, and a support mechanism 2 thereof. ing.
  • the array 1 is configured by arranging the modules 1M on the tracking mount 25 (FIG. 2) on the back side.
  • the support mechanism 2 includes a support column 21, a foundation 22, a drive unit 23, a horizontal axis 24 (FIG. 2) as a drive axis, and a tracking stand 25.
  • the lower end of the support column 21 is fixed to the foundation 22, and the upper end is provided with a drive unit 23.
  • the foundation 22 is firmly buried in the ground so that only the upper surface can be seen.
  • the columns 21 are vertical and the horizontal axis 24 (FIG. 2) is horizontal.
  • the drive unit 23 can rotate the horizontal axis 24 in two directions, an azimuth angle (an angle centered on the support column 21) and an elevation angle (an angle centered on the horizontal axis 24).
  • a reinforcing member 25a for reinforcing the tracking pedestal 25 is attached to the horizontal shaft 24.
  • a plurality of horizontal rails 25b are attached to the reinforcing member 25a.
  • Module 1M is mounted so as to fit into this rail. If the horizontal axis 24 rotates in the direction of the azimuth or elevation, the array 1 also rotates in that direction.
  • Array 1 is usually vertical as shown in FIG. 1 before dawn and sunset.
  • the drive unit 23 operates so that the light receiving surface of the array 1 always faces the sun, and the array 1 performs the tracking operation of the sun.
  • FIG. 3 is a perspective view showing the configuration of the module 1M according to the present embodiment.
  • the flexible printed wiring board 13 is shown on the bottom surface 11b side of the housing 11, and other components (light receiving unit 3, etc.) are omitted.
  • the module 1M includes, for example, a rectangular flat-bottomed container-shaped housing 11 made of metal or resin, a plurality of light receiving portions 3 (see FIG. 4) provided on the bottom surface 11b of the housing 11, and an upper portion of the housing 11. It includes a rectangular condensing unit 12 that can be attached like a lid.
  • the housing 11 has a bottom plate 111 which is a rectangular flat plate, and a frame 112 provided on the peripheral edge of the bottom plate 111.
  • the surface of the bottom plate 111 that faces the light collecting portion 12 is the bottom surface 11b.
  • a support portion that comes into contact with the light collecting portion 12 is provided on the upper portion of the frame body 112, and the frame body 112 supports the light collecting portion 12 upward by the support portion.
  • On the bottom surface 11b for example, in each of the left half and the right half of the housing 11, one elongated flexible printed wiring board 13 is arranged so as to be aligned while changing the direction as shown in the drawing.
  • the flexible printed wiring board 13 has a relatively wide portion and a narrow portion.
  • the cell 34 (see FIG. 4) included in the light receiving unit 3 is mounted on a wide portion.
  • the light collecting unit 12 is a single glass plate 70, and has a thickness of 3 mm in the present embodiment.
  • the glass plate 70 mainly transmits light having a wavelength of 300 nm to 2000 nm among sunlight.
  • the light collecting unit 12 has a front surface 12a facing the direction of the sun and a back surface 12b located on the opposite side of the surface 12a and facing the direction of the plurality of light receiving units 3.
  • the light collecting unit 12 may have a configuration in which two or more glass plates are laminated at their respective peripheral edges.
  • the light collecting unit 12 may include at least one glass plate.
  • a plurality of Fresnel lenses 71 which will be described later, are formed on the back surface 12b of the condensing unit 12.
  • each of the illustrated square regions (14 ⁇ 10 in the present embodiment, but the quantity is only an example) is a region having one Fresnel lens 71.
  • Each of the plurality of regions can converge the sunlight to the focal position.
  • the grid-like dotted lines are lines for convenience for expressing the area, and it is not necessary that such a partition line actually exists.
  • a shielding plate 14 is attached between the flexible printed wiring board 13 and the condensing unit 12.
  • the shielding plate 14 is made of metal.
  • the shielding plate 14 is formed with a square opening 14a similar to the square of the Fresnel lens 71 at a position corresponding to the center of each Fresnel lens 71. If the array 1 accurately tracks the sun and the angle of incidence of the sunlight on the module 1M is 0 degrees, the light collected by the Fresnel lens 71 passes through the aperture 14a and is incident on the light receiving unit 3. When the tracking is significantly deviated, the collected light is shielded by the shielding plate 14. However, if the tracking deviation is slight, the focused light passes through the opening 14a.
  • FIG. 4 is a cross-sectional view showing a configuration example of the light receiving portion 3 of the concentrating solar power generation module. It should be noted that each part shown in FIG. 4 is enlarged as appropriate for the convenience of structural explanation, and is not necessarily a diagram proportional to the actual dimensions (the same applies to the drawings after FIG. 5).
  • the light receiving portion 3 includes a ball lens 30, a protective plate 31, a support portion 32, a package 33, a cell 34, a lead frame 35 on the P side, a gold wire 36, a lead frame 37 on the N side, and a sealing portion 38. I have.
  • the light receiving unit 3 is mounted on the flexible printed wiring board 13.
  • a bypass diode is connected in parallel to the cell 34, but the illustration is omitted here.
  • the ball lens 30 is supported by the inner peripheral edge 31e of the upper end portion of the protective plate 31 mounted on the support portion 32 so that a gap in the optical axis Ax direction is formed between the ball lens 30 and the cell 34.
  • the protective plate 31 is, for example, a metal washer.
  • the support portion 32 is, for example, cylindrical and made of resin.
  • the support portion 32 is fixed on the flat package 33.
  • the package 33 is made of resin and holds the cell 34 and the lead frames 35 and 37.
  • the cell 34 is a power generation element that converts light energy into electromotive force, and includes a semiconductor having a PN junction.
  • the output of the cell 34 is drawn out to the lead frame 35 on the P side and to the lead frame 37 via the gold wire 36 on the N side.
  • the sealing portion 38 is a light-transmitting silicone resin, and is provided so as to fill the space formed between the ball lens 30 and the cell 34 inside the protective plate 31 and the support portion 32.
  • FIG. 5 is a cross-sectional view showing an example of a concentrating photovoltaic power generation unit (hereinafter, appropriately referred to as a “unit”) 1U as a basic configuration of an optical system constituting the module 1M.
  • FIG. 5 shows a state in which the unit 1U faces the sun as the array 1 tracks the sun, and the incident angle of the sunlight on the unit 1U is 0 degrees.
  • the ball lens 30 and the cell 34 of the light receiving unit 3 are on the optical axis Ax of the Fresnel lens 71, and the light collected by the Fresnel lens 71 passes through the opening 14a of the shielding plate 14 and the ball of the light receiving unit 3. It is taken into the lens 30 and guided to the cell 34. That is, the plurality of Fresnel lenses 71 are arranged so that the optical axis Ax is aligned with each of the plurality of light receiving units 3.
  • FIG. 6 is a plan view showing the back surface 12b of the condensing unit 12.
  • FIG. 7 is a cross-sectional view taken along the cutting line of arrow A1 of FIG. In FIG. 7, only the condensing unit 12 is shown, and other configurations of the module 1M are omitted.
  • the light collecting portion 12 is a glass plate 70, and a plurality of Fresnel lenses 71 and a reinforcing portion 61 are formed on the glass plate 70.
  • a plurality of Fresnel lenses 71 are formed in a matrix on the back surface 12b of the condensing unit 12.
  • Each of the plurality of Fresnel lenses 71 has a plurality of convex portions 711 which are convex regions formed concentrically. Further, each of the plurality of Fresnel lenses 71 has a positive refractive power. That is, each of the plurality of Fresnel lenses 71 is a positive lens.
  • the number of matrix-like regions of the Fresnel lens 71 shows two 3 ⁇ 4 12 regions, but in reality, as shown in FIG. 3, the number is larger.
  • the convex portion 711 of the Fresnel lens shown in FIG. 6 is also simplified for convenience of illustration, but is actually more numerous.
  • the reinforcing portion 61 includes a peripheral reinforcing portion 611 located at the peripheral edge of the condensing portion 12 (glass plate 70) and an intermediate reinforcing portion 612 located between the Fresnel lenses 71 adjacent to each other among the plurality of Fresnel lenses 71. Have.
  • the reinforcing portion 61 is a region having a thicker average thickness than the Fresnel lens 71.
  • a dotted line serving as a normal of the front surface 12a and the back surface 12b is provided in the condensing portion 12 for convenience. It is written as a partition line of. In reality, such a partition line does not have to exist.
  • the thickness of the reinforcing portion 61 is constant regardless of the location and is 3 mm. Therefore, the average thickness of the reinforcing portion 61 is also 3 mm.
  • a plurality of Fresnel lenses 71 and a reinforcing portion 61 are formed on the condensing portion 12 (glass plate 70). Since the average thickness of the reinforcing portion 61 is thicker than the average thickness of the plurality of Fresnel lenses 71, the bending rigidity of the condensing portion 12 can be increased by the reinforcing portion 61, and the bending of the condensing portion 12 can be suppressed.
  • the average thickness of the reinforcing portion 61 is 3 mm, and the average thickness of the plurality of Fresnel lenses 71 is 2 mm.
  • these numerical values are examples, and the average thickness of the reinforcing portion 61 is a plurality of Fresnel lenses. Other values may be used as long as they are thicker than the average thickness of 71.
  • the peripheral edge reinforcing portion 611 is provided on the peripheral edge portion of the glass plate 70, the bending rigidity of the light collecting portion 12 becomes stronger because the peripheral edge reinforcing portion 611 forms a frame shape. Further, since the intermediate reinforcing portion 612 is provided between the Fresnel lenses 71 adjacent to each other, the intermediate reinforcing portion 612 reinforces the central portion of the condensing portion 12, so that the bending rigidity of the condensing portion 12 is stronger. Become. Therefore, the bending of the condensing unit 12 can be suppressed more reliably.
  • the peripheral reinforcing portion 611 and the intermediate reinforcing portion 612 preferably have a shape that is longer in the thickness direction than in the width direction.
  • the peripheral edge reinforcing portion 611 and the intermediate reinforcing portion 612 are provided in the longest direction in the depth direction of the paper surface in FIG. 7, and are provided in the longest length direction in the thickness direction next to the depth direction.
  • the peripheral reinforcing portion 611 and the intermediate reinforcing portion 612 are provided longer in the thickness direction from the front surface 12a to the back surface 12b than in the width direction in which the plurality of Fresnel lenses 71 are arranged. ..
  • the area of the reinforcing portion 61 can be kept small, and the bending rigidity of the condensing portion 12 can be further increased.
  • the reinforcing portion 61 has a tip surface 61a provided along the back surface 12b of the condensing portion 12.
  • the front end surface 61a is a surface on the back surface 12b side of the peripheral reinforcing portion 611 and the intermediate reinforcing portion 612.
  • the plurality of Fresnel lenses 71 have a convex end portion 712.
  • the convex end portion 712 is the tip portion of the convex portion having the highest height from the surface 12a among the plurality of convex portions 711 of the Fresnel lens 71.
  • the convex end portion 712 is located at the center of the Fresnel lens 71, but the other convex portion 711 may be the convex end portion 712.
  • the convex end portion 712 is located on the surface 12a side of the tip surface 61a. Since the convex end portion 712 is at the highest position among the plurality of convex portions 711, the Fresnel lens 71 is provided so as to be recessed from the convex end portion 712 toward the surface 12a. That is, the height of the Fresnel lens 71 is lower than that of the tip surface 61a.
  • the convex end portion 712 may be provided at a height position that does not protrude from the tip surface 61a, and may be located at the same height position as the tip surface 61a. That is, the height of the Fresnel lens 71 may be the same as the tip surface 61a.
  • the plurality of Fresnel lenses 71 are provided recessed on the surface 12a side of the tip surface 61a of the reinforcing portion 61, and the convex end portion 712 of the Fresnel lens 71 is provided from the tip surface 61a of the reinforcing portion 61. Does not protrude. Therefore, when the plurality of condensing portions 12 are stacked during transportation or manufacturing of the condensing portion 12, the front end surface 61a of the reinforcing portion 61 overlaps with the surface 12a of the other condensing portion 12 adjacent to the back surface 12b side.
  • FIG. 8 is a schematic view showing an example of a manufacturing apparatus 80 for manufacturing the condensing unit 12 according to the present embodiment.
  • the manufacturing apparatus 80 includes a supply unit 81, a transport unit 82, an impression cylinder 83, and a press unit 84. A method of manufacturing the condensing unit 12 will be described with reference to FIG.
  • the supply unit 81 has a heating unit and a molding unit, the glass is melted by the heating unit, the molten glass is molded by the molding unit, and the long glass sheet 121 in the left-right direction of FIG. 8 is transferred to the transport unit 82.
  • the transport unit 82 has a plurality of long rollers in the width direction orthogonal to the paper surface of FIG. 8, and by rotationally driving some of the rollers, the glass sheet 121 is transported in the direction of the arrow AR1.
  • transportation direction AR1 the direction in which the glass sheet 121 is conveyed.
  • the impression cylinder 83 is a rotary cylinder that is long in the width direction, and the length in the width direction is longer than the length in the width direction of the glass sheet 121.
  • the impression cylinder 83 is provided on the transfer path of the glass sheet 121 so that the surface 121a of the glass sheet 121 conveyed by the transfer portion 82 and the peripheral surface of the impression cylinder 83 are in contact with each other.
  • the peripheral surface 831 of the impression cylinder 83 has a flat shape.
  • the impression cylinder 83 rotates in a direction in which the moving direction of the lower peripheral surface 831 coincides with the transport direction AR1 of the glass sheet 121 (counterclockwise in FIG. 8).
  • the press portion 84 is a rotary cylinder that is long in the width direction, and the length in the width direction is longer than the length in the width direction of the glass sheet 121.
  • the press portion 84 is provided on the transport path of the glass sheet 121 so that the back surface 121b of the glass sheet 121 transported by the transport portion 82 and the peripheral surface of the press portion 84 are in contact with each other. Further, the press portion 84 is provided below the impression cylinder 83 so that the impression cylinder 83 is in contact with the back surface 121b on the opposite side of the position where the impression cylinder 83 is in contact with the front surface 121a of the glass sheet 121. As shown in the enlarged view in FIG.
  • a plurality of recesses 841 are formed on the peripheral surface of the press portion 84.
  • the plurality of recesses 841 include a plurality of concentrically formed groove portions 842 and a rectangular groove portion 843.
  • the recess 841 has a shape in which the Fresnel lens 71 and the reinforcing portion 61 are inverted.
  • the groove portion 842 has an inverted shape of the convex portion 711, and the groove portion 843 has an inverted shape of the reinforcing portion 61.
  • the press portion 84 rotates in a direction in which the movement direction of the upper peripheral surface coincides with the transport direction AR1 of the glass sheet 121 (clockwise in FIG. 8).
  • the molten glass sheet 121 is sent out from the supply unit 81, and before the glass sheet 121 is completely cured, the impression cylinder 83 and the press are carried out by the transport unit 82. It is conveyed to a position in contact with the portion 84. Then, the impression cylinder 83 and the press portion 84 come into contact with the front surface 121a and the back surface 121b of the glass sheet 121 while rotating in a predetermined rotation direction. At this time, the glass sheet 121 is pressed on the back surface 121b side by the recess 841 of the press portion 84 while the front surface 121a side is supported by the flat peripheral surface 831 of the impression cylinder 83.
  • the inverted shape of the recess 841 (that is, the shape of the Fresnel lens 71 and the reinforcing portion 61) is transferred to the back surface 121b of the glass sheet 121, and a plurality of convex portions 711 and the reinforcing portion 61 are formed on the back surface 121b.
  • the glass sheet 121 after passing through the impression cylinder 83 and the press portion 84 is cut to an appropriate length to become one glass plate 70.
  • the condensing unit 12 having one glass plate 70 is obtained.
  • the implementation of the present disclosure is not limited to this, and the impression cylinder 83 is arranged below the glass sheet 121, the press portion 84 is arranged above the glass sheet 121, and the peripheral surface of the press portion 84 is the surface 121a of the glass sheet 121.
  • the shape of the Fresnel lens 71 may be formed on the surface 121a by contacting the surface 121a.
  • the Fresnel lens 71 and the reinforcing portion 61 can be integrally formed on one glass plate. As a result, it is possible to obtain a condensing unit 12 capable of suppressing bending.
  • FIG. 9 is a plan view showing the configuration of the back surface 12b of the condensing unit 12c according to the first modification of the embodiment.
  • This modification differs from the above-described embodiment in terms of the position of the reinforcing portion, and other points are common.
  • the light collecting portion 12c is a single glass plate 70c, and the glass plate 70c is formed with a Fresnel lens 72 and a reinforcing portion 62.
  • the Fresnel lens 72 has the same configuration as the Fresnel lens 71, and each has a plurality of convex portions 721.
  • the intermediate reinforcing portion 622 and the intermediate reinforcing portion 623 are located between the peripheral reinforcing portion 621 located at the peripheral edge portion of the condensing portion 12c and the Fresnel lens 72 adjacent to each other.
  • the intermediate reinforcing portion 623 is provided long in a direction intersecting the intermediate reinforcing portion 622.
  • the intermediate reinforcing portion 622 and the intermediate reinforcing portion 623 are arranged in a shape that crosses the inside of the peripheral edge reinforcing portion 621 while connecting one side of the peripheral edge reinforcing portion 621 and the other side facing the one side. Therefore, the bending of the condensing unit 12c can be suppressed more reliably.
  • FIG. 10 is a plan view showing the configuration of the back surface 12b of the condensing unit 12d according to the second modification of the embodiment.
  • This modification differs from the above-described embodiment in terms of the position of the reinforcing portion and the shape of the back surface side of the reinforcing portion, and other points are common.
  • the light collecting portion 12d is a single glass plate 70d, and the glass plate 70d is formed with a Fresnel lens 73 and a reinforcing portion 63.
  • the number of matrix-like regions of the Fresnel lens 73 is set to 12 of 3 ⁇ 4 for convenience of illustration, but in reality, as shown in FIG. 3, the number is larger.
  • FIG. 11 is an enlarged plan view showing a part of the back surface 12b of the condensing unit 12d.
  • FIG. 12 is a cross-sectional view taken along the cutting line indicated by the arrow A2 in FIG.
  • FIG. 12 for convenience of explanation, the dimensions and the like of the concave-convex shape are appropriately changed from FIG.
  • a partition line for convenience is drawn in the condensing portion 12d with a dotted line. There is no need for such a divider.
  • the Fresnel lens 73 is formed on the back surface 12b side of the condensing portion 12d.
  • the inside of the plurality of regions surrounded by the dotted line is a region that functions as a Fresnel lens 73, and the outside of the region is a region that functions as a reinforcing portion 63.
  • the reinforcing portion 63 has a peripheral reinforcing portion 631 and an intermediate reinforcing portion 632.
  • the peripheral edge reinforcing portion 631 is located on the peripheral edge portion of the light collecting portion 12d.
  • the intermediate reinforcing portion 632 is located between the Fresnel lenses 73 adjacent to each other and between the Fresnel lens 73 and the peripheral reinforcing portion 631. Similar to the embodiment, in this modification as well, the average thickness of the peripheral reinforcing portion 631 and the intermediate reinforcing portion 632 is thicker than the average thickness of the plurality of Fresnel lenses 73.
  • the Fresnel lens 73 includes a plurality of first convex portions 731 which are concentrically formed convex regions and a plurality of first groove portions 732 which are grooves located between the first convex portions 731 adjacent to each other.
  • the intermediate reinforcing portion 632 is a plurality of second groove portions 634 which are grooves located between a plurality of second convex portions 633 which are concentrically formed convex regions and a second convex portion 633 which is adjacent to each other. And have.
  • Each of the plurality of Fresnel lenses 73 has a positive refractive power. That is, each of the plurality of Fresnel lenses 73 is a positive lens. Further, the intermediate reinforcing portion 632 has a positive refractive power due to the uneven shape formed by the second convex portion 633 and the second groove portion 634. The light incident on the intermediate reinforcing portion 632 from the surface 12a side is refracted toward the center side of the concentric circles of the plurality of second convex portions 633, so that the light is focused toward the light receiving portion 3.
  • the depth d2 of the second groove portion 634 from the second convex portion 633 is shallower than the depth d1 of the first groove portion 732 from the first convex portion 731.
  • the average thickness of the intermediate reinforcing portion 632 is made thicker than the average thickness of the Fresnel lens 73.
  • the average of the arrangement intervals (pitch) of the second convex portions 633 (and the second groove portions 634) adjacent to each other in the left-right direction on the paper surface is the average of the arrangement intervals (and the first groove portions 731) of the first convex portions 731 (and the first groove portions 731) adjacent to each other. Narrower than. That is, the plurality of second convex portions 633 are arranged more densely than the plurality of first convex portions 731. With this configuration, even if the depth d2 is shallower than the depth d1, the light can be more reliably collected by the intermediate reinforcing portion 632 toward the center side.
  • the heights of the first convex portion 731 and the second convex portion 633 from the surface 12a side are the same.
  • the heights of the first convex portion 731 and the second convex portion 633 from the surface 12a side may be different.
  • the second convex portion 633 may be higher than the first convex portion 731.
  • the central portion C of the Fresnel lens 73 is shown.
  • the plurality of first convex portions 731 of the Fresnel lens 73 and the plurality of second convex portions 633 of the reinforcing portion 63 are formed concentrically around the central portion C of the Fresnel lens 73.
  • the plurality of second convex portions 633 are provided outside the central portion C with respect to the plurality of first convex portions 731 having the same center. That is, the second convex portion 633 is located farther from the central portion C than the first convex portion 731.
  • the intermediate reinforcing portion 632 is provided on the outside of the Fresnel lens 73. Then, the intermediate reinforcing portions 632 located on the outside of each Fresnel lens 73 are connected to each other to form a frame shape, so that the bending rigidity of the condensing portion 12d becomes stronger and the bending of the condensing portion 12d becomes stronger. It can be reliably suppressed.
  • the average thickness of the reinforcing portion 63 is thicker than the average thickness of the plurality of Fresnel lenses 73. Therefore, the reinforcing portion 63 can increase the bending rigidity of the condensing portion 12d and suppress the bending of the condensing portion 12d. Further, in this modification, since a part of the reinforcing portion 63 (intermediate reinforcing portion 632) also collects light on the light receiving portion 3, the reinforcing portion 63 suppresses the bending of the light collecting portion 12d and also collects the light collecting portion. The light intensity that 12d collects on the light receiving unit 3 can be further increased.
  • FIG. 13 is a plan view showing the configuration of the back surface 12b of the condensing unit 12e according to the third modification of the embodiment.
  • FIG. 14 is a cross-sectional view taken along the cutting line indicated by the arrow A3 in FIG.
  • the module 1Ma according to this modification only the housing 11a, the condensing unit 12e, one light receiving unit 3 and the flexible printed wiring board 13 are shown for simplification, and other configurations are omitted. ..
  • a part of the shape of the housing and the light collecting portion is different from that of the above embodiment, and other points are common.
  • the housing 11a has a bottom plate 111 and a frame body 112.
  • a support portion that comes into contact with the light collecting portion 12e is provided on the upper portion of the frame body 112, and the frame body 112 supports the light collecting portion 12e upward by the support portion.
  • a protrusion 113 protruding upward is formed on the support portion.
  • the protrusion 113 is formed in a triangular shape above the support.
  • a caulking material such as silicone may be thinly provided on the surface of the protrusion 113 along the shape of the protrusion 113.
  • the light collecting portion 12e has one glass plate 70e, and the glass plate 70e is formed with a Fresnel lens 71 and a reinforcing portion 61.
  • the glass plate 70e has a contact portion that comes into contact with the support portion of the housing 11a.
  • the back surface 12b side of the peripheral edge reinforcing portion 611 of the reinforcing portion 61 is the contact portion.
  • a fitting portion 91 recessed on the surface 12a side is formed in the contact portion. As shown in FIG. 13, the fitting portion 91 is formed over the entire circumference of the peripheral edge reinforcing portion 611 (that is, the contact portion).
  • the fitting portion 91 may be formed intermittently in a part of the contact portion.
  • fitting portion 91 may be formed only at the four corners of the peripheral edge reinforcing portion 611. Further, although the fitting portion 91 is provided in a single layer over the entire circumference of the peripheral edge reinforcing portion 611, the fitting portion 91 may be provided in a double layer.
  • FIG. 15A is an enlarged cross-sectional view showing a part including the fitting portion 91 of FIG.
  • the cross-sectional shape of the fitting portion 91 is a shape obtained by reversing the cross-sectional shape of the protrusion 113.
  • the housing 11a supports the glass plate 70e by the support portion in a state where the fitting portion 91 is fitted to the protrusion 113.
  • the contact area between the support portion and the glass plate 70e increases, so that the adhesive strength between the housing 11a and the glass plate 70e can be improved, and the reliability of the module 1Ma can be further increased. Can be done.
  • the fitting portion 91 facilitates the alignment between the housing 11a and the glass plate 70e, and it is possible to suppress a decrease in light collection performance and a decrease in yield due to a misalignment between the housing 11a and the glass plate 70e. Further, since the contact surface between the support portion and the glass plate 70e has an uneven shape, it is possible to suppress rainwater and dust from entering the housing 11a from the outside, and it is possible to improve the waterproof and dustproof performance of the module 1Ma.
  • the shapes of the protrusions and the fitting portions can be adopted as the shapes of the protrusions and the fitting portions.
  • 15B and 15C are enlarged cross-sectional views showing a protrusion and a fitting portion according to a variation of the third modification.
  • the protrusion 113a may be formed in a rectangular shape above the support.
  • the cross-sectional shape of the fitting portion 91a is provided by reversing the cross-sectional shape of the protrusion 113a.
  • various shapes may be adopted for the protrusion and the fitting portion.
  • the protrusion 113b may be formed in a trapezoidal shape above the support.
  • the cross-sectional shape of the fitting portion 91b may be a shape that is larger than the shape obtained by reversing the cross-sectional shape of the protrusion 113b.
  • the width of the paper surface of the fitting portion 91b in the left-right direction is slightly larger than the width of the protrusion 113b, and when the fitting portion 91b is fitted to the protrusion 113b, a slight gap (play) is generated in the width direction.
  • the gap is provided to be smaller than the tolerance allowed for the alignment accuracy between the glass plate 70e and the housing 11a. By providing the gap in this way, it is possible to facilitate the fitting between the protrusion 113b and the fitting portion 91b.
  • 15D and 15E are cross-sectional views showing modules 1Mb and 1Mc according to variations.
  • FIGS. 15D and 15E for the modules 1Mb and 1Mc related to the variation, only the housings 11c and 11d, the condensing unit 12f and 12g, one light receiving unit 3 and the flexible printed wiring board 13 are shown for simplification. The configuration of is omitted.
  • the light collecting portion 12f has one glass plate 70f, and the reinforcing portion is not formed on the glass plate 70f.
  • a plurality of Fresnel lenses 74 having a plurality of concentrically formed convex portions 741 are formed on the back surface 12b of the concentrating portion 12f.
  • a support portion for supporting the glass plate 70f is provided on the upper portion of the frame body 112 of the housing 11c, and a protrusion 113c is formed on the support portion.
  • a fitting portion 91c having a cross-sectional shape obtained by reversing the cross-sectional shape of the protrusion 113c is provided on the peripheral edge portion of the light collecting portion 12f.
  • the condensing portion 12g has one glass plate 70g, and the reinforcing portion is not formed on the glass plate 70g.
  • a plurality of Fresnel lenses 74 having a plurality of concentrically formed convex portions 741 are formed on the back surface 12b of the concentrating portion 12g.
  • a support portion for supporting the glass plate 70 g is provided on the upper portion of the frame body 112 of the housing 11d, and a protrusion 113d is formed on the support portion.
  • the protrusion 113d has a stepped shape.
  • a fitting portion 91d having a cross-sectional shape obtained by reversing the cross-sectional shape of the protrusion 113d is provided on the peripheral edge portion of the light collecting portion 12g.
  • a reinforcing portion may be formed on the glass plate 70 g.
  • FIG. 16 is a plan view showing the configuration of the back surface 12b of the condensing unit 12h according to the fourth modification of the embodiment. This modification is different from the above embodiment in that an alignment mark is formed on the condensing portion, and other points are common.
  • the condensing portion 12h has one glass plate 70h, and the glass plate 70h is formed with a reinforcing portion 61 and a plurality of Fresnel lenses 71.
  • the reinforcing portion 61 has a peripheral reinforcing portion 611 and an intermediate reinforcing portion 612.
  • a plurality of alignment marks 92 are formed on the peripheral reinforcing portion 611 and the intermediate reinforcing portion 612, respectively.
  • the alignment mark 92 is a mark used for positioning when the light collecting portion 12h is provided on the housing 11. The positioning method will be described later.
  • FIG. 17 is a cross-sectional view of the alignment mark 92 portion in the condensing portion 12h.
  • the alignment mark 92 has a cross-sectional shape protruding from the back surface 12b of the glass plate 70h toward the light receiving portion 3.
  • the cross-sectional shape of the alignment mark 92 is not limited to the shape shown in FIG. 17, and may have a cross-sectional shape recessed from the back surface 12b to the front surface 12a of the glass plate 70h.
  • the alignment mark 92 is formed when the Fresnel lens 71 is press-molded by the press portion 84. That is, in the fourth modification, a recess having an inverted shape of the alignment mark 92 is formed in the press portion 84, and is formed in the same process as the Fresnel lens 71 when the condensing portion 12h is manufactured.
  • the alignment mark 92 has a cross shape, but the shape of the alignment mark 92 is not limited to this, and may be a circular shape or a polygonal shape. Further, the alignment marks 92 may be arranged at two or more places on the glass plate 70h, and the number (6 pieces) shown in FIG. 16 is an example. Further, although all the alignment marks 92 are formed in the reinforcing portion 61 in FIG. 16, the position where the alignment marks 92 are arranged is not limited to this, and at least one alignment mark 92 is provided in the reinforcing portion 61. Just do it.
  • FIG. 18 is an explanatory view showing an outline of the configuration of the control drive system together with a perspective view showing the housing 11 and the condensing unit 12h before alignment.
  • the housing 11 and the condensing unit 12h are separately placed on the table 56.
  • the surface of the table 56 is defined as an XY plane.
  • the housing 11 only the four light receiving units 3 used for alignment are shown.
  • Other members a plurality of other light receiving portions 3, a flexible printed wiring board 13 and a shielding plate 14
  • these other members are already housed in the housing 11. ..
  • the control drive system includes a camera 51, a drive unit 52 that drives the camera 51, a control unit 53 that controls the drive unit 52 and receives an image pickup signal from the camera 51, and an operation unit that gives an operation command to the control unit 53.
  • a storage unit 55 that is accessible from the control unit 53 and stores information is provided.
  • the control unit 53 includes, for example, a computer, and the computer executes software (computer program) to realize a necessary control function.
  • the software is stored in the storage unit 55.
  • the condensing unit 12h and the housing 11 are first prepared and placed on the table 56 (first step). After the first step, the alignment mark 92 and the light receiving unit 3 are imaged by the camera 51, and the second step of storing the respective positions in the storage unit 55 is performed.
  • the control unit 53 controls the drive unit 52 to move the camera 51 and take an image of the condensing unit 12h according to the start command given from the operation unit 54 to the control unit 53.
  • the camera 51 takes an image of the condensing unit 12h from a direction perpendicular to the XY plane.
  • the control unit 53 detects the alignment mark 92 in the image captured by the camera 51, the control unit 53 stores the X and Y coordinates (that is, the position of the alignment mark 92) in the storage unit 55.
  • the origin is set somewhere on the table 56, and the coordinates of the six alignment marks 92 are stored as (X Sn , Y Sn), respectively.
  • n is an integer from 1 to 6.
  • the control unit 53 controls the drive unit 52 to move the camera 51 while taking an image of the housing 11.
  • the camera 51 takes an image of the housing 11 from a direction perpendicular to the XY plane.
  • the camera 51 images two or more light receiving units 3 located at predetermined locations in the housing 11. In this modification, the four light receiving units 3 shown in FIG. 18 are imaged.
  • the light receiving unit 3 can be easily detected in the image due to the presence of the ball lens 30.
  • the control unit 53 stores the X and Y coordinates (that is, the position of the light receiving unit 3) at the center of the light receiving unit 3.
  • the origin is set somewhere on the table 56, and the coordinates of the four light receiving units 3 are stored as (X Rm , Y Rm), respectively.
  • m is an integer from 1 to 4.
  • a third step of aligning the housing 11 and the condensing unit 12h is performed based on the position of the alignment mark 92 stored in the second step and the position of the light receiving unit 3.
  • FIG. 19 is an explanatory diagram showing a state in the middle of the third step.
  • a perspective view showing the housing 11 and the condensing unit 12h being aligned is shown together with an outline of the configuration of the control drive system.
  • FIG. 19 illustrates the manipulator 57 in addition to the configuration of FIG.
  • the manipulator 57 is driven by a drive unit 52 that receives a command from the control unit 53.
  • the manipulator 57 can move in the X and Y directions, move (elevate) in the direction perpendicular to the XY plane, rotate along the XY plane, and attract / release the light collecting unit 12h.
  • the drive unit 52 drives the manipulator 57 according to the operation command of the control unit 53 to bring the manipulator 57 into contact with the surface 12a of the light collecting unit 12h.
  • the manipulator 57 adsorbs the surface 12a of the condensing unit 12h and lifts the condensing unit 12h vertically.
  • the drive unit 52 drives the manipulator 57 to move the light collecting unit 12h to the upper part of the housing 11, and moves the manipulator 57 based on the coordinate information of the alignment mark 92 and the light receiving unit 3 stored in the second step.
  • the housing 11 and the condensing unit 12h are aligned so that the plurality of light receiving units 3 and the plurality of Fresnel lenses 71 are arranged so that the optical axes Ax (see FIG. 5) are aligned with each other.
  • the manipulator 57 is lowered, and the condensing unit 12h is placed on the support portion of the housing 11. With the above, the third step is completed.
  • the center position of the Fresnel lens 71 corresponding to the light receiving unit 3 stored in the second step of the light collecting unit 12h is calculated based on the position of the alignment mark 92 stored in the second step. For example, among the alignment marks 92 located at the four corners of the condensing portion 12h in FIG. 18, the center coordinates of the Fresnel lens 71 located between them are obtained from the coordinate information of the alignment marks 92a and 92b.
  • the manipulator 57 is driven and the condensing unit 12h is placed on the support portion of the housing 11 so that the center coordinates and the coordinates of the light receiving portion 3a of the four light receiving portions 3 match. ..
  • the alignment mark 92 is formed on the reinforcing portion 61, so that when the condensing portion 12h is provided on the upper part of the housing 11, the condensing portion 12h And the light receiving unit 3 can be easily aligned with each other. Further, since at least one alignment mark 92 is formed on the reinforcing portion 61, optical loss due to light scattering or shading due to the alignment mark 92 can be suppressed.
  • the alignment mark 92 is formed by the pressing unit 84 in the same process as the Fresnel lens 71 during the manufacturing process of the condensing unit 12h shown in FIG. Therefore, the positional relationship between the Fresnel lens 71 and the alignment mark 92 is constant, the center position of the Fresnel lens 71 can be calculated more accurately from the alignment mark 92, and the alignment can be performed with higher accuracy. ..

