WO2021111082A1 - Method for preparing natural rubber - Google Patents

Method for preparing natural rubber Download PDF

Info

Publication number
WO2021111082A1
WO2021111082A1 PCT/FR2020/052269 FR2020052269W WO2021111082A1 WO 2021111082 A1 WO2021111082 A1 WO 2021111082A1 FR 2020052269 W FR2020052269 W FR 2020052269W WO 2021111082 A1 WO2021111082 A1 WO 2021111082A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural rubber
peptizer
coagulum
rubber
die
Prior art date
Application number
PCT/FR2020/052269
Other languages
French (fr)
Inventor
Alexandre ARTHEMISE
Jérôme DUSSILLOLS
Original Assignee
Compagnie Generale Des Etablissements Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin filed Critical Compagnie Generale Des Etablissements Michelin
Publication of WO2021111082A1 publication Critical patent/WO2021111082A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C3/00Treatment of coagulated rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a process for preparing a natural rubber.
  • Natural rubber comes from the rubbery dry material of the latex harvested by bleeding the rubber tree and collected in a bucket attached to the trunk of the rubber tree.
  • Two traditional methods exist for recovering the rubber material from the latex According to one of the methods, the latex which is still liquid in the cup is decanted, filtered, optionally stabilized or centrifuged, then coagulated, for example using a chemical agent. According to the other method, the latex is not collected before its coagulation in the cup, also called cup: one then collects a wet coagulum at the bottom of the cup, also known under the name of "bottom of cup” (in English "Cup lump”). After removal of plant debris and mineral debris from the coagulum, the natural rubber is dried, traditionally in air-circulating tunnels at a temperature of about 90 to about 130 ° C.
  • Natural rubber is also distinguished from other synthetic elastomers by many characteristics: one of them is its particularly high viscosity. Before its use in a rubber composition, natural rubber is generally subjected to a plasticization operation or to a peptization operation with a view to reducing its viscosity to viscosity values compatible with its industrial use, in particular for the preparation of compositions of rubber.
  • the plasticization operation consists of a thermomechanical treatment in an internal mixer and requires a significant energy cost, of the order of 140 kWh / t.
  • the peptization operation is a plasticization step in the presence of chemical agents, called peptizers.
  • a plasticization operation reduces productivity more than does a peptization operation, because plasticization requires more machine time than peptization which has the advantage of benefit from the accelerating action of the chemical agent on the viscosity reduction kinetics.
  • natural rubber at the bottom of the cup does not lend itself to peptization unlike natural latex rubber, because natural rubber at the bottom of the cup is very sensitive to the presence of peptizers: its resistance to aging by thermooxidation is highly reduced, its viscosity decreases sharply and may become unsuitable for use in a rubber composition.
  • This high sensitivity of the natural rubber at the bottom of the cup to peptization can also lead to a lack of control of the viscosity of the natural rubber during the peptization operation and consequently to a difficulty in controlling the quality of the production. natural rubber.
  • a first object of the invention is a process for treating a natural rubber which comprises the extrusion of a mixture of a wet coagulum of natural rubber and a peptizer in a worm screw machine equipped with a sleeve, in which the screw turns, and a die with holes at the end of the screw, process in which: a) the mixture is compressed at a temperature greater than or equal to 130 ° C and less than or equal to 210 ° C in the sheath, b) an adiabatic flash expansion at a differential pressure greater than or equal to 40 bars is carried out at the die outlet.
  • the invention also relates to a natural cup bottom rubber having a plasticity retention index greater than 70 and a Mooney ML (1 + 4) viscosity at 100 ° C less than 60.
  • the natural rubber according to the invention which can being prepared according to the process in accordance with the invention has the advantage of having a viscosity which does not require a plasticization step before its use in a rubber composition, which also gives the advantage to natural rubber of having a good resistance to thermo-oxidation aging.
  • any interval of values designated by the expression “between a and b” represents the range of values going from more than a to less than b (that is to say limits a and b excluded) while any interval of values designated by the expression “from a to b” means the range of values going from a to b (that is to say including the strict limits a and b). Unless expressly indicated otherwise, all the percentages (%) indicated are% by mass.
  • the machine used in step a) is typically an extruder, a worm machine which comprises a material inlet called a hopper, a body formed of a cylinder (also called a sheath) in which a screw (one or more) turns. endless and a head which serves as a support for a die.
  • This machine makes it possible to apply mechanical drying or thermo-mechanical drying to a product soaked in a liquid to be removed by drying.
  • the mechanical drying allows the elimination of the liquid by purely mechanical forces (pressing, spinning, ). It can be achieved by simple transfer of momentum and possibly without thermal transfer.
  • Thermomechanical drying is carried out by heating communicated to the product to be dried by degradation of the mechanical energy.
  • the water included in the product to be dried is in the liquid state under pressure and at high temperature.
  • a release of the stresses previously exerted on the natural rubber in the sleeve takes place at the die outlet by the elimination of the compression, which allows adiabatic flash expansion at the die outlet.
  • the expansion produced also makes it possible to flash the humidity and, if necessary, depending on the viscosity of the product, to fragment the product.
  • the extruder useful for the needs of the invention can be an extruder available on the market, in particular those sold by the companies Anderson, FOM and Welding, such as for example the Expander from Anderson, the Extruder Dryer from FOM, the VCU of Welding.
  • the extruder useful for the purposes of the invention for any one of the embodiments of the invention is preferably a single screw extruder.
  • extruders are preferred in that they allow, at the die outlet, to achieve higher coagulum flow rates or to promote adiabatic expansion.
  • an extruder the sleeve of which has, in the feed zone of the extruder, one (one or more) means for discharging water (free water, in liquid form).
  • evacuation means mention may be made of grooves in the thickness of the sheath which open onto the inner surface of the sheath, one or more openings in the feed zone of the extruder, which opening makes it possible to evacuate water. out of the scabbard. These openings can be in the form of a slot, a grid or a circular hole.
  • the feed area is the area below the opening of the hopper.
  • the coagulum used in step a) is a coagulation product of natural rubber latex, either obtained by spontaneous or induced coagulation.
  • the coagulum is a cup bottom.
  • natural rubber latex is understood to mean the latex obtained from the bleeding of the rubber tree.
  • the coagulum is said to be wet because it is soaked in water which comes in particular from the washing water resulting from the washing operations of the coagulum such as decontamination operations, generally carried out in a swimming pool under water.
  • the coagulum used in step a) is preferably a coagulum which has undergone washing operations. It preferably contains more than 5% by weight of water, in particular between 5 and 40% by weight of water, more preferably between 8 and 30%, even more preferably between 8 and 25% by weight. The percentage of water is calculated with respect to the total mass of wet coagulum.
  • the wet coagulum can be in the form of granules commonly called crumbs or pancakes.
  • the coagulum used in step a) is in the form of granules (in English "crumbs"), in particular to facilitate its introduction into the extruder through the hopper. More preferably, the coagulum used in step a) is in the form of granules.
  • the coagulum used in step a) is typically a coagulum which has undergone, prior to step a), decontamination work which generally breaks down into two steps, primary decontamination and secondary decontamination.
  • the coagulum collected after bleeding the rubber tree very often contains more or less large contaminants, such as leaves, twigs, sand and other debris which contaminate the coagulum during harvesting.
  • the primary decontamination which aims to eliminate the largest objects, the coagulum is traditionally cut and washed in pools of water.
  • the secondary decontamination which allows the elimination of the finest contaminants, the coagulum is traditionally shredded, then washed with water in swimming pools, then sent for example in crepers and shredders.
  • the decontamination can comprise a step of filtering the coagulum, in particular under pressure, for example in a particular device which comprises an extruder and a suitable filtration means installed at the outlet of the extruder.
  • a suitable filtration means installed at the outlet of the extruder.
  • Such a process makes it possible to remove contaminants of size greater than 1 mm, advantageously greater. at 500 ⁇ m (0.5 mm), more preferably greater than 100 ⁇ m (0.1 mm).
  • the conforming process preferably comprises a step of filtering the wet coagulum before step a).
  • Peptizers are compounds well known to those skilled in the art. They make it possible to reduce the molecular mass of the polyisoprene chains of natural rubber by breaking them by thermooxidation reaction of the chains. They generally act as a catalyst for the thermooxidation reaction.
  • the peptizer can also be a mixture of several peptizers. Mention may be made of aromatic mercaptans, aromatic disulphides, arylamines, phenols, sulphonic acids and their derivatives such as their metal salts.
  • the peptizer is a phenol or a metal salt of a phenol or else a dithiobisbenzamide. Very particularly suitable are pentachlorothiophenol, its zinc salt, 2-dibenzamido diphenyl disulfide (in English 2,2′-dibenzamido diphenyl disulfide).
  • the mixture of wet coagulum of natural rubber and peptizer heats up. It is assumed that this heating triggers the reaction of the peptizer with the polyisoprene chains of natural rubber and therefore leads to the formation of a peptized natural rubber inside the sheath.
  • the amount of peptizer in the wet coagulum is adjusted by those skilled in the art to obtain the desired viscosity of natural rubber. It can vary over a wide range depending on the chemical nature of the peptizer and the temperature applied to the mixture of wet coagulum of natural rubber and peptizer in the sheath. Typically, it can vary within a range of from 0.01 to 0.5 gram of peptizer per kilogram of dry natural rubber.
  • the worm machine is fed with the mixture of wet coagulum of natural rubber and peptizer by a hopper fitted to the worm machine.
  • the mixture of wet coagulum of natural rubber and peptizer is typically prepared during a preliminary step of bringing a wet coagulum of natural rubber into contact with a peptizer.
  • step a) is preferably preceded by a step of soaking a wet coagulum of natural rubber in an aqueous solution of peptizer or by a step of watering a wet coagulum of a natural rubber with an aqueous solution of peptizer to form the mixture of wet coagulum of natural rubber and peptizer.
  • step a) When step a) is preceded by a sprinkling step, the wet coagulum is preferably sprinkled with an aqueous solution of peptizer at the rate of 0.1 to 1 liter of solution per kilogram of dry natural rubber, knowing that the solution has a concentration ranging from 0.05 to 3 grams of peptizer per liter of solution.
  • step a) the mixture of wet coagulum of natural rubber and peptizer is compressed in the sleeve of the extruder.
  • This compression is useful for subsequently subjecting natural rubber to adiabatic expansion.
  • the pressure at which the natural rubber is compressed must be sufficient to allow adiabatic expansion to a differential pressure of at least 40 bars.
  • the natural rubber is brought in step a) to a temperature ranging from 130 to 210 ° C.
  • the mechanical work under high pressure is accompanied by heating of the rubbery material of the coagulum, which has the effect of increasing the temperature of the coagulum. Below 130 ° C, the process is not efficient enough to reduce the moisture content of natural rubber.
  • the natural rubber is compressed in step a) at a temperature between 170 ° C and 210 ° C. More preferably, the natural rubber is compressed in step a) at a temperature between 180 ° C and 210 ° C.
  • a heating system such as a double jacket, heating resistors.
  • the adiabatic expansion carried out in step b) is characterized as flash expansion in that it allows the natural rubber to pass from a compressed state to an uncompressed state almost immediately, typically in a time less than one second. It is carried out at a differential pressure greater than or equal to 40 bars or at a differential pressure greater than 100 bars.
  • the differential pressure in step b) is at most 100 bars, in particular between 40 and 100 bars.
  • the differential pressure is greater than 100 bars, or even at least 120 bars or 150 bars.
  • the second variant has the advantage of also reducing the nitrogen content in natural rubber.
  • the expansion being adiabatic, the expansion occurs at the temperature at which the compression was carried out.
  • the coagulum is generally at atmospheric pressure and its moisture content is reduced, in particular to a content of less than 5%, preferably to a content of less than 3%.
  • the natural rubber can be cut, then packaged or alternatively cut, dried further, then packaged.
  • the natural rubber can be cut at the outlet of the die by a means which is capable of cutting natural rubber and which is disposed downstream of the die.
  • the means suitable for cutting natural rubber may be a knife or a granulator, preferably a granulator.
  • the natural rubber recovered at the outlet of the die is dried by additional drying to further reduce its residual moisture level, in particular to a rate of less than 0.8%.
  • the natural rubber is advantageously cut at the outlet of the die by a means which is capable of cutting the natural rubber and which is placed downstream of the die.
  • the means suitable for cutting natural rubber may be a knife or a granulator, preferably a granulator. The divided state in which the natural rubber is found after having been cut makes the additional drying more efficient.
  • the drying time is adjusted by those skilled in the art as a function of the drying temperature and as a function of the residual water content in the natural rubber at the end of step b). It is preferable to apply the shortest possible drying time to preserve the structure of the polyisoprene chains of natural rubber and its properties. Therefore, a drying time of less than 10 minutes is recommended and preferred.
  • the drying is preferably drying by convection. Any known means of drying by convection may be suitable.
  • a fluidized bed is preferred, such as a hot air vibrating screen, a device known and conventionally used in synthetic rubber manufacturing processes.
  • the natural rubber recovered at the outlet of the die is dried by additional drying, preferably by convection, preferably by means of by means of a fluidized bed, more preferably by means of a hot air vibrating screen.
  • the drying by convection is preferably carried out in air. Drying by convection in air can be carried out at a temperature ranging from 90 ° C to 180 ° C, preferably at a temperature ranging from 90 ° C to 130 ° C, in particular from 110 ° C to 130 ° C.
  • the method further comprises a step during which a viscosity stabilizer is added, in which case the natural rubber is said to be stabilized.
  • the viscosity stabilizer can be added inside the sleeve according to a first variant or outside the sleeve after step b) according to a second variant.
  • Viscosity stabilizers for stabilizing the viscosity of natural rubber are well known to those skilled in the art of natural rubber. They reduce or eliminate the tendency of natural rubber to harden on storage.
  • any compound known to stabilize the viscosity of natural rubber may be suitable. Mention may be made, for example, of hydroxylamine, its salts, hydroxyalkylamines, their salts, semicarbazide, dimedone, compounds having a triazole function and compounds having a hydrazide function.
  • the viscosity stabilizer is dimedone or a compound derived from ammonia chosen from compounds of formula XNH2 and their salts, where X is a group chosen from hydroxyl and C1-C4 hydroxyalkyl groups or a mixture of these compounds.
  • the salt can be a weak acid salt of compounds of formula XNH2 or a strong acid salt of compounds of formula XNH2 optionally neutralized with a strong base.
  • neutralization with a strong base one can for example refer to the description of patent application WO 2017085109.
  • the viscosity stabilizer is hydroxylamine sulfate or hydroxylamine sulfate neutralized with sodium hydroxide, very advantageously hydroxylamine sulfate.
  • the viscosity stabilizer is added at a rate ranging from 2.4 mmoles to 24 mmoles, more preferably from 6 mmoles to 24 mmoles, even more preferably from 8 mmoles to 18 mmoles equivalent of dimedone or equivalent of XNH2 per kilogram of natural rubber .
  • the viscosity stabilizer is injected by means of an injection device which comprises one or more orifices opening into the sleeve.
  • the sleeve preferably carries over all or part of its length fingers which extend radially inwardly of the sleeve relative to the axis of rotation of the screw. Such fingers are placed in a zone which is downstream of the supply zone dedicated, for example, to the introduction of the mixture of wet coagulum and of peptizer.
  • the thread of the screw which is helical and which extends radially from a central shaft of the screw is interrupted so as to form cylindrical annular spaces in which the fingers are placed.
  • an extruder has a feed zone and a pressurization zone (compression zone) dedicated to the rise in temperature and pressure of the coagulum and located downstream of the feed zone.
  • a viscosity stabilizer is continuously introduced into natural rubber by injecting the viscosity stabilizer into the barrel of the extruder.
  • the viscosity stabilizer is injected in the form of an aqueous solution.
  • the viscosity stabilizer is distributed within the natural rubber under the effect of the mechanical forces exerted in the sleeve during the operation of the extruder.
  • the assembly formed by the natural rubber and the viscosity stabilizer is homogenized within the sleeve by the mixing function also provided by the operation of the extruder.
  • the mixing can be improved by the presence of fingers in the sleeve which extend radially towards the inside of the sleeve, the fingers being able to be carried by the sleeve.
  • the rise in temperature generated by the mixing allows the reaction between the viscosity stabilizer and the natural rubber.
  • it is also possible to raise the temperature of the coagulum inside the sheath by means of a double jacket or any other heating system such as heating resistors fitted to the sheath and / or by means of a heating system incorporated in the screw.
  • the viscosity stabilizer is added to the natural rubber in the sleeve to stabilize the viscosity of the peptized natural rubber.
