WO2021111737A1 - Electromagnetic wave measurement device and electromagnetic wave measurement method - Google Patents

Electromagnetic wave measurement device and electromagnetic wave measurement method Download PDF

Info

Publication number
WO2021111737A1
WO2021111737A1 PCT/JP2020/038567 JP2020038567W WO2021111737A1 WO 2021111737 A1 WO2021111737 A1 WO 2021111737A1 JP 2020038567 W JP2020038567 W JP 2020038567W WO 2021111737 A1 WO2021111737 A1 WO 2021111737A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
electric field
electromagnetic wave
housing
effective space
Prior art date
Application number
PCT/JP2020/038567
Other languages
French (fr)
Japanese (ja)
Inventor
雅貴 緑
寛之 根建
栗原 弘
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2021111737A1 publication Critical patent/WO2021111737A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass

Definitions

  • an electromagnetic wave measurement method using a housing, an electromagnetic stirrer, a transmitting antenna arranged outside a predetermined effective space inside the housing, and a receiving antenna arranged in the effective space.
  • An electromagnetic wave measuring method for measuring an electromagnetic wave radiated from an electronic device arranged in an effective space is known (see Non-Patent Document 1).
  • the effective space is a space in which the electric field strength becomes uniform by stirring electromagnetic waves with an electromagnetic stirrer.
  • the measurement related to the electromagnetic wave includes, for example, measurement of the radiant power of the electronic device, measurement of the intensity of the electromagnetic wave, and the like.
  • a larger electronic device can be arranged in the effective space because the types of electronic devices to be measured for electromagnetic waves can be increased.
  • the intensity of the electromagnetic wave radiated from the electronic device is often weaker than the intensity of the electromagnetic wave radiated from the transmitting antenna.
  • the present invention has been made in consideration of such circumstances, and it is an object of the present invention to provide an electromagnetic wave measuring device and an electromagnetic wave measuring method capable of reducing the volume occupied by the antenna among the volumes in the effective space. And.
  • One aspect of the present invention includes a housing, a first antenna that emits an electromagnetic wave corresponding to an acquired electric signal, and a second antenna that detects the electric field strength of an electric field and outputs a voltage corresponding to the detected electric field strength.
  • the first antenna and the third antenna are provided with a third antenna that detects the electric field strength of the electric field and outputs a voltage corresponding to the detected electric field strength, and an electromagnetic stirrer that stirs the electromagnetic waves in the housing.
  • the volume occupied by the antenna among the volumes in the effective space can be reduced.
  • detecting the electric field strength of a certain electric field EF1 will be referred to as detecting the electric field EF1.
  • the detected electric field strength will be referred to as a detected electric field EF1.
  • the measurement of a certain physical quantity means the detection of the physical quantity or the calculation of the physical quantity.
  • FIG. 1 is a diagram showing an example of the configuration of the electromagnetic wave measuring device 1 according to the embodiment.
  • the electromagnetic wave measuring device 1 includes, for example, a housing 11 of the electromagnetic wave measuring device 1, an electromagnetic stirrer 12, a first antenna A1, and a second antenna A2.
  • the electromagnetic wave measuring device 1 may be configured to include other devices, other members, and the like in addition to the housing 11, the electromagnetic stirrer 12, the first antenna A1 and the second antenna A2.
  • the housing 11 is a container for accommodating each member included in the electromagnetic wave measuring device 1.
  • An electronic device P is also arranged in the housing 11.
  • the electromagnetic stirrer 12 agitates the electromagnetic waves in the housing 11.
  • the electromagnetic stirrer 12 makes the electric field strength of the electric field in the predetermined effective space WV in the housing 11 uniform.
  • the effective space WV is a part of the space inside the housing 11.
  • the effective space WV is a space in which the electric field strength becomes uniform due to the stirring of electromagnetic waves by the electromagnetic stirrer 12.
  • the effective space WV is a space in which the amount of variation in the electric field strength due to the agitation of electromagnetic waves by the electromagnetic stirrer 12 is less than a predetermined amount.
  • the method of stirring the electromagnetic wave by the electromagnetic stirrer 12 for making the electric field strength of the electric field in the effective space WV uniform may be a known method or a method to be developed in the future. Further, the shape of the electromagnetic stirrer 12 may be any shape as long as it can agitate the electromagnetic waves in the effective space WV and make the electric field strength of the electric field in the effective space WV uniform.
  • the first antenna A1 is an antenna that radiates an electromagnetic wave corresponding to an input electric signal. Further, the first antenna A1 is an antenna having reversibility. Therefore, the first antenna A1 can also be used as an antenna that detects an electric field and outputs a voltage corresponding to the detected electric field. Therefore, in the embodiment, the first antenna A1 is also used as an antenna that detects an electric field and outputs a voltage corresponding to the detected electric field. That is, in the embodiment, the first antenna A1 is an antenna that has reversibility and is used for both radiation of electromagnetic waves and detection of electric fields. The first antenna A1 may be an antenna used only for radiating electromagnetic waves. In this case, the electromagnetic wave measuring device 1 further includes a third antenna. The third antenna is an antenna used only for detecting an electric field. Details of the case where the electromagnetic wave measuring device 1 includes the third antenna will be described in a modified example of the embodiment.
  • the first antenna A1 is installed inside the housing 11 and outside the effective space WV.
  • the first antenna A1 is connected to the information processing device 2. Therefore, in this example, the first antenna A1 acquires an electric signal from the information processing device 2 and emits an electromagnetic wave corresponding to the acquired electric signal. Further, in this example, the first antenna A1 detects an electric field. Then, in this example, the first antenna A1 outputs an electric signal indicating a voltage corresponding to the detected electric field to the information processing device 2.
  • the first antenna A1 may be connected to the information processing device 2 via another device separate from the information processing device 2.
  • the other device is a transmitter that causes the first antenna A1 to emit electromagnetic waves in response to a request from the information processing device 2, and information on the voltage acquired from the first antenna A1 in response to a request from the information processing device 2. It is a receiver or the like that outputs to the processing device 2.
  • the information processing device 2 is integrally configured with the other device.
  • the information processing device 2 is, for example, a desktop PC (Personal Computer).
  • the information processing device 2 may be another information processing device such as a notebook PC, a tablet PC, a multifunctional mobile phone terminal (smartphone), a mobile phone terminal, or a PDA (Personal Digital Assistant).
  • the information processing device 2 outputs an electric signal to the first antenna A1 so that an electromagnetic wave in a wavelength band desired by the user is radiated from the first antenna A1 in response to an operation received from the user. Further, the information processing apparatus 2 acquires an electric signal indicating a voltage corresponding to the electric field detected by the first antenna A1 from the first antenna A1 in response to the operation received from the user.
  • the electromagnetic wave measuring device 1 is not provided with the information processing device 2, but may be provided with the information processing device 2 instead.
  • the second antenna A2 is an antenna that detects an electric field and outputs a voltage corresponding to the detected electric field.
  • the second antenna A2 is installed in the effective space WV in the housing 11.
  • the second antenna A2 is connected to the receiving device 3. Therefore, in this example, the second antenna A2 outputs an electric signal indicating a voltage corresponding to the detected electric field to the receiving device 3.
  • the receiving device 3 is connected to the information processing device 2 in a communicable manner by wire or wirelessly.
  • the receiving device 3 acquires the electric signal output from the second antenna A2 from the second antenna A2.
  • the receiving device 3 outputs the acquired electric signal to the information processing device 2. Therefore, the information processing device 2 acquires an electric signal from the receiving device 3.
  • the receiving device 3 may be integrally configured with the information processing device 2. Further, in the embodiment, the electromagnetic wave measuring device 1 is not provided with the receiving device 3, but may be provided with the receiving device 3 instead.
  • This correction coefficient is a coefficient for correcting a conversion coefficient that may change depending on the presence or absence of the electronic device P in the effective space WV. Details of the correction coefficient will be described later. That is, the procedure of steps S130 to S150 is a correction coefficient measuring procedure. Therefore, when the user has already measured the correction coefficient by another device, another method, or the like, in the method of measuring the electromagnetic wave radiated by the electronic device P using the electromagnetic wave measuring device 1, steps S130 to step S The procedure of S150 may be omitted.
  • the user measures the radiant power of the electronic device P by the procedure of step S160 and step S170 shown in FIG. 2 using the conversion coefficient and the correction coefficient measured by the procedure of step S110 to step S150. Therefore, when the conversion coefficient and the correction coefficient have already been measured by another device, another method, or the like, the user can measure the radiant power of the electronic device P using the electromagnetic wave measuring device 1 in step S160 and step S160. Only the process of step S170 may be performed.
  • a reference state among the states in the effective space WV will be referred to as a reference state.
  • the reference state for example, among the states in the effective space WV, as shown in FIG. 1, only the cable connecting the second antenna A2 and the receiving device 3 and the second antenna A2 are arranged in the effective space WV. It is the state of being done.
  • the reference state may be any state as long as it is a state that can be realized as a state in the effective space WV.
  • the detection procedure D1 radiates an electromagnetic wave to the first antenna A1 outside the effective space when the inside of the effective space WV is in the reference state, and detects the electric field in the effective space WV by the electric field probe PB in the effective space WV.
  • the electric field in the effective space WV in the detection procedure D1 is an electric field corresponding to the electromagnetic wave radiated from the first antenna A1 outside the effective space. Therefore, in the detection procedure D1, the user arranges the electric field probe PB in the effective space WV in the reference state as shown in FIG.
  • the state in the effective space WV is not the reference state, for example, the user arranges the electric field probe PB in the effective space WV after setting the state in the effective space WV as the reference state.
  • FIG. 3 is a diagram showing an example of the electromagnetic wave measuring device 1 when the electric field probe PB is arranged in the effective space WV in the reference state.
  • the electric field probe PB may be connected to the information processing device 2 or may be connected to the receiving device 3.
  • the electric field probe PB is connected to the information processing device 2
  • the cable connecting the electric field probe PB and the information processing device 2 is omitted in order to prevent the figure from becoming complicated.
  • the user After arranging the electric field probe PB in the effective space WV in the reference state, in the detection procedure D1, the user operates the information processing device 2 to radiate an electromagnetic wave in a predetermined wavelength band to the first antenna A1.
  • the electric field strength of the electric field corresponding to the electromagnetic wave radiated from the first antenna A1 becomes uniform due to the agitation of the electromagnetic wave by the electromagnetic stirrer 12.
  • the electric field probe PB outputs an electric signal indicating a voltage corresponding to the electric field strength uniformed in the effective space WV in this way. Therefore, the information processing device 2 acquires the electric signal from the electric field probe PB.
  • the information processing device 2 Based on the acquired electric signal, the information processing device 2 stores information indicating a voltage corresponding to the electric field strength in a storage unit (not shown) included in the information processing device 2 as second detection information.
  • the user performs the detection procedure D1 as described above in step S110.
  • the electromagnetic wave in the predetermined wavelength band will be referred to as a radiated electromagnetic wave.
  • step S110 After the detection procedure D1 is performed in step S110, the user performs the calculation procedure C1 (step S120). Here, the calculation procedure C1 will be described.
  • the calculation procedure C1 is a procedure for calculating the above-mentioned conversion coefficient based on the voltage detected by the detection procedure D1 in step S110.
  • the method of calculating the conversion coefficient based on the voltage detected by the detection procedure D1 in step S110 may be a known method or a method to be developed in the future.
  • the user operates the information processing device 2 and causes the information processing device 2 to calculate the conversion coefficient based on the voltage indicated by the second detection information stored in the information processing device 2. That is, in the calculation procedure C1, the information processing device 2 reads out the second detection information stored in the storage unit according to the operation received from the user, and responds to the voltage indicated by the read second detection information and the radiated electromagnetic wave.
  • the conversion coefficient is calculated based on the electric field strength of the generated electric field. Then, in the calculation procedure C1, the information processing apparatus 2 stores the conversion coefficient information indicating the calculated conversion coefficient in the storage unit.
  • the electric field strength of the electric field according to the radiated electromagnetic wave is calculated or detected in advance, for example.
  • the detection procedure D2 when the inside of the effective space WV is in the reference state, the radiated electromagnetic wave is radiated to the first antenna A1 outside the effective space, and the voltage corresponding to the electric field strength of the electric field in the effective space WV is set to the effective space WV.
  • the electric field in the effective space WV in the detection procedure D2 is an electric field corresponding to the radiated electromagnetic wave radiated from the first antenna A1 outside the effective space. Therefore, in the detection procedure D2, the user sets the state in the effective space WV as the reference state. Then, in the detection procedure D2, the user operates the information processing device 2 to radiate the radiated electromagnetic wave to the first antenna A1.
  • the receiving device 3 acquires the electric signal from the second antenna A2.
  • the receiving device 3 outputs the acquired electric signal to the information processing device 2.
  • the information processing device 2 acquires the electric signal from the receiving device 3. Based on the acquired electric signal, the information processing device 2 stores information indicating a voltage corresponding to the electric field strength in the storage unit of the information processing device 2 as third detection information.
  • the user performs the detection procedure D2 as described above in step S130.
  • step S140 the user performs the detection procedure D3 (step S140).
  • the detection procedure D3 will be described.
  • the electronic device P is arranged in the effective space WV in the reference state, the radiated electromagnetic wave is radiated to the first antenna A1 outside the effective space, and the voltage corresponding to the electric field strength of the electric field in the effective space WV is set.
  • This is a procedure for detecting by the second antenna A2 in the effective space WV.
  • the electric field in the effective space WV in the detection procedure D3 is an electric field corresponding to the radiated electromagnetic wave radiated from the first antenna A1 outside the effective space. Therefore, in the detection procedure D3, the user arranges the electronic device P in the effective space WV which is kept in the reference state in the detection procedure D2.
  • FIG. 4 is a diagram showing an example of the electromagnetic wave measuring device 1 when the electronic device P is arranged in the effective space WV in the reference state.
  • step S140 After the detection procedure D3 is performed in step S140, the user performs the calculation procedure C2 (step S150). Here, the calculation procedure C2 will be described.
  • the calculation procedure C2 is a procedure for calculating the above-mentioned correction coefficient based on the voltage detected by the detection procedure D2 in step S130 and the voltage detected by the detection procedure D3 in step S140.
  • the method of calculating the correction coefficient based on the third detected electric field and the fourth detected electric field may be a known method or a method to be developed in the future.
  • the user operates the information processing device 2 to calculate the correction coefficient based on the voltage indicated by each of the third detection information and the fourth detection information stored in the information processing device 2. Let the processing device 2 do this.
  • the information processing device 2 reads out the third detection information and the fourth detection information stored in the storage unit according to the operation received from the user, and the read third detection information and the fourth detection information.
  • the correction coefficient is calculated based on the voltage indicated by each of the information and the electric field strength of the electric field corresponding to the radiated electromagnetic wave. Then, in the calculation procedure C2, the information processing apparatus 2 stores the correction coefficient information indicating the calculated correction coefficient in the storage unit.
  • step S150 After the calculation procedure C2 is performed in step S150, the user performs the detection procedure D4 (step S160). Here, the detection procedure D4 will be described.
  • the electronic device P is arranged in the effective space WV in the reference state, the electronic device P is operated, and the voltage corresponding to the electric field strength of the electric field in the housing 11 is applied to the first antenna outside the effective space WV.
  • This is the procedure for detecting by A1.
  • the electric field in the effective space WV in the detection procedure D4 is an electric field corresponding to the electromagnetic wave radiated from the electronic device P in the effective space WV. Therefore, in the detection procedure D4, the user sets the state in the effective space WV as the reference state. After that, in the detection procedure D4, the user operates the electronic device P to operate the electronic device P.
  • step S160 After the detection procedure D4 is performed in step S160, the user performs the calculation procedure C3 (step S170). Here, the calculation procedure C3 will be described.
  • the calculation procedure C3 is an electronic device based on the voltage detected by the detection procedure D4 in step S160, the conversion coefficient calculated by the calculation procedure C1 in step S120, and the correction coefficient calculated by the calculation procedure C2 in step S150.
  • This is a procedure for calculating the radiant power of P.
  • the method of calculating the radiant power based on the conversion coefficient, the correction coefficient, and the first detected electric field may be a known method or a method to be developed in the future.
  • the user operates the information processing device 2 and causes the information processing device 2 to calculate the radiated power based on each of the first detection information, the conversion coefficient information, and the correction coefficient information stored in the information processing device 2. Let me do it.
  • step S170 the user ends the measurement of the radiant power of the electronic device P using the electromagnetic wave measuring device 1.
  • the detection means D1 may be configured to be performed in parallel with the detection means D2.
  • the state in the effective space WV may be the same as the state in the effective space WV in the detecting means D1. That is, in this case, in the detection means D2, the state in the effective space WV may be the state in which the electric field probe PB is still arranged. This is because the existence of the electric field probe PB in the effective space WV is small with respect to the wavelength of the electromagnetic wave transmitted and received in the effective space WV, so that it is considered that the electric field in the effective space WV is not disturbed. ..
  • the state in the effective space WV may be the state in which the electric field probe PB is still arranged. Further, if the electric field probe PB is arranged in the effective space WV in all of the detection procedures D1 to D4, the reference state described above may be defined as the state in which the electric field probe PB is arranged. ..
  • the user measures the radiant power of the electronic device P using the electromagnetic wave measuring device 1 by performing each procedure included in the flowchart shown in FIG.
  • the first antenna A1 is used as the antenna for detecting the electric field. More specifically, in the flowchart, the first antenna A1 used as an antenna for radiating electromagnetic waves in steps S130 and S140 is used as an antenna for detecting an electric field in step S160.
  • This is equivalent to exchanging the roles of the circuit on the transmitting side and the role of the circuit on the receiving side in the equivalent circuit representing the electromagnetic wave measurement system shown in FIG.
  • the first antenna A1 has reversibility, such replacement of roles is possible. Therefore, in the following, when the first antenna A1 has reversibility, the principle that such roles can be exchanged will be described. Further, in the following, for convenience of explanation, the principle will be referred to as a replaceable principle.
  • R 0 shown in FIG. 5 indicates the characteristic impedance of the transmitting side circuit.
  • V 0 shown in FIG. 5 indicates a power source for supplying AC power to the transmitting side circuit.
  • Rr shown in FIG. 5 indicates the characteristic impedance of the receiving side circuit.
  • each component of the matrix shown in FIG. 5 (that is, Z 11 , Z 12 , Z 21 , Z 22 ) is a Z parameter of the electromagnetic wave measurement system X.
  • S parameters of the electromagnetic wave measuring system X i.e., S 11, S 12, S 21, S 22
  • S 12 of the S parameters is calculated by the following equation (1). Since the description of the amount of each component of the Z parameter and the S parameter is known, the description thereof will be omitted.
  • the antenna factor AF r of the antenna X2 is defined by the following equation (5).
  • the antenna factor AF r can be eliminated from the equation (6).
  • the amount remaining after the antenna factor AF r is eliminated from the equation (6) in this way is the amount defined as the following equation (7) as the chamber gain G c.
  • This chamber gain G c is an amount obtained as a characteristic of the electromagnetic wave measuring device 1.
  • the chamber gain G c is a quantity representing the characteristics of radio wave propagation in the space inside the housing 11. That is, the way the electromagnetic wave propagates between the antenna X1 and the antenna X2 is characterized by the chamber gain G c. Then, the electromagnetic wave is agitated in the housing 11 by the electromagnetic stirrer 12. Therefore, if the antenna X1 has reversibility, the method of propagating the electromagnetic wave between the antenna X1 and the antenna X2 is different even when the antenna X2 is changed from the electric field probe PB to another antenna. Characterized by chamber gain G c.
  • the chamber gain G c may decrease.
  • the coefficient for correcting the decrease in the chamber gain G c that is, the decrease in the conversion coefficient, is the above-mentioned correction coefficient.
  • FIG. 6 is a diagram showing an example of an equivalent circuit of the electromagnetic wave measurement system X when the characteristic of radio wave propagation in the space in the housing 11 is represented by the chamber gain G c.
  • the characteristic impedance Rr of the receiving side circuit is represented as 1 [ ⁇ ].
  • the two off-diagonal components of the matrix shown in FIG. 6 are equal to each other. From this, in the equivalent circuit shown in FIG. 6, the voltage V r1 across the characteristic impedance of the receiving circuit is calculated by the following equation (8).
  • FIG. 7 is a diagram showing another example of the equivalent circuit of the electromagnetic wave measurement system X when the characteristic of radio wave propagation in the space in the housing 11 is represented by the chamber gain G c.
  • the voltage V r2 across the characteristic impedance of the receiving circuit is calculated by the following equation (9).
  • FIG. 8 is a diagram showing an example of an equivalent circuit of the electromagnetic wave measurement system shown in FIG.
  • R 0'shown in FIG. 8 indicates the characteristic impedance of the first antenna A1.
  • V s shown in FIG. 8 shows the output voltage of the electronic device P.
  • Z s shown in FIG. 8 indicates the characteristic impedance of the electronic device P.
  • each component of the matrix shown in FIG. 8 is a Z parameter of the electromagnetic wave measurement system shown in FIG.
  • l s shown in FIG. 8 indicates the effective length of the electronic device P.
  • G s shown in FIG. 8 indicates the directional gain of the electronic device P.
  • the voltage across V r of the characteristic impedance Z s of the electronic device P is the open circuit voltage in the electromagnetic measurement system shown in FIG.
  • the voltage across V r, as measured at a high frequency such as a spectrum analyzer a generally termination voltage. Therefore, in this case, the voltage across the circuit is expressed by the following equation (11).
  • the effective length l s is defined as the following equation (16).
  • R shown in the above formula (16) indicates radiation resistance.
  • G a shown in Equation (16) shows the absolute gain. Then, by multiplying the both sides to I s of formula (16), of the formula (17) below is obtained.
  • This effective radiated power G a W is the radiated power of the electronic device P calculated in step S170 shown in FIG.
  • the right side of the above equation (18) is all known quantities except for the directional gain G s of the electronic device P. That is, if the directional gain G s of the electronic device P can be estimated by some method, the user can calculate the effective radiated power of the electronic device P by using the equation (18). For example, when the wavelength of the electromagnetic wave radiated from the electronic device P is sufficiently smaller than the size of the electronic device P, the directivity gain G s of the electronic device P is the directional gain G d of the electric field probe PB. Become equal. Utilizing such a property, the user can calculate the effective radiated power of the electronic device P by using the equation (18).
  • the user can use the following equation (19) to estimate the electric field strength of the electric field corresponding to the electromagnetic wave radiated by the electronic device P at a position r away from the electronic device P. it can.
  • the electric field estimated in this way can be applied to, for example, the measurement of the intensity of the radiated disturbance of the electronic device P by the user.
  • the antenna factor of the second antenna A2 may be equal to or higher than the antenna factor of the first antenna A1 (that is, the sensitivity of the second antenna A2 is equal to or lower than the sensitivity of the first antenna A1). May be).
  • the detection means D2 and the detection means D3 can increase the intensity of the electromagnetic wave radiated to the first antenna A1 by setting the information processing device 2, so that even if the sensitivity of the second antenna A2 is low, the second antenna A2 is second.
  • the antenna A2 can detect the electric field.
  • the detection means D4 the electric field corresponding to the weak electromagnetic wave radiated from the electronic device P (the electromagnetic wave whose intensity cannot be further increased) is detected by the first antenna A1 and the second antenna.
  • the electromagnetic wave measuring device 1 can reduce the volume occupied by the second antenna among the volumes in the effective space.
  • the maximum length of the element of the second antenna A2 is the maximum length of the element of the first antenna A1. It may be as follows. Further, for the same reason, in the embodiment, when the first antenna A1 and the second antenna A2 are antennas having an opening surface, the maximum length of the opening surface of the second antenna A2 is the opening of the first antenna A1. It may be less than or equal to the maximum length of the surface.
  • the antenna that detects the electric field corresponding to the electromagnetic wave radiated from the electronic device P in step S160 is not the second antenna A2 but the first antenna A1. Therefore, the receiving device 3 connected to the second antenna A2 does not detect the electric field corresponding to the electromagnetic wave.
  • the noise floor of the receiving device 3 may have any value, and may be, for example, one-hundredth or more of the permissible value of the radiated power value for the electronic device P.
  • the noise floor of the information processing device 2 may be 1/100 or more of the permissible value of the radiant power value for the electronic device P.
  • the electromagnetic wave measuring device 1 includes, for example, a housing 11 of the electromagnetic wave measuring device 1, an electromagnetic stirrer 12, a first antenna A1, a second antenna A2, and a third antenna A3.
  • the electromagnetic wave measuring device 1 may include other devices, other members, and the like in addition to the housing 11, the electromagnetic stirrer 12, the first antenna A1, the second antenna A2, and the third antenna A3. Good.
  • the third antenna A3 is an antenna that detects an electric field and outputs a voltage corresponding to the detected electric field.
  • the third antenna A3 is installed in the effective space WV in the housing 11.
  • the third antenna A3 is connected to the information processing device 2. Therefore, in this example, the third antenna A3 outputs an electric signal indicating a voltage corresponding to the detected electric field to the information processing device 2.
  • step S160 when the user measures the radiant power of the electronic device P using the electromagnetic wave measuring device 1 according to the modified example of the embodiment by performing each procedure included in the flowchart shown in FIG. 2, step S160.
  • the electric field is detected by the third antenna A3 instead of the first antenna A1.
  • the electromagnetic wave measuring device 1 according to the modified example of the embodiment can obtain the same effect as the electromagnetic wave measuring device 1 according to the embodiment even in this case.
  • the antenna factor of the second antenna A2 may be equal to or higher than the antenna factor of the third antenna A3 (that is, the sensitivity of the second antenna A2 is higher than that of the third antenna A3). It may be less than or equal to the sensitivity of). This is because the antenna that detects the electric field corresponding to the electromagnetic wave radiated from the electronic device P in step S160 is not the second antenna A2 but the third antenna A3. Therefore, the electromagnetic wave measuring device 1 can reduce the volume occupied by the second antenna among the volumes in the effective space.
  • the maximum length of the element of the second antenna A2 is the element of the third antenna A3. It may be less than or equal to the maximum length. Further, for the same reason, in the modified example of the embodiment, when the second antenna A2 and the third antenna A3 are antennas having an opening surface, the maximum length of the opening surface of the second antenna A2 is the third antenna. It may be less than or equal to the maximum length of the opening surface of A3.
  • the antenna that detects the electric field corresponding to the electromagnetic wave radiated from the electronic device P in step S160 is not the second antenna A2 but the third antenna A3. Therefore, the receiving device 3 connected to the second antenna A2 does not detect the electric field corresponding to the electromagnetic wave.
  • the noise floor of the receiving device 3 may have any value, and may be, for example, one-hundredth or more of the permissible value of the radiated power value for the electronic device P.
  • the noise floor of the information processing device 2 may be 1/100 or more of the permissible value of the radiant power value for the electronic device P.
  • the electromagnetic wave measuring device has a housing and a first antenna (in the example described above) that emits an electromagnetic wave (radiated electromagnetic wave in the example described above) corresponding to the acquired electric signal.
  • the first antenna A1), the second antenna that detects the electric field strength of the electric field and outputs the voltage corresponding to the detected electric field strength (the second antenna A2 in the example described above), and the electric field strength of the electric field.
  • a third antenna (in the example described above, the first antenna A1 or the third antenna A3) that detects and outputs a voltage corresponding to the detected electric field strength, and an electromagnetic stirrer that stirs the electromagnetic waves in the housing ( In the example described above, the electromagnetic stirrer 12) is provided, and the first antenna and the third antenna are inside the housing and outside a predetermined effective space (in the example described above, the effective space WV).
  • the second antenna is installed in the effective space in the housing.
  • the electromagnetic wave measuring device can reduce the volume occupied by the antenna (that is, the second antenna) in the effective space.
  • the configuration in which the third antenna is integrally configured with the first antenna may be used.
  • a configuration may be used in which the antenna factor of the second antenna is equal to or higher than the antenna factor of the third antenna.
  • the second antenna and the third antenna have elements, and the maximum length of the element of the second antenna is equal to or less than the maximum length of the element of the third antenna. May be done.
  • the second antenna and the third antenna have an opening surface, and the maximum length of the opening surface of the second antenna is equal to or less than the maximum length of the opening surface of the third antenna.
  • the configuration may be used.
  • the electromagnetic wave measuring device includes a receiving device connected to the second antenna, and the noise floor of the receiving device is one-hundredth or more of the permissible value of the radiant power value for the object to be measured that emits electromagnetic waves. May be used.
  • the housing, the first antenna that emits an electromagnetic wave corresponding to the input electric signal, the electric field strength of the electric field are detected, and the voltage corresponding to the detected electric field strength is output.
  • an electromagnetic wave measuring device including a second antenna, a third antenna that detects the electric field strength of the electric field and outputs a voltage corresponding to the detected electric field strength, and an electromagnetic stirrer that stirs the electromagnetic waves in the housing.
  • the first electromagnetic wave and the third electromagnetic wave are installed in the housing and outside the predetermined effective space in the housing, and the second electromagnetic wave is installed in the effective space in the housing and are effective in a predetermined reference state.
  • the electromagnetic wave measurement method can reduce the volume occupied by the second antenna among the volumes in the effective space.
  • the electromagnetic wave measurement method is a third detection procedure (in the example described above, in the example described above, the electromagnetic field is radiated from the first antenna and the voltage output from the second antenna is detected when the effective space is in the reference state.
  • the detection procedure D2) and the fourth detection procedure in which the object to be measured is placed in the effective space of the reference state, the electromagnetic field is radiated from the first antenna, and the voltage output from the second antenna is detected.
  • the detection procedure D3 the electric field strength of the electric field corresponding to the electromagnetic wave radiated to the first antenna, the voltage detected by the third detection procedure, and the voltage detected by the fourth detection procedure.
  • a configuration may be used, which is a procedure for calculating the radiated power of the object to be measured based on the conversion coefficient calculated by the first calculation procedure and the correction coefficient calculated by the third calculation procedure.
  • the configuration in which the third antenna is integrally configured with the first antenna may be used.
  • Electromagnetic wave measuring device 2 ... Information processing device, 3 ... Receiver device, 11 ... Housing, 12 ... Electromagnetic stirrer, A1 ... 1st antenna, A2 ... 2nd antenna, A3 ... 3rd antenna, C1, C2, C3 ... Calculation procedure, D1, D2, D3, D4 ... Detection procedure, P ... Electronic equipment, PB ... Electric field probe, WV ... Effective space

