WO2021110360A1 - Special measures for controlling the temperature of a rotor of an electric motor - Google Patents

Special measures for controlling the temperature of a rotor of an electric motor Download PDF

Info

Publication number
WO2021110360A1
WO2021110360A1 PCT/EP2020/081414 EP2020081414W WO2021110360A1 WO 2021110360 A1 WO2021110360 A1 WO 2021110360A1 EP 2020081414 W EP2020081414 W EP 2020081414W WO 2021110360 A1 WO2021110360 A1 WO 2021110360A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pump
pump system
double
stator
rotor
Prior art date
Application number
PCT/EP2020/081414
Other languages
German (de)
French (fr)
Inventor
Johannes Lang
Adrian Zajac
Original Assignee
Efficient Energy Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Efficient Energy Gmbh filed Critical Efficient Energy Gmbh
Publication of WO2021110360A1 publication Critical patent/WO2021110360A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/128Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine

Definitions

  • the invention relates to a heat pump system and also to an electric motor according to the preamble of the respective main claim.
  • the invention is based on the object of creating a heat pump system with a motor optimized for this purpose, in which the heat output from the stator to the rotor via the air gap is limited.
  • a heat pump system with an evaporator and a condenser and a turbo compressor is proposed.
  • the turbo compressor is driven by an electric motor with a stator and a rotor, which is preferably excited by permanent magnets.
  • a permanent magnetic excitation of the rotor has the advantage that the self-heating of the rotor is reduced, since it does not carry any excitation windings or short-circuit rods in which ohmic losses occur during excitation.
  • the heat pump system according to the invention is characterized in that a double can or a double-walled can is formed in the gap between the stator and the rotor.
  • Said double-gap tube is characterized in that it has a cavity in its interior that can be used for cooling or insulating purposes.
  • the said cavity can be used for insulating purposes, for example by applying either air, preferably under atmospheric pressure, or a vacuum there.
  • the coolant is ideally liquid water. It could also be a flow of cooling air, which is less effective.
  • a fluid that is already available in the encapsulated heat pump system is used as the coolant.
  • water under vacuum or rough vacuum produced by the condenser of the system is used as the coolant.
  • steam from the evaporator which is also under vacuum or rough vacuum, can be used as a coolant - although its cooling effect is less than that of liquid water. In this way, the effort for the coolant guidance is significantly reduced compared to externally supplied and discharged coolant.
  • the double gap tube is preferably in — particularly intimate — heat-conducting contact with the stator.
  • the double can or double-walled can can be designed in various ways.
  • the double-gap tube consists of two smooth tubes that are separated from one another and pushed one inside the other, so it is a "tube-in-tube construction".
  • the two smooth tubes are made by means of the two they are held in one another coaxially or essentially coaxially in one another.
  • the usable cavity is then the essentially continuous - possibly additionally provided with deflection baffles to force a certain flow path - annular gap between the two tubes.
  • the tubes 8, 9 forming the double-gap tube are thin-walled and not magnetizable, that is, they do not interfere with the magnetic flux in the air gap.
  • Pipes with a radial wall thickness of less than 2.0 mm, better less than 1.5 mm and ideally less than 1.1 mm are thin-walled in the sense of the invention.
  • the inner tube 9 is thinner-walled than the outer outer tube, which ideally has to withstand the atmospheric pressure against a vacuum.
  • the radial extension of the annular gap between the two tubes is preferably less than the radial wall thickness of the outer tube. In this way, the air gap between the rotor and stator is not unnecessarily enlarged.
  • tube-in-tube mostly coiled single tubes made of carbon fiber (CFRP) or aramid have proven to be ideal, which have excellent dimensional stability with extremely thin walls.
  • CFRP carbon fiber
  • aramid coiled single tubes made of carbon fiber (CFRP) or aramid
  • steel tubes made of non-magnetizable austenite can also be used.
  • a special design of the invention is that the outer tube is not made discreet, but from the stator potting compound and is thus directly provided integrally and functionally by it, which is not shown in the figures here.
  • not only the cooling should be achieved by means of the double gap tube 10. Instead, this also achieves a separation between a first and a second area. As a rule, the pressure of the first area differs from that of the second area. The stator is then arranged in the first area and the rotor in the second area. This makes it possible, even in vacuum systems, to arrange the stator at normal air pressure, which makes it much easier to dissipate the heat loss from the stator.
  • Figure 1 shows the basic structure of a heat pump system of the type preferred here.
  • FIG. 2 shows the structure of the motor used here. PREFERRED EMBODIMENT
  • Figure 1 illustrates the structure and the functional principle of the heat pump type preferably used for the system according to the invention, here using the example of the heat pump 2 with its evaporator 3 and its condenser 4 and the associated evaporator inlets and outlets 3.1 and 3.2 as well as the associated condenser and outputs 4.1 and 4.2.
  • the cold liquid enters the evaporator 3 of the heat pump 2 via the evaporator inlet 3.1.
  • the steam W produced during the evaporation is compressed by the turbo-compressor 17 at preferably more than 25,000 revolutions per minute to a maximum of one third of its initial volume, with its pressure and temperature increasing. It is pressed into the condenser 4 in the process.
  • the turbo compressor 17 is driven by the special electric motor 17a designed and cooled as described above. This is where it lies Rotor in an area in which, at least essentially, the vacuum of the evaporator prevails.
  • the heated vapor W condenses in the condenser 4 either on an internal heat exchanger (not shown here) or directly into the circulating cooling liquid flow K; the heat of condensation emitted in the process also heats it by approx. 6 ° C.
  • the circuit is closed via a self-regulating expansion element 18.
  • FIG. 2 shows the details of an electric motor 17a cooled according to the invention, as it is preferably used for the system described above.
  • Such an electric motor 17a can also be used outside of such systems in general applications.
  • the rotor 6, which is preferably excited by permanent magnets, and the stator 7 can be seen clearly in FIG. 2.
  • the motor 17a is ideally designed with two poles, since a two-pole motor can cope better with a larger air gap, which offers more space for the installation of the double-gap tube.
  • the rotor 5 is designed as a rotor with permanent magnets buried in the rotor lamination. In Fig. 2 this is only hinted at in the drawing. Such a design is also favorable because of its "good nature" with regard to the size of the air gap if the air gap is to be made large enough to install the double-gap tube according to the invention.
  • the cover 5 or end shields have annular grooves.
  • a radial bore 11 is provided in each of the covers 5 or end shields for supply. Via these bores 11, the cavity 12 between the outer tube 8, here forming the double-gap tube 10, and the inner tube 9 can be acted upon or flowed through with coolant.
  • the bearing shields are also cooled through said radial bores 11. Because of this, the frictional heat generated in the rolling bearings can also be efficiently dissipated here, which is also important. The latter especially when the roller bearings, as here, run in a vacuum.