  • the extruder useful for the needs of the invention is equipped with an injection device which comprises one or more orifices opening into the sleeve.
  • the orifices called injection points are preferably located downstream of the supply zone, preferably in a compression zone downstream of the supply zone.
  • the injection downstream of the limit feed zone or even eliminates the part of viscosity stabilizer which would not be incorporated in the natural rubber, which has the effect of increasing the efficiency of the process with respect to stabilization of natural rubber.
  • the location of the injection points in the compression zone makes it possible to further increase the efficiency of the process by ensuring good incorporation of the viscosity stabilizer into the natural rubber and sufficient contact time between the viscosity stabilizer and the rubber. natural before adiabatic relaxation.
  • the injection points are located at the radially inner end of the fingers which are carried by the sleeve and which extend radially towards the inside of the sleeve relative to the axis of rotation of the screw.
  • each injection point is located at the radially inner end of a finger which is carried by the sleeve and which extends radially towards the inside of the sleeve relative to the axis of rotation of the sleeve. screw.
  • This location of the injection points also makes it possible to ensure effective incorporation of the viscosity stabilizer into the heart of the natural rubber and contributes to good distribution of the viscosity stabilizer in the natural rubber.
  • the injection points are located in fingers carried by the sleeve and extending radially towards the inside of the sleeve relative to the axis of rotation of the screw, such fingers being arranged in the zone of compression.
  • This localization of the injection points makes it possible to further increase the efficiency of the process by combining the benefits provided by the localization in the fingers and the localization in the compression zone.
  • the sleeve carries a single finger extending radially towards the inside of the sleeve relative to the axis of rotation of the screw and at the radially inner end of which a point is located.
  • injection knowing that the sleeve can carry other fingers extending radially towards the inside of the sleeve relative to the axis of rotation of the screw and at the end of which there is no injection point. These other fingers promote the mixing of the natural rubber in the barrel and help to mix the natural rubber and the viscosity stabilizer.
  • the pressure at the injection point is greater than 0 bar relative, which reflects the presence of material (rubber coagulum) at the injection point and makes it possible to ensure that the viscosity stabilizer is well injected into the natural rubber. Injection of the viscosity stabilizer into a space in the barrel not filled with natural rubber could result in a loss of process efficiency. In fact, injection into an empty space promotes the risk of entrainment of part of the viscosity stabilizer with the water extracted from the coagulum. It also promotes the risk of decomposition of part of the viscosity stabilizer under the effect of heat in the sheath even before it comes into contact with the natural rubber. To further improve the efficiency of the process, the pressure at the point of injection is preferably greater than the saturated vapor pressure of the water at the temperature of the point of injection.
  • the reaction between the viscosity stabilizer and the natural rubber being activated by the temperature, the temperature at the point of injection is preferably greater than or equal to 100 ° C, more preferably from 130 to 210 ° C, even more preferably from 150 to 210 ° C. ° C.
  • a temperature below 100 ° C does not allow such effective stabilization, the yield of the reaction being lower at these temperatures compared to temperatures above 100 ° C. Above 210 ° C, the polyisoprene chains of natural rubber can degrade.
  • the addition of the viscosity stabilizer to the natural rubber carried out after step b) is typically done by spraying the natural rubber, preferably dry, with the desired amount of viscosity stabilizer, the natural rubber preferably being in the form of granules.
  • the natural rubber recovered from the die and dried by convection drying is sprayed with a viscosity stabilizer.
  • the viscosity stabilizer is generally dissolved in water in order to be able to sprinkle the natural rubber.
  • the step of adding the stabilizer viscosity according to the second variant is preferably followed by mechanical work at a temperature of at least 100 ° C.
  • the mechanical work which has the function of dispersing the viscosity stabilizer in the natural rubber can be carried out by means of a shredding and homogenizing device. Typically, it is implemented by means of a device called a “pre-breaker”.
  • a pre-breaker is a shredding and homogenizing device well known to those skilled in the art of natural rubber, since it is traditionally used in factories for “remilling” natural rubber. Reference may for example be made to patent application WO 2015189365 which gives a detailed description of a prebreaker.
  • Natural rubber is a natural rubber at the bottom of a cup having a plasticity retention index (PRI) greater than 70, and a Mooney ML (1 + 4) viscosity at 100 ° C less than 60 , preferably at most 55, in particular from 30 to 55.
  • the PRI is the ratio expressed as a percentage of the plasticity of aged natural rubber to the plasticity of natural rubber before aging. Its determination is used to give an indication of the resistance to oxidation of natural rubber. The higher the value, the better the resistance to oxidative aging.
  • the natural rubber in accordance with the invention has a Mooney viscosity of less than 60, its use in a rubber composition does not require a prior plasticization step. Owing to its PRI, it exhibits good resistance to aging by thermooxidation, which has the consequence of also improving the properties of a rubber composition containing it.
  • the natural rubber according to the invention can be prepared according to the process according to the invention, preferably according to particular embodiments of the process according to the invention. These particular embodiments can include a step of stabilizing the viscosity of natural rubber, implemented by adding a viscosity stabilizer to the mixture of wet coagulum and peptizer in the sheath or in a pre-breaker, preferably used. works by adding a viscosity stabilizer to the mixture of wet coagulum and peptizer in the barrel.
  • the natural rubber in accordance with the invention is preferably a stabilized natural rubber.
  • the natural rubber in accordance with the invention is advantageously devoid of impurities of size greater than 0.5 mm, very advantageously free of impurities greater than 0.1 mm in size.
  • the filtration process makes it possible to remove impurities of size greater than 1 mm, advantageously greater than 500 ⁇ m (0.5 mm), more advantageously greater than 100 ⁇ m (0.1 mm).
  • the impurities present in the wet coagulum of natural cup bottom rubber are typically leaves, twigs, sand, soil and other debris. Their removal from the coagulum traditionally involves a process which comprises successive operations of shredding and washing in a swimming pool. Unfortunately, the effectiveness of this process proves to be ineffective in removing all the impurities.
  • the presence of impurities larger than 0.5 mm in a natural rubber at the bottom of the cup can be the cause of the formation of a hole in a fine semi-finished product, in particular during the manufacture of semi-finished product containing strips of very thin rubber composition. The presence of these impurities in natural rubber can therefore prove to be problematic in the manufacture of semi-finished products.
  • the absence of impurities of size greater than 0.5 mm, or even greater than 0.1 mm in the natural rubber in accordance with the invention gives the natural rubber a quality superior to the conventional grades of the bottom of the cup.
  • Mode 1 A method of treating a natural rubber which comprises the extrusion of a mixture of a wet coagulum of natural rubber and a peptizer in a worm machine equipped with a sheath, in which the screw, and a die with holes at the end of the screw, process in which: a) the mixture is compressed at a temperature greater than or equal to 130 ° C and less than or equal to 210 ° C in the sheath, b) an expansion adiabatic flash at a differential pressure greater than or equal to 40 bars is produced at the die outlet.
  • Mode 2 Method according to Mode 1 in which the worm machine is fed with the mixture of wet coagulum of natural rubber and peptizer by a hopper fitted to the worm machine.
  • Mode 3 Method according to mode 1 or 2 in which the natural rubber is a natural rubber at the bottom of the cup.
  • Mode 4 Process according to any one of modes 1 to 3 in which the wet coagulum contains more than 5% by mass of water.
  • Mode 5 Process according to any one of modes 1 to 4 in which the wet coagulum contains between 5 and 40% by mass of water.
  • Mode 6 Process according to any one of modes 1 to 4 in which the wet coagulum contains between 8 and 30% by mass of water.
  • Mode 7 Process according to any one of modes 1 to 6 in which the wet coagulum contains between 8 and 25% by mass of water.
  • Mode 8 Process according to any one of modes 1 to 7 in which the peptizer is a phenol or a metal salt of a phenol or else a dithiobisbenzamide.
  • Mode 9 Process according to any one of modes 1 to 8 in which the peptizer is pentachlorothiophenol, its zinc salt or 2-dibenzamido diphenyl disulfide.
  • Mode 10 Process according to any one of modes 1 to 9 in which the amount of peptizer is 0.01 to 0.5 gram of peptizer per kilogram of dry natural rubber.
  • Mode 11 Process according to any one of modes 1 to 10 in which step a) is preceded by a step of soaking a wet coagulum of natural rubber in an aqueous solution of peptizer or by a step of sprinkling a wet coagulum of natural rubber with an aqueous solution of peptizer to form the mixture of wet coagulum of natural rubber and peptizer.
  • Mode 12 Process according to mode 11 in which the wet coagulum is sprayed with an aqueous solution of peptizer at the rate of 0.1 to 1 liter of solution per kilogram of dry natural rubber, knowing that the solution has a concentration ranging from 0.05 to 3 grams of peptizer per liter of solution.
  • Mode 13 Process according to any one of modes 1 to 12 in which the natural rubber recovered at the outlet of the die is dried by additional drying.
  • Mode 14 Method according to mode 13 in which the additional drying is convection drying.
  • Mode 15 Process according to mode 13 or 14 in which the additional drying is drying by convection in air at a temperature ranging from 90 ° C to 180 ° C.
  • Mode 16 Process according to any one of modes 13 to 15 in which the additional drying is drying by convection in air at a temperature ranging from 90 ° C to 130 ° C.
  • Mode 17 Process according to any one of modes 13 to 16 in which the additional drying is drying by convection in air at a temperature ranging from 110 ° C to Mode 18: Method according to any one of modes 13 to 17 in which the additional drying is drying by convection by means of a fluidized bed.
  • Mode 19 Method according to any one of modes 13 to 18 in which the additional drying is drying by convection by means of a vibrating sieve with hot air.
  • Mode 20 Process according to any one of modes 13 to 19 in which, before the additional drying, the natural rubber recovered at the outlet of the die is cut by a means which is capable of cutting the natural rubber and which is placed downstream of the die. the die, preferably a granulator.
  • Mode 21 Process according to any one of modes 1 to 20 in which the natural rubber is compressed in step a) at a temperature between 170 ° C and 210 ° C.
  • Mode 22 Process according to any one of modes 1 to 21 in which the natural rubber is compressed in step a) at a temperature between 180 ° C and 210 ° C.
  • Mode 23 Process according to any one of modes 1 to 22 in which the differential pressure in step b) is at most 100 bars.
  • Mode 24 Process according to any one of modes 1 to 23 in which the differential pressure in step b) is greater than 100 bars.
  • Mode 25 Process according to any one of modes 1 to 24 in which the differential pressure in step b) is at least 120 bars.
  • Mode 26 Process according to any one of modes 1 to 25 in which the differential pressure in step b) is at least 150 bars.
  • Mode 27 Process according to any one of modes 1 to 26, which process comprises a step during which a viscosity stabilizer is added.
  • Mode 28 Process according to mode 27 in which the viscosity stabilizer is hydroxylamine, its salts, hydroxyalkylamines, their salts, semicarbazide, dimedone, compounds having a triazole function and compounds having a hydrazide function.
  • Mode 29 Process according to any one of modes 27 to 28 in which the viscosity stabilizer is a compound derived from ammonia chosen from compounds of formula XNH 2 and their salts, where X is a group chosen from hydroxyl groups and C 1 -C 4 hydroxyalkyl or a mixture of these compounds.
  • the viscosity stabilizer is a compound derived from ammonia chosen from compounds of formula XNH 2 and their salts, where X is a group chosen from hydroxyl groups and C 1 -C 4 hydroxyalkyl or a mixture of these compounds.
  • Mode 30 Process according to any one of modes 27 to 29 in which the viscosity stabilizer is added at a rate ranging from 2.4 mmoles to 24 mmoles, preferably from 6 mmoles to 24 mmoles, more preferably from 8 mmoles to 18 mmoles equivalent of dimedone or equivalent of XNH2 per kilogram of natural rubber
  • Mode 31 Method according to any one of modes 1 to 30, which method comprises a step of filtering the wet coagulum before step a).
  • Mode 33 Natural cup bottom rubber according to mode 32, which natural rubber has a Mooney ML (1 + 4) viscosity at 100 ° C of not more than 55.
  • Mode 34 Natural rubber at the bottom of the cup according to mode 32 or 33, which natural rubber has a Mooney ML (1 + 4) viscosity at 100 ° C from 30 to 55.
  • Mode 35 Natural cup bottom rubber according to any one of modes 32 to 34, which natural rubber is stabilized.
  • Mode 36 Natural cup bottom rubber according to any one of modes 32 to 35, which natural rubber is free from impurities larger than 0.5 mm.
  • Mooney viscosity is measured according to the following principle: natural rubber is molded in a cylindrical chamber heated to 100 ° C. After one minute of preheating, the rotor turns within the specimen at 2 revolutions / minute and the torque useful to maintain this movement is measured after 4 minutes of 8 rotations.
  • the plasticity retention index (PRI) is measured according to the ASTM D 3194-04 standard.
  • the water content is determined with a Mettler Toledo HB43-S halogen desiccator.
  • the desiccator is an automated device which incorporates a cup, a scale and a cover intended to close the cup.
  • the cup is positioned on the scale.
  • the cover comprises a means of heating by a halogen lamp, this heating means being triggered when the cover is folded back on the cup.
  • a sample of 10 grams of natural rubber is weighed exactly: the device registers the corresponding weight "a”.
  • the cover is closed to close the cup, which triggers the temperature rise to reach a set point of 160 ° C.
  • the device detects a decrease in weight of less than 0.001 g per minute, the device detects a weight "b”.
  • the water content in the sample is given as a mass percentage by the following equation:
  • a cup bottom coagulum is fed to an extruder in the form of granules having a water content of 24%.
  • the extruder is a single screw extruder, it is equipped with a die with holes at the end of the screw and a granulator placed at the die outlet.
  • the extruder has a double casing, its sheath having water discharge means (grooves, slots, holes) in the supply zone.
  • the speed of the screw is 150 revolutions / min, the pressure is 63 bars, the temperature of the coagulum is 174 ° C, the temperature and the pressure being measured by sensors positioned as close as possible to the die, between the die and the end of the screw closest to the die.
  • the coagulum in the form of granules is dried on a vibrating sieve with hot air at a temperature of 119 ° C. for about 5 minutes.
  • the natural rubber NR1 is recovered and its Mooney viscosity and its plasticity retention index reported in Table 1 are measured.
  • TSR20 i.e. drying in a hot air tunnel at a temperature ranging from 108 ° C to 125 ° C for 4h30 minutes.
  • the natural rubber NR2 is recovered and its Mooney viscosity and its plasticity retention index reported in Table 1 are measured.
  • the Mooney viscosity and the plasticity retention index of natural rubbers NR1 and NR2 are measured.
  • the natural rubbers NR3 to NR7 are prepared according to a process which differs from the manufacturing process for NR1 in that the introduction of the wet coagulum into the extruder is preceded by a sprinkling step with a solution of peptizer depending on the conditions. following.
  • NR3 20 kg of wet granules are sprayed three times in a row with 10 liters of an aqueous solution of 2-dibenzamido diphenyl disulfide concentrated at 1.5 g / L of aqueous solution.
  • NR4 20 kg of wet granules are sprayed three times in succession with 10 liters of an aqueous solution of 2,6-di-tert.-butyl-p-cresol concentrated at 0.5 g / L of aqueous solution.
  • NR5 20 kg of wet granules are sprayed three times in succession with 10 liters of an aqueous solution of 2,6-di-tert.-butyl-p-cresol concentrated at 1 g / L of aqueous solution.
  • NR6 20 kg of wet granules are sprayed three times in succession with 10 liters of an aqueous solution of 2,6-di-tert.-butyl-p-cresol concentrated at 1.5 g / L of aqueous solution.
  • NR7 20 kg of wet granules are sprayed three times in succession with 10 liters of an aqueous solution of 2,6-di-tert.-butyl-p-cresol concentrated at 1 g / L of aqueous solution.
  • the natural rubbers NR3 to NR6 are recovered and their Mooney viscosity and their plasticity retention index measured. The values are reported in Table 1.
  • NR7 natural rubber is prepared according to a particular embodiment of the process according to the invention, since a viscosity stabilizer is added to natural rubber under the conditions described below:
  • An aqueous solution of hydroxylamine sulfate at 150 g / L of solution is injected continuously into the barrel of the extruder supplied with the mixture of wet coagulum of natural rubber and peptizer, at a rate of 0.08 part by weight of sulfate d hydroxylamine per 100 parts by weight of dry natural rubber.
  • the pressure at the point of injection is 11.8 bars and the temperature of the mixture of wet coagulum and peptizer at the point of injection is 166 degrees.
  • the process according to the invention leads to the production of natural rubbers which, before their storage, exhibit an improved compromise between their resistance to aging by thermooxidation. and their suitability for working in mixing or calendering tools.
  • the plasticity retention index of natural rubbers NR3 to NR7 before storage is higher than that of NR2, while their Mooney viscosity is much lower than that of NR2.
  • the process not in accordance with the invention and used for the synthesis of NR1 leads to the synthesis of natural rubber with a very high retention index, but its Mooney viscosity, also very high, is unfavorable to the productivity of a composition production line. made from natural rubber.
  • the particular embodiment of the process in accordance with the invention which results in the production of NR7 also has the advantage of retaining the improved compromise of properties even after storage.