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

This electromagnetic wave measurement device comprises a housing, a first antenna for radiating electromagnetic waves corresponding to an acquired electrical signal, a second antenna for detecting the electric field strength of an electric field and outputting a voltage corresponding to the detected electric field strength, a third antenna for detecting the electric field strength of an electric field and outputting a voltage corresponding to the detected electric field strength, and an electromagnetic stirrer for stirring electromagnetic waves within the housing. The first antenna and third antenna are disposed inside the housing and outside of a prescribed effective space within the housing, and the second antenna is disposed inside the housing within the effective space.

Description

電磁波測定装置、及び電磁波測定方法Electromagnetic wave measuring device and electromagnetic wave measuring method
 本発明は、電磁波測定装置、及び電磁波測定方法に関する。
 本願は、2019年12月06日に、日本に出願された特願2019-221096号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an electromagnetic wave measuring device and an electromagnetic wave measuring method.
The present application claims priority based on Japanese Patent Application No. 2019-22109 filed in Japan on December 06, 2019, the contents of which are incorporated herein by reference.
 電子機器から放射される電磁波の測定において反射箱を用いる方法についての研究、開発が行われている。 Research and development are being conducted on a method using a reflective box for measuring electromagnetic waves emitted from electronic devices.
 これに関し、筐体と、電磁攪拌器と、筐体内の所定の有効空間外に配置された送信アンテナと、有効空間内に配置された受信アンテナとを備える反射箱を用いる電磁波測定方法であって、有効空間内に配置された電子機器から放射される電磁波に関する測定を行う電磁波測定方法が知られている(非特許文献1参照)。なお、有効空間は、電磁攪拌器による電磁波の攪拌によって電界強度が均一になる空間のことである。また、当該電磁波に関する測定は、例えば、当該電子機器の放射電力の測定、当該電磁波の強度の測定等のことである。 In this regard, an electromagnetic wave measurement method using a housing, an electromagnetic stirrer, a transmitting antenna arranged outside a predetermined effective space inside the housing, and a receiving antenna arranged in the effective space. , An electromagnetic wave measuring method for measuring an electromagnetic wave radiated from an electronic device arranged in an effective space is known (see Non-Patent Document 1). The effective space is a space in which the electric field strength becomes uniform by stirring electromagnetic waves with an electromagnetic stirrer. Further, the measurement related to the electromagnetic wave includes, for example, measurement of the radiant power of the electronic device, measurement of the intensity of the electromagnetic wave, and the like.
 ここで、非特許文献1に記載された電磁波測定方法では、有効空間内の体積のうち受信アンテナにより占有される体積が小さいほど、より大きな電子機器を有効空間内に配置することができる。より大きな電子機器を有効空間内に配置することができることは、電磁波に関する測定を行う対象となる電子機器の種類を増やすことができるため、当該電磁波測定方法において望ましいことである。しかしながら、電子機器から放射される電磁波の強度は、送信アンテナから放射される電磁波の強度と比べて微弱であることが多い。当該電磁波測定方法では、電子機器から放射される電磁波の強度が微弱であるほど、受信アンテナの感度を高くする必要がある。その結果、当該電磁波測定方法では、受信アンテナの大きさを大きくしなければならない場合があった。すなわち、当該電磁波測定方法では、有効空間内の体積のうち受信アンテナにより占有される体積を小さくすることが困難な場合があった。 Here, in the electromagnetic wave measurement method described in Non-Patent Document 1, the smaller the volume occupied by the receiving antenna among the volumes in the effective space, the larger the electronic device can be arranged in the effective space. It is desirable in the electromagnetic wave measurement method that a larger electronic device can be arranged in the effective space because the types of electronic devices to be measured for electromagnetic waves can be increased. However, the intensity of the electromagnetic wave radiated from the electronic device is often weaker than the intensity of the electromagnetic wave radiated from the transmitting antenna. In the electromagnetic wave measurement method, it is necessary to increase the sensitivity of the receiving antenna as the intensity of the electromagnetic wave radiated from the electronic device becomes weaker. As a result, in the electromagnetic wave measurement method, it may be necessary to increase the size of the receiving antenna. That is, in the electromagnetic wave measurement method, it may be difficult to reduce the volume occupied by the receiving antenna among the volumes in the effective space.
 本発明は、このような事情を考慮してなされたもので、有効空間内の体積のうちアンテナにより占有される体積を小さくすることができる電磁波測定装置、及び電磁波測定方法を提供することを課題とする。 The present invention has been made in consideration of such circumstances, and it is an object of the present invention to provide an electromagnetic wave measuring device and an electromagnetic wave measuring method capable of reducing the volume occupied by the antenna among the volumes in the effective space. And.
 本発明の一態様は、筐体と、取得した電気信号に応じた電磁波を放射する第1アンテナと、電界の電界強度を検出し、検出した電界強度に応じた電圧を出力する第2アンテナと、電界の電界強度を検出し、検出した電界強度に応じた電圧を出力する第3アンテナと、前記筐体内の電磁波を攪拌する電磁攪拌器と、を備え、前記第1アンテナ及び前記第3アンテナは、前記筐体内において、前記筐体内における所定の有効空間外に設置されており、前記第2アンテナは、前記筐体内において、前記有効空間内に設置されている、電磁波測定装置である。 One aspect of the present invention includes a housing, a first antenna that emits an electromagnetic wave corresponding to an acquired electric signal, and a second antenna that detects the electric field strength of an electric field and outputs a voltage corresponding to the detected electric field strength. The first antenna and the third antenna are provided with a third antenna that detects the electric field strength of the electric field and outputs a voltage corresponding to the detected electric field strength, and an electromagnetic stirrer that stirs the electromagnetic waves in the housing. Is an electromagnetic wave measuring device installed in the housing and outside a predetermined effective space in the housing, and the second antenna is installed in the effective space in the housing.
 本発明によれば、有効空間内の体積のうちアンテナにより占有される体積を小さくすることができる。 According to the present invention, the volume occupied by the antenna among the volumes in the effective space can be reduced.
実施形態に係る電磁波測定装置1の構成の一例を示す図である。It is a figure which shows an example of the structure of the electromagnetic wave measuring apparatus 1 which concerns on embodiment. 電磁波測定装置1を用いて電子機器Pの放射電力の測定を行う方法の流れの一例を示す図である。It is a figure which shows an example of the flow of the method of measuring the radiant power of the electronic device P using the electromagnetic wave measuring device 1. 基準状態の有効空間WV内に電界プローブPBが配置された場合の電磁波測定装置1の一例を示す図である。It is a figure which shows an example of the electromagnetic wave measuring apparatus 1 when the electric field probe PB is arranged in the effective space WV of the reference state. 基準状態の有効空間WV内に電子機器Pが配置された場合の電磁波測定装置1の一例を示す図である。It is a figure which shows an example of the electromagnetic wave measuring apparatus 1 when the electronic device P is arranged in the effective space WV of the reference state. 電磁波測定系Xの等価回路の一例を示す図である。It is a figure which shows an example of the equivalent circuit of the electromagnetic wave measurement system X. 筐体11内における空間の電波伝搬の特性がチャンバーゲインGによって表される場合における電磁波測定系Xの等価回路の一例を示す図である。It is a figure which shows an example of the equivalent circuit of the electromagnetic wave measurement system X in the case where the characteristic of radio wave propagation of a space in a housing 11 is represented by a chamber gain G c. 筐体11内における空間の電波伝搬の特性がチャンバーゲインGによって表される場合における電磁波測定系Xの等価回路の他の例を示す図である。It is a figure which shows another example of the equivalent circuit of the electromagnetic wave measurement system X in the case where the characteristic of radio wave propagation of a space in a housing 11 is represented by a chamber gain G c. 図4に示した電磁波測定系の等価回路の一例を示す図である。It is a figure which shows an example of the equivalent circuit of the electromagnetic wave measurement system shown in FIG. 実施形態の変形例に係る電磁波測定装置1の構成の一例を示す図である。It is a figure which shows an example of the structure of the electromagnetic wave measuring apparatus 1 which concerns on the modification of embodiment.
 <実施形態>
 以下、本発明の実施形態について、図面を参照して説明する。なお、以下では、説明の便宜上、ある電界EF1の電界強度を検出することを、電界EF1を検出すると称して説明する。また、以下では、説明の便宜上、検出した当該電界強度のことを、検出した電界EF1と称して説明する。また、以下では、ある物理量の測定は、当該物理量の検出、又は、当該物理量の算出のことを意味する。
<Embodiment>
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following, for convenience of explanation, detecting the electric field strength of a certain electric field EF1 will be referred to as detecting the electric field EF1. Further, in the following, for convenience of explanation, the detected electric field strength will be referred to as a detected electric field EF1. Further, in the following, the measurement of a certain physical quantity means the detection of the physical quantity or the calculation of the physical quantity.
 <反射箱の構成>
 まず、図1を参照し、実施形態に係る電磁波測定装置1の構成について説明する。図1は、実施形態に係る電磁波測定装置1の構成の一例を示す図である。
<Construction of reflective box>
First, the configuration of the electromagnetic wave measuring device 1 according to the embodiment will be described with reference to FIG. FIG. 1 is a diagram showing an example of the configuration of the electromagnetic wave measuring device 1 according to the embodiment.
 電磁波測定装置1は、例えば、電磁波測定装置1の筐体11と、電磁攪拌器12と、第1アンテナA1と、第2アンテナA2を備える。なお、電磁波測定装置1は、筐体11と電磁攪拌器12と第1アンテナA1と第2アンテナA2とに加えて、他の装置、他の部材等を備える構成であってもよい。 The electromagnetic wave measuring device 1 includes, for example, a housing 11 of the electromagnetic wave measuring device 1, an electromagnetic stirrer 12, a first antenna A1, and a second antenna A2. The electromagnetic wave measuring device 1 may be configured to include other devices, other members, and the like in addition to the housing 11, the electromagnetic stirrer 12, the first antenna A1 and the second antenna A2.
 電磁波測定装置1は、例えば、反射箱である。電磁波測定装置1は、筐体11内に配置した電磁波源から放射される電磁波に関する測定に用いられる装置である。当該測定の一例としては、例えば、筐体11内に電磁波源として配置した電子機器の放射電力の測定、当該電子機器により放射される放射妨害波の強度の測定等が挙げられる。以下では、一例として、筐体11内に配置される電磁波源が、電子機器Pである場合について説明する。なお、電子機器Pは、図1において図示されておらず、図4において図示されている。筐体11内に配置される電磁波源(例えば、電子機器P)は、被測定物の一例である。 The electromagnetic wave measuring device 1 is, for example, a reflection box. The electromagnetic wave measuring device 1 is a device used for measuring electromagnetic waves radiated from an electromagnetic wave source arranged in a housing 11. Examples of the measurement include measurement of the radiated power of an electronic device arranged as an electromagnetic wave source in the housing 11, measurement of the intensity of radiant interfering waves radiated by the electronic device, and the like. Hereinafter, as an example, a case where the electromagnetic wave source arranged in the housing 11 is an electronic device P will be described. The electronic device P is not shown in FIG. 1 but is shown in FIG. The electromagnetic wave source (for example, the electronic device P) arranged in the housing 11 is an example of the object to be measured.
 筐体11は、電磁波測定装置1が備える各部材を収容する容器である。また、筐体11内には、電子機器Pも配置される。 The housing 11 is a container for accommodating each member included in the electromagnetic wave measuring device 1. An electronic device P is also arranged in the housing 11.
 電磁攪拌器12は、筐体11内の電磁波を攪拌する。これにより、電磁攪拌器12は、筐体内11における所定の有効空間WV内の電界の電界強度を均一にする。ここで、有効空間WVは、筐体11内の空間のうちの一部の空間である。また、有効空間WVは、電磁攪拌器12による電磁波の攪拌によって電界の電界強度が均一になる空間のことである。換言すると、有効空間WVは、電磁攪拌器12による電磁波の攪拌によって電界の電界強度のばらつきを示す量が所定量未満となる空間のことである。有効空間WV内の電界の電界強度を均一にするための電磁攪拌器12による電磁波の攪拌方法については、既知の方法であってもよく、これから開発される方法であってもよい。また、電磁攪拌器12の形状は、有効空間WV内の電磁波を攪拌し、有効空間WV内の電界の電界強度を均一にすることが可能な形状であれば、如何なる形状であってもよい。 The electromagnetic stirrer 12 agitates the electromagnetic waves in the housing 11. As a result, the electromagnetic stirrer 12 makes the electric field strength of the electric field in the predetermined effective space WV in the housing 11 uniform. Here, the effective space WV is a part of the space inside the housing 11. The effective space WV is a space in which the electric field strength becomes uniform due to the stirring of electromagnetic waves by the electromagnetic stirrer 12. In other words, the effective space WV is a space in which the amount of variation in the electric field strength due to the agitation of electromagnetic waves by the electromagnetic stirrer 12 is less than a predetermined amount. The method of stirring the electromagnetic wave by the electromagnetic stirrer 12 for making the electric field strength of the electric field in the effective space WV uniform may be a known method or a method to be developed in the future. Further, the shape of the electromagnetic stirrer 12 may be any shape as long as it can agitate the electromagnetic waves in the effective space WV and make the electric field strength of the electric field in the effective space WV uniform.
 第1アンテナA1は、入力された電気信号に応じた電磁波を放射するアンテナである。また、第1アンテナA1は、可逆性を有するアンテナである。このため、第1アンテナA1は、電界を検出し、検出した電界に応じた電圧を出力するアンテナとしても用いることができる。そこで、実施形態では、第1アンテナA1は、電界を検出し、検出した電界に応じた電圧を出力するアンテナとしても用いられる。すなわち、実施形態では、第1アンテナA1は、可逆性を有し、電磁波の放射と電界の検出との両方に用いられるアンテナである。なお、第1アンテナA1は、電磁波の放射にのみ用いられるアンテナであってもよい。この場合、電磁波測定装置1は更に、第3アンテナを備える。第3アンテナは、電界の検出にのみ用いられるアンテナのことである。電磁波測定装置1が第3アンテナを備える場合についての詳細は、実施形態の変形例において説明する。 The first antenna A1 is an antenna that radiates an electromagnetic wave corresponding to an input electric signal. Further, the first antenna A1 is an antenna having reversibility. Therefore, the first antenna A1 can also be used as an antenna that detects an electric field and outputs a voltage corresponding to the detected electric field. Therefore, in the embodiment, the first antenna A1 is also used as an antenna that detects an electric field and outputs a voltage corresponding to the detected electric field. That is, in the embodiment, the first antenna A1 is an antenna that has reversibility and is used for both radiation of electromagnetic waves and detection of electric fields. The first antenna A1 may be an antenna used only for radiating electromagnetic waves. In this case, the electromagnetic wave measuring device 1 further includes a third antenna. The third antenna is an antenna used only for detecting an electric field. Details of the case where the electromagnetic wave measuring device 1 includes the third antenna will be described in a modified example of the embodiment.
 第1アンテナA1は、筐体11内において、有効空間WV外に設置される。ここで、図1に示した例では、第1アンテナA1は、情報処理装置2と接続されている。このため、当該例では、第1アンテナA1は、情報処理装置2から電気信号を取得し、取得した電気信号に応じた電磁波を放射する。また、当該例では、第1アンテナA1は、電界を検出する。そして、当該例では、第1アンテナA1は、検出した電界に応じた電圧を示す電気信号を情報処理装置2に出力する。なお、第1アンテナA1は、情報処理装置2と別体の他の装置を介して情報処理装置2と接続される構成であってもよい。当該他の装置は、情報処理装置2からの要求に応じて第1アンテナA1に電磁波の放射を行わせる送信機、情報処理装置2からの要求に応じて第1アンテナA1から取得した電圧を情報処理装置2に出力する受信機等である。図1に示した例では、情報処理装置2は、当該他の装置と一体に構成されている。 The first antenna A1 is installed inside the housing 11 and outside the effective space WV. Here, in the example shown in FIG. 1, the first antenna A1 is connected to the information processing device 2. Therefore, in this example, the first antenna A1 acquires an electric signal from the information processing device 2 and emits an electromagnetic wave corresponding to the acquired electric signal. Further, in this example, the first antenna A1 detects an electric field. Then, in this example, the first antenna A1 outputs an electric signal indicating a voltage corresponding to the detected electric field to the information processing device 2. The first antenna A1 may be connected to the information processing device 2 via another device separate from the information processing device 2. The other device is a transmitter that causes the first antenna A1 to emit electromagnetic waves in response to a request from the information processing device 2, and information on the voltage acquired from the first antenna A1 in response to a request from the information processing device 2. It is a receiver or the like that outputs to the processing device 2. In the example shown in FIG. 1, the information processing device 2 is integrally configured with the other device.
 情報処理装置2は、例えば、デスクトップPC(Personal Computer)である。なお、情報処理装置2は、ノートPC、タブレットPC、多機能携帯電話端末(スマートフォン)、携帯電話端末、PDA(Personal Digital Assistant)等の他の情報処理装置であってもよい。 The information processing device 2 is, for example, a desktop PC (Personal Computer). The information processing device 2 may be another information processing device such as a notebook PC, a tablet PC, a multifunctional mobile phone terminal (smartphone), a mobile phone terminal, or a PDA (Personal Digital Assistant).
 情報処理装置2は、ユーザから受け付けた操作に応じて、第1アンテナA1からユーザが所望する波長帯の電磁波が放射されるように、第1アンテナA1に対して電気信号を出力する。また、情報処理装置2は、ユーザから受け付けた操作に応じて、第1アンテナA1が検出した電界に応じた電圧を示す電気信号を、第1アンテナA1から取得する。なお、実施形態では、電磁波測定装置1は、情報処理装置2を備えない構成であるが、これに代えて、情報処理装置2を備える構成であってもよい。 The information processing device 2 outputs an electric signal to the first antenna A1 so that an electromagnetic wave in a wavelength band desired by the user is radiated from the first antenna A1 in response to an operation received from the user. Further, the information processing apparatus 2 acquires an electric signal indicating a voltage corresponding to the electric field detected by the first antenna A1 from the first antenna A1 in response to the operation received from the user. In the embodiment, the electromagnetic wave measuring device 1 is not provided with the information processing device 2, but may be provided with the information processing device 2 instead.
