WO2021111019A1 - Method for obtaining integral carbon monoliths and carbon monoliths obtained - Google Patents

Method for obtaining integral carbon monoliths and carbon monoliths obtained Download PDF

Info

Publication number
WO2021111019A1
WO2021111019A1 PCT/ES2020/070731 ES2020070731W WO2021111019A1 WO 2021111019 A1 WO2021111019 A1 WO 2021111019A1 ES 2020070731 W ES2020070731 W ES 2020070731W WO 2021111019 A1 WO2021111019 A1 WO 2021111019A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
monoliths
carbonaceous
mold
process according
Prior art date
Application number
PCT/ES2020/070731
Other languages
Spanish (es)
French (fr)
Inventor
Miguel Ángel CENTENO GALLEGO
José Luis SANTOS MUÑOZ
José Antonio ODRIOZOLA GORDON
José de Jesús DÍAZ VELÁSQUEZ
Yazmin Yaneth AGÁMEZ PERTUZ
Nicolás RODRÍGUEZ RIAÑO
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universidad De Sevilla
Universidad Nacional De Colombia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universidad De Sevilla, Universidad Nacional De Colombia filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2021111019A1 publication Critical patent/WO2021111019A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity

Definitions

  • the present invention relates to the preparation of integral carbon monoliths starting from carbonaceous materials of different nature that can be used as supports in fixed bed catalytic reactions.
  • carbonaceous materials are interesting since they have advantages such as:
  • the main differences are the variation of the carbonaceous precursor, which is usually an activated carbon, the inclusion of different binders such as hydrolyzed cellulose or polyfurfuryl alcohol, and plasticizers; the so-called extrusion method being the most common synthesis.
  • the carbonaceous precursor which is usually an activated carbon
  • binders such as hydrolyzed cellulose or polyfurfuryl alcohol, and plasticizers
  • the extrusion product is limiting in the physical forms that can be obtained since it is very weak against mechanical stress.
  • a binding agent under specific conditions is included in its initial stages, which consists of a synthetic polymer of resorcinol-formaldehyde together with one of natural origin such as soluble starch, to bind in an improved way to the carbonaceous materials used, in order to avoid the stages most investigated by said author such as activation and extrusion.
  • Gatica et al. (Catalysis Today, 2015. 249: p. 86-93) prepared beehive-like monoliths with a cell density of 13.7 units / cm 2 combining carbonaceous precursors (a commercial activated carbon and a natural carbon supplied by the National Carbon Institute in Spain). They were based on the methodology that states that any ceramic paste with a 'liquid limit' between 40-60% and a plasticity index between 10-30% can be extruded.
  • binders to achieve the carbonaceous paste; These include methylcellulose, starch, polyvinyl alcohol, hydroxymethylcellulose, and potato starch dextrin; as plasticizers polyethylene glycol, and glycerin; as deflocculants ammonium polyacrylate and oleic acid; as lubricants aluminum stearate and stearic acid; as dispersant aluminum phosphate hydrated and dissolved in o-phosphoric acid and, as humidifiers, ethanol and kerosene.
  • results are revealed with different carbonaceous materials and different binders, but the responsibility of the mechanical properties is attributed to the ceramic resin.
  • US Patent No. 4677086 to Me Cue et al. reveals the preparation of an activated carbon from wood with pores smaller than one (1) micron in diameter and a higher bulk density.
  • the process of the invention consists of grinding the granular activated carbon until obtaining a fine powder, which is mixed with a selected liquid that can be water or another polar solvent and bentonite. The mixture is then shaped and the shaped activated carbon is dried to remove the liquid present. Finally, a heat treatment is performed to calcine or fix the clay binder.
  • integral carbon monoliths are applied as catalytic supports or as a catalyst itself, in which the inorganic matter present can catalyze unwanted side reactions, promote poisoning of the active phase, or even inhibit the reactions of interest. .
  • U.S. Patent No. 4124529 presents the procedure to obtain shaped adsorbents from the pyrolysis of different carbonaceous sources such as mineral coal, oxidized mineral coal, charcoal, lignites or low temperature cokes with different binding agents such as butadiene-acrylonitrile or butadiene-styrene and materials thermoplastics such as polyvinyl alcohol, polypropylene, or a mixture thereof.
  • different carbonaceous sources such as mineral coal, oxidized mineral coal, charcoal, lignites or low temperature cokes with different binding agents such as butadiene-acrylonitrile or butadiene-styrene and materials thermoplastics such as polyvinyl alcohol, polypropylene, or a mixture thereof.
  • binding agents such as butadiene-acrylonitrile or butadiene-styrene
  • materials thermoplastics such as polyvinyl alcohol, polypropylene, or a mixture thereof.
  • strong emphasis is placed on the pyrolysis and activation conditions
  • US Patent No. 5389325 discloses a process for manufacturing shaped activated carbons using a solid phenolic resin of phenol formaldehyde between 5-35%, an organic binder between 4-10% such as cellulose ether, cellulose ether derivatives and combinations .
  • the extrusion method is used to form a beehive-like structure and the resin is dried at 363 K.
  • the use of the carbonaceous structure is restricted, since in the vast majority of catalytic reactions in which structured monoliths arouse interest are carried out at temperatures between 453 - 1173 K, very high temperatures at which these types of resin would undergo decomposition reactions due to their thermal stability.
  • Patent CA 2442243 reveals the manufacture of spherical shaped activated carbon using a cellulose polymer as a binder such as sodium carboxymethylcellulose or starch, an organic compound that favors extrusion, increases mechanical resistance and generates the formation of spheres of activated carbon, but whose cost can triple that of other organic binders such as soluble starch.
  • the improvement is attributed to the crosslinking reaction that is generated between activated carbon and sodium carboxymethylcellulose.
  • two advantages are pointed out: the production of the spheres at a very low temperature (543 K), and better properties such as lower density, lower ash content and greater stability in water, the latter when comparing the materials obtained with materials from the same dimensions prepared with clay as a binder.
  • the procedure reveals the use of water as a solvent, a urea-formaldehyde resin, and a carboxymethylcellulose or starch binder.
  • This invention uses commercial polymers that, when pyrolyzed at the given temperatures, generate little or no surface area in the monoliths.
  • Patent CA 2639955 reveals the manufacture of carbon monoliths from the carbonization and activation of resole beads as the only carbonaceous source, which are polymers obtained by the condensation of phenol and formaldehyde with a basic catalyst NH 4 OH, in water, ethanol and methanol in different proportions as solvents and a colloidal stabilizer and / or binders such as sodium carboxymethylcellulose and sodium dodecyl sulfate.
  • Abundant and available carbonaceous materials such as mineral coals, commercial activated carbons, another type of low-cost carbonaceous source or another material of a different nature are not covered in this work.
  • a post-carbonization activation is required in the final process.
  • the main object of the present invention is to provide a process for the preparation of integral carbon monoliths, which includes: the use of carbonaceous materials of different nature (commercial activated carbon, pyrolyzed mineral carbon, synthetic carbonized, among others) , the inclusion of a synthetic polymer based on the polycondensation of resorcinol and formaldehyde with an inorganic catalyst prepared in aqueous and organic solvents, and the insertion of a low-cost natural polymer that modifies in a controlled way the structural and surface properties of the monoliths.
  • monoliths have defined and controlled surface characteristics, due to the contribution of the two carbonaceous sources, both the resin and the carbonaceous material. In this way, the possible use of any carbonaceous material for the manufacture of monoliths is expanded.
  • the use of different solvents provides the advantage of working with carbonaceous materials with hydrophilic, hydrophobic or amphoteric character for the production of monoliths.
  • the incorporation of the low-cost binder improves the structural properties of the monoliths, generating microporosity in them in a controlled manner and increasing the crosslinking of phenolic rings when reacting with the synthetic polymer.
  • a further aspect of the invention is the manufacture of integral carbon monoliths using different heating rates during the pyrolysis process.
  • Figure 2. Diffractograms of the monoliths obtained using different solvents.
  • Figure 3. Diffractograms of the monoliths obtained using different heating rates in the pyrolysis stage.
  • the present invention refers to a process for obtaining integral carbon monoliths using carbonaceous materials of different nature, which comprises the following steps: a) Preparation of a precursor solution (DP) of the resorcinol-formaldehyde polymer using a basic catalyst and a starch polymer of natural origin b) Stabilization of the precursor solution of step a); c) Grinding and sieving of the carbonaceous material; d) Packing of the carbonaceous material previously ground and sieved together with the precursor solution, in a mold previously designed and manufactured using 3D printing; e) Gelling and curing of the packaged material in step d) at a temperature between 335 K and 345 K; f) Carbonization of the mold with the cured material in step e) under temperature conditions between 900 and 1200 K heating at a speed between 5 and 15 K / min.
  • the process of the present invention makes it possible to obtain structured materials with fully defined geometries and preserving properties of the carbonaceous source.
  • the carbonaceous material is selected from an activated carbon, a carbonizate of a mineral coking carbon, and a synthetic carbonizate such as an airgel or carbon xerogel.
