WO2021110035A1 - Eye positioning apparatus and method, and 3d display device, method and terminal - Google Patents

Eye positioning apparatus and method, and 3d display device, method and terminal Download PDF

Info

Publication number
WO2021110035A1
WO2021110035A1 PCT/CN2020/133329 CN2020133329W WO2021110035A1 WO 2021110035 A1 WO2021110035 A1 WO 2021110035A1 CN 2020133329 W CN2020133329 W CN 2020133329W WO 2021110035 A1 WO2021110035 A1 WO 2021110035A1
Authority
WO
WIPO (PCT)
Prior art keywords
black
eye
white
eye positioning
spatial position
Prior art date
Application number
PCT/CN2020/133329
Other languages
French (fr)
Chinese (zh)
Inventor
刁鸿浩
黄玲溪
Original Assignee
北京芯海视界三维科技有限公司
视觉技术创投私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京芯海视界三维科技有限公司, 视觉技术创投私人有限公司 filed Critical 北京芯海视界三维科技有限公司
Publication of WO2021110035A1 publication Critical patent/WO2021110035A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/111Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/246Calibration of cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/257Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/383Image reproducers using viewer tracking for tracking with gaze detection, i.e. detecting the lines of sight of the viewer's eyes

Definitions

  • This application relates to 3D display technology, such as eye positioning devices, methods, and 3D display equipment, methods, and terminals.
  • the embodiments of the present application intend to provide eye positioning devices, methods, 3D display devices, methods and terminals, computer-readable storage media, and computer program products.
  • an eye positioning device including: an eye locator, including a black and white camera configured to capture a black and white image of a user's face, and a depth acquisition device configured to acquire depth information of the face ;
  • the eye positioning image processor is configured to determine the spatial position of the eye based on the black and white image and the depth of field information.
  • the spatial position of the user's eyes can be determined with high precision, thereby being able to provide a 3D display image of the display object that matches the spatial position of the user's eyes, improving the 3D display quality and enhancing the viewing experience.
  • the viewpoint position of the user's eyes can be determined, so as to provide the user with a more accurate 3D display with a higher degree of freedom.
  • the eye positioning image processor is further configured to recognize the presence of eyes based on the black and white image.
  • the eye positioning device includes an eye positioning data interface configured to transmit eye spatial position information including the spatial position of the eye.
  • the depth-of-field acquisition device is a structured light camera or a TOF camera.
  • the eye positioning device further includes a viewing angle determining device configured to calculate the user's viewing angle with respect to the 3D display device.
  • 3D display images of the display object viewed from different angles can be generated in a follow-up manner, so that the user can watch the 3D display images consistent with the viewing angle, and enhance the realism and immersion of the 3D display.
  • the black and white camera is configured to capture a sequence of black and white images.
  • the eye positioning image processor includes: a buffer configured to buffer multiple black-and-white images in a black-and-white image sequence; a comparator configured to compare multiple black-and-white images before and after the black-and-white image sequence; Configured so that when the comparator does not recognize the presence of eyes in the current black-and-white image in the black-and-white image sequence and recognizes the presence of eyes in the previous or subsequent black-and-white images, it will be based on the previous or subsequent black-and-white images
  • the eye space position information determined by the acquired depth information is used as the current eye space position information.
  • a 3D display device including: a multi-viewpoint 3D display screen, including a plurality of sub-pixels corresponding to a plurality of viewpoints; the eye positioning device as described above, is configured to determine the spatial position of a user's eyes And a 3D processing device configured to determine the viewpoint according to the spatial position of the user's eyes, and render sub-pixels corresponding to the viewpoint based on the 3D signal.
  • the multi-view 3D display screen includes a plurality of composite pixels, each of the plurality of composite pixels includes a plurality of composite sub-pixels, and each composite sub-pixel of the plurality of composite sub-pixels is corresponding to a plurality of composite sub-pixels. It is composed of multiple sub-pixels for each viewpoint.
  • the 3D processing device and the eye positioning device are communicatively connected through an eye positioning data interface.
  • the 3D display device further includes a 3D photographing device configured to capture 3D images, and the 3D photographing device includes a depth-of-field camera and at least two color cameras.
  • the eye positioning device is integrated with the 3D camera.
  • the 3D camera is placed in front of the 3D display device.
  • an eye positioning method including: taking a black and white image of a user's face; acquiring depth information of the face; and determining the spatial position of the eye based on the black and white image and the depth information.
  • the eye positioning method further includes: recognizing the presence of the eye based on the black and white image.
  • the eye positioning method further includes: transmitting eye spatial position information including the spatial position of the eye.
  • the eye positioning method further includes: photographing a black-and-white image sequence including black-and-white images.
  • the eye positioning method further includes: buffering multiple black-and-white images in a black-and-white image sequence; comparing multiple black-and-white images before and after the black-and-white image sequence; when the current black-and-white image in the black-and-white image sequence is not recognized by comparing
  • the eye spatial position information determined based on the previous or subsequent black and white image and the acquired depth information is used as the current eye spatial position information.
  • a 3D display method including: determining the spatial position of a user's eyes; determining a viewpoint according to the spatial position of the user's eyes, and rendering sub-pixels corresponding to the viewpoint based on a 3D signal; wherein the 3D display device includes The multi-viewpoint 3D display screen includes multiple sub-pixels corresponding to multiple viewpoints.
  • a 3D display terminal including a processor, a memory storing program instructions, and a multi-view 3D display screen.
  • the processor is configured to execute the 3D display method described above when executing the program instructions.
  • the computer-readable storage medium provided by the embodiment of the present disclosure stores computer-executable instructions, and the above-mentioned computer-executable instructions are configured to execute the above-mentioned eye positioning method and 3D display method.
  • the computer program product provided by the embodiments of the present disclosure includes a computer program stored on a computer-readable storage medium.
  • the above-mentioned computer program includes program instructions.
  • the above-mentioned computer executes the above-mentioned eye positioning method, 3D display method.
  • Fig. 1 is a schematic diagram of an eye positioning device according to an embodiment of the present disclosure
  • FIGS. 2A and 2B are schematic diagrams of a 3D display device according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of using an eye positioning device according to an embodiment of the present disclosure to determine the spatial position of an eye
  • FIG. 4 is a schematic diagram of the steps of an eye positioning method according to an embodiment of the present disclosure.
  • Fig. 5 is a schematic diagram of steps of an eye positioning method according to an embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram of steps of an eye positioning method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of the steps of a 3D display method according to an embodiment of the present disclosure.
  • Fig. 8 is a schematic structural diagram of a 3D display terminal according to an embodiment of the present disclosure.
  • an eye positioning device configured to be used in a 3D display device.
  • the eye positioning device includes: an eye locator, including a black-and-white camera configured to take a black-and-white image, and a black-and-white camera configured to take a black-and-white image.
  • a depth-of-field acquisition device for acquiring depth-of-field information; an eye positioning image processor configured to recognize the presence of the eye based on the black and white image and determine the spatial position of the eye based on the black-and-white image and the acquired depth information.
  • Such an eye positioning device is exemplarily shown in FIG. 1.
  • a 3D display device including: a multi-viewpoint 3D display screen (for example, a multi-viewpoint naked eye 3D display screen), including a plurality of sub-pixels corresponding to a plurality of viewpoints; a 3D processing device configured to Rendering the sub-pixels corresponding to the viewpoint based on the 3D signal; wherein the viewpoint is determined by the spatial position of the user's eyes; and according to the eye positioning device described above.
  • a multi-viewpoint 3D display screen for example, a multi-viewpoint naked eye 3D display screen
  • a 3D processing device configured to Rendering the sub-pixels corresponding to the viewpoint based on the 3D signal
  • the viewpoint is determined by the spatial position of the user's eyes; and according to the eye positioning device described above.
  • the determination of the viewpoint by the spatial position of the eye may be implemented by a 3D processing device, or may be implemented by an eye positioning image processor of an eye positioning device.
  • the 3D processing device is communicatively connected with the multi-view 3D display screen.
  • the 3D processing device is communicatively connected with the driving device of the multi-view 3D display screen.
  • an eye positioning method including: taking a black and white image; acquiring depth information; recognizing the presence of the eye based on the black and white image; and determining the spatial position of the eye based on the black and white image and the acquired depth information.
  • a 3D display method is provided, which is suitable for a 3D display device.
  • the 3D display device includes a multi-viewpoint 3D display screen, including multiple sub-pixels corresponding to multiple viewpoints; the 3D display method includes: transmitting a 3D signal; Use the eye positioning method described above to determine the spatial position of the user's eyes; determine the viewpoint where the eye is based on the spatial position of the eye; and render the sub-pixels corresponding to the viewpoint based on the 3D signal.
  • FIG. 2A shows a schematic diagram of a 3D display device 100 according to an embodiment of the present disclosure.
  • a 3D display device 100 is provided, including a multi-view 3D display screen 110, a signal interface 140 configured to receive a video frame of a 3D signal, and a 3D processing device communicatively connected to the signal interface 140 The device 130 and the eye positioning device 150.
  • the eye positioning device 150 is communicatively connected to the 3D processing device 130, so that the 3D processing device 130 can directly receive eye positioning data.
  • the 3D processing device is configured to determine the viewpoint of the user's eyes from the spatial position of the eyes. In other embodiments, the determination of the viewpoint of the user's eyes from the spatial position of the eyes can also be achieved by an eye positioning device, and the 3D processing device receives the eye positioning data including the viewpoint.
  • the eye positioning data may include the spatial position of the eyes, such as the distance between the user's eyes and the multi-viewpoint 3D display screen, the viewpoint where the user's eyes are located, and the user's perspective.
  • the multi-view 3D display screen 110 may include a display panel and a grating (not labeled) covering the display panel.
  • the multi-view 3D display screen 110 may include m columns and n rows, that is, m ⁇ n composite pixels, thereby defining a display resolution of m ⁇ n.
  • the resolution of m ⁇ n may be a resolution above Full High Definition (FHD), including but not limited to 1920 ⁇ 1080, 1920 ⁇ 1200, 2048 ⁇ 1280, 2560 ⁇ 1440, 3840 ⁇ 2160, etc.
  • FHD Full High Definition
  • each composite pixel includes a plurality of composite sub-pixels, and each composite sub-pixel is composed of i sub-pixels of the same color corresponding to i viewpoints, i ⁇ 3.
  • i 6
  • i 6
  • the three composite sub-pixels respectively correspond to three colors, namely red (R), green (G) and blue (B).
  • the three composite sub-pixels in each composite pixel are arranged in a single column, and the six sub-pixels of each composite sub-pixel are arranged in a single row.
  • multiple composite sub-pixels in each composite pixel are arranged in different forms; it is also conceivable that multiple sub-pixels in each composite sub-pixel are arranged in different forms.
  • the 3D display apparatus 100 may be provided with a single 3D processing device 130.
  • the single 3D processing device 130 simultaneously processes the rendering of the sub-pixels of each composite pixel of each composite pixel of the multi-view 3D display screen 110.
  • the 3D display device 100 may also be provided with more than one 3D processing device 130, which process the composite sub-pixels of the composite pixels of the multi-view 3D display screen 110 in parallel, serial, or a combination of series and parallel. Rendering of sub-pixels.
  • 3D processing device can be allocated in other ways and process multiple rows and multiple columns of composite pixels or composite sub-pixels of the multi-view 3D display screen 110 in parallel, which falls within the scope of the embodiments of the present disclosure.
  • the 3D processing device 130 may also optionally include a buffer 131 to buffer the received video frames.
  • the 3D processing device is an FPGA or ASIC chip or FPGA or ASIC chipset.
  • the 3D display device 100 may further include a processor 101 communicatively connected to the 3D processing device 130 through the signal interface 140.
  • the processor 101 is included in a computer or a smart terminal, such as a mobile terminal, or as a processor unit thereof.
  • the processor 101 may be arranged outside the 3D display device.
  • the 3D display device may be a multi-view 3D display with a 3D processing device, such as a non-intelligent 3D TV.
  • the following exemplary embodiments of the 3D display device include a processor inside.
  • the signal interface 140 is an internal interface connecting the processor 101 and the 3D processing device 130.
  • the signal interface as the internal interface of the 3D display device may be MIPI, mini-MIPI interface, LVDS interface, min-LVDS interface or Display Port interface.
  • the processor 101 of the 3D display device 100 may include a register 122.
  • the register 122 can be configured to temporarily store instructions, data, and addresses.
  • the register 122 may be configured to receive information about the display requirements of the multi-view 3D display screen 110
  • the 3D display device 100 may further include a codec configured to decompress and encode and decode the compressed 3D signal and send the decompressed 3D signal to the 3D processing device 130 via the signal interface 140.
  • a codec configured to decompress and encode and decode the compressed 3D signal and send the decompressed 3D signal to the 3D processing device 130 via the signal interface 140.
  • the 3D display device 100 further includes a 3D photographing device 120 configured to capture 3D images.
  • the eye positioning device 150 is integrated in the 3D photographing device 120, or it is conceivable to be integrated into a conventional photographing device of a processing terminal or a display device.
  • the 3D camera 120 is a front camera.
  • the 3D photographing device 120 includes a camera unit 121, a 3D image processor 126, and a 3D image output interface 125.
  • the camera unit 121 includes a first color camera 121a, a second color camera 121b, and a depth camera 121c.
  • the 3D image processor 126 may be integrated in the camera unit 121.
  • the first color camera 121a is configured to obtain a first color image of the subject
  • the second color camera 121b is configured to obtain a second color image of the subject
  • the intermediate point is obtained by combining the two color images.
  • the composite color image; the depth-of-field camera 121c is configured to obtain depth information of the subject.
  • the synthesized color image and depth information obtained by synthesis form a 3D image.
  • the first color camera and the second color camera are the same color camera.
  • the first color camera and the second color camera may also be different color cameras.
  • the first color image and the second color image can be calibrated or corrected.
  • the depth-of-field camera 121c may be a TOF (time of flight) camera or a structured light camera.
  • the depth camera 121c may be arranged between the first color camera and the second color camera.
  • the 3D image processor 126 is configured to synthesize the first color image and the second color image into a synthetic color image, and synthesize the obtained synthetic color image and depth information into a 3D image.
  • the formed 3D image is transmitted to the processor 101 of the 3D display device 100 through the 3D image output interface 125.
  • the first color image, the second color image, and the depth information are directly transmitted to the processor 101 of the 3D display device 100 via the 3D image output interface 125, and the processor 101 performs the aforementioned synthesis of the two color images and forms the 3D image Wait for processing.
  • the 3D image output interface 125 may also be communicatively connected to the 3D processing device 130 of the 3D display device 100, so that the 3D processing device 130 can perform processing such as synthesizing color images and forming 3D images.
  • At least one of the first color camera and the second color camera is a wide-angle color camera.
  • the eye positioning device 150 is integrated in the 3D photographing device 120 and includes an eye locator 151, an eye positioning image processor 152 and an eye positioning data interface 153.
  • the eye locator 151 includes a black-and-white camera 151a and a depth-of-field acquisition device 151b.
  • the black-and-white camera 151a is configured to capture black-and-white images
  • the depth-of-field acquisition device 151b is configured to acquire depth-of-field information.
  • the eye positioning device 150 is also front-facing.