 第2アンテナA2は、電界を検出し、検出した電界に応じた電圧を出力するアンテナである。第2アンテナA2は、筐体11内において、有効空間WV内に設置される。ここで、図1に示した例では、第2アンテナA2は、受信装置3と接続されている。このため、当該例では、第2アンテナA2は、検出した電界に応じた電圧を示す電気信号を受信装置3に出力する。 The second antenna A2 is an antenna that detects an electric field and outputs a voltage corresponding to the detected electric field. The second antenna A2 is installed in the effective space WV in the housing 11. Here, in the example shown in FIG. 1, the second antenna A2 is connected to the receiving device 3. Therefore, in this example, the second antenna A2 outputs an electric signal indicating a voltage corresponding to the detected electric field to the receiving device 3.
 受信装置3は、有線又は無線によって情報処理装置2と通信可能に接続されている。受信装置3は、第2アンテナA2から出力された電気信号を、第2アンテナA2から取得する。受信装置3は、取得した電気信号を情報処理装置2に出力する。このため、情報処理装置2は、受信装置3から電気信号を取得する。なお、受信装置3は、情報処理装置2と一体に構成されてもよい。また、実施形態では、電磁波測定装置1は、受信装置3を備えない構成であるが、これに代えて、受信装置3を備える構成であってもよい。 The receiving device 3 is connected to the information processing device 2 in a communicable manner by wire or wirelessly. The receiving device 3 acquires the electric signal output from the second antenna A2 from the second antenna A2. The receiving device 3 outputs the acquired electric signal to the information processing device 2. Therefore, the information processing device 2 acquires an electric signal from the receiving device 3. The receiving device 3 may be integrally configured with the information processing device 2. Further, in the embodiment, the electromagnetic wave measuring device 1 is not provided with the receiving device 3, but may be provided with the receiving device 3 instead.
 以上のような構成の電磁波測定装置1は、前述した通り、筐体11内に配置した電子機器Pにより放射される電磁波に関する測定に用いられる。 As described above, the electromagnetic wave measuring device 1 having the above configuration is used for measuring the electromagnetic waves radiated by the electronic device P arranged in the housing 11.
 <電磁波測定装置を用いて電子機器により放射される電磁波に関する測定を行う方法> 以下、電磁波測定装置1を用いて電子機器Pにより放射される電磁波に関する測定を行う方法について説明する。なお、以下では、一例として、当該測定が、有効空間WV内に配置した電子機器Pの放射電力の測定である場合について説明する。また、以下では、説明の便宜上、電磁波測定装置1のユーザを、単にユーザと称して説明する。 <Method of measuring electromagnetic waves radiated by an electronic device using an electromagnetic wave measuring device> Hereinafter, a method of measuring electromagnetic waves radiated by an electronic device P using an electromagnetic wave measuring device 1 will be described. In the following, as an example, a case where the measurement is a measurement of the radiant power of the electronic device P arranged in the effective space WV will be described. Further, in the following, for convenience of explanation, the user of the electromagnetic wave measuring device 1 will be simply referred to as a user.
 図2は、電磁波測定装置1を用いて電子機器Pの放射電力の測定を行う方法の流れの一例を示す図である。 FIG. 2 is a diagram showing an example of a flow of a method of measuring the radiant power of the electronic device P using the electromagnetic wave measuring device 1.
 ここで、ユーザは、図2に示したステップS110及びステップS120の手順により、検出された電界を電圧に変換する変換係数を測定する。すなわち、ステップS110及びステップS120の手順は、変換係数測定手順である。このため、ユーザは、他の装置、他の方法等によって変換係数を測定済みである場合、電磁波測定装置1を用いて電子機器Pにより放射される電磁波の測定を行う方法において、ステップS110及びステップS120の手順を省略してもよい。 Here, the user measures the conversion coefficient for converting the detected electric field into a voltage according to the procedure of step S110 and step S120 shown in FIG. That is, the procedure of step S110 and step S120 is a conversion coefficient measurement procedure. Therefore, in the method of measuring the electromagnetic wave radiated by the electronic device P using the electromagnetic wave measuring device 1, when the conversion coefficient has already been measured by another device, another method, or the like, the user steps S110 and step. The procedure of S120 may be omitted.
 また、ユーザは、図2に示したステップS130~ステップS150の手順により、補正係数を測定する。この補正係数は、有効空間WV内における電子機器Pの有無によって変化してしまうことがある変換係数を補正する係数である。補正係数についての詳細は、後述する。すなわち、ステップS130~ステップS150の手順は、補正係数測定手順である。このため、ユーザは、他の装置、他の方法等によって補正係数を測定済である場合、電磁波測定装置1を用いて電子機器Pにより放射される電磁波の測定を行う方法において、ステップS130~ステップS150の手順を省略してもよい。 Further, the user measures the correction coefficient according to the procedure of steps S130 to S150 shown in FIG. This correction coefficient is a coefficient for correcting a conversion coefficient that may change depending on the presence or absence of the electronic device P in the effective space WV. Details of the correction coefficient will be described later. That is, the procedure of steps S130 to S150 is a correction coefficient measuring procedure. Therefore, when the user has already measured the correction coefficient by another device, another method, or the like, in the method of measuring the electromagnetic wave radiated by the electronic device P using the electromagnetic wave measuring device 1, steps S130 to step S The procedure of S150 may be omitted.
 なお、ユーザは、図2に示したステップS160及びステップS170の手順により、ステップS110~ステップS150の手順によって測定された変換係数及び補正係数を用いて、電子機器Pの放射電力を測定する。このため、他の装置、他の方法等によって変換係数及び補正係数を測定済みである場合、ユーザは、電磁波測定装置1を用いて電子機器Pの放射電力の測定を行う方法において、ステップS160及びステップS170の処理のみを行ってもよい。 The user measures the radiant power of the electronic device P by the procedure of step S160 and step S170 shown in FIG. 2 using the conversion coefficient and the correction coefficient measured by the procedure of step S110 to step S150. Therefore, when the conversion coefficient and the correction coefficient have already been measured by another device, another method, or the like, the user can measure the radiant power of the electronic device P using the electromagnetic wave measuring device 1 in step S160 and step S160. Only the process of step S170 may be performed.
 また、以下では、説明の便宜上、有効空間WV内の状態のうち基準となる状態を、基準状態と称して説明する。基準状態は、例えば、有効空間WV内の状態のうち、図1に示したように、第2アンテナA2と受信装置3とを接続するケーブル、及び第2アンテナA2のみが有効空間WV内に配置されている状態のことである。なお、基準状態は、有効空間WV内の状態として実現可能な状態であれば、如何なる状態であってもよい。 In the following, for convenience of explanation, a reference state among the states in the effective space WV will be referred to as a reference state. As for the reference state, for example, among the states in the effective space WV, as shown in FIG. 1, only the cable connecting the second antenna A2 and the receiving device 3 and the second antenna A2 are arranged in the effective space WV. It is the state of being done. The reference state may be any state as long as it is a state that can be realized as a state in the effective space WV.
 ユーザは、検出手順D1を行う(ステップS110)。ここで、検出手順D1について説明する。 The user performs the detection procedure D1 (step S110). Here, the detection procedure D1 will be described.
 検出手順D1は、有効空間WV内が基準状態である場合において、有効空間外の第1アンテナA1に電磁波を放射させ、有効空間WV内の電界を、有効空間WV内の電界プローブPBにより検出する手順である。ここで、検出手順D1における有効空間WV内の電界は、有効空間外の第1アンテナA1から放射された電磁波に応じた電界である。このため、検出手順D1では、ユーザは、図3に示すように、基準状態の有効空間WV内に電界プローブPBを配置する。なお、ユーザは、有効空間WV内の状態が基準状態となっていない場合、例えば、有効空間WV内の状態を基準状態にしてから、有効空間WV内に電界プローブPBを配置する。図3は、基準状態の有効空間WV内に電界プローブPBが配置された場合の電磁波測定装置1の一例を示す図である。 The detection procedure D1 radiates an electromagnetic wave to the first antenna A1 outside the effective space when the inside of the effective space WV is in the reference state, and detects the electric field in the effective space WV by the electric field probe PB in the effective space WV. The procedure. Here, the electric field in the effective space WV in the detection procedure D1 is an electric field corresponding to the electromagnetic wave radiated from the first antenna A1 outside the effective space. Therefore, in the detection procedure D1, the user arranges the electric field probe PB in the effective space WV in the reference state as shown in FIG. When the state in the effective space WV is not the reference state, for example, the user arranges the electric field probe PB in the effective space WV after setting the state in the effective space WV as the reference state. FIG. 3 is a diagram showing an example of the electromagnetic wave measuring device 1 when the electric field probe PB is arranged in the effective space WV in the reference state.
 電界プローブPBは、情報処理装置2と接続されてもよく、受信装置3と接続されてもよい。以下では、一例として、電界プローブPBが情報処理装置2と接続されている場合について説明する。ただし、図3では、図が煩雑になるのを防ぐため、電界プローブPBと情報処理装置2とを接続するケーブルについては、省略されている。 The electric field probe PB may be connected to the information processing device 2 or may be connected to the receiving device 3. Hereinafter, as an example, a case where the electric field probe PB is connected to the information processing device 2 will be described. However, in FIG. 3, the cable connecting the electric field probe PB and the information processing device 2 is omitted in order to prevent the figure from becoming complicated.
 基準状態の有効空間WV内に電界プローブPBを配置した後、検出手順D1では、ユーザは、情報処理装置2を操作し、第1アンテナA1に所定の波長帯の電磁波を放射させる。これにより、有効空間WV内では、電磁攪拌器12による電磁波の攪拌によって、第1アンテナA1から放射された電磁波に応じた電界の電界強度が均一になる。電界プローブPBは、このようにして有効空間WV内において均一になった電界強度に応じた電圧を示す電気信号を出力する。従って、情報処理装置2は、電界プローブPBから当該電気信号を取得する。情報処理装置2は、取得した当該電気信号に基づいて、当該電界強度に応じた電圧を示す情報を、第2検出情報として情報処理装置2が備える図示しない記憶部に記憶させる。ユーザは、以上のような検出手順D1を、ステップS110において行う。なお、以下では、説明の便宜上、当該所定の波長帯の電磁波を、放射電磁波と称して説明する。 After arranging the electric field probe PB in the effective space WV in the reference state, in the detection procedure D1, the user operates the information processing device 2 to radiate an electromagnetic wave in a predetermined wavelength band to the first antenna A1. As a result, in the effective space WV, the electric field strength of the electric field corresponding to the electromagnetic wave radiated from the first antenna A1 becomes uniform due to the agitation of the electromagnetic wave by the electromagnetic stirrer 12. The electric field probe PB outputs an electric signal indicating a voltage corresponding to the electric field strength uniformed in the effective space WV in this way. Therefore, the information processing device 2 acquires the electric signal from the electric field probe PB. Based on the acquired electric signal, the information processing device 2 stores information indicating a voltage corresponding to the electric field strength in a storage unit (not shown) included in the information processing device 2 as second detection information. The user performs the detection procedure D1 as described above in step S110. In the following, for convenience of explanation, the electromagnetic wave in the predetermined wavelength band will be referred to as a radiated electromagnetic wave.
 ステップS110において検出手順D1が行われた後、ユーザは、算出手順C1を行う(ステップS120)。ここで、算出手順C1について説明する。 After the detection procedure D1 is performed in step S110, the user performs the calculation procedure C1 (step S120). Here, the calculation procedure C1 will be described.
 算出手順C1は、ステップS110における検出手順D1により検出された電圧に基づいて、前述の変換係数を算出する手順である。なお、ステップS110における検出手順D1により検出された電圧に基づいて変換係数を算出する方法は、既知の方法であってもよく、これから開発される方法であってもよい。例えば、算出手順C1において、ユーザは、情報処理装置2を操作し、情報処理装置2に記憶された第2検出情報が示す電圧に基づいた変換係数の算出を、情報処理装置2に行わせる。すなわち、算出手順C1では、情報処理装置2は、ユーザから受け付けた操作に応じて、記憶部に記憶された第2検出情報を読み出し、読み出した第2検出情報が示す電圧と、放射電磁波に応じた電界の電界強度とに基づいて、変換係数を算出する。そして、算出手順C1では、情報処理装置2は、算出した変換係数を示す変換係数情報を、記憶部に記憶させる。なお、放射電磁波に応じた電界の電界強度は、例えば、事前に算出又は検出される。 The calculation procedure C1 is a procedure for calculating the above-mentioned conversion coefficient based on the voltage detected by the detection procedure D1 in step S110. The method of calculating the conversion coefficient based on the voltage detected by the detection procedure D1 in step S110 may be a known method or a method to be developed in the future. For example, in the calculation procedure C1, the user operates the information processing device 2 and causes the information processing device 2 to calculate the conversion coefficient based on the voltage indicated by the second detection information stored in the information processing device 2. That is, in the calculation procedure C1, the information processing device 2 reads out the second detection information stored in the storage unit according to the operation received from the user, and responds to the voltage indicated by the read second detection information and the radiated electromagnetic wave. The conversion coefficient is calculated based on the electric field strength of the generated electric field. Then, in the calculation procedure C1, the information processing apparatus 2 stores the conversion coefficient information indicating the calculated conversion coefficient in the storage unit. The electric field strength of the electric field according to the radiated electromagnetic wave is calculated or detected in advance, for example.
 ステップS120において算出手順C1が行われた後、ユーザは、検出手順D2を行う(ステップS130)。ここで、検出手順D2について説明する。 After the calculation procedure C1 is performed in step S120, the user performs the detection procedure D2 (step S130). Here, the detection procedure D2 will be described.
 検出手順D2は、有効空間WV内が基準状態である場合において、有効空間外の第1アンテナA1に放射電磁波を放射させ、有効空間WV内の電界の電界強度に応じた電圧を、有効空間WV内の第2アンテナA2により検出する手順である。ここで、検出手順D2における有効空間WV内の電界は、有効空間外の第1アンテナA1から放射された放射電磁波に応じた電界である。このため、検出手順D2では、ユーザは、有効空間WV内の状態を基準状態にする。そして、検出手順D2では、ユーザは、情報処理装置2を操作し、第1アンテナA1に放射電磁波を放射させる。これにより、有効空間WV内では、電磁攪拌器12による放射電磁波の攪拌によって、第1アンテナA1から放射された放射電磁波に応じた電界の電界強度が均一になる。第2アンテナA2は、このようにして有効空間WV内において均一になった電界強度に応じた電圧を示す電気信号を出力する。従って、受信装置3は、第2アンテナA2から当該電気信号を取得する。受信装置3は、取得した当該電気信号を、情報処理装置2に出力する。情報処理装置2は、受信装置3から当該電気信号を取得する。情報処理装置2は、取得した当該電気信号に基づいて、当該電界強度に応じた電圧を示す情報を、第3検出情報として情報処理装置2の記憶部に記憶させる。ユーザは、以上のような検出手順D2を、ステップS130において行う。 In the detection procedure D2, when the inside of the effective space WV is in the reference state, the radiated electromagnetic wave is radiated to the first antenna A1 outside the effective space, and the voltage corresponding to the electric field strength of the electric field in the effective space WV is set to the effective space WV. This is the procedure for detecting with the second antenna A2 inside. Here, the electric field in the effective space WV in the detection procedure D2 is an electric field corresponding to the radiated electromagnetic wave radiated from the first antenna A1 outside the effective space. Therefore, in the detection procedure D2, the user sets the state in the effective space WV as the reference state. Then, in the detection procedure D2, the user operates the information processing device 2 to radiate the radiated electromagnetic wave to the first antenna A1. As a result, in the effective space WV, the electric field strength of the electric field corresponding to the radiated electromagnetic wave radiated from the first antenna A1 becomes uniform by the agitation of the radiated electromagnetic wave by the electromagnetic stirrer 12. The second antenna A2 outputs an electric signal indicating a voltage corresponding to the electric field strength that has become uniform in the effective space WV in this way. Therefore, the receiving device 3 acquires the electric signal from the second antenna A2. The receiving device 3 outputs the acquired electric signal to the information processing device 2. The information processing device 2 acquires the electric signal from the receiving device 3. Based on the acquired electric signal, the information processing device 2 stores information indicating a voltage corresponding to the electric field strength in the storage unit of the information processing device 2 as third detection information. The user performs the detection procedure D2 as described above in step S130.
 ステップS130において検出手順D2が行われた後、ユーザは、検出手順D3を行う(ステップS140)。ここで、検出手順D3について説明する。 After the detection procedure D2 is performed in step S130, the user performs the detection procedure D3 (step S140). Here, the detection procedure D3 will be described.
 検出手順D3は、基準状態の有効空間WV内に電子機器Pを配置し、有効空間外の第1アンテナA1に放射電磁波を放射させ、有効空間WV内の電界の電界強度に応じた電圧を、有効空間WV内の第2アンテナA2により検出する手順である。ここで、検出手順D3における有効空間WV内の電界は、有効空間外の第1アンテナA1から放射された放射電磁波に応じた電界である。このため、検出手順D3では、ユーザは、検出手順D2において基準状態にされたままの有効空間WV内に電子機器Pを配置する。なお、ユーザは、振動、作業中のユーザの動き等によって有効空間WV内の状態が基準状態と異なる状態となっている場合、例えば、有効空間WV内の状態を基準状態にしてから、有効空間WV内に電子機器Pを配置する。図4は、基準状態の有効空間WV内に電子機器Pが配置された場合の電磁波測定装置1の一例を示す図である。 In the detection procedure D3, the electronic device P is arranged in the effective space WV in the reference state, the radiated electromagnetic wave is radiated to the first antenna A1 outside the effective space, and the voltage corresponding to the electric field strength of the electric field in the effective space WV is set. This is a procedure for detecting by the second antenna A2 in the effective space WV. Here, the electric field in the effective space WV in the detection procedure D3 is an electric field corresponding to the radiated electromagnetic wave radiated from the first antenna A1 outside the effective space. Therefore, in the detection procedure D3, the user arranges the electronic device P in the effective space WV which is kept in the reference state in the detection procedure D2. When the state in the effective space WV is different from the reference state due to vibration, the movement of the user during work, etc., for example, the user sets the state in the effective space WV as the reference state and then sets the effective space. The electronic device P is arranged in the WV. FIG. 4 is a diagram showing an example of the electromagnetic wave measuring device 1 when the electronic device P is arranged in the effective space WV in the reference state.