  • - PD is prepared by dissolving resorcinol in a solvent (water, ethanol, polyethylene glycol or polyethylene glycol with 1% by weight of polyvinyl alcohol - PVA) in a proportion of 2 mL of solvent per gram of resorcinol , sodium carbonate (Na 2 CO 3 ) as polymerization catalyst in 1: 300 molar ratio resorcinol / catalyst, starch as binder between 1 and 15%, preferably 5%, by weight relative to the amount of initial resorcinol and formaldehyde in relation 1: 2 molar relative to resorcinol (step a).
  • a solvent water, ethanol, polyethylene glycol or polyethylene glycol with 1% by weight of polyvinyl alcohol - PVA
  • the sources used are activated carbon, coke obtained from the carbonization of a low volatile bituminous mineral coal and a carbon airgel or xerogel obtained from the pyrolysis of DP in the absence of another carbonaceous source.
  • the carbonaceous source must be at a particle size less than 600 ⁇ m.
  • step c the carbonaceous sample is ground and sieved until the whole is at the indicated particle size (step c).
  • packing can be carried out by adding the carbonaceous source into the mold up to a height of 1 cm. The DP is then slowly dripped until the carbonaceous material is completely wetted (step d). This procedure is repeated until the height of the mold used is completed, filling the multilayer mold. The amount of DP used varies according to the carbonaceous source.
  • packing is carried out with the assistance of ultrasound, pouring a suspension of the carbonaceous source and the DP into the mold filling it up to 95% of its height.
  • packaging is carried out by introducing into the mold, the entire carbonaceous source, followed by a dropwise impregnation to pore volume with the precursor solution of synthetic polymer and natural polymer assisted by ultrasound.
  • the mold with the carbonaceous source already packed gels and cures by placing it in a completely sealed container with a lid to avoid evaporation of the solvent. This, in turn, is brought into an oven at a temperature that can be selected between 335 and 345 K and is left for a selected time between 72 and 144 h (step e).
  • the mold is introduced into a tubular oven under a nitrogen atmosphere at a flow of 100 mL / min and the pyrolysis process is carried out at a heating rate selected between 2 and 15 K / min up to 1073 K; once said temperature is reached, it is maintained for 2 h (stage f).
  • the pyrolysis conditions used make it possible to eliminate the mold and obtain the formed monolith or carbonaceous material.
  • Another object of the present invention is a carbon monolith obtained by the process as described above, which has:
  • DP is prepared to carry out the polycondensation reaction between resorcinol and formaldehyde (1: 2 molar ratio), using sodium carbonate as a catalyst and water, 96% ethanol, polyethylene glycol or polyethylene glycol + 1% PVA as solvents.
  • 9.91 g of resorcinol are dissolved in 18.8 mL of solvent and 13.5 mL of formaldehyde stabilized in 96% ethanol.
  • the mold used was made with a WANHAO DUPLICATOR i3 PLUS printer and PVA as raw material.
  • a WANHAO DUPLICATOR i3 PLUS printer and PVA as raw material.
  • 1.5 g of activated carbon and 6 mL of DP were used.
  • the mold with activated carbon already packed together with the DP is placed in a sealed container and kept for 24 h at 273K. Then it is introduced into a 343 K oven and after 120 h it is removed from it. At this time the monolith curing occurs.
  • the carbonization process is carried out in a reactor horizontal tube at 1073 K for 2 h with a heating rate of 10 K / min in a N 2 flow of 100 mL / min.
  • Figure 1b shows the monolith obtained.
  • the carbonaceous source used is a commercial Darco Sigma-Aldrich activated carbon with a BET area of 892 m 2 / g, a pore volume of 0.73 cm 3 / g, micropore area of 470 m 2 / g (52.7 % of the total area) and an external area of 422 m 2 / g.
  • the total micropore volume is 0.215 cm 3 / g and the average pore size is 0.8 nm.
  • Monolith 1 (m1 Darco / CX-ETOH) obtained using 96% ethanol has a BET surface area of 301 m 2 / g, with a pore volume of 0.40 cm 3 / g, a micropore area calculated by the t-method of 171 m 2 / g (56.8% of the total area) and an external area of 130 m 2 / g (the difference between the BET area and the micropore area).
  • the total micropore volume of 0.078 cm 3 / g and the average pore size obtained by the Density functional theory (DFT) model using a non-localized function is 0, 5 nm, indicating that the majority of pores are in the micropore region.
  • DFT Density functional theory
  • Monolith 2 (m2 Darco / CX-PEG) obtained using polyethylene glycol has a BET surface area of 213 m 2 / g, with a pore volume of 0.24 cm 3 / g, a micropore area calculated by the t-method of 132 m 2 / g (56.8% of the total area) and an external area that mainly represents the mesopore area of 81 m 2 / g (the difference between the BET area and the micropore area).
  • the total micropore volume of 0.065 cm 3 / g and the average pore size obtained by the DFT using a non-localized function is 0.7 nm, indicating that the majority of pores are in the micropore region.
  • Monolith 3 (m3 Darco / CX-PVA) obtained using PVA has a BET surface area of 381 m 2 / g, with a pore volume of 0.39 cm 3 / g, a micropore area calculated by the t-method carbon-black of 223 m 2 / g (58% of the total area) and an external area of 166 m 2 / g (the difference between the BET area and the micropore area).
  • the total micropore volume of 0.103 cm 3 / g and the average pore size obtained by the DFT using a non-localized function is 0.5 nm, indicating that the majority of pores are in the micropore region.
  • Figure 2 shows the diffactograms obtained for commercial activated carbon and the 3 monoliths made with different solvents. All diffractograms exhibit the characteristic features of amorphous carbonaceous materials: the (002) and (100) planes at 25 ° and 44 ° 28 respectively.
  • the peak (002) is due to the ordering of aromatic rings and the (100) is attributed to the degree of condensation of aromatic rings.
  • the sharp peaks located at 21 °, 23 °, 27 °, 36 ° and 51 ° 2 ⁇ correspond to the inorganic matter present in commercial activated carbon and correspond to calcium and silicon oxides.
  • a summary of the structural parameters obtained from the X-ray diffraction is shown in table 1. The value of the interplanar distance of the materials practically remains constant.
  • Pellet-type monoliths obtained from the carbonization of the polycondensation of resorcinol-formaldehyde in water as a solvent were prepared following the methodology set forth in Example 1 for the preparation of the DP.
  • the DP was mixed with the carbonaceous source.
  • the curing time is the same.
  • the carbonization process is carried out in a horizontal tubular reactor at 1073 K for 2 h, varying the heating rates in a flow of N 2 of 100 mL / min.
  • the range of heating speed worked was between 2 and 15 K / min.
  • Table 2 contains a summary of the monoliths obtained at different heating rates during the pyrolysis stage.
  • the BET surface area values vary between 432 and 590 m 2 / g.
  • the micropore volume presents values between 0.12 and 0.16 cm 3 / g and a slight tendency is observed when reducing this respect increases the heating rate.
  • the micropore area percentages of the series of monoliths are between 50 and 70%, the monolith manufactured with a heating rate of 5 K / min being the one with the highest percentage.
  • the external area mainly a consequence of the existence of mesopores and macropores in the monoliths, varies between 130 and 301 m 2 / g and the pore volume between 0.59 and 1.35 cm 3 / g.
  • Figure 3 shows the diffractograms obtained for the pellet-type monoliths obtained by varying the heating rate in the pyrolysis stage. All diffractograms are typical of amorphous carbonaceous materials with typical peaks in the (002) and (100) planes. The total absence of any other type of signal is noted, thus indicating the production of fully organic, integral monoliths with high carbon content, understood by the pyrolysis conditions.
  • Table 3 shows the structural parameters obtained for the monoliths manufactured at different heating rates during carbonization. As can be seen in Table 1 of Example 1, the interplanar height remains close to the same value, 3.7 ⁇ for the monoliths made with different solvents and 3.8 ⁇ for the monoliths obtained with different heating rates in the pyrolysis stage.
  • the crystallite height has values between 13.1 and 15.4 ⁇ .
  • the crystallite diameter shows values between 23.7 and 31.2 ⁇ .
  • the preparation of monoliths is enunciated using as carbonaceous materials: a) carbon xerogel produced by the polycondensation between resorcinol and formaldehyde, using water and ethanol as solvents and b) a coke obtained from the carbonization of a medium volatile bituminous carbon that is used in the metallurgical industry in the production of steel.
  • Table 4 shows a summary of the textural parameters calculated for the coke and carbon xerogel (CX5 10 K / min) used as raw materials and the monoliths defined as m4 CX5 / CX-WATER and m6 CX5 / CX-ETOH .
  • the monolith prepared with coke is defined as m5 Coke / CX-ETOH and is not included in the table as it did not show development of textural properties. It is observed that coke is a mesoporous material with a very low surface area and carbon xerogel a porous material with a contribution of microporosity in the BET area close to 50%. In the m4 CX5 / CX-WATER monolith practically all the microporosity of the CX5 10 K / min disappears and the surface decreases to one tenth, thus defining the obtention of a clearly mesoporous monolith with an average pore diameter of 6.59 nm .
  • Table 5 shows the parameters calculated for the coke, the carbon xerogel and the 3 monoliths prepared.
  • the height and diameter of the coke crystallite present high values compared with the materials previously characterized in tables 1 and 3 since this is a material characterized by presenting a high degree of reordering of graphonic layers in its structure.
  • the monolith m5 Coke / CX-ETOH it is observed that the crystallite height remains the same and the crystallite diameter decreases a little due to the presence of the resorcinol formaldehyde char in the structure of the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a method for preparing integral carbon monoliths, which uses a synthetic resorcinol–formaldehyde polymer together with a polymer of natural origin, such as soluble starch, as a binding agent of carbon materials of different natures. Thus, a process is achieved that allows structured carbon monoliths to be obtained, with and without mineral matter, encompassing a wide range of carbon sources and multiple geometries, by implementing the design and production of extrusion moulds using 3D printing.

