WO2021109618A1 - 一种近眼显示装置 - Google Patents

一种近眼显示装置 Download PDF

Info

Publication number
WO2021109618A1
WO2021109618A1 PCT/CN2020/109915 CN2020109915W WO2021109618A1 WO 2021109618 A1 WO2021109618 A1 WO 2021109618A1 CN 2020109915 W CN2020109915 W CN 2020109915W WO 2021109618 A1 WO2021109618 A1 WO 2021109618A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
refractive
component
light
focusing lens
Prior art date
Application number
PCT/CN2020/109915
Other languages
English (en)
French (fr)
Inventor
张炎召
Original Assignee
张炎召
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张炎召 filed Critical 张炎召
Publication of WO2021109618A1 publication Critical patent/WO2021109618A1/zh
Priority to US17/747,019 priority Critical patent/US11500215B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/108Scanning systems having one or more prisms as scanning elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/015Head-up displays characterised by mechanical features involving arrangement aiming to get less bulky devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/0154Head-up displays characterised by mechanical features with movable elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application

Definitions

  • the present invention relates to the field of display devices, in particular to a near-eye display device.
  • the realization of VR virtual reality or AR augmented reality requires an optical near-eye display device.
  • the products made by the optical display system of the prior art are either thick and heavy, or the viewing angle is too small.
  • some VR display technology using convex lens and display screen has the disadvantages of large size, heavy weight, serious lens distortion and serious dispersion problems.
  • Either the AR lens with free-form surface reflection is used.
  • the disadvantage is that the device is large in size and weight. Big.
  • the AR lens of prism reflection type and diffractive lens is small in size and weight, but the viewing angle is smaller. Although the AR lens of the diffractive lens is light and thin, the viewing angle is still small, the processing is difficult, and the yield is low.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. For this reason, the present invention provides a near-eye display device, which has a larger field of view, is small in size, and has a thin thickness.
  • a near-eye display device includes a display light source, a rotating module, and a refractive magnifying component, the rotating module rotates around a central axis of rotation, and the rotating module is provided with a light source scanning component and a mirror group, so The light source scanning component converts part of the light of the pixel points of the display light source into a radial direction, and then the light exits through the reflector group and the refractive magnifying component.
  • a near-eye display device has at least the following beneficial effects: the light source scanning component converts part of the pixel point light of the display light source into a radial direction, so that the axial direction of the optical path becomes radial, without increasing the volume of the device. Under the premise of increasing the optical path distance, it is beneficial to reduce the thickness and volume of the device.
  • the light source scanning component rotates on the rotating device to expand the area of the scanned display light source. Using the visual persistence characteristics of the human eye, the human eye can see the display content clearly, and the outside world Light can also enter the human eye through a rotating device to achieve an augmented reality effect.
  • the reflector group includes at least one reflector.
  • the light source scanning element is a reflector, a prism or an image transmission fiber.
  • the refractive magnification component is a transmissive focusing lens or a reflective focusing lens
  • the transmissive focusing lens or the reflective focusing lens is fixedly installed on one side of the rotating module, Does not rotate with the rotating module; or is arranged on the rotating module and rotates concentrically with the rotating module.
  • the refractive magnification component is a transmissive focusing lens
  • the transmissive focusing lens is arranged on a side away from the display light source, and the rays propagating in the radial direction pass through the reflector in turn The group and the refractive magnifying parts emerge.
  • the transmissive focusing lens is arranged in the rotating module, and the light from the display light source is converted into radial light by the light source scanning component and then exits through the transmissive focusing lens and the reflector group in sequence.
  • the refractive magnification component is a reflective focusing lens
  • the reflective focusing lens is arranged on the side close to the display light source, and the light rays propagating in the radial direction pass through the reflective mirror in turn Group and reflective focusing lens exit.
  • the reflective focusing lens is arranged in the rotating module, and the light from the display light source is converted into radial light by the light source scanning component and then exits through the reflective focusing lens and the reflective mirror group in sequence.
  • a near-eye display device there are at least two mirror groups, and any mirror groups are arranged side by side.
  • a near-eye display device further includes a half-reflective half-lens.
  • the half-reflective half-lens simultaneously transmits external light and reflects the light emitted through the refractive magnifying component.
  • the display light source is a planar ring light source or a side wall ring light source.
  • the size of the dioptric magnifying component is matched with the area of the light emitted by the reflector group.
  • the refractive magnifying component is a fixedly installed transmissive focusing lens or a reflective focusing lens, and the refractive magnifying component has a ring-shaped non-refractive focusing area and a non-refractive focusing area.
  • the refractive magnification area at the interval of the refractive focus area.
  • a near-eye display device further includes a zoom assembly and a fixed frame, the fixed frame is arranged on the periphery of the rotating module, and both ends of the zoom assembly abut against the fixed frame and the fixed frame of the rotating module, respectively.
  • the refractive magnifying part On the refractive magnifying part.
  • a near-eye display device further includes a zoom assembly, the zoom assembly is arranged on the rotation module, the dioptric magnification part is arranged on the zoom assembly, and the zoom assembly is used for adjusting The distance between the refractive magnifying part and the rotating module.