 基準状態の有効空間WV内に電子機器Pを配置した後、検出手順D3では、ユーザは、情報処理装置2を操作し、第1アンテナA1に放射電磁波を放射させる。これにより、有効空間WV内では、電磁攪拌器12による電磁波の攪拌によって、第1アンテナA1から放射された放射電磁波に応じた電界の電界強度が均一になる。第2アンテナA2は、このようにして有効空間WV内において均一になった電界強度に応じた電圧を示す電気信号を出力する。従って、受信装置3は、第2アンテナA2から当該電気信号を取得する。受信装置3は、取得した当該電気信号を、情報処理装置2に出力する。情報処理装置2は、受信装置3から当該電気信号を取得する。情報処理装置2は、取得した当該電気信号に基づいて、当該電界強度に応じた電圧を示す情報を、第4検出情報として情報処理装置2の記憶部に記憶させる。ユーザは、以上のような検出手順D3を、ステップS130において行う。 After arranging the electronic device P in the effective space WV in the reference state, in the detection procedure D3, the user operates the information processing device 2 to radiate the radiated electromagnetic wave to the first antenna A1. As a result, in the effective space WV, the electric field strength of the electric field corresponding to the radiated electromagnetic wave radiated from the first antenna A1 becomes uniform due to the agitation of the electromagnetic wave by the electromagnetic stirrer 12. The second antenna A2 outputs an electric signal indicating a voltage corresponding to the electric field strength that has become uniform in the effective space WV in this way. Therefore, the receiving device 3 acquires the electric signal from the second antenna A2. The receiving device 3 outputs the acquired electric signal to the information processing device 2. The information processing device 2 acquires the electric signal from the receiving device 3. Based on the acquired electric signal, the information processing device 2 stores information indicating a voltage corresponding to the electric field strength in the storage unit of the information processing device 2 as fourth detection information. The user performs the detection procedure D3 as described above in step S130.
 ステップS140において検出手順D3が行われた後、ユーザは、算出手順C2を行う(ステップS150)。ここで、算出手順C2について説明する。 After the detection procedure D3 is performed in step S140, the user performs the calculation procedure C2 (step S150). Here, the calculation procedure C2 will be described.
 算出手順C2は、ステップS130における検出手順D2により検出された電圧と、ステップS140における検出手順D3により検出された電圧とに基づいて、前述の補正係数を算出する手順である。なお、当該第3検出電界と当該第4検出電界とに基づいて補正係数を算出する方法は、既知の方法であってもよく、これから開発される方法であってもよい。例えば、算出手順C2では、ユーザは、情報処理装置2を操作し、情報処理装置2に記憶された第3検出情報及び第4検出情報のそれぞれが示す電圧に基づいた補正係数の算出を、情報処理装置2に行わせる。すなわち、算出手順C2では、情報処理装置2は、ユーザから受け付けた操作に応じて、記憶部に記憶された第3検出情報及び第4検出情報を読み出し、読み出した第3検出情報及び第4検出情報のそれぞれが示す電圧と、放射電磁波に応じた電界の電界強度とに基づいて、補正係数を算出する。そして、算出手順C2では、情報処理装置2は、算出した補正係数を示す補正係数情報を、記憶部に記憶させる。 The calculation procedure C2 is a procedure for calculating the above-mentioned correction coefficient based on the voltage detected by the detection procedure D2 in step S130 and the voltage detected by the detection procedure D3 in step S140. The method of calculating the correction coefficient based on the third detected electric field and the fourth detected electric field may be a known method or a method to be developed in the future. For example, in the calculation procedure C2, the user operates the information processing device 2 to calculate the correction coefficient based on the voltage indicated by each of the third detection information and the fourth detection information stored in the information processing device 2. Let the processing device 2 do this. That is, in the calculation procedure C2, the information processing device 2 reads out the third detection information and the fourth detection information stored in the storage unit according to the operation received from the user, and the read third detection information and the fourth detection information. The correction coefficient is calculated based on the voltage indicated by each of the information and the electric field strength of the electric field corresponding to the radiated electromagnetic wave. Then, in the calculation procedure C2, the information processing apparatus 2 stores the correction coefficient information indicating the calculated correction coefficient in the storage unit.
 ステップS150において算出手順C2が行われた後、ユーザは、検出手順D4を行う(ステップS160)。ここで、検出手順D4について説明する。 After the calculation procedure C2 is performed in step S150, the user performs the detection procedure D4 (step S160). Here, the detection procedure D4 will be described.
 検出手順D4は、基準状態の有効空間WV内に電子機器Pを配置し、電子機器Pを稼働させ、筐体11内の電界の電界強度に応じた電圧を、有効空間WV外の第1アンテナA1により検出する手順である。ここで、検出手順D4における有効空間WV内の電界は、有効空間WV内の電子機器Pから放射される電磁波に応じた電界である。このため、検出手順D4では、ユーザは、有効空間WV内の状態を基準状態にする。その後、検出手順D4では、ユーザは、電子機器Pを操作し、電子機器Pを稼働させる。これにより、有効空間WV内では、電磁攪拌器12による当該電磁波の攪拌によって、当該電磁波に応じた電界の電界強度が均一になる。そして、有効空間WV外の第1アンテナA1は、有効空間WV外の電界の電界強度に応じた電圧を示す電気信号を出力する。従って、情報処理装置2は、第1アンテナA1から当該電気信号を取得する。情報処理装置2は、取得した当該電気信号に基づいて、当該電界強度に応じた電圧を示す情報を、第1検出情報として記憶部に記憶させる。ユーザは、以上のような検出手順D4を、ステップS160において行う。 In the detection procedure D4, the electronic device P is arranged in the effective space WV in the reference state, the electronic device P is operated, and the voltage corresponding to the electric field strength of the electric field in the housing 11 is applied to the first antenna outside the effective space WV. This is the procedure for detecting by A1. Here, the electric field in the effective space WV in the detection procedure D4 is an electric field corresponding to the electromagnetic wave radiated from the electronic device P in the effective space WV. Therefore, in the detection procedure D4, the user sets the state in the effective space WV as the reference state. After that, in the detection procedure D4, the user operates the electronic device P to operate the electronic device P. As a result, in the effective space WV, the electric field strength of the electric field corresponding to the electromagnetic wave becomes uniform by the agitation of the electromagnetic wave by the electromagnetic stirrer 12. Then, the first antenna A1 outside the effective space WV outputs an electric signal indicating a voltage corresponding to the electric field strength of the electric field outside the effective space WV. Therefore, the information processing device 2 acquires the electric signal from the first antenna A1. Based on the acquired electric signal, the information processing device 2 stores information indicating a voltage corresponding to the electric field strength in the storage unit as first detection information. The user performs the detection procedure D4 as described above in step S160.
 ステップS160において検出手順D4が行われた後、ユーザは、算出手順C3を行う(ステップS170)。ここで、算出手順C3について説明する。 After the detection procedure D4 is performed in step S160, the user performs the calculation procedure C3 (step S170). Here, the calculation procedure C3 will be described.
 算出手順C3は、ステップS160において検出手順D4により検出された電圧と、ステップS120において算出手順C1により算出された変換係数と、ステップS150において算出手順C2により算出された補正係数と基づいて、電子機器Pの放射電力を算出する手順である。なお、当該変換係数と、当該補正係数と、当該第1検出電界とに基づいて当該放射電力を算出する方法は、既知の方法であってもよく、これから開発される方法であってもよい。例えば、ユーザは、情報処理装置2を操作し、情報処理装置2に記憶された第1検出情報、変換係数情報、補正係数情報のそれぞれに基づいた当該放射電力の算出を、情報処理装置2に行わせる。すなわち、第2算出手段では、情報処理装置2は、ユーザから受け付けた操作に応じて、記憶部に記憶された第1検出情報、変換係数情報、補正係数情報のそれぞれを読み出し、読み出した第1検出情報が示す電圧と、読み出した変換係数情報が示す変換係数と、読み出した補正係数情報が示す補正係数とに基づいて、当該放射電力を算出する。そして、算出手順C3では、情報処理装置2は、算出した当該放射電力を示す放射電力情報を記憶部に記憶させる。 The calculation procedure C3 is an electronic device based on the voltage detected by the detection procedure D4 in step S160, the conversion coefficient calculated by the calculation procedure C1 in step S120, and the correction coefficient calculated by the calculation procedure C2 in step S150. This is a procedure for calculating the radiant power of P. The method of calculating the radiant power based on the conversion coefficient, the correction coefficient, and the first detected electric field may be a known method or a method to be developed in the future. For example, the user operates the information processing device 2 and causes the information processing device 2 to calculate the radiated power based on each of the first detection information, the conversion coefficient information, and the correction coefficient information stored in the information processing device 2. Let me do it. That is, in the second calculation means, the information processing device 2 reads out and reads out each of the first detection information, the conversion coefficient information, and the correction coefficient information stored in the storage unit according to the operation received from the user. The radiated power is calculated based on the voltage indicated by the detection information, the conversion coefficient indicated by the read conversion coefficient information, and the correction coefficient indicated by the read correction coefficient information. Then, in the calculation procedure C3, the information processing device 2 stores the calculated radiant power information indicating the radiant power in the storage unit.
 ステップS170において算出手順C3が行われた後、ユーザは、電磁波測定装置1を用いて電子機器Pの放射電力の測定を終了する。 After the calculation procedure C3 is performed in step S170, the user ends the measurement of the radiant power of the electronic device P using the electromagnetic wave measuring device 1.
 なお、図2に示したフローチャートにおいて、検出手段D1は、検出手段D2と並列に行われる構成であってもよい。この場合、検出手段D2において、有効空間WV内の状態は、検出手段D1における有効空間WV内の状態と同じ状態であってもよい。すなわち、当該場合、検出手段D2において、有効空間WV内の状態は、電界プローブPBが配置されたままの状態であってもよい。これは、有効空間WV内における電界プローブPBの存在が、有効空間WV内において送受信される電磁波の波長に対して小さいため、有効空間WV内の電磁界を乱さないと考えられているからである。このような事情から、検出手順D3及び検出手順D4においても、有効空間WV内の状態は、電界プローブPBはが配置されたままの状態であってもよい。また、検出手順D1~検出手順D4のすべてにおいて、有効空間WV内に電界プローブPBが配置されるならば、上記において説明した基準状態を、電界プローブPBが配置された状態として規定してもよい。 Note that, in the flowchart shown in FIG. 2, the detection means D1 may be configured to be performed in parallel with the detection means D2. In this case, in the detecting means D2, the state in the effective space WV may be the same as the state in the effective space WV in the detecting means D1. That is, in this case, in the detection means D2, the state in the effective space WV may be the state in which the electric field probe PB is still arranged. This is because the existence of the electric field probe PB in the effective space WV is small with respect to the wavelength of the electromagnetic wave transmitted and received in the effective space WV, so that it is considered that the electric field in the effective space WV is not disturbed. .. Under such circumstances, even in the detection procedure D3 and the detection procedure D4, the state in the effective space WV may be the state in which the electric field probe PB is still arranged. Further, if the electric field probe PB is arranged in the effective space WV in all of the detection procedures D1 to D4, the reference state described above may be defined as the state in which the electric field probe PB is arranged. ..
 以上のように、ユーザは、図2に示したフローチャートに含まれる各手順を行うことにより、電磁波測定装置1を用いて電子機器Pの放射電力の測定を行う。ここで、上記において説明したステップS160では、電界を検出するアンテナとして第1アンテナA1が用いられている。より具体的には、当該フローチャートでは、ステップS130及びステップS140において電磁波を放射するアンテナとして用いられる第1アンテナA1が、ステップS160において電界を検出するアンテナとして用いられている。これは、図5に示した電磁波測定系を表す等価回路において、送信側の回路の役割と受信側の回路の役割とを入れ替えたことと等価である。第1アンテナA1が可逆性を有する場合、このような役割の入れ替えが可能である。そこで、以下では、第1アンテナA1が可逆性を有する場合において、このような役割の入れ替えが可能となる原理について説明する。また、以下では、説明の便宜上、当該原理を、入替可能原理と称して説明する。 As described above, the user measures the radiant power of the electronic device P using the electromagnetic wave measuring device 1 by performing each procedure included in the flowchart shown in FIG. Here, in step S160 described above, the first antenna A1 is used as the antenna for detecting the electric field. More specifically, in the flowchart, the first antenna A1 used as an antenna for radiating electromagnetic waves in steps S130 and S140 is used as an antenna for detecting an electric field in step S160. This is equivalent to exchanging the roles of the circuit on the transmitting side and the role of the circuit on the receiving side in the equivalent circuit representing the electromagnetic wave measurement system shown in FIG. When the first antenna A1 has reversibility, such replacement of roles is possible. Therefore, in the following, when the first antenna A1 has reversibility, the principle that such roles can be exchanged will be described. Further, in the following, for convenience of explanation, the principle will be referred to as a replaceable principle.
 <入替可能原理>
 以下、入替可能原理について説明する。入替可能原理を説明するため、電磁波を放射するあるアンテナX1が筐体11内において有効空間WV外に設置されている場合であり、且つ、電界を検出するあるアンテナX2が筐体11内において有効空間WV内に設置されている場合を考える。この場合、筐体11内において、アンテナX1は、入力された電気信号に応じた電磁波を放射する。また、筐体11内において、アンテナX2は、筐体11内における電界の電界強度を検出し、検出した電界強度に応じた電圧を出力する。このため、当該場合、アンテナX1とアンテナX2とによって構成される電磁波測定系Xの等価回路は、図5に示したような回路となる。図5は、電磁波測定系Xの等価回路の一例を示す図である。
<Replaceable principle>
The replaceable principle will be described below. In order to explain the replaceable principle, there is a case where a certain antenna X1 that radiates electromagnetic waves is installed outside the effective space WV in the housing 11, and a certain antenna X2 that detects an electric field is effective in the housing 11. Consider the case where it is installed in the space WV. In this case, in the housing 11, the antenna X1 radiates an electromagnetic wave corresponding to the input electric signal. Further, in the housing 11, the antenna X2 detects the electric field strength of the electric field in the housing 11 and outputs a voltage corresponding to the detected electric field strength. Therefore, in this case, the equivalent circuit of the electromagnetic wave measurement system X composed of the antenna X1 and the antenna X2 is the circuit as shown in FIG. FIG. 5 is a diagram showing an example of an equivalent circuit of the electromagnetic wave measurement system X.
 ここで、図5に示した等価回路は、2端子対回路である。以下では、説明の便宜上、当該等価回路に含まれる回路のうち点線TCによって囲まれた回路を、送信側回路と称して説明する。送信側回路は、アンテナX1に対応する回路である。また、以下では、説明の便宜上、当該等価回路に含まれる回路のうち点線RCによって囲まれた回路を、受信側回路と称して説明する。受信側回路は、アンテナX2に対応する回路である。 Here, the equivalent circuit shown in FIG. 5 is a two-terminal pair circuit. Hereinafter, for convenience of explanation, among the circuits included in the equivalent circuit, the circuit surrounded by the dotted line TC will be referred to as a transmission side circuit. The transmitting side circuit is a circuit corresponding to the antenna X1. Further, in the following, for convenience of explanation, among the circuits included in the equivalent circuit, the circuit surrounded by the dotted line RC will be referred to as a receiving side circuit. The receiving side circuit is a circuit corresponding to the antenna X2.