  • the subject of the black-and-white camera 151a is the user's face, and the face or eye is recognized based on the black-and-white image captured, and the depth-of-field acquiring device acquires at least the depth information of the eye, and may also acquire the depth information of the face.
  • the eye positioning data interface 153 of the eye positioning device 150 is communicatively connected to the 3D processing device 130 of the 3D display device 100, so that the 3D processing device 130 can directly receive the eye positioning data.
  • the eye positioning image processor 152 may be communicatively connected to the processor 101 of the 3D display device 100, so that the eye positioning data may be transmitted from the processor 101 to the 3D processing through the eye positioning data interface 153 ⁇ 130 ⁇ Device 130.
  • the eye positioning device 150 is communicatively connected with the camera unit 121, so that the eye positioning data can be used when shooting 3D images.
  • the eye locator 151 is also provided with an infrared emitting device 154.
  • the infrared emitting device 154 is configured to selectively emit infrared light to supplement the light when the ambient light is insufficient, for example, when shooting at night, so that shooting can also be performed under weak ambient light conditions. Can recognize black and white images of faces and eyes.
  • the eye positioning device 150 or the processing terminal or display device integrated with the eye positioning device may be configured to, when the black-and-white camera is working, based on the received light sensing signal, for example, it is detected that the light sensing signal is lower than When the threshold is given, control the opening of the infrared emitting device or adjust its size.
  • the light sensing signal is received from an ambient light sensor integrated in the processing terminal or the display device.
  • the infrared emitting device 154 is configured to emit infrared light with a wavelength greater than or equal to 1.5 microns, that is, long-wave infrared light. Compared with short-wave infrared light, long-wave infrared light has a weaker ability to penetrate the skin, so it is less harmful to the eyes.
  • the captured black and white image is transmitted to the eye positioning image processor 152.
  • the eye positioning image processor is configured to have a visual recognition function, such as a face recognition function, and is configured to recognize a face and eyes based on a black and white image. Based on the identified eyes, the viewing angle of the user relative to the display screen of the display device can be obtained, which will be described below.
  • the depth information of the eyes or the face acquired by the depth acquisition device 151b is also transmitted to the eye positioning image processor 152.
  • the eye positioning image processor 152 is configured to determine the spatial position of the eye based on the black and white image and the acquired depth information, which will be described below.
  • the depth-of-field acquisition device 151b is a structured light camera or a TOF camera.
  • the TOF camera includes a projector and a receiver.
  • the projector transmits light pulses to the observed object, and then receives the light pulses reflected back from the observed object through the receiver, passing the round trip time of the light pulse To calculate the distance between the observed object and the camera.
  • the structured light camera includes a projector and a collector.
  • the surface structured light such as coded structured light
  • the surface structured light is projected onto the observed object through the projector to form a distorted image of the surface structured light on the surface of the observed object.
  • the distorted image is collected and analyzed by the collector, so as to restore the three-dimensional outline and spatial information of the observed object.
  • the black and white camera 151a is a wide-angle black and white camera.
  • the depth-of-field acquisition device 151b and the depth-of-field camera 121c of the 3D photographing device 120 may be the same. In this case, the depth acquisition device 151b and the depth camera 121c may be the same TOF camera or the same structured light camera. In other embodiments, the depth-of-field acquisition device 151b and the depth-of-field camera 121c may be different.
  • the eye positioning device 150 includes a viewing angle determining device 155, which is configured to calculate the user's viewing angle with respect to the 3D display device or its display screen or black and white camera.
  • the angle of view includes, but is not limited to, the inclination angle of the user's monocular and black-and-white camera lens center O/display center DLC relative to the black and white camera plane MCP/display plane DLP, and the binocular connection The inclination angle of the connection between the midpoint (center of both eyes) and the black-and-white camera lens center O/display center DLC relative to the black-and-white camera plane MCP/display plane DLP.
  • the angle of view can also include the inclination angle of the binocular line with respect to the black and white camera plane MCP/display plane DLP, and the plane of the face HFP with respect to The tilt angle of the black and white camera plane MCP/display plane DLP, etc.
  • the plane HFP of the face can be determined by extracting several facial features, such as the eyes and ears, the corners of the eyes and the mouth, the eyes and the chin, and so on.
  • the black-and-white camera plane MCP can be regarded as the display screen plane DLP.
  • the inclination angle of the line with respect to the plane described above includes but is not limited to the angle between the line and the projection of the line in the plane, the angle between the projection of the line in the plane and the horizontal direction of the plane, The angle between the projection of the line in the plane and the vertical direction of the plane.
  • the angle between the line and the projection of the line in the plane may have a horizontal component and a vertical component.
  • the viewing angle determining device 155 may be integrated in the eye positioning image processor 152.
  • the eye positioning image processor 152 is configured to determine the spatial position of the eye based on the black and white image and the depth information.
  • the spatial position of the eye includes but is not limited to the above-described angle of view, the distance of the eye relative to the black and white camera plane MCP/display plane DLP, the eye relative to the eye positioning device or its black and white camera /3D display equipment or the spatial coordinates of its display screen, etc.
  • the eye positioning device 150 may further include a viewing angle data output interface configured to output the viewing angle calculated by the viewing angle determining device.
  • the viewing angle determination device may be integrated in the 3D processing device.
  • the black-and-white image captured by the black-and-white camera 151a including the left and right eyes of the user can be known as the X-axis (horizontal direction ) Coordinates and Y-axis (vertical direction) coordinates.
  • the X axis and the Y axis (not shown) perpendicular to the X axis form a black and white camera plane MCP, which is parallel to the focal plane FP;
  • the axis direction is the Z axis, and the Z axis is also the depth direction. That is to say, in the XZ plane shown in FIG.
  • the X-axis coordinates XR and XL of the left and right eyes imaging in the focal plane FP are known; moreover, the focal length f of the black and white camera 151a is known;
  • the inclination angle ⁇ relative to the X axis of the projection of the line connecting the left eye and the right eye and the black and white camera lens center O in the XZ plane can be calculated, which will be further described below.
  • the Y-axis coordinates of the left eye and right eye imaging in the focal plane FP are known, and combined with the known focal length f, the left eye and right eye can be calculated
  • the black-and-white images including the left and right eyes of the user captured by the black-and-white camera 151a and the depth information of the left and right eyes acquired by the depth-of-field acquisition device 151b can be known as the left and right eyes.
  • the angle ⁇ between the projection of the line connecting the left eye and the right eye in the XZ plane and the X axis can be calculated.
  • the angle between the projection of the line connecting the left eye and the right eye in the YZ plane and the Y axis can be calculated.
  • FIG. 3 schematically shows a top view of a geometric relationship model that uses a black and white camera 151a and a depth acquisition device 151b (not shown) to determine the spatial position of the eye.
  • R and L represent the user's right eye and left eye, respectively
  • XR and XL are respectively the X-axis coordinates of the user's right eye R and left eye L in the focal plane FP of the black and white camera 151a.
  • a threshold may be set for the included angle ⁇ , and when the included angle ⁇ does not exceed the threshold, it can be considered that the user is looking up at the plane of the display screen DLP.
  • the eye positioning device 150 includes an eye positioning data interface 153 configured to transmit eye spatial position information, including but not limited to the tilt angle, included angle, and spatial coordinates as described above.
  • eye spatial position information can provide users with targeted or customized 3D display screens.
  • the angle of view such as the angle between the center of the user’s eyes and the center of the display DLC relative to the horizontal direction (X axis) or the vertical direction (Y axis) is transmitted to the 3D processing device 130.
  • the 3D processing device 130 Based on the received viewing angle, the 3D processing device 130 generates a 3D display screen corresponding to the viewing angle, so as to be able to present display objects viewed from different angles to the user.
  • the following effect can be presented in the horizontal direction; based on the relationship between the center of the user's eyes and the center of the display screen DLC
  • the angle in the vertical direction (Y-axis) can present a follow-up effect in the vertical direction.
  • the spatial coordinates of the user’s left and right eyes are transmitted to the 3D processing device 130 through the eye positioning data interface 153.
  • the 3D processing device 130 determines based on the received spatial coordinates that the user’s eyes are located and determined by
  • the multi-viewpoint 3D display screen 110 provides viewpoints, and renders corresponding sub-pixels based on the video frame of the 3D signal.
  • the video frame based on the 3D signal renders the sub-pixels corresponding to the two viewpoints among the multiple composite sub-pixels of each composite pixel.
  • the sub-pixels corresponding to the viewpoints adjacent to the two viewpoints among the plurality of complex sub-pixels of each complex pixel may be additionally rendered.
  • the video frame based on the 3D signal renders the multiple composite sub-pixels of each composite pixel corresponding to the four viewpoints. Sub-pixels.
  • the next video frame of the 3D signal may be rendered based on a new predetermined viewpoint among multiple composite sub-pixels of each composite pixel.
  • the corresponding sub-pixel may be rendered based on a new predetermined viewpoint among multiple composite sub-pixels of each composite pixel.
  • multiple composite sub-pixels of each composite pixel and sub-pixels corresponding to the viewpoints of each user's eyes may be rendered based on the video frame of the 3D signal.
  • the user's viewing angle and viewpoint position are determined separately, and a 3D display screen that changes with the viewing angle and viewpoint position is provided accordingly to improve the viewing experience.
  • the eye spatial position information can also be directly transmitted to the processor 101 of the 3D display device 100, and the 3D processing device 130 receives/reads the eye spatial position from the processor 101 through the eye positioning data interface 153 information.
  • the black-and-white camera 151a is configured to capture a sequence of black-and-white images, which includes a plurality of black-and-white images arranged in time.
  • the eye positioning image processor 152 includes a buffer 156 and a comparator 157.
  • the buffer 156 is configured to buffer a plurality of black-and-white images arranged sequentially in time in the black-and-white image sequence.
  • the comparator 157 is configured to compare a plurality of black and white images taken before and after time in the black and white image sequence. By comparison, for example, it can be judged whether the spatial position of the eye has changed or whether the eye is still in the viewing range, and so on.
  • the eye localization image processor 152 further includes a judge (not shown) configured to, based on the comparison result of the comparator, the presence of the eye is not recognized in the current black-and-white image in the black-and-white image sequence And when the presence of eyes is recognized in the previous or subsequent black and white images, the eye spatial position information determined based on the previous or subsequent black and white images is used as the current eye spatial position information.
  • the user briefly turns his head. In this case, the user's face and eyes may not be recognized for a short time.
  • the eye spatial position information determined based on the black-and-white image that is later than the current black-and-white image can be used as the current eye spatial position information; it can also be based on the eye-space position information before the current black-and-white image. , That is, the eye space position information determined by taking the black and white image earlier is used as the current eye space position information.
  • the black and white camera 151a is configured to capture a sequence of black and white images at a frequency of 24 frames per second or more.
  • the shooting is performed at a frequency of 30 frames per second.
  • shooting is performed at a frequency of 60 frames per second.
  • the black and white camera 151a is configured to shoot at the same frequency as the refresh frequency of the display screen of the 3D display device.
  • the embodiments of the present disclosure may also provide an eye positioning method, which is implemented by using the eye positioning device in the above-mentioned embodiment.
  • the eye positioning method includes:
  • S403 Determine the spatial position of the eye based on the captured black and white image and the depth of field information.
  • the eye positioning method includes:
  • S504 Determine the spatial position of the eye based on the captured black and white image and depth of field information
  • S505 Transmit the spatial position information of the eye including the spatial position of the eye.
  • the eye positioning method includes:
  • S601 Take a black and white image sequence including black and white images of the user's face
  • S602 Cache multiple black and white images in the black and white image sequence
  • S603 compare multiple black and white images before and after in the black and white image sequence
  • the embodiments of the present disclosure may also provide a 3D display method, which is applicable to the 3D display device in the above embodiment.
  • the 3D display device includes a multi-viewpoint 3D display screen, and the multi-viewpoint 3D display screen includes a plurality of sub-pixels corresponding to a plurality of viewpoints.
  • the 3D display method includes:
  • S701 Determine the spatial position of the user's eyes
  • S702 Determine the viewpoint according to the spatial position of the user's eyes, and render sub-pixels corresponding to the viewpoint based on the 3D signal.
  • the embodiment of the present disclosure provides a 3D display terminal 800.
  • the 3D display terminal 800 includes a processor 814, a memory 811, a multi-view 3D display screen 810, and may also include a communication interface 812 and a bus 813.
  • the multi-view 3D display screen 810, the processor 814, the communication interface 812, and the memory 811 communicate with each other through the bus 813.
  • the communication interface 812 can be used for information transmission.
  • the processor 814 may call logic instructions in the memory 811 to execute the 3D display method of the foregoing embodiment.
  • logic instructions in the memory 811 can be implemented in the form of a software functional unit and when sold or used as an independent product, they can be stored in a computer readable storage medium.
  • the memory 811 can be configured to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 814 executes functional applications and data processing by running the program instructions/modules stored in the memory 811, that is, realizes the eye positioning method and/or the 3D display method in the foregoing method embodiment.
  • the memory 811 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal device, and the like.
  • the memory 811 may include a high-speed random access memory, and may also include a non-volatile memory.
  • the computer-readable storage medium provided by the embodiment of the present disclosure stores computer-executable instructions, and the above-mentioned computer-executable instructions are configured to execute the above-mentioned eye positioning method and 3D display method.
  • the computer program product provided by the embodiments of the present disclosure includes a computer program stored on a computer-readable storage medium.
  • the above-mentioned computer program includes program instructions.
  • the above-mentioned computer executes the above-mentioned eye positioning method, 3D display method.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes one or more instructions to enable a computer device (which can be a personal computer, a server, or a network). Equipment, etc.) execute all or part of the steps of the method of the embodiment of the present disclosure.
  • the aforementioned storage media can be non-transitory storage media, including: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk, and other media that can store program codes, or it can be a transient storage medium. .
  • the disclosed methods and products can be implemented in other ways.
  • the device or device embodiments described above are merely illustrative.
  • the division of units may only be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to implement this embodiment.
  • the functional units in the embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

The present application discloses an eye positioning apparatus, comprising: an eye positioner comprising a black-and-white camera configured to shoot a black-and-white image of a user's face and a depth of field acquisition apparatus configured to acquire depth of field information of the face; and an eye positioning image processor configured to determine a spatial position of an eye on the basis of the black-and-white image and the acquired depth of field information. The eye positioning apparatus can accurately determine the spatial position of user's eyes, thereby improving 3D display quality. The present application further discloses an eye positioning method, a 3D display device, a 3D display method, a 3D display terminal, a computer readable storage medium and a computer program product.