Abstract

This concentrator photovoltaic module is provided with a housing, a plurality of light receiving parts provided on the bottom surface of the housing, and a light condensing part (12) provided on top of the housing. The light condensing part (12) has at least one glass plate (70), and on the glass plate (70), a plurality of Fresnel lenses (71) disposed with the respective optical axes thereof aligning with the plurality of light receiving parts, and a reinforcing part (61) having a larger average thickness than the plurality of Fresnel lenses (71) are formed.

Description

集光型太陽光発電モジュール、集光型太陽光発電装置及び集光型太陽光発電モジュールの製造方法Manufacturing method of concentrating solar power generation module, concentrating solar power generation device and concentrating solar power generation module
 本開示は、集光型太陽光発電モジュール、集光型太陽光発電装置及び集光型太陽光発電モジュールの製造方法に関する。
 本出願は、2019年12月2日出願の日本出願第2019-217902号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to a method for manufacturing a concentrating photovoltaic power generation module, a concentrating photovoltaic power generation device, and a concentrating photovoltaic power generation module.
This application claims priority based on Japanese Application No. 2019-217902 filed on December 2, 2019, and incorporates all the contents described in the Japanese application.
 集光型太陽光発電モジュールは、フレネルレンズにより太陽光をセルに集光して発電する装置である(例えば、特許文献1(図1)参照)。多数のフレネルレンズは、マトリックス状に並んで1枚のシート状になり、ガラス板に貼り付けられて、集光部を構成している。寸法の数値例を挙げると、フレネルレンズの一領域は一辺が50mmの正方形、これに対して、セルは一辺が3.5mmの正方形である。 The concentrating photovoltaic power generation module is a device that condenses sunlight into a cell with a Fresnel lens to generate electricity (see, for example, Patent Document 1 (FIG. 1)). Many Fresnel lenses are arranged in a matrix to form a single sheet, which is attached to a glass plate to form a condensing portion. To give a numerical example of the dimensions, one area of the Fresnel lens is a square with a side of 50 mm, whereas the cell is a square with a side of 3.5 mm.
 特許文献2には、ガラス製のフレネルレンズとカバーガラスとが一体化されたフレネルレンズ構造体が開示されている。特許文献3には、ガラス材料に対してプレス成形を施すことでフレネルレンズを得る技術が開示されている。プレス成形としては、溶融ガラスを直接金型に流し込み、加圧成形を行うダイレクトプレス成形や、一旦ガラス化して得られた成形体を再加熱し、軟化変形させるリヒートプレス成形が挙げられている。 Patent Document 2 discloses a Fresnel lens structure in which a glass Fresnel lens and a cover glass are integrated. Patent Document 3 discloses a technique for obtaining a Fresnel lens by press-molding a glass material. Examples of the press molding include direct press molding in which molten glass is directly poured into a mold and pressure molding is performed, and reheat press molding in which a molded product once vitrified is reheated to be softened and deformed.
国際公開番号WO2015/102093号公報International Publication No. WO2015 / 102093 特開2012-212696号公報Japanese Unexamined Patent Publication No. 2012-212696 特開2014-108908号公報Japanese Unexamined Patent Publication No. 2014-108908
 本開示の集光型太陽光発電モジュールは、筐体と、前記筐体の底面に設けられた複数の受光部と、前記筐体の上部に設けられた集光部と、を備え、前記集光部は、少なくとも1枚のガラス板を有し、前記ガラス板には、複数の前記受光部のそれぞれと光軸を合わせて配置された複数のフレネルレンズと、複数の前記フレネルレンズよりも平均厚みが厚い補強部とが形成されている集光型太陽光発電モジュールである。 The concentrating solar power generation module of the present disclosure includes a housing, a plurality of light receiving units provided on the bottom surface of the housing, and a condensing unit provided on the upper part of the housing. The light unit has at least one glass plate, and the glass plate has a plurality of Fresnel lenses arranged so as to align the optical axis with each of the plurality of light receiving units, and is more average than the plurality of Fresnel lenses. It is a concentrating solar power generation module in which a thick reinforcing portion is formed.
 本開示の集光型太陽光発電モジュールの製造方法は、複数の受光部を底面に備える筐体の上部に、複数のフレネルレンズが配置されたガラス板を有する集光部を位置合わせして乗せる工程を含む、集光型太陽光発電モジュールの製造方法であって、複数の前記フレネルレンズと、複数の前記フレネルレンズよりも平均厚みが厚い補強部と、前記集光部を前記筐体に設けるときの位置決めに使用される少なくとも2個のアライメントマークと、が形成されている少なくとも1枚の前記ガラス板を有する前記集光部を準備する第1工程と、前記ガラス板を撮像して前記アライメントマークを検出し、その位置を記憶するとともに、前記アライメントマークと位置的に関連付けるべき前記受光部を撮像してその位置を記憶する第2工程と、前記第2工程によって記憶した前記アライメントマークの位置と、前記第2工程によって記憶した前記受光部の位置とに基づいて、複数の前記受光部と複数の前記フレネルレンズとがそれぞれ光軸を合わせて配置されるように、前記筐体と前記集光部とを位置合わせする第3工程と、を備え、前記第1工程は、前記補強部に少なくとも1つの前記アライメントマークを有する前記集光部を準備する、集光型太陽光発電モジュールの製造方法である。 In the method of manufacturing the condensing type solar power generation module of the present disclosure, a condensing portion having a glass plate on which a plurality of Fresnel lenses are arranged is aligned and placed on an upper portion of a housing having a plurality of light receiving portions on the bottom surface. A method of manufacturing a condensing type solar power generation module including a step, wherein a plurality of the Fresnel lenses, a reinforcing portion having an average thickness thicker than the plurality of Fresnel lenses, and the condensing portion are provided in the housing. The first step of preparing the condensing unit having at least one glass plate on which at least two alignment marks used for positioning are formed, and the alignment by imaging the glass plate. The second step of detecting the mark and memorizing the position, imaging the light receiving portion to be positionally associated with the alignment mark and memorizing the position, and the position of the alignment mark memorized by the second step. The housing and the collection so that the plurality of the light receiving portions and the plurality of Fresnel lenses are arranged with their optical axes aligned with each other based on the positions of the light receiving portions stored in the second step. Manufacture of a condensing solar power generation module comprising a third step of aligning the light portion, wherein the first step prepares the condensing portion having at least one of the alignment marks on the reinforcing portion. The method.
実施形態に係る完成した状態の集光型太陽光発電装置を受光面側から見た斜視図である。It is a perspective view which looked at the concentrating type solar power generation apparatus in a completed state which concerns on embodiment from the light receiving surface side. 実施形態に係る組立途中の状態の集光型太陽光発電装置を受光面側から見た斜視図である。It is a perspective view which looked at the concentrating type solar power generation apparatus in the state of being assembled which concerns on embodiment from the light receiving surface side. 実施形態に係る集光型太陽光発電モジュールの構成を示す斜視図である。It is a perspective view which shows the structure of the concentrating type photovoltaic power generation module which concerns on embodiment. 実施形態に係る受光部の構成を示す断面図である。It is sectional drawing which shows the structure of the light receiving part which concerns on embodiment. 実施形態に係る集光型太陽光発電ユニットの構成を示す断面図である。It is sectional drawing which shows the structure of the concentrating type photovoltaic power generation unit which concerns on embodiment. 実施形態に係る集光部の裏面の構成を示す平面図である。It is a top view which shows the structure of the back surface of the condensing part which concerns on embodiment. 図6の矢印A1で示す切断線上の断面図である。It is sectional drawing on the cutting line shown by the arrow A1 of FIG. 実施形態に係る集光部を製造する製造装置を示す模式図である。It is a schematic diagram which shows the manufacturing apparatus which manufactures the condensing part which concerns on embodiment. 第1変形例に係る集光部の裏面の構成を示す平面図である。It is a top view which shows the structure of the back surface of the condensing part which concerns on 1st modification. 第2変形例に係る集光部の裏面の構成を示す平面図である。It is a top view which shows the structure of the back surface of the condensing part which concerns on 2nd modification. 第2変形例に係る集光部の裏面の一部を拡大して示す平面図である。It is a top view which shows the part of the back surface of the condensing part which concerns on 2nd modification by enlarging. 図11の矢印A2で示す切断線上の一部を拡大して示す断面図である。It is sectional drawing which shows the part on the cutting line shown by the arrow A2 of FIG. 11 enlarged. 第3変形例に係る集光部の裏面の構成を示す平面図である。It is a top view which shows the structure of the back surface of the condensing part which concerns on 3rd modification. 図13の矢印A3で示す切断線上の断面図である。It is sectional drawing on the cutting line shown by the arrow A3 of FIG. 図14の一部を拡大して示す断面図である。It is sectional drawing which shows the part of FIG. 14 enlarged. 第3変形例のバリエーションを示す断面図である。It is sectional drawing which shows the variation of the 3rd modification. 第3変形例のバリエーションを示す断面図である。It is sectional drawing which shows the variation of the 3rd modification. 第3変形例のバリエーションを示す断面図である。It is sectional drawing which shows the variation of the 3rd modification. 第3変形例のバリエーションを示す断面図である。It is sectional drawing which shows the variation of the 3rd modification. 第4変形例に係る集光部の裏面の構成を示す平面図である。It is a top view which shows the structure of the back surface of the condensing part which concerns on 4th modification. 第4変形例に係る集光部におけるアライメントマーク部分の断面図である。It is sectional drawing of the alignment mark part in the condensing part which concerns on 4th modification. 第4変形例に係る集光型太陽光発電モジュールの製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of the concentrating type photovoltaic power generation module which concerns on 4th modification. 第4変形例に係る集光型太陽光発電モジュールの製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of the concentrating type photovoltaic power generation module which concerns on 4th modification.
 [発明が解決しようとする課題]
 集光型太陽光発電モジュールにおいて、集光部に含まれる複数のフレネルレンズは、複数の受光部のそれぞれと光軸を合わせて配置される。集光部は、光学損失を低くし、かつ安価に製造するために、比較的薄い平板形状(例えば、厚み3mm)で設けられる場合がある。この場合に、集光部に多くのフレネルレンズを配置すると、集光部の面積が大きくなり、集光部の自重により集光部が撓むおそれがある。また、集光部に強風が吹いた場合にも、集光部が撓むおそれがある。集光部が撓むと、フレネルレンズの位置が撓みの無い状態から移動するため、フレネルレンズの集光位置が受光部からずれてしまい、受光部における発電量が低下する。したがって、撓みによる発電量の低下を防止するために、集光部の撓みを抑制する必要がある。
[Problems to be solved by the invention]
In the condensing type photovoltaic power generation module, the plurality of Fresnel lenses included in the condensing unit are arranged so as to align the optical axis with each of the plurality of light receiving units. The light collecting portion may be provided in a relatively thin flat plate shape (for example, a thickness of 3 mm) in order to reduce optical loss and manufacture at low cost. In this case, if many Fresnel lenses are arranged in the condensing portion, the area of the condensing portion becomes large, and the condensing portion may bend due to its own weight. Further, even when a strong wind blows on the condensing portion, the condensing portion may bend. When the condensing portion bends, the position of the Fresnel lens moves from the state where there is no bending, so that the condensing position of the Fresnel lens shifts from the light receiving portion, and the amount of power generation in the light receiving portion decreases. Therefore, in order to prevent a decrease in the amount of power generation due to bending, it is necessary to suppress bending of the condensing portion.
 かかる課題に鑑み、本開示は、集光型太陽光発電モジュールにおいて、集光部の撓みを抑制することを目的とする。 In view of such a problem, the present disclosure aims to suppress the bending of the condensing portion in the condensing type photovoltaic power generation module.
 [発明の効果]
 本開示によれば、集光型太陽光発電モジュールにおいて、集光部の撓みを抑制することができる。
[Effect of the invention]
According to the present disclosure, in the concentrating solar power generation module, bending of the condensing portion can be suppressed.
 [本開示の実施形態の説明]
 本開示の実施形態には、その要旨として、少なくとも以下のものが含まれる。
 (1)本開示の集光型太陽光発電モジュールは、筐体と、前記筐体の底面に設けられた複数の受光部と、前記筐体の上部に設けられた集光部と、を備え、前記集光部は、少なくとも1枚のガラス板を有し、前記ガラス板には、複数の前記受光部のそれぞれと光軸を合わせて配置された複数のフレネルレンズと、複数の前記フレネルレンズよりも平均厚みが厚い補強部とが形成されている。
[Explanation of Embodiments of the present disclosure]
The embodiments of the present disclosure include at least the following as a gist thereof.
(1) The condensing type solar power generation module of the present disclosure includes a housing, a plurality of light receiving portions provided on the bottom surface of the housing, and a condensing unit provided on the upper part of the housing. The condensing unit has at least one glass plate, and the glass plate includes a plurality of Fresnel lenses arranged with their respective optical axes aligned with each of the plurality of light receiving units, and a plurality of the Fresnel lenses. A reinforcing portion having a thicker average thickness than that of the reinforcing portion is formed.
 本開示の集光型太陽光発電モジュールの集光部は、少なくとも1枚のガラス板を有する。前記ガラス板には複数のフレネルレンズと、補強部とが形成される。補強部の平均厚みは複数のフレネルレンズの平均厚みよりも厚いため、補強部により集光部の撓みを抑制することができる。 The condensing unit of the condensing type photovoltaic power generation module of the present disclosure has at least one glass plate. A plurality of Fresnel lenses and a reinforcing portion are formed on the glass plate. Since the average thickness of the reinforcing portion is thicker than the average thickness of the plurality of Fresnel lenses, the reinforcing portion can suppress the bending of the condensing portion.
 (2)前記(1)の集光型太陽光発電モジュールにおいて、好ましくは、前記ガラス板は、太陽の方向を向く表面と、前記表面の反対側に位置し、前記受光部の方向を向く裏面とを有し、前記補強部は、前記裏面に沿って設けられた先端面を有し、複数の前記フレネルレンズは、前記先端面よりも前記表面側又は前記先端面と同じ高さ位置に位置する凸端部をそれぞれ有し、複数の前記フレネルレンズは、前記凸端部から前記表面側に凹んで設けられている。 (2) In the concentrating photovoltaic power generation module of (1), preferably, the glass plate is located on the opposite side of the surface facing the sun and the back surface facing the light receiving portion. The reinforcing portion has a tip surface provided along the back surface, and the plurality of Fresnel lenses are located on the front surface side of the tip surface or at the same height position as the tip surface. Each of the convex end portions is provided, and the plurality of Fresnel lenses are provided so as to be recessed from the convex end portion toward the surface side.
 この場合、複数のフレネルレンズは、補強部の先端面よりも表面側に凹んで設けられ、フレネルレンズの凸端部は補強部の先端面から突出しない。このような構成とすることで、集光部の運搬時や製造時に複数の集光部を重ねる際に、補強部の先端面が裏面側に隣接して重なる他の集光部の表面と接触するため、複数のフレネルレンズが他の集光部の表面と接触することを防止することができる。これにより、フレネルレンズに傷や欠けが生じることを防止しつつ、複数の集光部を重ねることができるため、集光部の運搬効率や製造効率を向上させることができる。 In this case, the plurality of Fresnel lenses are provided so as to be recessed on the surface side of the tip surface of the reinforcing portion, and the convex end portion of the Fresnel lens does not protrude from the tip surface of the reinforcing portion. With such a configuration, when a plurality of condensing portions are stacked during transportation or manufacturing of the condensing portion, the front end surface of the reinforcing portion comes into contact with the surface of another condensing portion that overlaps adjacent to the back surface side. Therefore, it is possible to prevent the plurality of Fresnel lenses from coming into contact with the surface of other condensing portions. As a result, it is possible to stack a plurality of condensing portions while preventing scratches and chips from occurring on the Fresnel lens, so that it is possible to improve the transport efficiency and manufacturing efficiency of the condensing portions.
 (3)前記(1)又は(2)の集光型太陽光発電モジュールにおいて、好ましくは、前記フレネルレンズは、同心円状に形成された凸状の領域である複数の第1凸部と、互いに隣接する前記第1凸部の間にそれぞれ位置する溝である複数の第1溝部と、を有し、前記補強部は、同心円状に形成された凸状の領域である複数の第2凸部と、互いに隣接する前記第2凸部の間にそれぞれ位置する溝である複数の第2溝部と、を有し、前記第2溝部の前記第2凸部からの深さは、前記第1溝部の前記第1凸部からの深さよりも浅い。 (3) In the concentrating photovoltaic power generation module according to (1) or (2), preferably, the Fresnel lens is connected to each other with a plurality of first convex portions which are convex regions formed concentrically. The reinforcing portion has a plurality of first groove portions which are grooves located between the adjacent first convex portions, and the reinforcing portion is a plurality of second convex portions which are convex regions formed concentrically. And a plurality of second groove portions, which are grooves located between the second convex portions adjacent to each other, and the depth of the second groove portion from the second convex portion is the first groove portion. It is shallower than the depth from the first convex portion of the above.
 この場合、補強部はフレネルレンズの第1溝部よりも深さが浅い複数の第2溝部を有し、補強部においても受光部への集光を行うため、補強部により集光部の撓みを抑制しつつ、集光部が受光部へ集光する光強度をより強くすることができる。 In this case, the reinforcing portion has a plurality of second groove portions having a depth shallower than that of the first groove portion of the Fresnel lens, and the reinforcing portion also collects light to the light receiving portion. While suppressing it, the light intensity that the condensing unit condenses on the light receiving unit can be further increased.
 (4)前記(3)の集光型太陽光発電モジュールにおいて、好ましくは、複数の前記第1凸部及び複数の前記第2凸部は、前記フレネルレンズの中心部を中心とした同心円状に形成され、複数の前記第2凸部は、複数の前記第1凸部よりも前記中心部から外側に設けられている。この場合、フレネルレンズの外側に補強部が設けられる。それぞれのフレネルレンズの外側に位置する補強部同士がそれぞれ接続し、枠形状を形成することで、集光部の曲げ剛性がより強くなり、集光部の撓みをより確実に抑制することができる。 (4) In the concentrating photovoltaic power generation module of the above (3), preferably, the plurality of the first convex portions and the plurality of the second convex portions are concentric circles centered on the central portion of the Fresnel lens. The plurality of second convex portions are formed, and the plurality of second convex portions are provided outside the central portion with respect to the plurality of the first convex portions. In this case, a reinforcing portion is provided on the outside of the Fresnel lens. By connecting the reinforcing portions located on the outside of each Fresnel lens to form a frame shape, the bending rigidity of the condensing portion becomes stronger, and the bending of the condensing portion can be suppressed more reliably. ..
 (5)前記(1)から(4)のいずれかの集光型太陽光発電モジュールにおいて、好ましくは、少なくとも一部の前記補強部は、複数の前記フレネルレンズのうち互いに隣接する前記フレネルレンズの間に設けられている。この場合、フレネルレンズの間に設けられた補強部が集光部の中央部分を補強するため、集光部の曲げ剛性がより強くなり、集光部の撓みをより確実に抑制することができる。 (5) In the concentrating photovoltaic power generation module according to any one of (1) to (4), preferably, at least a part of the reinforcing portions of the Fresnel lens adjacent to each other among the plurality of Fresnel lenses. It is provided between them. In this case, since the reinforcing portion provided between the Fresnel lenses reinforces the central portion of the condensing portion, the bending rigidity of the condensing portion becomes stronger, and the bending of the condensing portion can be suppressed more reliably. ..
 (6)前記(1)から(5)のいずれかの集光型太陽光発電モジュールにおいて、好ましくは、少なくとも一部の前記補強部は、前記ガラス板の周縁部に設けられている。この場合、ガラス板の周縁部において補強部同士がそれぞれ接続し、枠形状を形成することで、集光部の曲げ剛性がより強くなり、集光部の撓みをより確実に抑制することができる。 (6) In any of the concentrating solar power generation modules (1) to (5), preferably, at least a part of the reinforcing portion is provided on the peripheral edge portion of the glass plate. In this case, by connecting the reinforcing portions to each other at the peripheral edge of the glass plate to form a frame shape, the bending rigidity of the condensing portion becomes stronger, and the bending of the condensing portion can be suppressed more reliably. ..