Description

PROCEDIMIENTO DE OBTENCION DE MONOUTOS INTEGRALES DE CARBONO Y PROCEDURE FOR OBTAINING INTEGRAL CARBON MONOUTES AND
MONOLITOS DE CARBONO OBTENIDOS CARBON MONOLITHES OBTAINED
DESCRIPCIÓN DESCRIPTION
SECTOR DE LA TÉCNICA TECHNICAL SECTOR
La presente invención se refiere a la preparación de monolitos integrales de carbono partiendo de materiales carbonosos de distinta naturaleza que pueden ser empleados como soportes en reacciones catalíticas de lecho fijo. The present invention relates to the preparation of integral carbon monoliths starting from carbonaceous materials of different nature that can be used as supports in fixed bed catalytic reactions.
ESTADO DE LA TÉCNICA STATE OF THE ART
Después de la alúmina y la sílice, los materiales carbonosos son interesantes ya que presentan ventajas como: After alumina and silica, carbonaceous materials are interesting since they have advantages such as:
- alta resistencia térmica y a medios ácidos o alcalinos, la posibilidad de modificar su estructura a nivel meso, micro y/o nano formando así la opción de manipular su química superficial generando de manera controlada sólidos de diferente porosidad y área superficial, la posibilidad de modificar su naturaleza química para obtener estructuras hidrofóbicas, hidrofílicas o anfóteras, son materiales que en su gran mayoría son de bajo costo, inertes a la mayoría de reacciones indeseadas. - high thermal resistance and acid or alkaline media, the possibility of modifying its structure at the meso, micro and / or nano level, thus forming the option of manipulating its surface chemistry, generating solids of different porosity and surface area in a controlled way, the possibility of modifying Their chemical nature to obtain hydrophobic, hydrophilic or amphoteric structures, are materials that are mostly inexpensive, inert to most unwanted reactions.
Sin embargo, dichos materiales no son los más utilizados debido a gran variedad en sus propiedades por los métodos de preparación y/o modificación dificultando así la reproducibilidad en la síntesis, por la existencia de metales no deseados en concentraciones a nivel de traza presentes como, por ejemplo, la materia mineral en carbones minerales. Actualmente, se preparan materiales carbonosos libres de materia mineral, sintetizados a partir de polímeros orgánicos que permiten el control de sus características estructurales y superficiales. Entre estos, se encuentran los nanotubos y nanofibras de carbono, los carbones vitreos y los aerogeles y xerogeles de carbono. However, these materials are not the most used due to their great variety in their properties due to preparation and / or modification methods, thus hindering the reproducibility in the synthesis, due to the existence of unwanted metals in trace-level concentrations present, such as, for example, the mineral matter in mineral coals. Currently, carbonaceous materials free of mineral matter are prepared, synthesized from organic polymers that allow the control of their structural and surface characteristics. These include carbon nanotubes and nanofibers, vitreous carbons, and carbon aerogels and xerogels.
El principal uso de los materiales carbonosos ha sido en procesos encaminados al control de la contaminación ambiental, la purificación de aguas, la hidrogenadón selectiva de NOx, la oxidadón catalizada de compuestos orgánicos volátiles, la síntesis de biodiesel, el reformado de metano, entre otros. Es bien conoddo en estos procesos, que las caídas de presión en sistemas empaquetados no permiten aprovechar al máximo la porosidad de los materiales y, además presentan problemas de resistencia mecánica y térmica a temperaturas relativamente altas. Para resolver el problema se ha venido investigando un proceso de preparación de soportes y catalizadores con base en materiales carbonosos libres de componentes inorgánicos (excluyendo la fase activa en el caso de los catalizadores) con geometría, porosidad y/o resistencia totalmente definida ya que la geometría, la estructura química y la estructura superficial del sólido son determinantes. The main use of carbonaceous materials has been in processes aimed at controlling environmental pollution, water purification, selective NOx hydrogenation, catalyzed oxidation of volatile organic compounds, biodiesel synthesis, methane reforming, among others. . It is well known in these processes that Pressure in packed systems does not allow to take full advantage of the porosity of the materials and, in addition, they present problems of mechanical and thermal resistance at relatively high temperatures. To solve the problem, a process for the preparation of supports and catalysts based on carbonaceous materials free of inorganic components (excluding the active phase in the case of catalysts) with geometry, porosity and / or fully defined resistance has been investigated since the geometry, chemical structure and surface structure of the solid are determining factors.
Existen diferentes procesos de fabricación de estos materiales. Las principales diferencias son la variación del precursor carbonoso que suele ser un carbón activado, la inclusión de diferentes aglomerantes como celulosa hidrolizada o alcohol polifurfurílico y los plastificantes; siendo el denominado método de extrusión la síntesis más común. There are different manufacturing processes for these materials. The main differences are the variation of the carbonaceous precursor, which is usually an activated carbon, the inclusion of different binders such as hydrolyzed cellulose or polyfurfuryl alcohol, and plasticizers; the so-called extrusion method being the most common synthesis.
Tennison (Applied Catalysis A: General, 1998. 173(2): p. 289-311.) desarrolló una ruta de preparación de carbones derivados de resinas fenólicas para uso como soportes de catalizadores y adsorbentes. La ruta consiste en usar la mezcla fenol-formaldehído comercial (Novolak) como precursor carbonoso. La formación de los materiales desarrollados por Tennison se basa en un proceso de 5 etapas en las que basa su estudio, haciendo énfasis en los procesos de activación y extrusión. Los carbones pueden ser producidos desde granulos simples a estructuras monolíticas grandes. Tenisson hace referencia a la carbonización de un material natural para obtener carbonizados o breas los cuales son extraídos con ayuda de breas de petróleo y posterior activación. El producto de extrusión tiene limitante las formas físicas que pueden ser obtenidas dado que es muy débil frente al estrés mecánico. En el proceso de la presente invención se incluye en sus etapas iniciales la formación de un agente aglomerante en condiciones específicas, el cual consiste en un polímero sintético de resorcinol-formaldehído junto con uno de origen natural como lo es, el almidón soluble, para aglutinar de forma mejorada a los materiales carbonosos utilizados, con el fin de evitar las etapas más investigadas por dicho autor como son la activación y la extrusión. La limitante de debilidad frente al estrés mecánico y de la obtención de diferentes formas físicas es superada por el proceso de la presente invención donde se combina la etapa del mezclado de un polímero sintético con uno de origen natural aunado a la implementación del diseño y fabricación de moldes extrusores empleando impresión 3D; lográndose obtener monolitos estructurados de carbono, con y sin materia mineral. Gadkaree, etal., (Carbón, 2000. 38(7): p. 983-993) exponen en su trabajo la preparación de monolitos tipo colmena combinando carbón activado con diferentes aditivos orgánicos e inorgánicos como polvo de cordierita, fibras de celulosa y acetato de cobalto para generar una pasta que posteriormente se extruye, se carboniza y se activa. Se encontró que la pureza de la resina fenólica influye directamente en la microporosidad del material y que la presencia de catalizadores metálicos cambiaba significativamente la estructura final del material afectando principalmente la meso y macroporosidad. En el trabajo de Gadkaree se incluyen compuestos inorgánicos indeseables en monolitos integrales de carbono. También estudiaron resinas comerciales y el método de fabricación se hizo por extrusión después de haber realizado la carbonización, obteniendo materiales con una fracción cerca del 50% de material inorgánico. En este documento se expresa que el objetivo del trabajo es estudiar el desarrollo de la porosidad en estructuras tipo colmena como una función del nivel de activación y la composición de extrusión. Por lo que, su finalidad se aleja fuertemente del objeto de la presente invención en la cual no se incluyen las etapas de activación y extrusión que son costosas dada la severidad del tratamiento. Por el contrario, en la presente invención se logra obtener monolitos estructurados de carbono, con y sin materia mineral, reduciendo costos a través de la estructuración en múltiples geometrías por la implementación del diseño y fabricación de moldes extrusores empleando impresiónTennison (Applied Catalysis A: General, 1998. 173 (2): p. 289-311.) Developed a route of preparing carbons derived from phenolic resins for use as catalyst supports and adsorbents. The route is to use the commercial phenol-formaldehyde mixture (Novolak) as the carbonaceous precursor. The formation of the materials developed by Tennison is based on a 5-stage process on which it bases its study, with an emphasis on activation and extrusion processes. Coals can be produced from simple granules to large monolithic structures. Tenisson refers to the carbonization of a natural material to obtain charred or pitches which are extracted with the help of oil pitches and subsequent activation. The extrusion product is limiting in the physical forms that can be obtained since it is very weak against mechanical stress. In the process of the present invention, the formation of a binding agent under specific conditions is included in its initial stages, which consists of a synthetic polymer of resorcinol-formaldehyde together with one of natural origin such as soluble starch, to bind in an improved way to the carbonaceous materials used, in order to avoid the stages most investigated by said author such as activation and extrusion. The limitation of weakness in the face of mechanical stress and the obtaining of different physical forms is overcome by the process of the present invention where the stage of mixing a synthetic polymer with one of natural origin is combined together with the implementation of the design and manufacture of extrusion molds using 3D printing; achieving structured carbon monoliths, with and without mineral matter. Gadkaree, et al., (Carbon, 2000. 38 (7): p. 983-993) present in their work the preparation of beehive-type monoliths combining activated carbon with different organic and inorganic additives such as cordierite powder, cellulose fibers and acetate of cobalt to generate a paste that is subsequently extruded, charred and activated. It was found that the purity of the phenolic resin directly influences the microporosity of the material and that the presence of metallic catalysts significantly changed the final structure of the material, mainly affecting the meso and macroporosity. In Gadkaree's work undesirable inorganic compounds are included in integral carbon monoliths. They also studied commercial resins and the manufacturing method was made by extrusion after carbonization, obtaining materials with a fraction of about 50% of inorganic material. In this document it is stated that the objective of the work is to study the development of porosity in beehive-like structures as a function of the activation level and the extrusion composition. Therefore, its purpose is far away from the object of the present invention, which does not include the activation and extrusion steps, which are expensive given the severity of the treatment. On the contrary, in the present invention it is possible to obtain structured carbon monoliths, with and without mineral matter, reducing costs through structuring in multiple geometries by implementing the design and manufacture of extruder molds using printing.
3D. 3D.
Gatica et al. (Catalysis Today, 2015. 249: p. 86-93) prepararon monolitos tipo colmena con una densidad de celda de 13,7 unidades/cm2 combinando precursores carbonosos (un carbón activado comercial y un carbón natural suministrado por el Instituto Nacional de Carbón en España). Se basaron en la metodología que plantea que cualquier pasta cerámica con un 'límite de líquidos' entre un 40-60% y un índice de plasticidad entre 10- 30% puede ser extruida. Para preparar los monolitos se emplearon diferentes aditivos como aglomerantes para lograr la pasta carbonosa; entre estos se tienen metilcelulosa, almidón, polivinil alcohol, hidroximetilcelulosa y dextrina de almidón de patata; como plastificantes polietilenglicol, y glicerina; como defloculantes poliacrilato de amonio y ácido oleico; como lubricantes estearato de aluminio y ácido esteárico; como dispersante fosfato de aluminio hidratado y disuelto en ácido o-fosfórico y, como humidificantes etanol y keroseno. En este trabajo se revelan resultados con diferentes materiales carbonosos y diferentes aglutinantes, pero se le adjudica la responsabilidad de las propiedades mecánicas a la resina cerámica. De esta manera, se obtienen monolitos con una carga mineral indeseada como se ha venido mencionando. La patente U.S. No. 4677086 de Me Cue et al. revela la preparación de un carbón activado a partir de madera con poros de diámetro menores que un (1) micrómetro y una mayor densidad aparente. El proceso de la invención consiste en triturar el carbón activado granular hasta obtener un polvo fino, el cual se mezcla con un líquido seleccionado que puede ser agua u otro solvente polar y bentonita. Luego se le da forma a la mezcla y se procede a secar el carbón activado conformado para eliminar el líquido presente. Por último, se realiza un tratamiento térmico para calcinar o fijar el aglutinante de arcilla. El uso de bentonita como aglomerante para dar forma a carbón activado obtenido a partir de madera introduce materia inorgánica dentro de la forma final obtenida y aumenta significativamente la densidad de la misma, dos características indeseadas en monolitos integrales de carbono. Como se mencionó anteriormente, los monolitos integrales de carbono se aplican como soportes catalíticos o como catalizador en sí mismo, en los cuales, la materia inorgánica presente puede catalizar reacciones secundarias indeseadas, fomentar el envenenamiento de la fase activa o incluso inhibir las reacciones de interés. Gatica et al. (Catalysis Today, 2015. 249: p. 86-93) prepared beehive-like monoliths with a cell density of 13.7 units / cm 2 combining carbonaceous precursors (a commercial activated carbon and a natural carbon supplied by the National Carbon Institute in Spain). They were based on the methodology that states that any ceramic paste with a 'liquid limit' between 40-60% and a plasticity index between 10-30% can be extruded. To prepare the monoliths, different additives were used as binders to achieve the carbonaceous paste; These include methylcellulose, starch, polyvinyl alcohol, hydroxymethylcellulose, and potato starch dextrin; as plasticizers polyethylene glycol, and glycerin; as deflocculants ammonium polyacrylate and oleic acid; as lubricants aluminum stearate and stearic acid; as dispersant aluminum phosphate hydrated and dissolved in o-phosphoric acid and, as humidifiers, ethanol and kerosene. In this work, results are revealed with different carbonaceous materials and different binders, but the responsibility of the mechanical properties is attributed to the ceramic resin. In this way, monoliths with an unwanted mineral charge are obtained, as has been mentioned. US Patent No. 4677086 to Me Cue et al. reveals the preparation of an activated carbon from wood with pores smaller than one (1) micron in diameter and a higher bulk density. The process of the invention consists of grinding the granular activated carbon until obtaining a fine powder, which is mixed with a selected liquid that can be water or another polar solvent and bentonite. The mixture is then shaped and the shaped activated carbon is dried to remove the liquid present. Finally, a heat treatment is performed to calcine or fix the clay binder. The use of bentonite as a binder to shape activated carbon obtained from wood introduces inorganic matter into the final form obtained and significantly increases its density, two unwanted characteristics in integral carbon monoliths. As mentioned above, integral carbon monoliths are applied as catalytic supports or as a catalyst itself, in which the inorganic matter present can catalyze unwanted side reactions, promote poisoning of the active phase, or even inhibit the reactions of interest. .
La patente U.S. No. 4124529 presenta el procedimiento para obtener adsorbentes conformados a partir de la pirólisis de diferentes fuentes carbonosas como carbón mineral, carbón mineral oxidado, carbón vegetal, lignitos o coques de baja temperatura con diferentes agentes aglutinantes como butadieno-acrilonitrilo o butadieno-estireno y materiales termoplásticos como polivinil alcohol, polipropileno o una mezcla de los mismos. En esta patente se hace fuerte énfasis en las condiciones de pirólisis y activación al emplear un rango de temperaturas de 673-1273 K y velocidades de calentamiento de 5 a 10 K/min. El uso de aglutinantes, materiales termoestables, temperaturas altas de carbonización y una activación con dióxido de carbono incrementan los costos de producción significativamente frente a otros procesos que emplean menos precursores y menos pasos para la obtención del producto final. U.S. Patent No. 4124529 presents the procedure to obtain shaped adsorbents from the pyrolysis of different carbonaceous sources such as mineral coal, oxidized mineral coal, charcoal, lignites or low temperature cokes with different binding agents such as butadiene-acrylonitrile or butadiene-styrene and materials thermoplastics such as polyvinyl alcohol, polypropylene, or a mixture thereof. In this patent, strong emphasis is placed on the pyrolysis and activation conditions by employing a temperature range of 673-1273 K and heating rates of 5 to 10 K / min. The use of binders, thermosetting materials, high carbonization temperatures and activation with carbon dioxide significantly increase production costs compared to other processes that use fewer precursors and fewer steps to obtain the final product.
La patente U.S. No. 5389325 revela un procedimiento de fabricación de carbones activados conformados empleando una resina fenólica sólida de fenol formaldehído entre el 5-35 %, un aglutinante orgánico entre 4-10% como éter de celulosa, derivados de éter de celulosa y combinaciones. Se emplea el método de extrusión para la formación de una estructura tipo colmena y se hace un secado de la resina a 363 K. En este procedimiento al trabajar con una resina polimérica fenólica sin pirolizar se restringe el uso de la estructura carbonosa, ya que en su gran mayoría las reacciones catalíticas en las que los monolitos estructurados despiertan interés se llevan a cabo en temperaturas entre 453 - 1173 K, temperaturas muy altas en las que estos tipos de resina sufrirían reacciones de descomposición debido a su estabilidad térmica. US Patent No. 5389325 discloses a process for manufacturing shaped activated carbons using a solid phenolic resin of phenol formaldehyde between 5-35%, an organic binder between 4-10% such as cellulose ether, cellulose ether derivatives and combinations . The extrusion method is used to form a beehive-like structure and the resin is dried at 363 K. In this procedure, when working with an unpyrolyzed phenolic polymer resin, the use of the carbonaceous structure is restricted, since in the vast majority of catalytic reactions in which structured monoliths arouse interest are carried out at temperatures between 453 - 1173 K, very high temperatures at which these types of resin would undergo decomposition reactions due to their thermal stability.
La patente CA 2442243, revela la fabricación de carbón activado con forma esférica empleando un polímero de celulosa como aglutinante como lo es la carboximetilcelulosa de sodio o almidón, compuesto orgánico que favorece la extrusión, aumenta la resistencia mecánica y genera la formación de las esferas de carbón activado, pero cuyo costo puede triplicar el de otros aglomerantes orgánicos como el almidón soluble. Se atribuye la mejoría por la reacción de entrecruzamiento que se genera entre el carbón activado y la carboximetilcelulosa de sodio. Además se señalan dos ventajas: la producción de las esferas a una temperatura muy baja (543 K), y mejores propiedades como menor densidad, menor contenido de ceniza y mayor estabilidad en agua, estas últimas al comparar los materiales obtenidos con materiales de las mismas dimensiones preparados con arcilla como aglomerante. El procedimiento revela el uso de agua como solvente, una resina urea- formaldehído y como aglutinante carboximetilcelulosa o almidón. Esta invención emplea polímeros comerciales que al ser pirolizados a las temperaturas dadas, generan poca o nula área superficial en los monolitos. Patent CA 2442243 reveals the manufacture of spherical shaped activated carbon using a cellulose polymer as a binder such as sodium carboxymethylcellulose or starch, an organic compound that favors extrusion, increases mechanical resistance and generates the formation of spheres of activated carbon, but whose cost can triple that of other organic binders such as soluble starch. The improvement is attributed to the crosslinking reaction that is generated between activated carbon and sodium carboxymethylcellulose. In addition, two advantages are pointed out: the production of the spheres at a very low temperature (543 K), and better properties such as lower density, lower ash content and greater stability in water, the latter when comparing the materials obtained with materials from the same dimensions prepared with clay as a binder. The procedure reveals the use of water as a solvent, a urea-formaldehyde resin, and a carboxymethylcellulose or starch binder. This invention uses commercial polymers that, when pyrolyzed at the given temperatures, generate little or no surface area in the monoliths.
La patente CA 2639955 revela la fabricación de monolitos de carbono a partir de la carbonización y activación de perlas resol como única fuente carbonosa, las cuales son polímeros obtenidos por la condensación de fenol y formaldehído con catalizador básico NH4OH, en agua, etanol y metanol en diferentes proporciones como solventes y un estabilizador coloidal y/o aglutinantes como carboximetilcelulosa de sodio y dodecilsulfato de sodio. En este trabajo no abarcan materiales carbonosos abundantes y disponibles como carbones minerales, carbones activados comerciales, otro tipo de fuente carbonosa de bajo costo u otro material de diferente naturaleza. Además se requiere de una activación post carbonización en el proceso final. Patent CA 2639955 reveals the manufacture of carbon monoliths from the carbonization and activation of resole beads as the only carbonaceous source, which are polymers obtained by the condensation of phenol and formaldehyde with a basic catalyst NH 4 OH, in water, ethanol and methanol in different proportions as solvents and a colloidal stabilizer and / or binders such as sodium carboxymethylcellulose and sodium dodecyl sulfate. Abundant and available carbonaceous materials such as mineral coals, commercial activated carbons, another type of low-cost carbonaceous source or another material of a different nature are not covered in this work. In addition, a post-carbonization activation is required in the final process.
Sin embargo, no existe en el estado de la técnica ningún proceso para la fabricación de monolitos integrales de carbono que incluya la secuencia específica de las seis (6) etapas que comprenden la preparación de la solución orgánica del polímero resordnol - formaldehído (DP) junto con el almidón, la estabilización del agente aglomerante, la molienda de la fuente carbonosa, el empaquetamiento de la misma en un molde, el curado del polímero y la carbonización del material. Mucho menos existe en el estado del arte un proceso para la estructuración de materiales carbonosos en monolitos de carbono, con y sin materia mineral, reduciendo costos a través de la obtención de múltiples geometrías por la implementación del diseño y fabricación de moldes extrusores empleando ImpresiónHowever, there is no process in the state of the art for the manufacture of integral carbon monoliths that includes the specific sequence of the six (6) steps that comprise the preparation of the organic solution of the resordnol-formaldehyde (DP) polymer together with the starch, the stabilization of the binding agent, the grinding of the carbonaceous source, the packaging of the same in a mold, the curing of the polymer and the carbonization of the material. Much less exists in the state of the art a process for structuring carbonaceous materials into carbon monoliths, with and without mineral matter, reducing costs through obtaining multiple geometries. for the implementation of the design and manufacture of extrusion molds using Printing
3D. 3D.
EXPLICACIÓN DE LA INVENCIÓN El objeto principal de la presente invención consiste en proporcionar un proceso de preparación de monolitos integrales de carbono, que incluye: el uso de materiales carbonosos de diferente naturaleza (carbón activado comercial, carbón mineral pirolizado, carbonizado sintético, entre otros), la inclusión de un polímero sintético basado en la policondensación de resorcinol y formaldehído con un catalizador inorgánico preparado en solventes acuosos y orgánicos, y la inserción de un polímero natural de bajo costo que modifica de manera controlada las propiedades estructurales y superficiales de los monolitos. EXPLANATION OF THE INVENTION The main object of the present invention is to provide a process for the preparation of integral carbon monoliths, which includes: the use of carbonaceous materials of different nature (commercial activated carbon, pyrolyzed mineral carbon, synthetic carbonized, among others) , the inclusion of a synthetic polymer based on the polycondensation of resorcinol and formaldehyde with an inorganic catalyst prepared in aqueous and organic solvents, and the insertion of a low-cost natural polymer that modifies in a controlled way the structural and surface properties of the monoliths.
La Implementación de la resina sintética resorcinol formaldehído como aglomerante de carbones de distinta naturaleza y la combinación con un polímero sintético de origen natural aunado a la implementación del diseño y fabricación de moldes extrusores empleando impresión 3D permite obtener un proceso novedoso de preparación de monolitos estructurados de carbono, con y sin materia mineral. The implementation of the synthetic resin resorcinol formaldehyde as a binder of carbons of different nature and the combination with a synthetic polymer of natural origin coupled with the implementation of the design and manufacture of extruder molds using 3D printing allows to obtain a novel process for the preparation of structured monoliths of carbon, with and without mineral matter.
Estos monolitos tienen características superficiales definidas y controladas, por la contribución de las dos fuentes carbonosas, tanto de la resina como del material carbonoso. De esta manera, se expande el posible uso de cualquier material carbonoso para la fabricación de monolitos. En una realización de la invención el empleo de diferentes solventes proporciona la ventaja de trabajar con materiales carbonosos con carácter hidrofílico, hidrofóbico o anfótero para la producción de monolitos. Así mismo, la incorporación del aglutinante de bajo costo mejora las propiedades estructurales de los monolitos generando de manera controlada microporosidad en los mismos y aumentando el entrecruzamiento de anillos fenólicos al reaccionar con el polímero sintético. Un aspecto adicional de la invención es la fabricación de monolitos integrales de carbono utilizando diferentes velocidades de calentamiento durante el proceso de pirólisis. These monoliths have defined and controlled surface characteristics, due to the contribution of the two carbonaceous sources, both the resin and the carbonaceous material. In this way, the possible use of any carbonaceous material for the manufacture of monoliths is expanded. In one embodiment of the invention the use of different solvents provides the advantage of working with carbonaceous materials with hydrophilic, hydrophobic or amphoteric character for the production of monoliths. Likewise, the incorporation of the low-cost binder improves the structural properties of the monoliths, generating microporosity in them in a controlled manner and increasing the crosslinking of phenolic rings when reacting with the synthetic polymer. A further aspect of the invention is the manufacture of integral carbon monoliths using different heating rates during the pyrolysis process.
BREVE DESCRIPCION DE LAS FIGURAS Figura 1. a) Moldes empleados para la preparación de monolitos, b) Monolito obtenido en el ejemplo 1. BRIEF DESCRIPTION OF THE FIGURES Figure 1. a) Molds used for the preparation of monoliths, b) Monolith obtained in example 1.
Figura 2. Difractogramas de los monolitos obtenidos empleando diferentes solventes. Figura 3. Difractogramas de los monolitos obtenidos empleando diferentes velocidades de calentamiento en la etapa de pirólisis. Figure 2. Diffractograms of the monoliths obtained using different solvents. Figure 3. Diffractograms of the monoliths obtained using different heating rates in the pyrolysis stage.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La presente invención se refiere a un procedimiento para la obtención de monolitos integrales de carbono empleando materiales carbonosos de diferente naturaleza, que comprende las siguientes etapas: a) Preparación de una disolución precursora (DP) del polímero resorcinol - formaldehído usando un catalizador básico y un polímero de almidón de origen natural b) Estabilización de la disolución precursora de la etapa a); c) Molienda y tamizado del material carbonoso; d) Empaquetamiento del material carbonoso previamente molido y tamizado junto con la disolución precursora, en un molde previamente diseñado y fabricado empleando impresión 3D; e) Gelificación y curado del material empaquetado en la etapa d) a una temperatura comprendida entre 335 K y 345 K; f) Carbonización del molde con el material curado en la etapa e) bajo condiciones de temperatura entre 900 y 1200 K calentando a una velocidad comprendida entre 5 y 15 K/min. El procedimiento de la presente invención permite obtener materiales estructurados con geometrías totalmente definidas y conservando propiedades de la fuente carbonosa. El material carbonoso se selecciona entre un carbón activado, un carbonizado de un carbón coquizable mineral y un carbonizado sintético como lo es un aerogel o xerogel de carbono. El procedimiento de la presente invención se resume en: - se prepara la DP disolviendo resorcinol en un solvente (agua, etanol, polietilenglicol o polietilenglicol con 1% en peso de polivinil alcohol - PVA) en proporción de 2 mL de solvente por gramo de resorcinol, carbonato de sodio (Na2CO3) como catalizador de polimerización en relación molar 1 :300 resorcinol/catalizador, almidón como aglomerante entre 1 y 15%, preferentemente 5%, en peso respecto a la cantidad de resorcinol inicial y formaldehído en relación molar 1:2 respecto al resorcinol (etapa a). - la DP se deja estabilizando por 24 h a temperaturas comprendidas entre 280 y 310 K (etapa b). Las fuentes empleadas son carbón activado, coque obtenido de la carbonización de un carbón mineral bituminoso bajo volátil y un aerogel o xerogel de carbono obtenido a partir de la pirólisis de la DP en ausencia de otra fuente carbonosa. La fuente carbonosa debe estar en un tamaño de partícula inferior a 600 μm. The present invention refers to a process for obtaining integral carbon monoliths using carbonaceous materials of different nature, which comprises the following steps: a) Preparation of a precursor solution (DP) of the resorcinol-formaldehyde polymer using a basic catalyst and a starch polymer of natural origin b) Stabilization of the precursor solution of step a); c) Grinding and sieving of the carbonaceous material; d) Packing of the carbonaceous material previously ground and sieved together with the precursor solution, in a mold previously designed and manufactured using 3D printing; e) Gelling and curing of the packaged material in step d) at a temperature between 335 K and 345 K; f) Carbonization of the mold with the cured material in step e) under temperature conditions between 900 and 1200 K heating at a speed between 5 and 15 K / min. The process of the present invention makes it possible to obtain structured materials with fully defined geometries and preserving properties of the carbonaceous source. The carbonaceous material is selected from an activated carbon, a carbonizate of a mineral coking carbon, and a synthetic carbonizate such as an airgel or carbon xerogel. The process of the present invention is summarized in: - PD is prepared by dissolving resorcinol in a solvent (water, ethanol, polyethylene glycol or polyethylene glycol with 1% by weight of polyvinyl alcohol - PVA) in a proportion of 2 mL of solvent per gram of resorcinol , sodium carbonate (Na 2 CO 3 ) as polymerization catalyst in 1: 300 molar ratio resorcinol / catalyst, starch as binder between 1 and 15%, preferably 5%, by weight relative to the amount of initial resorcinol and formaldehyde in relation 1: 2 molar relative to resorcinol (step a). - the DP is left to stabilize for 24 h at temperatures between 280 and 310 K (stage b). The sources used are activated carbon, coke obtained from the carbonization of a low volatile bituminous mineral coal and a carbon airgel or xerogel obtained from the pyrolysis of DP in the absence of another carbonaceous source. The carbonaceous source must be at a particle size less than 600 μm.
- la muestra carbonosa se muele y tamiza hasta que la totalidad esté en el tamaño de partícula indicado (etapa c). - the carbonaceous sample is ground and sieved until the whole is at the indicated particle size (step c).
- los moldes se diseñan con el software FreeCAD versión 0.16. En la figura 1a se observa un ejemplo del molde que puede ser empleado. En una realización de la invención el empaquetamiento se puede llevar a cabo añadiendo la fuente carbonosa dentro del molde hasta una altura de 1 cm. Seguidamente se gotea lentamente la DP hasta que esta moje en su totalidad el material carbonoso (etapa d). Este procedimiento se repite hasta completar la altura del molde empleado llenando el molde en multicapa. La cantidad de DP empleada varía de acuerdo con la fuente carbonosa. En otra realización de la invención, el empaquetamiento se realiza con asistencia de ultrasonido, vertiendo una suspensión de la fuente carbonosa y la DP en el molde llenándolo hasta un 95% de su altura. En otra realización de la invención, el empaquetamiento se lleva a cabo introduciendo dentro del molde, la totalidad de la fuente carbonosa, seguido por una impregnación a volumen de poro gota a gota con la solución precursora de polímero sintético y polímero natural asistida por ultrasonido. - the molds are designed with FreeCAD software version 0.16. In figure 1a an example of the mold that can be used is observed. In one embodiment of the invention packing can be carried out by adding the carbonaceous source into the mold up to a height of 1 cm. The DP is then slowly dripped until the carbonaceous material is completely wetted (step d). This procedure is repeated until the height of the mold used is completed, filling the multilayer mold. The amount of DP used varies according to the carbonaceous source. In another embodiment of the invention, packing is carried out with the assistance of ultrasound, pouring a suspension of the carbonaceous source and the DP into the mold filling it up to 95% of its height. In another embodiment of the invention, packaging is carried out by introducing into the mold, the entire carbonaceous source, followed by a dropwise impregnation to pore volume with the precursor solution of synthetic polymer and natural polymer assisted by ultrasound.
- el molde con la fuente carbonosa ya empaquetada gelifica y cura introduciéndolo en un recipiente con tapa completamente sellado para evitar la evaporación del solvente. Éste a su vez se lleva a un homo a una temperatura que se puede seleccionar entre 335 y 345 K y se deja por un tiempo seleccionado entre 72 y 144 h (etapa e). - para la carbonización, el molde se introduce en un homo tubular en atmósfera de nitrógeno a un flujo de 100 mL/min y se realiza el proceso de pirólisis a una velocidad de calentamiento seleccionada entre 2 y 15 K/min hasta 1073 K; una vez alcanzada dicha temperatura se mantiene por 2 h (etapa f). Las condiciones de pirólisis utilizadas permiten eliminar el molde y obtener el monolito o material carbonoso conformado. - The mold with the carbonaceous source already packed gels and cures by placing it in a completely sealed container with a lid to avoid evaporation of the solvent. This, in turn, is brought into an oven at a temperature that can be selected between 335 and 345 K and is left for a selected time between 72 and 144 h (step e). - for carbonization, the mold is introduced into a tubular oven under a nitrogen atmosphere at a flow of 100 mL / min and the pyrolysis process is carried out at a heating rate selected between 2 and 15 K / min up to 1073 K; once said temperature is reached, it is maintained for 2 h (stage f). The pyrolysis conditions used make it possible to eliminate the mold and obtain the formed monolith or carbonaceous material.
Constituye otro objeto de la presente invención un monolito de carbono obtenido mediante el procedimiento según se ha descrito anteriormente que presenta: Another object of the present invention is a carbon monolith obtained by the process as described above, which has:
- áreas superficiales entre 60 y 590 m2/g volúmenes de microporo entre 0,001 y 0,160 cm3/g áreas de microporo entre 1 y 430 m2/g áreas externas entre 60 y 300 m2/g volúmenes de poro total entre 0,084 y 1,350 cm3/g alturas de crístalito entre 13 y 18 Å diámetros de crístalito entre 23 y 57 Å - surface areas between 60 and 590 m 2 / g micropore volumes between 0.001 and 0.160 cm 3 / g micropore areas between 1 and 430 m 2 / g external areas between 60 and 300 m 2 / g total pore volumes between 0.084 and 1.350 cm 3 / g heights of crystallite between 13 and 18 Å diameters of crystallite between 23 and 57 Å
La aplicación y la configuración específica de este proceso para obtener un monolito de carbono lo hacen diferente a los revelados en el estado de la técnica y se convierte en una alternativa eficaz en la tecnología de la industria de fabricación de materiales carbonosos. La secuencia y las condiciones bajo las cuales se realizan cada una de las etapas del proceso de la presente invención permiten moldear gran variedad de materiales carbonosos de interés particular y trabajar en un amplio marco de variables experimentales controladas obteniendo características superficiales ideales para la preparación de catalizadores soportados sobre materiales carbonosos, los cuales despiertan gran interés por su estabilidad térmica en atmósferas no oxidantes, posibilidad de modificar su química superficial, bajo costo y baja densidad respecto a materiales inorgánicos típicos como sílice y alúmina entre otros. The application and specific configuration of this process to obtain a carbon monolith make it different from those disclosed in the state of the art and it becomes an effective alternative in the technology of the carbonaceous materials manufacturing industry. The sequence and the conditions under which each one of the stages of the process of the present invention are carried out allows to mold a great variety of carbonaceous materials of particular interest and to work in a wide framework of controlled experimental variables, obtaining ideal surface characteristics for the preparation of catalysts. supported on carbonaceous materials, which are of great interest due to their thermal stability in non-oxidizing atmospheres, the possibility of modifying their surface chemistry, low cost and low density compared to typical inorganic materials such as silica and alumina, among others.
MODO DE REALIZACIÓN DE LA INVENCION Ejemplo 1 MODE OF EMBODIMENT OF THE INVENTION Example 1
Preparación de monolito con carbón activado comercial Preparation of monolith with commercial activated carbon
La DP se prepara para realizar la reacción de policondensación entre resorcinol y formaldehído (relación molar 1:2), empleando carbonato de sodio como catalizador y agua, etanol al 96%, polietilenglicol o polietilenglicol + PVA 1% como solventes. 9,91 g de resorcinol se disuelven en 18,8 mL de solvente y 13,5 mL de formaldehído estabilizado en etanol al 96%. 0,036 g de carbonato de sodio (relación molar resorcinol/catalizador 300), 0,496 g de almidón (5% respecto a la cantidad de resorcinol) se adicionan en agitación constante y se mantiene hasta que el pH de la solución se estabiliza (pH=~6,5). El molde empleado se elaboró con una impresora WANHAO DUPLICATOR i3 PLUS y PVA como materia prima. Para el molde que se muestra en la figura 1a se emplearon 1,5 g de carbón activado y 6 mL de la DP. El molde con carbón activado ya empaquetado junto con la DP se introduce en un recipiente sellado y se mantiene durante 24 h a 273K. Luego se introduce a un homo a 343 K y pasadas 120 h se retira de este. En este momento se produce el curado del monolito. El proceso de carbonización se lleva a cabo en un reactor tubular horizontal a 1073 K por 2 h con una velocidad de calentamiento de 10 K/min en un flujo de N2 de 100 mL/min. DP is prepared to carry out the polycondensation reaction between resorcinol and formaldehyde (1: 2 molar ratio), using sodium carbonate as a catalyst and water, 96% ethanol, polyethylene glycol or polyethylene glycol + 1% PVA as solvents. 9.91 g of resorcinol are dissolved in 18.8 mL of solvent and 13.5 mL of formaldehyde stabilized in 96% ethanol. 0.036 g of sodium carbonate (resorcinol / catalyst molar ratio 300), 0.496 g of starch (5% with respect to the amount of resorcinol) are added under constant stirring and maintained until the pH of the solution stabilizes (pH = ~ 6.5). The mold used was made with a WANHAO DUPLICATOR i3 PLUS printer and PVA as raw material. For the template shown in figure 1a, 1.5 g of activated carbon and 6 mL of DP were used. The mold with activated carbon already packed together with the DP is placed in a sealed container and kept for 24 h at 273K. Then it is introduced into a 343 K oven and after 120 h it is removed from it. At this time the monolith curing occurs. The carbonization process is carried out in a reactor horizontal tube at 1073 K for 2 h with a heating rate of 10 K / min in a N 2 flow of 100 mL / min.
En la figura 1b se observa el monolito obtenido. La fuente carbonosa utilizada es un carbón activado comercial Darco Sigma-Aldrich con un área BET de 892 m2/g, un volumen de poro de 0,73 cm3/g, área de microporo de 470 m2/g (52,7 % del área total) y un área extema de 422 m2/g. El volumen total de microporo es 0,215 cm3/g y el tamaño promedio de poro de 0,8 nm. El monolito 1 (m1 Darco/CX-ETOH) obtenido empleando etanol al 96 % presenta un área superficial BET de 301 m2/g, con un volumen de poro de 0,40 cm3/g, un área de microporo calculada por el método-t de 171 m2/g (56,8 % del área total) y un área extema de 130 m2/g (la diferencia entre el área BET y el área de microporo). El volumen total de microporo de 0,078 cm3/g y el tamaño promedio de poro obtenido por el modelo de la teoría del funcional de la densidad (DFT, por sus siglas in inglés, Density functional theory) empleando una función no localizada es de 0,5 nm, indicando que la mayoría de poros se encuentran en la región de microporos. Figure 1b shows the monolith obtained. The carbonaceous source used is a commercial Darco Sigma-Aldrich activated carbon with a BET area of 892 m 2 / g, a pore volume of 0.73 cm 3 / g, micropore area of 470 m 2 / g (52.7 % of the total area) and an external area of 422 m 2 / g. The total micropore volume is 0.215 cm 3 / g and the average pore size is 0.8 nm. Monolith 1 (m1 Darco / CX-ETOH) obtained using 96% ethanol has a BET surface area of 301 m 2 / g, with a pore volume of 0.40 cm 3 / g, a micropore area calculated by the t-method of 171 m 2 / g (56.8% of the total area) and an external area of 130 m 2 / g (the difference between the BET area and the micropore area). The total micropore volume of 0.078 cm 3 / g and the average pore size obtained by the Density functional theory (DFT) model using a non-localized function is 0, 5 nm, indicating that the majority of pores are in the micropore region.
El monolito 2 (m2 Darco/CX-PEG) obtenido empleando polietilenglicol presenta un área superficial BET de 213 m2/g, con un volumen de poro de 0,24 cm3/g, un área de microporo calculada por el método-t de 132 m2/g (56,8 % del área total) y un área extema que representa principalmente el área de mesoporos de 81 m2/g (la diferencia entre el área BET y el área de microporo). El volumen total de microporo de 0,065 cm3/g y el tamaño promedio de poro obtenido por el DFT empleando una función no localizada es de 0,7 nm, indicando que la mayoría de poros se encuentran en la región de microporos. Monolith 2 (m2 Darco / CX-PEG) obtained using polyethylene glycol has a BET surface area of 213 m 2 / g, with a pore volume of 0.24 cm 3 / g, a micropore area calculated by the t-method of 132 m 2 / g (56.8% of the total area) and an external area that mainly represents the mesopore area of 81 m 2 / g (the difference between the BET area and the micropore area). The total micropore volume of 0.065 cm 3 / g and the average pore size obtained by the DFT using a non-localized function is 0.7 nm, indicating that the majority of pores are in the micropore region.
El monolito 3 (m3 Darco/CX-PVA) obtenido empleando PVA presenta un área superficial BET de 381 m2/g, con un volumen de poro de 0,39 cm3/g, un área de microporo calculada por el método-t carbón-black de 223 m2/g (58 % del área total) y un área extema de 166 m2/g (la diferencia entre el área BET y el área de microporo). El volumen total de microporo de 0,103 cm3/g y el tamaño promedio de poro obtenido por el DFT empleando una función no localizada es de 0,5 nm, indicando que la mayoría de poros se encuentran en la región de microporos.
Figure imgf000012_0001
Monolith 3 (m3 Darco / CX-PVA) obtained using PVA has a BET surface area of 381 m 2 / g, with a pore volume of 0.39 cm 3 / g, a micropore area calculated by the t-method carbon-black of 223 m 2 / g (58% of the total area) and an external area of 166 m 2 / g (the difference between the BET area and the micropore area). The total micropore volume of 0.103 cm 3 / g and the average pore size obtained by the DFT using a non-localized function is 0.5 nm, indicating that the majority of pores are in the micropore region.
Figure imgf000012_0001
En la figura 2 se observan los diffactogramas obtenidos para el carbón activado comercial y los 3 monolitos elaborados con diferentes solventes. Todos los difractogramas exhiben los rasgos característicos de materiales carbonosos amorfos: los planos (002) y (100) a 25° y 44° 28 respectivamente. El pico (002) se debe al ordenamiento de anillos aromáticos y el (100) es atribuido al grado de condensación de anillos aromáticos. Los picos agudos ubicados en 21°, 23°, 27°, 36° y 51° 2θ corresponden a la materia inorgánica presente en el carbón activado comercial y corresponden a óxidos de calcio y silicio. Un resumen de los parámetros estructurales obtenidos de la difracción de rayos X se muestra en la tabla 1. El valor de la distancia interplanar de los materiales prácticamente permanece constante. Sólo en m1 Darco/CX-ETOH se observa un cambio significativo en la altura de cristalito, con un valor de 18,1 Å, esto respecto a los valores del carbón activado comercial y los otros dos monolitos. Los valores de diámetro de cristalito presentan cambios significativos respectos al carbón activo comercial para el monolito m1 Darco/CX- ETOH el cual se reduce cerca de 14 Å y para el monolito m3 Darco/CX-PVA aumenta 13Figure 2 shows the diffactograms obtained for commercial activated carbon and the 3 monoliths made with different solvents. All diffractograms exhibit the characteristic features of amorphous carbonaceous materials: the (002) and (100) planes at 25 ° and 44 ° 28 respectively. The peak (002) is due to the ordering of aromatic rings and the (100) is attributed to the degree of condensation of aromatic rings. The sharp peaks located at 21 °, 23 °, 27 °, 36 ° and 51 ° 2θ correspond to the inorganic matter present in commercial activated carbon and correspond to calcium and silicon oxides. A summary of the structural parameters obtained from the X-ray diffraction is shown in table 1. The value of the interplanar distance of the materials practically remains constant. Only in m1 Darco / CX-ETOH a significant change in crystallite height is observed, with a value of 18.1 Å, this with respect to the values of commercial activated carbon and the other two monoliths. The crystallite diameter values show significant changes with respect to commercial activated carbon for the monolith m1 Darco / CX-ETOH which is reduced by about 14 Å and for the monolith m3 Darco / CX-PVA increases 13