  • Fig. 1 is a schematic structural diagram of an embodiment of the present invention
  • FIGS. 2a to 2h are schematic diagrams of the installation structure of the refractive magnifying component of the embodiment of the present invention.
  • 3a to 3d are schematic diagrams of the installation structure of the mirror assembly of the preferred embodiment of the present invention.
  • FIGS. 4a to 4c are schematic diagrams of the installation structure of the light source scanning component of the preferred embodiment of the present invention.
  • Figure 5a is a front view of an embodiment of the present invention.
  • Fig. 5b is a side view of the near-eye display device in Fig. 5a;
  • Fig. 6 is a schematic structural diagram of another embodiment of the present invention.
  • Figure 7a is a schematic structural diagram of another embodiment of the present invention.
  • Figure 7b is a schematic structural diagram of another embodiment of the present invention.
  • Figure 7c is a schematic diagram of the structure of the refractive magnifying component in the embodiment of the present invention.
  • Figure 7d is a schematic structural diagram of another embodiment of the present invention.
  • 7e and 7f are light path diagrams of the light source shown in FIG. 7d of the present invention.
  • Fig. 8 is a driving principle diagram of a rotating module in an embodiment of the present invention.
  • 9a to 9e are schematic diagrams of the structure of the zoom assembly in the embodiment of the present invention.
  • orientation description involved such as up, down, front, back, left, right, etc. indicates the orientation or positional relationship based on the orientation or positional relationship shown in the drawings, but In order to facilitate the description of the present invention and simplify the description, it does not indicate or imply that the device or element referred to must have a specific orientation, be configured and operate in a specific orientation, and therefore cannot be understood as a limitation to the present invention.
  • a near-eye display device of the present invention includes a display light source 1, a rotating module 2 and a refractive magnifying component 5.
  • the rotating module 2 rotates around a central axis of rotation.
  • the rotating module 2 is provided with a light source scanning component 4 and a mirror.
  • the light source scanning component 4 converts part of the light from the pixel points of the display light source 1 into radial propagation, and then the light passes through the mirror group 3 and the refractive magnifying component 5 to exit.
  • the light source scanning component 4 converts part of the pixel points of the display light source 1 into radial propagation, so that the optical path axis becomes radial, and the optical path distance is increased without increasing the volume of the device, which is conducive to reducing the thickness and volume of the device.
  • the scanning component 4 rotates synchronously with the mirror group 3 on the rotating device to enlarge the area of the scanned display light source 1 and use the visual persistence characteristics of the human eye to make the human eye see the display content clearly.
  • the rotating module 2 rotates at a high speed around the center of rotation, and its speed is between 10HZ-3000HZ. There are many ways to realize the rotation of the rotating module 2, which is the prior art and is not included in the scope of protection of this application. For example, see FIG.
  • a gear is arranged on the outer circumference, and a gear is arranged on the motor shaft 8 to drive the gear to rotate when the motor rotates, or use electromagnetic induction or aerodynamic force to drive the rotating module to rotate.
  • the light source scanning component 4 is a long strip of reflector, which does not need to cover the entire display light source 1, and the area can be made small. In the subsequent embodiment of the augmented reality solution, it is conducive to the entry of external light.
  • the refractive magnification component 5 is used to adjust the light, in order to make a clear image on the retina of the human eye, the difference between the optical path distance from the light source to the refractive magnification component 5 and the focal length of the corresponding refractive magnification component 5 is not greater than 10mm, the human eye can see a clear image within this range. In order to meet this condition, the previous technology tends to increase the thickness of the near-eye display device.
  • This application uses the method of converting axial light to radial light to solve this problem.
  • the reflector group 3 includes at least one reflector, which is used to change the propagation direction of the radial light beam transformed by the light source scanning component 4 at least once, and finally exit into the human eye along the axial direction.
  • the refractive magnification component 5 is a transmissive focusing lens, which can be a convex lens, a Fresnel lens, a diffractive lens, a polarization selective lens, etc.
  • the light source scanning component 4 is a reflector.
  • refractive There are three ways to install the amplifying part 5 as follows. Referring to Figure 2a, the display light source 1 and the refractive magnification component 5 are both fixedly installed, and the rotating module 2 rotates around the central axis of rotation.
  • This installation method does not need to rotate the refractive magnification component 5 but needs to cover the area scanned by the mirror group 3 Or area; refer to Figure 2b and Figure 2c, which show that the light source 1 is fixedly installed, and the refractive magnifying component 5 is installed on the rotating module 2, and rotates around the rotation center axis together with the rotating module 2.
  • the refractive magnifying component 5 only needs to be It is sufficient to cover all or part of the light reflected by the mirror group 3, as shown in Fig. 2b, the refractive magnifying part 5 covers the entire rotating module 2, or, as shown in Fig. 2c, the refractive magnifying part 5 is a long strip.
  • the refractive magnifying component 5 can also be made into a circular, oval, etc. shape to reduce the weight of the device; referring to Figure 2d, the refractive magnifying component 5 is installed inside the rotating module 2 and the light passes through the refractive magnifying component 5 first.