 (7)前記(1)から(6)のいずれかの集光型太陽光発電モジュールにおいて、好ましくは、前記筐体は、前記ガラス板を上方に支持する支持部を有し、前記ガラス板は、前記支持部と接触する接触部を有し、前記接触部は、前記支持部と嵌合する嵌合部を有する。この場合、嵌合部により支持部とガラス板との接触面積が増えるため、筐体とガラス板との接着強度を向上することができ、集光型太陽光発電モジュールの信頼性をより高くすることができる。また、嵌合部により筐体とガラス板との位置合わせが容易になり、筐体とガラス板との位置ずれによる集光性能の低下や歩留まり低下を抑制することができる。 (7) In the concentrating photovoltaic power generation module according to any one of (1) to (6), preferably, the housing has a support portion that supports the glass plate upward, and the glass plate is The contact portion has a contact portion that comes into contact with the support portion, and the contact portion has a fitting portion that fits with the support portion. In this case, since the contact area between the support portion and the glass plate is increased by the fitting portion, the adhesive strength between the housing and the glass plate can be improved, and the reliability of the concentrating photovoltaic power generation module is further improved. be able to. In addition, the fitting portion facilitates the alignment between the housing and the glass plate, and it is possible to suppress a decrease in light collection performance and a decrease in yield due to a misalignment between the housing and the glass plate.
 (8)前記(1)から(7)のいずれかの集光型太陽光発電モジュールにおいて、好ましくは、前記ガラス板は、前記集光部を前記筐体に設けるときの位置決めに使用される少なくとも2個のアライメントマークを有し、少なくとも1つの前記アライメントマークは、前記補強部に設けられている。この場合、補強部にアライメントマークが形成されることで、集光部を筐体の上部に設ける際、集光部と受光部との位置合わせを容易にすることができる。また、少なくとも1つのアライメントマークは補強部に形成されるため、アライメントマークによる光散乱や遮光による光学損失を抑制することができる。 (8) In the concentrating photovoltaic power generation module according to any one of (1) to (7), preferably, the glass plate is at least used for positioning when the condensing portion is provided in the housing. It has two alignment marks, and at least one of the alignment marks is provided on the reinforcing portion. In this case, by forming the alignment mark on the reinforcing portion, it is possible to facilitate the alignment between the condensing portion and the light receiving portion when the condensing portion is provided on the upper part of the housing. Further, since at least one alignment mark is formed on the reinforcing portion, it is possible to suppress light scattering due to the alignment mark and optical loss due to shading.
 (9)本開示の集光型太陽光発電装置は、前記(1)から(8)のいずれかの集光型太陽光発電モジュールを複数個集合して構成されるアレイを備える集光型太陽光発電装置である。本開示の集光型太陽光発電装置において、集光部には複数のフレネルレンズ及び補強部が形成されるため、集光部の撓みを抑制することができる。 (9) The concentrating photovoltaic power generation device of the present disclosure includes a concentrating solar power plant including an array formed by assembling a plurality of concentrating photovoltaic power generation modules according to any one of (1) to (8) above. It is a photovoltaic power generation device. In the condensing solar power generation device of the present disclosure, since a plurality of Fresnel lenses and reinforcing portions are formed in the condensing portion, it is possible to suppress bending of the condensing portion.
 (10)本開示の集光型太陽光発電モジュールの製造方法は、複数の受光部を底面に備える筐体の上部に、複数のフレネルレンズが配置されたガラス板を有する集光部を位置合わせして乗せる工程を含む、集光型太陽光発電モジュールの製造方法であって、複数の前記フレネルレンズと、複数の前記フレネルレンズよりも平均厚みが厚い補強部と、前記集光部を前記筐体に設けるときの位置決めに使用される少なくとも2個のアライメントマークと、が形成されている少なくとも1枚の前記ガラス板を有する前記集光部を準備する第1工程と、前記ガラス板を撮像して前記アライメントマークを検出し、その位置を記憶するとともに、前記アライメントマークと位置的に関連付けるべき前記受光部を撮像してその位置を記憶する第2工程と、前記第2工程によって記憶した前記アライメントマークの位置と、前記第2工程によって記憶した前記受光部の位置とに基づいて、複数の前記受光部と複数の前記フレネルレンズとがそれぞれ光軸を合わせて配置されるように、前記筐体と前記集光部とを位置合わせする第3工程と、を備え、前記第1工程は、前記補強部に少なくとも1つの前記アライメントマークを有する前記集光部を準備する。 (10) In the method for manufacturing a condensing type solar power generation module of the present disclosure, a condensing portion having a glass plate on which a plurality of Fresnel lenses are arranged is aligned on an upper portion of a housing having a plurality of light receiving portions on the bottom surface. This is a method for manufacturing a condensing solar power generation module, which includes a step of placing the condensing lens on the lens. The first step of preparing the condensing unit having at least one glass plate on which at least two alignment marks used for positioning when provided on the body and the glass plate are imaged. The second step of detecting the alignment mark and memorizing the position, imaging the light receiving portion to be positionally associated with the alignment mark and memorizing the position, and the alignment memorized by the second step. Based on the position of the mark and the position of the light receiving unit stored in the second step, the housing so that the plurality of light receiving units and the plurality of Fresnel lenses are arranged so that their optical axes are aligned with each other. A third step of aligning the light collecting portion with the light collecting portion is provided, and the first step prepares the light collecting portion having at least one alignment mark on the reinforcing portion.
 本開示の製造方法により製造される集光型太陽光発電モジュールは、少なくとも1枚のガラス板を有する。前記ガラス板には複数のフレネルレンズと、補強部とが形成される。補強部の平均厚みは複数のフレネルレンズの平均厚みよりも厚いため、補強部により集光部の撓みを抑制することができる。また、本開示の製造方法では、補強部にアライメントマークが形成されることで、集光部を筐体の上部に設ける際、集光部と受光部との位置合わせを容易にすることができる。また、少なくとも1つのアライメントマークは補強部に形成されるため、アライメントマークによる光散乱や遮光による光学損失を抑制することができる。 The concentrating photovoltaic module manufactured by the manufacturing method of the present disclosure has at least one glass plate. A plurality of Fresnel lenses and a reinforcing portion are formed on the glass plate. Since the average thickness of the reinforcing portion is thicker than the average thickness of the plurality of Fresnel lenses, the reinforcing portion can suppress the bending of the condensing portion. Further, in the manufacturing method of the present disclosure, since the alignment mark is formed on the reinforcing portion, it is possible to facilitate the alignment between the condensing portion and the light receiving portion when the condensing portion is provided on the upper part of the housing. .. Further, since at least one alignment mark is formed on the reinforcing portion, it is possible to suppress light scattering due to the alignment mark and optical loss due to shading.
 [本開示の実施形態の詳細]
 以下、本開示の集光型太陽光発電モジュール、集光型太陽光発電装置及び集光型太陽光発電モジュールの製造方法の具体例について、図面を参照して説明する。
[Details of Embodiments of the present disclosure]
Hereinafter, specific examples of the manufacturing method of the concentrating photovoltaic power generation module, the concentrating photovoltaic power generation device, and the concentrating photovoltaic power generation module of the present disclosure will be described with reference to the drawings.
 《太陽光発電装置の主な構成》
 図1及び図2はそれぞれ、1基分の、集光型太陽光発電装置の一例を、受光面側から見た斜視図である。図1は、完成した状態での太陽光発電装置100を示し、図2は、組立途中の状態での太陽光発電装置100を示している。図2は、追尾架台25の骨組みが見える状態を右半分に示し、集光型太陽光発電モジュール(以下、単に「モジュール」とも言う。)1Mが取り付けられた状態を左半分に示している。なお、実際にモジュール1Mを追尾架台25に取り付ける際は、追尾架台25を地面に寝かせた状態で取り付けを行う。
<< Main configuration of photovoltaic power generation equipment >>
1 and 2 are perspective views of an example of a concentrating photovoltaic power generation device for one unit as viewed from the light receiving surface side. FIG. 1 shows a photovoltaic power generation device 100 in a completed state, and FIG. 2 shows a photovoltaic power generation device 100 in a state in the middle of assembly. FIG. 2 shows a state in which the skeleton of the tracking mount 25 can be seen in the right half, and a state in which a concentrating photovoltaic power generation module (hereinafter, also simply referred to as “module”) 1M is attached in the left half. When actually attaching the module 1M to the tracking pedestal 25, the tracking pedestal 25 is attached while lying on the ground.
 図1において、太陽光発電装置100は、上部側で連続し、下部側で左右に分かれた全体として面状の受光面を成すアレイ(太陽光発電パネル)1と、その支持機構2とを備えている。アレイ1は、背面側の追尾架台25(図2)上にモジュール1Mを整列させて構成されている。図1の例では、左右のウイングを構成する(96(=12×8)×2)個と、中央の渡り部分の8個との、合計200個のモジュール1Mの集合体として、アレイ1が構成されている。 In FIG. 1, the photovoltaic power generation device 100 includes an array (solar power generation panel) 1 which is continuous on the upper side and is divided into left and right on the lower side to form a planar light receiving surface as a whole, and a support mechanism 2 thereof. ing. The array 1 is configured by arranging the modules 1M on the tracking mount 25 (FIG. 2) on the back side. In the example of FIG. 1, the array 1 is an aggregate of 200 modules 1M in total, consisting of (96 (= 12 × 8) × 2) pieces constituting the left and right wings and 8 pieces in the central crossover portion. It is configured.
 支持機構2は、支柱21と、基礎22と、駆動部23と、駆動軸となる水平軸24(図2)と、追尾架台25とを備えている。支柱21は、下端が基礎22に固定され、上端に駆動部23を備えている。 The support mechanism 2 includes a support column 21, a foundation 22, a drive unit 23, a horizontal axis 24 (FIG. 2) as a drive axis, and a tracking stand 25. The lower end of the support column 21 is fixed to the foundation 22, and the upper end is provided with a drive unit 23.
 図1において、基礎22は、上面のみが見える程度に地中に堅固に埋設される。基礎22を地中に埋設した状態で、支柱21は鉛直となり、水平軸24(図2)は水平となる。駆動部23は、水平軸24を、方位角(支柱21を中心軸とした角度)及び仰角(水平軸24を中心軸とした角度)の2方向に回動させることができる。図2において、水平軸24には、追尾架台25を補強する補強材25aが取り付けられている。また、補強材25aには、複数本の水平方向へのレール25bが取り付けられている。モジュール1Mは、このレールに嵌め込むように取り付けられる。水平軸24が方位角又は仰角の方向に回動すれば、アレイ1もその方向に回動する。 In FIG. 1, the foundation 22 is firmly buried in the ground so that only the upper surface can be seen. With the foundation 22 buried in the ground, the columns 21 are vertical and the horizontal axis 24 (FIG. 2) is horizontal. The drive unit 23 can rotate the horizontal axis 24 in two directions, an azimuth angle (an angle centered on the support column 21) and an elevation angle (an angle centered on the horizontal axis 24). In FIG. 2, a reinforcing member 25a for reinforcing the tracking pedestal 25 is attached to the horizontal shaft 24. Further, a plurality of horizontal rails 25b are attached to the reinforcing member 25a. Module 1M is mounted so as to fit into this rail. If the horizontal axis 24 rotates in the direction of the azimuth or elevation, the array 1 also rotates in that direction.
 図1のようにアレイ1が鉛直になっているのは、通常、夜明け及び日没前である。日中は、アレイ1の受光面が常に太陽に正対する姿勢となるよう、駆動部23が動作し、アレイ1は太陽の追尾動作を行う。 Array 1 is usually vertical as shown in FIG. 1 before dawn and sunset. During the daytime, the drive unit 23 operates so that the light receiving surface of the array 1 always faces the sun, and the array 1 performs the tracking operation of the sun.
 《集光型太陽光発電モジュールの構成例》
 図3は、本実施形態に係るモジュール1Mの構成を示す斜視図である。図3において、筐体11の底面11b側はフレキシブルプリント配線板13のみ示し、他の構成要素(受光部3等)は省略している。
<< Configuration example of concentrating solar power generation module >>
FIG. 3 is a perspective view showing the configuration of the module 1M according to the present embodiment. In FIG. 3, only the flexible printed wiring board 13 is shown on the bottom surface 11b side of the housing 11, and other components (light receiving unit 3, etc.) are omitted.
 モジュール1Mは、例えば金属製又は樹脂製で長方形の平底容器状の筐体11と、筐体11の底面11bに設けられた複数の受光部3(図4参照)と、筐体11の上部に蓋のように取り付けられる長方形の集光部12と、を備えている。 The module 1M includes, for example, a rectangular flat-bottomed container-shaped housing 11 made of metal or resin, a plurality of light receiving portions 3 (see FIG. 4) provided on the bottom surface 11b of the housing 11, and an upper portion of the housing 11. It includes a rectangular condensing unit 12 that can be attached like a lid.
 筐体11は、長方形状の平板である底板111と、底板111の周縁部に設けられている枠体112とを有する。底板111のうち集光部12の方向を向く面が、底面11bである。枠体112の上部には、集光部12と接触する支持部が設けられ、枠体112は支持部により集光部12を上方に支持する。底面11b上には、例えば筐体11の左半分・右半分の各々において、1本の細長いフレキシブルプリント配線板13が図示のように方向転換しながら整列するように配置されている。フレキシブルプリント配線板13には相対的に幅広な部位と幅狭な部位とがある。受光部3に含まれるセル34(図4参照)が実装されるのは幅広な部位である。 The housing 11 has a bottom plate 111 which is a rectangular flat plate, and a frame 112 provided on the peripheral edge of the bottom plate 111. The surface of the bottom plate 111 that faces the light collecting portion 12 is the bottom surface 11b. A support portion that comes into contact with the light collecting portion 12 is provided on the upper portion of the frame body 112, and the frame body 112 supports the light collecting portion 12 upward by the support portion. On the bottom surface 11b, for example, in each of the left half and the right half of the housing 11, one elongated flexible printed wiring board 13 is arranged so as to be aligned while changing the direction as shown in the drawing. The flexible printed wiring board 13 has a relatively wide portion and a narrow portion. The cell 34 (see FIG. 4) included in the light receiving unit 3 is mounted on a wide portion.
 集光部12は、1枚のガラス板70であり、本実施形態において厚みは3mmである。ガラス板70は、太陽光のうち、主に波長300nmから波長2000nmまでの光を透過する。集光部12は、太陽の方向を向く表面12aと、表面12aの反対側に位置し、複数の受光部3の方向を向く裏面12bとを有する。なお、集光部12は、2枚以上のガラス板をそれぞれの周縁部で張り合わせた構成を有していても良い。集光部12には、少なくとも1枚のガラス板が含まれていれば良い。 The light collecting unit 12 is a single glass plate 70, and has a thickness of 3 mm in the present embodiment. The glass plate 70 mainly transmits light having a wavelength of 300 nm to 2000 nm among sunlight. The light collecting unit 12 has a front surface 12a facing the direction of the sun and a back surface 12b located on the opposite side of the surface 12a and facing the direction of the plurality of light receiving units 3. The light collecting unit 12 may have a configuration in which two or more glass plates are laminated at their respective peripheral edges. The light collecting unit 12 may include at least one glass plate.
 集光部12の裏面12bには、後述する複数のフレネルレンズ71が形成されている。例えば図示の正方形(本実施形態では14個×10個である。但し、数量は一例に過ぎない。)の領域のそれぞれが、1つのフレネルレンズ71を有する領域である。複数の当該領域は、それぞれ太陽光を焦点位置に収束させることができる。なお、格子状の点線は領域を表現するための便宜上の線であり、実際にはこのような仕切り線が存在する必要は無い。 A plurality of Fresnel lenses 71, which will be described later, are formed on the back surface 12b of the condensing unit 12. For example, each of the illustrated square regions (14 × 10 in the present embodiment, but the quantity is only an example) is a region having one Fresnel lens 71. Each of the plurality of regions can converge the sunlight to the focal position. It should be noted that the grid-like dotted lines are lines for convenience for expressing the area, and it is not necessary that such a partition line actually exists.
 フレキシブルプリント配線板13と集光部12との間には、遮蔽板14が取り付けられている。本実施形態において、遮蔽板14は金属製である。遮蔽板14には、個々のフレネルレンズ71の中心に対応した位置に、フレネルレンズ71の正方形に相似な正方形の開口14aが形成されている。アレイ1が太陽を正確に追尾し、モジュール1Mに対する太陽光の入射角が0度であれば、フレネルレンズ71により集光された光は開口14aを通過して受光部3に入射する。追尾が大きくずれた場合は、集光された光は遮蔽板14により遮蔽される。但し、追尾のずれが僅かな場合は、集光された光は開口14aを通過する。 A shielding plate 14 is attached between the flexible printed wiring board 13 and the condensing unit 12. In this embodiment, the shielding plate 14 is made of metal. The shielding plate 14 is formed with a square opening 14a similar to the square of the Fresnel lens 71 at a position corresponding to the center of each Fresnel lens 71. If the array 1 accurately tracks the sun and the angle of incidence of the sunlight on the module 1M is 0 degrees, the light collected by the Fresnel lens 71 passes through the aperture 14a and is incident on the light receiving unit 3. When the tracking is significantly deviated, the collected light is shielded by the shielding plate 14. However, if the tracking deviation is slight, the focused light passes through the opening 14a.
 《受光部の構成例》
 図4は、集光型太陽光発電モジュールの受光部3の構成例を示す断面図である。なお、図4に示す各部は、構造説明の都合上、適宜拡大して描いており、必ずしも実際の寸法に比例した図ではない(図5以降の図面も同様)。
<< Configuration example of the light receiving part >>
FIG. 4 is a cross-sectional view showing a configuration example of the light receiving portion 3 of the concentrating solar power generation module. It should be noted that each part shown in FIG. 4 is enlarged as appropriate for the convenience of structural explanation, and is not necessarily a diagram proportional to the actual dimensions (the same applies to the drawings after FIG. 5).
 図4において、受光部3は、ボールレンズ30、保護板31、サポート部32、パッケージ33、セル34、P側のリードフレーム35、金ワイヤー36、N側のリードフレーム37及び封止部38を備えている。受光部3は、フレキシブルプリント配線板13上に実装されている。なお、セル34には並列にバイパスダイオードが接続されるが、ここでは図示を省略している。 In FIG. 4, the light receiving portion 3 includes a ball lens 30, a protective plate 31, a support portion 32, a package 33, a cell 34, a lead frame 35 on the P side, a gold wire 36, a lead frame 37 on the N side, and a sealing portion 38. I have. The light receiving unit 3 is mounted on the flexible printed wiring board 13. A bypass diode is connected in parallel to the cell 34, but the illustration is omitted here.
 ボールレンズ30は、サポート部32の上に取り付けられた保護板31の上端部内周エッジ31eにより、セル34との間に光軸Ax方向の隙間が形成されるように支持されている。保護板31は、例えば金属ワッシャである。サポート部32は、例えば円筒状であり樹脂製である。サポート部32は、フラットなパッケージ33の上に固着されている。パッケージ33は樹脂製であり、セル34及びリードフレーム35、37を保持している。セル34は、光エネルギーを起電力へと変換する発電素子であり、PN接合を有する半導体を含む。セル34の出力は、P側がリードフレーム35に、N側が金ワイヤー36を介してリードフレーム37に、それぞれ引き出される。封止部38は、光透過性のシリコーン樹脂であり、保護板31及びサポート部32の内側の、ボールレンズ30とセル34との間に形成される空間を満たすように設けられている。 The ball lens 30 is supported by the inner peripheral edge 31e of the upper end portion of the protective plate 31 mounted on the support portion 32 so that a gap in the optical axis Ax direction is formed between the ball lens 30 and the cell 34. The protective plate 31 is, for example, a metal washer. The support portion 32 is, for example, cylindrical and made of resin. The support portion 32 is fixed on the flat package 33. The package 33 is made of resin and holds the cell 34 and the lead frames 35 and 37. The cell 34 is a power generation element that converts light energy into electromotive force, and includes a semiconductor having a PN junction. The output of the cell 34 is drawn out to the lead frame 35 on the P side and to the lead frame 37 via the gold wire 36 on the N side. The sealing portion 38 is a light-transmitting silicone resin, and is provided so as to fill the space formed between the ball lens 30 and the cell 34 inside the protective plate 31 and the support portion 32.
 《集光型太陽光発電ユニットの構成例》
 図5は、モジュール1Mを構成する光学系の基本構成としての集光型太陽光発電ユニット(以下、適宜「ユニット」と称する。)1Uの一例を示す断面図である。図5は、アレイ1が太陽を追尾することでユニット1Uが太陽と正対し、ユニット1Uに対する太陽光の入射角が0度となった状態を示している。この状態において、フレネルレンズ71の光軸Ax上に、受光部3のボールレンズ30及びセル34があり、フレネルレンズ71により集光する光は遮蔽板14の開口14aを通り、受光部3のボールレンズ30に取り込まれ、セル34に導かれる。すなわち、複数のフレネルレンズ71は、複数の受光部3のそれぞれと光軸Axを合わせて配置されている。
<< Configuration example of concentrating solar power generation unit >>