Description

眼部定位装置、方法及3D显示设备、方法和终端Eye positioning device, method and 3D display device, method and terminal
本申请要求在2019年12月05日提交中国知识产权局、申请号为201911231165.9、发明名称为“人眼追踪装置、方法及3D显示设备、方法和终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application requires the priority of a Chinese patent application filed with the China Intellectual Property Office, the application number is 201911231165.9, and the invention title is "eye tracking device, method, and 3D display device, method, and terminal" on December 5, 2019, all of which The content is incorporated in this application by reference.
技术领域Technical field
本申请涉及3D显示技术,例如涉及眼部定位装置、方法及3D显示设备、方法和终端。This application relates to 3D display technology, such as eye positioning devices, methods, and 3D display equipment, methods, and terminals.
背景技术Background technique
在一些常规的脸部或眼部定位装置中,仅检测脸部与屏幕的距离,并依靠预设的或默认的瞳距来确定眼部所在的视点位置。这样识别的精度不高,可能会造成视点计算错误,无法满足高质量的3D显示。In some conventional face or eye positioning devices, only the distance between the face and the screen is detected, and a preset or default interpupillary distance is used to determine the eye position. The accuracy of such recognition is not high, which may cause errors in the calculation of the viewpoint, which cannot meet the requirements of high-quality 3D display.
本背景技术仅为了便于了解本领域的相关技术,并不视作对现有技术的承认。This background technology is only for facilitating the understanding of related technologies in the field, and is not regarded as an acknowledgement of the prior art.
发明内容Summary of the invention
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。该概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。In order to have a basic understanding of some aspects of the disclosed embodiments, a brief summary is given below. This summary is not a general comment, nor is it intended to determine key/important components or describe the scope of protection of these embodiments, but serves as a prelude to the detailed description that follows.
本申请的实施例意图提供眼部定位装置、方法及3D显示设备、方法和终端、计算机可读存储介质、计算机程序产品。The embodiments of the present application intend to provide eye positioning devices, methods, 3D display devices, methods and terminals, computer-readable storage media, and computer program products.
在一个方案中,提供了一种眼部定位装置,包括:眼部定位器,包括被配置为拍摄用户的脸部的黑白图像的黑白摄像头和被配置为获取脸部的景深信息的景深获取装置;眼部定位图像处理器,被配置为基于黑白图像和景深信息确定眼部的空间位置。In one solution, an eye positioning device is provided, including: an eye locator, including a black and white camera configured to capture a black and white image of a user's face, and a depth acquisition device configured to acquire depth information of the face ; The eye positioning image processor is configured to determine the spatial position of the eye based on the black and white image and the depth of field information.
通过这种眼部定位装置,能够高精度地确定用户眼部的空间位置,从而能够提供符合用户眼部的空间位置的显示对象的3D显示画面,提高3D显示质量,提升观看体验。基于用户眼部的实际空间位置能够确定用户眼部所处的视点位置,从而能向用户提供更精确的、自由度更高的3D显示。With this kind of eye positioning device, the spatial position of the user's eyes can be determined with high precision, thereby being able to provide a 3D display image of the display object that matches the spatial position of the user's eyes, improving the 3D display quality and enhancing the viewing experience. Based on the actual spatial position of the user's eyes, the viewpoint position of the user's eyes can be determined, so as to provide the user with a more accurate 3D display with a higher degree of freedom.
在一些实施例中,眼部定位图像处理器还被配置为基于黑白图像识别眼部的存在。In some embodiments, the eye positioning image processor is further configured to recognize the presence of eyes based on the black and white image.
在一些实施例中,眼部定位装置包括眼部定位数据接口,被配置为传输包含眼部的空间位置的眼部空间位置信息。In some embodiments, the eye positioning device includes an eye positioning data interface configured to transmit eye spatial position information including the spatial position of the eye.
在一些实施例中,景深获取装置为结构光摄像头或TOF摄像头。In some embodiments, the depth-of-field acquisition device is a structured light camera or a TOF camera.
在一些实施例中,眼部定位装置还包括视角确定装置,被配置为计算用户相对于3D显示设备的视角。In some embodiments, the eye positioning device further includes a viewing angle determining device configured to calculate the user's viewing angle with respect to the 3D display device.
根据视角,能够以随动的方式生成从不同角度观察到的显示对象的3D显示画面,从而使用户能够观看到与视角相符合的3D显示画面,增强3D显示的真实感和沉浸感。According to the viewing angle, 3D display images of the display object viewed from different angles can be generated in a follow-up manner, so that the user can watch the 3D display images consistent with the viewing angle, and enhance the realism and immersion of the 3D display.
在一些实施例中,黑白摄像头被配置为拍摄黑白图像序列。In some embodiments, the black and white camera is configured to capture a sequence of black and white images.
在一些实施例中,眼部定位图像处理器包括:缓存器,配置为缓存黑白图像序列中多幅黑白图像;比较器,配置为比较黑白图像序列中的前后多幅黑白图像;判决器,被配置为,当比较器通过比较在黑白图像序列中的当前黑白图像中未识别到眼部的存在且在之前或之后的黑白图像中识别到眼部的存在时,将基于之前或之后的黑白图像和获取的景深信息确定的眼部空间位置信息作为当前的眼部空间位置信息。In some embodiments, the eye positioning image processor includes: a buffer configured to buffer multiple black-and-white images in a black-and-white image sequence; a comparator configured to compare multiple black-and-white images before and after the black-and-white image sequence; Configured so that when the comparator does not recognize the presence of eyes in the current black-and-white image in the black-and-white image sequence and recognizes the presence of eyes in the previous or subsequent black-and-white images, it will be based on the previous or subsequent black-and-white images The eye space position information determined by the acquired depth information is used as the current eye space position information.
基于此,例如在黑白摄像头出现卡顿或跳帧等情况时,能够为用户提供更为连贯的显示画面,确保观看体验。Based on this, for example, when a black-and-white camera is stuck or frame skipping, it can provide users with a more consistent display screen to ensure a viewing experience.
在一个方案中,提供了一种3D显示设备,包括:多视点3D显示屏,包括对应多个视点的多个子像素;如上文描述的眼部定位装置,被配置为确定用户眼部的空间位置;以及3D处理装置,被配置为根据用户眼部的空间位置确定视点,并且基于3D信号渲染与视点对应的子像素。In one solution, a 3D display device is provided, including: a multi-viewpoint 3D display screen, including a plurality of sub-pixels corresponding to a plurality of viewpoints; the eye positioning device as described above, is configured to determine the spatial position of a user's eyes And a 3D processing device configured to determine the viewpoint according to the spatial position of the user's eyes, and render sub-pixels corresponding to the viewpoint based on the 3D signal.
在一些实施例中,多视点3D显示屏包括多个复合像素,多个复合像素中的每个复合像素包括多个复合子像素,多个复合子像素中的每个复合子像素由对应于多个视点的多个子像素构成。In some embodiments, the multi-view 3D display screen includes a plurality of composite pixels, each of the plurality of composite pixels includes a plurality of composite sub-pixels, and each composite sub-pixel of the plurality of composite sub-pixels is corresponding to a plurality of composite sub-pixels. It is composed of multiple sub-pixels for each viewpoint.
在一些实施例中,3D处理装置与眼部定位装置通过眼部定位数据接口通信连接。In some embodiments, the 3D processing device and the eye positioning device are communicatively connected through an eye positioning data interface.
在一些实施例中,3D显示设备还包括:3D拍摄装置,被配置为采集3D图像,3D拍摄装置包括景深摄像头和至少两个彩色摄像头。In some embodiments, the 3D display device further includes a 3D photographing device configured to capture 3D images, and the 3D photographing device includes a depth-of-field camera and at least two color cameras.
在一些实施例中,眼部定位装置与3D拍摄装置集成设置。In some embodiments, the eye positioning device is integrated with the 3D camera.
在一些实施例中,3D拍摄装置前置于3D显示设备。In some embodiments, the 3D camera is placed in front of the 3D display device.
在一个方案中,提供了一种眼部定位方法,包括:拍摄用户的脸部的黑白图像;获取脸部的景深信息;基于黑白图像和所述景深信息确定眼部的空间位置。In one solution, an eye positioning method is provided, including: taking a black and white image of a user's face; acquiring depth information of the face; and determining the spatial position of the eye based on the black and white image and the depth information.
在一些实施例中,眼部定位方法还包括:基于黑白图像识别眼部的存在。In some embodiments, the eye positioning method further includes: recognizing the presence of the eye based on the black and white image.
在一些实施例中,眼部定位方法还包括:传输包含眼部的空间位置的眼部空间位置信息。In some embodiments, the eye positioning method further includes: transmitting eye spatial position information including the spatial position of the eye.
在一些实施例中,眼部定位方法还包括:拍摄出包括黑白图像的黑白图像序列。In some embodiments, the eye positioning method further includes: photographing a black-and-white image sequence including black-and-white images.
在一些实施例中,眼部定位方法还包括:缓存黑白图像序列中多幅黑白图像;比较黑白图像序列中的前后多幅黑白图像;当通过比较在黑白图像序列中的当前黑白图像未识别到眼部的存在且在之前或之后的黑白图像中识别到眼部的存在时,基于之前或之后的黑白图像和获取的景深信息确定的眼部空间位置信息作为当前的眼部空间位置信息。In some embodiments, the eye positioning method further includes: buffering multiple black-and-white images in a black-and-white image sequence; comparing multiple black-and-white images before and after the black-and-white image sequence; when the current black-and-white image in the black-and-white image sequence is not recognized by comparing When the eye exists and the existence of the eye is recognized in the previous or subsequent black and white images, the eye spatial position information determined based on the previous or subsequent black and white image and the acquired depth information is used as the current eye spatial position information.
在一个方案中,提供了一种3D显示方法包括:确定用户眼部的空间位置;根据用户眼部的空间位置确定视点,并且基于3D信号渲染与视点对应的子像素;其中,3D显示设备包括多视点3D显示屏,多视点3D显示屏包括对应多个视点的多个子像素。In one solution, a 3D display method is provided, including: determining the spatial position of a user's eyes; determining a viewpoint according to the spatial position of the user's eyes, and rendering sub-pixels corresponding to the viewpoint based on a 3D signal; wherein the 3D display device includes The multi-viewpoint 3D display screen includes multiple sub-pixels corresponding to multiple viewpoints.
在一个方案中,提供了一种3D显示终端,包括处理器、存储有程序指令的存储器和多视点3D显示屏,处理器被配置为在执行程序指令时,执行如上文描述的3D显示方法。In one solution, a 3D display terminal is provided, including a processor, a memory storing program instructions, and a multi-view 3D display screen. The processor is configured to execute the 3D display method described above when executing the program instructions.
本公开实施例提供的计算机可读存储介质,存储有计算机可执行指令,上述计算机可执行指令设置为执行上述的眼部定位方法、3D显示方法。The computer-readable storage medium provided by the embodiment of the present disclosure stores computer-executable instructions, and the above-mentioned computer-executable instructions are configured to execute the above-mentioned eye positioning method and 3D display method.
本公开实施例提供的计算机程序产品,包括存储在计算机可读存储介质上的计算机程序,上述计算机程序包括程序指令,当该程序指令被计算机执行时,使上述计算机执行上述的眼部定位方法、3D显示方法。The computer program product provided by the embodiments of the present disclosure includes a computer program stored on a computer-readable storage medium. The above-mentioned computer program includes program instructions. When the program instructions are executed by a computer, the above-mentioned computer executes the above-mentioned eye positioning method, 3D display method.
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。The above general description and the following description are only exemplary and explanatory, and are not used to limit the application.
附图说明Description of the drawings
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图不构成比例限制,并且其中:One or more embodiments are exemplified by the accompanying drawings. These exemplified descriptions and drawings do not constitute a limitation on the embodiments, and the drawings do not constitute a scale limitation, and among them:
图1是根据本公开实施例的眼部定位装置的示意图;Fig. 1 is a schematic diagram of an eye positioning device according to an embodiment of the present disclosure;
图2A和图2B是根据本公开实施例的3D显示设备的示意图;2A and 2B are schematic diagrams of a 3D display device according to an embodiment of the present disclosure;
图3是利用根据本公开实施例的眼部定位装置确定眼部的空间位置的示意图;FIG. 3 is a schematic diagram of using an eye positioning device according to an embodiment of the present disclosure to determine the spatial position of an eye;
图4是根据本公开实施例的眼部定位方法的步骤示意图;4 is a schematic diagram of the steps of an eye positioning method according to an embodiment of the present disclosure;
图5是根据本公开实施例的眼部定位方法的步骤示意图;Fig. 5 is a schematic diagram of steps of an eye positioning method according to an embodiment of the present disclosure;
图6是根据本公开实施例的眼部定位方法的步骤示意图;Fig. 6 is a schematic diagram of steps of an eye positioning method according to an embodiment of the present disclosure;
图7是根据本公开实施例的3D显示方法的步骤示意图;FIG. 7 is a schematic diagram of the steps of a 3D display method according to an embodiment of the present disclosure;
图8是根据本公开实施例的3D显示终端的结构示意图。Fig. 8 is a schematic structural diagram of a 3D display terminal according to an embodiment of the present disclosure.
附图标记:Reference signs:
100:3D显示设备;101:处理器;122:寄存器;110:多视点3D显示屏;120:3D拍摄装置;121:摄像头单元;121a:第一彩色摄像头;121b:第二彩色摄像头;121c:景深摄像头;125:3D图像输出接口;126:3D图像处理器;130:3D处理装置;131:缓存器; 140:信号接口;150:眼部定位装置;151:眼部定位器;151a:黑白摄像头;151b:景深获取装置;152:眼部定位图像处理器;155:视角确定装置;156:缓存器;157:比较器;153:眼部定位数据接口;FP:焦平面;O:镜头中心;f:焦距;MCP:黑白摄像头平面;R:用户的右眼;L:用户的左眼;P:瞳距;XR:用户的右眼在焦平面内成像的X轴坐标;XL:用户的左眼在焦平面内成像的X轴坐标;βR:倾斜角;βL:倾斜角;α:夹角;DR:用户的右眼R相对于黑白摄像头平面MCP的距离;DL:用户的左眼L相对于黑白摄像头平面MCP的距离;DLP:显示屏平面;DLC:显示屏中心;HFP:脸部所在平面;800:3D显示终端;810:多视点3D显示屏;811:存储器;812:通信接口;813:总线;814:处理器。100: 3D display device; 101: processor; 122: register; 110: multi-view 3D display screen; 120: 3D camera; 121: camera unit; 121a: first color camera; 121b: second color camera; 121c: Depth-of-field camera; 125: 3D image output interface; 126: 3D image processor; 130: 3D processing device; 131: buffer; 140: signal interface; 150: eye positioning device; 151: eye positioning device; 151a: black and white Camera; 151b: Depth of Field Acquisition Device; 152: Eye Positioning Image Processor; 155: Viewing Angle Determining Device; 156: Buffer; 157: Comparator; 153: Eye Positioning Data Interface; FP: Focal Plane; O: Lens Center ; F: focal length; MCP: black and white camera plane; R: user’s right eye; L: user’s left eye; P: interpupillary distance; XR: X coordinate of the user’s right eye imaging in the focal plane; XL: user’s The X-axis coordinates of the left eye imaging in the focal plane; βR: tilt angle; βL: tilt angle; α: included angle; DR: the distance of the user's right eye R relative to the black and white camera plane MCP; DL: the user's left eye L The distance relative to the MCP of the black and white camera plane; DLP: the display plane; DLC: the center of the display; HFP: the plane where the face is located; 800: 3D display terminal; 810: multi-view 3D display; 811: memory; 812: communication interface ; 813: bus; 814: processor.
具体实施方式Detailed ways
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。In order to have a more detailed understanding of the features and technical content of the embodiments of the present disclosure, the implementation of the embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. The attached drawings are for reference only and are not used to limit the embodiments of the present disclosure.
在本公开实施例中,提供了一种眼部定位装置,被配置为用于3D显示设备,眼部定位装置包括:眼部定位器,包括被配置为拍摄黑白图像的黑白摄像头和被配置为获取景深信息的景深获取装置;眼部定位图像处理器,被配置为基于黑白图像识别眼部的存在且基于黑白图像和获取的景深信息确定眼部的空间位置。这种眼部定位装置在图1中示例性地示出。In an embodiment of the present disclosure, there is provided an eye positioning device configured to be used in a 3D display device. The eye positioning device includes: an eye locator, including a black-and-white camera configured to take a black-and-white image, and a black-and-white camera configured to take a black-and-white image. A depth-of-field acquisition device for acquiring depth-of-field information; an eye positioning image processor configured to recognize the presence of the eye based on the black and white image and determine the spatial position of the eye based on the black-and-white image and the acquired depth information. Such an eye positioning device is exemplarily shown in FIG. 1.