  • the reflector group 3 is converted into the axial light entering the human eye. In this way, the overall thickness of the device can be further reduced.
  • the refractive magnification component 5 is a reflective focusing lens, which can be a reflective concave mirror, a Fresnel mirror, a diffractive mirror, a polarization selective mirror, etc., and the light source scanning component 4 is a mirror.
  • the refractive magnifying part 5 there are several ways to install the refractive magnifying part 5 as follows.
  • the refractive magnifying part 5 is fixedly installed on the side where the display light source 1 is located, the display light source 1 is ring-shaped, and the refractive magnifying part 5 is fixed on the inner ring of the ring-shaped display light source to avoid blocking the light of the display light source 1, and the display light source 1
  • the axial light emitted by the light source scanning component 4 is reflected as radial light, and then reflected by the mirror group 3 as the axial light, and then directed to the reflective focusing lens for refractive magnification and reflected into the human eye.
  • the mirror group here 3 A semi-transparent mirror or a total reflection interface or a polarized light selection lens can be used; see Figure 2f and Figure 2g, the refractive magnification component 5 is installed on the rotating module 2, and rotates with the rotating module 2, in this case, the refractive magnification
  • the shape of the part 5 is circle, rectangle or bar, etc.
  • the reflection range covers all or part of the light reflected by the mirror group 3.
  • the optical path is basically the same as the first case, as shown in Figure 2f, the refractive magnifying part 5 covers the entire rotation Module 2, or, as shown in Figure 2g, the refractive magnifying part 5 is a long strip, and only needs to cover all or part of the light reflected by the mirror group 3, and the area only needs to be the same as the light or reflection from the mirror group 3
  • the lenses of the lens group 3 can be matched; referring to Figure 2h, the refractive magnification component 5 is installed inside the rotating module 2, and passes through the refractive magnification component 5 for refractive magnification before the display light source 1 is reflected as an axial light, thereby The light is reflected by the light source scanning component 4 as radial light, and then after refractive magnification by the reflective focusing lens, it is reflected by the reflector group 3 as the axial light and then exits into the human eye, so that the human eye can see clearly.
  • the mirror group 3 can adopt a half mirror or a total reflection interface or a
  • the reflector group 3 may include several reflectors. By adjusting the number, position, and angle of the reflectors, the distance between the light source and the refractive magnifying component 5 and the virtual image position can be changed. Referring to Figures 3a to 3d, the reflector group 3 includes several reflectors. By adjusting the angle and position of the reflector and the light source scanning part 4, the optical path distance from the light source to the refractive magnifying part 5 can be changed. At the same time, the light source scanning part can also be changed. 4 Scan the position of the light source, extending from the center line of the light source to the periphery.
  • the reflector included in the reflector group 3 may also be a semi-transparent, semi-reflective or full-reflective reflector, a total reflection interface, or a polarized light selector.
  • the reflecting mirror group 3 includes a first reflecting mirror 301a and a second reflecting mirror 302a.
  • the light source scanning component 4 and the second reflecting mirror 302a are both arranged in the middle of the rotating module 2, and the first reflecting mirror 301a is arranged in the center of the rotating module 2.
  • the light from the display light source 1 is reflected by the light source scanning component 4 to the first mirror 301a and then reflected by the second mirror 302a, and then dioptically exits through the refractive magnifying component 5; see 3b, the mirror group 3 includes the first reflection The mirror 301b and the second reflector 302b.
  • the light source scanning component 4 is a reflector and is arranged at the lower part of the rotating module 2.
  • the first reflector 301b is arranged on the upper part of the rotating module 2, and the second reflecting mirror 302b is arranged in the middle of the rotating module 2.
  • the mirror group 3 includes the first reflection
  • the mirror 301c, the second mirror 302c, the third mirror 303c, the fourth mirror 304c, and the fifth mirror 305c show that the light from the light source 1 passes through the first mirror 301c and the second mirror after being reflected by the light source scanning part 4
  • the mirror reflection 302c, the third mirror 303c, the fourth mirror 304c, and the fifth mirror 305c are reflected, and then dioptically exit through the refractive magnifying part 5; referring to FIG.
  • the mirror group 3 includes a first mirror 301d and a second mirror 301d.
  • the difference between the two mirrors 302d and the previous embodiment is that in Figures 3a, 3b, and 3c, the light source scanning component 4 is a mirror, while in this embodiment, the light source scanning component 4 is a prism-type reflective lens, including A total reflection mirror surface and a reflection surface show that after the light from the light source 1 is reflected to the reflection surface through the total reflection surface, it is reflected by the reflection surface to the total reflection surface to be transmitted and refracted. The incident angle is large when it passes through the total reflection surface for the first time.
  • the light source scanning component 4 can be a mirror, a prism, or an image transmission fiber, etc., as shown in Figure 4a, the light source scanning component 4 is a reflector which reflects the light from the display light source 1 as axial light and propagates in the plane where the rotating unit is located; see Figure 4b, The light source scanning component 4 is a prism.
  • the prism includes a total reflection mirror surface.