FIG. 5 is a cross-sectional view showing an example of a concentrating photovoltaic power generation unit (hereinafter, appropriately referred to as a “unit”) 1U as a basic configuration of an optical system constituting the module 1M. FIG. 5 shows a state in which the unit 1U faces the sun as the array 1 tracks the sun, and the incident angle of the sunlight on the unit 1U is 0 degrees. In this state, the ball lens 30 and the cell 34 of the light receiving unit 3 are on the optical axis Ax of the Fresnel lens 71, and the light collected by the Fresnel lens 71 passes through the opening 14a of the shielding plate 14 and the ball of the light receiving unit 3. It is taken into the lens 30 and guided to the cell 34. That is, the plurality of Fresnel lenses 71 are arranged so that the optical axis Ax is aligned with each of the plurality of light receiving units 3.
 《集光部の詳細》
 図6及び図7を適宜参照しながら、本実施形態に係る集光部12について説明する。図6は、集光部12の裏面12bを示す平面図である。図7は、図6の矢印A1の切断線上の断面図である。図7では、集光部12のみを示し、モジュール1Mの他の構成は省略している。集光部12は、ガラス板70であり、ガラス板70には、複数のフレネルレンズ71と、補強部61とが形成されている。
<< Details of the condensing unit >>
The light collecting unit 12 according to the present embodiment will be described with reference to FIGS. 6 and 7 as appropriate. FIG. 6 is a plan view showing the back surface 12b of the condensing unit 12. FIG. 7 is a cross-sectional view taken along the cutting line of arrow A1 of FIG. In FIG. 7, only the condensing unit 12 is shown, and other configurations of the module 1M are omitted. The light collecting portion 12 is a glass plate 70, and a plurality of Fresnel lenses 71 and a reinforcing portion 61 are formed on the glass plate 70.
 図6に示すように、集光部12の裏面12bには、複数のフレネルレンズ71がマトリックス状に形成されている。複数のフレネルレンズ71は、それぞれ同心円状に形成された凸状の領域である複数の凸部711を有する。また、複数のフレネルレンズ71は、それぞれ正の屈折力を有する。すなわち、複数のフレネルレンズ71は、それぞれ正レンズである。なお、図6においてフレネルレンズ71のマトリックス状の領域の数は3×4の12個の領域を2つ示しているが、実際には図3にも示したように、もっと多数である。図6のフレネルレンズの凸部711も図示の都合上、簡略化しているが、実際にはもっと多数である。 As shown in FIG. 6, a plurality of Fresnel lenses 71 are formed in a matrix on the back surface 12b of the condensing unit 12. Each of the plurality of Fresnel lenses 71 has a plurality of convex portions 711 which are convex regions formed concentrically. Further, each of the plurality of Fresnel lenses 71 has a positive refractive power. That is, each of the plurality of Fresnel lenses 71 is a positive lens. In FIG. 6, the number of matrix-like regions of the Fresnel lens 71 shows two 3 × 4 12 regions, but in reality, as shown in FIG. 3, the number is larger. The convex portion 711 of the Fresnel lens shown in FIG. 6 is also simplified for convenience of illustration, but is actually more numerous.
 補強部61は、集光部12(ガラス板70)の周縁部に位置する周縁補強部611と、複数のフレネルレンズ71のうち互いに隣接するフレネルレンズ71の間に位置する中間補強部612とを有する。 The reinforcing portion 61 includes a peripheral reinforcing portion 611 located at the peripheral edge of the condensing portion 12 (glass plate 70) and an intermediate reinforcing portion 612 located between the Fresnel lenses 71 adjacent to each other among the plurality of Fresnel lenses 71. Have.
 図7を参照する。補強部61は、フレネルレンズ71よりも平均厚みが厚い領域である。図7において、補強部61(周縁補強部611及び中間補強部612)とフレネルレンズ71との境界を表現するために、集光部12中に表面12a及び裏面12bの法線となる点線を便宜上の仕切り線として記している。実際にはこのような仕切り線が存在する必要は無い。 Refer to FIG. The reinforcing portion 61 is a region having a thicker average thickness than the Fresnel lens 71. In FIG. 7, in order to express the boundary between the reinforcing portion 61 (peripheral reinforcing portion 611 and the intermediate reinforcing portion 612) and the Fresnel lens 71, a dotted line serving as a normal of the front surface 12a and the back surface 12b is provided in the condensing portion 12 for convenience. It is written as a partition line of. In reality, such a partition line does not have to exist.
 ここで、平均厚みについて説明する。ガラス板70のうち、平均厚みの算出対象となる領域R1の体積をV1、領域R1の面積をS1とすると、平均厚みT1は、T1=V1/S1の式により求められる。本実施形態において、1つのフレネルレンズ71の体積V1は5000立方mmであり、面積S1は2500平方mm(1辺の長さが50mmの正方形)であるため、フレネルレンズ71の平均厚みT1は2mmである。また、本実施形態において複数のフレネルレンズ71は全て同じ形状であるため、複数のフレネルレンズ71の全体の平均厚みT1は2mmである。 Here, the average thickness will be described. Assuming that the volume of the region R1 for which the average thickness is to be calculated is V1 and the area of the region R1 is S1 in the glass plate 70, the average thickness T1 is calculated by the formula T1 = V1 / S1. In the present embodiment, since the volume V1 of one Fresnel lens 71 is 5000 cubic mm and the area S1 is 2500 square mm (a square having a side length of 50 mm), the average thickness T1 of the Fresnel lens 71 is 2 mm. Is. Further, since the plurality of Fresnel lenses 71 all have the same shape in the present embodiment, the overall average thickness T1 of the plurality of Fresnel lenses 71 is 2 mm.
 本実施形態において、補強部61の厚みは場所によらず一定であり、3mmである。このため、補強部61の平均厚みも3mmである。このように、本実施形態において、集光部12(ガラス板70)には複数のフレネルレンズ71と、補強部61とが形成される。補強部61の平均厚みは複数のフレネルレンズ71の平均厚みよりも厚いため、補強部61により集光部12の曲げ剛性を高め、集光部12の撓みを抑制することができる。 In the present embodiment, the thickness of the reinforcing portion 61 is constant regardless of the location and is 3 mm. Therefore, the average thickness of the reinforcing portion 61 is also 3 mm. As described above, in the present embodiment, a plurality of Fresnel lenses 71 and a reinforcing portion 61 are formed on the condensing portion 12 (glass plate 70). Since the average thickness of the reinforcing portion 61 is thicker than the average thickness of the plurality of Fresnel lenses 71, the bending rigidity of the condensing portion 12 can be increased by the reinforcing portion 61, and the bending of the condensing portion 12 can be suppressed.
 なお、本実施形態において補強部61の平均厚みは3mmであり、複数のフレネルレンズ71の平均厚みは2mmであるが、これらの数値は一例であり、補強部61の平均厚みが複数のフレネルレンズ71の平均厚みよりも厚ければ、その他の数値であっても良い。 In the present embodiment, the average thickness of the reinforcing portion 61 is 3 mm, and the average thickness of the plurality of Fresnel lenses 71 is 2 mm. However, these numerical values are examples, and the average thickness of the reinforcing portion 61 is a plurality of Fresnel lenses. Other values may be used as long as they are thicker than the average thickness of 71.
 本実施形態において、周縁補強部611は、ガラス板70の周縁部に設けられているため、周縁補強部611が枠形状を形成することで集光部12の曲げ剛性がより強くなる。また、中間補強部612は、互いに隣接するフレネルレンズ71の間に設けられているため、中間補強部612が集光部12の中央部分を補強することで集光部12の曲げ剛性がより強くなる。このため、集光部12の撓みをより確実に抑制することができる。 In the present embodiment, since the peripheral edge reinforcing portion 611 is provided on the peripheral edge portion of the glass plate 70, the bending rigidity of the light collecting portion 12 becomes stronger because the peripheral edge reinforcing portion 611 forms a frame shape. Further, since the intermediate reinforcing portion 612 is provided between the Fresnel lenses 71 adjacent to each other, the intermediate reinforcing portion 612 reinforces the central portion of the condensing portion 12, so that the bending rigidity of the condensing portion 12 is stronger. Become. Therefore, the bending of the condensing unit 12 can be suppressed more reliably.
 周縁補強部611及び中間補強部612は、好ましくは、幅方向よりも厚み方向に長尺な形状を有する。具体的には、周縁補強部611及び中間補強部612は、図7において、紙面の奥行方向に最も長尺に設けられ、奥行方向に次いで、厚み方向に長尺に設けられている。そして、周縁補強部611及び中間補強部612は、図7において、複数のフレネルレンズ71が配列する幅方向の幅よりも、表面12aから裏面12bまでの厚み方向のほうが長尺に設けられている。このように構成することで、補強部61の面積を小さく抑えつつ、集光部12の曲げ剛性をより強くすることができる。 The peripheral reinforcing portion 611 and the intermediate reinforcing portion 612 preferably have a shape that is longer in the thickness direction than in the width direction. Specifically, the peripheral edge reinforcing portion 611 and the intermediate reinforcing portion 612 are provided in the longest direction in the depth direction of the paper surface in FIG. 7, and are provided in the longest length direction in the thickness direction next to the depth direction. In FIG. 7, the peripheral reinforcing portion 611 and the intermediate reinforcing portion 612 are provided longer in the thickness direction from the front surface 12a to the back surface 12b than in the width direction in which the plurality of Fresnel lenses 71 are arranged. .. With this configuration, the area of the reinforcing portion 61 can be kept small, and the bending rigidity of the condensing portion 12 can be further increased.
 補強部61は、集光部12の裏面12bに沿って設けられた先端面61aを有する。先端面61aは、周縁補強部611及び中間補強部612の裏面12b側の面である。複数のフレネルレンズ71は、凸端部712を有する。凸端部712は、フレネルレンズ71の複数の凸部711のうち、表面12aからの高さが最も高い凸部の先端部分である。本実施形態において、凸端部712はフレネルレンズ71の中央に位置するが、他の凸部711が凸端部712であっても良い。 The reinforcing portion 61 has a tip surface 61a provided along the back surface 12b of the condensing portion 12. The front end surface 61a is a surface on the back surface 12b side of the peripheral reinforcing portion 611 and the intermediate reinforcing portion 612. The plurality of Fresnel lenses 71 have a convex end portion 712. The convex end portion 712 is the tip portion of the convex portion having the highest height from the surface 12a among the plurality of convex portions 711 of the Fresnel lens 71. In the present embodiment, the convex end portion 712 is located at the center of the Fresnel lens 71, but the other convex portion 711 may be the convex end portion 712.
 凸端部712は、先端面61aよりも表面12a側に位置する。凸端部712は複数の凸部711のうち最も高い位置にあるため、フレネルレンズ71は凸端部712から表面12a側に凹んで設けられている。すなわち、フレネルレンズ71の高さは、先端面61aよりも低い。なお、凸端部712は、先端面61aから突出しない高さ位置に設けられていれば良く、先端面61aと同じ高さ位置に位置していても良い。すなわち、フレネルレンズ71の高さは、先端面61aと同じであっても良い。 The convex end portion 712 is located on the surface 12a side of the tip surface 61a. Since the convex end portion 712 is at the highest position among the plurality of convex portions 711, the Fresnel lens 71 is provided so as to be recessed from the convex end portion 712 toward the surface 12a. That is, the height of the Fresnel lens 71 is lower than that of the tip surface 61a. The convex end portion 712 may be provided at a height position that does not protrude from the tip surface 61a, and may be located at the same height position as the tip surface 61a. That is, the height of the Fresnel lens 71 may be the same as the tip surface 61a.
 このような構成によれば、複数のフレネルレンズ71は、補強部61の先端面61aよりも表面12a側に凹んで設けられ、フレネルレンズ71の凸端部712は補強部61の先端面61aから突出しない。このため、集光部12の運搬時や製造時に複数の集光部12を重ねる際に、補強部61の先端面61aが裏面12b側に隣接して重なる他の集光部12の表面12aと接触するため、複数のフレネルレンズ71が他の集光部12の表面12aと接触することを防止することができる。これにより、フレネルレンズ71に傷や欠けが生じることを防止しつつ、複数の集光部12を重ねることができるため、集光部の運搬効率や製造効率を向上させることができる。 According to such a configuration, the plurality of Fresnel lenses 71 are provided recessed on the surface 12a side of the tip surface 61a of the reinforcing portion 61, and the convex end portion 712 of the Fresnel lens 71 is provided from the tip surface 61a of the reinforcing portion 61. Does not protrude. Therefore, when the plurality of condensing portions 12 are stacked during transportation or manufacturing of the condensing portion 12, the front end surface 61a of the reinforcing portion 61 overlaps with the surface 12a of the other condensing portion 12 adjacent to the back surface 12b side. Since they come into contact with each other, it is possible to prevent the plurality of Fresnel lenses 71 from coming into contact with the surface 12a of the other condensing unit 12. As a result, a plurality of condensing units 12 can be stacked while preventing the Fresnel lens 71 from being scratched or chipped, so that the transport efficiency and manufacturing efficiency of the condensing units can be improved.
 《集光部の製造方法》
 図8は、本実施形態に係る集光部12を製造する製造装置80の一例を示す模式図である。製造装置80は、供給部81と、搬送部82と、圧胴83と、プレス部84とを備える。図8を参照しながら、集光部12の製造方法について説明する。
<< Manufacturing method of condensing part >>
FIG. 8 is a schematic view showing an example of a manufacturing apparatus 80 for manufacturing the condensing unit 12 according to the present embodiment. The manufacturing apparatus 80 includes a supply unit 81, a transport unit 82, an impression cylinder 83, and a press unit 84. A method of manufacturing the condensing unit 12 will be described with reference to FIG.
 供給部81は、加熱部と成形部とを有し、加熱部によりガラスを溶融させ、成形部により溶融ガラスを成形して、図8の左右方向に長尺なガラスシート121を搬送部82へ供給する。搬送部82は、図8の紙面と直交する幅方向に長尺な複数のローラを有し、一部のローラを回転駆動させることにより、ガラスシート121を矢印AR1の方向に搬送する。以下、ガラスシート121が搬送される方向を、「搬送方向AR1」と称する。 The supply unit 81 has a heating unit and a molding unit, the glass is melted by the heating unit, the molten glass is molded by the molding unit, and the long glass sheet 121 in the left-right direction of FIG. 8 is transferred to the transport unit 82. Supply. The transport unit 82 has a plurality of long rollers in the width direction orthogonal to the paper surface of FIG. 8, and by rotationally driving some of the rollers, the glass sheet 121 is transported in the direction of the arrow AR1. Hereinafter, the direction in which the glass sheet 121 is conveyed is referred to as "transportation direction AR1".
 圧胴83は、幅方向に長尺な回転胴であり、幅方向の長さは、ガラスシート121の幅方向の長さよりも長い。圧胴83は、搬送部82により搬送されるガラスシート121の表面121aと、圧胴83の周面とが接するように、ガラスシート121の搬送路上に設けられている。図8中の拡大図に示すように、圧胴83の周面831は、平坦な形状である。圧胴83は、下方の周面831の移動方向がガラスシート121の搬送方向AR1と一致する方向に回転する(図8中では、反時計回り)。 The impression cylinder 83 is a rotary cylinder that is long in the width direction, and the length in the width direction is longer than the length in the width direction of the glass sheet 121. The impression cylinder 83 is provided on the transfer path of the glass sheet 121 so that the surface 121a of the glass sheet 121 conveyed by the transfer portion 82 and the peripheral surface of the impression cylinder 83 are in contact with each other. As shown in the enlarged view in FIG. 8, the peripheral surface 831 of the impression cylinder 83 has a flat shape. The impression cylinder 83 rotates in a direction in which the moving direction of the lower peripheral surface 831 coincides with the transport direction AR1 of the glass sheet 121 (counterclockwise in FIG. 8).
 プレス部84は、幅方向に長尺な回転胴であり、幅方向の長さは、ガラスシート121の幅方向の長さよりも長い。プレス部84は、搬送部82により搬送されるガラスシート121の裏面121bと、プレス部84の周面とが接するように、ガラスシート121の搬送路上に設けられている。また、プレス部84は、圧胴83がガラスシート121の表面121aと接する位置の反対側で、裏面121bと接するように、圧胴83の下方に設けられている。図8中の拡大図に示すように、プレス部84の周面には、複数の凹部841が形成されている。複数の凹部841には、同心円状に形成された複数の溝部842と、矩形状の溝部843が含まれる。凹部841は、フレネルレンズ71及び補強部61を反転した形状である。溝部842は、凸部711を反転した形状であり、溝部843は補強部61を反転した形状である。プレス部84は、上方の周面の移動方向がガラスシート121の搬送方向AR1と一致する方向に回転する(図8中では、時計回り)。 The press portion 84 is a rotary cylinder that is long in the width direction, and the length in the width direction is longer than the length in the width direction of the glass sheet 121. The press portion 84 is provided on the transport path of the glass sheet 121 so that the back surface 121b of the glass sheet 121 transported by the transport portion 82 and the peripheral surface of the press portion 84 are in contact with each other. Further, the press portion 84 is provided below the impression cylinder 83 so that the impression cylinder 83 is in contact with the back surface 121b on the opposite side of the position where the impression cylinder 83 is in contact with the front surface 121a of the glass sheet 121. As shown in the enlarged view in FIG. 8, a plurality of recesses 841 are formed on the peripheral surface of the press portion 84. The plurality of recesses 841 include a plurality of concentrically formed groove portions 842 and a rectangular groove portion 843. The recess 841 has a shape in which the Fresnel lens 71 and the reinforcing portion 61 are inverted. The groove portion 842 has an inverted shape of the convex portion 711, and the groove portion 843 has an inverted shape of the reinforcing portion 61. The press portion 84 rotates in a direction in which the movement direction of the upper peripheral surface coincides with the transport direction AR1 of the glass sheet 121 (clockwise in FIG. 8).
 製造装置80において集光部12の製造動作が開始されると、溶融したガラスシート121が供給部81から送り出され、ガラスシート121が完全に硬化しないうちに、搬送部82により圧胴83及びプレス部84と接する位置へ搬送される。そして、圧胴83及びプレス部84は、所定の回転方向に回転しながらガラスシート121の表面121a及び裏面121bと接触する。このとき、ガラスシート121は、表面121a側を圧胴83の平坦な周面831により支持されながら、裏面121b側をプレス部84の凹部841により押圧される。これにより、ガラスシート121の裏面121bに凹部841の反転形状(すなわち、フレネルレンズ71及び補強部61の形状)が転写され、裏面121bに複数の凸部711と補強部61が形成される。圧胴83及びプレス部84を通過した後のガラスシート121は、適宜の長さで切断されて、1枚のガラス板70になる。以上により、1枚のガラス板70を有する集光部12が得られる。 When the manufacturing operation of the condensing unit 12 is started in the manufacturing apparatus 80, the molten glass sheet 121 is sent out from the supply unit 81, and before the glass sheet 121 is completely cured, the impression cylinder 83 and the press are carried out by the transport unit 82. It is conveyed to a position in contact with the portion 84. Then, the impression cylinder 83 and the press portion 84 come into contact with the front surface 121a and the back surface 121b of the glass sheet 121 while rotating in a predetermined rotation direction. At this time, the glass sheet 121 is pressed on the back surface 121b side by the recess 841 of the press portion 84 while the front surface 121a side is supported by the flat peripheral surface 831 of the impression cylinder 83. As a result, the inverted shape of the recess 841 (that is, the shape of the Fresnel lens 71 and the reinforcing portion 61) is transferred to the back surface 121b of the glass sheet 121, and a plurality of convex portions 711 and the reinforcing portion 61 are formed on the back surface 121b. The glass sheet 121 after passing through the impression cylinder 83 and the press portion 84 is cut to an appropriate length to become one glass plate 70. As described above, the condensing unit 12 having one glass plate 70 is obtained.
 なお、本開示の実施に関してはこれに限られず、圧胴83をガラスシート121の下方に、プレス部84をガラスシート121の上方に配置し、プレス部84の周面をガラスシート121の表面121aに接触させることで、表面121aにフレネルレンズ71の形状を形成してもよい。 The implementation of the present disclosure is not limited to this, and the impression cylinder 83 is arranged below the glass sheet 121, the press portion 84 is arranged above the glass sheet 121, and the peripheral surface of the press portion 84 is the surface 121a of the glass sheet 121. The shape of the Fresnel lens 71 may be formed on the surface 121a by contacting the surface 121a.
 以上の製造装置80によれば、1枚のガラス板にフレネルレンズ71及び補強部61を一体形成することができる。これにより、撓みを抑制できる集光部12を得ることができる。 According to the above manufacturing apparatus 80, the Fresnel lens 71 and the reinforcing portion 61 can be integrally formed on one glass plate. As a result, it is possible to obtain a condensing unit 12 capable of suppressing bending.
 《変形例》
 以上、本開示の実施形態について説明したが、本開示は前述した形態以外にも種々の変更を行うことが可能である。以下、本開示の実施形態に係る変形例について説明する。以下の変形例において、実施形態と同様の構成については、同じ符号を付して説明を省略する。
<< Modification example >>
Although the embodiments of the present disclosure have been described above, the present disclosure can be modified in various ways other than the above-described embodiments. Hereinafter, a modified example according to the embodiment of the present disclosure will be described. In the following modification, the same components as those in the embodiment are designated by the same reference numerals and the description thereof will be omitted.
 《第1変形例》