在本公开实施例中,提供了一种3D显示设备,包括:多视点3D显示屏(例如:多视点裸眼3D显示屏),包括对应多个视点的多个子像素;3D处理装置,被配置为基于3D信号渲染与视点对应的子像素;其中,视点由用户的眼部的空间位置确定;以及根据上文描述的眼部定位装置。In an embodiment of the present disclosure, a 3D display device is provided, including: a multi-viewpoint 3D display screen (for example, a multi-viewpoint naked eye 3D display screen), including a plurality of sub-pixels corresponding to a plurality of viewpoints; a 3D processing device configured to Rendering the sub-pixels corresponding to the viewpoint based on the 3D signal; wherein the viewpoint is determined by the spatial position of the user's eyes; and according to the eye positioning device described above.
作为解释而非限制性地,由眼部的空间位置确定视点可由3D处理装置实现,也可由眼部定位装置的眼部定位图像处理器实现。By way of explanation and not limitation, the determination of the viewpoint by the spatial position of the eye may be implemented by a 3D processing device, or may be implemented by an eye positioning image processor of an eye positioning device.
在一些实施例中,3D处理装置与多视点3D显示屏通信连接。In some embodiments, the 3D processing device is communicatively connected with the multi-view 3D display screen.
在一些实施例中,3D处理装置与多视点3D显示屏的驱动装置通信连接。In some embodiments, the 3D processing device is communicatively connected with the driving device of the multi-view 3D display screen.
在本公开实施例中,提供了一种眼部定位方法,包括:拍摄黑白图像;获取景深信息;基于黑白图像识别眼部的存在;基于黑白图像和获取的景深信息确定眼部的空间位置。In an embodiment of the present disclosure, an eye positioning method is provided, including: taking a black and white image; acquiring depth information; recognizing the presence of the eye based on the black and white image; and determining the spatial position of the eye based on the black and white image and the acquired depth information.
在本公开实施例中,提供了一种3D显示方法,适用于3D显示设备,3D显示设备包括多视点3D显示屏,包括对应多个视点的多个子像素;3D显示方法包括:传输3D信号;利用根据上文描述的眼部定位方法确定用户的眼部的空间位置;基于眼部的空间位置确定眼部所在的视点;基于3D信号渲染与视点对应的子像素。In an embodiment of the present disclosure, a 3D display method is provided, which is suitable for a 3D display device. The 3D display device includes a multi-viewpoint 3D display screen, including multiple sub-pixels corresponding to multiple viewpoints; the 3D display method includes: transmitting a 3D signal; Use the eye positioning method described above to determine the spatial position of the user's eyes; determine the viewpoint where the eye is based on the spatial position of the eye; and render the sub-pixels corresponding to the viewpoint based on the 3D signal.
图2A示出了根据本公开实施例的3D显示设备100的示意图。参考图2A,在本公开实施例中提供了一种3D显示设备100,包括多视点3D显示屏110、被配置为接收3D信号的视频帧的信号接口140、与信号接口140通信连接的3D处理装置130和眼部定位装置150。眼部定位装置150通信连接至3D处理装置130,由此,3D处理装置130可以直接接收眼部定位数据。FIG. 2A shows a schematic diagram of a 3D display device 100 according to an embodiment of the present disclosure. 2A, in an embodiment of the present disclosure, a 3D display device 100 is provided, including a multi-view 3D display screen 110, a signal interface 140 configured to receive a video frame of a 3D signal, and a 3D processing device communicatively connected to the signal interface 140 The device 130 and the eye positioning device 150. The eye positioning device 150 is communicatively connected to the 3D processing device 130, so that the 3D processing device 130 can directly receive eye positioning data.
在一些实施例中,3D处理装置被配置为由眼部的空间位置确定用户眼部所在的视点。在另一些实施例中,由眼部的空间位置确定用户眼部所在的视点也可通过眼部定位装置实现,3D处理装置接收包含视点的眼部定位数据。In some embodiments, the 3D processing device is configured to determine the viewpoint of the user's eyes from the spatial position of the eyes. In other embodiments, the determination of the viewpoint of the user's eyes from the spatial position of the eyes can also be achieved by an eye positioning device, and the 3D processing device receives the eye positioning data including the viewpoint.
作为解释而非限制性地,眼部定位数据可以包含眼部的空间位置,例如用户的眼部相对于多视点3D显示屏的间距、用户的眼部所在的视点、用户视角等。By way of explanation and not limitation, the eye positioning data may include the spatial position of the eyes, such as the distance between the user's eyes and the multi-viewpoint 3D display screen, the viewpoint where the user's eyes are located, and the user's perspective.
多视点3D显示屏110可包括显示面板和覆盖在显示面板上的光栅(未标识)。在图2A所示的实施例中,多视点3D显示屏110可包括m列n行、亦即m×n个复合像素并因此限定出m×n的显示分辨率。The multi-view 3D display screen 110 may include a display panel and a grating (not labeled) covering the display panel. In the embodiment shown in FIG. 2A, the multi-view 3D display screen 110 may include m columns and n rows, that is, m×n composite pixels, thereby defining a display resolution of m×n.
在一些实施例中,m×n的分辨率可以为全高清(FHD)以上的分辨率,包括但不限于,1920×1080、1920×1200、2048×1280、2560×1440、3840×2160等。In some embodiments, the resolution of m×n may be a resolution above Full High Definition (FHD), including but not limited to 1920×1080, 1920×1200, 2048×1280, 2560×1440, 3840×2160, etc.
作为解释而非限制地,每个复合像素包括多个复合子像素,各复合子像素由对应于i个视点的i个同色子像素构成,i≥3。在图2A所示的实施例中,i=6,但可以想到i为其他数值。在所示的实施例中,多视点3D显示屏可相应地具有i(i=6)个视点(V1-V6),但可以想到可以相应地具有更多或更少个视点。By way of explanation and not limitation, each composite pixel includes a plurality of composite sub-pixels, and each composite sub-pixel is composed of i sub-pixels of the same color corresponding to i viewpoints, i≥3. In the embodiment shown in FIG. 2A, i=6, but it is conceivable that i is another value. In the illustrated embodiment, the multi-viewpoint 3D display screen may correspondingly have i (i=6) viewpoints (V1-V6), but it is conceivable that there may be more or fewer viewpoints correspondingly.
作为解释而非限制地,在图2A所示的实施例中,每个复合像素包括三个复合子像素,并且每个复合子像素由对应于6个视点(i=6)的6个同色子像素构成。三个复合子像素分别对应于三种颜色,即红(R)、绿(G)和蓝(B)。在图2A所示的实施例中,每个复合像素中的三个复合子像素呈单列布置,每个复合子像素的六个子像素呈单行布置。但可以想到,各复合像素中的多个复合子像素成不同排布形式;也可以想到,各复合子像素中的多个子像素成不同排布形式。By way of explanation and not limitation, in the embodiment shown in FIG. 2A, each composite pixel includes three composite sub-pixels, and each composite sub-pixel is composed of 6 same-color sub-pixels corresponding to 6 viewpoints (i=6). Pixel composition. The three composite sub-pixels respectively correspond to three colors, namely red (R), green (G) and blue (B). In the embodiment shown in FIG. 2A, the three composite sub-pixels in each composite pixel are arranged in a single column, and the six sub-pixels of each composite sub-pixel are arranged in a single row. However, it is conceivable that multiple composite sub-pixels in each composite pixel are arranged in different forms; it is also conceivable that multiple sub-pixels in each composite sub-pixel are arranged in different forms.
作为解释而非限制性地,例如图2A所示,3D显示设备100可设置有单个3D处理装置130。单个3D处理装置130同时处理对多视点3D显示屏110的各复合像素的各复合子像素的子像素的渲染。在另一些实施例中,3D显示设备100也可设置有一个以上3D处理装置130,它们并行、串行或串并行结合地处理对多视点3D显示屏110的各复合像素的各复合子像素的子像素的渲染。本领域技术人员将明白,一个以上3D处理装置可以有其他的方式分配且并行处理多视点3D显示屏110的多行多列复合像素或复合子像素,这落入 本公开实施例的范围内。By way of explanation and not limitation, for example, as shown in FIG. 2A, the 3D display apparatus 100 may be provided with a single 3D processing device 130. The single 3D processing device 130 simultaneously processes the rendering of the sub-pixels of each composite pixel of each composite pixel of the multi-view 3D display screen 110. In other embodiments, the 3D display device 100 may also be provided with more than one 3D processing device 130, which process the composite sub-pixels of the composite pixels of the multi-view 3D display screen 110 in parallel, serial, or a combination of series and parallel. Rendering of sub-pixels. Those skilled in the art will understand that more than one 3D processing device can be allocated in other ways and process multiple rows and multiple columns of composite pixels or composite sub-pixels of the multi-view 3D display screen 110 in parallel, which falls within the scope of the embodiments of the present disclosure.
在一些实施例中,3D处理装置130还可以选择性地包括缓存器131,以便缓存所接收到的视频帧。In some embodiments, the 3D processing device 130 may also optionally include a buffer 131 to buffer the received video frames.
在一些实施例中,3D处理装置为FPGA或ASIC芯片或FPGA或ASIC芯片组。In some embodiments, the 3D processing device is an FPGA or ASIC chip or FPGA or ASIC chipset.
继续参考图2A,3D显示设备100还可包括通过信号接口140通信连接至3D处理装置130的处理器101。在本文所示的一些实施例中,处理器101被包括在计算机或智能终端、如移动终端中或作为其处理器单元。但是可以想到,在一些实施例中,处理器101可以设置在3D显示设备的外部,例如3D显示设备可以为带有3D处理装置的多视点3D显示器,例如非智能的3D电视。Continuing to refer to FIG. 2A, the 3D display device 100 may further include a processor 101 communicatively connected to the 3D processing device 130 through the signal interface 140. In some embodiments shown herein, the processor 101 is included in a computer or a smart terminal, such as a mobile terminal, or as a processor unit thereof. However, it is conceivable that, in some embodiments, the processor 101 may be arranged outside the 3D display device. For example, the 3D display device may be a multi-view 3D display with a 3D processing device, such as a non-intelligent 3D TV.
为简单起见,下文中的3D显示设备的示例性实施例内部包括处理器。基于此,信号接口140为连接处理器101和3D处理装置130的内部接口。在本文所示的一些实施例中,作为3D显示设备的内部接口的信号接口可以为MIPI、mini-MIPI接口、LVDS接口、min-LVDS接口或Display Port接口。在一些实施例中,如图2A所示,3D显示设备100的处理器101可包括寄存器122。寄存器122可被配置为暂存指令、数据和地址。在一些实施例中,寄存器122可被配置为接收有关多视点3D显示屏110的显示要求的信息For the sake of simplicity, the following exemplary embodiments of the 3D display device include a processor inside. Based on this, the signal interface 140 is an internal interface connecting the processor 101 and the 3D processing device 130. In some embodiments shown herein, the signal interface as the internal interface of the 3D display device may be MIPI, mini-MIPI interface, LVDS interface, min-LVDS interface or Display Port interface. In some embodiments, as shown in FIG. 2A, the processor 101 of the 3D display device 100 may include a register 122. The register 122 can be configured to temporarily store instructions, data, and addresses. In some embodiments, the register 122 may be configured to receive information about the display requirements of the multi-view 3D display screen 110
在一些实施例中,3D显示设备100还可以包括编解码器,配置为对压缩的3D信号解压缩和编解码并将解压缩的3D信号经信号接口140发送至3D处理装置130。In some embodiments, the 3D display device 100 may further include a codec configured to decompress and encode and decode the compressed 3D signal and send the decompressed 3D signal to the 3D processing device 130 via the signal interface 140.
参考图2B,3D显示设备100还包括被配置为采集3D图像的3D拍摄装置120,眼部定位装置150集成在3D拍摄装置120中,也可以想到集成到处理终端或显示设备的常规摄像装置中。在所示的实施例中,3D拍摄装置120为前置摄像装置。3D拍摄装置120包括摄像头单元121、3D图像处理器126、3D图像输出接口125。Referring to FIG. 2B, the 3D display device 100 further includes a 3D photographing device 120 configured to capture 3D images. The eye positioning device 150 is integrated in the 3D photographing device 120, or it is conceivable to be integrated into a conventional photographing device of a processing terminal or a display device. . In the illustrated embodiment, the 3D camera 120 is a front camera. The 3D photographing device 120 includes a camera unit 121, a 3D image processor 126, and a 3D image output interface 125.
如图2B所示,摄像头单元121包括第一彩色摄像头121a、第二彩色摄像头121b、景深摄像头121c。在另一些实施例中,3D图像处理器126可以集成在摄像头单元121内。在一些实施例中,第一彩色摄像头121a被配置为获得拍摄对象的第一彩色图像,第二彩色摄像头121b被配置为获得拍摄对象的第二彩色图像,通过合成这两幅彩色图像获得中间点的合成彩色图像;景深摄像头121c被配置为获得拍摄对象的景深信息。通过合成获得的合成彩色图像和景深信息形成3D图像。在本公开实施例中,第一彩色摄像头和第二彩色摄像头是相同的彩色摄像头。在另一些实施例中,第一彩色摄像头和第二彩色摄像头也可以是不同的彩色摄像头。在这种情况下,为了获得合成彩色图像,可以对第一彩色图像和第二彩色图像进行校准或矫正。景深摄像头121c可以是TOF(飞行时间)摄像头或结构光摄像头。景深摄像头121c可以设置在第一彩色摄像头和第二彩色摄像头之间。As shown in FIG. 2B, the camera unit 121 includes a first color camera 121a, a second color camera 121b, and a depth camera 121c. In other embodiments, the 3D image processor 126 may be integrated in the camera unit 121. In some embodiments, the first color camera 121a is configured to obtain a first color image of the subject, and the second color camera 121b is configured to obtain a second color image of the subject, and the intermediate point is obtained by combining the two color images. The composite color image; the depth-of-field camera 121c is configured to obtain depth information of the subject. The synthesized color image and depth information obtained by synthesis form a 3D image. In the embodiment of the present disclosure, the first color camera and the second color camera are the same color camera. In other embodiments, the first color camera and the second color camera may also be different color cameras. In this case, in order to obtain a composite color image, the first color image and the second color image can be calibrated or corrected. The depth-of-field camera 121c may be a TOF (time of flight) camera or a structured light camera. The depth camera 121c may be arranged between the first color camera and the second color camera.
在一些实施例中,3D图像处理器126被配置为将第一彩色图像和第二彩色图像合成为合成彩色图像,并将获得的合成彩色图像与景深信息合成为3D图像。所形成的3D图像通过3D图像输出接口125传输至3D显示设备100的处理器101。In some embodiments, the 3D image processor 126 is configured to synthesize the first color image and the second color image into a synthetic color image, and synthesize the obtained synthetic color image and depth information into a 3D image. The formed 3D image is transmitted to the processor 101 of the 3D display device 100 through the 3D image output interface 125.
可选地,第一彩色图像、第二彩色图像以及景深信息经由3D图像输出接口125直接传输至3D显示设备100的处理器101,并通过处理器101进行上述合成两幅彩色图像以及形成3D图像等处理。Optionally, the first color image, the second color image, and the depth information are directly transmitted to the processor 101 of the 3D display device 100 via the 3D image output interface 125, and the processor 101 performs the aforementioned synthesis of the two color images and forms the 3D image Wait for processing.
可选地,3D图像输出接口125还可通信连接到3D显示设备100的3D处理装置130,从而可通过3D处理装置130进行上述合成彩色图像以及形成3D图像等处理。Optionally, the 3D image output interface 125 may also be communicatively connected to the 3D processing device 130 of the 3D display device 100, so that the 3D processing device 130 can perform processing such as synthesizing color images and forming 3D images.
在一些实施例中,第一彩色摄像头和第二彩色摄像头中至少一个是广角的彩色摄像头。In some embodiments, at least one of the first color camera and the second color camera is a wide-angle color camera.
继续参考图2B,眼部定位装置150集成在3D拍摄装置120内并且包括眼部定位器151、眼部定位图像处理器152和眼部定位数据接口153。Continuing to refer to FIG. 2B, the eye positioning device 150 is integrated in the 3D photographing device 120 and includes an eye locator 151, an eye positioning image processor 152 and an eye positioning data interface 153.
眼部定位器151包括黑白摄像头151a和景深获取装置151b。黑白摄像头151a被配置为拍摄黑白图像,景深获取装置151b被配置为获取景深信息。在3D拍摄装置120是前置的并且眼部定位装置150集成在3D拍摄装置120内的情况下,眼部定位装置150也是前置的。那么,黑白摄像头151a的拍摄对象是用户脸部,基于拍摄到的黑白图像识别出脸部或眼部,景深获取装置至少获取眼部的景深信息,也可以获取脸部的景深信息。The eye locator 151 includes a black-and-white camera 151a and a depth-of-field acquisition device 151b. The black-and-white camera 151a is configured to capture black-and-white images, and the depth-of-field acquisition device 151b is configured to acquire depth-of-field information. In the case where the 3D camera 120 is front-facing and the eye positioning device 150 is integrated in the 3D camera 120, the eye positioning device 150 is also front-facing. Then, the subject of the black-and-white camera 151a is the user's face, and the face or eye is recognized based on the black-and-white image captured, and the depth-of-field acquiring device acquires at least the depth information of the eye, and may also acquire the depth information of the face.
在一些实施例中,眼部定位装置150的眼部定位数据接口153通信连接至3D显示设备100的3D处理装置130,由此,3D处理装置130可以直接接收眼部定位数据。在另一些实施例中,眼部定位图像处理器152可通信连接至3D显示设备100的处理器101,由此眼部定位数据可以从处理器101通过眼部定位数据接口153被传输至3D处理装置130。In some embodiments, the eye positioning data interface 153 of the eye positioning device 150 is communicatively connected to the 3D processing device 130 of the 3D display device 100, so that the 3D processing device 130 can directly receive the eye positioning data. In other embodiments, the eye positioning image processor 152 may be communicatively connected to the processor 101 of the 3D display device 100, so that the eye positioning data may be transmitted from the processor 101 to the 3D processing through the eye positioning data interface 153装置130。 Device 130.
在一些实施例中,眼部定位装置150与摄像头单元121通信连接,由此可在拍摄3D图像时使用眼部定位数据。In some embodiments, the eye positioning device 150 is communicatively connected with the camera unit 121, so that the eye positioning data can be used when shooting 3D images.