  • the light source 1 enters the prism of the optically dense medium from the light-thin medium, and passes through an opaque reflecting surface in the prism for the first reflection, and the reflected light In the optically dense medium, the incident angle to the total reflection surface is relatively large, resulting in total reflection, and the incident angle of the light after the second reflection out of the prism is relatively small, so it is refracted and transmitted from the prism; see Figure 4c, the light source scanning part 4 is the image transmission fiber, which transmits the pixel points of the light source through the fiber array of the image transmission fiber, and turns it into a radial fiber for propagation.
  • the light source 1 is shown as a side wall ring light source, which is arranged on the periphery of the rotating module 2 and is fixedly installed in a ring.
  • the light source scanning component 4 adopts an image transmission fiber, which is set on the rotation module, and the circle is formed by the image transmission fiber.
  • the arc-shaped light source pixels are conducted into a planar pixel array, which converts the light of point A on the display light source 1 into the light-emitting position of A'.
  • At least two mirror groups 3 need to be provided on the rotating module 2.
  • the last mirror of a group of mirror groups 3 that reflects into the human eye is set on the rotating module 2 near the middle of the center of rotation.
  • Position, the last piece of mirror group 3 of other layers that reflects into the human eye and the above-mentioned mirror are arranged side by side, so that the light emitted by the light source passes through several layers of mirror groups, and finally exits from different positions, after refraction
  • the magnifying part 5 enters the human eye.
  • the human eye can see a clear image no matter it is aimed at any emitted light, which reduces the restriction on the viewing angle of the human eye.
  • the number of 3 layers of the mirror group can also be any integer layers such as 2, 4, 5 and so on.
  • the refractive magnification component 5 can be fixedly arranged or installed on the rotating module, and can be a transmission or reflection focusing lens. The principle is the same as above and will not be repeated.
  • the near-eye display device can realize the transparent display effect of augmented reality, and the specific implementation scheme is as follows:
  • Solution 1 Add a half-reflecting half-lens 6, the entire rotating near-eye display device is installed close to the horizontal, and the half-reflecting half-lens simultaneously transmits external light and reflects the virtual image light.
  • the display light source adopts a opaque screen solution.
  • a half mirror 6 is added, and an opaque rotating optical system constitutes an augmented reality solution.
  • the light of the display light source passes through the light source scanning component 4 to convert part of the light of the pixel points of the display light source 1 into a radial direction, and then the light passes through the mirror group 3 and the refractive magnifying component 5 and exits to the half mirror 6 and the half mirror 6
  • the light is reflected into the human eye, and the external light directly enters the human eye through the semi-reflective half-lens, and the external light and the screen light work together on the human eye to achieve an augmented reality effect.
  • Solution 2 Part of the optical structure in the near-eye display device can allow external light to pass through, so that the human eye can see the external environment clearly, so as to realize the transparent display effect of augmented reality.
  • the display light source 1 is a flat ring light source.
  • the refractive magnifying component 5 is fixed on the rotating module 2 and rotates with the rotating module 2. Its shape only needs to cover the light reflected by the mirror group 3, and the external light passes through the display The area in the middle of the light source 1 enters the human eye, and the outside world can be seen clearly.
  • the light from the display light source 1 enters the human eye through the light source scanning component 4, the mirror group 3 and the refractive magnifying component 5, and presents a virtual image.
  • the refractive focus area 52 is a flat lens or a hollowed out area, the width of this area is not greater than 3 mm, the distance between two adjacent non-refractive focus areas is not greater than 3 mm, and the interval part is the refractive magnification area 51.
  • the display light source 1 is a side wall ring light source.
  • the light source is scanned by the image transmission fiber on the side wall to form a radial optical path.
  • the display light source 1 is scanned by the image transmission fiber on the side wall to form a radial light source.
  • the sidewall display light source is a single-layer pixel array 7 on the inner side of the sidewall arranged along the circumference.
  • the image-transmitting fiber transmits the light source on the inner side of the side wall to another section in the order of light source pixel arrangement, so that the arc-shaped light source array on the side wall is transformed into a straight light source array, and it propagates in the radial direction, passing through the mirror group 3 and the refractive index.
  • the magnifying part 5 is finally shot into the human eye.
  • the light source arrays A to B of the sidewall display light source arrays A to B are amplified by light guiding and reflection for the first moment, and finally images of virtual images A'to B'are formed in the human eye.
  • the light source arrays of the sidewall display light source arrays C to D are amplified by light guiding and reflection for the second moment, and finally images of virtual images C′′ to D′′ are formed in the human eyes.
  • the interval between the first moment and the second moment is very short, the rotating part rotates at a high speed, and the rotating frequency is in the range of 10HZ ⁇ 1000HZ.
  • the installation method of the refractive magnification component can also be fixedly installed or installed on the rotating module, for example, as shown in FIGS. 2a to 2h and 7c.
  • a zoom assembly 9 is further included. Specifically, referring to Figure 9a, a fixed frame 21 is provided on the periphery of the rotating module 2, the zoom assembly 9 is set on the fixed frame 21, the refractive magnification component 5 is a reflective focusing lens, and the refractive magnification component 5 is fixedly installed near the display light source.