 図9は、実施形態の第1変形例に係る集光部12cの裏面12bの構成を示す平面図である。本変形例は、補強部の位置に関して上記の実施形態と相違し、その他の点は共通する。集光部12cは1枚のガラス板70cであり、ガラス板70cにはフレネルレンズ72と補強部62とが形成されている。フレネルレンズ72は、フレネルレンズ71と同様の構成を有し、それぞれ複数の凸部721を有する。補強部62は、集光部12cの周縁部に位置する周縁補強部621と、互いに隣接するフレネルレンズ72の間に中間補強部622及び中間補強部623が位置する。中間補強部623は、中間補強部622と交差する方向に長尺に設けられている。本変形例では、中間補強部622及び中間補強部623が、周縁補強部621の一辺と当該一辺と対向する他辺とを接続しつつ、周縁補強部621の内側をクロスする形状で配置されるため、集光部12cの撓みをより確実に抑制することができる。
<< First modification >>
FIG. 9 is a plan view showing the configuration of the back surface 12b of the condensing unit 12c according to the first modification of the embodiment. This modification differs from the above-described embodiment in terms of the position of the reinforcing portion, and other points are common. The light collecting portion 12c is a single glass plate 70c, and the glass plate 70c is formed with a Fresnel lens 72 and a reinforcing portion 62. The Fresnel lens 72 has the same configuration as the Fresnel lens 71, and each has a plurality of convex portions 721. In the reinforcing portion 62, the intermediate reinforcing portion 622 and the intermediate reinforcing portion 623 are located between the peripheral reinforcing portion 621 located at the peripheral edge portion of the condensing portion 12c and the Fresnel lens 72 adjacent to each other. The intermediate reinforcing portion 623 is provided long in a direction intersecting the intermediate reinforcing portion 622. In this modification, the intermediate reinforcing portion 622 and the intermediate reinforcing portion 623 are arranged in a shape that crosses the inside of the peripheral edge reinforcing portion 621 while connecting one side of the peripheral edge reinforcing portion 621 and the other side facing the one side. Therefore, the bending of the condensing unit 12c can be suppressed more reliably.
 《第2変形例》
 図10は、実施形態の第2変形例に係る集光部12dの裏面12bの構成を示す平面図である。本変形例は、補強部の位置及び補強部の裏面側形状に関して上記の実施形態と相違し、その他の点は共通する。集光部12dは1枚のガラス板70dであり、ガラス板70dにはフレネルレンズ73と補強部63とが形成されている。図10においてフレネルレンズ73のマトリックス状の領域の数は図示の便宜上3×4の12個としているが、実際には図3にも示したように、もっと多数である。
<< Second variant >>
FIG. 10 is a plan view showing the configuration of the back surface 12b of the condensing unit 12d according to the second modification of the embodiment. This modification differs from the above-described embodiment in terms of the position of the reinforcing portion and the shape of the back surface side of the reinforcing portion, and other points are common. The light collecting portion 12d is a single glass plate 70d, and the glass plate 70d is formed with a Fresnel lens 73 and a reinforcing portion 63. In FIG. 10, the number of matrix-like regions of the Fresnel lens 73 is set to 12 of 3 × 4 for convenience of illustration, but in reality, as shown in FIG. 3, the number is larger.
 図11は、集光部12dの裏面12bの一部を拡大して示す平面図である。図12は、図11の矢印A2で示す切断線上の断面図である。図12において、説明の便宜上凹凸形状の寸法等は図11から適宜変更している。また、図10、図11及び図12において、補強部63とフレネルレンズ73との境界を表現するために、集光部12d中に便宜上の仕切り線を点線で記しているが、実際にはこのような仕切り線が存在する必要は無い。 FIG. 11 is an enlarged plan view showing a part of the back surface 12b of the condensing unit 12d. FIG. 12 is a cross-sectional view taken along the cutting line indicated by the arrow A2 in FIG. In FIG. 12, for convenience of explanation, the dimensions and the like of the concave-convex shape are appropriately changed from FIG. Further, in FIGS. 10, 11 and 12, in order to express the boundary between the reinforcing portion 63 and the Fresnel lens 73, a partition line for convenience is drawn in the condensing portion 12d with a dotted line. There is no need for such a divider.
 図10を参照する。フレネルレンズ73は、集光部12dの裏面12b側に形成される。図10において、点線で囲んだ複数の領域の内側がフレネルレンズ73として機能する領域であり、当該領域の外側が補強部63として機能する領域である。補強部63は、周縁補強部631と、中間補強部632とを有する。周縁補強部631は、集光部12dの周縁部に位置する。中間補強部632は、互いに隣接するフレネルレンズ73の間と、フレネルレンズ73と周縁補強部631の間に位置する。実施形態と同様に、本変形例においても、周縁補強部631及び中間補強部632の平均厚みは、複数のフレネルレンズ73の平均厚みよりも厚い。 Refer to FIG. The Fresnel lens 73 is formed on the back surface 12b side of the condensing portion 12d. In FIG. 10, the inside of the plurality of regions surrounded by the dotted line is a region that functions as a Fresnel lens 73, and the outside of the region is a region that functions as a reinforcing portion 63. The reinforcing portion 63 has a peripheral reinforcing portion 631 and an intermediate reinforcing portion 632. The peripheral edge reinforcing portion 631 is located on the peripheral edge portion of the light collecting portion 12d. The intermediate reinforcing portion 632 is located between the Fresnel lenses 73 adjacent to each other and between the Fresnel lens 73 and the peripheral reinforcing portion 631. Similar to the embodiment, in this modification as well, the average thickness of the peripheral reinforcing portion 631 and the intermediate reinforcing portion 632 is thicker than the average thickness of the plurality of Fresnel lenses 73.
 図12を参照する。フレネルレンズ73は、同心円状に形成された凸状の領域である複数の第1凸部731と、互いに隣接する第1凸部731の間にそれぞれ位置する溝である複数の第1溝部732とを有する。中間補強部632は、同心円状に形成された凸状の領域である複数の第2凸部633と、互いに隣接する第2凸部633の間にそれぞれ位置する溝である複数の第2溝部634とを有する。 Refer to FIG. The Fresnel lens 73 includes a plurality of first convex portions 731 which are concentrically formed convex regions and a plurality of first groove portions 732 which are grooves located between the first convex portions 731 adjacent to each other. Has. The intermediate reinforcing portion 632 is a plurality of second groove portions 634 which are grooves located between a plurality of second convex portions 633 which are concentrically formed convex regions and a second convex portion 633 which is adjacent to each other. And have.
 複数のフレネルレンズ73は、それぞれ正の屈折力を有する。すなわち、複数のフレネルレンズ73は、それぞれ正レンズである。また、中間補強部632は、第2凸部633及び第2溝部634により形成される凹凸形状により、正の屈折力を有する。中間補強部632に表面12a側から入射した光は、複数の第2凸部633の同心円の中心側へ屈折することで、受光部3に向かって集光する。 Each of the plurality of Fresnel lenses 73 has a positive refractive power. That is, each of the plurality of Fresnel lenses 73 is a positive lens. Further, the intermediate reinforcing portion 632 has a positive refractive power due to the uneven shape formed by the second convex portion 633 and the second groove portion 634. The light incident on the intermediate reinforcing portion 632 from the surface 12a side is refracted toward the center side of the concentric circles of the plurality of second convex portions 633, so that the light is focused toward the light receiving portion 3.
 図12に示すように、第2溝部634の第2凸部633からの深さd2は、第1溝部732の第1凸部731からの深さd1よりも浅い。このように、深さd2を深さd1よりも浅くすることで、中間補強部632の平均厚みをフレネルレンズ73の平均厚みよりも厚くしている。 As shown in FIG. 12, the depth d2 of the second groove portion 634 from the second convex portion 633 is shallower than the depth d1 of the first groove portion 732 from the first convex portion 731. In this way, by making the depth d2 shallower than the depth d1, the average thickness of the intermediate reinforcing portion 632 is made thicker than the average thickness of the Fresnel lens 73.
 互いに隣接する第2凸部633(及び第2溝部634)の紙面の左右方向における配置間隔(ピッチ)の平均は、互いに隣接する第1凸部731(及び第1溝部731)の配置間隔の平均よりも狭い。すなわち、複数の第2凸部633は、複数の第1凸部731よりも密に配置されている。この構成により、深さd2を深さd1よりも浅くしても、中心側への中間補強部632による集光をより確実に行うことができる。 The average of the arrangement intervals (pitch) of the second convex portions 633 (and the second groove portions 634) adjacent to each other in the left-right direction on the paper surface is the average of the arrangement intervals (and the first groove portions 731) of the first convex portions 731 (and the first groove portions 731) adjacent to each other. Narrower than. That is, the plurality of second convex portions 633 are arranged more densely than the plurality of first convex portions 731. With this configuration, even if the depth d2 is shallower than the depth d1, the light can be more reliably collected by the intermediate reinforcing portion 632 toward the center side.
 本変形例では、第1凸部731と第2凸部633の表面12a側からの高さは同じである。なお、第1凸部731と第2凸部633の表面12a側からの高さは異なっていても良く、例えば第2凸部633の方が第1凸部731よりも高くても良い。 In this modification, the heights of the first convex portion 731 and the second convex portion 633 from the surface 12a side are the same. The heights of the first convex portion 731 and the second convex portion 633 from the surface 12a side may be different. For example, the second convex portion 633 may be higher than the first convex portion 731.
 図11を参照する。図11では、フレネルレンズ73の中心部Cを記している。フレネルレンズ73における複数の第1凸部731と、補強部63における複数の第2凸部633は、フレネルレンズ73の中心部Cを中心とした同心円状に形成されている。複数の第2凸部633は、中心を同じくする複数の第1凸部731よりも中心部Cから外側に設けられている。すなわち、第2凸部633は、第1凸部731よりも中心部Cから離れて位置する。 Refer to FIG. In FIG. 11, the central portion C of the Fresnel lens 73 is shown. The plurality of first convex portions 731 of the Fresnel lens 73 and the plurality of second convex portions 633 of the reinforcing portion 63 are formed concentrically around the central portion C of the Fresnel lens 73. The plurality of second convex portions 633 are provided outside the central portion C with respect to the plurality of first convex portions 731 having the same center. That is, the second convex portion 633 is located farther from the central portion C than the first convex portion 731.
 このように、本変形例では、フレネルレンズ73の外側に中間補強部632が設けられる。そして、それぞれのフレネルレンズ73の外側に位置する中間補強部632同士がそれぞれ接続し、枠形状を形成することで、集光部12dの曲げ剛性がより強くなり、集光部12dの撓みをより確実に抑制することができる。 As described above, in this modification, the intermediate reinforcing portion 632 is provided on the outside of the Fresnel lens 73. Then, the intermediate reinforcing portions 632 located on the outside of each Fresnel lens 73 are connected to each other to form a frame shape, so that the bending rigidity of the condensing portion 12d becomes stronger and the bending of the condensing portion 12d becomes stronger. It can be reliably suppressed.
 本変形例において、補強部63の平均厚みは、複数のフレネルレンズ73の平均厚みよりも厚い。このため、補強部63により集光部12dの曲げ剛性を高め、集光部12dの撓みを抑制することができる。また、本変形例では、補強部63の一部(中間補強部632)においても受光部3への集光を行うため、補強部63により集光部12dの撓みを抑制しつつ、集光部12dが受光部3へ集光する光強度をより強くすることができる。 In this modified example, the average thickness of the reinforcing portion 63 is thicker than the average thickness of the plurality of Fresnel lenses 73. Therefore, the reinforcing portion 63 can increase the bending rigidity of the condensing portion 12d and suppress the bending of the condensing portion 12d. Further, in this modification, since a part of the reinforcing portion 63 (intermediate reinforcing portion 632) also collects light on the light receiving portion 3, the reinforcing portion 63 suppresses the bending of the light collecting portion 12d and also collects the light collecting portion. The light intensity that 12d collects on the light receiving unit 3 can be further increased.
 《第3変形例》
 図13は、実施形態の第3変形例に係る集光部12eの裏面12bの構成を示す平面図である。図14は、図13の矢印A3で示す切断線上の断面図である。図14では、本変形例に係るモジュール1Maについて、簡素化のために筐体11a、集光部12e、1つの受光部3及びフレキシブルプリント配線板13のみを示し、他の構成は省略している。本変形例は、筐体と集光部の一部形状が上記の実施形態と相違し、その他の点は共通する。
<< Third variant >>
FIG. 13 is a plan view showing the configuration of the back surface 12b of the condensing unit 12e according to the third modification of the embodiment. FIG. 14 is a cross-sectional view taken along the cutting line indicated by the arrow A3 in FIG. In FIG. 14, for the module 1Ma according to this modification, only the housing 11a, the condensing unit 12e, one light receiving unit 3 and the flexible printed wiring board 13 are shown for simplification, and other configurations are omitted. .. In this modification, a part of the shape of the housing and the light collecting portion is different from that of the above embodiment, and other points are common.
 図14を参照する。筐体11aは、底板111と枠体112とを有する。枠体112の上部には、集光部12eと接触する支持部が設けられ、枠体112は支持部により集光部12eを上方に支持する。支持部には、上方に突出する突起部113が形成されている。突起部113は、支持部の上方において、三角形状に形成されている。突起部113の表面には、シリコーン等のコーキング材(図示省略)が、突起部113の形状に沿って薄く設けられていてもよい。 Refer to FIG. The housing 11a has a bottom plate 111 and a frame body 112. A support portion that comes into contact with the light collecting portion 12e is provided on the upper portion of the frame body 112, and the frame body 112 supports the light collecting portion 12e upward by the support portion. A protrusion 113 protruding upward is formed on the support portion. The protrusion 113 is formed in a triangular shape above the support. A caulking material (not shown) such as silicone may be thinly provided on the surface of the protrusion 113 along the shape of the protrusion 113.
 集光部12eは1枚のガラス板70eを有し、ガラス板70eにはフレネルレンズ71と補強部61とが形成されている。ガラス板70eは、筐体11aの支持部と接触する接触部を有する。本変形例において、補強部61の周縁補強部611の裏面12b側が、接触部である。接触部には、表面12a側に凹んだ嵌合部91が形成されている。図13に示すように、嵌合部91は、周縁補強部611(すなわち、接触部)の全周にわたって形成されている。なお、嵌合部91は、接触部の一部に断続的に形成されていても良い。例えば、周縁補強部611の四隅にのみ形成されていても良い。また、嵌合部91は周縁補強部611の全周にわたって1重に設けられているが、嵌合部91は2重に設けられても良い。 The light collecting portion 12e has one glass plate 70e, and the glass plate 70e is formed with a Fresnel lens 71 and a reinforcing portion 61. The glass plate 70e has a contact portion that comes into contact with the support portion of the housing 11a. In this modification, the back surface 12b side of the peripheral edge reinforcing portion 611 of the reinforcing portion 61 is the contact portion. A fitting portion 91 recessed on the surface 12a side is formed in the contact portion. As shown in FIG. 13, the fitting portion 91 is formed over the entire circumference of the peripheral edge reinforcing portion 611 (that is, the contact portion). The fitting portion 91 may be formed intermittently in a part of the contact portion. For example, it may be formed only at the four corners of the peripheral edge reinforcing portion 611. Further, although the fitting portion 91 is provided in a single layer over the entire circumference of the peripheral edge reinforcing portion 611, the fitting portion 91 may be provided in a double layer.
 図15Aは、図14の嵌合部91を含む一部を拡大して示す断面図である。図15Aに示すように、嵌合部91の断面形状は、突起部113の断面形状を反転した形状である。モジュール1Maにおいて、筐体11aは、突起部113に嵌合部91を嵌合させた状態で、ガラス板70eを支持部により支持する。このように構成することで、支持部とガラス板70eとの接触面積が増えるため、筐体11aとガラス板70eとの接着強度を向上することができ、モジュール1Maの信頼性をより高くすることができる。また、嵌合部91により筐体11aとガラス板70eとの位置合わせが容易になり、筐体11aとガラス板70eとの位置ずれによる集光性能の低下や歩留まり低下を抑制することができる。さらに、支持部とガラス板70eとの接触面に凹凸形状を有するため、外部から筐体11a内へ雨水や砂塵が入ることを抑制でき、モジュール1Maの防水及び防塵性能を高めることができる。 FIG. 15A is an enlarged cross-sectional view showing a part including the fitting portion 91 of FIG. As shown in FIG. 15A, the cross-sectional shape of the fitting portion 91 is a shape obtained by reversing the cross-sectional shape of the protrusion 113. In the module 1Ma, the housing 11a supports the glass plate 70e by the support portion in a state where the fitting portion 91 is fitted to the protrusion 113. With this configuration, the contact area between the support portion and the glass plate 70e increases, so that the adhesive strength between the housing 11a and the glass plate 70e can be improved, and the reliability of the module 1Ma can be further increased. Can be done. Further, the fitting portion 91 facilitates the alignment between the housing 11a and the glass plate 70e, and it is possible to suppress a decrease in light collection performance and a decrease in yield due to a misalignment between the housing 11a and the glass plate 70e. Further, since the contact surface between the support portion and the glass plate 70e has an uneven shape, it is possible to suppress rainwater and dust from entering the housing 11a from the outside, and it is possible to improve the waterproof and dustproof performance of the module 1Ma.
 本変形例において、突起部及び嵌合部の形状としては、様々なバリエーションを採用することができる。図15B及び図15Cは、第3変形例のバリエーションに係る突起部及び嵌合部を拡大して示す断面図である。図15Bに示すように、突起部113aは支持部の上方において、矩形状に形成されても良い。この場合、嵌合部91aの断面形状は、突起部113aの断面形状を反転した形状で設けられる。このように、突起部及び嵌合部は様々な形状を採用しても良い。 In this modified example, various variations can be adopted as the shapes of the protrusions and the fitting portions. 15B and 15C are enlarged cross-sectional views showing a protrusion and a fitting portion according to a variation of the third modification. As shown in FIG. 15B, the protrusion 113a may be formed in a rectangular shape above the support. In this case, the cross-sectional shape of the fitting portion 91a is provided by reversing the cross-sectional shape of the protrusion 113a. As described above, various shapes may be adopted for the protrusion and the fitting portion.
 図15Cに示すように、突起部113bは支持部の上方において、台形状に形成されても良い。そして、嵌合部91bの断面形状は、突起部113bの断面形状を反転した形状よりも大きく凹んだ形状としても良い。嵌合部91bの紙面の左右方向の幅は、突起部113bの幅よりもわずかに大きく、突起部113bに嵌合部91bを嵌合させると、幅方向にわずかに隙間(遊び)が生じる。ここで、当該隙間は、ガラス板70eと筐体11aとの位置合わせ精度に関して許容される公差よりも小さく設けられる。このように、隙間を設けることで、突起部113bと嵌合部91bとの嵌合を容易にすることができる。 As shown in FIG. 15C, the protrusion 113b may be formed in a trapezoidal shape above the support. The cross-sectional shape of the fitting portion 91b may be a shape that is larger than the shape obtained by reversing the cross-sectional shape of the protrusion 113b. The width of the paper surface of the fitting portion 91b in the left-right direction is slightly larger than the width of the protrusion 113b, and when the fitting portion 91b is fitted to the protrusion 113b, a slight gap (play) is generated in the width direction. Here, the gap is provided to be smaller than the tolerance allowed for the alignment accuracy between the glass plate 70e and the housing 11a. By providing the gap in this way, it is possible to facilitate the fitting between the protrusion 113b and the fitting portion 91b.
 図15D及び図15Eは、バリエーションに係るモジュール1Mb、1Mcを示す断面図である。図15D及び図15Eでは、バリエーションに係るモジュール1Mb、1Mcについて、簡素化のために筐体11c、11d、集光部12f、12g、1つの受光部3及びフレキシブルプリント配線板13のみを示し、他の構成は省略している。 15D and 15E are cross-sectional views showing modules 1Mb and 1Mc according to variations. In FIGS. 15D and 15E, for the modules 1Mb and 1Mc related to the variation, only the housings 11c and 11d, the condensing unit 12f and 12g, one light receiving unit 3 and the flexible printed wiring board 13 are shown for simplification. The configuration of is omitted.
 図15Dに示すように、集光部12fは1枚のガラス板70fを有し、ガラス板70fに補強部は形成されない。集光部12fの裏面12bには、同心円状に形成された複数の凸部741をそれぞれ有する複数のフレネルレンズ74が形成されている。筐体11cの枠体112の上部には、ガラス板70fを支持する支持部が設けられ、支持部には突起部113cが形成されている。集光部12fの周縁部には、突起部113cの断面形状を反転した断面形状を有する嵌合部91cが設けられる。このように構成することで、モジュール1Mbの信頼性をより高くしたり、筐体11cとガラス板70fとの位置ずれによる集光性能の低下や歩留まり低下を抑制したりすることができる。 As shown in FIG. 15D, the light collecting portion 12f has one glass plate 70f, and the reinforcing portion is not formed on the glass plate 70f. A plurality of Fresnel lenses 74 having a plurality of concentrically formed convex portions 741 are formed on the back surface 12b of the concentrating portion 12f. A support portion for supporting the glass plate 70f is provided on the upper portion of the frame body 112 of the housing 11c, and a protrusion 113c is formed on the support portion. A fitting portion 91c having a cross-sectional shape obtained by reversing the cross-sectional shape of the protrusion 113c is provided on the peripheral edge portion of the light collecting portion 12f. With such a configuration, it is possible to further improve the reliability of the module 1Mb and suppress a decrease in light collection performance and a decrease in yield due to a positional deviation between the housing 11c and the glass plate 70f.