Abstract

The invention relates to a method for treating a natural rubber which comprises the extrusion of a mixture of a wet natural rubber coagulum and a peptizer in an endless screw machine equipped with a barrel, in which the screw turns, and with a perforated die at the end of the screw, in which method a) the mixture is compressed at a temperature greater than or equal to 130°C and less than or equal to to 210°C in the barrel, b) an adiabatic flash expansion at a differential pressure of greater than or equal to 40 bar is carried out at the die outlet. Such a method makes it possible to prepare a natural rubber which has an improved compromise between its resistance to ageing by thermal oxidation and its viscosity.

Description

Procédé de préparation d'un caoutchouc naturel Process for preparing a natural rubber
La présente invention concerne un procédé de préparation d'un caoutchouc naturel. The present invention relates to a process for preparing a natural rubber.
Le caoutchouc naturel provient de la matière sèche caoutchouteuse du latex récolté par saignée de l'hévéa et récupéré dans un godet fixé au tronc de l'hévéa. Deux procédés traditionnels existent pour récupérer la matière caoutchouteuse du latex. Selon l'un des procédés, le latex encore liquide dans le godet est transvasé, filtré, éventuellement stabilisé ou centrifugé, puis coagulé par exemple à l'aide d'un agent chimique. Selon l'autre procédé, le latex n'est pas recueilli avant sa coagulation dans le godet, également appelé tasse : on recueille alors un coagulum humide au fond de la tasse, également connu sous le nom de « fond de tasse » (en anglais « cup lump »). Après élimination de débris végétaux et de débris minéraux du coagulum, le caoutchouc naturel est séché, traditionnellement dans des tunnels sous circulation d'air à une température d'environ 90 à environ 130°C. Natural rubber comes from the rubbery dry material of the latex harvested by bleeding the rubber tree and collected in a bucket attached to the trunk of the rubber tree. Two traditional methods exist for recovering the rubber material from the latex. According to one of the methods, the latex which is still liquid in the cup is decanted, filtered, optionally stabilized or centrifuged, then coagulated, for example using a chemical agent. According to the other method, the latex is not collected before its coagulation in the cup, also called cup: one then collects a wet coagulum at the bottom of the cup, also known under the name of "bottom of cup" (in English "Cup lump"). After removal of plant debris and mineral debris from the coagulum, the natural rubber is dried, traditionally in air-circulating tunnels at a temperature of about 90 to about 130 ° C.
Comme les propriétés du caoutchouc naturel dépendent en partie du procédé de coagulation mis en œuvre, il est d'usage de désigner le caoutchouc avec une appellation qui trouve son origine dans le choix du procédé de coagulation. Aussi parle-t-on de caoutchouc naturel de fond de tasse et de caoutchouc naturel de latex. As the properties of natural rubber depend in part on the coagulation process used, it is customary to designate rubber with a name which originates from the choice of the coagulation process. We are also talking about natural rubber at the bottom of the cup and natural rubber latex.
Le caoutchouc naturel se distingue aussi des autres élastomères de synthèse par de nombreuses caractéristiques : l'une d'elle est sa viscosité particulièrement élevée. Avant son utilisation dans une composition de caoutchouc, le caoutchouc naturel est généralement soumis à une opération de plastification ou à une opération de peptisation en vue de ramener sa viscosité à des valeurs de viscosité compatibles avec son utilisation industrielle, notamment pour la préparation de compositions de caoutchouc. L'opération de plastification consiste en un traitement thermomécanique dans un mélangeur interne et nécessite un coût énergétique important, de l'ordre de 140 kWh/t. L'opération de peptisation est une étape de plastification en présence d'agents chimiques, appelés peptisants. Natural rubber is also distinguished from other synthetic elastomers by many characteristics: one of them is its particularly high viscosity. Before its use in a rubber composition, natural rubber is generally subjected to a plasticization operation or to a peptization operation with a view to reducing its viscosity to viscosity values compatible with its industrial use, in particular for the preparation of compositions of rubber. The plasticization operation consists of a thermomechanical treatment in an internal mixer and requires a significant energy cost, of the order of 140 kWh / t. The peptization operation is a plasticization step in the presence of chemical agents, called peptizers.
Les mélangeurs internes, installations bien connues de l'homme du métier des compositions de caoutchouc, sont aussi utilisés pour préparer les compositions de caoutchouc par malaxage thermomécanique d'un ou plusieurs élastomères tel que le caoutchouc naturel et de divers ingrédients tels que des charges comme un noir de carbone ou une silice, des plastifiants comme une huile, des agents de réticulation comme le soufre, un accélérateur de vulcanisation. Il s'ensuit que le temps machine des mélangeurs internes consacré à la préparation des compositions de caoutchouc est à partager avec les opérations de plastification ou de peptisation du caoutchouc naturel, ce qui a pour conséquence de réduire la productivité d'une unité de production de compositions de caoutchouc. Une opération de plastification réduit davantage la productivité que ne le fait une opération de peptisation, car la plastification requiert plus de temps machine que la peptisation qui a l'avantage de bénéficier de l'action accélératrice de l'agent chimique sur la cinétique de réduction de la viscosité. Malheureusement, le caoutchouc naturel de fond de tasse ne se prête pas à la peptisation contrairement au caoutchouc naturel de latex, car le caoutchouc naturel de fond de tasse s'avère très sensible à la présence des peptisants : sa résistance au vieillissement par thermooxydation est fortement réduite, sa viscosité diminue fortement et peut devenir inappropriée pour une utilisation dans une composition de caoutchouc. Cette forte sensibilité du caoutchouc naturel de fond de tasse à la peptisation peut aussi conduire à un manque de maîtrise de la viscosité du caoutchouc naturel au cours de l'opération de peptisation et par suite à une difficulté dans le contrôle de la qualité de la production du caoutchouc naturel. Internal mixers, installations well known to those skilled in the art of rubber compositions, are also used to prepare rubber compositions by thermomechanical mixing of one or more elastomers such as natural rubber and various ingredients such as fillers such as a carbon black or a silica, plasticizers such as an oil, crosslinking agents such as sulfur, a vulcanization accelerator. It follows that the machine time of the internal mixers devoted to the preparation of the rubber compositions is to be shared with the plasticization or peptization operations of natural rubber, which has the consequence of reducing the productivity of a production unit of rubber. rubber compositions. A plasticization operation reduces productivity more than does a peptization operation, because plasticization requires more machine time than peptization which has the advantage of benefit from the accelerating action of the chemical agent on the viscosity reduction kinetics. Unfortunately, natural rubber at the bottom of the cup does not lend itself to peptization unlike natural latex rubber, because natural rubber at the bottom of the cup is very sensitive to the presence of peptizers: its resistance to aging by thermooxidation is highly reduced, its viscosity decreases sharply and may become unsuitable for use in a rubber composition. This high sensitivity of the natural rubber at the bottom of the cup to peptization can also lead to a lack of control of the viscosity of the natural rubber during the peptization operation and consequently to a difficulty in controlling the quality of the production. natural rubber.
La Demanderesse poursuivant ses efforts a trouvé un nouveau procédé qui permet de résoudre les problèmes mentionnés. The Applicant, pursuing its efforts, has found a new process which makes it possible to solve the problems mentioned.
Ainsi un premier objet de l'invention est un procédé de traitement d'un caoutchouc naturel qui comprend l'extrusion d'un mélange d'un coagulum humide de caoutchouc naturel et d'un peptisant dans une machine à vis sans fin équipée d'un fourreau, dans lequel tourne la vis, et d'une filière à trous en bout de vis, procédé dans lequel : a) le mélange est comprimé à une température supérieure ou égale à 130°C et inférieure ou égale à 210°C dans le fourreau, b) une détente éclair adiabatique à une pression différentielle supérieure ou égale à 40 bars est réalisée en sortie de filière. Thus a first object of the invention is a process for treating a natural rubber which comprises the extrusion of a mixture of a wet coagulum of natural rubber and a peptizer in a worm screw machine equipped with a sleeve, in which the screw turns, and a die with holes at the end of the screw, process in which: a) the mixture is compressed at a temperature greater than or equal to 130 ° C and less than or equal to 210 ° C in the sheath, b) an adiabatic flash expansion at a differential pressure greater than or equal to 40 bars is carried out at the die outlet.
L'invention concerne aussi un caoutchouc naturel de fond de tasse présentant un indice de rétention de plasticité supérieur à 70 et une viscosité Mooney ML (1+4) à 100°C inférieure à 60. Le caoutchouc naturel conforme à l'invention qui peut être préparé selon le procédé conforme à l'invention a l'avantage de présenter une viscosité qui ne nécessite pas d'étape de plastification avant son utilisation dans une composition de caoutchouc, ce qui donne aussi l'avantage au caoutchouc naturel de présenter une bonne résistance au vieillissement par thermooxydation. The invention also relates to a natural cup bottom rubber having a plasticity retention index greater than 70 and a Mooney ML (1 + 4) viscosity at 100 ° C less than 60. The natural rubber according to the invention which can being prepared according to the process in accordance with the invention has the advantage of having a viscosity which does not require a plasticization step before its use in a rubber composition, which also gives the advantage to natural rubber of having a good resistance to thermo-oxidation aging.
Description détaillée detailed description
Tout intervalle de valeurs désigné par l'expression "entre a et b" représente le domaine de valeurs allant de plus de a à moins de b (c'est-à-dire bornes a et b exclues) tandis que tout intervalle de valeurs désigné par l'expression "de a à b" signifie le domaine de valeurs allant de a jusqu'à b (c'est-à-dire incluant les bornes strictes a et b). Sauf indication expresse différente, tous les pourcentages (%) indiqués sont des % en masse. Any interval of values designated by the expression "between a and b" represents the range of values going from more than a to less than b (that is to say limits a and b excluded) while any interval of values designated by the expression “from a to b” means the range of values going from a to b (that is to say including the strict limits a and b). Unless expressly indicated otherwise, all the percentages (%) indicated are% by mass.
La machine utilisée à l'étape a) est typiquement une extrudeuse, machine à vis sans fin qui comprend une entrée de matière dite trémie, un corps formé d'un cylindre (également appelé fourreau) dans lequel tourne une vis (une ou plusieurs) sans fin et une tête qui sert de support à une filière. Cette machine permet d'appliquer un séchage mécanique ou un séchage thermo-mécanique à un produit imbibé d'un liquide à éliminer par séchage. Le séchage mécanique permet l'élimination du liquide par des forces purement mécaniques (pressage, essorage, ...). Il peut se réaliser par simple transfert de quantité de mouvement et éventuellement sans transfert thermique. Le séchage thermo-mécanique est réalisé par échauffement communiqué au produit à sécher par dégradation de l'énergie mécanique. L'eau incluse dans le produit à sécher se trouve à l'état liquide sous pression et à haute température. Une libération des contraintes jusqu'alors exercées sur le caoutchouc naturel dans le fourreau a lieu en sortie de filière par la suppression de la compression, ce qui permet la détente éclair adiabatique en sortie de filière. A la sortie de la filière, la détente produite permet aussi de flasher l'humidité et le cas échéant, selon la viscosité du produit, de fragmenter le produit. The machine used in step a) is typically an extruder, a worm machine which comprises a material inlet called a hopper, a body formed of a cylinder (also called a sheath) in which a screw (one or more) turns. endless and a head which serves as a support for a die. This machine makes it possible to apply mechanical drying or thermo-mechanical drying to a product soaked in a liquid to be removed by drying. The mechanical drying allows the elimination of the liquid by purely mechanical forces (pressing, spinning, ...). It can be achieved by simple transfer of momentum and possibly without thermal transfer. Thermomechanical drying is carried out by heating communicated to the product to be dried by degradation of the mechanical energy. The water included in the product to be dried is in the liquid state under pressure and at high temperature. A release of the stresses previously exerted on the natural rubber in the sleeve takes place at the die outlet by the elimination of the compression, which allows adiabatic flash expansion at the die outlet. On leaving the die, the expansion produced also makes it possible to flash the humidity and, if necessary, depending on the viscosity of the product, to fragment the product.
L'extrudeuse utile aux besoins de l'invention peut être une extrudeuse disponible sur le marché, notamment celles commercialisées par les sociétés Anderson, FOM et Welding, comme par exemple l'Expander d'Anderson, l'Extruder Dryer de FOM, le VCU de Welding. L'extrudeuse utile aux besoins de l'invention pour l'un quelconque des modes de réalisation de l'invention est de préférence une extrudeuse monovis. The extruder useful for the needs of the invention can be an extruder available on the market, in particular those sold by the companies Anderson, FOM and Welding, such as for example the Expander from Anderson, the Extruder Dryer from FOM, the VCU of Welding. The extruder useful for the purposes of the invention for any one of the embodiments of the invention is preferably a single screw extruder.
Des variantes d'extrudeuses sont préférentielles en ce qu'elles permettent en sortie de filière d'atteindre des débits plus élevés en coagulum ou de favoriser la détente adiabatique. Une telle variante préférentielle est une extrudeuse dont le fourreau présente dans la zone d'alimentation de l'extrudeuse un (un ou plusieurs) moyen d'évacuation de l'eau (eau libre, sous forme liquide). Comme moyen d'évacuation, on peut citer des rainures dans l'épaisseur du fourreau qui débouchent sur la surface intérieure du fourreau, une ou plusieurs ouvertures dans la zone d'alimentation de l'extrudeuse, ouverture qui permet d'évacuer l'eau hors du fourreau. Ces ouvertures peuvent se présenter sous la forme de fente, de grille, de trou circulaire. La zone d'alimentation est la zone qui se trouve sous l'ouverture de la trémie. Variants of extruders are preferred in that they allow, at the die outlet, to achieve higher coagulum flow rates or to promote adiabatic expansion. Such a preferred variant is an extruder, the sleeve of which has, in the feed zone of the extruder, one (one or more) means for discharging water (free water, in liquid form). As evacuation means, mention may be made of grooves in the thickness of the sheath which open onto the inner surface of the sheath, one or more openings in the feed zone of the extruder, which opening makes it possible to evacuate water. out of the scabbard. These openings can be in the form of a slot, a grid or a circular hole. The feed area is the area below the opening of the hopper.
Le coagulum utilisé à l'étape a) est un produit de la coagulation du latex de caoutchouc naturel, indifféremment obtenu par une coagulation spontanée ou provoquée. De préférence, le coagulum est un fond de tasse. Dans la présente demande, on entend par latex de caoutchouc naturel le latex issu de la saignée de l'hévéa. The coagulum used in step a) is a coagulation product of natural rubber latex, either obtained by spontaneous or induced coagulation. Preferably, the coagulum is a cup bottom. In the present application, the term “natural rubber latex” is understood to mean the latex obtained from the bleeding of the rubber tree.
Le coagulum est dit humide, car il est imbibé d'eau qui provient notamment des eaux de lavage résultant des opérations de lavage du coagulum telles que les opérations de décontamination, généralement conduites en piscine sous eau. Le coagulum utilisé à l'étape a) est de préférence un coagulum qui a subi des opérations de lavage. Il contient de préférence plus de 5% en masse d'eau, notamment entre 5 et 40% en masse d'eau, plus préférentiellement entre 8 et 30%, encore plus préférentiellement entre 8 et 25% en masse. Le pourcentage en eau est calculé par rapport à la masse totale de coagulum humide. The coagulum is said to be wet because it is soaked in water which comes in particular from the washing water resulting from the washing operations of the coagulum such as decontamination operations, generally carried out in a swimming pool under water. The coagulum used in step a) is preferably a coagulum which has undergone washing operations. It preferably contains more than 5% by weight of water, in particular between 5 and 40% by weight of water, more preferably between 8 and 30%, even more preferably between 8 and 25% by weight. The percentage of water is calculated with respect to the total mass of wet coagulum.