 図5に示したRは、送信側回路の特性インピーダンスを示す。また、図5に示したVは、送信側回路に交流電力を供給する電力源を示す。また、図5に示したRは、受信側回路の特性インピーダンスを示す。また、図5に示した行列の各成分(すなわち、Z11、Z12、Z21、Z22)は、電磁波測定系XのZパラメータである。電磁波測定系XのSパラメータ(すなわち、S11、S12、S21、S22)は、当該Zパラメータを用いて算出することができる。そして、当該SパラメータのうちのS12は、以下の式(1)のように算出される。なお、当該Zパラメータ及び当該Sパラメータの各成分が如何なる量であるかについての説明は、既知であるため、説明を省略する。 R 0 shown in FIG. 5 indicates the characteristic impedance of the transmitting side circuit. Further, V 0 shown in FIG. 5 indicates a power source for supplying AC power to the transmitting side circuit. Further, Rr shown in FIG. 5 indicates the characteristic impedance of the receiving side circuit. Further, each component of the matrix shown in FIG. 5 (that is, Z 11 , Z 12 , Z 21 , Z 22 ) is a Z parameter of the electromagnetic wave measurement system X. S parameters of the electromagnetic wave measuring system X (i.e., S 11, S 12, S 21, S 22) can be calculated by using the Z parameter. Then, S 12 of the S parameters is calculated by the following equation (1). Since the description of the amount of each component of the Z parameter and the S parameter is known, the description thereof will be omitted.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記の式(1)に含まれるZ12は、アンテナX2の実効長lに比例し、反射箱の性質からアンテナX2の指向性利得Gに反比例すると考えられる。このため、実効長l及び指向性利得Gの寄与をZ12から除外した場合に残る成分をZ12’とすると、Z12は、以下の式(2)のように表すことができる。 It is considered that Z 12 included in the above equation (1) is proportional to the effective length l r of the antenna X2 and inversely proportional to the directional gain G d of the antenna X2 due to the nature of the reflection box. Therefore, if the component that remains when the contribution of the effective length l r and directional gain G d were excluded from Z 12 and Z 12 ', Z 12 can be expressed as the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、アンテナX1とアンテナX2との結合が十分に小さいと仮定すると、以下の式(3)が成り立つ。 Here, assuming that the coupling between the antenna X1 and the antenna X2 is sufficiently small, the following equation (3) holds.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 そして、上記の式(2)及び式(3)から、以下の式(4)を導出することができる。 Then, the following equation (4) can be derived from the above equations (2) and (3).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 一方、アンテナX2のアンテナファクタAFは、以下の式(5)によって定義される。 On the other hand, the antenna factor AF r of the antenna X2 is defined by the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上記の式(5)を式(4)に代入することにより、以下の式(6)を導出することができる。 By substituting the above equation (5) into the equation (4), the following equation (6) can be derived.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、図5に示した等価回路は、アンテナX1を第1アンテナA1に対応付け、且つ、アンテナX2を電界プローブPBに対応付けることができる。この場合、当該等価回路は、図3に示した電磁波測定装置1において第1アンテナA1と電界プローブPBとによって構成される電磁波測定系の等価回路として考えることができる。この場合、前述の指向性利得Gは、ダイポールアンテナの指向性利得である。また、ステップS110において使われる電界プローブPBとしては、アンテナファクタAFの校正が済んでいる電界プローブPBが用いられる。すなわち、ステップS110において使われる電界プローブPBのアンテナファクタAFは、既知の量である。そこで、当該場合、アンテナファクタAFが1に校正されているとすると、式(6)からアンテナファクタAFを消すことができる。このようにアンテナファクタAFを式(6)から消した後に残った量が、チャンバーゲインGとして、以下の式(7)のように定義される量である。 Here, in the equivalent circuit shown in FIG. 5, the antenna X1 can be associated with the first antenna A1 and the antenna X2 can be associated with the electric field probe PB. In this case, the equivalent circuit can be considered as an equivalent circuit of the electromagnetic wave measurement system composed of the first antenna A1 and the electric field probe PB in the electromagnetic wave measurement device 1 shown in FIG. In this case, the above-mentioned directional gain G d is the directional gain of the dipole antenna. As the field probe PB used in step S110, the electric field probe PB that have already done calibration of antenna factor AF r it is used. That is, the antenna factor AF r of the field probe PB used in step S110 is a known quantity. Therefore, in this case, assuming that the antenna factor AF r is calibrated to 1, the antenna factor AF r can be eliminated from the equation (6). The amount remaining after the antenna factor AF r is eliminated from the equation (6) in this way is the amount defined as the following equation (7) as the chamber gain G c.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 このようにして定義されるチャンバーゲインGが、前述の変換係数である。すなわち、ユーザは、ステップS120において、第2検出情報が示す電圧に基づくチャンバーゲインGを、変換係数として算出する。上記の式(7)の左辺のチャンバーゲインGを測定することにより、ユーザは、上記の式(7)に基づいて、Z21’を算出することができる。 The chamber gain G c defined in this way is the above-mentioned conversion coefficient. That is, in step S120, the user calculates the chamber gain G c based on the voltage indicated by the second detection information as the conversion coefficient. By measuring the left side of the chamber the gain G c of the above formula (7), the user, based on the above equation (7) can calculate the Z 21 '.
 このチャンバーゲインGは、電磁波測定装置1の特性として得られた量である。換言すると、このチャンバーゲインGは、筐体11内における空間の電波伝搬の特性を表す量である。すなわち、アンテナX1とアンテナX2との間における電磁波の伝搬の仕方は、チャンバーゲインGによって特徴付けられる。そして、筐体11内は、電磁攪拌器12によって電磁波が攪拌されている。このため、アンテナX1が可逆性を有していると、アンテナX2を電界プローブPBから他のアンテナに換えた場合であっても、アンテナX1とアンテナX2との間における電磁波の伝搬の仕方は、チャンバーゲインGによって特徴付けられる。これは、当該場合において、アンテナX1が検出した電界と、アンテナX2が検出した電界との間には、可逆性が成り立つことを意味している。なお、電子機器Pを反射箱に入れた場合、チャンバーゲインGは、低下する場合がある。このチャンバーゲインGの低下、すなわち、変換係数の低下を補正する係数が、前述の補正係数である。 This chamber gain G c is an amount obtained as a characteristic of the electromagnetic wave measuring device 1. In other words, the chamber gain G c is a quantity representing the characteristics of radio wave propagation in the space inside the housing 11. That is, the way the electromagnetic wave propagates between the antenna X1 and the antenna X2 is characterized by the chamber gain G c. Then, the electromagnetic wave is agitated in the housing 11 by the electromagnetic stirrer 12. Therefore, if the antenna X1 has reversibility, the method of propagating the electromagnetic wave between the antenna X1 and the antenna X2 is different even when the antenna X2 is changed from the electric field probe PB to another antenna. Characterized by chamber gain G c. This means that in this case, reversibility is established between the electric field detected by the antenna X1 and the electric field detected by the antenna X2. When the electronic device P is placed in the reflection box, the chamber gain G c may decrease. The coefficient for correcting the decrease in the chamber gain G c , that is, the decrease in the conversion coefficient, is the above-mentioned correction coefficient.
 ここで、筐体11内における空間の電波伝搬の特性がチャンバーゲインGによって表される場合、図5に示した等価回路は、図6に示した等価回路のように書き換わる。図6は、筐体11内における空間の電波伝搬の特性がチャンバーゲインGによって表される場合における電磁波測定系Xの等価回路の一例を示す図である。なお、図6では、受信側回路の特性インピーダンスRrが1[Ω]として表されている。また、アンテナX1が検出した電界と、アンテナX2が検出した電界との間に可逆性が成り立つ場合、図6に示した行列が有する2つの非対角成分は、互いに等しい。このことから、図6に示した等価回路において受信回路の特性インピーダンスの両端電圧Vr1は、以下の式(8)のように算出される。 Here, if the characteristics of radio wave propagation in space of the housing 11 is represented by the chamber gain G c, the equivalent circuit shown in FIG. 5, rewritten as an equivalent circuit shown in FIG. FIG. 6 is a diagram showing an example of an equivalent circuit of the electromagnetic wave measurement system X when the characteristic of radio wave propagation in the space in the housing 11 is represented by the chamber gain G c. In FIG. 6, the characteristic impedance Rr of the receiving side circuit is represented as 1 [Ω]. Further, when reversibility is established between the electric field detected by the antenna X1 and the electric field detected by the antenna X2, the two off-diagonal components of the matrix shown in FIG. 6 are equal to each other. From this, in the equivalent circuit shown in FIG. 6, the voltage V r1 across the characteristic impedance of the receiving circuit is calculated by the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 一方、前述の電力源Vを送信側回路から受信側回路へと移した場合、図6に示した等価回路は、図7に示した等価回路のように書き換わる。図7は、筐体11内における空間の電波伝搬の特性がチャンバーゲインGによって表される場合における電磁波測定系Xの等価回路の他の例を示す図である。図7に示した等価回路において受信回路の特性インピーダンスの両端電圧Vr2は、以下の式(9)のように算出される。 On the other hand, when the above-mentioned power source V 0 is moved from the transmitting side circuit to the receiving side circuit, the equivalent circuit shown in FIG. 6 is rewritten as the equivalent circuit shown in FIG. 7. FIG. 7 is a diagram showing another example of the equivalent circuit of the electromagnetic wave measurement system X when the characteristic of radio wave propagation in the space in the housing 11 is represented by the chamber gain G c. In the equivalent circuit shown in FIG. 7, the voltage V r2 across the characteristic impedance of the receiving circuit is calculated by the following equation (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 上記の式(8)と式(9)とを比較することにより、筐体11内における空間の電波伝搬の特性がチャンバーゲインGによって表される場合、アンテナX1によって検出された電界強度と、アンテナX2によって検出された電界強度との間には、可逆性が成り立つことが分かる。すなわち、ユーザは、このような入替可能原理により、図2に示したフローチャートにおいて、ステップS130及びステップS140においての第1アンテナA1の役割と、ステップS160においての第1アンテナA1の役割とを逆にすることができる。 By comparing the above formula (8) and Equation (9), when the characteristics of radio wave propagation in space of the housing 11 is represented by the chamber gain G c, and the electric field strength detected by the antenna X1, It can be seen that reversibility holds between the electric field strength detected by the antenna X2. That is, according to such a replaceable principle, in the flowchart shown in FIG. 2, the user reverses the role of the first antenna A1 in step S130 and step S140 and the role of the first antenna A1 in step S160. can do.
 <電子機器の放射電力の算出方法の一例>
 以下、図2に示したステップS170における電子機器Pの放射電力の算出方法の一例について説明する。当該放射電力の算出は、前述した通り、ステップS160において第1アンテナA1が検出した電界を示す電圧に基づいて行われる。そして、当該電界の検出は、図4に示した電磁波測定系において行われる。図8は、図4に示した電磁波測定系の等価回路の一例を示す図である。
<Example of calculation method of radiant power of electronic equipment>
Hereinafter, an example of a method for calculating the radiant power of the electronic device P in step S170 shown in FIG. 2 will be described. As described above, the calculation of the radiant power is performed based on the voltage indicating the electric field detected by the first antenna A1 in step S160. Then, the detection of the electric field is performed in the electromagnetic wave measurement system shown in FIG. FIG. 8 is a diagram showing an example of an equivalent circuit of the electromagnetic wave measurement system shown in FIG.
 図8に示したR’は、第1アンテナA1の特性インピーダンスを示す。また、図8に示したVは、電子機器Pの出力電圧を示す。また、図8に示したZは、電子機器Pの特性インピーダンスを示す。また、図8に示した行列の各成分は、図4に示した電磁波測定系のZパラメータである。ここで、図8に示したlは、電子機器Pの実効長を示す。また、図8に示したGは、電子機器Pの指向性利得を示す。 R 0'shown in FIG. 8 indicates the characteristic impedance of the first antenna A1. Also, V s shown in FIG. 8 shows the output voltage of the electronic device P. Further, Z s shown in FIG. 8 indicates the characteristic impedance of the electronic device P. Further, each component of the matrix shown in FIG. 8 is a Z parameter of the electromagnetic wave measurement system shown in FIG. Here, l s shown in FIG. 8 indicates the effective length of the electronic device P. Further, G s shown in FIG. 8 indicates the directional gain of the electronic device P.
 図8に示した等価回路において、電子機器Pの特性インピーダンスZsの両端電圧Vは、以下の式(10)のように算出される。 In the equivalent circuit shown in FIG. 8, the voltage across V r of the characteristic impedance Zs of the electronic device P is calculated by the following equation (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 なお、電子機器Pの特性インピーダンスZの両端電圧Vは、図4に示した電磁波測定系において開放端電圧である。しかしながら、当該両端電圧Vは、スペクトラムアナライザ等の高周波で測定される場合、一般的に終端電圧となる。このため、当該場合、当該両端電圧Vは、以下の式(11)のように表される。 Incidentally, the voltage across V r of the characteristic impedance Z s of the electronic device P is the open circuit voltage in the electromagnetic measurement system shown in FIG. However, the voltage across V r, as measured at a high frequency such as a spectrum analyzer, a generally termination voltage. Therefore, in this case, the voltage across the circuit is expressed by the following equation (11).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 ここで、置換法であることを考慮すると、以下の式(12)が成り立つ。 Here, considering that it is a substitution method, the following equation (12) holds.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 そして、上記の式(11)及び式(12)から、以下の式(13)が導出される。 Then, the following equation (13) is derived from the above equations (11) and (12).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 また、図8に示した等価回路においても、筐体11内における空間の電波伝搬の特性は、チャンバーゲインGによって表される。このため、図8に示した行列の非対角成分は、互いに等しい。そして、電子機器Pの特性インピーダンスZに流れる電流Iは、I=V/Zであるため、上記の式(13)は、以下の式(14)のように表される。 Further, also in the equivalent circuit shown in FIG. 8, the characteristic of radio wave propagation in the space inside the housing 11 is represented by the chamber gain G c. Therefore, the off-diagonal components of the matrix shown in FIG. 8 are equal to each other. Then, the current I s flowing through the characteristic impedance Z s of the electronic device P are the I s = V s / Z s , the equation (13) is expressed by the following equation (14).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 上記の式(14)は、をまとめ直すと以下の式(15)のように表すこともできる。 The above equation (14) can be expressed as the following equation (15) by reorganizing it.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 ここで、実効長lは、以下の式(16)のように定義される。 Here, the effective length l s is defined as the following equation (16).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 ここで、上記の式(16)に示したRは、放射抵抗を示す。また、式(16)に示したGは、絶対利得を示す。そして、式(16)の両辺にIを乗じることにより、以下の式(17)が得られる。 Here, R shown in the above formula (16) indicates radiation resistance. Also, G a shown in Equation (16) shows the absolute gain. Then, by multiplying the both sides to I s of formula (16), of the formula (17) below is obtained.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 上記の式(17)におけるWは、W=R×I によって算出される電力であり、すなわち、電子機器Pの放射電力を示す。そして、このWに絶対利得Gを乗じたGWは、実効放射電力を示す。この実効放射電力GWが、図2に示したステップS170において算出される電子機器Pの放射電力である。 W in the formula (17) above is the power that is calculated by W = R × I s 2, that is, the radiated power of the electronic device P. Then, G a W obtained by multiplying the absolute gain G a in the W indicates the effective radiated power. This effective radiated power G a W is the radiated power of the electronic device P calculated in step S170 shown in FIG.
 上記の式(17)は、まとめ直すと以下の式(18)のように表すことができる。 The above equation (17) can be reorganized as the following equation (18).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 ここで、上記の式(18)の右辺は、電子機器Pの指向性利得Gを除いてすべて既知の量である。すなわち、ユーザは、電子機器Pの指向性利得Gを何らかの方法によって推定することができれば、式(18)を用いて、電子機器Pの実効放射電力を算出することができる。なお、例えば、電子機器Pから放射される電磁波の波長が電子機器Pの大きさに対して十分に小さい場合、電子機器Pの指向性利得Gは、電界プローブPBの指向性利得Gと等しくなる。このような性質を利用し、ユーザは、式(18)を用いて、電子機器Pの実効放射電力を算出することができる。 Here, the right side of the above equation (18) is all known quantities except for the directional gain G s of the electronic device P. That is, if the directional gain G s of the electronic device P can be estimated by some method, the user can calculate the effective radiated power of the electronic device P by using the equation (18). For example, when the wavelength of the electromagnetic wave radiated from the electronic device P is sufficiently smaller than the size of the electronic device P, the directivity gain G s of the electronic device P is the directional gain G d of the electric field probe PB. Become equal. Utilizing such a property, the user can calculate the effective radiated power of the electronic device P by using the equation (18).
 なお、ユーザは、以下の式(19)を用いて、電子機器Pにより放射される電磁波に応じた電界の電界強度のうち、電子機器Pから距離r離れた位置における電界強度を推定することができる。 The user can use the following equation (19) to estimate the electric field strength of the electric field corresponding to the electromagnetic wave radiated by the electronic device P at a position r away from the electronic device P. it can.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 このようにして推定される電界を、ユーザは、例えば、電子機器Pの放射妨害波の強度の測定に応用することもできる。 The electric field estimated in this way can be applied to, for example, the measurement of the intensity of the radiated disturbance of the electronic device P by the user.
 なお、上記において説明した実施形態では、第2アンテナA2のアンテナファクタは、第1アンテナA1のアンテナファクタ以上であってもよい(すなわち、第2アンテナA2の感度は、第1アンテナA1の感度以下であってもよい)。これは、検出手段D2及び検出手段D3では、情報処理装置2の設定によって第1アンテナA1に放射させる電磁波の強度を強くすることができるため、第2アンテナA2の感度が低くても、第2アンテナA2が電界の検出を行うことができるためである。そして、これは、検出手段D4において、電子機器Pから放射される強度の弱い電磁波(更に、強度を強くすることもできない電磁波)に応じた電界を、第1アンテナA1によって検出し、第2アンテナA2によって検出する必要がないためでもある。以上のことから、電磁波測定装置1は、有効空間内の体積のうち第2アンテナにより占有される体積を小さくすることができる。同様の理由により、当該実施形態では、第1アンテナA1及び第2アンテナA2がエレメントを有するアンテナである場合、第2アンテナA2のエレメントの最大長さは、第1アンテナA1のエレメントの最大長さ以下であってもよい。また、同様の理由により、当該実施形態では、第1アンテナA1及び第2アンテナA2が開口面を有するアンテナである場合、第2アンテナA2の開口面の最大長さは、第1アンテナA1の開口面の最大長さ以下であってもよい。 In the embodiment described above, the antenna factor of the second antenna A2 may be equal to or higher than the antenna factor of the first antenna A1 (that is, the sensitivity of the second antenna A2 is equal to or lower than the sensitivity of the first antenna A1). May be). This is because the detection means D2 and the detection means D3 can increase the intensity of the electromagnetic wave radiated to the first antenna A1 by setting the information processing device 2, so that even if the sensitivity of the second antenna A2 is low, the second antenna A2 is second. This is because the antenna A2 can detect the electric field. Then, in the detection means D4, the electric field corresponding to the weak electromagnetic wave radiated from the electronic device P (the electromagnetic wave whose intensity cannot be further increased) is detected by the first antenna A1 and the second antenna. This is also because it is not necessary to detect by A2. From the above, the electromagnetic wave measuring device 1 can reduce the volume occupied by the second antenna among the volumes in the effective space. For the same reason, in the embodiment, when the first antenna A1 and the second antenna A2 are antennas having an element, the maximum length of the element of the second antenna A2 is the maximum length of the element of the first antenna A1. It may be as follows. Further, for the same reason, in the embodiment, when the first antenna A1 and the second antenna A2 are antennas having an opening surface, the maximum length of the opening surface of the second antenna A2 is the opening of the first antenna A1. It may be less than or equal to the maximum length of the surface.
 また、上記において説明した実施形態では、ステップS160において電子機器Pから放射される電磁波に応じた電界を検出するアンテナが、第2アンテナA2ではなく第1アンテナA1である。このため、第2アンテナA2と接続している受信装置3は、当該電磁波に応じた電界を検出するわけではない。このことから、受信装置3のノイズフロアは、如何なる値であってもよく、例えば、電子機器Pに対する放射電力値の許容値の100分の1以上であってもよい。なお、受信装置3が情報処理装置2と一体に構成される場合、情報処理装置2のノイズフロアは、電子機器Pに対する放射電力値の許容値の100分の1以上であってもよい。 Further, in the embodiment described above, the antenna that detects the electric field corresponding to the electromagnetic wave radiated from the electronic device P in step S160 is not the second antenna A2 but the first antenna A1. Therefore, the receiving device 3 connected to the second antenna A2 does not detect the electric field corresponding to the electromagnetic wave. From this, the noise floor of the receiving device 3 may have any value, and may be, for example, one-hundredth or more of the permissible value of the radiated power value for the electronic device P. When the receiving device 3 is integrally configured with the information processing device 2, the noise floor of the information processing device 2 may be 1/100 or more of the permissible value of the radiant power value for the electronic device P.