 図15Eに示すように、集光部12gは1枚のガラス板70gを有し、ガラス板70gに補強部は形成されない。集光部12gの裏面12bには、同心円状に形成された複数の凸部741をそれぞれ有する複数のフレネルレンズ74が形成されている。筐体11dの枠体112の上部には、ガラス板70gを支持する支持部が設けられ、支持部には突起部113dが形成されている。突起部113dは、段差状の形状を有する。集光部12gの周縁部には、突起部113dの断面形状を反転した断面形状を有する嵌合部91dが設けられる。このように構成することで、モジュール1Mcの信頼性をより高くしたり、筐体11dとガラス板70gとの位置ずれによる集光性能の低下や歩留まり低下を抑制したりすることができる。なお、図15Eのバリエーションにおいて、ガラス板70gには補強部が形成されていても良い。 As shown in FIG. 15E, the condensing portion 12g has one glass plate 70g, and the reinforcing portion is not formed on the glass plate 70g. A plurality of Fresnel lenses 74 having a plurality of concentrically formed convex portions 741 are formed on the back surface 12b of the concentrating portion 12g. A support portion for supporting the glass plate 70 g is provided on the upper portion of the frame body 112 of the housing 11d, and a protrusion 113d is formed on the support portion. The protrusion 113d has a stepped shape. A fitting portion 91d having a cross-sectional shape obtained by reversing the cross-sectional shape of the protrusion 113d is provided on the peripheral edge portion of the light collecting portion 12g. With such a configuration, the reliability of the module 1 Mc can be further improved, and the decrease in light collection performance and the decrease in yield due to the misalignment between the housing 11d and the glass plate 70 g can be suppressed. In the variation of FIG. 15E, a reinforcing portion may be formed on the glass plate 70 g.
 《第4変形例》
 図16は、実施形態の第4変形例に係る集光部12hの裏面12bの構成を示す平面図である。本変形例は、集光部にアライメントマークが形成される点で上記の実施形態と相違し、その他の点は共通する。
<< Fourth variant >>
FIG. 16 is a plan view showing the configuration of the back surface 12b of the condensing unit 12h according to the fourth modification of the embodiment. This modification is different from the above embodiment in that an alignment mark is formed on the condensing portion, and other points are common.
 図16に示すように、集光部12hは1枚のガラス板70hを有し、ガラス板70hには補強部61及び複数のフレネルレンズ71が形成されている。補強部61は、周縁補強部611と中間補強部612とを有する。周縁補強部611及び中間補強部612には、それぞれ複数のアライメントマーク92が形成されている。アライメントマーク92は、集光部12hを筐体11に設けるときの位置決めに使用されるマークである。位置決めの方法については、後述する。 As shown in FIG. 16, the condensing portion 12h has one glass plate 70h, and the glass plate 70h is formed with a reinforcing portion 61 and a plurality of Fresnel lenses 71. The reinforcing portion 61 has a peripheral reinforcing portion 611 and an intermediate reinforcing portion 612. A plurality of alignment marks 92 are formed on the peripheral reinforcing portion 611 and the intermediate reinforcing portion 612, respectively. The alignment mark 92 is a mark used for positioning when the light collecting portion 12h is provided on the housing 11. The positioning method will be described later.
 図17は、集光部12hにおけるアライメントマーク92部分の断面図である。図17に示すように、アライメントマーク92は、ガラス板70hの裏面12bから受光部3側に突出した断面形状を有する。なお、アライメントマーク92の断面形状は、図17の形状に限られず、ガラス板70hの裏面12bから表面12a側に凹んだ断面形状を有していても良い。アライメントマーク92は、フレネルレンズ71をプレス部84でプレス成形する際に、形成される。すなわち、第4変形例では、プレス部84にアライメントマーク92の反転形状の凹部が形成されており、集光部12hを製造する際、フレネルレンズ71と同じ工程で形成される。 FIG. 17 is a cross-sectional view of the alignment mark 92 portion in the condensing portion 12h. As shown in FIG. 17, the alignment mark 92 has a cross-sectional shape protruding from the back surface 12b of the glass plate 70h toward the light receiving portion 3. The cross-sectional shape of the alignment mark 92 is not limited to the shape shown in FIG. 17, and may have a cross-sectional shape recessed from the back surface 12b to the front surface 12a of the glass plate 70h. The alignment mark 92 is formed when the Fresnel lens 71 is press-molded by the press portion 84. That is, in the fourth modification, a recess having an inverted shape of the alignment mark 92 is formed in the press portion 84, and is formed in the same process as the Fresnel lens 71 when the condensing portion 12h is manufactured.
 図16において、アライメントマーク92は十字形状を有するが、アライメントマーク92の形状はこれに限られず、円形状であっても良いし、多角形状であっても良い。また、アライメントマーク92は、ガラス板70hにおいて2箇所以上に配置されていれば良く、図16に示す個数(6個)は例示である。また、図16において全てのアライメントマーク92が補強部61に形成されているが、アライメントマーク92が配置される位置はこれに限られず、少なくとも1つのアライメントマーク92が補強部61に設けられていれば良い。 In FIG. 16, the alignment mark 92 has a cross shape, but the shape of the alignment mark 92 is not limited to this, and may be a circular shape or a polygonal shape. Further, the alignment marks 92 may be arranged at two or more places on the glass plate 70h, and the number (6 pieces) shown in FIG. 16 is an example. Further, although all the alignment marks 92 are formed in the reinforcing portion 61 in FIG. 16, the position where the alignment marks 92 are arranged is not limited to this, and at least one alignment mark 92 is provided in the reinforcing portion 61. Just do it.
 次に、本変形例に係る集光型太陽光発電モジュールの製造方法の一部としての、筐体11と集光部12hとの相互の位置合わせ方法の一例について説明する。図18は、位置合わせ前の筐体11と集光部12hとを示す斜視図に、制御駆動系の構成の概要を併せて示す説明図である。図18において、テーブル56の上に、筐体11と集光部12hとが別々に置かれている。ここで、テーブル56の表面を、X-Y平面とする。筐体11内には、位置合わせに用いる4個の受光部3のみを図示している。他の部材(他の複数の受光部3、フレキシブルプリント配線板13及び遮蔽板14)は、図18において図示省略しているが、これら他の部材は筐体11内に収容済みの状態である。 Next, an example of a mutual alignment method between the housing 11 and the condensing unit 12h as a part of the method for manufacturing the concentrating solar power generation module according to this modification will be described. FIG. 18 is an explanatory view showing an outline of the configuration of the control drive system together with a perspective view showing the housing 11 and the condensing unit 12h before alignment. In FIG. 18, the housing 11 and the condensing unit 12h are separately placed on the table 56. Here, the surface of the table 56 is defined as an XY plane. In the housing 11, only the four light receiving units 3 used for alignment are shown. Other members (a plurality of other light receiving portions 3, a flexible printed wiring board 13 and a shielding plate 14) are not shown in FIG. 18, but these other members are already housed in the housing 11. ..
 制御駆動系は、カメラ51と、カメラ51を駆動する駆動部52と、駆動部52を制御し、カメラ51から撮像信号を受ける制御部53と、制御部53に対して操作指令を与える操作部54と、制御部53からアクセス可能であって情報を記憶する記憶部55と、を備える。制御部53は、例えばコンピュータを含み、コンピュータがソフトウェア(コンピュータプログラム)を実行することで、必要な制御機能を実現する。ソフトウェアは、記憶部55に格納される。 The control drive system includes a camera 51, a drive unit 52 that drives the camera 51, a control unit 53 that controls the drive unit 52 and receives an image pickup signal from the camera 51, and an operation unit that gives an operation command to the control unit 53. A storage unit 55 that is accessible from the control unit 53 and stores information is provided. The control unit 53 includes, for example, a computer, and the computer executes software (computer program) to realize a necessary control function. The software is stored in the storage unit 55.
 位置合わせ方法において、はじめに集光部12hと筐体11が準備され、テーブル56の上に載置される(第1工程)。第1工程の後、アライメントマーク92及び受光部3をカメラ51により撮像して、それぞれの位置を記憶部55に記憶する第2工程を行う。 In the alignment method, the condensing unit 12h and the housing 11 are first prepared and placed on the table 56 (first step). After the first step, the alignment mark 92 and the light receiving unit 3 are imaged by the camera 51, and the second step of storing the respective positions in the storage unit 55 is performed.
 第2工程が開始されると、操作部54から制御部53に与えられる始動指令により、制御部53は、駆動部52を制御してカメラ51を移動させながら集光部12hの撮像を行う。カメラ51は、集光部12hをX-Y平面に垂直な方向から撮像する。制御部53は、カメラ51により撮像した画像内にアライメントマーク92を検出すると、そのX,Y座標(すなわち、アライメントマーク92の位置)を記憶部55に記憶する。ここで、テーブル56上のどこかに原点を設定し、6個のアライメントマーク92の座標を、それぞれ(XSn,YSn)として記憶する。ここで、nは1から6までの整数である。2個以上の所定の個数(本変形例では、6個)のアライメントマーク92を検出した後、駆動部52はカメラ51の移動を停止させ、集光部12hの撮像を終了する。 When the second step is started, the control unit 53 controls the drive unit 52 to move the camera 51 and take an image of the condensing unit 12h according to the start command given from the operation unit 54 to the control unit 53. The camera 51 takes an image of the condensing unit 12h from a direction perpendicular to the XY plane. When the control unit 53 detects the alignment mark 92 in the image captured by the camera 51, the control unit 53 stores the X and Y coordinates (that is, the position of the alignment mark 92) in the storage unit 55. Here, the origin is set somewhere on the table 56, and the coordinates of the six alignment marks 92 are stored as (X Sn , Y Sn), respectively. Here, n is an integer from 1 to 6. After detecting two or more predetermined number of alignment marks 92 (six in this modification), the driving unit 52 stops the movement of the camera 51 and ends the imaging of the condensing unit 12h.
 次に、制御部53は、駆動部52を制御してカメラ51を移動させながら筐体11の撮像を行う。カメラ51は、筐体11をX-Y平面に垂直な方向から撮像する。カメラ51は、筐体11のうち、予め決められた場所に位置する2個以上の受光部3を撮像する。本変形例では、図18に示した4個の受光部3を撮像する。受光部3は、ボールレンズ30の存在により画像内での検出が容易である。受光部3を検出すると、制御部53は、その中心となるX,Y座標(すなわち、受光部3の位置)を記憶する。ここで例えば、テーブル56上のどこかに原点を設定し、4個の受光部3の座標を、それぞれ(XRm,YRm)として記憶する。ここで、mは1から4までの整数である。2個以上の所定の個数(本変形例では、4個)の受光部3を検出した後、駆動部52はカメラ51の移動を停止させ、筐体11の撮像を終了する。以上により、第2工程が終了する。 Next, the control unit 53 controls the drive unit 52 to move the camera 51 while taking an image of the housing 11. The camera 51 takes an image of the housing 11 from a direction perpendicular to the XY plane. The camera 51 images two or more light receiving units 3 located at predetermined locations in the housing 11. In this modification, the four light receiving units 3 shown in FIG. 18 are imaged. The light receiving unit 3 can be easily detected in the image due to the presence of the ball lens 30. When the light receiving unit 3 is detected, the control unit 53 stores the X and Y coordinates (that is, the position of the light receiving unit 3) at the center of the light receiving unit 3. Here, for example, the origin is set somewhere on the table 56, and the coordinates of the four light receiving units 3 are stored as (X Rm , Y Rm), respectively. Here, m is an integer from 1 to 4. After detecting two or more predetermined numbers (4 in this modification) of the light receiving units 3, the drive unit 52 stops the movement of the camera 51 and ends the imaging of the housing 11. With the above, the second step is completed.
 第2工程の後、第2工程により記憶したアライメントマーク92の位置と、受光部3の位置とに基づいて、筐体11と集光部12hの位置合わせをする第3工程を行う。 After the second step, a third step of aligning the housing 11 and the condensing unit 12h is performed based on the position of the alignment mark 92 stored in the second step and the position of the light receiving unit 3.
 図19は、第3工程の途中の様子を示す説明図である。図19では、位置合わせ中の筐体11と集光部12hとを示す斜視図に、制御駆動系の構成の概要を併せて示している。図19には、図18の構成に加えて、マニピュレータ57を図示している。マニピュレータ57は、制御部53から指令を受けた駆動部52により、駆動される。マニピュレータ57は、X方向及びY方向への移動、X-Y平面に垂直な方向への移動(昇降)、X-Y平面に沿った回転、集光部12hの吸着/解放が可能である。 FIG. 19 is an explanatory diagram showing a state in the middle of the third step. In FIG. 19, a perspective view showing the housing 11 and the condensing unit 12h being aligned is shown together with an outline of the configuration of the control drive system. FIG. 19 illustrates the manipulator 57 in addition to the configuration of FIG. The manipulator 57 is driven by a drive unit 52 that receives a command from the control unit 53. The manipulator 57 can move in the X and Y directions, move (elevate) in the direction perpendicular to the XY plane, rotate along the XY plane, and attract / release the light collecting unit 12h.
 第3工程が開始されると、制御部53の動作指令により、駆動部52がマニピュレータ57を駆動して、集光部12hの表面12aにマニピュレータ57を接触させる。この状態でマニピュレータ57は集光部12hの表面12aを吸着し、集光部12hを垂直に持ち上げる。駆動部52は、マニピュレータ57を駆動して、集光部12hを筐体11の上部に移動させ、第2工程で記憶したアライメントマーク92及び受光部3の座標情報に基づいてマニピュレータ57を移動及び回転させ、複数の受光部3と複数のフレネルレンズ71とがそれぞれ光軸Ax(図5参照)を合わせて配置されるように、筐体11と集光部12hとを位置合わせする。その後、マニピュレータ57を下降させ、筐体11の支持部に集光部12hを載置する。以上により、第3工程が終了する。 When the third step is started, the drive unit 52 drives the manipulator 57 according to the operation command of the control unit 53 to bring the manipulator 57 into contact with the surface 12a of the light collecting unit 12h. In this state, the manipulator 57 adsorbs the surface 12a of the condensing unit 12h and lifts the condensing unit 12h vertically. The drive unit 52 drives the manipulator 57 to move the light collecting unit 12h to the upper part of the housing 11, and moves the manipulator 57 based on the coordinate information of the alignment mark 92 and the light receiving unit 3 stored in the second step. By rotating the housing 11, the housing 11 and the condensing unit 12h are aligned so that the plurality of light receiving units 3 and the plurality of Fresnel lenses 71 are arranged so that the optical axes Ax (see FIG. 5) are aligned with each other. After that, the manipulator 57 is lowered, and the condensing unit 12h is placed on the support portion of the housing 11. With the above, the third step is completed.
 ここで、第2工程で記憶したアライメントマーク92及び受光部3の座標情報に基づく位置合わせについて説明する。本変形例では、第2工程で記憶したアライメントマーク92の位置に基づいて、集光部12hのうち第2工程で記憶した受光部3と対応するフレネルレンズ71の中心位置を算出する。例えば、図18において集光部12hの四隅に位置するアライメントマーク92のうち、アライメントマーク92a、92bの座標情報から、これらの間に位置するフレネルレンズ71の中心座標を求める。第3工程では、当該中心座標と、4つの受光部3のうち受光部3aの座標とが一致するように、マニピュレータ57を駆動して集光部12hを筐体11の支持部に載置する。 Here, the alignment based on the coordinate information of the alignment mark 92 and the light receiving unit 3 stored in the second step will be described. In this modification, the center position of the Fresnel lens 71 corresponding to the light receiving unit 3 stored in the second step of the light collecting unit 12h is calculated based on the position of the alignment mark 92 stored in the second step. For example, among the alignment marks 92 located at the four corners of the condensing portion 12h in FIG. 18, the center coordinates of the Fresnel lens 71 located between them are obtained from the coordinate information of the alignment marks 92a and 92b. In the third step, the manipulator 57 is driven and the condensing unit 12h is placed on the support portion of the housing 11 so that the center coordinates and the coordinates of the light receiving portion 3a of the four light receiving portions 3 match. ..
 第4変形例に係る集光型太陽光発電モジュールの製造方法では、補強部61にアライメントマーク92が形成されることで、集光部12hを筐体11の上部に設ける際、集光部12hと受光部3との位置合わせを容易にすることができる。また、少なくとも1つのアライメントマーク92は補強部61に形成されるため、アライメントマーク92による光散乱や遮光による光学損失を抑制することができる。 In the method of manufacturing the concentrating solar power generation module according to the fourth modification, the alignment mark 92 is formed on the reinforcing portion 61, so that when the condensing portion 12h is provided on the upper part of the housing 11, the condensing portion 12h And the light receiving unit 3 can be easily aligned with each other. Further, since at least one alignment mark 92 is formed on the reinforcing portion 61, optical loss due to light scattering or shading due to the alignment mark 92 can be suppressed.
 また、アライメントマーク92は、図8で示す集光部12hの製造工程の際に、プレス部84によりフレネルレンズ71と同じ工程で形成される。このため、フレネルレンズ71とアライメントマーク92との位置関係は一定であり、アライメントマーク92からフレネルレンズ71の中心位置をより正確に算出することができ、より高い精度で位置合わせを行うことができる。 Further, the alignment mark 92 is formed by the pressing unit 84 in the same process as the Fresnel lens 71 during the manufacturing process of the condensing unit 12h shown in FIG. Therefore, the positional relationship between the Fresnel lens 71 and the alignment mark 92 is constant, the center position of the Fresnel lens 71 can be calculated more accurately from the alignment mark 92, and the alignment can be performed with higher accuracy. ..
 《補記》
 なお、上述の実施形態及び各種の変形例については、その少なくとも一部を、相互に任意に組み合わせてもよい。また、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
<< Supplement >>
It should be noted that at least a part of the above-described embodiment and various modifications may be arbitrarily combined with each other. In addition, the embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present disclosure is indicated by the claims and is intended to include all modifications within the meaning and scope equivalent to the claims.
 1 アレイ
 100 太陽光発電装置
 1M、1Ma、1Mb、1Mc モジュール
 1U ユニット
 11、11a、11c、11d 筐体
 11b 底面
 111 底板
 112 枠体
 113、113a、113b、113c、113d 突起部
 12、12c、12d、12e、12f、12g、12h 集光部
 12a 表面
 12b 裏面
 13 フレキシブルプリント配線板
 14 遮蔽板
 14a 開口
 2 支持機構
 21 支柱
 22 基礎
 23 駆動部
 24 水平軸
 25 追尾架台
 25a 補強材
 25b レール
 3、3a 受光部
 30 ボールレンズ
 31 保護板
 31e 上端部内周エッジ
 32 サポート部
 33 パッケージ
 34 セル
 35 リードフレーム
 36 金ワイヤー
 37 リードフレーム
 38 封止部
 56 テーブル
 51 カメラ
 52 駆動部
 53 制御部
 54 操作部
 55 記憶部
 57 マニピュレータ
 61、62、63 補強部
 61a 先端面
 611、621、631 周縁補強部
 612、622、623、632 中間補強部
 633 第2凸部
 634 第2溝部
 70、70c、70d、70e、70f、70g、70h ガラス板
 71、72、73、74 フレネルレンズ
 711、721、741 凸部
 712 凸端部
 731 第1凸部
 732 第1溝部
 80 製造装置
 81 供給部
 82 搬送部
 83 圧胴
 831 周面
 84 プレス部
 841 凹部
 842 溝部
 843 溝部
 121 ガラスシート
 121a 表面
 121b 裏面
 91、91a、91b、91c、91d 嵌合部
 92、92a、92b アライメントマーク
 Ax 光軸
 AR1 搬送方向
 C 中心部
 d1 (第1溝部732の第1凸部731からの)深さ
 d2 (第2溝部634の第2凸部633からの)深さ
1 array 100 photovoltaic device 1M, 1Ma, 1Mb, 1Mc module 1U unit 11, 11a, 11c, 11d housing 11b bottom surface 111 bottom plate 112 frame 113, 113a, 113b, 113c, 113d protrusions 12, 12c, 12d, 12e, 12f, 12g, 12h Condensing part 12a Front surface 12b Back side 13 Flexible printed wiring board 14 Shielding plate 14a Aperture 2 Support mechanism 21 Support 22 Foundation 23 Drive unit 24 Horizontal axis 25 Tracking mount 25a Reinforcing material 25b Rail 3, 3a Light receiving part 30 Ball lens 31 Protective plate 31e Upper end inner peripheral edge 32 Support 33 Package 34 Cell 35 Lead frame 36 Gold wire 37 Lead frame 38 Seal 56 Table 51 Camera 52 Drive 53 Control 54 Operation 55 Storage 57 Manipulator 61 , 62, 63 Reinforcing part 61a Tip surface 611, 621, 631 Peripheral reinforcing part 612, 622, 623, 632 Intermediate reinforcing part 633 Second convex part 634 Second groove part 70, 70c, 70d, 70e, 70f, 70g, 70h Glass Plate 71, 72, 73, 74 Fresnel lens 711, 721, 741 Convex part 712 Convex end part 731 1st convex part 732 1st groove part 80 Manufacturing equipment 81 Supply part 82 Conveyance part 83 Impressor 831 Peripheral surface 84 Press part 841 Concave part 842 Groove 843 Groove 121 Glass sheet 121a Front side 121b Back side 91, 91a, 91b, 91c, 91d Fitting part 92, 92a, 92b Alignment mark Ax Optical axis AR1 Transport direction C Center part d1 (First convex part of first groove part 732) Depth d2 (from 731) Depth (from second convex 633 of second groove 634)