Le coagulum humide peut se trouver sous la forme de granulés communément appelés crumbs ou de crêpes. De préférence, le coagulum utilisé à l'étape a) se présente sous la forme de granulés (en anglais « crumbs »), notamment pour faciliter son introduction dans l'extrudeuse par la trémie. De manière plus préférentielle, le coagulum utilisé à l'étape a) est sous la forme de granulés. The wet coagulum can be in the form of granules commonly called crumbs or pancakes. Preferably, the coagulum used in step a) is in the form of granules (in English "crumbs"), in particular to facilitate its introduction into the extruder through the hopper. More preferably, the coagulum used in step a) is in the form of granules.
De préférence, le coagulum utilisé dans l'étape a) est typiquement un coagulum qui a subi, préalablement à l'étape a), un travail de décontamination qui se décompose généralement en deux étapes, la décontamination primaire et la décontamination secondaire. Le coagulum recueilli après la saignée de l'hévéa contient très souvent des contaminants plus ou moins gros, tels que des feuilles, des brindilles, du sable et autres débris qui viennent contaminer le coagulum au cours de la récolte. Pour mener à bien la décontamination primaire qui a pour but d'éliminer les objets les plus gros, le coagulum est traditionnellement coupé et lavé dans des piscines d'eau. Dans la décontamination secondaire qui permet d'éliminer les contaminants les plus fins, le coagulum est traditionnellement déchiqueté, puis lavé à l'eau dans des piscines, ensuite acheminé par exemple dans des crêpeuses et shredders. La décontamination peut comprendre une étape de filtration du coagulum, notamment sous pression, par exemple dans un dispositif particulier qui comprend une extrudeuse et un moyen de filtration adapté et installé en sortie de l'extrudeuse. On peut par exemple se référer au procédé de filtration décrit dans la demande de brevet WO 2016162645 A2 ou à celui décrit dans la demande de brevet WO 2018224773 Al. Un tel procédé permet d'éliminer les contaminants de taille supérieure à 1 mm, avantageusement supérieure à 500 pm (0.5 mm), plus avantageusement supérieure à 100 pm (0.1 mm). Preferably, the coagulum used in step a) is typically a coagulum which has undergone, prior to step a), decontamination work which generally breaks down into two steps, primary decontamination and secondary decontamination. The coagulum collected after bleeding the rubber tree very often contains more or less large contaminants, such as leaves, twigs, sand and other debris which contaminate the coagulum during harvesting. To carry out the primary decontamination which aims to eliminate the largest objects, the coagulum is traditionally cut and washed in pools of water. In the secondary decontamination which allows the elimination of the finest contaminants, the coagulum is traditionally shredded, then washed with water in swimming pools, then sent for example in crepers and shredders. The decontamination can comprise a step of filtering the coagulum, in particular under pressure, for example in a particular device which comprises an extruder and a suitable filtration means installed at the outlet of the extruder. Reference may for example be made to the filtration process described in patent application WO 2016162645 A2 or to that described in patent application WO 2018224773 A1. Such a process makes it possible to remove contaminants of size greater than 1 mm, advantageously greater. at 500 µm (0.5 mm), more preferably greater than 100 µm (0.1 mm).
Lorsque le coagulum utilisé dans l'étape a) est décontaminé, le procédé conforme comprend préférentiellement une étape de filtration du coagulum humide avant l'étape a). When the coagulum used in step a) is decontaminated, the conforming process preferably comprises a step of filtering the wet coagulum before step a).
Les peptisants sont des composés bien connus de l'homme du métier. Ils permettent de réduire la masse moléculaire des chaînes polyisoprène du caoutchouc naturel en les cassant par réaction de thermooxydation des chaînes. Ils agissent généralement comme catalyseur de la réaction de thermooxydation. Le peptisant peut être aussi un mélange de plusieurs peptisants. On peut citer les mercaptans aromatiques, les disulfures aromatiques, les arylamines, les phénols, les acides sulfoniques et leurs dérivés tels que leurs sels métalliques. De préférence, le peptisant est un phénol ou un sel métallique d'un phénol ou encore un dithiobisbenzamide. Tout particulièrement conviennent le pentachlorothiophénol, son sel de zinc, le disulfure du 2-dibenzamido diphényle (en anglais 2,2'-dibenzamido diphenyl disulfide). Peptizers are compounds well known to those skilled in the art. They make it possible to reduce the molecular mass of the polyisoprene chains of natural rubber by breaking them by thermooxidation reaction of the chains. They generally act as a catalyst for the thermooxidation reaction. The peptizer can also be a mixture of several peptizers. Mention may be made of aromatic mercaptans, aromatic disulphides, arylamines, phenols, sulphonic acids and their derivatives such as their metal salts. Preferably, the peptizer is a phenol or a metal salt of a phenol or else a dithiobisbenzamide. Very particularly suitable are pentachlorothiophenol, its zinc salt, 2-dibenzamido diphenyl disulfide (in English 2,2′-dibenzamido diphenyl disulfide).
A l'intérieur du fourreau, sous l'effet de l'énergie thermique apportée notamment par la rotation de la vis, le mélange de coagulum humide de caoutchouc naturel et de peptisant s'échauffe. Il est supposé que cet échauffement déclenche la réaction du peptisant avec les chaînes polyisoprène du caoutchouc naturel et conduit donc à la formation d'un caoutchouc naturel peptisé à l'intérieur du fourreau. La quantité de peptisant dans le coagulum humide est ajustée par l'homme du métier pour obtenir la viscosité souhaitée du caoutchouc naturel. Elle peut varier dans une large gamme selon la nature chimique du peptisant et la température appliquée au mélange de coagulum humide de caoutchouc naturel et de peptisant dans le fourreau. Typiquement, elle peut varier dans un domaine allant de de 0.01 à 0.5 gramme de peptisant par kilogramme de caoutchouc naturel sec. Inside the sheath, under the effect of the thermal energy provided in particular by the rotation of the screw, the mixture of wet coagulum of natural rubber and peptizer heats up. It is assumed that this heating triggers the reaction of the peptizer with the polyisoprene chains of natural rubber and therefore leads to the formation of a peptized natural rubber inside the sheath. The amount of peptizer in the wet coagulum is adjusted by those skilled in the art to obtain the desired viscosity of natural rubber. It can vary over a wide range depending on the chemical nature of the peptizer and the temperature applied to the mixture of wet coagulum of natural rubber and peptizer in the sheath. Typically, it can vary within a range of from 0.01 to 0.5 gram of peptizer per kilogram of dry natural rubber.
Selon un mode de réalisation particulier de l'invention, la machine à vis sans fin est alimentée avec le mélange de coagulum humide de caoutchouc naturel et de peptisant par une trémie équipant la machine à vis sans fin. Selon ce mode de réalisation, le mélange de coagulum humide de caoutchouc naturel et de peptisant est préparé typiquement lors d'une étape préalable de mise en contact d'un coagulum humide de caoutchouc naturel avec un peptisant. Selon ce mode de réalisation, l'étape a) est préférentiellement précédée d'une étape de trempage d'un coagulum humide de caoutchouc naturel dans une solution aqueuse de peptisant ou d'une étape d'arrosage d'un coagulum humide d'un caoutchouc naturel par une solution aqueuse de peptisant pour former le mélange de coagulum humide de caoutchouc naturel et de peptisant. Lorsque l'étape a) est précédée d'une étape d'arrosage, le coagulum humide est arrosé de préférence avec une solution aqueuse de peptisant à raison de 0.1 à 1 litre de solution par kilogramme de caoutchouc naturel sec, sachant que la solution a une concentration allant de 0.05 à 3 grammes de peptisant par litre de solution. According to a particular embodiment of the invention, the worm machine is fed with the mixture of wet coagulum of natural rubber and peptizer by a hopper fitted to the worm machine. According to this embodiment, the mixture of wet coagulum of natural rubber and peptizer is typically prepared during a preliminary step of bringing a wet coagulum of natural rubber into contact with a peptizer. According to this embodiment, step a) is preferably preceded by a step of soaking a wet coagulum of natural rubber in an aqueous solution of peptizer or by a step of watering a wet coagulum of a natural rubber with an aqueous solution of peptizer to form the mixture of wet coagulum of natural rubber and peptizer. When step a) is preceded by a sprinkling step, the wet coagulum is preferably sprinkled with an aqueous solution of peptizer at the rate of 0.1 to 1 liter of solution per kilogram of dry natural rubber, knowing that the solution has a concentration ranging from 0.05 to 3 grams of peptizer per liter of solution.
Dans l'étape a), le mélange de coagulum humide de caoutchouc naturel et de peptisant est comprimé dans le fourreau de l'extrudeuse. Cette compression est utile pour soumettre ultérieurement le caoutchouc naturel à une détente adiabatique. La pression à laquelle est comprimé le caoutchouc naturel doit être suffisante pour permettre une détente adiabatique à une pression différentielle d'au moins 40 bars. A la pression utile aux besoins de l'invention pour réaliser la compression, le caoutchouc naturel est porté à l'étape a) à une température allant de 130 à 210°C. Dans une machine à vis sans fin comme une extrudeuse, le travail mécanique sous forte pression s'accompagne d'un échauffement de la matière caoutchouteuse du coagulum, ce qui a pour effet d'augmenter la température du coagulum. En dessous de 130°C, le procédé n'est pas suffisamment efficace pour réduire le taux d'humidité du caoutchouc naturel. De préférence, le caoutchouc naturel est comprimé à l'étape a) à une température comprise entre 170°C et 210°C. De manière plus préférentielle, le caoutchouc naturel est comprimé à l'étape a) à une température comprise entre 180°C et 210°C. Ces conditions plus préférentielles de température permettent d'augmenter l'efficacité du procédé pour produire un caoutchouc naturel avec une humidité résiduelle plus faible. Pour atteindre les températures utiles aux besoins de l'invention, des calories peuvent être aussi apportées en chauffant l'intérieur de la machine à vis tel que la vis ou le fourreau de l'extrudeuse par l'intermédiaire d'un système de chauffage comme une double enveloppe, des résistances chauffantes. La détente adiabatique réalisée à l'étape b) est caractérisée de détente éclair en ce qu'elle permet au caoutchouc naturel de passer d'un état comprimé à un état non comprimé de façon quasi immédiate, typiquement en un temps inférieur à la seconde. Elle est réalisée à une pression différentielle supérieure ou égale à 40 bars ou à une pression différentielle supérieure à 100 bars. Selon une première variante, la pression différentielle à l'étape b) est d'au plus 100 bars, en particulier comprise entre 40 et 100 bars. Selon une deuxième variante, la pression différentielle est supérieure à 100 bars, voire même d'au moins 120 bars ou 150 bars. La deuxième variante présente l'avantage de réduire aussi le taux d'azote dans le caoutchouc naturel. In step a), the mixture of wet coagulum of natural rubber and peptizer is compressed in the sleeve of the extruder. This compression is useful for subsequently subjecting natural rubber to adiabatic expansion. The pressure at which the natural rubber is compressed must be sufficient to allow adiabatic expansion to a differential pressure of at least 40 bars. At the pressure useful for the needs of the invention to achieve compression, the natural rubber is brought in step a) to a temperature ranging from 130 to 210 ° C. In an endless screw machine such as an extruder, the mechanical work under high pressure is accompanied by heating of the rubbery material of the coagulum, which has the effect of increasing the temperature of the coagulum. Below 130 ° C, the process is not efficient enough to reduce the moisture content of natural rubber. Preferably, the natural rubber is compressed in step a) at a temperature between 170 ° C and 210 ° C. More preferably, the natural rubber is compressed in step a) at a temperature between 180 ° C and 210 ° C. These more preferential temperature conditions make it possible to increase the efficiency of the process to produce a natural rubber with a lower residual humidity. To reach the temperatures useful for the needs of the invention, calories can also be supplied by heating the inside of the screw machine such as the screw or the casing of the extruder by means of a heating system such as a double jacket, heating resistors. The adiabatic expansion carried out in step b) is characterized as flash expansion in that it allows the natural rubber to pass from a compressed state to an uncompressed state almost immediately, typically in a time less than one second. It is carried out at a differential pressure greater than or equal to 40 bars or at a differential pressure greater than 100 bars. According to a first variant, the differential pressure in step b) is at most 100 bars, in particular between 40 and 100 bars. According to a second variant, the differential pressure is greater than 100 bars, or even at least 120 bars or 150 bars. The second variant has the advantage of also reducing the nitrogen content in natural rubber.
La détente étant adiabatique, la détente se produit à la température à laquelle a été réalisée la compression. En fin de détente, le coagulum est généralement à la pression atmosphérique et son taux d'humidité est réduit, notamment à une teneur inférieure à 5%, de préférence à une teneur inférieure à 3%. En sortie de filière, le caoutchouc naturel peut être découpé, puis conditionné ou alternativement découpé, séché davantage, puis conditionné. The expansion being adiabatic, the expansion occurs at the temperature at which the compression was carried out. At the end of the expansion, the coagulum is generally at atmospheric pressure and its moisture content is reduced, in particular to a content of less than 5%, preferably to a content of less than 3%. At the outlet of the die, the natural rubber can be cut, then packaged or alternatively cut, dried further, then packaged.
Le caoutchouc naturel peut être découpé en sortie de filière par un moyen qui est apte à découper le caoutchouc naturel et qui est disposé en aval de la filière. Le moyen apte à découper le caoutchouc naturel peut être un couteau ou un granulateur, de préférence un granulateur. The natural rubber can be cut at the outlet of the die by a means which is capable of cutting natural rubber and which is disposed downstream of the die. The means suitable for cutting natural rubber may be a knife or a granulator, preferably a granulator.
De préférence, le caoutchouc naturel récupéré en sortie de filière est séché par un séchage complémentaire pour réduire davantage son taux d'humidité résiduelle, notamment à un taux inférieur à 0.8%. Avant le séchage complémentaire, le caoutchouc naturel est avantageusement découpé en sortie de filière par un moyen qui est apte à découper le caoutchouc naturel et qui est disposé en aval de la filière. Le moyen apte à découper le caoutchouc naturel peut être un couteau ou un granulateur, de préférence un granulateur. L'état divisé sous lequel se trouve le caoutchouc naturel après avoir été découpé permet de rendre le séchage complémentaire plus performant. Preferably, the natural rubber recovered at the outlet of the die is dried by additional drying to further reduce its residual moisture level, in particular to a rate of less than 0.8%. Before the additional drying, the natural rubber is advantageously cut at the outlet of the die by a means which is capable of cutting the natural rubber and which is placed downstream of the die. The means suitable for cutting natural rubber may be a knife or a granulator, preferably a granulator. The divided state in which the natural rubber is found after having been cut makes the additional drying more efficient.
Le temps de séchage est ajusté par l'homme du métier en fonction de la température de séchage et en fonction de la teneur en eau résiduelle dans le caoutchouc naturel à l'issue de l'étape b). Il est préférable d'appliquer un temps de séchage le plus court possible pour préserver la structure des chaînes polyisoprène du caoutchouc naturel et ses propriétés. C'est pourquoi, un temps de séchage inférieur à 10 minutes est recommandé et préféré. Pour obtenir un caoutchouc naturel contenant moins de 0.8% d'eau et considéré comme sec avec des temps de séchage aussi courts, le séchage est préférentiellement un séchage par convection. Tout moyen connu pour sécher par convection peut convenir. En particulier est préféré un lit fluidisé tel qu'un tamis vibrant à air chaud, dispositif connu et conventionnellement utilisé dans les procédés de fabrication de caoutchoucs synthétiques. Avantageusement, le caoutchouc naturel récupéré en sortie de filière est séché par un séchage complémentaire, de préférence par convection, de manière préférentielle au moyen d'un lit fluidisé, de manière plus préférentielle au moyen d'un tamis vibrant à air chaud. Le séchage par convection est réalisé de préférence sous air. Le séchage par convection sous air peut se faire à une température allant de 90°C à 180°C, de préférence à une température allant de 90°C à 130°C, notamment de 110°C à 130°C. The drying time is adjusted by those skilled in the art as a function of the drying temperature and as a function of the residual water content in the natural rubber at the end of step b). It is preferable to apply the shortest possible drying time to preserve the structure of the polyisoprene chains of natural rubber and its properties. Therefore, a drying time of less than 10 minutes is recommended and preferred. To obtain a natural rubber containing less than 0.8% water and considered to be dry with such short drying times, the drying is preferably drying by convection. Any known means of drying by convection may be suitable. In particular, a fluidized bed is preferred, such as a hot air vibrating screen, a device known and conventionally used in synthetic rubber manufacturing processes. Advantageously, the natural rubber recovered at the outlet of the die is dried by additional drying, preferably by convection, preferably by means of by means of a fluidized bed, more preferably by means of a hot air vibrating screen. The drying by convection is preferably carried out in air. Drying by convection in air can be carried out at a temperature ranging from 90 ° C to 180 ° C, preferably at a temperature ranging from 90 ° C to 130 ° C, in particular from 110 ° C to 130 ° C.