  • the zoom assembly 9 includes a miniature linear stepping motor 91. The body and output shaft of the linear stepping motor 91 abut on the fixed frame 21 of the rotating module and the refractive magnifying part 5, respectively, through the linear stepping motor 91 The linear expansion and contraction adjusts the distance between the refractive magnifying part 5 and the fixed frame 21 to achieve the purpose of zooming.
  • the present invention also provides an embodiment, referring to Figure 9b, a fixed frame 21 is provided on the periphery of the rotating module 2, the refractive magnifying part 5 is a transmissive focusing lens, the refractive magnifying part 5 is fixedly installed on the side close to the human eye, and the zoom
  • the assembly 9 includes a miniature linear stepping motor 91.
  • the body and output shaft of the linear stepping motor 91 abut on the fixed frame 21 and the refractive magnifying part 5 of the rotating module respectively, and the refractive index is adjusted by the linear expansion and contraction of the linear stepping motor 91.
  • the distance between the magnifying part 5 and the fixed frame 21 can be used for zooming.
  • a zoom assembly 9 is further included.
  • the refractive magnification component 5 is a reflective focusing lens
  • the zoom component 9 is mounted on the rotating module 2 and rotates concentrically with the rotating module 2
  • the refractive magnifying component 5 is mounted on the zoom component 9
  • the refractive magnifying component 5 only needs to be It is sufficient to cover the light reflected by the mirror group 3, so the area is basically the same as the area of the last mirror of the mirror group 3.
  • the refractive magnification component 5 is a transmissive focusing lens
  • the zoom component 9 is mounted on the rotating module 2 to rotate concentrically with the rotating module 2
  • the refractive magnification component 5 is mounted on the zoom component 9.
  • the zoom assembly 9 is arranged on the rotating module 2 and rotates concentrically with the rotating module.
  • the zoom assembly 9 includes a first fixed block 92, a second fixed block 94, an elastic member 93 and a wedge block. 95.
  • the two ends of the elastic member 93 are respectively connected to the first fixing block 92 and the second fixing block 94, the wedge block 95 is arranged in the gap between the first fixing block 92 and the second fixing block 94, and the refractive magnifying part 5 is arranged On the first fixing member 92.