 <実施形態の変形例>
 以下、図9を参照し、実施形態の変形例について説明する。図9は、実施形態の変形例に係る電磁波測定装置1の構成の一例を示す図である。なお、実施形態の変形例では、実施形態と同様な構成部に対して同じ符号を付して説明を省略する。
<Modified example of the embodiment>
Hereinafter, a modified example of the embodiment will be described with reference to FIG. FIG. 9 is a diagram showing an example of the configuration of the electromagnetic wave measuring device 1 according to the modified example of the embodiment. In the modified example of the embodiment, the same components as those in the embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 実施形態の変形例では、第1アンテナA1は、入力された電気信号に応じた電磁波を放射するアンテナである。そして、実施形態の変形例では、第1アンテナA1は、電磁波の放射にのみ用いられるアンテナである。このため、実施形態の変形例に係る電磁波測定装置1は、実施形態において第1アンテナA1が担っていた役割、すなわち、電界の検出を行う第3アンテナA3を備える。 In the modified example of the embodiment, the first antenna A1 is an antenna that radiates an electromagnetic wave corresponding to the input electric signal. Then, in the modified example of the embodiment, the first antenna A1 is an antenna used only for radiating electromagnetic waves. Therefore, the electromagnetic wave measuring device 1 according to the modified example of the embodiment includes the role played by the first antenna A1 in the embodiment, that is, the third antenna A3 that detects the electric field.
 実施形態の変形例に係る電磁波測定装置1は、例えば、電磁波測定装置1の筐体11と、電磁攪拌器12と、第1アンテナA1と、第2アンテナA2と、第3アンテナA3を備える。なお、電磁波測定装置1は、筐体11と電磁攪拌器12と第1アンテナA1と第2アンテナA2と第3アンテナA3に加えて、他の装置、他の部材等を備える構成であってもよい。 The electromagnetic wave measuring device 1 according to the modified example of the embodiment includes, for example, a housing 11 of the electromagnetic wave measuring device 1, an electromagnetic stirrer 12, a first antenna A1, a second antenna A2, and a third antenna A3. The electromagnetic wave measuring device 1 may include other devices, other members, and the like in addition to the housing 11, the electromagnetic stirrer 12, the first antenna A1, the second antenna A2, and the third antenna A3. Good.
 第3アンテナA3は、電界を検出し、検出した電界に応じた電圧を出力するアンテナである。第3アンテナA3は、筐体11内において、有効空間WV内に設置される。ここで、図1に示した例では、第3アンテナA3は、情報処理装置2と接続されている。このため、当該例では、第3アンテナA3は、検出した電界に応じた電圧を示す電気信号を情報処理装置2に出力する。 The third antenna A3 is an antenna that detects an electric field and outputs a voltage corresponding to the detected electric field. The third antenna A3 is installed in the effective space WV in the housing 11. Here, in the example shown in FIG. 1, the third antenna A3 is connected to the information processing device 2. Therefore, in this example, the third antenna A3 outputs an electric signal indicating a voltage corresponding to the detected electric field to the information processing device 2.
 ここで、ユーザは、図2に示したフローチャートに含まれる各手順を行うことにより、実施形態の変形例に係る電磁波測定装置1を用いて電子機器Pの放射電力の測定を行う場合、ステップS160において、第1アンテナA1に代えて、第3アンテナA3により電界を検出する。これにより、実施形態の変形例に係る電磁波測定装置1は、当該場合であっても、実施形態に係る電磁波測定装置1と同様の効果を得ることができる。 Here, when the user measures the radiant power of the electronic device P using the electromagnetic wave measuring device 1 according to the modified example of the embodiment by performing each procedure included in the flowchart shown in FIG. 2, step S160. In the above, the electric field is detected by the third antenna A3 instead of the first antenna A1. As a result, the electromagnetic wave measuring device 1 according to the modified example of the embodiment can obtain the same effect as the electromagnetic wave measuring device 1 according to the embodiment even in this case.
 なお、上記において説明した実施形態の変形例では、第2アンテナA2のアンテナファクタは、第3アンテナA3のアンテナファクタ以上であってもよい(すなわち、第2アンテナA2の感度は、第3アンテナA3の感度以下であってもよい)。これは、ステップS160において電子機器Pから放射される電磁波に応じた電界を検出するアンテナが、第2アンテナA2ではなく第3アンテナA3であるためである。このため、電磁波測定装置1は、有効空間内の体積のうち第2アンテナにより占有される体積を小さくすることができる。同様の理由により、当該実施形態の変形例では、第2アンテナA2及び第3アンテナA3がエレメントを有するアンテナである場合、第2アンテナA2のエレメントの最大長さは、第3アンテナA3のエレメントの最大長さ以下であってもよい。また、同様の理由により、当該実施形態の変形例では、第2アンテナA2及び第3アンテナA3が開口面を有するアンテナである場合、第2アンテナA2の開口面の最大長さは、第3アンテナA3の開口面の最大長さ以下であってもよい。 In the modified example of the embodiment described above, the antenna factor of the second antenna A2 may be equal to or higher than the antenna factor of the third antenna A3 (that is, the sensitivity of the second antenna A2 is higher than that of the third antenna A3). It may be less than or equal to the sensitivity of). This is because the antenna that detects the electric field corresponding to the electromagnetic wave radiated from the electronic device P in step S160 is not the second antenna A2 but the third antenna A3. Therefore, the electromagnetic wave measuring device 1 can reduce the volume occupied by the second antenna among the volumes in the effective space. For the same reason, in the modified example of the embodiment, when the second antenna A2 and the third antenna A3 are antennas having an element, the maximum length of the element of the second antenna A2 is the element of the third antenna A3. It may be less than or equal to the maximum length. Further, for the same reason, in the modified example of the embodiment, when the second antenna A2 and the third antenna A3 are antennas having an opening surface, the maximum length of the opening surface of the second antenna A2 is the third antenna. It may be less than or equal to the maximum length of the opening surface of A3.
 また、上記において説明した実施形態の変形例では、ステップS160において電子機器Pから放射される電磁波に応じた電界を検出するアンテナが、第2アンテナA2ではなく第3アンテナA3である。このため、第2アンテナA2と接続している受信装置3は、当該電磁波に応じた電界を検出するわけではない。このことから、受信装置3のノイズフロアは、如何なる値であってもよく、例えば、電子機器Pに対する放射電力値の許容値の100分の1以上であってもよい。なお、受信装置3が情報処理装置2と一体に構成される場合、情報処理装置2のノイズフロアは、電子機器Pに対する放射電力値の許容値の100分の1以上であってもよい。 Further, in the modified example of the embodiment described above, the antenna that detects the electric field corresponding to the electromagnetic wave radiated from the electronic device P in step S160 is not the second antenna A2 but the third antenna A3. Therefore, the receiving device 3 connected to the second antenna A2 does not detect the electric field corresponding to the electromagnetic wave. From this, the noise floor of the receiving device 3 may have any value, and may be, for example, one-hundredth or more of the permissible value of the radiated power value for the electronic device P. When the receiving device 3 is integrally configured with the information processing device 2, the noise floor of the information processing device 2 may be 1/100 or more of the permissible value of the radiant power value for the electronic device P.
 以上のように、実施形態に係る電磁波測定装置は、筐体と、取得した電気信号に応じた電磁波(上記において説明した例では、放射電磁波)を放射する第1アンテナ(上記において説明した例では、第1アンテナA1)と、電界の電界強度を検出し、検出した電界強度に応じた電圧を出力する第2アンテナ(上記において説明した例では、第2アンテナA2)と、電界の電界強度を検出し、検出した電界強度に応じた電圧を出力する第3アンテナ(上記において説明した例では、第1アンテナA1、又は、第3アンテナA3)と、筐体内の電磁波を攪拌する電磁攪拌器(上記において説明した例では、電磁攪拌器12)と、を備え、第1アンテナ及び第3アンテナは、筐体内において、筐体内における所定の有効空間(上記において説明した例では、有効空間WV)外に設置されており、第2アンテナは、筐体内において、有効空間内に設置されている。これにより、電磁波測定装置は、有効空間内の体積のうちアンテナ(すなわち、第2アンテナ)により占有される体積を小さくすることができる。 As described above, the electromagnetic wave measuring device according to the embodiment has a housing and a first antenna (in the example described above) that emits an electromagnetic wave (radiated electromagnetic wave in the example described above) corresponding to the acquired electric signal. , The first antenna A1), the second antenna that detects the electric field strength of the electric field and outputs the voltage corresponding to the detected electric field strength (the second antenna A2 in the example described above), and the electric field strength of the electric field. A third antenna (in the example described above, the first antenna A1 or the third antenna A3) that detects and outputs a voltage corresponding to the detected electric field strength, and an electromagnetic stirrer that stirs the electromagnetic waves in the housing ( In the example described above, the electromagnetic stirrer 12) is provided, and the first antenna and the third antenna are inside the housing and outside a predetermined effective space (in the example described above, the effective space WV). The second antenna is installed in the effective space in the housing. As a result, the electromagnetic wave measuring device can reduce the volume occupied by the antenna (that is, the second antenna) in the effective space.
 また、電磁波測定装置では、第3アンテナは、第1アンテナと一体に構成されている、構成が用いられてもよい。 Further, in the electromagnetic wave measuring device, the configuration in which the third antenna is integrally configured with the first antenna may be used.
 また、電磁波測定装置では、第2アンテナのアンテナファクタは、第3アンテナのアンテナファクタ以上である、構成が用いられてもよい。 Further, in the electromagnetic wave measuring device, a configuration may be used in which the antenna factor of the second antenna is equal to or higher than the antenna factor of the third antenna.
 また、電磁波測定装置では、第2アンテナ及び第3アンテナは、エレメントを有しており、第2アンテナのエレメントの最大長さは、第3アンテナのエレメントの最大長さ以下である、構成が用いられてもよい。 Further, in the electromagnetic wave measuring device, the second antenna and the third antenna have elements, and the maximum length of the element of the second antenna is equal to or less than the maximum length of the element of the third antenna. May be done.
 また、電磁波測定装置では、第2アンテナ及び第3アンテナは、開口面を有しており、第2アンテナの開口面の最大長さは、第3アンテナの開口面の最大長さ以下である、構成が用いられてもよい。 Further, in the electromagnetic wave measuring device, the second antenna and the third antenna have an opening surface, and the maximum length of the opening surface of the second antenna is equal to or less than the maximum length of the opening surface of the third antenna. The configuration may be used.
 また、電磁波測定装置は、第2アンテナに接続される受信装置を備え、受信装置のノイズフロアが、電磁波を放射する被測定物に対する放射電力値の許容値の100分の1以上である、構成が用いられてもよい。 Further, the electromagnetic wave measuring device includes a receiving device connected to the second antenna, and the noise floor of the receiving device is one-hundredth or more of the permissible value of the radiant power value for the object to be measured that emits electromagnetic waves. May be used.
 また、電磁波測定方法では、有効空間は、前記筐体内の空間のうち、前記電磁攪拌器による電磁波の攪拌によって電界の電界強度が均一になる空間のことである、構成が用いられてもよい。 Further, in the electromagnetic wave measuring method, a configuration may be used in which the effective space is a space in the housing in which the electric field strength of the electric field becomes uniform by stirring the electromagnetic wave by the electromagnetic stirrer.
 また、実施形態に係る電磁波測定方法は、筐体と、入力された電気信号に応じた電磁波を放射する第1アンテナと、電界の電界強度を検出し、検出した電界強度に応じた電圧を出力する第2アンテナと、電界の電界強度を検出し、検出した電界強度に応じた電圧を出力する第3アンテナと、筐体内の電磁波を攪拌する電磁攪拌器とを備えた電磁波測定装置において、第1アンテナ及び第3アンテナは、筐体内において、筐体内における所定の有効空間外に設置されており、第2アンテナは、筐体内において、有効空間内に設置されており、所定の基準状態の有効空間内に被測定物を配置し、被測定物を稼働させ、第3アンテナから出力される電圧を検出する第1検出手順(上記において説明した例では、検出手順D4)を有する。これにより、電磁波測定方法は、有効空間内の体積のうち第2アンテナにより占有される体積を小さくすることができる。 Further, in the electromagnetic wave measuring method according to the embodiment, the housing, the first antenna that emits an electromagnetic wave corresponding to the input electric signal, the electric field strength of the electric field are detected, and the voltage corresponding to the detected electric field strength is output. In an electromagnetic wave measuring device including a second antenna, a third antenna that detects the electric field strength of the electric field and outputs a voltage corresponding to the detected electric field strength, and an electromagnetic stirrer that stirs the electromagnetic waves in the housing. The first electromagnetic wave and the third electromagnetic wave are installed in the housing and outside the predetermined effective space in the housing, and the second electromagnetic wave is installed in the effective space in the housing and are effective in a predetermined reference state. It has a first detection procedure (in the example described above, detection procedure D4) in which the object to be measured is arranged in the space, the object to be measured is operated, and the voltage output from the third antenna is detected. As a result, the electromagnetic wave measurement method can reduce the volume occupied by the second antenna among the volumes in the effective space.
 また、電磁波測定方法は、基準状態の有効空間内に電界プローブ(上記において説明した例では、電界プローブPB)を配置し、第1アンテナから電磁波を放射させ、電界プローブから出力される電圧を検出する第2検出手順(上記において説明した例では、検出手順D1)と、第1アンテナに放射させた電磁波に応じた電界の電界強度と、第2検出手順により検出された電圧とに基づいて、電界強度を電圧に変換する変換係数を算出する第1算出手順(上記において説明した例では、算出手順C1)と、第1検出手順により検出された電圧と、第1算出手順により算出された変換係数とに基づいて、被測定物の放射電力を算出する第2算出手順(上記において説明した例では、算出手順C3)と、を更に有する、構成が用いられてもよい。 Further, in the electromagnetic wave measurement method, an electric field probe (electric field probe PB in the example described above) is placed in the effective space of the reference state, electromagnetic waves are radiated from the first antenna, and the voltage output from the electric field probe is detected. Based on the second detection procedure (detection procedure D1 in the example described above), the electric field strength of the electric field corresponding to the electromagnetic wave radiated to the first antenna, and the voltage detected by the second detection procedure. The first calculation procedure (calculation procedure C1 in the example described above) for calculating the conversion coefficient for converting the electric field strength into voltage, the voltage detected by the first detection procedure, and the conversion calculated by the first calculation procedure. A configuration may be used that further comprises a second calculation procedure (calculation procedure C3 in the example described above) for calculating the radiated power of the object to be measured based on the coefficient.
 また、電磁波測定方法は、有効空間内が基準状態である場合において、第1アンテナから電磁波を放射させ、第2アンテナから出力される電圧を検出する第3検出手順(上記において説明した例では、検出手順D2)と、基準状態の有効空間内に被測定物を配置し、第1アンテナから電磁波を放射させ、第2アンテナから出力される電圧を検出する第4検出手順(上記において説明した例では、検出手順D3)と、第1アンテナに放射させた電磁波に応じた電界の電界強度と、第3検出手順により検出された電圧と、第4検出手順により検出された電圧とに基づいて、変換係数を補正する補正係数を算出する第3算出手順(上記において説明した例では、算出手順C2)と、を更に有し、第2算出手順は、第1検出手順により検出された電圧と、第1算出手順により算出された変換係数と、第3算出手順により算出された補正係数と基づいて、被測定物の放射電力を算出する手順である、構成が用いられてもよい。 Further, the electromagnetic wave measurement method is a third detection procedure (in the example described above, in the example described above, the electromagnetic field is radiated from the first antenna and the voltage output from the second antenna is detected when the effective space is in the reference state. The detection procedure D2) and the fourth detection procedure (example described above) in which the object to be measured is placed in the effective space of the reference state, the electromagnetic field is radiated from the first antenna, and the voltage output from the second antenna is detected. Then, based on the detection procedure D3), the electric field strength of the electric field corresponding to the electromagnetic wave radiated to the first antenna, the voltage detected by the third detection procedure, and the voltage detected by the fourth detection procedure. It further has a third calculation procedure (calculation procedure C2 in the example described above) for calculating the correction coefficient for correcting the conversion coefficient, and the second calculation procedure includes the voltage detected by the first detection procedure and the voltage detected by the first detection procedure. A configuration may be used, which is a procedure for calculating the radiated power of the object to be measured based on the conversion coefficient calculated by the first calculation procedure and the correction coefficient calculated by the third calculation procedure.
 また、電磁波測定方法では、第3アンテナは、第1アンテナと一体に構成されている、構成が用いられてもよい。 Further, in the electromagnetic wave measurement method, the configuration in which the third antenna is integrally configured with the first antenna may be used.
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない限り、変更、置換、削除等されてもよい。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and changes, substitutions, deletions, etc., are made as long as the gist of the present invention is not deviated. May be done.
1…電磁波測定装置、2…情報処理装置、3…受信装置、11…筐体、12…電磁攪拌器、A1…第1アンテナ、A2…第2アンテナ、A3…第3アンテナ、C1、C2、C3…算出手順、D1、D2、D3、D4…検出手順、P…電子機器、PB…電界プローブ、WV…有効空間 1 ... Electromagnetic wave measuring device, 2 ... Information processing device, 3 ... Receiver device, 11 ... Housing, 12 ... Electromagnetic stirrer, A1 ... 1st antenna, A2 ... 2nd antenna, A3 ... 3rd antenna, C1, C2, C3 ... Calculation procedure, D1, D2, D3, D4 ... Detection procedure, P ... Electronic equipment, PB ... Electric field probe, WV ... Effective space