Selon un mode de réalisation préférentiel de l'invention, le procédé comprend en outre une étape au cours de laquelle est ajouté un stabilisant de viscosité, auquel cas le caoutchouc naturel est dit stabilisé. Le stabilisant de viscosité peut être ajouté à l'intérieur du fourreau selon une première variante ou à l'extérieur du fourreau après l'étape b) selon une deuxième variante. According to a preferred embodiment of the invention, the method further comprises a step during which a viscosity stabilizer is added, in which case the natural rubber is said to be stabilized. The viscosity stabilizer can be added inside the sleeve according to a first variant or outside the sleeve after step b) according to a second variant.
Les stabilisants de viscosité pour stabiliser la viscosité du caoutchouc naturel sont bien connus de l'homme du métier du caoutchouc naturel. Ils permettent de réduire ou supprimer la tendance du caoutchouc naturel à durcir au stockage. A titre de stabilisant de viscosité utile aux besoins de l'invention peut convenir tout composé connu pour stabiliser la viscosité du caoutchouc naturel. On peut citer par exemple l'hydroxylamine, ses sels, les hydroxyalkylamines, leurs sels, le semicarbazide, la dimédone, les composés ayant une fonction triazole et les composés ayant une fonction hydrazide. De préférence, le stabilisant de viscosité est la dimédone ou un composé dérivé de l'ammoniac choisi parmi les composés de formule XNH2 et leurs sels, où X est un groupe choisi parmi les groupes hydroxyle et hydroxyalkyle en C1-C4 ou un mélange de ces composés. Le sel peut être un sel d'acide faible de composés de formule XNH2 ou un sel d'acide fort de composés de formule XNH2 éventuellement neutralisé avec une base forte. Pour la neutralisation avec une base forte, on peut par exemple se référer à la description de la demande de brevet WO 2017085109.Viscosity stabilizers for stabilizing the viscosity of natural rubber are well known to those skilled in the art of natural rubber. They reduce or eliminate the tendency of natural rubber to harden on storage. As a viscosity stabilizer useful for the purposes of the invention, any compound known to stabilize the viscosity of natural rubber may be suitable. Mention may be made, for example, of hydroxylamine, its salts, hydroxyalkylamines, their salts, semicarbazide, dimedone, compounds having a triazole function and compounds having a hydrazide function. Preferably, the viscosity stabilizer is dimedone or a compound derived from ammonia chosen from compounds of formula XNH2 and their salts, where X is a group chosen from hydroxyl and C1-C4 hydroxyalkyl groups or a mixture of these compounds. The salt can be a weak acid salt of compounds of formula XNH2 or a strong acid salt of compounds of formula XNH2 optionally neutralized with a strong base. For neutralization with a strong base, one can for example refer to the description of patent application WO 2017085109.
De manière plus préférentielle, le stabilisant de viscosité est le sulfate d'hydroxylamine ou le sulfate d'hydroxylamine neutralisé avec la soude, très avantageusement le sulfate d'hydroxylamine. De préférence, le stabilisant de viscosité est ajouté à un taux allant de 2.4 mmoles à 24 mmoles, plus préférentiellement de 6 mmoles à 24 mmoles, encore plus préférentiellement de 8 mmoles à 18 mmoles équivalent de dimédone ou équivalent de XNH2 par kilogramme de caoutchouc naturel. More preferably, the viscosity stabilizer is hydroxylamine sulfate or hydroxylamine sulfate neutralized with sodium hydroxide, very advantageously hydroxylamine sulfate. Preferably, the viscosity stabilizer is added at a rate ranging from 2.4 mmoles to 24 mmoles, more preferably from 6 mmoles to 24 mmoles, even more preferably from 8 mmoles to 18 mmoles equivalent of dimedone or equivalent of XNH2 per kilogram of natural rubber .
Selon la première variante, le stabilisant de viscosité est injecté par l'intermédiaire d'un dispositif d'injection qui comprend un ou plusieurs orifices débouchant dans le fourreau.According to the first variant, the viscosity stabilizer is injected by means of an injection device which comprises one or more orifices opening into the sleeve.
Pour mettre en œuvre cette variante, le fourreau porte de préférence sur tout ou partie de sa longueur des doigts qui s'étendent radialement vers l'intérieur du fourreau relativement à l'axe de rotation de la vis. De tels doigts sont disposés dans une zone qui est en aval de la zone d'alimentation dédiée par exemple à l'introduction du mélange de coagulum humide et de peptisant. Lorsque le fourreau porte des doigts qui s'étendent radialement vers l'intérieur du fourreau relativement à l'axe de rotation de la vis, le filet de la vis qui est hélicoïdal et qui s'étend radialement depuis un arbre central de la vis est interrompu de manière à former des espaces annulaires cylindriques dans lesquels sont disposés les doigts. De manière bien connue, une extrudeuse comporte une zone d'alimentation et une zone de mise en pression (zone de compression) dédiée à la montée en température et en pression du coagulum et localisée en aval de la zone d'alimentation. Typiquement, on introduit en continu un stabilisant de viscosité dans le caoutchouc naturel en injectant le stabilisant de viscosité dans le fourreau de l'extrudeuse. De préférence, le stabilisant de viscosité est injecté sous la forme d'une solution aqueuse. Le stabilisant de viscosité est réparti au sein du caoutchouc naturel sous l'effet des forces mécaniques exercées dans le fourreau pendant le fonctionnement de l'extrudeuse. L'ensemble formé par le caoutchouc naturel et le stabilisant de viscosité est homogénéisé au sein du fourreau par la fonction de malaxage également assuré par le fonctionnement de l'extrudeuse. Le malaxage peut être amélioré par la présence de doigts dans le fourreau qui s'étendent radialement vers l'intérieur du fourreau, les doigts pouvant être portés par le fourreau. L'élévation de température générée par le malaxage permet la réaction entre le stabilisant de viscosité et le caoutchouc naturel. Pour faciliter la réaction, on peut également élever la température du coagulum à l'intérieur du fourreau par l'intermédiaire d'une double enveloppe ou tout autre système de chauffage comme des résistances chauffantes équipant le fourreau et/ou par l'intermédiaire d'un système de chauffage incorporé dans la vis. Le stabilisant de viscosité est ajouté au caoutchouc naturel dans le fourreau en vue de stabiliser la viscosité du caoutchouc naturel peptisé. To implement this variant, the sleeve preferably carries over all or part of its length fingers which extend radially inwardly of the sleeve relative to the axis of rotation of the screw. Such fingers are placed in a zone which is downstream of the supply zone dedicated, for example, to the introduction of the mixture of wet coagulum and of peptizer. When the sleeve carries fingers which extend radially inwardly of the sleeve relative to the axis of rotation of the screw, the thread of the screw which is helical and which extends radially from a central shaft of the screw is interrupted so as to form cylindrical annular spaces in which the fingers are placed. In a well-known manner, an extruder has a feed zone and a pressurization zone (compression zone) dedicated to the rise in temperature and pressure of the coagulum and located downstream of the feed zone. Typically, a viscosity stabilizer is continuously introduced into natural rubber by injecting the viscosity stabilizer into the barrel of the extruder. Preferably, the viscosity stabilizer is injected in the form of an aqueous solution. The viscosity stabilizer is distributed within the natural rubber under the effect of the mechanical forces exerted in the sleeve during the operation of the extruder. The assembly formed by the natural rubber and the viscosity stabilizer is homogenized within the sleeve by the mixing function also provided by the operation of the extruder. The mixing can be improved by the presence of fingers in the sleeve which extend radially towards the inside of the sleeve, the fingers being able to be carried by the sleeve. The rise in temperature generated by the mixing allows the reaction between the viscosity stabilizer and the natural rubber. To facilitate the reaction, it is also possible to raise the temperature of the coagulum inside the sheath by means of a double jacket or any other heating system such as heating resistors fitted to the sheath and / or by means of a heating system incorporated in the screw. The viscosity stabilizer is added to the natural rubber in the sleeve to stabilize the viscosity of the peptized natural rubber.
Pour permettre l'injection du stabilisant de viscosité dans le fourreau, l'extrudeuse utile aux besoins de l'invention est équipée d'un dispositif d'injection qui comprend un ou plusieurs orifices débouchant dans le fourreau. Les orifices dits points d'injection sont localisés de préférence en aval de la zone d'alimentation, préférentiellement dans une zone de compression en aval de la zone d'alimentation. L'injection en aval de la zone d'alimentation limite, voire supprime la part de stabilisant de viscosité qui ne serait pas incorporé dans le caoutchouc naturel, ce qui a pour effet d'augmenter l'efficacité du procédé vis-à-vis de la stabilisation du caoutchouc naturel. La localisation des points d'injection dans la zone de compression permet d'augmenter encore davantage l'efficacité du procédé en assurant une bonne incorporation du stabilisant de viscosité dans le caoutchouc naturel et un temps de contact suffisant entre le stabilisant de viscosité et le caoutchouc naturel avant la détente adiabatique. To allow the injection of the viscosity stabilizer into the sleeve, the extruder useful for the needs of the invention is equipped with an injection device which comprises one or more orifices opening into the sleeve. The orifices called injection points are preferably located downstream of the supply zone, preferably in a compression zone downstream of the supply zone. The injection downstream of the limit feed zone, or even eliminates the part of viscosity stabilizer which would not be incorporated in the natural rubber, which has the effect of increasing the efficiency of the process with respect to stabilization of natural rubber. The location of the injection points in the compression zone makes it possible to further increase the efficiency of the process by ensuring good incorporation of the viscosity stabilizer into the natural rubber and sufficient contact time between the viscosity stabilizer and the rubber. natural before adiabatic relaxation.
De préférence, les points d'injection sont situés à l'extrémité radialement intérieure des doigts qui sont portés par le fourreau et qui s'étendent radialement vers l'intérieur du fourreau relativement à l'axe de rotation de la vis. En d'autres termes, chaque point d'injection est situé à l'extrémité radialement intérieure d'un doigt qui est porté par le fourreau et qui s'étend radialement vers l'intérieur du fourreau relativement à l'axe de rotation de la vis. Cette localisation des points d'injection permet d'assurer aussi une incorporation efficace du stabilisant de viscosité au cœur du caoutchouc naturel et contribue à une bonne répartition du stabilisant de viscosité dans le caoutchouc naturel. De manière plus préférentielle, les points d'injection sont situés dans des doigts portés par le fourreau et s'étendant radialement vers l'intérieur du fourreau relativement à l'axe de rotation de la vis, de tels doigts étant disposés dans la zone de compression. Cette localisation des points d'injection permet d'augmenter encore davantage l'efficacité du procédé en alliant les bénéfices apportés par la localisation dans les doigts et la localisation dans la zone de compression. Preferably, the injection points are located at the radially inner end of the fingers which are carried by the sleeve and which extend radially towards the inside of the sleeve relative to the axis of rotation of the screw. In other words, each injection point is located at the radially inner end of a finger which is carried by the sleeve and which extends radially towards the inside of the sleeve relative to the axis of rotation of the sleeve. screw. This location of the injection points also makes it possible to ensure effective incorporation of the viscosity stabilizer into the heart of the natural rubber and contributes to good distribution of the viscosity stabilizer in the natural rubber. More preferably, the injection points are located in fingers carried by the sleeve and extending radially towards the inside of the sleeve relative to the axis of rotation of the screw, such fingers being arranged in the zone of compression. This localization of the injection points makes it possible to further increase the efficiency of the process by combining the benefits provided by the localization in the fingers and the localization in the compression zone.
Selon un mode de réalisation de l'invention, le fourreau porte un seul doigt s'étendant radialement vers l'intérieur du fourreau relativement à l'axe de rotation de la vis et à l'extrémité radialement intérieure duquel est localisé un point d'injection, sachant que le fourreau peut porter d'autres doigts s'étendant radialement vers l'intérieur du fourreau relativement à l'axe de rotation de la vis et à l'extrémité desquels il n'y a pas de point d'injection. Ces autres doigts favorisent le malaxage du caoutchouc naturel dans le fourreau et aident à mélanger le caoutchouc naturel et le stabilisant de viscosité. According to one embodiment of the invention, the sleeve carries a single finger extending radially towards the inside of the sleeve relative to the axis of rotation of the screw and at the radially inner end of which a point is located. injection, knowing that the sleeve can carry other fingers extending radially towards the inside of the sleeve relative to the axis of rotation of the screw and at the end of which there is no injection point. These other fingers promote the mixing of the natural rubber in the barrel and help to mix the natural rubber and the viscosity stabilizer.
Typiquement, la pression au point d'injection, notamment à l'extrémité radialement intérieure du doigt, est supérieure à 0 bar relatif, ce qui traduit la présence de matière (coagulum de caoutchouc) au point d'injection et permet d'assurer que le stabilisant de viscosité est bien injecté au sein du caoutchouc naturel. Une injection du stabilisant de viscosité dans un espace du fourreau non rempli de caoutchouc naturel pourrait entraîner une perte d'efficacité du procédé. En effet, l'injection dans un espace vide favorise le risque d'entraînement d'une partie du stabilisant de viscosité avec les eaux extraites du coagulum. Elle favorise aussi le risque de décomposition d'une partie du stabilisant de viscosité sous l'effet de la chaleur dans le fourreau avant même sa mise en contact avec le caoutchouc naturel. Pour améliorer encore davantage l'efficacité du procédé, la pression au point d'injection est de préférence supérieure à la pression de vapeur saturante de l'eau à la température de celle du point d'injection. Typically, the pressure at the injection point, in particular at the radially inner end of the finger, is greater than 0 bar relative, which reflects the presence of material (rubber coagulum) at the injection point and makes it possible to ensure that the viscosity stabilizer is well injected into the natural rubber. Injection of the viscosity stabilizer into a space in the barrel not filled with natural rubber could result in a loss of process efficiency. In fact, injection into an empty space promotes the risk of entrainment of part of the viscosity stabilizer with the water extracted from the coagulum. It also promotes the risk of decomposition of part of the viscosity stabilizer under the effect of heat in the sheath even before it comes into contact with the natural rubber. To further improve the efficiency of the process, the pressure at the point of injection is preferably greater than the saturated vapor pressure of the water at the temperature of the point of injection.
La réaction entre le stabilisant de viscosité et le caoutchouc naturel étant activée par la température, la température au point d'injection est préférentiellement supérieure ou égale à 100°C, plus préférentiellement de 130 à 210°C, encore plus préférentiellement de 150 à 210°C. Une température inférieure à 100°C ne permet pas une stabilisation aussi efficace, le rendement de la réaction étant moindre à ces températures comparativement aux températures supérieures à 100°C. Au-delà de 210°C, les chaînes polyisoprène du caoutchouc naturel peuvent se dégrader. The reaction between the viscosity stabilizer and the natural rubber being activated by the temperature, the temperature at the point of injection is preferably greater than or equal to 100 ° C, more preferably from 130 to 210 ° C, even more preferably from 150 to 210 ° C. ° C. A temperature below 100 ° C does not allow such effective stabilization, the yield of the reaction being lower at these temperatures compared to temperatures above 100 ° C. Above 210 ° C, the polyisoprene chains of natural rubber can degrade.