  • the wedge block 95 When the device rotates, the wedge block 95 generates different centrifugal force according to the rotation speed, so that the spring is stretched, and the distance between the refractive magnifying part 5 and the rotating module 2 is adjusted to achieve zooming.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种近眼显示装置,包括显示光源(1)、旋转模块(2)和屈光放大部件(5),旋转模块(2)绕旋转中心轴旋转,旋转模块(2)上设有光源扫描部件(4)和反射镜组(3),光源扫描部件(4)将显示光源(1)的部分像素点光线转为径向传播,然后光线经过反射镜组(3)和屈光放大部件(5)出射。光源扫描部件(4)将显示光源(1)的部分像素点光线转为径向传播,使光路由轴向变为径向,在不增加装置体积的前提下增加光路距离,有利于缩小装置厚度和体积,光源扫描部件(4)在旋转装置上旋转,扩大扫描的显示光源(1)的面积,利用人眼的视觉暂留特性,使人眼看清显示内容,并且外界光也可以通过旋转装置进入人眼,实现增强现实效果。

Description

一种近眼显示装置 技术领域
本发明涉及显示装置领域,特别涉及一种近眼显示装置。
背景技术
目前实现VR虚拟现实或AR增强现实需要光学近眼显示装置,现有技术的光学显示系统做出的产品要么产品厚度很厚,重量大,要么视野角度太小。现有技术中有的采用凸透镜片加显示屏幕的VR显示技术,缺点是设备体积大,重量重,镜片畸变严重,色散问题严重,要么采用自由曲面反射的AR镜片,缺点是设备体积大,重量大。而棱镜反射式和衍射镜片的AR镜片虽然体积小重量小但是,视野角更小。衍射镜片的AR镜片虽然轻薄,但是视野角还是小,加工难度大,良品率低。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种近眼显示装置,具有较大的视场角且体积小,厚度薄。
根据本发明实施例的一种近眼显示装置,包括显示光源、旋转模块和屈光放大部件,所述旋转模块绕旋转中心轴旋转,所述旋转模块上设有光源扫描部件和反射镜组,所述光源扫描部件将显示光源的部分像素点光线转为径向传播,然后光线经过反射镜组和屈光放大部件出射。
根据本发明实施例的一种近眼显示装,至少具有如下有益效果:光源扫描部件将显示光源的部分像素点光线转为径向传播,使光路由轴向变为径向,在不增加装置体积的前提下增加光路距离,有利于缩小装置厚度和体积,光源扫描部件在旋转装置上旋转,扩大扫描的显示光源的面积,利用人眼的视觉暂留特性,使人眼看清显示内容,并且外界光也可以通过旋转装置进入人眼,实现增强现实效果。
根据本发明实施例的一种近眼显示装,所述反射镜组至少包括一个反射镜。
根据本发明实施例的一种近眼显示装,所述光源扫描件为反射镜、棱镜或传像光纤。
根据本发明实施例的一种近眼显示装,所述屈光放大部件为透射式聚焦镜片或反射式聚焦镜片,所述透射式聚焦镜片或反射式聚焦镜片固定安装在所述旋转模块一侧,不随所述旋转模块旋转;或设置在所述旋转模块上,和所述旋转模块同心旋转。
根据本发明实施例的一种近眼显示装,所述屈光放大部件为透射式聚焦镜片,所述透射式聚焦镜片设置在远离所述显示光源的一侧,径向传播的光线依次经过反射镜组和屈光放大部件出射。或所述透射式聚焦镜片设置在旋转模块内,所述显示光源的光线经光源扫描部件转为径向光线后依次经透射式聚焦镜片和反射镜组出射。
根据本发明实施例的一种近眼显示装,所述屈光放大部件为反射式聚焦镜片,所述反射式聚焦镜片设置在靠近所述显示光源的一侧,径向传播的光线依次经过反射镜组和反射式聚焦镜片出射。或所述反射式聚焦镜片设置在旋转模块内,所述显示光源的光线经光源扫描部件转为径向光线后依次经反射式聚焦镜片和反射镜组出射。
根据本发明实施例的一种近眼显示装,所述反射镜组至少有两个,任意反射镜组并排 设置。
根据本发明实施例的一种近眼显示装,还包括半反半透镜,半反半透镜同时透过外界光线并反射经过所述屈光放大部件出射的光线。
根据本发明实施例的一种近眼显示装,所述显示光源为平面环形光源或侧壁环形光源。
根据本发明实施例的一种近眼显示装,所述屈光放大部件的大小和所述反射镜组的出射光线面积相匹配。
根据本发明实施例的一种近眼显示装,所述屈光放大部件为固定安装的透射式聚焦镜片或反射式聚焦镜片,所述屈光放大部件上具有环形的无屈光聚焦区域和位于无屈光聚焦区域间隔位置的屈光放大区域。
根据本发明实施例的一种近眼显示装,还包括变焦组件和固定框,所述固定框设置在所述旋转模块的外围,所述变焦组件的两端分别抵接在旋转模块的固定框和屈光放大部件上。
根据本发明实施例的一种近眼显示装,还包括变焦组件,所述变焦组件设置在所述旋转模块上,所述屈光放大部件设置在所述变焦组件上,所述变焦组件用于调节屈光放大部件和旋转模块的距离。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明一实施例的结构示意图;