A. TO.
Tabla 1. Parámetros estructurales obtenidos para los monolitos de carbón activado comercial variando el tipo de solvente.
Figure imgf000012_0002
Table 1. Structural parameters obtained for commercial activated carbon monoliths varying the type of solvent.
Figure imgf000012_0002
Teniendo en cuenta lo anteriormente mostrado, se establece que con el proceso de la presente invención y usando diferentes solventes se logran obtener monolitos con valores de volúmenes de poro, área superficial y diámetro de cristalito totalmente definidos y diferentes y específicos frente al material carbonoso de partida. Taking into account the above, it is established that with the process of the present invention and using different solvents it is possible to obtain monoliths with values of pore volumes, surface area and diameter of crystallite totally defined and different and specific compared to the carbonaceous starting material.
Ejemplo 2 Example 2
Preparación de monolitos de carbono tipo pellet con xerogeles de carbono Se prepararon monolitos tipo pellet obtenidos de la carbonización de la policondensación de resorcinol -formaldehído en agua como solvente siguiendo la metodología expuesta en el ejemplo 1 para la preparación de la DP Se mezcla la DP con la fuente carbonosa. El tiempo de curado es el mismo. El proceso de carbonización se lleva a cabo en un reactor tubular horizontal a 1073 K por 2 h, variando las velocidades de calentamiento en un flujo de N2 de 100 mL/min. El intervalo de velocidad de calentamiento trabajado fue entre 2 y 15 K/min. En la tabla 2 se encuentra un resumen de los monolitos obtenidos a diferentes velocidades de calentamiento durante la etapa de pirólisis. Los valores de área superficial BET varían entre 432 y 590 m2/g. El volumen de microporo presenta valores entre 0,12 y 0,16 cm3/g y se observa una leve tendencia al reducir este respecto aumenta la velocidad de calentamiento. Los porcentajes área de microporo de la serie de monolitos están entre el 50 y 70 %, siendo el monolito fabricado con una velocidad de calentamiento de 5 K/min el que mayor porcentaje presenta. El área extema, consecuencia principalmente de la existencia de mesoporos y macroporos en los monolitos varía entre 130 y 301 m2/g y el volumen de poro entre 0,59 y 1,35 cm3/g. Se recalca la obtención de materiales con características superficiales definidas de materiales que presentan micro y mesoporosidad, características atractivas para diferentes procesos catalíticos que prefieren distribuciones de poro no homogéneas con presencia de poros inferiores y superiores a 2 nm en un mismo soporte. Preparation of pellet-type carbon monoliths with carbon xerogels. Pellet-type monoliths obtained from the carbonization of the polycondensation of resorcinol-formaldehyde in water as a solvent were prepared following the methodology set forth in Example 1 for the preparation of the DP. The DP was mixed with the carbonaceous source. The curing time is the same. The carbonization process is carried out in a horizontal tubular reactor at 1073 K for 2 h, varying the heating rates in a flow of N 2 of 100 mL / min. The range of heating speed worked was between 2 and 15 K / min. Table 2 contains a summary of the monoliths obtained at different heating rates during the pyrolysis stage. The BET surface area values vary between 432 and 590 m 2 / g. The micropore volume presents values between 0.12 and 0.16 cm 3 / g and a slight tendency is observed when reducing this respect increases the heating rate. The micropore area percentages of the series of monoliths are between 50 and 70%, the monolith manufactured with a heating rate of 5 K / min being the one with the highest percentage. The external area, mainly a consequence of the existence of mesopores and macropores in the monoliths, varies between 130 and 301 m 2 / g and the pore volume between 0.59 and 1.35 cm 3 / g. Obtaining materials with defined surface characteristics of materials that present micro and mesoporosity are emphasized, attractive characteristics for different catalytic processes that prefer non-homogeneous pore distributions with the presence of pores lower and higher than 2 nm on the same support.
Tabla 2. Parámetros texturales calculados para los monolitos TIPO PELLET obtenidos variando la velocidad de calentamiento en la etapa de pirólisis.
Figure imgf000013_0001
Figure imgf000014_0002
Table 2. Textural parameters calculated for PELLET TYPE monoliths obtained by varying the heating rate in the pyrolysis stage.
Figure imgf000013_0001
Figure imgf000014_0002
En la figura 3 se observan los difractogramas obtenidos para los monolitos tipo pellet obtenidos variando la velocidad de calentamiento en la etapa de pirólisis. Todos los difractogramas son típicos de materiales carbonosos amorfos con los picos típicos de los planos (002) y (100). Se señala la ausencia total de algún otro tipo de señal, indicando de esta manera la producción de monolitos integrales totalmente orgánicos con alto contenido de carbono, entendido por las condiciones de pirólisis. Figure 3 shows the diffractograms obtained for the pellet-type monoliths obtained by varying the heating rate in the pyrolysis stage. All diffractograms are typical of amorphous carbonaceous materials with typical peaks in the (002) and (100) planes. The total absence of any other type of signal is noted, thus indicating the production of fully organic, integral monoliths with high carbon content, understood by the pyrolysis conditions.
En la tabla 3 se encuentran los parámetros estructurales obtenidos para los monolitos fabricados a diferentes velocidades de calentamiento durante la carbonización. Tal y como se observa en la tabla 1 del ejemplo 1, la altura interplanar se mantiene cercana un mismo valor, 3,7 Å para los monolitos elaborados con diferentes solventes y 3,8 Å para los monolitos obtenidos con diferente velocidad de calentamiento en la etapa de pirólisis. La altura de cristalito presenta valores entre 13,1 y 15,4 Å. El diámetro de crístalito muestra valores entre 23,7 y 31 ,2 Å. Table 3 shows the structural parameters obtained for the monoliths manufactured at different heating rates during carbonization. As can be seen in Table 1 of Example 1, the interplanar height remains close to the same value, 3.7 Å for the monoliths made with different solvents and 3.8 Å for the monoliths obtained with different heating rates in the pyrolysis stage. The crystallite height has values between 13.1 and 15.4 Å. The crystallite diameter shows values between 23.7 and 31.2 Å.
Tabla 3. Parámetros estructurales obtenidos para los monolitos obtenidos variando la velocidad de calentamiento en la etapa de pirólisis
Figure imgf000014_0001
Ejemplo 3
Table 3. Structural parameters obtained for the monoliths obtained by varying the heating rate in the pyrolysis stage.
Figure imgf000014_0001
Example 3
Monolitos con carbón mineral carbonizado y xerogeles de carbono. Monoliths with carbonized mineral coal and carbon xerogels.
En este ejemplo se enuncia la preparación de monolitos empleando como materias carbonosas: a) xerogel de carbono producido por la policondensación entre resorcinol y formaldehído, empleando agua y etanol como solventes y b) un coque obtenido de la carbonización de un carbón bituminoso medio volátil que se emplea en la industria metalúrgica en la producción de acero. En la tabla 4 se observa un resumen de los parámetros texturales calculados para el coque y el xerogel de carbono (CX5 10 K/min) empleados como materias primas y los monolitos definidos como m4 CX5/CX-WATER y m6 CX5/CX-ETOH. El monolito preparado con coque se define como m5 Coque/CX-ETOH y no se incluye en la tabla pues no presentó desarrollo de propiedades texturales. Se observa que el coque es un material mesoporoso con una muy baja área superficial y el xerogel de carbono un material poroso con una contribución de microporosidad en el área BET cercana al 50 %. En el monolito m4 CX5/CX-WATER prácticamente toda la microporosidad del CX5 10 K/min desaparece y la superficie disminuye a una décima parte, definiéndose de esta manera la obtención de monolito netamente mesoporoso con un diámetro de poro medio en 6,59 nm. In this example the preparation of monoliths is enunciated using as carbonaceous materials: a) carbon xerogel produced by the polycondensation between resorcinol and formaldehyde, using water and ethanol as solvents and b) a coke obtained from the carbonization of a medium volatile bituminous carbon that is used in the metallurgical industry in the production of steel. Table 4 shows a summary of the textural parameters calculated for the coke and carbon xerogel (CX5 10 K / min) used as raw materials and the monoliths defined as m4 CX5 / CX-WATER and m6 CX5 / CX-ETOH . The monolith prepared with coke is defined as m5 Coke / CX-ETOH and is not included in the table as it did not show development of textural properties. It is observed that coke is a mesoporous material with a very low surface area and carbon xerogel a porous material with a contribution of microporosity in the BET area close to 50%. In the m4 CX5 / CX-WATER monolith practically all the microporosity of the CX5 10 K / min disappears and the surface decreases to one tenth, thus defining the obtention of a clearly mesoporous monolith with an average pore diameter of 6.59 nm .
Tabla 4. Parámetros texturales calculados para los monolitos obtenidos a partir de coque y xerogel de carbono (CX5 10 K/min)
Figure imgf000015_0001
Table 4. Textural parameters calculated for monoliths obtained from coke and carbon xerogel (CX5 10 K / min)
Figure imgf000015_0001
En la tabla 5 se observan los parámetros calculados para el coque, el xerogel de carbono y los 3 monolitos preparados. La altura y diámetro de cristalito del coque presentan valores altos comprados con los materiales caracterizados anteriormente en las tablas 1 y 3 ya que éste es un material caracterizado por presentar un alto grado de reordenamiento de capas grafónicas en su estructura. En el monolito m5 Coque/CX-ETOH se observa que la altura de cristalito se mantiene igual y el diámetro de cristalito disminuye un poco debido a la presencia del carbonizado de resorcinol formaldehído en la estructura del material. En los monolitos preparados con CX5 10 K/min, m4 CX5/CX-WATER y m6 CX5/CX-ETOH, tanto la altura de cristalito como el diámetro de cristalito presentan los mismos valores, diferenciándose del xerogel de carbono en el valor del diámetro de cristalito, el cual en éste último es menor. Tabla 5. Parámetros estructurales obtenidos para los monolitos obtenidos a partir de coque y xerogel de carbono (CX5 10 K/min)
Figure imgf000016_0001
Table 5 shows the parameters calculated for the coke, the carbon xerogel and the 3 monoliths prepared. The height and diameter of the coke crystallite present high values compared with the materials previously characterized in tables 1 and 3 since this is a material characterized by presenting a high degree of reordering of graphonic layers in its structure. In the monolith m5 Coke / CX-ETOH it is observed that the crystallite height remains the same and the crystallite diameter decreases a little due to the presence of the resorcinol formaldehyde char in the structure of the material. In the monoliths prepared with CX5 10 K / min, m4 CX5 / CX-WATER and m6 CX5 / CX-ETOH, both the crystallite height and the crystallite diameter present the same values, differing from the carbon xerogel in the value of the diameter crystal, which in the latter is smaller. Table 5. Structural parameters obtained for the monoliths obtained from coke and carbon xerogel (CX5 10 K / min)
Figure imgf000016_0001