Selon la deuxième variante, l'ajout du stabilisant de viscosité au caoutchouc naturel réalisé après l'étape b) se fait typiquement par arrosage du caoutchouc naturel, de préférence sec, avec la quantité souhaitée de stabilisant de viscosité, le caoutchouc naturel étant de préférence sous la forme de granulés. Par exemple, le caoutchouc naturel récupéré en sortie de filière et séché par un séchage par convection est aspergé d'un stabilisant de viscosité. Pour ce faire, le stabilisant de viscosité est généralement mis en solution dans l'eau pour pouvoir procéder à l'arrosage du caoutchouc naturel. L'étape d'ajout du stabilisant de viscosité selon la deuxième variante est préférentiellement suivie d'un travail mécanique à une température d'au moins 100°C. Le travail mécanique qui a pour fonction de disperser le stabilisant de viscosité dans le caoutchouc naturel peut être effectué au moyen d'un dispositif de déchiquetage et d'homogénéisation. Typiquement, il est mis en œuvre au moyen d'un dispositif appelé « prebreaker ». Un prebreaker est un dispositif de déchiquetage et d'homogénéisation bien connu de l'homme du métier du caoutchouc naturel, puisqu'il est traditionnellement utilisé dans les usines de « remilling » de caoutchouc naturel. On peut par exemple se référer à la demande de brevet WO 2015189365 qui donne une description détaillée d'un prebreaker. According to the second variant, the addition of the viscosity stabilizer to the natural rubber carried out after step b) is typically done by spraying the natural rubber, preferably dry, with the desired amount of viscosity stabilizer, the natural rubber preferably being in the form of granules. For example, the natural rubber recovered from the die and dried by convection drying is sprayed with a viscosity stabilizer. To do this, the viscosity stabilizer is generally dissolved in water in order to be able to sprinkle the natural rubber. The step of adding the stabilizer viscosity according to the second variant is preferably followed by mechanical work at a temperature of at least 100 ° C. The mechanical work which has the function of dispersing the viscosity stabilizer in the natural rubber can be carried out by means of a shredding and homogenizing device. Typically, it is implemented by means of a device called a “pre-breaker”. A pre-breaker is a shredding and homogenizing device well known to those skilled in the art of natural rubber, since it is traditionally used in factories for “remilling” natural rubber. Reference may for example be made to patent application WO 2015189365 which gives a detailed description of a prebreaker.
Le caoutchouc naturel, autre objet de l'invention, est un caoutchouc naturel de fond de tasse présentant un indice de rétention de plasticité (PRI) supérieur à 70, et une viscosité Mooney ML (1+4) à 100°C inférieure à 60, de préférence d'au plus 55, notamment de 30 à 55. Le PRI est le ratio exprimé en pourcentage de la plasticité du caoutchouc naturel vieilli sur la plasticité du caoutchouc naturel avant vieillissement. Sa détermination est utilisée pour donner une indication de la résistance à l'oxydation du caoutchouc naturel. Plus la valeur est élevée, meilleure est la résistance au vieillissement par oxydation. Comme le caoutchouc naturel conforme à l'invention a une viscosité Mooney inférieure à 60, son utilisation dans une composition de caoutchouc ne requiert pas d'étape préalable de plastification. En raison de son PRI, il présente une bonne résistance au vieillissement par thermooxydation, ce qui a pour conséquence d'améliorer également les propriétés d'une composition de caoutchouc le contenant. Natural rubber, another subject of the invention, is a natural rubber at the bottom of a cup having a plasticity retention index (PRI) greater than 70, and a Mooney ML (1 + 4) viscosity at 100 ° C less than 60 , preferably at most 55, in particular from 30 to 55. The PRI is the ratio expressed as a percentage of the plasticity of aged natural rubber to the plasticity of natural rubber before aging. Its determination is used to give an indication of the resistance to oxidation of natural rubber. The higher the value, the better the resistance to oxidative aging. As the natural rubber in accordance with the invention has a Mooney viscosity of less than 60, its use in a rubber composition does not require a prior plasticization step. Owing to its PRI, it exhibits good resistance to aging by thermooxidation, which has the consequence of also improving the properties of a rubber composition containing it.
Un tel compromis n'est pas observé sur les caoutchoucs naturels de fond de tasse conventionnels comme le grade TSR20. En raison de leur viscosité élevée, ces grades doivent être plastifiés pour diminuer leur viscosité : le travail thermomécanique opéré sur le caoutchouc naturel durant la plastification s'accompagne d'une thermooxydation des chaînes polyisoprène, ce qui induit inévitablement une réduction du PRI. Such a compromise is not observed on conventional natural cup bottom rubbers such as grade TSR20. Because of their high viscosity, these grades must be plasticized to reduce their viscosity: the thermomechanical work carried out on natural rubber during plasticization is accompanied by thermooxidation of the polyisoprene chains, which inevitably leads to a reduction in the PRI.
L'utilisation d'un caoutchouc naturel conforme à l'invention dans une composition de caoutchouc permet d'améliorer à la fois les propriétés des compositions de caoutchouc et la productivité des usines de fabrication de ces compositions de caoutchouc. The use of a natural rubber in accordance with the invention in a rubber composition makes it possible to improve both the properties of the rubber compositions and the productivity of the factories manufacturing these rubber compositions.
Le caoutchouc naturel conforme à l'invention peut être préparé selon le procédé conforme à l'invention, préférentiellement selon des modes de réalisation particuliers du procédé conforme à l'invention. Ces modes de réalisation particuliers peuvent inclure une étape de stabilisation de la viscosité du caoutchouc naturel, mise en œuvre par l'ajout d'un stabilisant de viscosité au mélange de coagulum humide et de peptisant dans le fourreau ou dans un prebreaker, préférentiellement mise en œuvre par l'ajout d'un stabilisant de viscosité au mélange de coagulum humide et de peptisant dans le fourreau. Le caoutchouc naturel conforme à l'invention est de préférence un caoutchouc naturel stabilisé. Lorsque le coagulum humide de caoutchouc naturel utilisé à l'étape a) est décontaminé par un procédé de filtration décrit selon la demande de brevet WO 2016162645 A2, le caoutchouc naturel conforme à l'invention est avantageusement dépourvu d'impuretés de taille supérieure à 0.5 mm, très avantageusement dépourvu d'impuretés de taille supérieure supérieure à 0.1 mm. Le procédé de filtration permet d'éliminer les impuretés de taille supérieure à 1 mm, avantageusement supérieure à 500 pm (0.5 mm), plus avantageusement supérieure à 100 pm (0.1 mm). The natural rubber according to the invention can be prepared according to the process according to the invention, preferably according to particular embodiments of the process according to the invention. These particular embodiments can include a step of stabilizing the viscosity of natural rubber, implemented by adding a viscosity stabilizer to the mixture of wet coagulum and peptizer in the sheath or in a pre-breaker, preferably used. works by adding a viscosity stabilizer to the mixture of wet coagulum and peptizer in the barrel. The natural rubber in accordance with the invention is preferably a stabilized natural rubber. When the wet coagulum of natural rubber used in step a) is decontaminated by a filtration process described according to patent application WO 2016162645 A2, the natural rubber in accordance with the invention is advantageously devoid of impurities of size greater than 0.5 mm, very advantageously free of impurities greater than 0.1 mm in size. The filtration process makes it possible to remove impurities of size greater than 1 mm, advantageously greater than 500 μm (0.5 mm), more advantageously greater than 100 μm (0.1 mm).
Dans la production des grades conventionnels de fond de tasse comme le grade TSR20, les impuretés présentes dans le coagulum humide de caoutchouc naturel de fond de tasse sont généralement des feuilles, des brindilles, du sable, de la terre et autres débris. Leur élimination du coagulum passe traditionnellement par un procédé qui comprend des opérations successives de déchiquetage et de lavage en piscine. Malheureusement l'efficacité de ce procédé s'avère peu efficace pour éliminer toutes les impuretés. La présence d'impuretés de taille supérieure à 0.5 mm dans un caoutchouc naturel de fond de tasse peut être à l'origine de la formation de trou dans un produit semi-fini fin, en particulier lors de la fabrication de produit semi-fini contenant des bandes de composition de caoutchouc de très faible épaisseur. La présence de ces impuretés dans le caoutchouc naturel peut donc s'avérer problématique dans la confection de produits semi-finis. L'absence d'impuretés de taille supérieure à 0.5 mm, voire supérieure à 0.1 mm dans le caoutchouc naturel conforme à l'invention confère au caoutchouc naturel une qualité supérieure aux grades conventionnels de fond de tasse. In the production of conventional cup bottom grades such as TSR20, the impurities present in the wet coagulum of natural cup bottom rubber are typically leaves, twigs, sand, soil and other debris. Their removal from the coagulum traditionally involves a process which comprises successive operations of shredding and washing in a swimming pool. Unfortunately, the effectiveness of this process proves to be ineffective in removing all the impurities. The presence of impurities larger than 0.5 mm in a natural rubber at the bottom of the cup can be the cause of the formation of a hole in a fine semi-finished product, in particular during the manufacture of semi-finished product containing strips of very thin rubber composition. The presence of these impurities in natural rubber can therefore prove to be problematic in the manufacture of semi-finished products. The absence of impurities of size greater than 0.5 mm, or even greater than 0.1 mm in the natural rubber in accordance with the invention gives the natural rubber a quality superior to the conventional grades of the bottom of the cup.
En résumé, l'invention est mise en œuvre avantageusement selon l'un quelconque des modes de réalisation suivants 1 à 36 : In summary, the invention is advantageously implemented according to any one of the following embodiments 1 to 36:
Mode 1 : Procédé de traitement d'un caoutchouc naturel qui comprend l'extrusion d'un mélange d'un coagulum humide de caoutchouc naturel et d'un peptisant dans une machine à vis sans fin équipée d'un fourreau, dans lequel tourne la vis, et d'une filière à trous en bout de vis, procédé dans lequel : a) le mélange est comprimé à une température supérieure ou égale à 130°C et inférieure ou égale à 210°C dans le fourreau, b) une détente éclair adiabatique à une pression différentielle supérieure ou égale à 40 bars est réalisée en sortie de filière. Mode 1: A method of treating a natural rubber which comprises the extrusion of a mixture of a wet coagulum of natural rubber and a peptizer in a worm machine equipped with a sheath, in which the screw, and a die with holes at the end of the screw, process in which: a) the mixture is compressed at a temperature greater than or equal to 130 ° C and less than or equal to 210 ° C in the sheath, b) an expansion adiabatic flash at a differential pressure greater than or equal to 40 bars is produced at the die outlet.
Mode 2 : Procédé selon le mode 1 dans lequel la machine à vis sans fin est alimentée avec le mélange de coagulum humide de caoutchouc naturel et de peptisant par une trémie équipant la machine à vis sans fin. Mode 2: Method according to Mode 1 in which the worm machine is fed with the mixture of wet coagulum of natural rubber and peptizer by a hopper fitted to the worm machine.
Mode 3 : Procédé selon le mode 1 ou 2 dans lequel le caoutchouc naturel est un caoutchouc naturel de fond de tasse. Mode 3: Method according to mode 1 or 2 in which the natural rubber is a natural rubber at the bottom of the cup.
Mode 4 : Procédé selon l'un quelconque des modes 1 à 3 dans lequel le coagulum humide contient plus de 5% en masse d'eau. Mode 5 : Procédé selon l'un quelconque des modes 1 à 4 dans lequel le coagulum humide contient entre 5 et 40% en masse d'eau. Mode 4: Process according to any one of modes 1 to 3 in which the wet coagulum contains more than 5% by mass of water. Mode 5: Process according to any one of modes 1 to 4 in which the wet coagulum contains between 5 and 40% by mass of water.
Mode 6 : Procédé selon l'un quelconque des modes 1 à 4 dans lequel le coagulum humide contient entre 8 et 30% en masse d'eau. Mode 6: Process according to any one of modes 1 to 4 in which the wet coagulum contains between 8 and 30% by mass of water.
Mode 7 : Procédé selon l'un quelconque des modes 1 à 6 dans lequel le coagulum humide contient entre 8 et 25% en masse d'eau. Mode 7: Process according to any one of modes 1 to 6 in which the wet coagulum contains between 8 and 25% by mass of water.
Mode 8 : Procédé selon l'un quelconque des modes 1 à 7 dans lequel le peptisant est un phénol ou un sel métallique d'un phénol ou encore un dithiobisbenzamide. Mode 8: Process according to any one of modes 1 to 7 in which the peptizer is a phenol or a metal salt of a phenol or else a dithiobisbenzamide.
Mode 9 : Procédé selon l'un quelconque des modes 1 à 8 dans lequel le peptisant est le pentachlorothiophénol, son sel de zinc ou le disulfure du 2-dibenzamido diphényle. Mode 9: Process according to any one of modes 1 to 8 in which the peptizer is pentachlorothiophenol, its zinc salt or 2-dibenzamido diphenyl disulfide.
Mode 10 : Procédé selon l'un quelconque des modes 1 à 9 dans lequel la quantité de peptisant est de 0.01 à 0.5 gramme de peptisant par kilogramme de caoutchouc naturel sec.Mode 10: Process according to any one of modes 1 to 9 in which the amount of peptizer is 0.01 to 0.5 gram of peptizer per kilogram of dry natural rubber.
Mode 11 : Procédé selon l'un quelconque des modes 1 à 10 dans lequel l'étape a) est précédée d'une étape de trempage d'un coagulum humide de caoutchouc naturel dans une solution aqueuse de peptisant ou d'une étape d'arrosage d'un coagulum humide d'un caoutchouc naturel par une solution aqueuse de peptisant pour former le mélange de coagulum humide de caoutchouc naturel et de peptisant. Mode 11: Process according to any one of modes 1 to 10 in which step a) is preceded by a step of soaking a wet coagulum of natural rubber in an aqueous solution of peptizer or by a step of sprinkling a wet coagulum of natural rubber with an aqueous solution of peptizer to form the mixture of wet coagulum of natural rubber and peptizer.
Mode 12 : Procédé selon le mode 11 dans lequel le coagulum humide est arrosé avec une solution aqueuse de peptisant à raison de 0.1 à 1 litre de solution par kilogramme de caoutchouc naturel sec, sachant que la solution a une concentration allant de 0.05 à 3 grammes de peptisant par litre de solution. Mode 12: Process according to mode 11 in which the wet coagulum is sprayed with an aqueous solution of peptizer at the rate of 0.1 to 1 liter of solution per kilogram of dry natural rubber, knowing that the solution has a concentration ranging from 0.05 to 3 grams of peptizer per liter of solution.
Mode 13 : Procédé selon l'un quelconque des modes 1 à 12 dans lequel le caoutchouc naturel récupéré en sortie de filière est séché par un séchage complémentaire. Mode 13: Process according to any one of modes 1 to 12 in which the natural rubber recovered at the outlet of the die is dried by additional drying.
Mode 14 : Procédé selon le mode 13 dans lequel le séchage complémentaire est un séchage par convection. Mode 14: Method according to mode 13 in which the additional drying is convection drying.
Mode 15 : Procédé selon le mode 13 ou 14 dans lequel le séchage complémentaire est un séchage par convection sous air à une température allant de 90°C à 180°C. Mode 15: Process according to mode 13 or 14 in which the additional drying is drying by convection in air at a temperature ranging from 90 ° C to 180 ° C.
Mode 16 : Procédé selon l'un quelconque des modes 13 à 15 dans lequel le séchage complémentaire est un séchage par convection sous air à une température allant de 90°C à 130°C. Mode 16: Process according to any one of modes 13 to 15 in which the additional drying is drying by convection in air at a temperature ranging from 90 ° C to 130 ° C.
Mode 17 : Procédé selon l'un quelconque des modes 13 à 16 dans lequel le séchage complémentaire est un séchage par convection sous air à une température allant de 110°C à Mode 18 : Procédé selon l'un quelconque des modes 13 à 17 dans lequel le séchage complémentaire est un séchage par convection au moyen d'un lit fluidisé. Mode 17: Process according to any one of modes 13 to 16 in which the additional drying is drying by convection in air at a temperature ranging from 110 ° C to Mode 18: Method according to any one of modes 13 to 17 in which the additional drying is drying by convection by means of a fluidized bed.
Mode 19 : Procédé selon l'un quelconque des modes 13 à 18 dans lequel le séchage complémentaire est un séchage par convection au moyen d'un tamis vibrant à air chaud.Mode 19: Method according to any one of modes 13 to 18 in which the additional drying is drying by convection by means of a vibrating sieve with hot air.
Mode 20 : Procédé selon l'un quelconque des modes 13 à 19 dans lequel, avant le séchage complémentaire, le caoutchouc naturel récupéré en sortie de filière est découpé par un moyen qui est apte à découper le caoutchouc naturel et qui est disposé en aval de la filière, de préférence un granulateur. Mode 20: Process according to any one of modes 13 to 19 in which, before the additional drying, the natural rubber recovered at the outlet of the die is cut by a means which is capable of cutting the natural rubber and which is placed downstream of the die. the die, preferably a granulator.
Mode 21 : Procédé selon l'un quelconque des modes 1 à 20 dans lequel le caoutchouc naturel est comprimé à l'étape a) à une température comprise entre 170°C et 210°C. Mode 21: Process according to any one of modes 1 to 20 in which the natural rubber is compressed in step a) at a temperature between 170 ° C and 210 ° C.
Mode 22 : Procédé selon l'un quelconque des modes 1 à 21 dans lequel le caoutchouc naturel est comprimé à l'étape a) à une température comprise entre 180°C et 210°C. Mode 22: Process according to any one of modes 1 to 21 in which the natural rubber is compressed in step a) at a temperature between 180 ° C and 210 ° C.
Mode 23 : Procédé selon l'un quelconque des modes 1 à 22 dans lequel la pression différentielle à l'étape b) est d'au plus 100 bars. Mode 23: Process according to any one of modes 1 to 22 in which the differential pressure in step b) is at most 100 bars.
Mode 24 : Procédé selon l'un quelconque des modes 1 à 23 dans lequel la pression différentielle à l'étape b) est supérieure à 100 bars. Mode 24: Process according to any one of modes 1 to 23 in which the differential pressure in step b) is greater than 100 bars.