图2a至图2h为本发明实施例的屈光放大部件的安装结构示意图;
图3a至图3d为本发明较优实施例的反射镜组的安装结构示意图;
图4a至图4c为本发明较优实施例的光源扫描部件的安装结构示意图;
图5a为本发明一实施例的主视图;
图5b为图5a中近眼显示装置的侧视图;
图6为本发明另一实施例的结构示意图;
图7a为本发明另一实施例的结构示意图;
图7b为本发明另一实施例的结构示意图;
图7c为本发明实施例中屈光放大部件的结构示意图
图7d为本发明另一实施例的结构示意图;
图7e和图7f为本发明图7d中显示光源的光路图;
图8为本发明实施例中旋转模块的驱动原理图;
图9a至图9e为本发明实施例中变焦组件的结构示意图。
具体实施方式
下面详细描述本发明实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实 施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
参见图1,本发明的一种近眼显示装置,包括显示光源1、旋转模块2和屈光放大部件5,旋转模块2绕旋转中心轴旋转,旋转模块2上设有光源扫描部件4和反射镜组3,光源扫描部件4将显示光源1的部分像素点光线转为径向传播,然后光线经过反射镜组3和屈光放大部件5出射。光源扫描部件4将显示光源1的部分像素点光线转为径向传播,使光路由轴向变为径向,在不增加装置体积的前提下增加光路距离,有利于缩小装置厚度和体积,光源扫描部件4在旋转装置上和反射镜组3同步旋转,扩大扫描的显示光源1的面积,利用人眼的视觉暂留特性,使人眼看清显示内容。旋转模块2围绕旋转中心高速旋转,其转速在10HZ--3000HZ之间,旋转模块2旋转的方式有多种实现方式,为现有技术,不作为本申请保护范围,例如参见图8,在其外周设有齿轮,在电机轴8上设有齿轮,电机转动时驱动齿轮转动,或者利用电磁感应力或空气动力等驱动旋转模块转动。在本实施例中,光源扫描部件4为长条状的反射镜,不用覆盖整个显示光源1,面积可以做的很小,在后续增强现实方案实施例中,有利于外界光进入。屈光放大部件5用于对光线进行屈光调节,为使人眼的视网膜上呈现清晰的图像,从光源到达屈光放大部件5的光路距离和所属屈光放大部件5的焦距差值不大于10mm,在这个范围内人眼可以看到清晰的图像,为满足这一条件,以往技术往往会使近眼显示装置的厚度变大,本申请采用将轴向光转为径向光的方式解决这一问题。反射镜组3至少包括一个反射镜,用于将光源扫描部件4转化的径向光线至少改变一次传播方向,最后沿轴向射出进入人眼。
在一些实施例中,屈光放大部件5为透射式聚焦镜片,可以为凸透镜、菲涅尔透镜、衍射型透镜和偏振选择型透镜等,光源扫描部件4为反射镜,此种情况下屈光放大部件5的安装方式有如下3种。参见图2a,显示光源1和屈光放大部件5均固定安装,旋转模块2绕旋转中心轴旋转,此种安装方式屈光放大部件5不需要转动但需要覆盖反射镜组3旋转扫描过的区域或面积;参见图2b和图2c,显示光源1固定安装,屈光放大部件5安装在旋转模块2上,与旋转模块2一起绕旋转中心轴旋转,此种情况下屈光放大部件5只需覆盖反射镜组3反射出的全部或部分光线即可,如图2b,屈光放大部件5覆盖住整个旋转模块2,或者,如图2c,屈光放大部件5为长条形,由于屈光放大部件5和旋转模块2一同旋转,因此只需覆盖住反射镜组3反射出的全部光线或部分光线,面积只需和反射镜组3反射出的光线或者反射镜组3的镜片相匹配即可,此外屈光放大部件5还可以做成圆形、椭圆形等形状,减 轻装置重量;参见图2d,屈光放大部件5安装在旋转模块2内部且光线先经过屈光放大部件5再通过反射镜组3转为进入人眼的轴向光线,此种方式可以进一步降低装置整体厚度。
在一些实施例中,屈光放大部件5为反射式聚焦镜片,可以为反射凹面镜、菲涅尔反射镜、衍射型反射镜和偏振选择型反射镜等,光源扫描部件4为反射镜。此种情况下屈光放大部件5的安装方式有如下几种。参见图2e,屈光放大部件5固定安装在显示光源1所在的一侧,显示光源1为环形,屈光放大部件5固定在环形显示光源的内圈,避免挡住显示光源1的光线,显示光源1发出的轴向光经过光源扫描部件4反射为径向光,然后由反射镜组3反射为轴向光线射向反射式聚焦镜片进行屈光放大并反射进入人眼,此处的反射镜组3可采用半透半反反射镜或全反射界面或偏光选择镜片;参见图2f和图2g,屈光放大部件5安装在旋转模块2上,随旋转模块2旋转,此种情况下屈光放大部件5的形状为圆形,矩形或条形等,反射范围覆盖反射镜组3反射光线的全部或部分,光路和第一种情况基本一样,如图2f,屈光放大部件5覆盖住整个旋转模块2,或者,如图2g,屈光放大部件5为长条形,只需覆盖住反射镜组3反射出的全部光线或部分光线,面积只需和反射镜组3反射出的光线或者反射镜组3的镜片相匹配即可;参见图2h,屈光放大部件5安装在旋转模块2的内部,并在显示光源1反射为轴向光线之前经过屈光放大部件5进行屈光放大,从而使人眼能够看清,光线经过光源扫描部件4反射为径向光,然后经反射式聚焦镜片进行屈光放大后,再经过反射镜组3反射为轴向光线出射进入人眼,此处的反射镜组3可采用半透半反反射镜或全反射界面或偏光选择镜片。