Claims

REIVINDICACIONES
1. Procedimiento para la obtención de monolitos integrales de carbono empleando materiales carbonosos de diferente naturaleza, caracterizado porque comprende: a) Preparación de una disolución precursora del polímero resorcinol - formaldehído usando un catalizador básico y un polímero de almidón de origen natural b) Estabilización de la disolución precursora de la etapa a); c) Molienda y tamizado del material carbonoso; d) Empaquetamiento del material carbonoso previamente molido y tamizado junto con la disolución precursora en un molde previamente diseñado y fabricado empleando impresión 3D; e) Gelificación y curado del material empaquetado en la etapa d) a una temperatura seleccionada entre 335 K y 345 K; f) Carbonización del molde con el material curado en la etapa e) bajo condiciones de temperatura entre 900 y 1200 K calentando a una velocidad comprendida entre 5 y 15 K/min. 1. Procedure for obtaining integral carbon monoliths using carbonaceous materials of different nature, characterized in that it comprises: a) Preparation of a precursor solution of the resorcinol-formaldehyde polymer using a basic catalyst and a starch polymer of natural origin b) Stabilization of the precursor solution of step a); c) Grinding and sieving of the carbonaceous material; d) Packing of the carbonaceous material previously ground and sieved together with the precursor solution in a mold previously designed and manufactured using 3D printing; e) Gelling and curing of the packaged material in step d) at a temperature selected between 335 K and 345 K; f) Carbonization of the mold with the cured material in step e) under temperature conditions between 900 and 1200 K heating at a speed between 5 and 15 K / min.
2. Procedimiento según la reivindicación 1 caracterizado porque en la etapa a) la preparación de la disolución precursora se lleva a cabo mezclando resorcinol/formaldehído en relación molar 1:2, resorcinol/catalizador (Na2CO3) en relación molar 1:300, 2 mL de solvente por gramo de resorcinol y 5% de almidón soluble como polímero natural dejándola estabilizar por 24 h a temperaturas comprendidas entre 280 y 310 K. 2. Process according to claim 1, characterized in that in step a) the preparation of the precursor solution is carried out by mixing resorcinol / formaldehyde in a 1: 2 molar ratio, resorcinol / catalyst (Na 2 CO 3 ) in a 1: 300 molar ratio , 2 mL of solvent per gram of resorcinol and 5% soluble starch as a natural polymer, allowing it to stabilize for 24 h at temperatures between 280 and 310 K.
3. Procedimiento según las reivindicaciones 1 o 2 caracterizado porque en la etapa a) se emplea agua, etanol, polietilenglicol y polietilenglicol con 1% en peso de polivinil alcohol. 3. Process according to claims 1 or 2, characterized in that in step a) water, ethanol, polyethylene glycol and polyethylene glycol with 1% by weight of polyvinyl alcohol are used.
4. Procedimiento según una cualquiera de las reivindicaciones 1 a 3, caracterizado porque en la etapa c) se emplea un carbón activado comercial, un coque de carbón mineral y un aerogel o xerogel de carbono obtenido a partir de la pirólisis de la solución precursora en ausencia de otra fuente carbonosa. 4. Process according to any one of claims 1 to 3, characterized in that in step c) a commercial activated carbon, a mineral carbon coke and a carbon airgel or xerogel obtained from the pyrolysis of the precursor solution are used in absence of another carbonaceous source.
5. Procedimiento según una cualquiera de las reivindicaciones 1 a 4, caracterizado porque en la etapa d) se realiza el empaquetamiento introduciendo dentro del molde la totalidad de la fuente carbonosa, seguido por una impregnación a volumen de poro gota a gota con la disolución precursora de polímero sintético y polímero natural asistida por ultrasonido. 5. Process according to any one of claims 1 to 4, characterized in that in step d) the packaging is carried out by introducing the entire carbonaceous source into the mold, followed by an impregnation at pore volume drop by drop with the precursor solution synthetic polymer and natural polymer assisted by ultrasound.
6. Procedimiento según una cualquiera de las reivindicaciones 1 a 5 caracterizado porque en la etapa d) se realiza el empaquetamiento añadiendo la fuente carbonosa dentro del molde hasta una altura de 1 cm dejando a continuación gotear lentamente la disolución precursora hasta que esta moje en su totalidad el material carbonoso y repitiendo el procedimiento hasta completar la altura del molde empleado llenando el molde en multicapa. 6. Process according to any one of claims 1 to 5, characterized in that in step d) the packaging is carried out by adding the carbonaceous source inside the mold up to a height of 1 cm, then slowly dripping the precursor solution until it is wetted in its the entire carbonaceous material and repeating the procedure until completing the height of the mold used, filling the mold in multilayer.
7. Procedimiento según una cualquiera de las reivindicaciones 1 a 5 caracterizado porque en la etapa d) se realiza el empaquetamiento vertiendo una suspensión de la fuente carbonosa y la DP en el molde llenándolo hasta un 95% de su altura asistiendo el empaquetado con ultrasonido. 7. Process according to any one of claims 1 to 5, characterized in that in step d) the packaging is carried out by pouring a suspension of the carbonaceous source and the DP into the mold, filling it up to 95% of its height, assisting the packaging with ultrasound.
8. Procedimiento según una cualquiera de las reivindicaciones 1 a 7 caracterizado porque en la etapa e) la gelificación y el curado de los monolitos, se realiza en recipientes sellados a temperaturas entre 335 - 345 K y tiempos de entre 72 y 144 horas. Process according to any one of claims 1 to 7, characterized in that in step e) the gelling and curing of the monoliths is carried out in sealed containers at temperatures between 335 - 345 K and times between 72 and 144 hours.
9. Procedimiento según una cualquiera de las reivindicaciones 1 a 8 caracterizado porque en la etapa f) se realiza la carbonización de los monolitos a 1073 K durante 2 horas en un reactor tubular con flujo de N2 de 100 mL/min y empleando diferentes velocidades de calentamiento entre 2 y 15 K/min. 9. Process according to any one of claims 1 to 8, characterized in that in step f) the carbonization of the monoliths is carried out at 1073 K for 2 hours in a tubular reactor with a flow of N 2 of 100 mL / min and using different speeds heating between 2 and 15 K / min.
10. Monolito de carbono obtenido mediante el procedimiento según se define en las reivindicaciones 1 a 9 caracterizado porque presenta áreas superficiales entre 60 y 590 m2/g. 10. Carbon monolith obtained by the process as defined in claims 1 to 9, characterized in that it has surface areas between 60 and 590 m 2 / g.
11. Monolito de carbono según la reivindicación 10, caracterizado porque presenta volúmenes de microporo entre 0,001 y 0,160 cm3/g. Carbon monolith according to claim 10, characterized in that it has micropore volumes between 0.001 and 0.160 cm 3 / g.
12. Monolito de carbono según las reivindicaciones 10 u 11 caracterizado porque presenta áreas de microporo entre 1 y 430 m2/g. 12. Carbon monolith according to claims 10 or 11 characterized in that it has micropore areas between 1 and 430 m 2 / g.
13. Monolito de carbono según una cualquiera de las reivindicaciones 10 a 12, caracterizado porque presenta áreas extemas entre 60 y 300 m2/g. 13. Carbon monolith according to any one of claims 10 to 12, characterized in that it has external areas between 60 and 300 m 2 / g.
14. Monolito de carbono según una cualquiera de las reivindicaciones 10 a 14 caracterizado porque presenta volúmenes de poro total entre 0,084 y 1,350 cm3/g. 14. Carbon monolith according to any one of claims 10 to 14, characterized in that it has total pore volumes between 0.084 and 1.350 cm 3 / g.
15. Monolito de carbono según una cualquiera de las reivindicaciones 10 a 14, caracterizado porque presentan alturas de cristalito entre 13 y 18 Å. Carbon monolith according to any one of claims 10 to 14, characterized in that they have crystallite heights between 13 and 18 Å.
16. Monolito de carbono según una cualquiera de las reivindicaciones 10 a 15 caracterizado porque presenta diámetros de cristalito entre 23 y 57 Å. 16. Carbon monolith according to any one of claims 10 to 15, characterized in that it has crystallite diameters between 23 and 57 Å.
PCT/ES2020/070731 2019-12-02 2020-11-24 Method for obtaining integral carbon monoliths and carbon monoliths obtained WO2021111019A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201931067 2019-12-02
ES201931067A ES2829958B2 (en) 2019-12-02 2019-12-02 PROCEDURE FOR OBTAINING INTEGRAL CARBON MONOLITHS AND OBTAINED CARBON MONOLITHS

Publications (1)

Publication Number Publication Date
WO2021111019A1 true WO2021111019A1 (en) 2021-06-10

Family

ID=76094786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/070731 WO2021111019A1 (en) 2019-12-02 2020-11-24 Method for obtaining integral carbon monoliths and carbon monoliths obtained

Country Status (3)

Country Link
CO (1) CO2020006437A1 (en)
ES (1) ES2829958B2 (en)
WO (1) WO2021111019A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008068A1 (en) * 2001-07-16 2003-01-30 Carbon Technologies Nv Filter element
US20050169829A1 (en) * 2004-02-03 2005-08-04 Sheng Dai Robust carbon monolith having hierarchical porosity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008068A1 (en) * 2001-07-16 2003-01-30 Carbon Technologies Nv Filter element
US20050169829A1 (en) * 2004-02-03 2005-08-04 Sheng Dai Robust carbon monolith having hierarchical porosity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RODRIGUEZ N ET AL.: "Effect of starch as binder in carbon aerogel and carbon xerogel preparation", JOURNAL OF NON-CRYSTALLINE SOLIDS, vol. 522, 15 October 2019 (2019-10-15), pages 119554, XP085821949, Retrieved from the Internet <URL:https://doi.rog/10.1016.j.jnoncrysol.2019.119554> [retrieved on 20190713] *

Also Published As

Publication number Publication date
ES2829958B2 (en) 2021-12-21
ES2829958A1 (en) 2021-06-02
CO2020006437A1 (en) 2021-11-30

Similar Documents

Publication Publication Date Title
Lu et al. Chemical synthesis of carbon materials with intriguing nanostructure and morphology
Sun et al. Sulfur-doped millimeter-sized microporous activated carbon spheres derived from sulfonated poly (styrene–divinylbenzene) for CO2 capture
Kim et al. Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica/triblock copolymer nanocomposites
US7666380B2 (en) Imprinted mesoporous carbons and a method of manufacture thereof
Zhang et al. Carbon materialization of ionic liquids: from solvents to materials
Jin et al. Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture
KR101354712B1 (en) Method for preparing granulated carbon structure with meso-porous
Xu et al. A two-step synthesis of ordered mesoporous resorcinol–formaldehyde polymer and carbon
US7892515B2 (en) Making mesoporous carbon with tunable pore size
US20050214539A1 (en) Porous carbon structures and methods
CN101811697B (en) Method for preparing pressed active carbon
Li et al. Preparation of monolithic carbon aerogels and investigation of their pore interconnectivity by a nanocasting pathway
Zhou et al. Carbon-based CO2 adsorbents
CN109689202B (en) Bulk porous carbon material for accumulating natural gas or methane and method for producing same
Kraiwattanawong A review on the development of a porous carbon-based as modeling materials for electric double layer capacitors
Wang Post-combustion carbon dioxide capture materials
Ania et al. Nanoporous carbons with tuned porosity
Hammi et al. Hierarchically porous ZIF-67/chitosan beads with high surface area and strengthened mechanical properties: Application to CO2 storage
ES2829958B2 (en) PROCEDURE FOR OBTAINING INTEGRAL CARBON MONOLITHS AND OBTAINED CARBON MONOLITHS
Sun et al. Ultra-low-density GNS/CA composite aerogels with ultra-high specific surface for dye removal
Asasian-Kolur et al. Ordered porous carbon preparation by hard templating approach for hydrogen adsorption application
Choma et al. Soft-templating synthesis and adsorption properties of mesoporous carbons with embedded silver nanoparticles
Zhang et al. On porosity of carbon aerogels from sol-gel polymerization of phenolic novolak and furfural
Bandosz Nanoporous carbon materials: from char to sophisticated 3-D graphene-like structures
Meng et al. CO2 Adsorption capacity of activated N‐doping porous carbons prepared from graphite nanofibers/polypyrrole

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896608

Country of ref document: EP

Kind code of ref document: A1