Abstract

A heat pump system comprising an evaporator and a condenser and also a turbo compressor which is driven by an electric motor (17a) having a stator (7) and having a rotor (6) with preferably permanent-magnet excitation, wherein a double can (10) is formed in the gap between the stator (7) and the rotor (6), which double can has, in its interior, a cavity (12) which can be used for cooling purposes or insulation purposes.

Description

BESONDERE MASSNAHMEN ZUR TEMPERATURFÜHRUNG EINES ROTORS EINESSPECIAL MEASURES FOR TEMPERATURE CONTROL OF A ROTOR OF A
ELEKTROMOTORS ELECTRIC MOTORS
Die Erfindung betrifft eine Wärmepumpenanlage und darüber hinaus einen Elektromotor nach dem Oberbegriff des jeweiligen Hauptanspruchs. The invention relates to a heat pump system and also to an electric motor according to the preamble of the respective main claim.
TECHNISCHER HINTERGRUND TECHNICAL BACKGROUND
Generell tritt bei Elektromotoren das Problem auf, dass der Läufer durch die ihm zugestrahlte und konvektiv über die Luft im Luftspalt mitgeteilte Statorwärme zusätzlich erwärmt wird. Bei normalen Motoren ist das störend. Besonders nachteilig ist dieser Effekt nicht zuletzt dort, wo ein solcher Motor in einer gekapselten Wärmepumpenanlage eingesetzt wird wo er zum Beispiel dauerhaft im Vakuum läuft. Aufgrund des Vakuums ist nicht ohne Weiteres eine konvektive Kühlung möglich. Jegliche dem Rotor zugeführte Energie kann daher in solchen Fällen nur erschwert wieder abgeführt werden. Es ist also nicht einfach, den Rotor auf der gewünschten Temperatur zu halten. In general, the problem arises with electric motors that the rotor is additionally heated by the stator heat radiated towards it and communicated convectively via the air in the air gap. This is annoying with normal engines. This effect is particularly disadvantageous where such a motor is used in an encapsulated heat pump system where, for example, it runs permanently in a vacuum. Because of the vacuum, convective cooling is not easily possible. Any energy supplied to the rotor can therefore only be dissipated again with difficulty in such cases. So it is not easy to keep the rotor at the desired temperature.
Das gilt insbesondere auch für das Einhalten jener Temperaturgrenze, die für einen Motor mit permantmagnetisch erregtem Läufer beachtet werden muss um eine Beeinträchtigung seiner permanentmagnetischen Erregung zu vermeiden. AUFGABE DER ERFINDUNG This also applies in particular to compliance with the temperature limit that must be observed for a motor with a permanent magnetically excited rotor in order to avoid impairment of its permanent magnetic excitation. OBJECT OF THE INVENTION
Aufgrund dessen liegt der Erfindung die Aufgabe zugrunde, eine Wärmepumpenanlage mit hierfür optimiertem Motor zu schaffen, bei dem die Wärmeabgabe des Stators auf den Rotor über den Luftspalt zu begrenzen. Because of this, the invention is based on the object of creating a heat pump system with a motor optimized for this purpose, in which the heat output from the stator to the rotor via the air gap is limited.
DIE ERFINDUNGSGEMASSE LOSUNG THE SOLUTION OF THE INVENTION
Erfindungsgemäß wird eine Wärmepumpenanlage mit einem Verdampfer und einem Verflüssiger sowie einem Turboverdichter vorgeschlagen. Der Turboverdichter wird von einem Elektromotor mit einem Stator und einem vorzugsweise permanentmagnetisch erregten Rotor angetrieben. Eine permanentmagnetische Erregung des Rotors hat den Vorteil, dass die Eigenerwärmung des Rotors verringert wird, da er keine Erregerwicklungen oder Kurzschlussstäbe trägt, in denen bei der Erregung ohm'sehe Verluste entstehen. According to the invention, a heat pump system with an evaporator and a condenser and a turbo compressor is proposed. The turbo compressor is driven by an electric motor with a stator and a rotor, which is preferably excited by permanent magnets. A permanent magnetic excitation of the rotor has the advantage that the self-heating of the rotor is reduced, since it does not carry any excitation windings or short-circuit rods in which ohmic losses occur during excitation.
Die erfindungsgemäße Wärmepumpenanlage zeichnet sich dabei dadurch aus, dass im Spalt zwischen dem Stator und dem Rotor ein Doppelspaltrohr bzw. ein doppelwandiges Spaltrohr ausgebildet ist. Das besagte Doppelspaltrohr zeichnet sich dadurch aus, dass es in seinem Inneren einen zu Kühlzwecken oder Isolierzwecken nutzbaren Hohlraum aufweist. The heat pump system according to the invention is characterized in that a double can or a double-walled can is formed in the gap between the stator and the rotor. Said double-gap tube is characterized in that it has a cavity in its interior that can be used for cooling or insulating purposes.
Im einfachsten Fall kann der besagte Hohlraum zu Isolierzwecken benutzt werden, beispielsweise, indem dort entweder Luft, bevorzugt unter Atmosphärendruck, oder ein Vakuum angelegt wird. In the simplest case, the said cavity can be used for insulating purposes, for example by applying either air, preferably under atmospheric pressure, or a vacuum there.