可选地,眼部定位器151还设置有红外发射装置154。在黑白摄像头151a工作时,红外发射装置154被配置为选择性地发射红外光,以在环境光线不足时、例如在夜间拍摄时起到补光作用,从而在环境光线弱的条件下也能拍摄能识别出脸部及眼部的黑白图像。Optionally, the eye locator 151 is also provided with an infrared emitting device 154. When the black-and-white camera 151a is working, the infrared emitting device 154 is configured to selectively emit infrared light to supplement the light when the ambient light is insufficient, for example, when shooting at night, so that shooting can also be performed under weak ambient light conditions. Can recognize black and white images of faces and eyes.
在一些实施例中,眼部定位装置150或集成有眼部定位装置的处理终端或显示设备可以配置为,在黑白摄像头工作时,基于接收到的光线感应信号,例如检测到光线感应信号低于给定阈值时,控制红外发射装置的开启或调节其大小。在一些实施例中,光线感应信号是从处理终端或显示设备集成的环境光传感器接收的。In some embodiments, the eye positioning device 150 or the processing terminal or display device integrated with the eye positioning device may be configured to, when the black-and-white camera is working, based on the received light sensing signal, for example, it is detected that the light sensing signal is lower than When the threshold is given, control the opening of the infrared emitting device or adjust its size. In some embodiments, the light sensing signal is received from an ambient light sensor integrated in the processing terminal or the display device.
可选地,红外发射装置154配置为发射波长大于或等于1.5微米的红外光,亦即长波红外光。与短波红外光相比,长波红外光穿透皮肤的能力较弱,因此对眼部的伤害较小。Optionally, the infrared emitting device 154 is configured to emit infrared light with a wavelength greater than or equal to 1.5 microns, that is, long-wave infrared light. Compared with short-wave infrared light, long-wave infrared light has a weaker ability to penetrate the skin, so it is less harmful to the eyes.
拍摄到的黑白图像被传输至眼部定位图像处理器152。示例性地,眼部定位图像处理器配置为具有视觉识别功能、例如脸部识别功能,并且配置为基于黑白图像识别出脸部和眼部。基于识别出的眼部,能够得到用户相对于显示设备的显示屏的视角,这将在下文中描述。The captured black and white image is transmitted to the eye positioning image processor 152. Exemplarily, the eye positioning image processor is configured to have a visual recognition function, such as a face recognition function, and is configured to recognize a face and eyes based on a black and white image. Based on the identified eyes, the viewing angle of the user relative to the display screen of the display device can be obtained, which will be described below.
通过景深获取装置151b获取到的眼部或脸部的景深信息也被传输至眼部定位图像处理器152。眼部定位图像处理器152被配置为基于黑白图像和获取的景深信息确定眼部的空间位置,这将在下文中描述。The depth information of the eyes or the face acquired by the depth acquisition device 151b is also transmitted to the eye positioning image processor 152. The eye positioning image processor 152 is configured to determine the spatial position of the eye based on the black and white image and the acquired depth information, which will be described below.
在一些实施例中,景深获取装置151b为结构光摄像头或TOF摄像头。In some embodiments, the depth-of-field acquisition device 151b is a structured light camera or a TOF camera.
作为解释而非限制性地,TOF摄像头包括投射器和接收器,通过投射器将光脉冲到被观测对象上,然后通过接收器接收从被观测对象反射回的光脉冲,通过光脉冲的往返时间来计算被观测对象与摄像头的距离。As an explanation and not limitation, the TOF camera includes a projector and a receiver. The projector transmits light pulses to the observed object, and then receives the light pulses reflected back from the observed object through the receiver, passing the round trip time of the light pulse To calculate the distance between the observed object and the camera.
作为解释而非限制性地,结构光摄像头包括投影器和采集器,通过投影器将面结构光、例如编码结构光投射到被观测对象上,在被观测对象表面形成面结构光的畸变图像,然后通过采集器采集并解析畸变图像,从而还原被观测对象的三维轮廓、空间信息等。By way of explanation and not limitation, the structured light camera includes a projector and a collector. The surface structured light, such as coded structured light, is projected onto the observed object through the projector to form a distorted image of the surface structured light on the surface of the observed object. Then, the distorted image is collected and analyzed by the collector, so as to restore the three-dimensional outline and spatial information of the observed object.
在一些实施例中,黑白摄像头151a是广角的黑白摄像头。In some embodiments, the black and white camera 151a is a wide-angle black and white camera.
在一些实施例中,景深获取装置151b和3D拍摄装置120的景深摄像头121c可以是相同的。在这种情况下,景深获取装置151b和景深摄像头121c可以是同一个TOF摄像头或同一个结构光摄像头。在另一些实施例中,景深获取装置151b和景深摄像头121c可以是不同的。In some embodiments, the depth-of-field acquisition device 151b and the depth-of-field camera 121c of the 3D photographing device 120 may be the same. In this case, the depth acquisition device 151b and the depth camera 121c may be the same TOF camera or the same structured light camera. In other embodiments, the depth-of-field acquisition device 151b and the depth-of-field camera 121c may be different.
在一些实施例中,眼部定位装置150包括视角确定装置155,视角确定装置155被配置为计算用户相对于3D显示设备或其显示屏或黑白摄像头的视角。In some embodiments, the eye positioning device 150 includes a viewing angle determining device 155, which is configured to calculate the user's viewing angle with respect to the 3D display device or its display screen or black and white camera.
基于黑白摄像头151a拍摄的黑白图像,视角包括但不限于用户的单眼与黑白摄像头镜头中心O/显示屏中心DLC的连线相对于黑白摄像头平面MCP/显示屏平面DLP的倾斜角、双眼连线的中点(双眼中心)与黑白摄像头镜头中心O/显示屏中心DLC的连线相对于黑白摄像头平面MCP/显示屏平面DLP的倾斜角。Based on the black-and-white image captured by the black-and-white camera 151a, the angle of view includes, but is not limited to, the inclination angle of the user's monocular and black-and-white camera lens center O/display center DLC relative to the black and white camera plane MCP/display plane DLP, and the binocular connection The inclination angle of the connection between the midpoint (center of both eyes) and the black-and-white camera lens center O/display center DLC relative to the black-and-white camera plane MCP/display plane DLP.
在此基础上,再结合景深获取装置151b获取的深度图像,除了上述倾斜角,视角还可以包括双眼连线相对于黑白摄像头平面MCP/显示屏平面DLP的倾斜角、脸部所在平面HFP相对于黑白摄像头平面MCP/显示屏平面DLP的倾斜角等。其中,脸部所在平面HFP可通过提取若干脸部特征来确定,例如眼部和耳部、眼部和嘴角、眼部和下巴等。在本公开实施例中,由于眼部定位装置150及其黑白摄像头151a相对于3D显示设备或其显示屏为前置的,可将黑白摄像头平面MCP视作显示屏平面DLP。On this basis, combined with the depth image acquired by the depth-of-field acquisition device 151b, in addition to the above-mentioned inclination angle, the angle of view can also include the inclination angle of the binocular line with respect to the black and white camera plane MCP/display plane DLP, and the plane of the face HFP with respect to The tilt angle of the black and white camera plane MCP/display plane DLP, etc. Among them, the plane HFP of the face can be determined by extracting several facial features, such as the eyes and ears, the corners of the eyes and the mouth, the eyes and the chin, and so on. In the embodiment of the present disclosure, since the eye positioning device 150 and its black-and-white camera 151a are front-facing with respect to the 3D display device or its display screen, the black-and-white camera plane MCP can be regarded as the display screen plane DLP.
作为解释而非限制性的,上文描述的线相对于面的倾斜角包括但不限于线与线在面内的投影的夹角、线在面内的投影与面的水平方向的夹角、线在面内的投影与面的竖直方向的夹角。其中,线与线在面内的投影的夹角可具有水平方向的分量和竖直方向的分量。By way of explanation and not limitation, the inclination angle of the line with respect to the plane described above includes but is not limited to the angle between the line and the projection of the line in the plane, the angle between the projection of the line in the plane and the horizontal direction of the plane, The angle between the projection of the line in the plane and the vertical direction of the plane. Wherein, the angle between the line and the projection of the line in the plane may have a horizontal component and a vertical component.
在一些实施例中,如图2B所示,视角确定装置155可集成设置在眼部定位图像处理器152内。如上文所述,眼部定位图像处理器152被配置为基于黑白图像和景深信息确定眼部的空间位置。在本公开实施例中,眼部的空间位置包括但不限于上文描述的视角、眼部相对于黑白摄像头平面MCP/显示屏平面DLP的距离、眼部相对于眼部定位装置或其黑白摄像头/3D显示设备或其显示屏的空间坐标等。在一些实施例中,眼部定位装置150还可包括视角数据输出接口,视角数据输出接口被配置为输出由视角确定装置计算出的视角。In some embodiments, as shown in FIG. 2B, the viewing angle determining device 155 may be integrated in the eye positioning image processor 152. As described above, the eye positioning image processor 152 is configured to determine the spatial position of the eye based on the black and white image and the depth information. In the embodiments of the present disclosure, the spatial position of the eye includes but is not limited to the above-described angle of view, the distance of the eye relative to the black and white camera plane MCP/display plane DLP, the eye relative to the eye positioning device or its black and white camera /3D display equipment or the spatial coordinates of its display screen, etc. In some embodiments, the eye positioning device 150 may further include a viewing angle data output interface configured to output the viewing angle calculated by the viewing angle determining device.
在另一些实施例中,视角确定装置可集成设置在3D处理装置内。In other embodiments, the viewing angle determination device may be integrated in the 3D processing device.
作为解释而非限制性地,通过黑白摄像头151a拍摄的包含了用户左眼和右眼的黑白图像,可得知左眼和右眼在黑白摄像头151a的焦平面FP内成像的X轴(水平方向)坐标和Y轴(竖直方向)坐标。如图3所示,以黑白摄像头151a的镜头中心O为原点,X轴和与X轴垂直的Y轴(未示出)形成黑白摄像头平面MCP,其与焦平面FP平行;黑白摄像头151a的光轴方向为Z轴,Z轴也是深度方向。也就是说,在图3所示的XZ平面内,左眼和右眼在焦平面FP内成像的X轴坐标XR、XL是已知的;而且,黑白摄像头151a的焦距f是已知的;在这种情况下,可算出左眼和右眼与黑白摄像头镜头中心O的连线在XZ平面内的投影相对于X轴的倾斜角β,这将在下文中进一步描述。同理,在(未示出的)YZ平面内,左眼和右眼在焦平面FP内成像的Y轴坐标是已知的,再结合已知的焦距f,可算出左眼和右眼与黑白摄像头镜头中心O的连线在YZ平面内的投影相对于黑白摄像头平面MCP的Y轴的倾斜角。By way of explanation and not limitation, the black-and-white image captured by the black-and-white camera 151a including the left and right eyes of the user can be known as the X-axis (horizontal direction ) Coordinates and Y-axis (vertical direction) coordinates. As shown in FIG. 3, taking the lens center O of the black and white camera 151a as the origin, the X axis and the Y axis (not shown) perpendicular to the X axis form a black and white camera plane MCP, which is parallel to the focal plane FP; The axis direction is the Z axis, and the Z axis is also the depth direction. That is to say, in the XZ plane shown in FIG. 3, the X-axis coordinates XR and XL of the left and right eyes imaging in the focal plane FP are known; moreover, the focal length f of the black and white camera 151a is known; In this case, the inclination angle β relative to the X axis of the projection of the line connecting the left eye and the right eye and the black and white camera lens center O in the XZ plane can be calculated, which will be further described below. Similarly, in the YZ plane (not shown), the Y-axis coordinates of the left eye and right eye imaging in the focal plane FP are known, and combined with the known focal length f, the left eye and right eye can be calculated The inclination angle of the projection of the line connecting the lens center O of the black and white camera lens in the YZ plane with respect to the Y axis of the black and white camera plane MCP.
作为解释而非限制性地,通过黑白摄像头151a拍摄的包含了用户左眼和右眼的黑白图像以及景深获取装置151b获取的左眼和右眼的景深信息,可得知左眼和右眼在黑白摄像头151a的坐标系内的空间坐标(X,Y,Z),其中,Z轴坐标即为景深信息。据此,如图3所示,可算出左眼和右眼的连线在XZ平面内的投影与X轴的夹角α。同理,在(未示出的)YZ平面内,可算出左眼和右眼的连线在YZ平面内的投影与Y轴的夹角。By way of explanation and not limitation, the black-and-white images including the left and right eyes of the user captured by the black-and-white camera 151a and the depth information of the left and right eyes acquired by the depth-of-field acquisition device 151b can be known as the left and right eyes. The spatial coordinates (X, Y, Z) in the coordinate system of the black-and-white camera 151a, where the Z-axis coordinates are the depth information. Based on this, as shown in Figure 3, the angle α between the projection of the line connecting the left eye and the right eye in the XZ plane and the X axis can be calculated. Similarly, in the YZ plane (not shown), the angle between the projection of the line connecting the left eye and the right eye in the YZ plane and the Y axis can be calculated.
图3示意性地示出了利用黑白摄像头151a和景深获取装置151b(未示出)确定眼部的空间位置的几何关系模型的俯视图。其中,R和L分别表示用户的右眼和左眼,XR和XL分别为用户右眼R和左眼L在黑白摄像头151a的焦平面FP内成像的X轴坐标。在已知黑白摄像头151a的焦距f、双眼在焦平面FP内的X轴坐标XR、XL的情况下,可以得出用户的右眼R和左眼L与镜头中心O的连线在XZ平面内的投影相对于X轴的倾斜角 βR和βL分别为:FIG. 3 schematically shows a top view of a geometric relationship model that uses a black and white camera 151a and a depth acquisition device 151b (not shown) to determine the spatial position of the eye. Wherein, R and L represent the user's right eye and left eye, respectively, and XR and XL are respectively the X-axis coordinates of the user's right eye R and left eye L in the focal plane FP of the black and white camera 151a. Given the known focal length f of the black and white camera 151a and the X-axis coordinates XR and XL of the eyes in the focal plane FP, it can be concluded that the line connecting the user's right eye R and left eye L to the lens center O is in the XZ plane The inclination angles βR and βL of the projection relative to the X axis are:
Figure PCTCN2020133329-appb-000001
Figure PCTCN2020133329-appb-000001
Figure PCTCN2020133329-appb-000002
Figure PCTCN2020133329-appb-000002
在此基础上,通过(未示出的)景深获取装置151b获得的右眼R和左眼L的景深信息,可得知用户右眼R和左眼L相对于黑白摄像头平面MCP/显示屏平面DLP的距离DR和DL。据此,可以得出用户双眼连线在XZ平面内的投影与X轴的夹角α以及瞳距P分别为:On this basis, through the depth information of the right eye R and the left eye L obtained by the depth acquisition device 151b (not shown), it can be known that the user's right eye R and left eye L are relative to the black and white camera plane MCP/screen plane. DLP distance DR and DL. Based on this, it can be obtained that the angle α between the projection of the user's eyes in the XZ plane and the X axis and the interpupillary distance P are respectively:
Figure PCTCN2020133329-appb-000003
Figure PCTCN2020133329-appb-000003
Figure PCTCN2020133329-appb-000004
Figure PCTCN2020133329-appb-000004
上述计算方法和数学表示仅是示意性的,本领域技术人员可以想到其他计算方法和数学表示,以得到所需的眼部的空间位置。本领域技术人员也可以想到,必要时将黑白摄像头的坐标系与显示设备或其显示屏的坐标系进行变换。The above calculation methods and mathematical expressions are only illustrative, and those skilled in the art can think of other calculation methods and mathematical expressions to obtain the desired spatial position of the eye. Those skilled in the art can also think of transforming the coordinate system of the black and white camera with the coordinate system of the display device or its display screen when necessary.
在一些实施例中,当距离DR和DL不等并且夹角α不为零时,可认为用户斜视显示屏平面DLP;当距离DR和DL相等并且视角α为零时,可认为用户平视显示屏平面DLP。在另一些实施例中,可以针对夹角α设定阈值,在夹角α不超过阈值的情况下,可以认为用户平视显示屏平面DLP。In some embodiments, when the distances DR and DL are not equal and the included angle α is not zero, it can be considered that the user is obliquely looking at the display screen plane DLP; when the distance DR and DL are equal and the viewing angle α is zero, it can be considered that the user is looking up at the display screen. Flat DLP. In other embodiments, a threshold may be set for the included angle α, and when the included angle α does not exceed the threshold, it can be considered that the user is looking up at the plane of the display screen DLP.
在一些实施例中,眼部定位装置150包括眼部定位数据接口153,被配置为传输眼部空间位置信息,包括但不限于如上文描述的倾斜角、夹角、空间坐标等。利用眼部空间位置信息可向用户提供有针对性的或定制化的3D显示画面。In some embodiments, the eye positioning device 150 includes an eye positioning data interface 153 configured to transmit eye spatial position information, including but not limited to the tilt angle, included angle, and spatial coordinates as described above. The use of eye spatial position information can provide users with targeted or customized 3D display screens.
作为解释而非限制性地,视角、例如用户双眼中心与显示屏中心DLC的连线相对于水平方向(X轴)或竖直方向(Y轴)的夹角通过眼部定位数据接口153传输至3D处理装置130。3D处理装置130基于接收到的视角随动地生成与视角相符合的3D显示画面,从而能够向用户呈现从不同角度观察的显示对象。By way of explanation and not limitation, the angle of view, such as the angle between the center of the user’s eyes and the center of the display DLC relative to the horizontal direction (X axis) or the vertical direction (Y axis), is transmitted to the 3D processing device 130. Based on the received viewing angle, the 3D processing device 130 generates a 3D display screen corresponding to the viewing angle, so as to be able to present display objects viewed from different angles to the user.