Claims (10)

  1.  筐体と、
     前記筐体の底面に設けられた複数の受光部と、
     前記筐体の上部に設けられた集光部と、
    を備え、
     前記集光部は、少なくとも1枚のガラス板を有し、
     前記ガラス板には、複数の前記受光部のそれぞれと光軸を合わせて配置された複数のフレネルレンズと、複数の前記フレネルレンズよりも平均厚みが厚い補強部とが形成されている、
    集光型太陽光発電モジュール。
    With the housing
    A plurality of light receiving parts provided on the bottom surface of the housing and
    A condensing unit provided on the upper part of the housing and
    With
    The condensing unit has at least one glass plate and has.
    The glass plate is formed with a plurality of Fresnel lenses arranged so as to align the optical axis with each of the plurality of light receiving portions, and a reinforcing portion having an average thickness thicker than that of the plurality of Fresnel lenses.
    Concentrated solar power generation module.
  2.  前記ガラス板は、太陽の方向を向く表面と、前記表面の反対側に位置し、前記受光部の方向を向く裏面とを有し、
     前記補強部は、前記裏面に沿って設けられた先端面を有し、
     複数の前記フレネルレンズは、前記先端面よりも前記表面側又は前記先端面と同じ高さ位置に位置する凸端部をそれぞれ有し、
     複数の前記フレネルレンズは、前記凸端部から前記表面側に凹んで設けられている、
    請求項1に記載の集光型太陽光発電モジュール。
    The glass plate has a front surface facing the sun and a back surface located on the opposite side of the surface and facing the light receiving portion.
    The reinforcing portion has a tip surface provided along the back surface.
    Each of the plurality of Fresnel lenses has a convex end portion located on the surface side of the tip surface or at the same height position as the tip surface.
    The plurality of Fresnel lenses are provided so as to be recessed from the convex end portion toward the surface side.
    The concentrating photovoltaic power generation module according to claim 1.
  3.  前記フレネルレンズは、同心円状に形成された凸状の領域である複数の第1凸部と、互いに隣接する前記第1凸部の間にそれぞれ位置する溝である複数の第1溝部と、を有し、
     前記補強部は、同心円状に形成された凸状の領域である複数の第2凸部と、互いに隣接する前記第2凸部の間にそれぞれ位置する溝である複数の第2溝部と、を有し、
     前記第2溝部の前記第2凸部からの深さは、前記第1溝部の前記第1凸部からの深さよりも浅い、
    請求項1又は請求項2に記載の集光型太陽光発電モジュール。
    The Fresnel lens has a plurality of first convex portions, which are convex regions formed concentrically, and a plurality of first groove portions, which are grooves located between the first convex portions adjacent to each other. Have and
    The reinforcing portion includes a plurality of second convex portions, which are convex regions formed concentrically, and a plurality of second groove portions, which are grooves located between the second convex portions adjacent to each other. Have
    The depth of the second groove portion from the second convex portion is shallower than the depth of the first groove portion from the first convex portion.
    The concentrating photovoltaic power generation module according to claim 1 or 2.
  4.  複数の前記第1凸部及び複数の前記第2凸部は、前記フレネルレンズの中心部を中心とした同心円状に形成され、
     複数の前記第2凸部は、複数の前記第1凸部よりも前記中心部から外側に設けられている、
    請求項3に記載の集光型太陽光発電モジュール。
    The plurality of first convex portions and the plurality of second convex portions are formed concentrically around the central portion of the Fresnel lens.
    The plurality of the second convex portions are provided outside the central portion of the plurality of the first convex portions.
    The concentrating photovoltaic power generation module according to claim 3.
  5.  少なくとも一部の前記補強部は、複数の前記フレネルレンズのうち互いに隣接する前記フレネルレンズの間に設けられている、
    請求項1から請求項4のいずれか1項に記載の集光型太陽光発電モジュール。
    At least a part of the reinforcing portion is provided between the Fresnel lenses adjacent to each other among the plurality of Fresnel lenses.
    The concentrating photovoltaic power generation module according to any one of claims 1 to 4.
  6.  少なくとも一部の前記補強部は、前記ガラス板の周縁部に設けられている、
    請求項1から請求項5のいずれか1項に記載の集光型太陽光発電モジュール。
    At least a part of the reinforcing portion is provided on the peripheral edge portion of the glass plate.
    The concentrating photovoltaic power generation module according to any one of claims 1 to 5.
  7.  前記筐体は、前記ガラス板を上方に支持する支持部を有し、
     前記ガラス板は、前記支持部と接触する接触部を有し、
     前記接触部は、前記支持部と嵌合する嵌合部を有する、
    請求項1から請求項6のいずれか1項に記載の集光型太陽光発電モジュール。
    The housing has a support portion that supports the glass plate upward.
    The glass plate has a contact portion that comes into contact with the support portion and has a contact portion.
    The contact portion has a fitting portion that fits with the support portion.
    The concentrating photovoltaic power generation module according to any one of claims 1 to 6.
  8.  前記ガラス板は、前記集光部を前記筐体に設けるときの位置決めに使用される少なくとも2個のアライメントマークを有し、
     少なくとも1つの前記アライメントマークは、前記補強部に設けられている、
    請求項1から請求項7のいずれか1項に記載の集光型太陽光発電モジュール。
    The glass plate has at least two alignment marks used for positioning when the light collecting portion is provided in the housing.
    At least one of the alignment marks is provided on the reinforcing portion.
    The concentrating photovoltaic power generation module according to any one of claims 1 to 7.
  9.  請求項1から請求項8のいずれか1項に記載の集光型太陽光発電モジュールを複数個集合して構成されているアレイを備える、
    集光型太陽光発電装置。
    The present invention comprises an array formed by assembling a plurality of concentrating photovoltaic power generation modules according to any one of claims 1 to 8.
    Concentrated solar power generation device.
  10.  複数の受光部を底面に備える筐体の上部に、複数のフレネルレンズが配置されたガラス板を有する集光部を位置合わせして乗せる工程を含む、集光型太陽光発電モジュールの製造方法であって、
     複数の前記フレネルレンズと、複数の前記フレネルレンズよりも平均厚みが厚い補強部と、前記集光部を前記筐体に設けるときの位置決めに使用される少なくとも2個のアライメントマークと、が形成されている少なくとも1枚の前記ガラス板を有する前記集光部を準備する第1工程と、
     前記ガラス板を撮像して前記アライメントマークを検出し、その位置を記憶するとともに、前記アライメントマークと位置的に関連付けるべき前記受光部を撮像してその位置を記憶する第2工程と、
     前記第2工程によって記憶した前記アライメントマークの位置と、前記第2工程によって記憶した前記受光部の位置とに基づいて、複数の前記受光部と複数の前記フレネルレンズとがそれぞれ光軸を合わせて配置されるように、前記筐体と前記集光部とを位置合わせする第3工程と、
    を備え、
     前記第1工程は、前記補強部に少なくとも1つの前記アライメントマークを有する前記集光部を準備する、
    集光型太陽光発電モジュールの製造方法。
     