Mode 25 : Procédé selon l'un quelconque des modes 1 à 24 dans lequel la pression différentielle à l'étape b) est d'au moins 120 bars. Mode 25: Process according to any one of modes 1 to 24 in which the differential pressure in step b) is at least 120 bars.
Mode 26 : Procédé selon l'un quelconque des modes 1 à 25 dans lequel la pression différentielle à l'étape b) est d'au moins 150 bars. Mode 26: Process according to any one of modes 1 to 25 in which the differential pressure in step b) is at least 150 bars.
Mode 27 : Procédé selon l'un quelconque des modes 1 à 26, lequel procédé comprend une étape au cours de laquelle est ajouté un stabilisant de viscosité. Mode 27: Process according to any one of modes 1 to 26, which process comprises a step during which a viscosity stabilizer is added.
Mode 28 : Procédé selon le mode 27 dans lequel le stabilisant de viscosité est l'hydroxylamine, ses sels, les hydroxyalkylamines, leurs sels, le semicarbazide, la dimédone, les composés ayant une fonction triazole et les composés ayant une fonction hydrazide.Mode 28: Process according to mode 27 in which the viscosity stabilizer is hydroxylamine, its salts, hydroxyalkylamines, their salts, semicarbazide, dimedone, compounds having a triazole function and compounds having a hydrazide function.
Mode 29 : Procédé selon l'un quelconque des modes 27 à 28 dans lequel le stabilisant de viscosité est un composé dérivé de l'ammoniac choisi parmi les composés de formule XNH2 et leurs sels, où X est un groupe choisi parmi les groupes hydroxyle et hydroxyalkyle en C1-C4 ou un mélange de ces composés. Mode 29: Process according to any one of modes 27 to 28 in which the viscosity stabilizer is a compound derived from ammonia chosen from compounds of formula XNH 2 and their salts, where X is a group chosen from hydroxyl groups and C 1 -C 4 hydroxyalkyl or a mixture of these compounds.
Mode 30 : Procédé selon l'un quelconque des modes 27 à 29 dans lequel le stabilisant de viscosité est ajouté à un taux allant de 2.4 mmoles à 24 mmoles, préférentiellement de 6 mmoles à 24 mmoles, plus préférentiellement de 8 mmoles à 18 mmoles équivalent de dimédone ou équivalent de XNH2 par kilogramme de caoutchouc naturel Mode 31 : Procédé selon l'un quelconque des modes 1 à 30, lequel procédé comprend une étape de filtration du coagulum humide avant l'étape a). Mode 30: Process according to any one of modes 27 to 29 in which the viscosity stabilizer is added at a rate ranging from 2.4 mmoles to 24 mmoles, preferably from 6 mmoles to 24 mmoles, more preferably from 8 mmoles to 18 mmoles equivalent of dimedone or equivalent of XNH2 per kilogram of natural rubber Mode 31: Method according to any one of modes 1 to 30, which method comprises a step of filtering the wet coagulum before step a).
Mode 32 : Caoutchouc naturel de fond de tasse présentant un indice de rétention de plasticité supérieur à 70 et une viscosité Mooney ML (1+4) à 100°C inférieure à 60. Mode 32: Natural cup bottom rubber with a plasticity retention index greater than 70 and a Mooney ML (1 + 4) viscosity at 100 ° C less than 60.
Mode 33 : Caoutchouc naturel de fond de tasse selon le mode 32, lequel caoutchouc naturel a une viscosité Mooney ML (1+4) à 100°C d'au plus 55. Mode 33: Natural cup bottom rubber according to mode 32, which natural rubber has a Mooney ML (1 + 4) viscosity at 100 ° C of not more than 55.
Mode 34 : Caoutchouc naturel de fond de tasse selon le mode 32 ou 33, lequel caoutchouc naturel a une viscosité Mooney ML (1+4) à 100°C de 30 à 55. Mode 34: Natural rubber at the bottom of the cup according to mode 32 or 33, which natural rubber has a Mooney ML (1 + 4) viscosity at 100 ° C from 30 to 55.
Mode 35 : Caoutchouc naturel de fond de tasse selon l'un quelconque des modes 32 à 34, lequel caoutchouc naturel est stabilisé. Mode 35: Natural cup bottom rubber according to any one of modes 32 to 34, which natural rubber is stabilized.
Mode 36 : Caoutchouc naturel de fond de tasse selon l'un quelconque des modes 32 à 35, lequel caoutchouc naturel est dépourvu d'impuretés de taille supérieure à 0.5 mm. Mode 36: Natural cup bottom rubber according to any one of modes 32 to 35, which natural rubber is free from impurities larger than 0.5 mm.
Les caractéristiques précitées de la présente invention, ainsi que d'autres, seront mieux comprises à la lecture de la description suivante de plusieurs exemples de réalisation de l'invention, donnés à titre illustratif et non limitatif. The aforementioned characteristics of the present invention, as well as others, will be better understood on reading the following description of several exemplary embodiments of the invention, given by way of illustration and not by way of limitation.
Exemple Example
Pour mesurer la viscosité Mooney, on utilise un consistomètre oscillant tel que décrit dans la norme ASTM D1646-2007 (Reapproved 2012). La mesure de la viscosité Mooney se fait selon le principe suivant : le caoutchouc naturel est moulé dans une enceinte cylindrique chauffée à 100°C. Après une minute de préchauffage, le rotor tourne au sein de l'éprouvette à 2 tours/minute et on mesure le couple utile pour entretenir ce mouvement après 4 minutes de 8 rotations. La viscosité Mooney (ML 1+4) est exprimée en "unité Mooney" (UM, avec 1 UM = 0,83 Newton. mètre). To measure Mooney viscosity, an oscillating consistometer as described in ASTM D1646-2007 (Reapproved 2012) is used. Mooney viscosity is measured according to the following principle: natural rubber is molded in a cylindrical chamber heated to 100 ° C. After one minute of preheating, the rotor turns within the specimen at 2 revolutions / minute and the torque useful to maintain this movement is measured after 4 minutes of 8 rotations. The Mooney viscosity (ML 1 + 4) is expressed in "Mooney unit" (MU, with 1 MU = 0.83 Newton.meter).
L'indice de rétention de plasticité (PRI) est mesuré selon la norme ASTM D 3194-04. The plasticity retention index (PRI) is measured according to the ASTM D 3194-04 standard.
La teneur en eau est déterminée avec un dessicateur halogène HB43-S Mettler Toledo. Le dessicateur est un dispositif automatisé qui intègre une coupelle, une balance et un couvercle destiné à fermer la coupelle. La coupelle est positionnée sur la balance. Le couvercle comprend un moyen de chauffage par une lampe halogène, ce moyen de chauffage se déclenchant lorsqu'on rabat le couvercle sur la coupelle. Dans la coupelle, on pèse exactement un échantillon de 10 grammes de caoutchouc naturel : le dispositif enregistre le poids correspondant « a ». On rabat le couvercle pour fermer la coupelle, ce qui déclenche la montée en température pour atteindre une consigne de 160°C. Lorsque le dispositif détecte une diminution de poids inférieure 0.001 g par minute, le dispositif relève un poids « b ». La teneur en eau dans l'échantillon est donnée en pourcentage massique par l'équation suivante : The water content is determined with a Mettler Toledo HB43-S halogen desiccator. The desiccator is an automated device which incorporates a cup, a scale and a cover intended to close the cup. The cup is positioned on the scale. The cover comprises a means of heating by a halogen lamp, this heating means being triggered when the cover is folded back on the cup. In the cup, a sample of 10 grams of natural rubber is weighed exactly: the device registers the corresponding weight "a". The cover is closed to close the cup, which triggers the temperature rise to reach a set point of 160 ° C. When the device detects a decrease in weight of less than 0.001 g per minute, the device detects a weight "b". The water content in the sample is given as a mass percentage by the following equation:
Teneur en eau {%) = 100*((a-b)/a) Préparation des caoutchoucs naturels de fond de tasse NR1 et NR2 selon un procédé non conforme à l'invention : Water content {%) = 100 * ((ab) / a) Preparation of natural cup bottom rubbers NR1 and NR2 according to a process not in accordance with the invention:
On alimente une extrudeuse d'un coagulum de fond de tasse sous la forme de granulés ayant une teneur en eau de 24%. L' extrudeuse est une extrudeuse monovis, elle est équipée d'une filière à trous en bout de vis et d'un granulateur disposé en sortie de filière. L'extrudeuse comporte une double enveloppe, son fourreau présente dans la zone d'alimentation des moyens d'évacuation d'eau (rainures, fentes, trous). La vitesse de la vis est de 150 tour/min, la pression est de 63 bars, la température du coagulum est de 174°C, la température et la pression étant mesurées par des capteurs positionnés au plus près de la filière, entre la filière et l'extrémité de la vis la plus proche de la filière. Sorti d'extrudeuse, le coagulum sous la forme de granulés est séché sur un tamis vibrant à air chaud à une température de 119°C pendant environ 5 minutes. On récupère le caoutchouc naturel NR1 et on mesure sa viscosité Mooney et son indice de rétention de plasticité reportés dans le tableau 1. A cup bottom coagulum is fed to an extruder in the form of granules having a water content of 24%. The extruder is a single screw extruder, it is equipped with a die with holes at the end of the screw and a granulator placed at the die outlet. The extruder has a double casing, its sheath having water discharge means (grooves, slots, holes) in the supply zone. The speed of the screw is 150 revolutions / min, the pressure is 63 bars, the temperature of the coagulum is 174 ° C, the temperature and the pressure being measured by sensors positioned as close as possible to the die, between the die and the end of the screw closest to the die. Coming out of an extruder, the coagulum in the form of granules is dried on a vibrating sieve with hot air at a temperature of 119 ° C. for about 5 minutes. The natural rubber NR1 is recovered and its Mooney viscosity and its plasticity retention index reported in Table 1 are measured.
Au lieu d'être séché selon le mode opératoire décrit ci-dessus, le même coagulum de départ que celui utilisé pour alimenter l'extrudeuse, également sous la forme de granulés, a été séché selon un procédé traditionnel classiquement utilisé pour la fabrication du grade TSR20, c'est-à-dire un séchage dans un tunnel sous air chaud à une température allant de 108°C à 125°C pendant 4h30 minutes. On récupère le caoutchouc naturel NR2 et on mesure sa viscosité Mooney et son indice de rétention de plasticité reportés dans le tableau 1.Instead of being dried according to the procedure described above, the same starting coagulum as that used to feed the extruder, also in the form of granules, was dried according to a traditional method conventionally used for the manufacture of the grade. TSR20, i.e. drying in a hot air tunnel at a temperature ranging from 108 ° C to 125 ° C for 4h30 minutes. The natural rubber NR2 is recovered and its Mooney viscosity and its plasticity retention index reported in Table 1 are measured.
La viscosité Mooney et l'indice de rétention de plasticité des caoutchoucs naturels NR1 et NR2 sont mesurés. The Mooney viscosity and the plasticity retention index of natural rubbers NR1 and NR2 are measured.
Préparation des caoutchoucs naturels de fond de tasse NR3 à NR7 selon un procédé conforme à l'invention : Preparation of natural cup bottom rubbers NR3 to NR7 according to a process in accordance with the invention:
Les caoutchoucs naturels NR3 à NR7 sont préparés selon un procédé qui se différencie du procédé de fabrication de NR1 en ce que l'introduction du coagulum humide dans l'extrudeuse est précédée d'une étape d'arrosage par une solution de peptisant selon les conditions suivantes. The natural rubbers NR3 to NR7 are prepared according to a process which differs from the manufacturing process for NR1 in that the introduction of the wet coagulum into the extruder is preceded by a sprinkling step with a solution of peptizer depending on the conditions. following.
Pour NR3 : 20 kg de granulés humides sont arrosés trois fois de suite par 10 litres d'une solution aqueuse de disulfure du 2-dibenzamido diphényle concentrée à 1.5 g/L de solution aqueuse. For NR3: 20 kg of wet granules are sprayed three times in a row with 10 liters of an aqueous solution of 2-dibenzamido diphenyl disulfide concentrated at 1.5 g / L of aqueous solution.
Pour NR4 : 20 kg de granulés humides sont arrosés trois fois de suite par 10 litres d'une solution aqueuse de 2,6-di-tert.-butyl-p-crésol concentrée à 0.5 g/L de solution aqueuse. Pour NR5 : 20 kg de granulés humides sont arrosés trois fois de suite par 10 litres d'une solution aqueuse de 2,6-di-tert.-butyl-p-crésol concentrée à 1 g/L de solution aqueuse.For NR4: 20 kg of wet granules are sprayed three times in succession with 10 liters of an aqueous solution of 2,6-di-tert.-butyl-p-cresol concentrated at 0.5 g / L of aqueous solution. For NR5: 20 kg of wet granules are sprayed three times in succession with 10 liters of an aqueous solution of 2,6-di-tert.-butyl-p-cresol concentrated at 1 g / L of aqueous solution.
Pour NR6 : 20 kg de granulés humides sont arrosés trois fois de suite par 10 litres d'une solution aqueuse de 2,6-di-tert.-butyl-p-crésol concentrée à 1.5 g/L de solution aqueuse. Pour NR7 : 20 kg de granulés humides sont arrosés trois fois de suite par 10 litres d'une solution aqueuse de 2,6-di-tert.-butyl-p-crésol concentrée à 1 g/L de solution aqueuse. Après séchage sur le tamis vibrant, les caoutchoucs naturels NR3 à NR6 sont récupérés et leur viscosité Mooney et leur indice de rétention de plasticité mesurés. Les valeurs sont reportées dans le tableau 1. For NR6: 20 kg of wet granules are sprayed three times in succession with 10 liters of an aqueous solution of 2,6-di-tert.-butyl-p-cresol concentrated at 1.5 g / L of aqueous solution. For NR7: 20 kg of wet granules are sprayed three times in succession with 10 liters of an aqueous solution of 2,6-di-tert.-butyl-p-cresol concentrated at 1 g / L of aqueous solution. After drying on the vibrating screen, the natural rubbers NR3 to NR6 are recovered and their Mooney viscosity and their plasticity retention index measured. The values are reported in Table 1.
Le caoutchouc naturel NR7 est préparé selon un mode de réalisation particulier du procédé conforme à l'invention, puisqu'un stabilisant de viscosité est ajouté au caoutchouc naturel selon les conditions décrites ci-après : NR7 natural rubber is prepared according to a particular embodiment of the process according to the invention, since a viscosity stabilizer is added to natural rubber under the conditions described below:
Une solution aqueuse de sulfate d'hydroxylamine à 150 g/L de solution est injectée en continu dans le fourreau de l'extrudeuse alimentée par le mélange de coagulum humide de caoutchouc naturel et de peptisant, à raison de 0.08 partie en poids de sulfate d'hydroxylamine pour 100 parties en poids de caoutchouc naturel sec. La pression au point d'injection est de 11.8 bars et la température du mélange de coagulum humide et de peptisant au point d'injection est de 166 degrés. An aqueous solution of hydroxylamine sulfate at 150 g / L of solution is injected continuously into the barrel of the extruder supplied with the mixture of wet coagulum of natural rubber and peptizer, at a rate of 0.08 part by weight of sulfate d hydroxylamine per 100 parts by weight of dry natural rubber. The pressure at the point of injection is 11.8 bars and the temperature of the mixture of wet coagulum and peptizer at the point of injection is 166 degrees.
Les viscosités Mooney et les indices de rétention de plasticité des caoutchoucs naturels récupérés NR1 à NR7 sont mesurés avant leur stockage. Les valeurs sont reportées dans le tableau 1. The Mooney viscosities and the plasticity retention indices of the natural rubbers NR1 to NR7 recovered are measured before their storage. The values are reported in Table 1.
La viscosité Mooney et l'indice de rétention de plasticité du caoutchouc naturel NR7 aussi mesurés après stockage sous air ambiant à 25°C pendant deux mois figurent dans le tableau 2. The Mooney viscosity and the plasticity retention index of natural rubber NR7 also measured after storage in ambient air at 25 ° C for two months are shown in Table 2.
Tableau 1
Figure imgf000017_0001
Table 1
Figure imgf000017_0001
Tableau 2
Figure imgf000017_0002
Table 2
Figure imgf000017_0002
Les résultats montrent que comparativement au procédé de fabrication du caoutchouc naturel de fond de tasse de grade TSR20, le procédé conforme à l'invention conduit à l'obtention de caoutchoucs naturels qui présentent avant leur stockage un compromis amélioré entre leur résistance au vieillissement par thermooxydation et leur aptitude à être travaillés dans des outils de mélangeage ou de calandrage. En effet, l'indice de rétention de plasticité des caoutchoucs naturels NR3 à NR7 avant stockage est supérieur à celui de NR2, tandis que leur viscosité Mooney est bien inférieure à celle de NR2. Le procédé non conforme à l'invention et utilisé pour la synthèse de NR1 conduit à la synthèse du caoutchouc naturel d'indice de rétention très élevé, mais sa viscosité Mooney également très élevée est défavorable à la productivité d'une ligne de fabrication de composition à base de caoutchouc naturel. Le mode de réalisation particulier du procédé conforme à l'invention qui conduit à l'obtention de NR7 présente en outre l'avantage de conserver le compromis amélioré de propriétés même après stockage. The results show that compared to the process for manufacturing the TSR20 grade natural cup bottom rubber, the process according to the invention leads to the production of natural rubbers which, before their storage, exhibit an improved compromise between their resistance to aging by thermooxidation. and their suitability for working in mixing or calendering tools. Indeed, the plasticity retention index of natural rubbers NR3 to NR7 before storage is higher than that of NR2, while their Mooney viscosity is much lower than that of NR2. The process not in accordance with the invention and used for the synthesis of NR1 leads to the synthesis of natural rubber with a very high retention index, but its Mooney viscosity, also very high, is unfavorable to the productivity of a composition production line. made from natural rubber. The particular embodiment of the process in accordance with the invention which results in the production of NR7 also has the advantage of retaining the improved compromise of properties even after storage.