Besser ist es, den besagten Hohlraum zur Zwangskühlung zu nutzen, indem dort Kühlmittelstrom durchgeleitet wird. Auf diese Art und Weise kann der Wärmestrom signifikant gesenkt werden, den der sich unweigerlich erwärmende Stator auf den Rotor abstrahlt bzw. überträgt. Gleichzeitig wird der Rotor auf diese Art und Weise von einem gekühlten Bauteil in Gestalt des Doppelspaltrohrs umgeben. Hierdurch kann er die in ihm - durch das ihm vom Stator mitgeteilte Magnetfeld - entstehende Verlustwärme gut an das Doppelspaltrohr abstrahlen. Von dort aus kann die Wärme effektiv abgeleitet werden. It is better to use the said cavity for forced cooling in that coolant flow is passed through there. In this way and The heat flow that the stator, which inevitably heats up, radiates or transfers to the rotor can be significantly reduced. At the same time, the rotor is surrounded in this way by a cooled component in the form of a double-gap tube. In this way he can radiate the heat loss generated in him - by the magnetic field communicated to him by the stator - well to the double can. From there, the heat can be effectively dissipated.
Das Kühlmittel ist idealerweise flüssiges Wasser. Es könnte aber auch ein Kühlluftstrom sein, was indes weniger effektiv ist. The coolant is ideally liquid water. It could also be a flow of cooling air, which is less effective.
Baulich besonders bevorzugt ist es, als Kühlmittel ein ohnehin in der gekapselten Wärmepumpenanlage zur Verfügung stehendes Fluid zu verwenden. Idealerweise wird daher unter Vakuum bzw. Grobvakuum stehendes Wasser, das der Verflüssiger der Anlage produziert, als Kühlmittel verwendet. Ansonsten kann auch aus dem Verdampfer stammender, ebenfalls unter Vakuum bzw. Grobvakuum stehender Wasserdampf als Kühlmittel verwendet werden - obgleich seine Kühlwirkung geringer ist, als die von flüssigem Wasser. Auf diese Art und Weise wird der Aufwand für die Kühlmittelführung signifikant verringert, verglichen mit extern heran und wieder abgeführtem Kühlmittel. Structurally, it is particularly preferred to use a fluid that is already available in the encapsulated heat pump system as the coolant. Ideally, water under vacuum or rough vacuum produced by the condenser of the system is used as the coolant. Otherwise, steam from the evaporator, which is also under vacuum or rough vacuum, can be used as a coolant - although its cooling effect is less than that of liquid water. In this way, the effort for the coolant guidance is significantly reduced compared to externally supplied and discharged coolant.
Das Doppelspaltrohr steht vorzugsweise mit dem Stator in - besonders innigem - wärmeleitendem Kontakt. The double gap tube is preferably in — particularly intimate — heat-conducting contact with the stator.
Das Doppelspaltrohr oder doppelwandige Spaltrohr kann auf verschiedene Art und Weise ausgebildet werden. Im Idealfall besteht das Doppelspaltrohr aus zwei voneinander getrennten, ineinander geschobenen Glattrohren, ist also eine „Rohr-im-Rohr- Konstruktion". Die beiden Glattrohre werden mittels der beiden sie stirnseitig abschließenden Deckel oder Lagerschilde koaxial oder im Wesentlichen koaxial ineinander gehalten. Der nutzbare Hohlraum ist dann der im Wesentlichen durchgehende - eventuell zusätzlich mit Umlenkschikanen zur Erzwingung eines bestimmten Strömungsweges versehene - Ringspalt zwischen den beiden Rohren. The double can or double-walled can can be designed in various ways. In the ideal case, the double-gap tube consists of two smooth tubes that are separated from one another and pushed one inside the other, so it is a "tube-in-tube construction". The two smooth tubes are made by means of the two they are held in one another coaxially or essentially coaxially in one another. The usable cavity is then the essentially continuous - possibly additionally provided with deflection baffles to force a certain flow path - annular gap between the two tubes.
Wichtig ist, dass die das Doppelspaltrohr bildenden Rohre 8, 9 dünnwandig und nicht magnetisierbar sind, also den Magnetfluß im Luftspalt nicht stören. Dünnwandig im Sinne der Erfindung sind Rohre mit einer radialen Wandstärke von weniger als 2,0 mm, besser weniger als 1,5 mm und idealerweise weniger als 1,1 mm. Idealerweise ist das Innenrohr 9 dünnwandiger, als das äußere Außenrohr, das idealerweise dem Atmosphärendruck gegen Vakuum standzuhalten hat. Dabei beträgt die radiale Erstreckung des Ringspalts zwischen den beiden Rohren bevorzugt weniger als die radiale Wandstärke des Außenrohrs. So wird der Luftspalt zwischen Rotor und Stator nicht unnötig vergrößert. It is important that the tubes 8, 9 forming the double-gap tube are thin-walled and not magnetizable, that is, they do not interfere with the magnetic flux in the air gap. Pipes with a radial wall thickness of less than 2.0 mm, better less than 1.5 mm and ideally less than 1.1 mm are thin-walled in the sense of the invention. Ideally, the inner tube 9 is thinner-walled than the outer outer tube, which ideally has to withstand the atmospheric pressure against a vacuum. The radial extension of the annular gap between the two tubes is preferably less than the radial wall thickness of the outer tube. In this way, the air gap between the rotor and stator is not unnecessarily enlarged.
Als ideal haben sich paarweise Rohr-in-Rohr verbaute, meist in sich gewickelte Einzel-Rohre aus Kohlefaser (CFK) oder Aramid erwiesen, die bei extrem geringer Wandstärke eine ausgezeichnete Formstabilität aufweisen. Stattdessen können beispielsweise auch Stahlrohre aus nicht magnetisierbarem Austenit Verwendung finden. In pairs, tube-in-tube, mostly coiled single tubes made of carbon fiber (CFRP) or aramid have proven to be ideal, which have excellent dimensional stability with extremely thin walls. Instead, for example, steel tubes made of non-magnetizable austenite can also be used.