    A method for manufacturing a concentrating solar power generation module, which includes a step of aligning and placing a condensing portion having a glass plate on which a plurality of Fresnel lenses are arranged on an upper portion of a housing having a plurality of light receiving portions on the bottom surface. There,
    A plurality of the Fresnel lenses, a reinforcing portion having an average thickness thicker than the plurality of Fresnel lenses, and at least two alignment marks used for positioning when the condensing portion is provided in the housing are formed. The first step of preparing the condensing unit having at least one of the glass plates, and
    A second step of imaging the glass plate to detect the alignment mark and memorizing the position, and imaging the light receiving portion to be positionally associated with the alignment mark and memorizing the position.
    Based on the position of the alignment mark memorized by the second step and the position of the light receiving part memorized by the second step, the plurality of the light receiving parts and the plurality of Fresnel lenses align their optical axes with each other. A third step of aligning the housing and the condensing unit so that they are arranged,
    With
    In the first step, the condensing unit having at least one alignment mark on the reinforcing unit is prepared.
    A method for manufacturing a concentrating photovoltaic module.
PCT/JP2020/042293 2019-12-02 2020-11-12 Concentrator photovoltaic module, concentrator photovoltaic device, and method for manufacturing concentrator photovoltaic module WO2021111841A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019217902 2019-12-02
JP2019-217902 2019-12-02

Publications (1)

Publication Number Publication Date
WO2021111841A1 true WO2021111841A1 (en) 2021-06-10

Family

ID=76221920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042293 WO2021111841A1 (en) 2019-12-02 2020-11-12 Concentrator photovoltaic module, concentrator photovoltaic device, and method for manufacturing concentrator photovoltaic module

Country Status (1)

Country Link
WO (1) WO2021111841A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100051088A1 (en) * 2008-08-27 2010-03-04 Alexander Levin Photovoltaic solar concentrating power system
JP2010109063A (en) * 2008-10-29 2010-05-13 Sharp Corp Method and apparatus of manufacturing solar cell module
JP2014135395A (en) * 2013-01-10 2014-07-24 Dainippon Printing Co Ltd Condensing photovoltaic power generation system
WO2019159554A1 (en) * 2018-02-13 2019-08-22 住友電気工業株式会社 Concentrator photovoltaic module and concentrator photovoltaic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100051088A1 (en) * 2008-08-27 2010-03-04 Alexander Levin Photovoltaic solar concentrating power system
JP2010109063A (en) * 2008-10-29 2010-05-13 Sharp Corp Method and apparatus of manufacturing solar cell module
JP2014135395A (en) * 2013-01-10 2014-07-24 Dainippon Printing Co Ltd Condensing photovoltaic power generation system
WO2019159554A1 (en) * 2018-02-13 2019-08-22 住友電気工業株式会社 Concentrator photovoltaic module and concentrator photovoltaic device

Similar Documents

Publication Publication Date Title
US6008449A (en) Reflective concentrating solar cell assembly
AU2006256136B8 (en) Concentrating solar power generation unit, concentrating solar power generation apparatus, concentrating lens, concentrating lens structure, and method for manufacturing concentrating lens structure
CN102687051B (en) Image-capturing lens unit
JP2006344698A (en) Focusing type solar light power generation unit and focusing type solar light power generator
CN205754192U (en) Light concentrating photovoltaic module, condensation photovoltaic panel and condensation photovoltaic equipment
JP6561661B2 (en) Concentrating solar power generation unit, concentrating solar power generation module, concentrating solar power generation panel, and concentrating solar power generation device
CN101852908B (en) Wafer-level lens module array
JP6507915B2 (en) Concentrated solar power generation unit, concentrated solar power generation module, concentrated solar power generation panel, concentrated solar power generation apparatus
WO2009090843A1 (en) Concentrating photovoltaic unit and method for manufacturing concentrating photovoltaic unit
JP5918938B2 (en) Lens array plate and erecting equal-magnification lens array plate manufacturing method
WO2021111841A1 (en) Concentrator photovoltaic module, concentrator photovoltaic device, and method for manufacturing concentrator photovoltaic module
JP2013211487A (en) Secondary lens, solar battery mounting body, condensing type photovoltaic power generation unit, and condensing type photovoltaic power generation module
US20210367554A1 (en) Fresnel lens for concentrator photovoltaic apparatus, concentrator photovoltaic system, and method of manufacturing fresnel lens for concentrator photovoltaic apparatus
WO2021111867A1 (en) Concentrated solar power generation module, concentrated solar power generation device, and method for manufacturing light-concentrating unit
WO2019159554A1 (en) Concentrator photovoltaic module and concentrator photovoltaic device
KR20130022752A (en) Sensor and method for tracking position of solar
CN103262260B (en) Light generating device
JP7047417B2 (en) Lens sheet unit, image pickup module, image pickup device
CN102456760A (en) Modular structure of light collecting system and implementing method thereof
WO2019030988A1 (en) Concentrator photovoltaic module, concentrator photovoltaic panel, and concentrator photovoltaic device
JP7424288B2 (en) Original form of flexible printed wiring board, method for manufacturing flexible printed wiring board, concentrating solar power generation module, and light emitting module
WO2019171935A1 (en) Light-receiving part for concentrated solar power generation unit, concentrated solar power generation module, and light-receiving part production method
US20150096176A1 (en) Concentrating Thin Film Absorber Device and Method of Manufacture
CN202178279U (en) Light-gathering photovoltaic glass used for solar photovoltaic cell and provided with matrix patterns
JP2011155132A (en) Solar cell module, and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP