WO2021111808A1 - Motor drive device - Google Patents

Motor drive device Download PDF

Info

Publication number
WO2021111808A1
WO2021111808A1 PCT/JP2020/041635 JP2020041635W WO2021111808A1 WO 2021111808 A1 WO2021111808 A1 WO 2021111808A1 JP 2020041635 W JP2020041635 W JP 2020041635W WO 2021111808 A1 WO2021111808 A1 WO 2021111808A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
rotation speed
duty ratio
threshold value
unit
Prior art date
Application number
PCT/JP2020/041635
Other languages
French (fr)
Japanese (ja)
Inventor
浩二 水上
純也 金子
Original Assignee
日本電産サーボ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サーボ株式会社 filed Critical 日本電産サーボ株式会社
Priority to JP2021562520A priority Critical patent/JPWO2021111808A1/ja
Priority to CN202080084443.7A priority patent/CN114762244A/en
Publication of WO2021111808A1 publication Critical patent/WO2021111808A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention relates to a motor drive device.
  • the motor is tried to be driven stably by comparing the current flowing through the motor with the threshold value, but if the threshold value is not appropriate, the motor cannot be driven efficiently and the operation may be inefficient. was there.
  • An object of the present invention is to provide a motor drive device for efficiently driving a motor.
  • An exemplary first invention of the present application is a motor drive device for driving a motor, in which a rotation speed acquisition unit that acquires the rotation speed for rotating the motor and a rotation speed acquired by the rotation speed acquisition unit are used.
  • the duty ratio setting unit that sets the duty ratio of the PWM signal that drives the motor, the PWM signal output unit that outputs the PWM signal of the duty ratio set by the duty ratio setting unit, and the PWM signal output unit output.
  • a driver for driving the motor based on a PWM signal and a current detection unit for detecting the current flowing through the motor are provided, and the duty ratio setting unit has reached the first threshold value of the current detected by the current detection unit.
  • the first control that sets the duty ratio to an initial value at the time of starting driving of the motor or a predetermined value larger than the initial value, and when the current detected by the current detection unit reaches the second threshold value.
  • the second control for setting the duty ratio to the initial value is executed, and the duty ratio setting unit acquires at least one of the first threshold value and the second threshold value by the rotation speed acquisition unit. Change according to the number of rotations.
  • the motor can be driven efficiently.
  • FIG. 10 It is sectional drawing which shows the motor driven by the motor drive device which concerns on 1st Embodiment of this invention, cut at the plane orthogonal to Y axis and passing through the central axis J. It is a perspective view of the motor 10 of FIG. It is a top view which removed the motor housing 23 from the motor 10 of FIG. It is a block diagram which shows the structure of the motor drive device which concerns on embodiment of this invention. It is a flowchart which shows the motor drive processing by a motor drive device 100. It is a flowchart which shows the duty ratio setting process by a motor drive device 100. It is a flowchart which shows the 1st control shown in FIG. It is a flowchart which shows the 2nd control shown in FIG. It is a flowchart which shows the 3rd control shown in FIG.
  • the XYZ coordinate system is shown as a three-dimensional Cartesian coordinate system as appropriate.
  • the Z-axis direction is a direction parallel to the axial direction of the central axis J shown in FIG.
  • the X-axis direction is the radial direction with respect to the central axis J.
  • the Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction.
  • the side pointed by the arrow in the figure is the + side
  • the opposite side is the-side.
  • the positive side (+ Z side) in the Z-axis direction is referred to as “front side” or “one side”
  • the negative side (-Z side) in the Z-axis direction is referred to as "rear side” or “rear side”.
  • the other side is names used only for explanation, and do not limit the actual positional relationship and direction.
  • the direction parallel to the central axis J (Z-axis direction) is simply referred to as the "axial direction”
  • the radial direction centered on the central axis J is simply referred to as the "radial direction”.
  • the circumferential direction around the center that is, around the central axis J is simply called the "circumferential direction”.
  • the side approaching the central axis J in the radial direction is referred to as “diameter inside”, and the side away from the central axis J is referred to as “diameter outside”.
  • extending in the axial direction means not only extending in the strict axial direction (Z-axis direction) but also extending in a direction inclined within a range of less than 45 ° with respect to the axial direction. Also includes. Further, in the present specification, "extending in the radial direction” means that it extends in the radial direction, that is, in the direction perpendicular to the axial direction (Z-axis direction), and 45 in the radial direction. Including the case where it extends in the tilted direction within the range of less than °. Further, "parallel” includes not only the case where they are strictly parallel but also the case where the angles formed by each other are tilted within a range of less than 45 °.
  • rotational speed simply means the number of revolutions per unit time. For example, when the number of revolutions is 1300, the number of revolutions per minute is 1300 revolutions, that is, 1300 [rpm. ].
  • FIG. 1 is a cross-sectional view showing a motor driven by the motor driving device according to the first embodiment of the present invention cut along a plane orthogonal to the Y axis and passing through the central axis J.
  • FIG. 2 is a perspective view of the motor 10 of FIG.
  • the motor 10 is a brushless DC motor.
  • the motor 10 includes a motor unit 30 including a rotor 50 having a motor shaft 41 arranged along a central axis J extending in the axial direction, a stator 40 facing the rotor 50 with a gap in the radial direction, and a motor.
  • It includes motor housings 21 and 23 that accommodate a circuit board 80 on which a drive circuit 81 or the like for driving the unit 30 is mounted.
  • the motor housings 21 and 23 are arranged and accommodated in the order of the circuit board 80 and the rotor 50 from one side in the axial direction to the other side in the axial direction.
  • the motor 10 includes a stator 40, and the stator 40 includes a stator yoke 42.
  • the motor 10 has a circuit board 80 on one side of the stator yoke 42 in the axial direction.
  • the circuit board 80 has a through hole 80a penetrating in the axial direction.
  • the motor shaft 41 penetrates the through hole 80a.
  • the motor 10 includes bearings 55a and 55b.
  • the bearing 55a is arranged on the other side of the motor housing 23 in the axial direction.
  • the bearing 55b is arranged on one side in the axial direction of the motor housing 21.
  • the bearing 55a is arranged at one end of the motor shaft 41 in the axial direction.
  • the bearing 55b is arranged at the other end in the axial direction of the motor shaft 41.
  • Bearings 55a and 55b rotatably support the motor shaft 41.
  • the shapes, structures, etc. of the bearings 55a and 55b are not particularly limited, and any known bearing can be used.
  • the rotor 50 includes a rotor magnet 51.
  • the rotor magnet 51 surrounds the motor shaft 41 around the shaft and is fixed to the motor shaft 41.
  • the motor 10 has a bottomed tubular motor housing 21.
  • the motor portion 30 is housed inside the motor housing 21 in the radial direction.
  • the motor housing 21 may have a cylindrical shape or a square cylinder shape.
  • the motor housing 21 is made of, for example, aluminum die-cast.
  • the motor 10 has a bottomed tubular motor housing 23 on one side in the axial direction of the circuit board 80.
  • the motor housing 23 may have a cylindrical shape or a square cylinder shape.
  • the motor housing 23 is made of, for example, aluminum die-cast.
  • the motor housing 21 opens on one side in the axial direction, and the motor housing 23 opens on the other side in the axial direction.
  • the opening on one side in the axial direction of the motor housing 21 is closed by the motor housing 23, and the opening on the other side in the axial direction of the motor housing 23 is closed by the motor housing 21.
  • the motor housing 21 has a flange portion 21a extending outward in the radial direction at one end in the axial direction.
  • the flange portion 21a has a through hole 21aa that penetrates in the axial direction.
  • the motor housing 23 has a flange portion 23a extending radially outward at an end portion on the other side in the axial direction.
  • the flange portion 23a has a through hole 23aa penetrating in the axial direction.
  • the through hole 21aa and the through hole 23aa have the same axial position and the circumferential position, and the through hole 21aa and the through hole 23aa are continuous through holes.
  • the motor housing 21 and the motor housing 23 can be fixed by screwing so as to penetrate the through hole 21aa and the through hole 23aa.
  • FIG. 3 is a perspective view showing the motor housing 23 removed from the motor 10 of FIG.
  • the circuit board 80 has a shape corresponding to the shape of the tubular hole of the motor housing 21.
  • the circuit board 80 is circular.
  • the drive circuit 81 is composed of a plurality of electronic components.
  • the drive circuit 81 includes, for example, at least one of an IGBT, a bridge diode, a MOSFET, an IPM, and a DC / DC converter.
  • IGBT is an abbreviation for Integrated Gate Bipolar Transistor.
  • MOSFET is an abbreviation for metal-oxide-semiconductor field-effect transistor.
  • IPM is an abbreviation for Intelligent Power Module.
  • the drive circuit 81 is connected to the outside of the motor 10 via the wiring connected to the connector 82.
  • the wiring connected to the connector 82 passes through the through holes 83 provided in the motor housings 21 and 23.
  • FIG. 4 is a block diagram showing a configuration of a motor drive device according to an embodiment of the present invention.
  • the motor drive device 100 is a device that drives the motor 300.
  • the motor 30 of FIG. 1 is an example of the motor 300 of FIG.
  • the motor drive device 100 includes a microcomputer 101, a driver 102, and a current detection unit 103.
  • the microcomputer 101 has a duty ratio that sets a duty ratio of a PWM signal that drives the motor 300 according to the number of rotations acquired by the rotation number acquisition unit 104 and the rotation number acquisition unit 104 that acquires the number of rotations that rotate the motor 300.
  • the driver 102 drives the motor 300 based on the PWM signal output by the PWM signal output unit 106.
  • the current detection unit 103 is composed of, for example, a shunt resistor, and detects the current flowing through the motor 300.
  • the rotation speed acquisition unit 104, the duty ratio setting unit 105, and the PWM signal output unit 106 are realized by executing the program on the microcomputer 101.
  • the motor drive device 100 has a storage unit that stores a program executed by the microcomputer 101.
  • the rotation speed acquisition unit 104, the duty ratio setting unit 105, and the PWM signal output unit 106 may be realized by hardware.
  • the drive circuit 81 of FIG. 1 is an example of the microcomputer 101, the driver 102, and the current detection unit 103 of FIG. A part of the configuration of the motor drive device 100 of FIG. 4 may be provided outside the drive circuit 81 of FIG.
  • the motor drive device 100 may have a sensor for detecting the rotational position of the motor 300 and detect the rotational position of the motor 300 based on the detection result by the sensor.
  • the motor drive device 100 may perform sensorless control without having a sensor for detecting the rotational position of the motor 300.
  • the rotation speed setting unit 200 sets the rotation speed at which the motor 300 is rotated by the motor drive device 100.
  • the rotation speed acquisition unit 104 acquires the rotation speed for rotating the motor 300 set by the rotation speed setting unit 200.
  • the motor drive device 100 rotates the motor 300 at the rotation speed set by the rotation speed setting unit 200.
  • the motor drive device 100 may include a rotation speed setting unit 200.
  • the rotation speed setting unit 200 is, for example, a DIP switch mounted on the circuit board 80. When the rotation speed setting unit 200 is a DIP switch, the operator can set the rotation speed of the motor 300 by the on / off pattern of the DIP switch.
  • the rotation speed setting unit 200 constitutes the switch with a resistor, a jumper wire, solder, etc. provided on the circuit board 80, and sets the rotation speed for rotating the motor 300. Good. Further, the rotation speed acquisition unit 104 may acquire the rotation speed for rotating the motor by communication from the outside.
  • the duty ratio setting unit 105 sets the duty ratio to an initial value at the time of starting driving of the motor 300 or a predetermined value larger than the initial value.
  • the first control and the second control of setting the duty ratio to the initial value when the current detected by the current detection unit 103 reaches the second threshold value are executed.
  • the duty ratio setting unit 105 changes at least one of the first threshold value and the second threshold value according to the rotation speed acquired by the rotation speed acquisition unit 104.
  • the duty ratio setting unit 105 further has a third control for setting the duty ratio to 0% for a predetermined time when the current detected by the current detection unit 103 reaches the third threshold value.
  • the third threshold value is larger than the second threshold value
  • the second threshold value is larger than the first threshold value.
  • FIG. 5 is a flowchart showing a motor drive process by the motor drive device 100.
  • the motor drive device 100 waits for an instruction from the operator to start driving the motor.
  • the instruction to start driving the motor is, for example, power-on or switch operation.
  • the motor drive device 100 receives an instruction from the operator to start driving the motor (step S501: Yes)
  • the motor drive device 100 performs the rotation speed acquisition process in step S502, the duty ratio setting process in step S503, and the PWM signal output process in step S504. This is repeated until the instruction to stop the motor (step S505: Yes) by the operator is received.
  • the rotation speed acquisition process in step S502 is a process in which the rotation speed acquisition unit 104 acquires the rotation speed set by the rotation speed setting unit 200.
  • the rotation speed acquired in the rotation speed acquisition process is passed to the duty ratio setting process.
  • the duty ratio setting process of step S503 the duty ratio is set by the duty ratio setting unit 105 as described later with reference to FIGS. 6 to 9.
  • the duty ratio set in the duty ratio setting process is passed to the PWM signal output process.
  • the PWM signal output process in step S504 generates a PWM signal having a duty ratio set in the duty ratio setting process, and outputs the PWM signal to the driver 102.
  • FIG. 6 is a flowchart showing a duty ratio setting process by the motor drive device 100.
  • the duty ratio setting unit 105 sets the duty ratio to the initial value in step S601.
  • This initial value is a value predetermined according to the characteristics of the driving motor 300, and is a duty ratio for smoothly and efficiently starting the stopped motor 300. This initial value is, for example, 1%.
  • the duty ratio setting unit 105 changes the threshold value according to the rotation speed in step S602.
  • the threshold values to be changed here are the first threshold value used in the first control and the second threshold value used in the second control.
  • the duty ratio setting unit 105 may change only one of the first threshold value and the second threshold value.
  • the duty ratio setting unit 105 calculates a first threshold value according to the number of rotations at which the motor 300 is rotated. For example, the manufacturer or operator of the motor drive device 100 determines one rotation speed for rotating the motor 300 as the rotation speed at the initial setting, and when the motor 300 is rotated at the rotation speed at the initial setting, the motor 300 is operated.
  • the first threshold value that can be driven with high efficiency is obtained as the first threshold value at the time of initial setting.
  • the first threshold value at the time of this initial setting can be obtained, for example, by actually measuring the efficiency when the motor 300 is actually driven.
  • the manufacturer or operator of the motor drive device 100 stores the rotation speed at the time of initial setting and the corresponding first threshold value at the time of initial setting in the storage unit of the motor drive device 100.
  • the duty ratio setting unit 105 uses the rotation speed at the time of initial setting and the first threshold value at the time of initial setting stored in the storage unit, and the rotation speed delivered from the rotation speed acquisition unit 104 is the rotation speed at the time of initial setting.
  • the first threshold value when different from is calculated.
  • the rotation speed at the time of initial setting is N1
  • the first threshold value at the time of initial setting is X1
  • the rotation speed delivered from the rotation speed acquisition unit 104 is N2
  • the rotation speed delivered from the rotation speed acquisition unit 104 The first threshold value X2 used when driving the motor 300 with the number N2 is calculated by the equation (1).
  • X2 (N1 / N2) * X1 (where / is a division operator and * is a multiplication operator.) ... Equation (1) That is, when the rotation speed of the motor 300 is changed from N1 to N2, the duty ratio setting unit 105 changes the first threshold value from X1 to X2 calculated by the equation (1).
  • the duty ratio setting unit 105 may calculate the first threshold value by the equation (1) each time the rotation speed is handed over from the rotation speed acquisition unit 104. Further, the first threshold value is calculated in advance by the equation (1) for each rotation speed that can drive the motor 300, and this is stored in association with the rotation speed acquisition unit 104, for example, in a table format. The first threshold value corresponding to the number may be read from the table and used in the first control. For example, when the rotation speed is 1300 [rpm], the duty ratio setting unit 105 sets the first threshold value to 0.63A (amp), and when the rotation speed is 1550 [rpm], the first threshold value is 0.52A. (Amp), and when the rotation speed is 1800 [rpm], the first threshold value is set to 0.45 A (amp).
  • the duty ratio setting unit 105 calculates a second threshold value according to the number of rotations at which the motor 300 is rotated. For example, the manufacturer or operator of the motor drive device 100 determines one rotation speed for rotating the motor 300 as the rotation speed at the initial setting, and when the motor 300 is rotated at the rotation speed at the initial setting, the motor 300 is operated.
  • the second threshold value that can be driven with high efficiency is obtained as the second threshold value at the time of initial setting.
  • the second threshold value at the time of this initial setting can be obtained, for example, by actually measuring the efficiency when the motor 300 is actually driven.
  • the manufacturer or operator of the motor drive device 100 stores the rotation speed at the time of initial setting and the corresponding second threshold value at the time of initial setting in the storage unit of the motor drive device 100.
  • the duty ratio setting unit 105 uses the rotation speed at the time of initial setting and the second threshold value at the time of initial setting stored in the storage unit, and the rotation speed delivered from the rotation speed acquisition unit 104 is the rotation speed at the time of initial setting.
  • the second threshold value when different from is calculated.
  • the rotation speed at the time of initial setting is N1
  • the second threshold value at the time of initial setting is Y1
  • the rotation speed delivered from the rotation speed acquisition unit 104 is N2
  • the rotation speed delivered from the rotation speed acquisition unit 104 The second threshold value Y2 used when driving the motor 300 with the number N2 is calculated by the equation (2).
  • Y2 (N1 / N2) * Y1 (where / is a division operator and * is a multiplication operator.) ... Equation (2) That is, when the rotation speed of the motor 300 is changed from N1 to N2, the duty ratio setting unit 105 changes the second threshold value from Y1 to Y2 calculated by the equation (2).
  • the duty ratio setting unit 105 may calculate the second threshold value by the equation (2) each time the rotation speed is handed over from the rotation speed acquisition unit 104. Further, a second threshold value is calculated in advance by the equation (2) for each rotation speed that can drive the motor 300, and this is stored in association with, for example, in a table format, and the rotation is delivered from the rotation speed acquisition unit 104. The second threshold value corresponding to the number may be read from the table and used in the second control. For example, when the rotation speed is 1300 [rpm], the duty ratio setting unit 105 sets the second threshold value to 0.80 A (amp), and when the rotation speed is 1550 [rpm], the second threshold value is 0.67 A. (Amp), and when the rotation speed is 1800 [rpm], the second threshold is set to 0.58 A (amp).
  • the duty ratio setting unit 105 executes the first control in step S603, executes the second control in step S604, and executes the third control in step S605.
  • the first control and the second control the first threshold value and the second threshold value changed in step S602 are used.
  • the first control, the second control, and the third control are executed at a predetermined cycle, for example, by a timer interrupt while the motor 300 is being driven by the motor driving device 100. Details of the first control, the second control, and the third control will be described later with reference to FIGS. 7, 8 and 9.
  • the duty ratio setting unit 105 In driving the motor 300, the duty ratio setting unit 105 reaches the duty ratio corresponding to the rotation speed delivered from the rotation speed acquisition unit 104 from the initial value duty ratio set in step S601 at the start of rotation of the motor 300. Until, the duty ratio is gradually increased and updated. In step S606 and step S607, the process of updating the duty ratio is executed. In step S606, the duty ratio setting unit 105 determines whether the current duty is a duty ratio corresponding to the rotation speed delivered from the rotation speed acquisition unit 104. The duty ratio setting unit 105 returns to step S602 when the current duty is a duty ratio corresponding to the rotation speed delivered from the rotation speed acquisition unit 104 (step S606: Yes).
  • the duty ratio setting unit 105 proceeds to step S607 when the current duty is not the duty ratio corresponding to the rotation speed delivered from the rotation speed acquisition unit 104 (step S606: No).
  • the duty ratio setting unit 105 updates the duty ratio by increasing it by a predetermined amount (for example, 2%).
  • the duty ratio setting unit 105 returns to step S602 after step S607.
  • FIG. 7 is a flowchart showing the first control shown in FIG.
  • the first control executes the determination in step S701 when the number of overruns reaches a predetermined number of times (for example, 30 times) within a predetermined time (for example, 0.1 seconds) after the threshold value is exceeded.
  • the first control is performed, for example, approximately every 350 microseconds.
  • step S701 the duty ratio setting unit 105 determines whether the current detected by the current detection unit 103 has reached the first threshold value, that is, whether the current detected by the current detection unit 103 is equal to or higher than the first threshold value. .. If the current detected by the current detection unit 103 is not equal to or higher than the first threshold value (step S701: No), the current stays in step S701.
  • step S701: Yes the process proceeds to step S702.
  • the duty ratio setting unit 105 sets the duty ratio to a predetermined value in step S702.
  • This predetermined value may be a predetermined constant value, a predetermined value for each current duty ratio, or a value obtained by subtracting a predetermined ratio (for example, 5%) from the current duty ratio.
  • a predetermined ratio for example, 5%
  • the predetermined value set in step S702 is a value larger than the initial value of the duty ratio set in step S601.
  • the duty ratio setting unit 105 returns to step S701 following step S702.
  • the first control proceeds to S604 in FIG. 6 when a series of processes is completed, that is, when No in step S701 and when step S702 is completed.
  • FIG. 8 is a flowchart showing the second control shown in FIG.
  • the second control immediately executes the determination in step S801 when the threshold value is exceeded.
  • the second control is executed, for example, in several nanoseconds every PWM cycle.
  • the duty ratio setting unit 105 determines whether the current detected by the current detection unit 103 has reached the second threshold value, that is, whether the current detected by the current detection unit 103 is equal to or higher than the second threshold value. .. If the current detected by the current detection unit 103 is not equal to or greater than the second threshold value (step S801: No), the current stays in step S801. When the current detected by the current detection unit 103 is equal to or greater than the second threshold value (step S801: Yes), the process proceeds to step S802.
  • the duty ratio setting unit 105 sets the duty ratio to the initial value in step S802.
  • This initial value is the initial value of the duty ratio set in step S601. This initial value is, for example, 1%.
  • the duty ratio setting unit 105 returns to step S801 following step S802.
  • the second control proceeds to S605 in FIG. 6 when a series of processes is completed, that is, when No in step S801 and when step S802 is completed.
  • FIG. 9 is a flowchart showing the third control shown in FIG.
  • the third control immediately executes the determination in step S901 when the threshold value is exceeded.
  • the third control is performed, for example, approximately every 350 microseconds.
  • the duty ratio setting unit 105 determines whether the current detected by the current detection unit 103 has reached the third threshold value, that is, whether the current detected by the current detection unit 103 is equal to or higher than the third threshold value. .. If the current detected by the current detection unit 103 is not equal to or higher than the third threshold value (step S901: No), the current stays in step S901.
  • the third control proceeds to S606 in FIG.
  • the third threshold value is a threshold value for protecting the motor drive device 100 and the motor 300 from burning due to overcurrent, and is a constant value regardless of the rotation speed delivered from the rotation speed acquisition unit 104, for example. It is 1A (ampere).
  • the duty ratio setting unit 105 sets the duty ratio to 0% in step S902. That is, the motor 300 is stopped. After that, the duty ratio setting unit 105 waits for the elapse of a predetermined time (for example, 6 seconds) in step S903. When the predetermined time has elapsed (step S903: Yes), the microcomputer 101 resets the process and restarts the process from step S501.
  • a predetermined time for example, 6 seconds
  • the motor driving device for driving the motor corresponds to a rotation speed acquisition unit that acquires the rotation speed for rotating the motor and a rotation speed acquired by the rotation speed acquisition unit.
  • the duty ratio setting unit that sets the duty ratio of the PWM signal that drives the motor, the PWM signal output unit that outputs the PWM signal of the duty ratio set by the duty ratio setting unit, and the PWM signal output unit output.
  • a driver for driving the motor based on a PWM signal and a current detection unit for detecting the current flowing through the motor are provided, and the duty ratio setting unit has reached the first threshold value of the current detected by the current detection unit.
  • the first control that sets the duty ratio to an initial value at the time of starting driving of the motor or a predetermined value larger than the initial value, and when the current detected by the current detection unit reaches the second threshold value.
  • the second control for setting the duty ratio to the initial value is executed, and the duty ratio setting unit acquires at least one of the first threshold value and the second threshold value by the rotation speed acquisition unit. Change according to the number of rotations. Therefore, the motor can be driven efficiently. Further, the torque can be controlled by a simple method, and the temperature rise of the motor can be suppressed.
  • the duty ratio setting unit further has a third control for setting the duty ratio to 0% for a predetermined time when the current detected by the current detection unit reaches the third threshold value.
  • the third threshold value is larger than the second threshold value, and the second threshold value is larger than the first threshold value. Therefore, the current detected by the current detection unit cannot be limited by the first threshold value, and even when the current rises further, the current can be limited by reaching the second threshold value, and the motor is stabilized. Can be driven. Further, before the current detected by the current detection unit reaches the third threshold value and the motor is stopped, it can be limited by the current reaching the second threshold value, and the motor can be driven stably. Can be done.
  • the duty ratio setting unit executes the first control in the first cycle, and executes the second control in the second cycle shorter than the first cycle. Therefore, the frequency of executing the second control for comparing with the second threshold value is higher than the frequency for executing the first control for comparing the current detected by the current detection unit with the first threshold value, so that the current becomes the second threshold value. It is possible to more reliably detect the case where the value is reached, and the motor can be driven stably.
  • N1 is the motor rotation speed at the time of initial setting
  • X1 is the first threshold value at the time of initial setting. Therefore, since the changed first threshold value is obtained based on a highly reliable initial setting value, a reliable value can be obtained.
  • N1 is the motor rotation speed at the time of initial setting
  • Y1 is the second threshold value at the time of initial setting. Therefore, since the second threshold value after the change is obtained based on a highly reliable initial setting value, a reliable value can be obtained.
  • a rotation speed setting unit for setting the rotation speed for rotating the motor is further provided, and the rotation speed acquisition unit acquires the rotation speed set by the rotation speed setting unit. Therefore, the rotation speed of the motor can be set by the rotation speed setting unit.
  • the rotation speed setting unit is a switch on the circuit board. Therefore, the rotation speed of the motor can be easily set by the switch on the circuit board.
  • the rotation speed acquisition unit acquires the rotation speed at which the motor is rotated by communication from the outside. Therefore, the rotation speed of the motor can be easily set by communication from the outside.
  • the motor is a motor that rotates an axial fan. Therefore, in the motor for the axial flow fan, an appropriate threshold value can be set according to the rotation speed, and the temperature rise of the motor can be suppressed.
  • the application of the motor driven by the motor drive device of the above-described embodiment is not particularly limited.
  • the motor of the above-described embodiment is, for example, a motor that rotates an axial fan.
  • the above-mentioned configurations can be appropriately combined within a range that does not contradict each other.
  • Motor 21 Motor housing 30
  • Motor part 40 Stator 50
  • Rotor 80 Circuit board 81
  • Drive circuit 100
  • Motor drive device 101 Microcomputer 102
  • Driver 103 Current detection part 104
  • Duty cycle acquisition part 105
  • Duty ratio setting part 106
  • Rotation number setting part 300 motor

Abstract

This motor drive device for driving a motor comprises: a rotation speed acquisition unit which acquires the rotation speed for rotating the motor; a duty ratio setting unit which sets the duty ratio of a PWM signal for driving the motor, in accordance with the rotation speed acquired by the rotation speed acquisition unit; a PWM signal output unit which outputs a PWM signal with the duty ratio set by the duty ratio setting unit; a driver which drives the motor on the basis of the PWM signal output by the PWM signal output unit; and a current detection unit which detects a current flowing through the motor, wherein the duty ratio setting unit executes a first control for setting the duty ratio to an initial value at the time of starting driving of the motor or to a predetermined value larger than the initial value, when the current detected by the current detection unit reaches a first threshold value, and a second control for setting the duty ratio to the initial value, when the current detected by the current detection unit reaches a second threshold value, and the duty ratio setting unit changes at least one among the first threshold value and the second threshold value in accordance with the rotation speed acquired by the rotation speed acquisition unit.

Description

モータ駆動装置Motor drive
 本発明は、モータ駆動装置に関する。 The present invention relates to a motor drive device.
 従来、モータを所望の速度で回転させるための様々な駆動制御が実施されている。モータの駆動制御においては、外乱などの異常の場合であっても、モータに異常電流が流れるのを防ぎ、回路やモータの保護や安定した駆動を行うことが重要である。
 例えば、ベクトル制御によるモータの駆動制御において、モータに流れる電流が閾値を超えたことを検出した場合に、d軸電圧指令値又はq軸電圧指令値を補正することにより、制御を安定化するように構成したものが知られている。例えば特許文献1に開示している。
Conventionally, various drive controls for rotating a motor at a desired speed have been implemented. In motor drive control, it is important to prevent abnormal current from flowing to the motor, protect circuits and motors, and perform stable drive even in the event of an abnormality such as disturbance.
For example, in the drive control of a motor by vector control, when it is detected that the current flowing through the motor exceeds the threshold value, the control is stabilized by correcting the d-axis voltage command value or the q-axis voltage command value. It is known that it is composed of. For example, it is disclosed in Patent Document 1.
特許第6095561号公報Japanese Patent No. 6095561
 従来、モータに流れる電流を閾値と比較することで、モータを安定して駆動しようとしているが、閾値が適切でないとモータを効率よく駆動することが出来ず、非効率な運転になってしまうおそれがあった。 Conventionally, the motor is tried to be driven stably by comparing the current flowing through the motor with the threshold value, but if the threshold value is not appropriate, the motor cannot be driven efficiently and the operation may be inefficient. was there.
 本発明の目的は、モータを効率よく駆動するモータ駆動装置を提供することである。 An object of the present invention is to provide a motor drive device for efficiently driving a motor.
 本願の例示的な第1発明は、モータを駆動するモータ駆動装置であって、前記モータを回転させる回転数を取得する回転数取得部と、前記回転数取得部で取得した回転数に応じて、前記モータを駆動するPWM信号のデューティ比を設定するデューティ比設定部と、前記デューティ比設定部で設定したデューティ比のPWM信号を出力するPWM信号出力部と、前記PWM信号出力部が出力するPWM信号に基づき前記モータを駆動するドライバと、前記モータに流れる電流を検出する電流検出部と、を備え、前記デューティ比設定部は、前記電流検出部で検出した電流が第1閾値に達したときに、前記デューティ比を、前記モータを駆動開始する際の初期値または初期値よりも大きな所定値に設定する第1制御と、前記電流検出部で検出した電流が第2閾値に達したときに、前記デューティ比を、前記初期値に設定する第2制御と、を実行し、前記デューティ比設定部は、前記第1閾値及び前記第2閾値の少なくともひとつを、前記回転数取得部で取得した回転数に応じて変更する。 An exemplary first invention of the present application is a motor drive device for driving a motor, in which a rotation speed acquisition unit that acquires the rotation speed for rotating the motor and a rotation speed acquired by the rotation speed acquisition unit are used. , The duty ratio setting unit that sets the duty ratio of the PWM signal that drives the motor, the PWM signal output unit that outputs the PWM signal of the duty ratio set by the duty ratio setting unit, and the PWM signal output unit output. A driver for driving the motor based on a PWM signal and a current detection unit for detecting the current flowing through the motor are provided, and the duty ratio setting unit has reached the first threshold value of the current detected by the current detection unit. Occasionally, the first control that sets the duty ratio to an initial value at the time of starting driving of the motor or a predetermined value larger than the initial value, and when the current detected by the current detection unit reaches the second threshold value. The second control for setting the duty ratio to the initial value is executed, and the duty ratio setting unit acquires at least one of the first threshold value and the second threshold value by the rotation speed acquisition unit. Change according to the number of rotations.
 本願の例示的な第1発明によれば、モータを効率よく駆動することが出来る。 According to the first exemplary invention of the present application, the motor can be driven efficiently.
本発明の第1実施形態に係るモータ駆動装置によって駆動するモータを、Y軸と直交し中心軸Jを通る面で切断して示す断面図である。It is sectional drawing which shows the motor driven by the motor drive device which concerns on 1st Embodiment of this invention, cut at the plane orthogonal to Y axis and passing through the central axis J. 図1のモータ10の斜視図である。It is a perspective view of the motor 10 of FIG. 図2のモータ10からモータハウジング23を外して上から見た平面図である。It is a top view which removed the motor housing 23 from the motor 10 of FIG. 本発明の実施形態に係るモータ駆動装置の構成を示すブロック図である。It is a block diagram which shows the structure of the motor drive device which concerns on embodiment of this invention. モータ駆動装置100によるモータ駆動処理を示すフローチャートである。It is a flowchart which shows the motor drive processing by a motor drive device 100. モータ駆動装置100によるデューティ比設定処理を示すフローチャートである。It is a flowchart which shows the duty ratio setting process by a motor drive device 100. 図6に示した第1制御を示すフローチャートである。It is a flowchart which shows the 1st control shown in FIG. 図6に示した第2制御を示すフローチャートである。It is a flowchart which shows the 2nd control shown in FIG. 図6に示した第3制御を示すフローチャートである。It is a flowchart which shows the 3rd control shown in FIG.
 以下、図面を参照しながら、本発明の実施形態に係るモータ駆動装置について説明する。なお、以下の図面においては、各構成をわかり易くするために、実際の構造と各構造における縮尺及び数等を異ならせる場合がある。 Hereinafter, the motor drive device according to the embodiment of the present invention will be described with reference to the drawings. In the drawings below, the scale and number of each structure may differ from the actual structure in order to make each configuration easy to understand.
 また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、図1に示す中心軸Jの軸方向と平行な方向とする。X軸方向は、中心軸Jに対する径方向とする。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向とする。X軸方向、Y軸方向、及びZ軸方向のいずれにおいても、図中に示す矢印が指す側を+側、反対側を-側とする。 Further, in the drawings, the XYZ coordinate system is shown as a three-dimensional Cartesian coordinate system as appropriate. In the XYZ coordinate system, the Z-axis direction is a direction parallel to the axial direction of the central axis J shown in FIG. The X-axis direction is the radial direction with respect to the central axis J. The Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction. In any of the X-axis direction, the Y-axis direction, and the Z-axis direction, the side pointed by the arrow in the figure is the + side, and the opposite side is the-side.
 また、以下の説明においては、Z軸方向の正の側(+Z側)を「フロント側」又は「一方側」と呼び、Z軸方向の負の側(-Z側)を「リア側」又は「他方側」と呼ぶ。なお、リア側(他方側)及びフロント側(一方側)とは、単に説明のために用いられる名称であって、実際の位置関係及び方向を限定しない。また、特に断りのない限り、中心軸Jに平行な方向(Z軸方向)を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向、すなわち、中心軸Jの軸周りを単に「周方向」と呼ぶ。径方向において中心軸Jに近づく側を「径方向内側」と呼び、中心軸Jから遠ざかる側を「径方向外側」と呼ぶ。 Further, in the following description, the positive side (+ Z side) in the Z-axis direction is referred to as "front side" or "one side", and the negative side (-Z side) in the Z-axis direction is referred to as "rear side" or "rear side". Called "the other side". The rear side (the other side) and the front side (one side) are names used only for explanation, and do not limit the actual positional relationship and direction. Unless otherwise specified, the direction parallel to the central axis J (Z-axis direction) is simply referred to as the "axial direction", and the radial direction centered on the central axis J is simply referred to as the "radial direction". The circumferential direction around the center, that is, around the central axis J is simply called the "circumferential direction". The side approaching the central axis J in the radial direction is referred to as "diameter inside", and the side away from the central axis J is referred to as "diameter outside".
 なお、本明細書において、「軸方向に延びる」とは、厳密に軸方向(Z軸方向)に延びる場合に加えて、軸方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。
また、本明細書において、「径方向に延びる」とは、厳密に径方向、すなわち、軸方向(Z軸方向)に対して垂直な方向に延びる場合に加えて、径方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。また「平行」とは、厳密に平行な場合に加えて、互いに成す角が45°未満の範囲で傾いた場合も含む。
In addition, in this specification, "extending in the axial direction" means not only extending in the strict axial direction (Z-axis direction) but also extending in a direction inclined within a range of less than 45 ° with respect to the axial direction. Also includes.
Further, in the present specification, "extending in the radial direction" means that it extends in the radial direction, that is, in the direction perpendicular to the axial direction (Z-axis direction), and 45 in the radial direction. Including the case where it extends in the tilted direction within the range of less than °. Further, "parallel" includes not only the case where they are strictly parallel but also the case where the angles formed by each other are tilted within a range of less than 45 °.
 なお、本明細書において、単に「回転数」という場合は、単位時間当たりの回転数をいい、例えば、回転数が1300という場合には、1分間当たりの回転数が1300回転、すなわち1300[rpm]であることを示す。 In the present specification, the term "rotational speed" simply means the number of revolutions per unit time. For example, when the number of revolutions is 1300, the number of revolutions per minute is 1300 revolutions, that is, 1300 [rpm. ].
[第1実施形態]
<モータの構成>
 図1は、本発明の第1実施形態に係るモータ駆動装置によって駆動するモータを、Y軸と直交し中心軸Jを通る面で切断して示す断面図である。
 図2は、図1のモータ10の斜視図である。
 本実施形態において、モータ10は、ブラシレスDCモータである。モータ10は、軸方向に延びる中心軸Jに沿って配置されるモータシャフト41を有するロータ50と、ロータ50と径方向に隙間を介して対向するステータ40と、を備えるモータ部30と、モータ部30の駆動を行う駆動回路81等を実装した回路基板80とを収容するモータハウジング21及び23と、を備える。モータハウジング21及び23は、軸方向一方側から軸方向他方側に向けて回路基板80及びロータ50の順に配置して収容する。
[First Embodiment]
<Motor configuration>
FIG. 1 is a cross-sectional view showing a motor driven by the motor driving device according to the first embodiment of the present invention cut along a plane orthogonal to the Y axis and passing through the central axis J.
FIG. 2 is a perspective view of the motor 10 of FIG.
In this embodiment, the motor 10 is a brushless DC motor. The motor 10 includes a motor unit 30 including a rotor 50 having a motor shaft 41 arranged along a central axis J extending in the axial direction, a stator 40 facing the rotor 50 with a gap in the radial direction, and a motor. It includes motor housings 21 and 23 that accommodate a circuit board 80 on which a drive circuit 81 or the like for driving the unit 30 is mounted. The motor housings 21 and 23 are arranged and accommodated in the order of the circuit board 80 and the rotor 50 from one side in the axial direction to the other side in the axial direction.
 モータ10は、ステータ40を備え、ステータ40は、ステータヨーク42を備える。モータ10は、ステータヨーク42の軸方向一方側に回路基板80を有する。回路基板80は、軸方向に貫通する貫通孔80aを有する。モータシャフト41は、貫通孔80aを貫通する。モータ10は、軸受55a及び55bを備える。軸受55aは、モータハウジング23の軸方向他方側に配置される。軸受55bは、モータハウジング21の軸方向一方側に配置される。また、軸受55aは、モータシャフト41の軸方向一方側端部に配置される。軸受55bは、モータシャフト41の軸方向他方側端部に配置される。軸受55a及び55bは、モータシャフト41を回転可能に支持する。軸受55a及び55bの形状、構造等は、特に限定されず、いかなる公知の軸受も用いることが出来る。 The motor 10 includes a stator 40, and the stator 40 includes a stator yoke 42. The motor 10 has a circuit board 80 on one side of the stator yoke 42 in the axial direction. The circuit board 80 has a through hole 80a penetrating in the axial direction. The motor shaft 41 penetrates the through hole 80a. The motor 10 includes bearings 55a and 55b. The bearing 55a is arranged on the other side of the motor housing 23 in the axial direction. The bearing 55b is arranged on one side in the axial direction of the motor housing 21. Further, the bearing 55a is arranged at one end of the motor shaft 41 in the axial direction. The bearing 55b is arranged at the other end in the axial direction of the motor shaft 41. Bearings 55a and 55b rotatably support the motor shaft 41. The shapes, structures, etc. of the bearings 55a and 55b are not particularly limited, and any known bearing can be used.
 ロータ50は、ロータマグネット51を備える。ロータマグネット51は、モータシャフト41を軸周りに囲んで、モータシャフト41に固定される。 The rotor 50 includes a rotor magnet 51. The rotor magnet 51 surrounds the motor shaft 41 around the shaft and is fixed to the motor shaft 41.
 モータ10は、有底筒状のモータハウジング21を有する。モータハウジング21の径方向内側にはモータ部30が収容される。モータハウジング21は、円筒形状でもよいし、角筒形状であってもよい。モータハウジング21は、例えばアルミダイキャスト製である。モータ10は、回路基板80の軸方向一方側に、有底筒状のモータハウジング23を有する。モータハウジング23は、円筒形状でもよいし、角筒形状であってもよい。モータハウジング23は、例えばアルミダイキャスト製である。モータハウジング21は軸方向一方側に開口し、モータハウジング23は軸方向他方側に開口する。モータハウジング21の軸方向一方側の開口は、モータハウジング23によって塞がれ、モータハウジング23の軸方向他方側の開口は、モータハウジング21によって塞がれる。 The motor 10 has a bottomed tubular motor housing 21. The motor portion 30 is housed inside the motor housing 21 in the radial direction. The motor housing 21 may have a cylindrical shape or a square cylinder shape. The motor housing 21 is made of, for example, aluminum die-cast. The motor 10 has a bottomed tubular motor housing 23 on one side in the axial direction of the circuit board 80. The motor housing 23 may have a cylindrical shape or a square cylinder shape. The motor housing 23 is made of, for example, aluminum die-cast. The motor housing 21 opens on one side in the axial direction, and the motor housing 23 opens on the other side in the axial direction. The opening on one side in the axial direction of the motor housing 21 is closed by the motor housing 23, and the opening on the other side in the axial direction of the motor housing 23 is closed by the motor housing 21.
 モータハウジング21は、軸方向一方側の端部に、径方向外側に延びるフランジ部21aを有する。フランジ部21aは、軸方向に貫通する貫通孔21aaを有する。モータハウジング23は、軸方向他方側の端部に、径方向外側に延びるフランジ部23aを有する。フランジ部23aは、軸方向に貫通する貫通孔23aaを有する。貫通孔21aaと貫通孔23aaとは、軸方向位置及び周方向位置が一致し、貫通孔21aaと貫通孔23aaとが連続した貫通孔となる。貫通孔21aaと貫通孔23aaとに貫通するようにねじ止めを行うことで、モータハウジング21とモータハウジング23とを固定することが出来る。 The motor housing 21 has a flange portion 21a extending outward in the radial direction at one end in the axial direction. The flange portion 21a has a through hole 21aa that penetrates in the axial direction. The motor housing 23 has a flange portion 23a extending radially outward at an end portion on the other side in the axial direction. The flange portion 23a has a through hole 23aa penetrating in the axial direction. The through hole 21aa and the through hole 23aa have the same axial position and the circumferential position, and the through hole 21aa and the through hole 23aa are continuous through holes. The motor housing 21 and the motor housing 23 can be fixed by screwing so as to penetrate the through hole 21aa and the through hole 23aa.
 図3は、図2のモータ10からモータハウジング23を外して示す斜視図である。
 回路基板80は、モータハウジング21の筒穴の形状に応じた形状である。本実施形態では、回路基板80は円形である。駆動回路81は、複数の電子部品で構成される。駆動回路81は、例えば、IGBT、ブリッジダイオード、MOSFET,IPM、DC/DCコンバータのうちの少なくとも一つを含む。IGBTは、Insulated Gate Bipolar Transistorの略称である。MOSFETは、metal-oxide-semiconductor field-effect transistorの略称である。IPMは、Intelligent Power Moduleの略称である。駆動回路81は、コネクタ82に接続された配線を介してモータ10の外部と接続される。コネクタ82に接続された配線は、モータハウジング21及び23に設けられた貫通孔83を通る。
FIG. 3 is a perspective view showing the motor housing 23 removed from the motor 10 of FIG.
The circuit board 80 has a shape corresponding to the shape of the tubular hole of the motor housing 21. In this embodiment, the circuit board 80 is circular. The drive circuit 81 is composed of a plurality of electronic components. The drive circuit 81 includes, for example, at least one of an IGBT, a bridge diode, a MOSFET, an IPM, and a DC / DC converter. IGBT is an abbreviation for Integrated Gate Bipolar Transistor. MOSFET is an abbreviation for metal-oxide-semiconductor field-effect transistor. IPM is an abbreviation for Intelligent Power Module. The drive circuit 81 is connected to the outside of the motor 10 via the wiring connected to the connector 82. The wiring connected to the connector 82 passes through the through holes 83 provided in the motor housings 21 and 23.
<モータ駆動装置の構成>
 図4は、本発明の実施形態に係るモータ駆動装置の構成を示すブロック図である。
 モータ駆動装置100は、モータ300を駆動する装置である。図1のモータ30は、図4のモータ300の一例である。モータ駆動装置100は、マイコン101と、ドライバ102と、電流検出部103と、を備える。マイコン101は、モータ300を回転させる回転数を取得する回転数取得部104と、回転数取得部104で取得した回転数に応じて、モータ300を駆動するPWM信号のデューティ比を設定するデューティ比設定部105と、デューティ比設定部105で設定したデューティ比のPWM信号を出力するPWM信号出力部106と、を有する。ドライバ102は、PWM信号出力部106が出力するPWM信号に基づきモータ300を駆動する。電流検出部103は、例えばシャント抵抗で構成され、モータ300に流れる電流を検出する。本実施形態では、回転数取得部104、デューティ比設定部105及びPWM信号出力部106は、プログラムをマイコン101で実行することによって実現される。モータ駆動装置100は、マイコン101で実行されるプログラムを記憶する記憶部を有する。回転数取得部104、デューティ比設定部105及びPWM信号出力部106は、ハードウェアで実現されるものであってもよい。図1の駆動回路81は、図4のマイコン101、ドライバ102及び電流検出部103の一例である。図4のモータ駆動装置100の構成の一部を、図1の駆動回路81の外部に設けてもよい。
<Structure of motor drive device>
FIG. 4 is a block diagram showing a configuration of a motor drive device according to an embodiment of the present invention.
The motor drive device 100 is a device that drives the motor 300. The motor 30 of FIG. 1 is an example of the motor 300 of FIG. The motor drive device 100 includes a microcomputer 101, a driver 102, and a current detection unit 103. The microcomputer 101 has a duty ratio that sets a duty ratio of a PWM signal that drives the motor 300 according to the number of rotations acquired by the rotation number acquisition unit 104 and the rotation number acquisition unit 104 that acquires the number of rotations that rotate the motor 300. It has a setting unit 105 and a PWM signal output unit 106 that outputs a PWM signal of the duty ratio set by the duty ratio setting unit 105. The driver 102 drives the motor 300 based on the PWM signal output by the PWM signal output unit 106. The current detection unit 103 is composed of, for example, a shunt resistor, and detects the current flowing through the motor 300. In the present embodiment, the rotation speed acquisition unit 104, the duty ratio setting unit 105, and the PWM signal output unit 106 are realized by executing the program on the microcomputer 101. The motor drive device 100 has a storage unit that stores a program executed by the microcomputer 101. The rotation speed acquisition unit 104, the duty ratio setting unit 105, and the PWM signal output unit 106 may be realized by hardware. The drive circuit 81 of FIG. 1 is an example of the microcomputer 101, the driver 102, and the current detection unit 103 of FIG. A part of the configuration of the motor drive device 100 of FIG. 4 may be provided outside the drive circuit 81 of FIG.
 モータ駆動装置100は、モータ300の回転位置を検出するセンサを有してそのセンサによる検出結果に基づいてモータ300の回転位置を検出するものであってもよい。モータ駆動装置100は、モータ300の回転位置を検出するセンサを有しないでセンサレス制御を行うものであってもよい。 The motor drive device 100 may have a sensor for detecting the rotational position of the motor 300 and detect the rotational position of the motor 300 based on the detection result by the sensor. The motor drive device 100 may perform sensorless control without having a sensor for detecting the rotational position of the motor 300.
 回転数設定部200は、モータ駆動装置100によってモータ300を回転させる回転数を設定する。回転数取得部104は、回転数設定部200で設定された、モータ300を回転させる回転数を取得する。モータ駆動装置100は、回転数設定部200で設定された回転数でモータ300を回転させる。モータ駆動装置100は、回転数設定部200を含むものであってもよい。回転数設定部200は、例えば、回路基板80に搭載されたディップスイッチである。回転数設定部200がディップスイッチの場合、操作者は、ディップスイッチのオン/オフパターンでモータ300の回転数を設定することが出来る。回転数設定部200は、ディップスイッチやロータリースイッチの他、回路基板80上に設けた抵抗、ジャンパー線、半田などでスイッチを構成し、モータ300を回転させる回転数を設定するものであってもよい。また、回転数取得部104は、外部から通信によって前記モータを回転させる回転数を取得するものであってもよい。 The rotation speed setting unit 200 sets the rotation speed at which the motor 300 is rotated by the motor drive device 100. The rotation speed acquisition unit 104 acquires the rotation speed for rotating the motor 300 set by the rotation speed setting unit 200. The motor drive device 100 rotates the motor 300 at the rotation speed set by the rotation speed setting unit 200. The motor drive device 100 may include a rotation speed setting unit 200. The rotation speed setting unit 200 is, for example, a DIP switch mounted on the circuit board 80. When the rotation speed setting unit 200 is a DIP switch, the operator can set the rotation speed of the motor 300 by the on / off pattern of the DIP switch. In addition to the DIP switch and the rotary switch, the rotation speed setting unit 200 constitutes the switch with a resistor, a jumper wire, solder, etc. provided on the circuit board 80, and sets the rotation speed for rotating the motor 300. Good. Further, the rotation speed acquisition unit 104 may acquire the rotation speed for rotating the motor by communication from the outside.
<モータ駆動装置の動作>
 デューティ比設定部105は、電流検出部103で検出した電流が第1閾値に達したときに、デューティ比を、モータ300を駆動開始する際の初期値または初期値よりも大きな所定値に設定する第1制御と、電流検出部103で検出した電流が第2閾値に達したときに、デューティ比を、初期値に設定する第2制御と、を実行する。また、デューティ比設定部105は、第1閾値及び第2閾値の少なくともひとつを、回転数取得部104で取得した回転数に応じて変更する。また、デューティ比設定部105は、電流検出部103で検出した電流が第3閾値に達したときに、所定時間の間、デューティ比を0パーセントに設定する第3制御をさらに有する。第3閾値は、第2閾値よりも大きく、第2閾値は、前記第1閾値よりも大きい。
<Operation of motor drive device>
When the current detected by the current detection unit 103 reaches the first threshold value, the duty ratio setting unit 105 sets the duty ratio to an initial value at the time of starting driving of the motor 300 or a predetermined value larger than the initial value. The first control and the second control of setting the duty ratio to the initial value when the current detected by the current detection unit 103 reaches the second threshold value are executed. Further, the duty ratio setting unit 105 changes at least one of the first threshold value and the second threshold value according to the rotation speed acquired by the rotation speed acquisition unit 104. Further, the duty ratio setting unit 105 further has a third control for setting the duty ratio to 0% for a predetermined time when the current detected by the current detection unit 103 reaches the third threshold value. The third threshold value is larger than the second threshold value, and the second threshold value is larger than the first threshold value.
 図5は、モータ駆動装置100によるモータ駆動処理を示すフローチャートである。
 モータ駆動装置100は、ステップS501において、操作者によるモータ駆動開始の指示を待つ。モータ駆動開始の指示は、例えば電源投入やスイッチ操作である。モータ駆動装置100は、操作者によるモータ駆動開始の指示を受け付けると(ステップS501:Yes)、ステップS502の回転数取得処理、ステップS503のデューティ比設定処理、及びステップS504のPWM信号出力処理を、操作者によるモータ停止の指示(ステップS505:Yes)を受け付けるまで繰り返す。
FIG. 5 is a flowchart showing a motor drive process by the motor drive device 100.
In step S501, the motor drive device 100 waits for an instruction from the operator to start driving the motor. The instruction to start driving the motor is, for example, power-on or switch operation. When the motor drive device 100 receives an instruction from the operator to start driving the motor (step S501: Yes), the motor drive device 100 performs the rotation speed acquisition process in step S502, the duty ratio setting process in step S503, and the PWM signal output process in step S504. This is repeated until the instruction to stop the motor (step S505: Yes) by the operator is received.
 ステップS502の回転数取得処理は、回転数設定部200によって設定された回転数を回転数取得部104が取得する処理である。回転数取得処理で取得した回転数は、デューティ比設定処理に引き渡される。ステップS503のデューティ比設定処理は、図6~図9を参照して後述するように、デューティ比設定部105によってデューティ比を設定する。デューティ比設定処理で設定したデューティ比は、PWM信号出力処理に引き渡される。ステップS504のPWM信号出力処理は、デューティ比設定処理で設定したデューティ比のPWM信号を生成し、そのPWM信号をドライバ102に出力する。 The rotation speed acquisition process in step S502 is a process in which the rotation speed acquisition unit 104 acquires the rotation speed set by the rotation speed setting unit 200. The rotation speed acquired in the rotation speed acquisition process is passed to the duty ratio setting process. In the duty ratio setting process of step S503, the duty ratio is set by the duty ratio setting unit 105 as described later with reference to FIGS. 6 to 9. The duty ratio set in the duty ratio setting process is passed to the PWM signal output process. The PWM signal output process in step S504 generates a PWM signal having a duty ratio set in the duty ratio setting process, and outputs the PWM signal to the driver 102.
 図6は、モータ駆動装置100によるデューティ比設定処理を示すフローチャートである。
 まず、デューティ比設定部105は、ステップS601において、デューティ比を初期値に設定する。この初期値は、駆動するモータ300の特性に応じて予め定めた値であり、停止状態のモータ300をスムーズかつ効率的に動き出させるためのデューティ比である。この初期値は、例えば1%である。
FIG. 6 is a flowchart showing a duty ratio setting process by the motor drive device 100.
First, the duty ratio setting unit 105 sets the duty ratio to the initial value in step S601. This initial value is a value predetermined according to the characteristics of the driving motor 300, and is a duty ratio for smoothly and efficiently starting the stopped motor 300. This initial value is, for example, 1%.
 続いて、デューティ比設定部105は、ステップS602において、回転数に応じて閾値を変更する。ここで変更する閾値は、第1制御で用いる第1閾値、及び第2制御で用いる第2閾値である。デューティ比設定部105は、第1閾値、及び第2閾値のいずれか一方のみを変更してもよい。 Subsequently, the duty ratio setting unit 105 changes the threshold value according to the rotation speed in step S602. The threshold values to be changed here are the first threshold value used in the first control and the second threshold value used in the second control. The duty ratio setting unit 105 may change only one of the first threshold value and the second threshold value.
 まず、第1閾値の変更について説明する。デューティ比設定部105は、モータ300を回転させる回転数に応じた第1閾値を算出する。例えばモータ駆動装置100の製造者や運用者は、モータ300を回転させる回転数を初期設定時の回転数としてひとつ決め、その初期設定時の回転数でモータ300を回転させたときにモータ300を高効率で駆動出来る第1閾値を初期設定時の第1閾値として求める。この初期設定時の第1閾値は、例えばモータ300を実際に駆動したときの効率を実測することで求めることが出来る。例えばモータ駆動装置100の製造者や運用者は、初期設定時の回転数及びそれに対応した初期設定時の第1閾値をモータ駆動装置100の記憶部に記憶しておく。デューティ比設定部105は、記憶部に記憶してある初期設定時の回転数及び初期設定時の第1閾値を用いて、回転数取得部104から引き渡された回転数が初期設定時の回転数と異なる場合の第1閾値を算出する。 First, the change of the first threshold value will be described. The duty ratio setting unit 105 calculates a first threshold value according to the number of rotations at which the motor 300 is rotated. For example, the manufacturer or operator of the motor drive device 100 determines one rotation speed for rotating the motor 300 as the rotation speed at the initial setting, and when the motor 300 is rotated at the rotation speed at the initial setting, the motor 300 is operated. The first threshold value that can be driven with high efficiency is obtained as the first threshold value at the time of initial setting. The first threshold value at the time of this initial setting can be obtained, for example, by actually measuring the efficiency when the motor 300 is actually driven. For example, the manufacturer or operator of the motor drive device 100 stores the rotation speed at the time of initial setting and the corresponding first threshold value at the time of initial setting in the storage unit of the motor drive device 100. The duty ratio setting unit 105 uses the rotation speed at the time of initial setting and the first threshold value at the time of initial setting stored in the storage unit, and the rotation speed delivered from the rotation speed acquisition unit 104 is the rotation speed at the time of initial setting. The first threshold value when different from is calculated.
 例えば、初期設定時の回転数をN1とし、初期設定時の第1閾値をX1とし、回転数取得部104から引き渡された回転数をN2としたとき、回転数取得部104から引き渡された回転数N2でモータ300を駆動しているときに用いる第1閾値X2は式(1)で算
出される。
X2=(N1/N2)*X1(但し、/は除算の演算子であり、*は乗算の演算子である。)・・・式(1)
 すなわち、デューティ比設定部105は、モータ300の回転数をN1からN2に変更する場合に、第1閾値をX1から、式(1)で算出したX2に変更する。
For example, when the rotation speed at the time of initial setting is N1, the first threshold value at the time of initial setting is X1, and the rotation speed delivered from the rotation speed acquisition unit 104 is N2, the rotation speed delivered from the rotation speed acquisition unit 104 The first threshold value X2 used when driving the motor 300 with the number N2 is calculated by the equation (1).
X2 = (N1 / N2) * X1 (where / is a division operator and * is a multiplication operator.) ... Equation (1)
That is, when the rotation speed of the motor 300 is changed from N1 to N2, the duty ratio setting unit 105 changes the first threshold value from X1 to X2 calculated by the equation (1).
 デューティ比設定部105は、回転数取得部104から回転数を引き渡される都度、式(1)で第1閾値を算出してもよい。また、モータ300を駆動し得る回転数ごとに、式(1)により第1閾値を予め算出しておき、これを例えばテーブル形式で対応付けて記憶し、回転数取得部104から引き渡された回転数に対応する第1閾値をテーブルから読み出して第1制御で用いるようにしてもよい。デューティ比設定部105は、例えば、回転数が1300[rpm]の場合は、第1閾値を0.63A(アンペア)にし、回転数が1550[rpm]の場合は、第1閾値を0.52A(アンペア)にし、回転数が1800[rpm]の場合は、第1閾値を0.45A(アンペア)にする。 The duty ratio setting unit 105 may calculate the first threshold value by the equation (1) each time the rotation speed is handed over from the rotation speed acquisition unit 104. Further, the first threshold value is calculated in advance by the equation (1) for each rotation speed that can drive the motor 300, and this is stored in association with the rotation speed acquisition unit 104, for example, in a table format. The first threshold value corresponding to the number may be read from the table and used in the first control. For example, when the rotation speed is 1300 [rpm], the duty ratio setting unit 105 sets the first threshold value to 0.63A (amp), and when the rotation speed is 1550 [rpm], the first threshold value is 0.52A. (Amp), and when the rotation speed is 1800 [rpm], the first threshold value is set to 0.45 A (amp).
 第2閾値の変更について説明する。デューティ比設定部105は、モータ300を回転させる回転数に応じた第2閾値を算出する。例えばモータ駆動装置100の製造者や運用者は、モータ300を回転させる回転数を初期設定時の回転数としてひとつ決め、その初期設定時の回転数でモータ300を回転させたときにモータ300を高効率で駆動出来る第2閾値を初期設定時の第2閾値として求める。この初期設定時の第2閾値は、例えばモータ300を実際に駆動したときの効率を実測することで求めることが出来る。例えばモータ駆動装置100の製造者や運用者は、初期設定時の回転数及びそれに対応した初期設定時の第2閾値をモータ駆動装置100の記憶部に記憶しておく。デューティ比設定部105は、記憶部に記憶してある初期設定時の回転数及び初期設定時の第2閾値を用いて、回転数取得部104から引き渡された回転数が初期設定時の回転数と異なる場合の第2閾値を算出する。 The change of the second threshold value will be explained. The duty ratio setting unit 105 calculates a second threshold value according to the number of rotations at which the motor 300 is rotated. For example, the manufacturer or operator of the motor drive device 100 determines one rotation speed for rotating the motor 300 as the rotation speed at the initial setting, and when the motor 300 is rotated at the rotation speed at the initial setting, the motor 300 is operated. The second threshold value that can be driven with high efficiency is obtained as the second threshold value at the time of initial setting. The second threshold value at the time of this initial setting can be obtained, for example, by actually measuring the efficiency when the motor 300 is actually driven. For example, the manufacturer or operator of the motor drive device 100 stores the rotation speed at the time of initial setting and the corresponding second threshold value at the time of initial setting in the storage unit of the motor drive device 100. The duty ratio setting unit 105 uses the rotation speed at the time of initial setting and the second threshold value at the time of initial setting stored in the storage unit, and the rotation speed delivered from the rotation speed acquisition unit 104 is the rotation speed at the time of initial setting. The second threshold value when different from is calculated.