Alternativ wäre an stranggepresste Hohlkammerprofile zu denken. Solche Profile sind aber nicht bevorzugt, da für das Strangpressen im Regelfall unerwünscht hohe Wandstärken in Kauf genommen werden müssen. Alternatively, we could think of extruded hollow chamber profiles. Such profiles are not preferred, however, since, as a rule, undesirably high wall thicknesses have to be accepted for extrusion.
Eine Sonderbauform der Erfindung besteht darin, dass das äußere Rohr nicht diskret ausgeführt, sondern von der Statorvergussmasse abgebildet und dadurch direkt von ihr integral-funktional bereitgestellt wird, was hier nicht figürlich dargestellt ist. A special design of the invention is that the outer tube is not made discreet, but from the stator potting compound and is thus directly provided integrally and functionally by it, which is not shown in the figures here.
Bemerkenswert ist auch die Abdichtung des Doppelspaltrohrs im Bereich der Deckelplatten bzw. Lagerschilde, wie sie in den Ansprüchen näher erläutert wird. The sealing of the double gap tube in the area of the cover plates or end shields, as explained in more detail in the claims, is also noteworthy.
Vorzugsweise soll mittels des Doppelspaltrohrs 10 nicht nur die Kühlung erreicht werden. Stattdessen wird hierdurch auch eine Trennung zwischen einem ersten und einem zweiten Bereich erreicht. Im Regelfall unterscheidet sich der Druck des ersten Bereichs von dem des zweiten Bereichs. Im ersten Bereich ist dann der Stator angeordnet und im zweiten Bereich der Rotor. Hierdurch wird es auch bei Vakuum-Systemen möglich, den Stator im normalen Luftdruck anzuordnen, was die Abfuhr der Verlustwärme vom Stator wesentlich erleichtert. Preferably, not only the cooling should be achieved by means of the double gap tube 10. Instead, this also achieves a separation between a first and a second area. As a rule, the pressure of the first area differs from that of the second area. The stator is then arranged in the first area and the rotor in the second area. This makes it possible, even in vacuum systems, to arrange the stator at normal air pressure, which makes it much easier to dissipate the heat loss from the stator.
Der Vollständigkeit halber sei gesagt, dass zusätzlich Schutz für den hier offenbarten luftspaltgekühlten Motor oder Generator als solchen begehrt wird, unabhängig von der konkreten Art seiner Verwendung. For the sake of completeness, it should be said that additional protection for the air-gap-cooled motor or generator disclosed here is desired as such, regardless of the specific type of its use.
FIGURENLISTE CHARACTERISTICS
Die Figur 1 zeigt den grundsätzlichen Aufbau einer Wärmepumpenanlage der hier bevorzugten Art. Figure 1 shows the basic structure of a heat pump system of the type preferred here.
Die Figur 2 zeigt den Aufbau des hier verwendeten Motors. BEVORZUGTES AUSFUHRUNGSBEISPIEL Figure 2 shows the structure of the motor used here. PREFERRED EMBODIMENT
Die Figur 1 veranschaulicht den Aufbau und das Funktionsprinzip des für die erfindungsgemäße Anlage bevorzugt zum Einsatz kommenden Wärmepumpentyps, hier am Beispiel der Wärmepumpe 2 mit ihrem Verdampfer 3 und ihrem Verflüssiger 4 und den zugehörigen Verdampferein- und -ausgängen 3.1 bzw. 3.2 sowie den zugehörigen Verflüssigerein- und -ausgängen 4.1 bzw. 4.2. Figure 1 illustrates the structure and the functional principle of the heat pump type preferably used for the system according to the invention, here using the example of the heat pump 2 with its evaporator 3 and its condenser 4 and the associated evaporator inlets and outlets 3.1 and 3.2 as well as the associated condenser and outputs 4.1 and 4.2.
Es handelt sich um ein bis an die nicht dargestellten, extern mit Rohren angeschlossenen Wärmetauscher, die die Systemgrenze des eingehausten Systems bilden mögen, vakuumdichtes System. Dieses wird vorzugsweise mit reinem Wasser als Arbeitsflüssigkeit betrieben, sowohl auf Seiten der Kühlflüssigkeit als auch auf Seiten der Kaltflüssigkeit. It is a vacuum-tight system except for the heat exchangers, which are not shown and are connected externally with pipes, which may form the system boundary of the enclosed system. This is preferably operated with pure water as the working fluid, both on the side of the cooling liquid and on the side of the cold liquid.
Die Kaltflüssigkeit tritt über den Verdampfereingang 3.1 in den Verdampfer 3 der Wärmepumpe 2 ein. The cold liquid enters the evaporator 3 of the heat pump 2 via the evaporator inlet 3.1.
Etwa 1 % der eingetretenen Kaltflüssigkeit verdampft im dort herrschenden Vakuum. Die hierfür benötigte Verdampfungsenergie wird dem restlichen Kaltflüssigkeitsstrom KW entzogen, der sich dadurch um ca. 6 °C abkühlt. About 1% of the cold liquid that has entered evaporates in the vacuum prevailing there. The evaporation energy required for this is withdrawn from the remaining cold liquid flow KW, which cools down by approx. 6 ° C.
Der bei der Verdampfung entstandene Dampf W wird von dem Turboverdichter 17 mit vorzugsweise mehr als 25.000 Umdrehungen pro Minute auf maximal ein Drittel seines Ausgangsvolumens verdichtet, wobei sich sein Druck und seine Temperatur erhöhen. Er wird dabei in den Verflüssiger 4 gedrückt. Der Turboverdichter 17 wird dem speziellen, wie vorstehend beschrieben ausgeführten und gekühlten Elektromotor 17a angetrieben. Dabei liegt dessen Rotor in einem Bereich in dem, zumindest im Wesentlichen, das Vakuum des Verdampfers herrscht. The steam W produced during the evaporation is compressed by the turbo-compressor 17 at preferably more than 25,000 revolutions per minute to a maximum of one third of its initial volume, with its pressure and temperature increasing. It is pressed into the condenser 4 in the process. The turbo compressor 17 is driven by the special electric motor 17a designed and cooled as described above. This is where it lies Rotor in an area in which, at least essentially, the vacuum of the evaporator prevails.