示例性地,基于用户双眼中心与显示屏中心DLC的连线相对于水平方向(X轴)的夹角能够呈现水平方向上的随动效果;基于用户双眼中心与显示屏中心DLC的连线相对于竖直方向(Y轴)的夹角能够呈现竖直方向上的随动效果。Exemplarily, based on the angle between the center of the user's eyes and the center of the display screen DLC relative to the horizontal direction (X-axis), the following effect can be presented in the horizontal direction; based on the relationship between the center of the user's eyes and the center of the display screen DLC The angle in the vertical direction (Y-axis) can present a follow-up effect in the vertical direction.
作为解释而非限制性地,用户的左眼和右眼的空间坐标通过眼部定位数据接口153传输至3D处理装置130。3D处理装置130基于接收到的空间坐标确定用户双眼所处的且由多视点3D显示屏110提供的视点,并基于3D信号的视频帧渲染相应的子像素。By way of explanation and not limitation, the spatial coordinates of the user’s left and right eyes are transmitted to the 3D processing device 130 through the eye positioning data interface 153. The 3D processing device 130 determines based on the received spatial coordinates that the user’s eyes are located and determined by The multi-viewpoint 3D display screen 110 provides viewpoints, and renders corresponding sub-pixels based on the video frame of the 3D signal.
示例性地,当基于眼部空间位置信息确定用户的双眼各对应一个视点时,基于3D信号的视频帧渲染各复合像素的多个复合子像素中与这两个视点相对应的子像素,也可额外地渲染各复合像素的多个复合子像素中与这两个视点相邻的视点相对应的子像素。Exemplarily, when it is determined based on the spatial position information of the eyes that the eyes of the user each correspond to one viewpoint, the video frame based on the 3D signal renders the sub-pixels corresponding to the two viewpoints among the multiple composite sub-pixels of each composite pixel. The sub-pixels corresponding to the viewpoints adjacent to the two viewpoints among the plurality of complex sub-pixels of each complex pixel may be additionally rendered.
示例性地,当基于眼部空间位置信息确定用户的双眼各分别位于两个视点之间时,基于3D信号的视频帧渲染各复合像素的多个复合子像素中与这四个视点相对应的子像素。Exemplarily, when it is determined based on the spatial position information of the eyes that the eyes of the user are respectively located between two viewpoints, the video frame based on the 3D signal renders the multiple composite sub-pixels of each composite pixel corresponding to the four viewpoints. Sub-pixels.
示例性地,当基于眼部空间位置信息确定用户双眼中至少一只眼睛产生了运动时,可基于3D信号的下一视频帧渲染各复合像素的多个复合子像素中与新的预定的视点对应的子像素。Exemplarily, when it is determined based on the spatial position information of the eyes that at least one of the eyes of the user has moved, the next video frame of the 3D signal may be rendered based on a new predetermined viewpoint among multiple composite sub-pixels of each composite pixel. The corresponding sub-pixel.
示例性地,当基于眼部空间位置信息确定有一个以上用户时,可基于3D信号的视频帧渲染各复合像素的多个复合子像素与各用户双眼分别所处的视点相对应的子像素。Exemplarily, when it is determined that there is more than one user based on the eye spatial position information, multiple composite sub-pixels of each composite pixel and sub-pixels corresponding to the viewpoints of each user's eyes may be rendered based on the video frame of the 3D signal.
在一些实施例中,分别确定用户的视角和视点位置,并据此提供随视角和视点位置变化的3D显示画面,提升观看体验。In some embodiments, the user's viewing angle and viewpoint position are determined separately, and a 3D display screen that changes with the viewing angle and viewpoint position is provided accordingly to improve the viewing experience.
在另一些实施例中,眼部空间位置信息也可被直接传输至3D显示设备100的处理器101,3D处理装置130通过眼部定位数据接口153从处理器101接收/读取眼部空间位置信息。In other embodiments, the eye spatial position information can also be directly transmitted to the processor 101 of the 3D display device 100, and the 3D processing device 130 receives/reads the eye spatial position from the processor 101 through the eye positioning data interface 153 information.
在一些实施例中,黑白摄像头151a配置为拍摄出黑白图像序列,其包括按照时间前后排列的多幅黑白图像。In some embodiments, the black-and-white camera 151a is configured to capture a sequence of black-and-white images, which includes a plurality of black-and-white images arranged in time.
在一些实施例中,眼部定位图像处理器152包括缓存器156和比较器157。缓存器156被配置为缓存黑白图像序列中分别按照时间前后排列的多幅黑白图像。比较器157被配置为比较黑白图像序列中按照时间前后拍摄的多幅黑白图像。通过比较,例如可以判断眼部的空间位置是否变化或者判断眼部是否还处于观看范围内等。In some embodiments, the eye positioning image processor 152 includes a buffer 156 and a comparator 157. The buffer 156 is configured to buffer a plurality of black-and-white images arranged sequentially in time in the black-and-white image sequence. The comparator 157 is configured to compare a plurality of black and white images taken before and after time in the black and white image sequence. By comparison, for example, it can be judged whether the spatial position of the eye has changed or whether the eye is still in the viewing range, and so on.
在一些实施例中,眼部定位图像处理器152还包括判决器(未示出),被配置为基于比较器的比较结果,在黑白图像序列中的当前黑白图像中未识别到眼部的存在且在之前或之后的黑白图像中识别到眼部的存在时,基于之前或之后的黑白图像确定的眼部空间位置信息作为当前的眼部空间位置信息。这种情况例如为用户短暂转动头部。在这种情况下,有可能短暂地无法识别到用户的脸部及其眼部。In some embodiments, the eye localization image processor 152 further includes a judge (not shown) configured to, based on the comparison result of the comparator, the presence of the eye is not recognized in the current black-and-white image in the black-and-white image sequence And when the presence of eyes is recognized in the previous or subsequent black and white images, the eye spatial position information determined based on the previous or subsequent black and white images is used as the current eye spatial position information. In this case, for example, the user briefly turns his head. In this case, the user's face and eyes may not be recognized for a short time.
示例性地,在缓存器156的缓存段内存有黑白图像序列中的若干黑白图像。在某些情况下,无法从所缓存的当前黑白图像中识别出脸部及眼部,然而可以从所缓存的之前或之后的黑白图像中识别出脸部及眼部。在这种情况下,可以将基于在当前黑白图像之后的、也就是更晚拍摄的黑白图像确定的眼部空间位置信息作为当前的眼部空间位置信息;也可以将基于在当前黑白图像之前的、也就是更早拍摄黑白图像确定的眼部空间位置信息作为 当前的眼部空间位置信息。此外,也可以对基于上述之前和之后的能识别出脸部及眼部的黑白图像确定的眼部空间位置信息取平均值、进行数据拟合、进行插值或以其他方法处理,并且将得到的结果作为当前的眼部空间位置信息。Exemplarily, there are several black and white images in the black and white image sequence in the buffer segment of the buffer 156. In some cases, the face and eyes cannot be recognized from the current black and white image that is cached, but the face and eyes can be recognized from the black and white images before or after the cache. In this case, the eye spatial position information determined based on the black-and-white image that is later than the current black-and-white image can be used as the current eye spatial position information; it can also be based on the eye-space position information before the current black-and-white image. , That is, the eye space position information determined by taking the black and white image earlier is used as the current eye space position information. In addition, it is also possible to average the spatial position information of the eyes determined based on the black and white images that can recognize the face and eyes before and after the above, perform data fitting, interpolation or other methods, and the obtained The result is the current spatial position information of the eye.
在一些实施例中,黑白摄像头151a被配置为以24帧/秒或以上的频率拍摄黑白图像序列。示例性地,以30帧/秒的频率拍摄。示例性地,以60帧/秒的频率拍摄。In some embodiments, the black and white camera 151a is configured to capture a sequence of black and white images at a frequency of 24 frames per second or more. Illustratively, the shooting is performed at a frequency of 30 frames per second. Illustratively, shooting is performed at a frequency of 60 frames per second.
在一些实施例中,黑白摄像头151a被配置为以与3D显示设备的显示屏刷新频率相同的频率进行拍摄。In some embodiments, the black and white camera 151a is configured to shoot at the same frequency as the refresh frequency of the display screen of the 3D display device.
本公开实施例还可以提供一种眼部定位方法,其利用上述实施例中的眼部定位装置来实现。The embodiments of the present disclosure may also provide an eye positioning method, which is implemented by using the eye positioning device in the above-mentioned embodiment.
参考图4,在一些实施例中,眼部定位方法包括:Referring to FIG. 4, in some embodiments, the eye positioning method includes:
S401:拍摄用户的脸部的黑白图像;S401: Take a black and white image of the user's face;
S402:获取脸部的景深信息;S402: Acquire depth information of the face;
S403:基于拍摄的黑白图像和景深信息确定眼部的空间位置。S403: Determine the spatial position of the eye based on the captured black and white image and the depth of field information.
参考图5,在一些实施例中,眼部定位方法包括:Referring to FIG. 5, in some embodiments, the eye positioning method includes:
S501:拍摄用户的脸部的黑白图像;S501: Take a black and white image of the user's face;
S502:获取脸部的景深信息;S502: Acquire depth information of the face;
S503:基于拍摄的黑白图像识别眼部的存在;S503: Recognizing the presence of eyes based on the captured black and white image;
S504:基于拍摄的黑白图像和景深信息确定眼部的空间位置;S504: Determine the spatial position of the eye based on the captured black and white image and depth of field information;
S505:传输包含眼部的空间位置的眼部空间位置信息。S505: Transmit the spatial position information of the eye including the spatial position of the eye.
参考图6,在一些实施例中,眼部定位方法包括:Referring to FIG. 6, in some embodiments, the eye positioning method includes:
S601:拍摄出包括用户的脸部的黑白图像的黑白图像序列;S601: Take a black and white image sequence including black and white images of the user's face;
S602:缓存黑白图像序列中多幅黑白图像;S602: Cache multiple black and white images in the black and white image sequence;
S603:比较黑白图像序列中的前后多幅黑白图像;S603: compare multiple black and white images before and after in the black and white image sequence;
S604:获取脸部的景深信息;S604: Acquire depth information of the face;
S605:当通过比较在黑白图像序列中的当前黑白图像未识别到眼部的存在且在之前或之后的黑白图像中识别到眼部的存在时,基于之前或之后的黑白图像和获取的景深信息确定的眼部空间位置信息作为当前的眼部空间位置信息。S605: When the presence of eyes is not recognized by comparing the current black and white images in the black and white image sequence and the presence of eyes is recognized in the black and white images before or after, based on the black and white images before or after and the acquired depth information The determined eye spatial position information is used as the current eye spatial position information.
本公开实施例还可以提供一种3D显示方法,其适用于上述实施例中的3D显示设备,3D显示设备包括多视点3D显示屏,多视点3D显示屏包括对应多个视点的多个子像素。The embodiments of the present disclosure may also provide a 3D display method, which is applicable to the 3D display device in the above embodiment. The 3D display device includes a multi-viewpoint 3D display screen, and the multi-viewpoint 3D display screen includes a plurality of sub-pixels corresponding to a plurality of viewpoints.
参考图7,在一些实施例中,3D显示方法包括:Referring to FIG. 7, in some embodiments, the 3D display method includes:
S701:确定用户眼部的空间位置;S701: Determine the spatial position of the user's eyes;
S702:根据用户眼部的空间位置确定视点,并且基于3D信号渲染与视点对应的子像素。S702: Determine the viewpoint according to the spatial position of the user's eyes, and render sub-pixels corresponding to the viewpoint based on the 3D signal.
本公开实施例提供了一种3D显示终端800,参考图8,3D显示终端800包括:处理器814、存储器811、多视点3D显示屏810,还可以包括通信接口812和总线813。其中,多视点3D显示屏810、处理器814、通信接口812、存储器811通过总线813完成相互间的通信。通信接口812可以用于信息传输。处理器814可以调用存储器811中的逻辑指令,以执行上述实施例的3D显示方法。The embodiment of the present disclosure provides a 3D display terminal 800. Referring to FIG. 8, the 3D display terminal 800 includes a processor 814, a memory 811, a multi-view 3D display screen 810, and may also include a communication interface 812 and a bus 813. Among them, the multi-view 3D display screen 810, the processor 814, the communication interface 812, and the memory 811 communicate with each other through the bus 813. The communication interface 812 can be used for information transmission. The processor 814 may call logic instructions in the memory 811 to execute the 3D display method of the foregoing embodiment.
此外,存储器811中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。In addition, the logic instructions in the memory 811 can be implemented in the form of a software functional unit and when sold or used as an independent product, they can be stored in a computer readable storage medium.
存储器811作为一种计算机可读存储介质,可被配置为存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器814通过运行存储在存储器811中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的眼部定位方法和/或3D显示方法。As a computer-readable storage medium, the memory 811 can be configured to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure. The processor 814 executes functional applications and data processing by running the program instructions/modules stored in the memory 811, that is, realizes the eye positioning method and/or the 3D display method in the foregoing method embodiment.
存储器811可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器811可以包括高速随机存取存储器,还可以包括非易失性存储器。The memory 811 may include a program storage area and a data storage area. The program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal device, and the like. In addition, the memory 811 may include a high-speed random access memory, and may also include a non-volatile memory.
本公开实施例提供的计算机可读存储介质,存储有计算机可执行指令,上述计算机可执行指令设置为执行上述的眼部定位方法、3D显示方法。The computer-readable storage medium provided by the embodiment of the present disclosure stores computer-executable instructions, and the above-mentioned computer-executable instructions are configured to execute the above-mentioned eye positioning method and 3D display method.
本公开实施例提供的计算机程序产品,包括存储在计算机可读存储介质上的计算机程序,上述计算机程序包括程序指令,当该程序指令被计算机执行时,使上述计算机执行上述的眼部定位方法、3D显示方法。The computer program product provided by the embodiments of the present disclosure includes a computer program stored on a computer-readable storage medium. The above-mentioned computer program includes program instructions. When the program instructions are executed by a computer, the above-mentioned computer executes the above-mentioned eye positioning method, 3D display method.
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例的方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。The technical solutions of the embodiments of the present disclosure can be embodied in the form of a software product. The computer software product is stored in a storage medium and includes one or more instructions to enable a computer device (which can be a personal computer, a server, or a network). Equipment, etc.) execute all or part of the steps of the method of the embodiment of the present disclosure. The aforementioned storage media can be non-transitory storage media, including: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk, and other media that can store program codes, or it can be a transient storage medium. .
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出 本公开实施例的范围。Those skilled in the art may realize that the units and algorithm steps of the examples described in combination with the embodiments disclosed herein can be implemented by electronic hardware or a combination of computer software and electronic hardware. Whether these functions are performed by hardware or software may depend on the specific application and design constraint conditions of the technical solution. Those skilled in the art may use different methods for each specific application to realize the described functions, but such realization should not be considered as going beyond the scope of the embodiments of the present disclosure.
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置或设备实施例仅仅是示意性的,例如,单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。In the embodiments disclosed herein, the disclosed methods and products (including but not limited to devices, equipment, etc.) can be implemented in other ways. For example, the device or device embodiments described above are merely illustrative. For example, the division of units may only be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented. In addition, the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms. The units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to implement this embodiment. In addition, the functional units in the embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
另外,在附图中的流程图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。In addition, in the description corresponding to the flowchart in the accompanying drawings, the operations or steps corresponding to different blocks can also occur in a different order than disclosed in the description, and sometimes there is no specific operation or step between different operations or steps. order.