 例えば、初期設定時の回転数をN1とし、初期設定時の第2閾値をY1とし、回転数取得部104から引き渡された回転数をN2としたとき、回転数取得部104から引き渡された回転数N2でモータ300を駆動しているときに用いる第2閾値Y2は式(2)で算出される。
Y2=(N1/N2)*Y1(但し、/は除算の演算子であり、*は乗算の演算子である。)・・・式(2)
 すなわち、デューティ比設定部105は、モータ300の回転数をN1からN2に変更する場合に、第2閾値をY1から、式(2)で算出したY2に変更する。
For example, when the rotation speed at the time of initial setting is N1, the second threshold value at the time of initial setting is Y1, and the rotation speed delivered from the rotation speed acquisition unit 104 is N2, the rotation speed delivered from the rotation speed acquisition unit 104 The second threshold value Y2 used when driving the motor 300 with the number N2 is calculated by the equation (2).
Y2 = (N1 / N2) * Y1 (where / is a division operator and * is a multiplication operator.) ... Equation (2)
That is, when the rotation speed of the motor 300 is changed from N1 to N2, the duty ratio setting unit 105 changes the second threshold value from Y1 to Y2 calculated by the equation (2).
 デューティ比設定部105は、回転数取得部104から回転数を引き渡される都度、式(2)で第2閾値を算出してもよい。また、モータ300を駆動し得る回転数ごとに、式(2)により第2閾値を予め算出しておき、これを例えばテーブル形式で対応付けて記憶し、回転数取得部104から引き渡された回転数に対応する第2閾値をテーブルから読み出して第2制御で用いるようにしてもよい。デューティ比設定部105は、例えば、回転数が1300[rpm]の場合は、第2閾値を0.80A(アンペア)にし、回転数が1550[rpm]の場合は、第2閾値を0.67A(アンペア)にし、回転数が1800[rpm]の場合は、第2閾値を0.58A(アンペア)にする。 The duty ratio setting unit 105 may calculate the second threshold value by the equation (2) each time the rotation speed is handed over from the rotation speed acquisition unit 104. Further, a second threshold value is calculated in advance by the equation (2) for each rotation speed that can drive the motor 300, and this is stored in association with, for example, in a table format, and the rotation is delivered from the rotation speed acquisition unit 104. The second threshold value corresponding to the number may be read from the table and used in the second control. For example, when the rotation speed is 1300 [rpm], the duty ratio setting unit 105 sets the second threshold value to 0.80 A (amp), and when the rotation speed is 1550 [rpm], the second threshold value is 0.67 A. (Amp), and when the rotation speed is 1800 [rpm], the second threshold is set to 0.58 A (amp).
 デューティ比設定部105は、ステップS603において第1制御を実行し、ステップS604において第2制御を実行し、ステップS605において第3制御を実行する。第1制御及び第2制御では、ステップS602で変更した第1閾値及び第2閾値を用いる。なお、第1制御、第2制御及び第3制御は、モータ駆動装置100によるモータ300の駆動中に、例えばタイマー割込みにより予め定めた周期で実行される。第1制御、第2制御及び第3制御の詳細については、図7、図8及び図9を参照して後述する。 The duty ratio setting unit 105 executes the first control in step S603, executes the second control in step S604, and executes the third control in step S605. In the first control and the second control, the first threshold value and the second threshold value changed in step S602 are used. The first control, the second control, and the third control are executed at a predetermined cycle, for example, by a timer interrupt while the motor 300 is being driven by the motor driving device 100. Details of the first control, the second control, and the third control will be described later with reference to FIGS. 7, 8 and 9.
 デューティ比設定部105は、モータ300の駆動において、モータ300の回転し始めにステップS601で設定した初期値のデューティ比から、回転数取得部104から引き渡された回転数に対応したデューティ比に達するまで、デューティ比を徐々に増加させて更新する。ステップS606及びステップS607では、このデューティ比を更新する処理を実行する。デューティ比設定部105は、ステップS606において、現在のデューティが、回転数取得部104から引き渡された回転数に対応したデューティ比であるかを判定する。デューティ比設定部105は、現在のデューティが、回転数取得部104から引き渡された回転数に対応したデューティ比である場合には(ステップS606:Yes)、ステップS602に戻る。デューティ比設定部105は、現在のデューティが、回転数取得部104から引き渡された回転数に対応したデューティ比ではない場合には(ステップS606:No)、ステップS607に進む。デューティ比設定部105は、ステップS607において、デューティ比を予め定めた量(例えば2%)だけ増加させて更新する。デューティ比設定部105は、ステップS607の後、ステップS602に戻る。 In driving the motor 300, the duty ratio setting unit 105 reaches the duty ratio corresponding to the rotation speed delivered from the rotation speed acquisition unit 104 from the initial value duty ratio set in step S601 at the start of rotation of the motor 300. Until, the duty ratio is gradually increased and updated. In step S606 and step S607, the process of updating the duty ratio is executed. In step S606, the duty ratio setting unit 105 determines whether the current duty is a duty ratio corresponding to the rotation speed delivered from the rotation speed acquisition unit 104. The duty ratio setting unit 105 returns to step S602 when the current duty is a duty ratio corresponding to the rotation speed delivered from the rotation speed acquisition unit 104 (step S606: Yes). The duty ratio setting unit 105 proceeds to step S607 when the current duty is not the duty ratio corresponding to the rotation speed delivered from the rotation speed acquisition unit 104 (step S606: No). In step S607, the duty ratio setting unit 105 updates the duty ratio by increasing it by a predetermined amount (for example, 2%). The duty ratio setting unit 105 returns to step S602 after step S607.
 図7は、図6に示した第1制御を示すフローチャートである。第1制御は、閾値をオーバーした後、所定時間(例えば0.1秒)の間にオーバー回数が所定回数(例えば30回)に達したら、ステップS701の判定を実行する。第1制御は、例えば、約350マイクロ秒毎に実行される。
 まず、デューティ比設定部105は、ステップS701において、電流検出部103で検出した電流が第1閾値に達したか、すなわち電流検出部103で検出した電流が第1閾値以上であるかを判定する。電流検出部103で検出した電流が第1閾値以上でなければ(ステップS701:No)、ステップS701に留まる。電流検出部103で検出した
電流が第1閾値以上の場合(ステップS701:Yes)、ステップS702に進む。
FIG. 7 is a flowchart showing the first control shown in FIG. The first control executes the determination in step S701 when the number of overruns reaches a predetermined number of times (for example, 30 times) within a predetermined time (for example, 0.1 seconds) after the threshold value is exceeded. The first control is performed, for example, approximately every 350 microseconds.
First, in step S701, the duty ratio setting unit 105 determines whether the current detected by the current detection unit 103 has reached the first threshold value, that is, whether the current detected by the current detection unit 103 is equal to or higher than the first threshold value. .. If the current detected by the current detection unit 103 is not equal to or higher than the first threshold value (step S701: No), the current stays in step S701. When the current detected by the current detection unit 103 is equal to or greater than the first threshold value (step S701: Yes), the process proceeds to step S702.
 デューティ比設定部105は、ステップS702において、デューティ比を所定値に設定する。この所定値は、予め定めた一定値でもよいし、現在のデューティ比ごとに予め定めた値でもよいし、現在のデューティ比から予め定めた比率(例えば5%)を減算した値でもよい。例えば、デューティ比50%でモータ300を駆動していたときに、電流検出部103で検出した電流が第1閾値以上になった場合、デューティ比を45%に設定する。このステップS702で設定する所定値は、ステップS601で設定したデューティ比の初期値よりも大きい値である。デューティ比設定部105は、ステップS702に続いて、ステップS701に戻る。なお、第1制御は一連の処理が終了したら、すなわちステップS701でNoの場合及びステップS702が終了したら、図6のS604へ進む。 The duty ratio setting unit 105 sets the duty ratio to a predetermined value in step S702. This predetermined value may be a predetermined constant value, a predetermined value for each current duty ratio, or a value obtained by subtracting a predetermined ratio (for example, 5%) from the current duty ratio. For example, when the motor 300 is being driven with a duty ratio of 50% and the current detected by the current detection unit 103 becomes equal to or higher than the first threshold value, the duty ratio is set to 45%. The predetermined value set in step S702 is a value larger than the initial value of the duty ratio set in step S601. The duty ratio setting unit 105 returns to step S701 following step S702. The first control proceeds to S604 in FIG. 6 when a series of processes is completed, that is, when No in step S701 and when step S702 is completed.
 図8は、図6に示した第2制御を示すフローチャートである。第2制御は、閾値をオーバーしたら、即座にステップS801の判定を実行する。第2制御は、例えば、PWM周期毎に数ナノ秒で実行される。
 まず、デューティ比設定部105は、ステップS801において、電流検出部103で検出した電流が第2閾値に達したか、すなわち電流検出部103で検出した電流が第2閾値以上であるかを判定する。電流検出部103で検出した電流が第2閾値以上でなければ(ステップS801:No)、ステップS801に留まる。電流検出部103で検出した電流が第2閾値以上の場合(ステップS801:Yes)、ステップS802に進む。
FIG. 8 is a flowchart showing the second control shown in FIG. The second control immediately executes the determination in step S801 when the threshold value is exceeded. The second control is executed, for example, in several nanoseconds every PWM cycle.
First, in step S801, the duty ratio setting unit 105 determines whether the current detected by the current detection unit 103 has reached the second threshold value, that is, whether the current detected by the current detection unit 103 is equal to or higher than the second threshold value. .. If the current detected by the current detection unit 103 is not equal to or greater than the second threshold value (step S801: No), the current stays in step S801. When the current detected by the current detection unit 103 is equal to or greater than the second threshold value (step S801: Yes), the process proceeds to step S802.
 デューティ比設定部105は、ステップS802において、デューティ比を初期値に設定する。この初期値は、ステップS601で設定したデューティ比の初期値である。この初期値は、例えば1%である。デューティ比設定部105は、ステップS802に続いて、ステップS801に戻る。なお、第2制御は一連の処理が終了したら、すなわちステップS801でNoの場合及びステップS802が終了したら、図6のS605へ進む。 The duty ratio setting unit 105 sets the duty ratio to the initial value in step S802. This initial value is the initial value of the duty ratio set in step S601. This initial value is, for example, 1%. The duty ratio setting unit 105 returns to step S801 following step S802. The second control proceeds to S605 in FIG. 6 when a series of processes is completed, that is, when No in step S801 and when step S802 is completed.
 図9は、図6に示した第3制御を示すフローチャートである。第3制御は、閾値をオーバーしたら、即座にステップS901の判定を実行する。第3制御は、例えば、約350マイクロ秒毎に実行される。
 まず、デューティ比設定部105は、ステップS901において、電流検出部103で検出した電流が第3閾値に達したか、すなわち電流検出部103で検出した電流が第3閾値以上であるかを判定する。電流検出部103で検出した電流が第3閾値以上でなければ(ステップS901:No)、ステップS901に留まる。なお、第3制御は、電流検出部103で検出した電流が第3閾値未満の場合、すなわちステップS901でNoの場合、図6のS606へ進む。電流検出部103で検出した電流が第3閾値以上の場合(ステップS901:Yes)、ステップS902に進む。第3閾値は、モータ駆動装置100やモータ300を過電流による焼損等から保護するための閾値であり、回転数取得部104から引き渡された回転数によらずに一定の値であって、例えば1A(アンペア)である。