Der erhitzte Dampf W kondensiert im Verflüssiger 4 entweder an einem hier nicht gezeigten innenliegenden Wärmeübertrager oder direkt in den umlaufenden Kühlflüssigkeitsstrom K, die dabei abgegebene Kondensationswärme erwärmt diesen dabei ebenfalls um ca. 6 °C. The heated vapor W condenses in the condenser 4 either on an internal heat exchanger (not shown here) or directly into the circulating cooling liquid flow K; the heat of condensation emitted in the process also heats it by approx. 6 ° C.
Geschlossen wird der Kreislauf über ein selbstregelndes Expansionsorgan 18. The circuit is closed via a self-regulating expansion element 18.
Bemerkenswert ist, dass die Verdampfung und Rekondensation vollständig innerhalb der jeweiligen Wärmepumpe 2 ablaufen, d. h. innerhalb der Dose D, die die Wärmepumpe 2 gegenüber ihrer Umgebung kapselt. Die Verdampfung und Rekondensation erfolgen nicht in den Wärmetauschern, die in dem zu heizenden oder zu kühlenden Raum angebracht sind und/oder zum Zwecke der Nutzwärmeaufnahme bzw. der Abwärmeabgabe gebäudeaußenseitig. It is noteworthy that the evaporation and recondensation take place completely within the respective heat pump 2, i. H. inside the box D, which encapsulates the heat pump 2 from its surroundings. Evaporation and recondensation do not take place in the heat exchangers that are installed in the room to be heated or cooled and / or outside the building for the purpose of absorbing useful heat or releasing waste heat.
Die Figur 2 zeigt die Einzelheiten eines erfindungsgemäß gekühlten Elektromotors 17a, wie er vorzugsweise für die zuvor geschilderte Anlage zum Einsatz kommt. Ein solcher Elektromotor 17a kann aber auch außerhalb solcher Anlagen in allgemeinen Anwendungsfällen benutzt werden. FIG. 2 shows the details of an electric motor 17a cooled according to the invention, as it is preferably used for the system described above. Such an electric motor 17a can also be used outside of such systems in general applications.
Gut zu erkennen sind hier die beiden Deckel 5, die ggf. zugleich Lagerschilde sein können, was hier nicht gezeigt ist. Im letztgenannten Fall halten die Lagerschilde über ein entsprechendes Wälzlager den Rotor6. Gut in Figur 2 zu erkennen ist der vorzugsweise permanentmagnetisch erregte Rotor 6. und der Stator 7. Der Motor 17a ist idealerweise zweipolig ausgeführt, da ein zweipoliger Motor besser mit einem größeren Luftspalt zurechtkommt, was mehr Raum für den Einbau des Doppelspaltrohrs bietet. Idealerweise ist der Rotor 5 als Rotor mit in der Rotorblechung vergrabenen Permanentmagneten ausgeführt. In Fig. 2 ist das nur andeutungsweise zeichnerisch dargestellt. Auch eine solche Ausführung ist wegen ihrer „Gutmütigkeit" im Hinblick auf die Größe des Luftspalts günstig, wenn der Luftspalt groß genug gemacht werden soll, um das erfindungsgemäße Doppelspaltrohr einzubauen. The two covers 5, which, if necessary, can also be end shields, which is not shown here, can be clearly seen here. In the latter case, the end shields hold the rotor6 via a corresponding roller bearing. The rotor 6, which is preferably excited by permanent magnets, and the stator 7 can be seen clearly in FIG. 2. The motor 17a is ideally designed with two poles, since a two-pole motor can cope better with a larger air gap, which offers more space for the installation of the double-gap tube. Ideally, the rotor 5 is designed as a rotor with permanent magnets buried in the rotor lamination. In Fig. 2 this is only hinted at in the drawing. Such a design is also favorable because of its "good nature" with regard to the size of the air gap if the air gap is to be made large enough to install the double-gap tube according to the invention.
Wie man sieht, weisen die Deckel 5 bzw. Lagerschilde Ringnuten. In diese Ringnuten 5 greifen die Stirnseiten der beiden Rohre, nämlich des Außenrohrs 8 und des Innenrohrs 9, da diese hier das Doppelspaltrohr 10 bilden, ein. Wie man sieht, ist in jedem der Deckel 5 bzw. Lagerschilde eine radiale Bohrung 11 zur Versorgung vorgesehen. Über diese Bohrungen 11 kann der Hohlraum 12 zwischen dem hier das Doppelspaltrohr 10 bildenden Außenrohr 8 und dem Innenrohr 9 mit Kühlmittel beaufschlagt bzw. durchströmt werden. As you can see, the cover 5 or end shields have annular grooves. The end faces of the two tubes, namely the outer tube 8 and the inner tube 9, engage in these annular grooves 5, since these here form the double-gap tube 10. As can be seen, a radial bore 11 is provided in each of the covers 5 or end shields for supply. Via these bores 11, the cavity 12 between the outer tube 8, here forming the double-gap tube 10, and the inner tube 9 can be acted upon or flowed through with coolant.
Als besonders günstig erweist sich dabei, dass durch die besagten radialen Bohrungen 11 auch die Lagerschilde gekühlt werden. Aufgrund dessen kann hier auch gleich die in den Wälzlagern entstehende Reibungswärme effizient abgeführt werden, was ebenfalls von Bedeutung ist. Letzteres gerade dann, wenn die Wälzlager, wie hier, im Vakuum laufen. It has proven to be particularly favorable that the bearing shields are also cooled through said radial bores 11. Because of this, the frictional heat generated in the rolling bearings can also be efficiently dissipated here, which is also important. The latter especially when the roller bearings, as here, run in a vacuum.