Claims (22)

  1. 一种眼部定位装置,包括:An eye positioning device, including:
    眼部定位器,包括被配置为拍摄用户的脸部的黑白图像的黑白摄像头和被配置为获取所述脸部的景深信息的景深获取装置;The eye locator includes a black and white camera configured to take a black and white image of the user's face and a depth acquisition device configured to acquire depth information of the face;
    眼部定位图像处理器,被配置为基于所述黑白图像和所述景深信息确定眼部的空间位置。The eye positioning image processor is configured to determine the spatial position of the eye based on the black and white image and the depth information.
  2. 根据权利要求1所述的眼部定位装置,其中,所述眼部定位图像处理器还被配置为基于所述黑白图像识别所述眼部的存在。The eye positioning device according to claim 1, wherein the eye positioning image processor is further configured to recognize the presence of the eye based on the black and white image.
  3. 根据权利要求1所述的眼部定位装置,还包括眼部定位数据接口,被配置为传输包含所述眼部的空间位置的眼部空间位置信息。The eye positioning device according to claim 1, further comprising an eye positioning data interface configured to transmit eye spatial position information including the spatial position of the eye.
  4. 根据权利要求1所述的眼部定位装置,其中,所述景深获取装置为结构光摄像头或TOF摄像头。The eye positioning device according to claim 1, wherein the depth-of-field acquisition device is a structured light camera or a TOF camera.
  5. 根据权利要求1所述的眼部定位装置,还包括视角确定装置,被配置为计算所述用户相对于3D显示设备的视角。The eye positioning device according to claim 1, further comprising a viewing angle determining device configured to calculate the viewing angle of the user with respect to the 3D display device.
  6. 根据权利要求1至5任一项所述的眼部定位装置,其中,所述黑白摄像头被配置为拍摄黑白图像序列。The eye positioning device according to any one of claims 1 to 5, wherein the black and white camera is configured to capture a sequence of black and white images.
  7. 根据权利要求6所述的眼部定位装置,其中,所述眼部定位图像处理器包括:The eye positioning device according to claim 6, wherein the eye positioning image processor comprises:
    缓存器,配置为缓存所述黑白图像序列中多幅黑白图像;A buffer, configured to buffer a plurality of black and white images in the black and white image sequence;
    比较器,配置为比较所述黑白图像序列中的前后多幅黑白图像;A comparator configured to compare multiple black-and-white images before and after the black-and-white image sequence;
    判决器,被配置为,当所述比较器通过比较在所述黑白图像序列中的当前黑白图像中未识别到眼部的存在且在之前或之后的黑白图像中识别到眼部的存在时,将基于所述之前或之后的黑白图像和获取的景深信息确定的眼部空间位置信息作为当前的眼部空间位置信息。The arbiter is configured to, when the comparator does not recognize the presence of eyes in the current black-and-white image in the sequence of black-and-white images and recognizes the presence of eyes in previous or subsequent black-and-white images, The eye spatial position information determined based on the black and white images before or after and the acquired depth information is used as the current eye spatial position information.
  8. 一种3D显示设备,包括:A 3D display device, including:
    多视点3D显示屏,包括对应多个视点的多个子像素;Multi-viewpoint 3D display screen, including multiple sub-pixels corresponding to multiple viewpoints;
    根据权利要求1至7任一项所述的眼部定位装置,被配置为确定用户眼部的空间位置;以及The eye positioning device according to any one of claims 1 to 7, configured to determine the spatial position of the user's eyes; and
    3D处理装置,被配置为根据所述用户眼部的空间位置确定视点,并且基于3D信号渲染与所述视点对应的子像素。The 3D processing device is configured to determine a viewpoint according to the spatial position of the user's eyes, and render sub-pixels corresponding to the viewpoint based on a 3D signal.
  9. 根据权利要求8所述的3D显示设备,其中,所述多视点3D显示屏包括多个复合像素,所述多个复合像素中的每个复合像素包括多个复合子像素,所述多个复合子像素中 的每个复合子像素由对应于多个视点的多个子像素构成。8. The 3D display device according to claim 8, wherein the multi-viewpoint 3D display screen includes a plurality of composite pixels, each of the plurality of composite pixels includes a plurality of composite sub-pixels, and the plurality of composite pixels Each composite sub-pixel in the sub-pixel is composed of a plurality of sub-pixels corresponding to a plurality of viewpoints.
  10. 根据权利要求8或9所述的3D显示设备,其中,所述3D处理装置与所述眼部定位装置通过眼部定位数据接口通信连接。The 3D display device according to claim 8 or 9, wherein the 3D processing device and the eye positioning device are communicatively connected through an eye positioning data interface.
  11. 根据权利要求8或9所述的3D显示设备,还包括:The 3D display device according to claim 8 or 9, further comprising:
    3D拍摄装置,被配置为采集3D图像,3D camera, configured to capture 3D images,
    所述3D拍摄装置包括景深摄像头和至少两个彩色摄像头。The 3D photographing device includes a depth-of-field camera and at least two color cameras.
  12. 根据权利要求11所述的3D显示设备,其中,所述眼部定位装置与所述3D拍摄装置集成设置。11. The 3D display device according to claim 11, wherein the eye positioning device is integrated with the 3D photographing device.
  13. 根据权利要求11所述的3D显示设备,其中,所述3D拍摄装置前置于所述3D显示设备。11. The 3D display device according to claim 11, wherein the 3D photographing device is placed in front of the 3D display device.
  14. 一种眼部定位方法,包括:An eye positioning method, including:
    拍摄用户的脸部的黑白图像;Take a black and white image of the user's face;
    获取所述脸部的景深信息;Acquiring depth information of the face;
    基于所述黑白图像和所述景深信息确定眼部的空间位置。The spatial position of the eye is determined based on the black and white image and the depth information.
  15. 根据权利要求14所述的眼部定位方法,还包括:基于所述黑白图像识别所述眼部的存在。The eye positioning method according to claim 14, further comprising: recognizing the presence of the eye based on the black and white image.
  16. 根据权利要求14所述的眼部定位方法,还包括:传输包含所述眼部的空间位置的眼部空间位置信息。The eye positioning method according to claim 14, further comprising: transmitting eye spatial position information including the spatial position of the eye.
  17. 根据权利要求14所述的眼部定位方法,还包括:拍摄出包括所述黑白图像的黑白图像序列。The eye positioning method according to claim 14, further comprising: photographing a black and white image sequence including the black and white image.
  18. 根据权利要求17所述的眼部定位方法,还包括:The eye positioning method according to claim 17, further comprising:
    缓存所述黑白图像序列中多幅黑白图像;Buffering a plurality of black and white images in the black and white image sequence;
    比较所述黑白图像序列中的前后多幅黑白图像;Comparing multiple black and white images before and after in the black and white image sequence;
    当通过比较在所述黑白图像序列中的当前黑白图像未识别到眼部的存在且在之前或之后的黑白图像中识别到眼部的存在时,基于所述之前或之后的黑白图像和获取的景深信息确定的眼部空间位置信息作为当前的眼部空间位置信息。When the presence of eyes is not recognized by comparing the current black and white images in the black and white image sequence and the presence of eyes is recognized in the black and white images before or after, based on the black and white images before or after and the acquired The eye space position information determined by the depth of field information is used as the current eye space position information.
  19. 一种3D显示方法,包括:A 3D display method, including:
    确定用户眼部的空间位置;Determine the spatial position of the user’s eyes;
    根据所述用户眼部的空间位置确定视点,并且基于3D信号渲染与所述视点对应的子像素;Determine the viewpoint according to the spatial position of the user's eyes, and render sub-pixels corresponding to the viewpoint based on the 3D signal;
    其中,所述3D显示设备包括多视点3D显示屏,所述多视点3D显示屏包括对应多个 视点的多个子像素。Wherein, the 3D display device includes a multi-viewpoint 3D display screen, and the multi-viewpoint 3D display screen includes a plurality of sub-pixels corresponding to a plurality of viewpoints.
  20. 一种3D显示终端,包括处理器、存储有程序指令的存储器和多视点3D显示屏,所述处理器被配置为在执行所述程序指令时,执行根据权利要求19所述的3D显示方法。A 3D display terminal includes a processor, a memory storing program instructions, and a multi-view 3D display screen. The processor is configured to execute the 3D display method according to claim 19 when the program instructions are executed.
  21. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行如权利要求14至19任一项所述的方法。A computer-readable storage medium storing computer-executable instructions configured to execute the method according to any one of claims 14 to 19.
  22. 一种计算机程序产品,包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当该程序指令被计算机执行时,使所述计算机执行如权利要求14至19任一项所述的方法。A computer program product, comprising a computer program stored on a computer-readable storage medium, the computer program comprising program instructions, when the program instructions are executed by a computer, the computer executes any one of claims 14 to 19 The method described.
PCT/CN2020/133329 2019-12-05 2020-12-02 Eye positioning apparatus and method, and 3d display device, method and terminal WO2021110035A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911231165.9 2019-12-05
CN201911231165.9A CN112929639A (en) 2019-12-05 2019-12-05 Human eye tracking device and method, 3D display equipment and method and terminal