FIG. 9 is a flowchart showing the third control shown in FIG. The third control immediately executes the determination in step S901 when the threshold value is exceeded. The third control is performed, for example, approximately every 350 microseconds.
First, in step S901, the duty ratio setting unit 105 determines whether the current detected by the current detection unit 103 has reached the third threshold value, that is, whether the current detected by the current detection unit 103 is equal to or higher than the third threshold value. .. If the current detected by the current detection unit 103 is not equal to or higher than the third threshold value (step S901: No), the current stays in step S901. The third control proceeds to S606 in FIG. 6 when the current detected by the current detection unit 103 is less than the third threshold value, that is, when No in step S901. When the current detected by the current detection unit 103 is equal to or greater than the third threshold value (step S901: Yes), the process proceeds to step S902. The third threshold value is a threshold value for protecting the motor drive device 100 and the motor 300 from burning due to overcurrent, and is a constant value regardless of the rotation speed delivered from the rotation speed acquisition unit 104, for example. It is 1A (ampere).
 デューティ比設定部105は、ステップS902において、デューティ比を0%に設定する。すなわちモータ300を停止させる。その後、デューティ比設定部105は、ステップS903において、所定時間(例えば6秒)の経過を待つ。所定時間が経過したならば(ステップS903:Yes)、マイコン101は、処理をリセットし、ステップS501から処理を再スタートする。 The duty ratio setting unit 105 sets the duty ratio to 0% in step S902. That is, the motor 300 is stopped. After that, the duty ratio setting unit 105 waits for the elapse of a predetermined time (for example, 6 seconds) in step S903. When the predetermined time has elapsed (step S903: Yes), the microcomputer 101 resets the process and restarts the process from step S501.
<モータ駆動装置100の作用・効果>
 次に、モータ駆動装置100の作用・効果について説明する。
<Action / effect of motor drive device 100>
Next, the operation / effect of the motor drive device 100 will be described.
 上述の実施形態に係る発明においては、モータを駆動するモータ駆動装置であって、前記モータを回転させる回転数を取得する回転数取得部と、前記回転数取得部で取得した回転数に応じて、前記モータを駆動するPWM信号のデューティ比を設定するデューティ比設定部と、前記デューティ比設定部で設定したデューティ比のPWM信号を出力するPWM信号出力部と、前記PWM信号出力部が出力するPWM信号に基づき前記モータを駆動するドライバと、前記モータに流れる電流を検出する電流検出部と、を備え、前記デューティ比設定部は、前記電流検出部で検出した電流が第1閾値に達したときに、前記デューティ比を、前記モータを駆動開始する際の初期値または初期値よりも大きな所定値に設定する第1制御と、前記電流検出部で検出した電流が第2閾値に達したときに、前記デューティ比を、前記初期値に設定する第2制御と、を実行し、前記デューティ比設定部は、前記第1閾値及び前記第2閾値の少なくともひとつを、前記回転数取得部で取得した回転数に応じて変更する。
 このため、モータを効率よく駆動することが出来る。
 また、簡易な方法で、トルク制御が可能となり、モータの温度上昇を抑制することが出来る。
In the invention according to the above-described embodiment, the motor driving device for driving the motor corresponds to a rotation speed acquisition unit that acquires the rotation speed for rotating the motor and a rotation speed acquired by the rotation speed acquisition unit. , The duty ratio setting unit that sets the duty ratio of the PWM signal that drives the motor, the PWM signal output unit that outputs the PWM signal of the duty ratio set by the duty ratio setting unit, and the PWM signal output unit output. A driver for driving the motor based on a PWM signal and a current detection unit for detecting the current flowing through the motor are provided, and the duty ratio setting unit has reached the first threshold value of the current detected by the current detection unit. Occasionally, the first control that sets the duty ratio to an initial value at the time of starting driving of the motor or a predetermined value larger than the initial value, and when the current detected by the current detection unit reaches the second threshold value. The second control for setting the duty ratio to the initial value is executed, and the duty ratio setting unit acquires at least one of the first threshold value and the second threshold value by the rotation speed acquisition unit. Change according to the number of rotations.
Therefore, the motor can be driven efficiently.
Further, the torque can be controlled by a simple method, and the temperature rise of the motor can be suppressed.
 また、前記デューティ比設定部は、前記電流検出部で検出した電流が第3閾値に達したときに、所定時間の間、前記デューティ比を0パーセントに設定する第3制御をさらに有し、前記第3閾値は、前記第2閾値よりも大きく、前記第2閾値は、前記第1閾値よりも
大きい。
 このため、電流検出部で検出した電流を第1閾値で制限出来ずに、電流がさらに上昇した場合であっても第2閾値に達したことにより電流を制限することが出来、モータを安定して駆動することが出来る。また、電流検出部で検出した電流が第3閾値に達してモータを停止することになる前に、電流が第2閾値に達したことにより制限することが出来、モータを安定して駆動することが出来る。
Further, the duty ratio setting unit further has a third control for setting the duty ratio to 0% for a predetermined time when the current detected by the current detection unit reaches the third threshold value. The third threshold value is larger than the second threshold value, and the second threshold value is larger than the first threshold value.
Therefore, the current detected by the current detection unit cannot be limited by the first threshold value, and even when the current rises further, the current can be limited by reaching the second threshold value, and the motor is stabilized. Can be driven. Further, before the current detected by the current detection unit reaches the third threshold value and the motor is stopped, it can be limited by the current reaching the second threshold value, and the motor can be driven stably. Can be done.
 また、前記デューティ比設定部は、前記第1制御を第1周期で実行し、前記第2制御を前記第1周期よりも短い第2周期で実行する。
 このため、電流検出部で検出した電流を第1閾値と比較する第1制御を実行する頻度よりも、第2閾値と比較する第2制御を実行する頻度が高いことで、電流が第2閾値に達した場合をより確実に検出することが出来、モータを安定して駆動することが出来る。
Further, the duty ratio setting unit executes the first control in the first cycle, and executes the second control in the second cycle shorter than the first cycle.
Therefore, the frequency of executing the second control for comparing with the second threshold value is higher than the frequency for executing the first control for comparing the current detected by the current detection unit with the first threshold value, so that the current becomes the second threshold value. It is possible to more reliably detect the case where the value is reached, and the motor can be driven stably.
 また、前記デューティ比設定部は、前記モータの回転数N1をN2に変更する場合に、前記第1閾値X1を、X2=(N1/N2)*X1(但し、/は除算の演算子であり、*は乗算の演算子である。)で表されるX2に変更する。
 このため、簡単な数式によって変更後の第1閾値を求めることが出来る。
Further, when the duty ratio setting unit changes the rotation speed N1 of the motor to N2, the first threshold value X1 is changed to X2 = (N1 / N2) * X1 (where / is a division operator. , * Is a multiplication operator.) Change to X2.
Therefore, the changed first threshold value can be obtained by a simple mathematical formula.
 また、前記N1は初期設定時のモータ回転数であり、前記X1は初期設定時の前記第1閾値である。
 このため、変更後の第1閾値は、信頼の高い初期設定値に基づいて求めるので信頼できる値を求めることが出来る。
Further, N1 is the motor rotation speed at the time of initial setting, and X1 is the first threshold value at the time of initial setting.
Therefore, since the changed first threshold value is obtained based on a highly reliable initial setting value, a reliable value can be obtained.
 また、前記デューティ比設定部は、前記モータの回転数N1をN2に変更する場合に、前記第2閾値Y1を、Y2=(N1/N2)*Y1(但し、/は除算の演算子であり、*
は乗算の演算子である。)で表されるY2に変更する。
 このため、簡単な数式によって変更後の第2閾値を求めることが出来る。
Further, when the duty ratio setting unit changes the rotation speed N1 of the motor to N2, the second threshold value Y1 is set to Y2 = (N1 / N2) * Y1 (where / is a division operator. , *
Is a multiplication operator. ) Is changed to Y2.
Therefore, the changed second threshold value can be obtained by a simple mathematical formula.
 また、前記N1は初期設定時のモータ回転数であり、前記Y1は初期設定時の前記第2閾値である。
 このため、変更後の第2閾値は、信頼の高い初期設定値に基づいて求めるので信頼できる値を求めることが出来る。
Further, N1 is the motor rotation speed at the time of initial setting, and Y1 is the second threshold value at the time of initial setting.
Therefore, since the second threshold value after the change is obtained based on a highly reliable initial setting value, a reliable value can be obtained.
 また、前記モータを回転させる回転数を設定する回転数設定部を更に備え、前記回転数取得部は、前記回転数設定部で設定された回転数を取得する。
 このため、回転数設定部によってモータの回転数を設定することが出来る。
Further, a rotation speed setting unit for setting the rotation speed for rotating the motor is further provided, and the rotation speed acquisition unit acquires the rotation speed set by the rotation speed setting unit.
Therefore, the rotation speed of the motor can be set by the rotation speed setting unit.
 また、前記回転数設定部は、回路基板上のスイッチである。
 このため、回路基板上のスイッチによりモータの回転数を簡単に設定することが出来る。
Further, the rotation speed setting unit is a switch on the circuit board.
Therefore, the rotation speed of the motor can be easily set by the switch on the circuit board.
 また、前記回転数取得部は、外部から通信によって前記モータを回転させる回転数を取得する。
 このため、外部から通信によってモータの回転数を簡単に設定することが出来る。
In addition, the rotation speed acquisition unit acquires the rotation speed at which the motor is rotated by communication from the outside.
Therefore, the rotation speed of the motor can be easily set by communication from the outside.
 また、前記モータは軸流ファンを回転させるモータである。
 このため、軸流ファン用のモータにおいて、回転数に応じた適切な閾値を設定することが出来、モータの温度上昇を抑制することができる。
Further, the motor is a motor that rotates an axial fan.
Therefore, in the motor for the axial flow fan, an appropriate threshold value can be set according to the rotation speed, and the temperature rise of the motor can be suppressed.
 上述した実施形態のモータ駆動装置で駆動するモータの用途は、特に限定されない。上述した実施形態のモータは、例えば、軸流ファンを回転させるモータである。また、上述した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることが出来る。 The application of the motor driven by the motor drive device of the above-described embodiment is not particularly limited. The motor of the above-described embodiment is, for example, a motor that rotates an axial fan. In addition, the above-mentioned configurations can be appropriately combined within a range that does not contradict each other.
 以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。これらの実施形態及びその変形は、発明の範囲及び要旨に含まれると同時に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist thereof. These embodiments and modifications thereof are included in the scope and gist of the invention, and at the same time, are included in the scope of the invention described in the claims and the equivalent scope thereof.
 10 モータ
 21 モータハウジング
 30 モータ部
 40 ステータ
 50 ロータ
 80 回路基板
 81 駆動回路
 100 モータ駆動装置
 101 マイコン
 102 ドライバ
 103 電流検出部
 104 回転数取得部
 105 デューティ比設定部
 106 PWM信号出力部
 200 回転数設定部
 300 モータ
 