Claims (11)

  1.  筐体と、
     取得した電気信号に応じた電磁波を放射する第1アンテナと、
     電界の電界強度を検出し、検出した電界強度に応じた電圧を出力する第2アンテナと、 電界の電界強度を検出し、検出した電界強度に応じた電圧を出力する第3アンテナと、 前記筐体内の電磁波を攪拌する電磁攪拌器と、
     を備え、
     前記第1アンテナ及び前記第3アンテナは、前記筐体内において、前記筐体内における所定の有効空間外に設置されており、
     前記第2アンテナは、前記筐体内において、前記有効空間内に設置されている、
     電磁波測定装置。
    With the housing
    The first antenna that radiates electromagnetic waves according to the acquired electrical signal,
    A second antenna that detects the electric field strength of the electric field and outputs a voltage corresponding to the detected electric field strength, a third antenna that detects the electric field strength of the electric field and outputs a voltage corresponding to the detected electric field strength, and the housing. An electromagnetic stirrer that stirs the electromagnetic waves in the body,
    With
    The first antenna and the third antenna are installed in the housing and outside a predetermined effective space in the housing.
    The second antenna is installed in the effective space in the housing.
    Electromagnetic wave measuring device.
  2.  前記第3アンテナは、前記第1アンテナと一体に構成されている、
     請求項1に記載の電磁波測定装置。
    The third antenna is integrally configured with the first antenna.
    The electromagnetic wave measuring device according to claim 1.
  3.  前記第2アンテナのアンテナファクタは、前記第3アンテナのアンテナファクタ以上である、
     請求項1又は2に記載の電磁波測定装置。
    The antenna factor of the second antenna is equal to or higher than the antenna factor of the third antenna.
    The electromagnetic wave measuring device according to claim 1 or 2.
  4.  前記第2アンテナ及び前記第3アンテナは、エレメントを有しており、
     前記第2アンテナのエレメントの最大長さは、前記第3アンテナのエレメントの最大長さ以下である、
     請求項1から3のうちいずれか一項に記載の電磁波測定装置。
    The second antenna and the third antenna have an element.
    The maximum length of the element of the second antenna is equal to or less than the maximum length of the element of the third antenna.
    The electromagnetic wave measuring device according to any one of claims 1 to 3.
  5.  前記第2アンテナ及び前記第3アンテナは、開口面を有しており、
     前記第2アンテナの開口面の最大長さは、前記第3アンテナの開口面の最大長さ以下である、
     請求項1から3のうちいずれか一項に記載の電磁波測定装置。
    The second antenna and the third antenna have an opening surface and have an opening surface.
    The maximum length of the opening surface of the second antenna is equal to or less than the maximum length of the opening surface of the third antenna.
    The electromagnetic wave measuring device according to any one of claims 1 to 3.
  6.  前記第2アンテナに接続される受信装置を備え、
     前記受信装置のノイズフロアが、電磁波を放射する被測定物に対する放射電力値の許容値の100分の1以上である、
     請求項1から5のうちいずれか一項に記載の電磁波測定装置。
    A receiving device connected to the second antenna is provided.
    The noise floor of the receiving device is one-hundredth or more of the permissible value of the radiant power value for the object to be measured that emits electromagnetic waves.
    The electromagnetic wave measuring device according to any one of claims 1 to 5.
  7.  前記有効空間は、前記筐体内の空間のうち、前記電磁攪拌器による電磁波の攪拌によって電界の電界強度が均一になる空間のことである、
     請求項1から6のうちいずれか一項に記載の電磁波測定装置。
    The effective space is a space in the housing in which the electric field strength becomes uniform due to the agitation of electromagnetic waves by the electromagnetic stirrer.
    The electromagnetic wave measuring device according to any one of claims 1 to 6.
  8.  筐体と、入力された電気信号に応じた電磁波を放射する第1アンテナと、電界の電界強度を検出し、検出した電界強度に応じた電圧を出力する第2アンテナと、電界の電界強度を検出し、検出した電界強度に応じた電圧を出力する第3アンテナと、前記筐体内の電磁波を攪拌する電磁攪拌器とを備えた電磁波測定装置において、
     前記第1アンテナ及び前記第3アンテナは、前記筐体内において、前記筐体内における所定の有効空間外に設置されており、
     前記第2アンテナは、前記筐体内において、前記有効空間内に設置されており、
     所定の基準状態の前記有効空間内に被測定物を配置し、前記被測定物を稼働させ、前記第3アンテナから出力される電圧を検出する第1検出手順を有する、
     電磁波測定方法。
    The housing, the first antenna that emits electromagnetic waves according to the input electric signal, the second antenna that detects the electric field strength of the electric field and outputs the voltage according to the detected electric field strength, and the electric field strength of the electric field. In an electromagnetic wave measuring device including a third antenna that detects and outputs a voltage corresponding to the detected electric field strength, and an electromagnetic stirrer that stirs the electromagnetic waves in the housing.
    The first antenna and the third antenna are installed in the housing and outside a predetermined effective space in the housing.
    The second antenna is installed in the effective space in the housing.
    It has a first detection procedure in which an object to be measured is placed in the effective space in a predetermined reference state, the object to be measured is operated, and a voltage output from the third antenna is detected.
    Electromagnetic wave measurement method.
  9.  前記基準状態の前記有効空間内に電界プローブを配置し、前記第1アンテナから電磁波を放射させ、前記電界プローブから出力される電圧を検出する第2検出手順と、
     前記第1アンテナに放射させた電磁波に応じた電界の電界強度と、前記第2検出手順により検出された電圧とに基づいて、電界強度を電圧に変換する変換係数を算出する第1算出手順と、
     前記第1検出手順により検出された電圧と、前記第1算出手順により算出された前記変換係数とに基づいて、前記被測定物の放射電力を算出する第2算出手順と、
     を更に有する、
     請求項8に記載の電磁波測定方法。
    A second detection procedure in which an electric field probe is placed in the effective space in the reference state, electromagnetic waves are radiated from the first antenna, and a voltage output from the electric field probe is detected.
    The first calculation procedure for calculating the conversion coefficient for converting the electric field strength into a voltage based on the electric field strength of the electric field corresponding to the electromagnetic wave radiated to the first antenna and the voltage detected by the second detection procedure. ,
    A second calculation procedure for calculating the radiant power of the object to be measured based on the voltage detected by the first detection procedure and the conversion coefficient calculated by the first calculation procedure.
    Further have,
    The electromagnetic wave measuring method according to claim 8.
  10.  前記有効空間内が前記基準状態である場合において、前記第1アンテナから電磁波を放射させ、前記第2アンテナから出力される電圧を検出する第3検出手順と、
     前記基準状態の前記有効空間内に前記被測定物を配置し、前記第1アンテナから電磁波を放射させ、前記第2アンテナから出力される電圧を検出する第4検出手順と、
     前記第1アンテナに放射させた電磁波に応じた電界の電界強度と、前記第3検出手順により検出された電圧と、前記第4検出手順により検出された電圧とに基づいて、前記変換係数を補正する補正係数を算出する第3算出手順と、
     を更に有し、
     前記第2算出手順は、前記第1検出手順により検出された電圧と、前記第1算出手順により算出された前記変換係数と、前記第3算出手順により算出された前記補正係数と基づいて、前記被測定物の放射電力を算出する手順である、
     請求項9に記載の電磁波測定方法。
    A third detection procedure for radiating an electromagnetic wave from the first antenna and detecting a voltage output from the second antenna when the effective space is in the reference state.
    A fourth detection procedure in which the object to be measured is placed in the effective space in the reference state, electromagnetic waves are radiated from the first antenna, and the voltage output from the second antenna is detected.
    The conversion coefficient is corrected based on the electric field strength of the electric field corresponding to the electromagnetic wave radiated to the first antenna, the voltage detected by the third detection procedure, and the voltage detected by the fourth detection procedure. The third calculation procedure for calculating the correction coefficient to be performed, and
    With more
    The second calculation procedure is based on the voltage detected by the first detection procedure, the conversion coefficient calculated by the first calculation procedure, and the correction coefficient calculated by the third calculation procedure. This is the procedure for calculating the radiant power of the object to be measured.
    The electromagnetic wave measuring method according to claim 9.
  11.  前記第3アンテナは、前記第1アンテナと一体に構成されている、
     請求項8から10のうちいずれか一項に記載の電磁波測定方法。
    The third antenna is integrally configured with the first antenna.
    The electromagnetic wave measuring method according to any one of claims 8 to 10.
PCT/JP2020/038567 2019-12-06 2020-10-13 Electromagnetic wave measurement device and electromagnetic wave measurement method WO2021111737A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-221096 2019-12-06
JP2019221096A JP7451975B2 (en) 2019-12-06 2019-12-06 Electromagnetic wave measurement device and electromagnetic wave measurement method