Publications (1)

Publication Number Publication Date
WO2021110035A1 true WO2021110035A1 (en) 2021-06-10

Family

ID=76161253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133329 WO2021110035A1 (en) 2019-12-05 2020-12-02 Eye positioning apparatus and method, and 3d display device, method and terminal

Country Status (3)

Country Link
CN (1) CN112929639A (en)
TW (1) TW202123693A (en)
WO (1) WO2021110035A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115278201A (en) * 2022-07-29 2022-11-01 北京芯海视界三维科技有限公司 Processing apparatus and display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI800959B (en) * 2021-10-22 2023-05-01 宏碁股份有限公司 Eye tracking method and eye tracking device
CN114079765A (en) * 2021-11-17 2022-02-22 京东方科技集团股份有限公司 Image display method, device and system
TWI806379B (en) 2022-01-24 2023-06-21 宏碁股份有限公司 Feature point position detection method and electronic device
CN114979614A (en) * 2022-05-16 2022-08-30 北京芯海视界三维科技有限公司 Display mode determining method and display mode determining device
CN115567698A (en) * 2022-09-23 2023-01-03 立观科技(盐城)有限公司 Device and method for realizing transverse and longitudinal 3D display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120062556A1 (en) * 2010-09-13 2012-03-15 Sumihiko Yamamoto Three-dimensional image display apparatus, three-dimensional image processor, three-dimensional image display method, and computer program product
CN104079919A (en) * 2009-11-04 2014-10-01 三星电子株式会社 High density multi-view image display system and method with active sub-pixel rendering
CN104519334A (en) * 2013-09-26 2015-04-15 Nlt科技股份有限公司 Stereoscopic image display device, terminal device, stereoscopic image display method, and program thereof
CN104536578A (en) * 2015-01-13 2015-04-22 京东方科技集团股份有限公司 Control method and device for naked eye 3D display device and naked eye 3D display device
CN106331688A (en) * 2016-08-23 2017-01-11 湖南拓视觉信息技术有限公司 Visual tracking technology-based three-dimensional display system and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101002253A (en) * 2004-06-01 2007-07-18 迈克尔·A.·韦塞利 Horizontal perspective simulator
CN108616736A (en) * 2016-12-29 2018-10-02 深圳超多维科技有限公司 Method for tracking and positioning and device for stereoscopic display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104079919A (en) * 2009-11-04 2014-10-01 三星电子株式会社 High density multi-view image display system and method with active sub-pixel rendering
US20120062556A1 (en) * 2010-09-13 2012-03-15 Sumihiko Yamamoto Three-dimensional image display apparatus, three-dimensional image processor, three-dimensional image display method, and computer program product
CN104519334A (en) * 2013-09-26 2015-04-15 Nlt科技股份有限公司 Stereoscopic image display device, terminal device, stereoscopic image display method, and program thereof
CN104536578A (en) * 2015-01-13 2015-04-22 京东方科技集团股份有限公司 Control method and device for naked eye 3D display device and naked eye 3D display device
CN106331688A (en) * 2016-08-23 2017-01-11 湖南拓视觉信息技术有限公司 Visual tracking technology-based three-dimensional display system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115278201A (en) * 2022-07-29 2022-11-01 北京芯海视界三维科技有限公司 Processing apparatus and display device

Also Published As

Publication number Publication date
CN112929639A (en) 2021-06-08
TW202123693A (en) 2021-06-16

Similar Documents

Publication Publication Date Title
WO2021110035A1 (en) Eye positioning apparatus and method, and 3d display device, method and terminal
US10194135B2 (en) Three-dimensional depth perception apparatus and method
KR101761751B1 (en) Hmd calibration with direct geometric modeling
US10838206B2 (en) Head-mounted display for virtual and mixed reality with inside-out positional, user body and environment tracking
WO2021110038A1 (en) 3d display apparatus and 3d image display method
CN211128024U (en) 3D display device
US20170127045A1 (en) Image calibrating, stitching and depth rebuilding method of a panoramic fish-eye camera and a system thereof
US9848184B2 (en) Stereoscopic display system using light field type data
CN108093244B (en) Remote follow-up stereoscopic vision system
US9467685B2 (en) Enhancing the coupled zone of a stereoscopic display
CN108885342A (en) Wide Baseline Stereo for low latency rendering
WO2018032841A1 (en) Method, device and system for drawing three-dimensional image
WO2021110031A1 (en) Multi-viewpoint 3d display apparatus, display method and display screen correction method
TWI450025B (en) A device that can simultaneous capture multi-view 3D images
US20170257614A1 (en) Three-dimensional auto-focusing display method and system thereof
US10580214B2 (en) Imaging device and imaging method for augmented reality apparatus
US10679589B2 (en) Image processing system, image processing apparatus, and program for generating anamorphic image data
CN112929638B (en) Eye positioning method and device and multi-view naked eye 3D display method and device
CN110969706B (en) Augmented reality device, image processing method, system and storage medium thereof
CN211531217U (en) 3D terminal
US11388391B2 (en) Head-mounted display having an image sensor array
CN214756700U (en) 3D display device
US20230316810A1 (en) Three-dimensional (3d) facial feature tracking for autostereoscopic telepresence systems
CN114020150A (en) Image display method, image display device, electronic apparatus, and medium
JP2005174148A (en) Image pickup device and method, and image pickup system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20895783

Country of ref document: EP

Kind code of ref document: A1