 
 
10 Motor 21 Motor housing 30 Motor part 40 Stator 50 Rotor 80 Circuit board 81 Drive circuit 100 Motor drive device 101 Microcomputer 102 Driver 103 Current detection part 104 Duty cycle acquisition part 105 Duty ratio setting part 106 PWM signal output part 200 Rotation number setting part 300 motor

Claims (11)

  1.  モータを駆動するモータ駆動装置であって、
     前記モータを回転させる回転数を取得する回転数取得部と、
     前記回転数取得部で取得した回転数に応じて、前記モータを駆動するPWM信号のデューティ比を設定するデューティ比設定部と、
     前記デューティ比設定部で設定したデューティ比のPWM信号を出力するPWM信号出力部と、
     前記PWM信号出力部が出力するPWM信号に基づき前記モータを駆動するドライバと、
     前記モータに流れる電流を検出する電流検出部と、
    を備え、
     前記デューティ比設定部は、
      前記電流検出部で検出した電流が第1閾値に達したときに、前記デューティ比を、前記モータを駆動開始する際の初期値または初期値よりも大きな所定値に設定する第1制御と、
      前記電流検出部で検出した電流が第2閾値に達したときに、前記デューティ比を、前記初期値に設定する第2制御と、を実行し、
     前記デューティ比設定部は、前記第1閾値及び前記第2閾値の少なくともひとつを、前記回転数取得部で取得した回転数に応じて変更する、
    モータ駆動装置。
    A motor drive that drives a motor
    A rotation speed acquisition unit that acquires the rotation speed for rotating the motor, and a rotation speed acquisition unit.
    A duty ratio setting unit that sets the duty ratio of the PWM signal that drives the motor according to the rotation speed acquired by the rotation speed acquisition unit.
    A PWM signal output unit that outputs a PWM signal with a duty ratio set by the duty ratio setting unit, and a PWM signal output unit.
    A driver that drives the motor based on the PWM signal output by the PWM signal output unit, and
    A current detector that detects the current flowing through the motor,
    With
    The duty ratio setting unit is
    When the current detected by the current detection unit reaches the first threshold value, the duty ratio is set to an initial value at the time of starting driving of the motor or a predetermined value larger than the initial value.
    When the current detected by the current detection unit reaches the second threshold value, the second control for setting the duty ratio to the initial value is executed.
    The duty ratio setting unit changes at least one of the first threshold value and the second threshold value according to the rotation speed acquired by the rotation speed acquisition unit.
    Motor drive.
  2.  前記デューティ比設定部は、前記電流検出部で検出した電流が第3閾値に達したときに、所定時間の間、前記デューティ比を0パーセントに設定する第3制御をさらに有し、
     前記第3閾値は、前記第2閾値よりも大きく、
     前記第2閾値は、前記第1閾値よりも大きい、
    請求項1に記載のモータ駆動装置。
    The duty ratio setting unit further has a third control for setting the duty ratio to 0% for a predetermined time when the current detected by the current detection unit reaches the third threshold value.
    The third threshold is larger than the second threshold,
    The second threshold is larger than the first threshold.
    The motor drive device according to claim 1.
  3.  前記デューティ比設定部は、前記第1制御を第1周期で実行し、前記第2制御を前記第1周期よりも短い第2周期で実行する、
    請求項1又は2に記載のモータ駆動装置。
    The duty ratio setting unit executes the first control in the first cycle, and executes the second control in the second cycle shorter than the first cycle.
    The motor drive device according to claim 1 or 2.
  4.  前記デューティ比設定部は、
      前記モータの回転数N1をN2に変更する場合に、
      前記第1閾値X1を、
    X2=(N1/N2)*X1(但し、/は除算の演算子であり、*は乗算の演算子である。)
      で表されるX2に変更する、
    請求項1から3のいずれか1項に記載のモータ駆動装置。
    The duty ratio setting unit is
    When changing the rotation speed N1 of the motor to N2,
    The first threshold value X1 is set to
    X2 = (N1 / N2) * X1 (where / is a division operator and * is a multiplication operator.)
    Change to X2 represented by,
    The motor drive device according to any one of claims 1 to 3.
  5.  前記N1は初期設定時のモータ回転数であり、
     前記X1は初期設定時の前記第1閾値である、
    請求項4に記載のモータ駆動装置。
    The N1 is the motor rotation speed at the time of initial setting, and is
    The X1 is the first threshold value at the time of initial setting.
    The motor drive device according to claim 4.
  6.  前記デューティ比設定部は、
      前記モータの回転数N1をN2に変更する場合に、
      前記第2閾値Y1を、
    Y2=(N1/N2)*Y1(但し、/は除算の演算子であり、*は乗算の演算子である。)
      で表されるY2に変更する、
    請求項1から5のいずれか1項に記載のモータ駆動装置。
    The duty ratio setting unit is
    When changing the rotation speed N1 of the motor to N2,
    The second threshold value Y1 is set.
    Y2 = (N1 / N2) * Y1 (where / is a division operator and * is a multiplication operator.)
    Change to Y2 represented by,
    The motor drive device according to any one of claims 1 to 5.
  7.  前記N1は初期設定時のモータ回転数であり、
     前記Y1は初期設定時の前記第2閾値である、
    請求項6に記載のモータ駆動装置。
    The N1 is the motor rotation speed at the time of initial setting, and is
    The Y1 is the second threshold value at the time of initial setting.
    The motor drive device according to claim 6.
  8.  前記モータを回転させる回転数を設定する回転数設定部を更に備え、
     前記回転数取得部は、前記回転数設定部で設定された回転数を取得する、
    請求項1から7のいずれか1項に記載のモータ駆動装置。
    A rotation speed setting unit for setting the rotation speed for rotating the motor is further provided.
    The rotation speed acquisition unit acquires the rotation speed set by the rotation speed setting unit.
    The motor drive device according to any one of claims 1 to 7.
  9.  前記回転数設定部は、回路基板上のスイッチである、
    請求項1から8のいずれか1項に記載のモータ駆動装置。
    The rotation speed setting unit is a switch on the circuit board.
    The motor drive device according to any one of claims 1 to 8.
  10.  前記回転数取得部は、外部から通信によって前記モータを回転させる回転数を取得する、
    請求項1から7のいずれか1項に記載のモータ駆動装置。
    The rotation speed acquisition unit acquires the rotation speed for rotating the motor by communication from the outside.
    The motor drive device according to any one of claims 1 to 7.
  11.  前記モータは軸流ファンを回転させるモータである、
    請求項1から10のいずれか1項に記載のモータ駆動装置。
     
     
    The motor is a motor that rotates an axial fan.
    The motor drive device according to any one of claims 1 to 10.

PCT/JP2020/041635 2019-12-02 2020-11-07 Motor drive device WO2021111808A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021562520A JPWO2021111808A1 (en) 2019-12-02 2020-11-07
CN202080084443.7A CN114762244A (en) 2019-12-02 2020-11-07 Motor driving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019218220 2019-12-02
JP2019-218220 2019-12-02

Publications (1)

Publication Number Publication Date
WO2021111808A1 true WO2021111808A1 (en) 2021-06-10

Family

ID=76222384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041635 WO2021111808A1 (en) 2019-12-02 2020-11-07 Motor drive device

Country Status (3)

Country Link
JP (1) JPWO2021111808A1 (en)
CN (1) CN114762244A (en)
WO (1) WO2021111808A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155160A1 (en) * 2010-06-08 2011-12-15 パナソニック株式会社 Motor drive device, brushless motor, and motor drive method
JP2017041944A (en) * 2015-08-18 2017-02-23 日本電産サーボ株式会社 Motor unit
JP2019134562A (en) * 2018-01-30 2019-08-08 サンデン・オートモーティブコンポーネント株式会社 Electric compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155160A1 (en) * 2010-06-08 2011-12-15 パナソニック株式会社 Motor drive device, brushless motor, and motor drive method
JP2017041944A (en) * 2015-08-18 2017-02-23 日本電産サーボ株式会社 Motor unit
JP2019134562A (en) * 2018-01-30 2019-08-08 サンデン・オートモーティブコンポーネント株式会社 Electric compressor

Also Published As

Publication number Publication date
CN114762244A (en) 2022-07-15
JPWO2021111808A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
JP5469520B2 (en) Brushless motor control device, brushless motor, and control method of brushless motor
JP5413424B2 (en) Motor drive device and brushless motor
CN105529967B (en) A kind of detection of blower starting state and starting control method
US8564232B2 (en) Motor drive control device
US7847498B2 (en) Brushless motor driving device, brushless motor starting method, and method of detecting rotor stop position of brushless motor
CN113497530B (en) Sensorless salient pole permanent magnet synchronous motor and starting motor control method
EP2736163B1 (en) Motor drive method and motor drive device
JP2013046488A5 (en)
JP6428042B2 (en) Motor control device
JP6622249B2 (en) Motor drive control device and motor drive control method
JP5267848B2 (en) Motor control device
JP2020068613A (en) Motor control device and control method for motor control device
WO2021111808A1 (en) Motor drive device
JP4459950B2 (en) Rotational speed control device and rotational speed control method for brushless DC motor per minute
JP2017169332A (en) Motor driving device
JP5087411B2 (en) Motor drive device
JP6976203B2 (en) Brushless motor
JP2009290962A (en) Controller of permanent magnet type synchronous motor
KR20180028802A (en) Apparatus and method for controlling a rotor of motor
US10873278B2 (en) Motor driving system and motor operation recovering method
JP2005080430A (en) Motor with built-in resolver
WO2016067811A1 (en) Electrically powered device
JP2013121280A (en) Motor controller
JP2020022245A (en) Driving device for electric motor and electric pump device
JP2006174647A (en) Controller for dc fan motor, and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562520

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896746

Country of ref document: EP

Kind code of ref document: A1