Claims

Revendications Claims
1. Procédé de traitement d'un caoutchouc naturel qui comprend l'extrusion d'un mélange d'un coagulum humide de caoutchouc naturel et d'un peptisant dans une machine à vis sans fin équipée d'un fourreau, dans lequel tourne la vis, et d'une filière à trous en bout de vis, procédé dans lequel : a) le mélange est comprimé à une température supérieure ou égale à 130°C et inférieure ou égale à 210°C dans le fourreau, b) une détente éclair adiabatique à une pression différentielle supérieure ou égale à 40 bars est réalisée en sortie de filière. 1. A method of processing a natural rubber which comprises extruding a mixture of a wet coagulum of natural rubber and a peptizer in a worm machine equipped with a sheath, in which the screw turns. , and a die with holes at the end of the screw, process in which: a) the mixture is compressed at a temperature greater than or equal to 130 ° C and less than or equal to 210 ° C in the sheath, b) a flash expansion adiabatic at a differential pressure greater than or equal to 40 bars is produced at the die outlet.
2. Procédé selon la revendication 1 dans lequel la machine à vis sans fin est alimentée avec le mélange de coagulum humide de caoutchouc naturel et de peptisant par une trémie équipant la machine à vis sans fin. 2. The method of claim 1 wherein the worm machine is fed with the mixture of wet coagulum of natural rubber and peptizer by a hopper equipping the worm machine.
3. Procédé selon la revendication 1 ou 2 dans lequel le caoutchouc naturel est un caoutchouc naturel de fond de tasse. 3. The method of claim 1 or 2 wherein the natural rubber is a natural cup bottom rubber.
4. Procédé selon l'une quelconque des revendications 1 à 3 dans lequel le coagulum humide contient plus de 5% en masse d'eau, notamment entre 5 et 40% en masse d'eau. 4. Method according to any one of claims 1 to 3 wherein the wet coagulum contains more than 5% by weight of water, in particular between 5 and 40% by weight of water.
5. Procédé selon l'une quelconque des revendications 1 à 4 dans lequel le coagulum humide contient entre 8 et 30% en masse d'eau, préférentiellement entre 8 et 25% en masse d'eau. 5. Method according to any one of claims 1 to 4 wherein the wet coagulum contains between 8 and 30% by weight of water, preferably between 8 and 25% by weight of water.
6. Procédé selon l'une quelconque des revendications 1 à 5 dans lequel le peptisant est un phénol ou un sel métallique d'un phénol ou encore un dithiobisbenzamide. 6. Process according to any one of claims 1 to 5, in which the peptizer is a phenol or a metal salt of a phenol or else a dithiobisbenzamide.
7. Procédé selon l'une quelconque des revendications 1 à 6 dans lequel l'étape a) est précédée d'une étape de trempage d'un coagulum humide de caoutchouc naturel dans une solution aqueuse de peptisant ou d'une étape d'arrosage d'un coagulum humide d'un caoutchouc naturel par une solution aqueuse de peptisant pour former le mélange de coagulum humide de caoutchouc naturel et de peptisant. 7. Method according to any one of claims 1 to 6 wherein step a) is preceded by a step of dipping a wet coagulum of natural rubber in an aqueous solution of peptizer or by a sprinkling step. of a wet coagulum of natural rubber with an aqueous solution of peptizer to form the mixture of wet coagulum of natural rubber and peptizer.
8. Procédé selon la revendication 7 dans lequel le coagulum humide est arrosé avec une solution aqueuse de peptisant à raison 0.1 à 1 litre de solution par kilogramme de caoutchouc naturel sec, la solution ayant une concentration allant de 0.05 à 3 grammes de peptisant par litre de solution. 8. The method of claim 7 wherein the wet coagulum is sprinkled with an aqueous solution of peptizer at a rate of 0.1 to 1 liter of solution per kilogram of dry natural rubber, the solution having a concentration ranging from 0.05 to 3 grams of peptizer per liter. of solution.
9. Procédé selon l'une quelconque des revendications 1 à 8 dans lequel le caoutchouc naturel récupéré en sortie de filière est séché par un séchage complémentaire, de préférence par convection, de manière préférentielle au moyen d'un lit fluidisé, de manière plus préférentielle au moyen d'un tamis vibrant à air chaud. 9. A method according to any one of claims 1 to 8 wherein the natural rubber recovered at the outlet of the die is dried by additional drying, preferably by convection, preferably by means of a fluidized bed, more preferably. by means of a hot air vibrating sieve.
10. Procédé selon la revendication 9 dans lequel le séchage complémentaire est un séchage par convection sous air à une température allant de 90°C à 180°C, de préférence de 110°C à 130°C. 10. The method of claim 9 wherein the additional drying is drying by convection in air at a temperature ranging from 90 ° C to 180 ° C, preferably from 110 ° C to 130 ° C.
11. Procédé selon la revendication 9 ou 10 dans lequel, avant le séchage complémentaire, le caoutchouc naturel récupéré en sortie de filière est découpé par un moyen apte à découper le caoutchouc naturel et disposé en aval de la filière, de préférence un granulateur. 11. The method of claim 9 or 10 wherein, before the additional drying, the natural rubber recovered at the outlet of the die is cut by means suitable for cutting natural rubber and disposed downstream of the die, preferably a granulator.
12. Procédé selon l'une quelconque des revendications 1 à 11, lequel procédé comprend une étape au cours de laquelle est ajouté un stabilisant de viscosité. 12. Method according to any one of claims 1 to 11, which method comprises a step during which a viscosity stabilizer is added.
13. Procédé selon l'une quelconque des revendications 1 à 12, lequel procédé comprend une étape de filtration du coagulum humide avant l'étape a). 13. A method according to any one of claims 1 to 12, which method comprises a step of filtering the wet coagulum before step a).
14. Caoutchouc naturel de fond de tasse présentant un indice de rétention de plasticité supérieur à 70 et une viscosité Mooney ML(l+4) à 100°C inférieure à 60, lequel caoutchouc naturel est de préférence stabilisé. 14. Natural cup bottom rubber having a plasticity retention index greater than 70 and a Mooney ML (1 + 4) viscosity at 100 ° C less than 60, which natural rubber is preferably stabilized.
15. Caoutchouc naturel de fond de tasse selon la revendication 14, lequel caoutchouc naturel est dépourvu d'impuretés de taille supérieure à 0.5 mm. 15. Natural rubber for the cup base according to claim 14, which natural rubber is free from impurities of a size greater than 0.5 mm.
PCT/FR2020/052269 2019-12-04 2020-12-03 Method for preparing natural rubber WO2021111082A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1913730 2019-12-04
FR1913730A FR3104156B1 (en) 2019-12-04 2019-12-04 process for preparing a natural rubber

Publications (1)

Publication Number Publication Date
WO2021111082A1 true WO2021111082A1 (en) 2021-06-10

Family

ID=69375643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/052269 WO2021111082A1 (en) 2019-12-04 2020-12-03 Method for preparing natural rubber

Country Status (2)

Country Link
FR (1) FR3104156B1 (en)
WO (1) WO2021111082A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3124417A1 (en) * 2021-06-29 2022-12-30 Compagnie Generale Des Etablissements Michelin Process for the preparation of a natural rubber
WO2023198518A1 (en) 2022-04-15 2023-10-19 Compagnie Generale Des Etablissements Michelin Method for decontaminating natural rubber by filtration of a wet coagulum of natural rubber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015189365A1 (en) 2014-06-13 2015-12-17 Compagnie Generale Des Etablissements Michelin Method for preparing a natural rubber
WO2016162645A2 (en) 2015-04-10 2016-10-13 Compagnie Generale Des Etablissements Michelin Removal of contaminants from wet natural rubber
WO2017085109A1 (en) 2015-11-17 2017-05-26 Compagnie Generale Des Etablissements Michelin Process for preparing a stabilized natural rubber
FR3051795A1 (en) * 2016-05-31 2017-12-01 Michelin & Cie PROCESS FOR DRYING NATURAL RUBBER
WO2018224773A1 (en) 2017-06-07 2018-12-13 Compagnie Generale Des Etablissements Michelin Method for decontaminating natural rubber by high-pressure filtration of a wet coagulum of natural rubber
WO2019102109A1 (en) * 2017-11-23 2019-05-31 Compagnie Generale Des Etablissements Michelin Natural rubber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015189365A1 (en) 2014-06-13 2015-12-17 Compagnie Generale Des Etablissements Michelin Method for preparing a natural rubber
WO2016162645A2 (en) 2015-04-10 2016-10-13 Compagnie Generale Des Etablissements Michelin Removal of contaminants from wet natural rubber
WO2017085109A1 (en) 2015-11-17 2017-05-26 Compagnie Generale Des Etablissements Michelin Process for preparing a stabilized natural rubber
FR3051795A1 (en) * 2016-05-31 2017-12-01 Michelin & Cie PROCESS FOR DRYING NATURAL RUBBER
WO2018224773A1 (en) 2017-06-07 2018-12-13 Compagnie Generale Des Etablissements Michelin Method for decontaminating natural rubber by high-pressure filtration of a wet coagulum of natural rubber
WO2019102109A1 (en) * 2017-11-23 2019-05-31 Compagnie Generale Des Etablissements Michelin Natural rubber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3124417A1 (en) * 2021-06-29 2022-12-30 Compagnie Generale Des Etablissements Michelin Process for the preparation of a natural rubber
WO2023275450A1 (en) * 2021-06-29 2023-01-05 Compagnie Generale Des Etablissements Michelin Method for preparing a natural rubber
WO2023198518A1 (en) 2022-04-15 2023-10-19 Compagnie Generale Des Etablissements Michelin Method for decontaminating natural rubber by filtration of a wet coagulum of natural rubber
FR3134533A1 (en) 2022-04-15 2023-10-20 Compagnie Generale Des Etablissements Michelin Process for decontaminating natural rubber by filtration of a moist coagulum of natural rubber.

Also Published As

Publication number Publication date
FR3104156A1 (en) 2021-06-11
FR3104156B1 (en) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2021111082A1 (en) Method for preparing natural rubber
EP3464387B1 (en) Drying process of natural rubber
WO2022064144A1 (en) Method for processing natural rubber
WO2017085109A1 (en) Process for preparing a stabilized natural rubber
CH622275A5 (en)
WO2020094992A1 (en) Method for processing natural rubber
WO2019102107A1 (en) Method for processing natural rubber
EP0215082B1 (en) Method for the preparation of solutions of lignocellulosic materil and solutions obtained thereby
EP3580243B1 (en) Guayule latex extrusion
WO2021224568A1 (en) Method for preparing stabilized natural rubber
BE670052A (en)
FR2627498A1 (en) PROCESS FOR TREATING POLYPROPYLENE
WO2019102108A1 (en) Process for treating a natural rubber
EP3713771A1 (en) Natural rubber
WO2023275450A1 (en) Method for preparing a natural rubber
JPH0428331B2 (en)
FR2783740A1 (en) MATERIAL BASED ON PLANT MATERIAL FROM CEREAL PLANTS AND PROCESS FOR OBTAINING SAME
WO2014189080A1 (en) Process for producing purified polysaccharide fiber, purified polysaccharide fiber and tire
FR2565977A1 (en) PROCESS FOR PURIFYING MERCAPTOBENZOTHIAZOLE
FR2487821A1 (en) PROCESS FOR THE PREPARATION OF PURIFIED BROMINE AROMATIC COMPOUNDS
WO2004081094A1 (en) Method for the recovery of a vinyl alcohol polymer in solution
JP2001114337A (en) Cellulose food casing, cellulose compound and method for manufacturing these items
KR20220052929A (en) Systems and methods for processing guaryl rubber
FR2483927A1 (en) Anhydrous lactose prodn. from alpha-lactose hydrate - by extrusion at high temp. to give prod. for use as pharmaceutical carrier
BE554975A (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20828047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20828047

Country of ref document: EP

Kind code of ref document: A1