Claims

ANSPRÜCHE EXPECTATIONS
1. Wärmepumpenanlage mit einem Verdampfer und einem Verflüssiger sowie einem Turboverdichter, der von einem Elektromotor mit einem Stator und einem vorzugsweise permanentmagnetisch erregten Rotor angetrieben wird, dadurch gekennzeichnet, dass im Spalt zwischen dem Stator und dem Rotor ein Doppelspaltrohr ausgebildet ist, das in seinem Inneren einen zu Kühlzwecken oder Isolierzwecken nutzbaren Hohlraum aufweist. 1. Heat pump system with an evaporator and a condenser and a turbo compressor, which is driven by an electric motor with a stator and a preferably permanently magnetically excited rotor, characterized in that a double-gap tube is formed in the gap between the stator and the rotor, which in its interior has a cavity which can be used for cooling purposes or for insulating purposes.
2. Wärmepumpenanlage nach Anspruch 1, dadurch gekennzeichnet, dass die Wärmepumpenanlage ein nach außen abgeschlossenes System darstellt, in dem in einem Kreisprozess unter Vakuum Wasserdampf erzeugt und rekondensiert wird. 2. Heat pump system according to claim 1, characterized in that the heat pump system is an externally closed system in which water vapor is generated and recondensed in a cycle under vacuum.
3. Wärmepumpenanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Rotor des den Turboverdichter antreibenden Motors im Vakuum rotiert. 3. Heat pump system according to one of the preceding claims, characterized in that the rotor of the motor driving the turbo compressor rotates in a vacuum.
4. Wärmepumpenanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Dopeispaltrohr ruhend am Stator festgelegt ist. 4. Heat pump system according to one of the preceding claims, characterized in that Dopeispaltrohr is fixed on the stator.
5. Wärmepumpenanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das doppelwandige5. Heat pump system according to one of the preceding claims, characterized in that the double-walled
Doppelspaltrohr Bestandteil eines Statorkastens ist, der den Stator gegenüber dem rotorseitigen Vakuum so abdichtet, dass der Stator unter Umgebungsdruck arbeiten kann. Double gap tube is part of a stator box, which seals the stator against the vacuum on the rotor side in such a way that the stator can work under ambient pressure.
6. Wärmepumpenanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hohlraum einen Zu- und einen Ablauf zum Zirkulieren von Kühlmedium besitzt. 6. Heat pump system according to one of the preceding claims, characterized in that the cavity has an inlet and an outlet for circulating cooling medium.
7. Wärmepumpenanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hohlraum von Wasserdampf unter Vakuum bzw. einem Druck im Bereich zwischen 300 hPa und 1 hPa (Grobvakuum) durchströmt wird. 7. Heat pump system according to one of the preceding claims, characterized in that the cavity is traversed by water vapor under vacuum or a pressure in the range between 300 hPa and 1 hPa (rough vacuum).
8. Wärmepumpenanlage nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Hohlraum von Kältemittel der Wärmepumpe bzw. Kühlwasserdurchströmt wird, bevorzugt ebenfalls unter Vakuum. 8. Heat pump system according to one of claims 1 to 7, characterized in that the cavity is flowed through by refrigerant of the heat pump or cooling water, preferably also under vacuum.
9. Wärmepumpenanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Doppelspaltrohr von einem zum anderen Lagerschild reicht. 9. Heat pump system according to one of the preceding claims, characterized in that the double can extends from one end shield to the other.
10. Wärmepumpenanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Doppelspaltrohr an einer, vorzugsweise beiden Stirnseiten unter Zwischenlage einer vorzugsweise innen- und außenmantelseitig übergreifenden Dichtung in einer Ringnut des dortigen Lagerschildes gehalten wird. 10. Heat pump system according to one of the preceding claims, characterized in that the double can is held at one, preferably both end faces with the interposition of a preferably inner and outer shell side overlapping seal in an annular groove of the bearing plate there.