Publications (1)

Publication Number Publication Date
WO2021111737A1 true WO2021111737A1 (en) 2021-06-10

Family

ID=76219991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038567 WO2021111737A1 (en) 2019-12-06 2020-10-13 Electromagnetic wave measurement device and electromagnetic wave measurement method

Country Status (2)

Country Link
JP (1) JP7451975B2 (en)
WO (1) WO2021111737A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133723A (en) * 1995-11-10 1997-05-20 Tokin Corp Electric field sensor
JP2006029813A (en) * 2004-07-12 2006-02-02 Ntt Docomo Inc Electric field sensor and electric field strength measuring apparatus
JP2007240175A (en) * 2006-03-06 2007-09-20 Yazaki Corp Electric field estimation apparatus
JP2010156572A (en) * 2008-12-26 2010-07-15 Ntt Docomo Inc Antenna measuring method and system
JP2012090113A (en) * 2010-10-20 2012-05-10 Ntt Docomo Inc Multiwave environment reproduction monitoring system and multiwave environment reproduction monitoring method
JP2012127667A (en) * 2010-12-13 2012-07-05 Ntt Docomo Inc Antenna measurement device and delay spread control method
JP2013228209A (en) * 2012-03-22 2013-11-07 Morita Tech Kk Electromagnetic field sensor and system
JP2015094709A (en) * 2013-11-13 2015-05-18 株式会社村田製作所 Radiowave reflection box and delay spread control method for radiowave reflection box
KR101548240B1 (en) * 2014-06-11 2015-08-28 국방과학연구소 Stirrer having sub-stirrer for reverberation chamber

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133723A (en) * 1995-11-10 1997-05-20 Tokin Corp Electric field sensor
JP2006029813A (en) * 2004-07-12 2006-02-02 Ntt Docomo Inc Electric field sensor and electric field strength measuring apparatus
JP2007240175A (en) * 2006-03-06 2007-09-20 Yazaki Corp Electric field estimation apparatus
JP2010156572A (en) * 2008-12-26 2010-07-15 Ntt Docomo Inc Antenna measuring method and system
JP2012090113A (en) * 2010-10-20 2012-05-10 Ntt Docomo Inc Multiwave environment reproduction monitoring system and multiwave environment reproduction monitoring method
JP2012127667A (en) * 2010-12-13 2012-07-05 Ntt Docomo Inc Antenna measurement device and delay spread control method
JP2013228209A (en) * 2012-03-22 2013-11-07 Morita Tech Kk Electromagnetic field sensor and system
JP2015094709A (en) * 2013-11-13 2015-05-18 株式会社村田製作所 Radiowave reflection box and delay spread control method for radiowave reflection box
KR101548240B1 (en) * 2014-06-11 2015-08-28 국방과학연구소 Stirrer having sub-stirrer for reverberation chamber

Also Published As

Publication number Publication date
JP2021089256A (en) 2021-06-10
JP7451975B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
US20090006011A1 (en) Electromagnetic Field Distribution Measuring Method, Apparatus for the Method, Computer Program and Information Recording Medium
KR102441958B1 (en) Electronic device and method for test and calibration of rf signal transmission performance
CN108390730B (en) System and method for testing relative to far field region
WO2021111737A1 (en) Electromagnetic wave measurement device and electromagnetic wave measurement method
JP5448158B2 (en) Antenna measurement method, antenna calibration method
Gifuni et al. Latest developments on the shielding effectiveness measurements of materials and gaskets in reverberation chambers
Krouka et al. Antenna radiation efficiency estimation from backscattering measurement performed within reverberation chambers
CN115542026A (en) Antenna efficiency testing method based on reverberation chamber
KR102053169B1 (en) Test apparatus for quality of distribution transformer and computer-readable storage medium
US9529027B2 (en) Method for estimating PCB radiated emissions
Betta et al. The accurate calibration of EMC antennas in compact chambers—Measurements and uncertainty evaluations
Narang et al. Accurate and precise E‐field measurement for 2G and 3G networks based on IEEE Std. 1309‐2013
US20230296665A1 (en) Electromagnetic wave test device and electromagnetic wave test method
Le et al. An estimation method for vector probes used in determination SAR of multiple-antenna transmission systems
TWI429922B (en) Non-contact measurement method for electromagnetic interference
WO2023218766A1 (en) Sensor device, information processing device, information processing method, and program
JP2005345399A (en) Screen factor measuring method using small broadband high frequency signal source
Alexander et al. CISPR standard for calibration of EMC antennas
Yegin Application of electromagnetic reciprocity principle to the computation of signal coupling to missile-like structures
JP2000039460A (en) Evaluation method for radio apparatus
JP5506607B2 (en) Shield member abnormality detection method and shield member abnormality detection device
KR20150091792A (en) Methods and apparatuses for calibrating microwave imaging apparatus using variation due to temperature
JP2006184264A (en) Antenna system and device for generation magnetic field
JPH05302946A (en) Evaluation method of electromagnetic shielding effect
Iwasaki et al. Three-antenna method on a ground plane for measuring complex antenna factor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897318

Country of ref document: EP

Kind code of ref document: A1