11. Wärmepumpenanlage nach Anspruch 10, dadurch gekennzeichnet, dass ein Lagerschild eine Radialbohrung aufweist, deren eines Ende am Außenumfang des Lagerschildes in einen Versorgungsanschluss übergeht und deren anderes Ende die Ringnut derart anschneidet, dass die Radialbohrung durch eine entsprechende Öffnung der Dichtung mit dem nutzbaren Hohlraum des Doppelspaltrohrs kommuniziert. 11. Heat pump system according to claim 10, characterized in that a bearing plate has a radial bore, one end of which merges into a supply connection on the outer circumference of the bearing plate and the other end of which intersects the annular groove in such a way that the radial bore with the usable cavity through a corresponding opening in the seal of the double can communicates.
12. Wärmepumpenanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Doppelspaltrohr aus zwei ineinandergeschobenen, koaxial gehaltenen Aramid- oder CFK- Rohren, Alu-Rohren, oder sonstigen den Magnetfluss im Spalt zwischen Rotor und Stator nicht behindernden Metall-Rohren besteht. 12. Heat pump system according to one of the preceding claims, characterized in that the double can of two coaxially held aramid or CFRP pipes, aluminum pipes, or other metal pipes that do not hinder the magnetic flux in the gap between the rotor and stator.
13. Wärmepumpenanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Doppelspaltrohr extrudiert ist. 13. Heat pump system according to one of the preceding claims, characterized in that the double can is extruded.
14. Wärmepumpenanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in dem Hohlraum des Doppelspaltrohrs Schikanen untergebracht sind oder ein Labyrinth, zur Beeinflussung der Kühlmittelströmung. 14. Heat pump system according to one of the preceding claims, characterized in that baffles are housed in the cavity of the double gap tube or a labyrinth to influence the coolant flow.
15. Elektromotor mit einem Stator und einem vorzugsweise permanentmagnetisch erregten Rotor, dadurch gekennzeichnet, dass im Spalt zwischen dem Stator und dem Rotor ein Doppelspaltrohr positioniert ist, das in seinem Inneren einen vorrangig zu Kühl- oder Isolierzwecken nutzbaren Hohlraum aufweist. 15. Electric motor with a stator and a preferably permanent magnet excited rotor, characterized in that a double-gap tube is positioned in the gap between the stator and the rotor, which has a cavity primarily used for cooling or insulating purposes in its interior.
16. Elektromotor nach Anspruch 15, dadurch gekennzeichnet, dass in dem Hohlraum ein Vakuum herrscht, vorzugsweise ein Feinvakuum zwischen 1 hPa und 10-3 hPa und idealerweise ein Hochvakuum zwischen 10-3 hPa und 10-7 hPa. 16. Electric motor according to claim 15, characterized in that there is a vacuum in the cavity, preferably a fine vacuum between 1 hPa and 10 -3 hPa and ideally a high vacuum between 10 -3 hPa and 10 -7 hPa.
17. Elektromotor nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass der Elektromotor ein oder mehrere den Elektromotor beschreibende Merkmale aus einem oder mehreren der Ansprüche 1 bis 14 aufweist. 17. Electric motor according to claim 15 or 16, characterized in that the electric motor has one or more features describing the electric motor from one or more of claims 1 to 14.
PCT/EP2020/081414 2019-12-05 2020-11-09 Special measures for controlling the temperature of a rotor of an electric motor WO2021110360A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019133241.9A DE102019133241A1 (en) 2019-12-05 2019-12-05 SPECIAL MEASURES FOR TEMPERATURE CONTROL OF A ROTOR OF AN ELECTRIC MOTOR
DE102019133241.9 2019-12-05

Publications (1)

Publication Number Publication Date
WO2021110360A1 true WO2021110360A1 (en) 2021-06-10

Family

ID=73288577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/081414 WO2021110360A1 (en) 2019-12-05 2020-11-09 Special measures for controlling the temperature of a rotor of an electric motor

Country Status (2)

Country Link
DE (1) DE102019133241A1 (en)
WO (1) WO2021110360A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE612714C (en) * 1935-05-03 Carlo Zorzi Electric motor with a runner enclosed in a liquid-tight capsule
SU468340A1 (en) * 1973-06-11 1975-04-25 Предприятие П/Я А-1297 Magnetic coupling
DE3931665C1 (en) * 1989-09-22 1991-02-21 Wilo-Werk Gmbh & Co Pumpen- Und Apparatebau, 4600 Dortmund, De Split-ring electric motor for pump - has feeder coupled to pump chamber at point exhibiting high pressure
JP2004289966A (en) * 2003-03-24 2004-10-14 Mayekawa Mfg Co Ltd Structure of laminated can for ammonia canned motor and processing method therefor
DE102012016844A1 (en) * 2011-08-30 2013-02-28 Ksb Aktiengesellschaft Turbo compressor and use
US20190267885A1 (en) * 2016-09-16 2019-08-29 Siemens Aktiengesellschaft Rotor With a Coil Arrangement and a Winding Carrier

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805547A (en) * 1972-11-21 1974-04-23 Trane Co Refrigeration machine with liquid refrigerant cooled motor
DE202005021025U1 (en) * 2004-03-18 2006-12-28 Baumüller Nürnberg GmbH Electrodynamic machine for use in motor vehicle, has grooves surrounded by stator, split pipe and housing formed in electrically insulating manner, and coolant circuit having flow channels and provided with electrically insulating coolant
DE102006056798B4 (en) * 2006-12-01 2008-10-23 Efficient Energy Gmbh Heat pump with a cooling mode
DE102010039397A1 (en) * 2010-08-17 2012-02-23 Siemens Aktiengesellschaft Electric machine with oil encapsulation around an active part
CN103999328A (en) * 2011-11-21 2014-08-20 包米勒公司 Electrical machine
DE102016203407A1 (en) * 2016-03-02 2017-09-07 Efficient Energy Gmbh Heat pump with convective wave cooling
DE102017127736A1 (en) * 2017-11-23 2019-05-23 Manfred Sade Magnetic pump with mechanical seal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE612714C (en) * 1935-05-03 Carlo Zorzi Electric motor with a runner enclosed in a liquid-tight capsule
SU468340A1 (en) * 1973-06-11 1975-04-25 Предприятие П/Я А-1297 Magnetic coupling
DE3931665C1 (en) * 1989-09-22 1991-02-21 Wilo-Werk Gmbh & Co Pumpen- Und Apparatebau, 4600 Dortmund, De Split-ring electric motor for pump - has feeder coupled to pump chamber at point exhibiting high pressure
JP2004289966A (en) * 2003-03-24 2004-10-14 Mayekawa Mfg Co Ltd Structure of laminated can for ammonia canned motor and processing method therefor
DE102012016844A1 (en) * 2011-08-30 2013-02-28 Ksb Aktiengesellschaft Turbo compressor and use
US20190267885A1 (en) * 2016-09-16 2019-08-29 Siemens Aktiengesellschaft Rotor With a Coil Arrangement and a Winding Carrier

Also Published As

Publication number Publication date
DE102019133241A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
EP1432102B1 (en) Electric machine with heat pipes
EP2933902B1 (en) Cooling of an electric machine
EP1547228B1 (en) Electrical machine with a cooling device
EP3254356B1 (en) Cooling of an electric machine
EP1891725B1 (en) Electric motor with permanent magnet excitation and rotor cooling
DE2310704A1 (en) DYNAMOELECTRIC MACHINE COOLED BY ROTATING HEAT PIPE
EP0543280B1 (en) Electric motor
EP2080258B1 (en) Encapsulated electrical machine with liquid-cooled stator
WO2007090803A1 (en) Cooling device for an electric machine electric machines with such a cooling device core sheet and production method for such electric machines
EP3017528B1 (en) Electric machine having a heat-conducting device
DE102006045178A1 (en) Electric machine, has winding system arranged in grooves of laminated core of stator, and laminated core of rotor arranged at shaft in torque-proof manner, where shaft is supported in two bearings in bearing flanges at housing
DE102010063973A1 (en) Electric machine e.g. permanently actuated synchronous motor, for electrical driven vehicle, has air flow generating unit for creating air flow in closed circuit, where apertures of rotor and heat exchanger are merged in closed circuit
WO2005091468A1 (en) Cooled electrodynamic machine comprising a can
WO2018059929A1 (en) Cooling system
DE102021105084A1 (en) SYSTEMS AND METHODS FOR PROVIDING DIRECT SPRAY COOLING IN AN ELECTRIC ENGINE
DE19919040C2 (en) Synchronous or asynchronous machine for large wind turbines
DE102008044502A1 (en) Generator with a cooling flow branching element and method for controlling a cooling flow
DE102019200098A1 (en) Fluid-cooled rotor for an electrical machine
WO2021110360A1 (en) Special measures for controlling the temperature of a rotor of an electric motor
DE1033322B (en) Gas cooling system for dynamo-electric machines
DE19913199A1 (en) Cooling device for electrical machine with stator and rotor has stator with sheet metal package and the rotor having groove/slots for the sheet metal package while an open tube is connected to supplier of a cooling medium
WO2003105316A1 (en) Electric motor comprising a stator cooling unit
EP1516109B1 (en) Device for cooling a current generator unit
DE102016222850A1 (en) Electric machine and motor vehicle
DE102021108083A1 (en) ELECTRIC MOTOR COOLING SYSTEM AND METHOD OF OPERATING THE SYSTEM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20804203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20804203

Country of ref document: EP

Kind code of ref document: A1