在本发明的一些实施例中,反射镜组3可以包括若干个反射镜,通过调整反射镜数量、位置、角度的变化组合,实现光源到屈光放大部件5的距离变化和虚像位置的变化。参见图3a至图3d,反射镜组3包括若干反射镜,通过调节反射镜及光源扫描部件4的角度和位置,改变光源到屈光放大部件5的光路距离,同时,也可以改变光源扫描部件4扫描光源的位置,从光源中心线向外围扩展。反射镜组3包括的反射镜还可以为半透半反或全反的反射镜或全反射界面或偏光选择镜等。参见3a,反射镜组3包括第一反射镜301a和第二反射镜302a,光源扫描部件4和第二反射镜302a均设置在旋转模块2的中部,第一反射镜301a设置在旋转模块2的上部,显示光源1的光线经过光源扫描部件4反射到第一反射镜301a后经过第二反射镜302a反射,然后经过屈光放大部件5屈光出射;参见3b,反射镜组3包括第一反射镜301b和第二反射镜302b,光源扫描部件4为反射镜,设置在旋转模块2的下部,第一反射镜301b设置在旋转模块2的上部,第二反射镜302b设置在旋转模块2的中部,显示光源1的光线经过光源扫描部件4反射到第一反射镜301b后经过第二反射镜302b反射,然后经过屈光放大部件5屈光出射;参见图3c,反射镜组3包括第一反射镜301c、第二反射镜302c、第三反射镜303c、第四反射镜304c及第五反射镜305c,显示光源1的光线经过光源扫描部件4反射后依次经过第一反射镜301c、第二反射镜反射302c、第三反射镜303c、第四反射镜304c及第五反射镜305c反射,然后经过屈光放大部件5屈光出射;参见图3d,反射镜组3包括第一反射镜301d和第二反射镜302d,与前面的实施方式的区别在于,在图3a、图3b和图3c中,光源扫描部件4为反射镜,而本实施例中,光源扫描部件4为棱镜式反射镜片,包括一个全反射镜面及一个反射面,显示光源1的光线经全反射面反射到反射面后,经过反射面反射到全反射面透射和折射出去,第一次经过全反射面时入射角较大,发生 全反射,第二次经过全反射面时入射角较小,光线因而透射出去,然后再经过第一反射镜301d、第二反射镜302d出射。可以想到的是,反射镜组3的反射镜片的数量和安装位置、角度都可以做出相应改变。
光源扫描部件4可以为反射镜、棱镜或传像光纤等,参见图4a,光源扫描部件4为反射镜将显示光源1的光线反射为轴向光线在旋转单元所在平面内传播;参见图4b,光源扫描部件4为棱镜,该棱镜包括一个全反射镜面,显示光源1从光疏介质进入光密介质的棱镜中,在棱镜中经过一个不透光反射面进行第一次反射,反射后的光在光密介质中到达全反射面的入射角比较大从而产生全反射,第二次反射后的光射出棱镜的入射角比较小,因而从棱镜中折射和透射出来;参见图4c,光源扫描部件4为传像光纤,通过传像光纤的光纤阵列来传导光源的像素点,将其转为径向光纤传播。
参见图5a和图5b,显示光源1为侧壁环形光源,设置在旋转模块2的圆周外围,环形固定安装,光源扫描部件4采用传像光纤,设置在旋转模块上,通过传像光纤将圆弧形光源像素传导为平面像素阵列,将显示光源1上A点的光转化为A′的发光位置。
参见图6,为了扩大眼睛的观察范围,需要在旋转模块2上设置至少两个反射镜组3。例如共设有3层反射镜组3,每层反射镜组的结构形式一致,其中一组反射镜组3的最后一块反射入人眼的反射镜,设置在旋转模块2上靠近旋转中心的中间部位,其他层的反射镜组3的最后一块反射入人眼的反射镜和上述反射镜并排设置,这样设置,光源发出的光线经过数层的反光镜组,最后从不同位置射出,经过屈光放大部件5进入人眼。经过数组的径向反光镜,最终将A点的光转化为A′的虚像。人眼不管对准任何一个出射光线均可以看到清楚的图像,降低对人眼观察角度的限制。反射镜组3层数还可以为2层、4层、5层等任意整数层。其中的屈光放大部件5可以固定设置或安装在旋转模块上,可为透射或反射聚焦镜,原理如前不再赘述。
在本发明一些实施例中,近眼显示装置能够实现增强现实的透过式显示效果,具体的实现方案为:
方案一:增加半反半透镜6,整个旋转近眼显示装置接近水平安装,半反半透镜同时透过外界光线并反射虚拟图像光线。参见图7a,显示光源采用不透光的屏幕的方案,在上述方案的基础上,增加一个半反半透镜6,与不透光的旋转光学系统构成增强现实方案。显示光源的光经过光源扫描部件4将显示光源1的部分像素点光线转为径向传播,然后光线经过反射镜组3和屈光放大部件5出射到半反半透镜6,半反半透镜6将光线反射进入人眼,外界光则直接通过半反半透镜进入人眼,外界光和屏幕光共同作用于人眼实现增强现实效果。
方案二:近眼显示装置中部分光学结构可以允许外界光线透过,使得人眼能看清外部环境,从而实现增强现实的透过式显示效果。
参见图7b,显示光源1为平面环形光源,屈光放大部件5固定在旋转模块2上,随旋转模块2旋转,其形状只需覆盖反射镜组3反射出的光线即可,外界光线通过显示光源1中间的区域进入人眼,可以看清外界。显示光源1光线通过光源扫描部件4、反射镜组3和屈光放大部件5射入人眼,呈现虚拟图像。另外,参见图7c,如果屈光放大部件5为固定安装,则需要在固定安装的透射式聚焦镜片或反射式聚焦镜片上制作出以旋转中心为同心圆 的环形无屈光聚焦区域52,无屈光聚焦区域52为平面透镜或镂空,此区域宽度不大于3mm,两个相邻的无屈光聚焦区域间隔不大于3mm,其间隔部分为屈光放大区域51。
参见图7d,显示光源1为侧壁环形光源,光源在侧壁通过传像光纤扫描,形成径向光路,显示光源1在侧壁通过传像光纤扫描部件4,形成径向光源。在本实施例中,侧壁显示光源为沿圆周排列的侧壁内侧单层像素阵列7。传像光纤将侧壁内侧光源按照光源像素排列顺序传导到另外一段,这样就将侧壁的弧形光源阵列转化为平直的光源阵列,并沿径向传播,经过反射镜组3和屈光放大部件5最后射入人眼。如图7e,为第一时刻侧壁显示光源阵列A到B的光源阵列经过导光和反射放大,最终在人眼中形成虚像A′′到B′′的图像。如图7f,为第二时刻侧壁显示光源阵列C到D的光源阵列经过导光和反射放大,最终在人眼中形成虚像C′′到D′′的图像。其中第一时刻和第二时刻的间隔非常短,旋转部件为高速旋转,其中旋转频率在10HZ~1000HZ范围内。屈光放大部件安装方式也可以固定安装或安装在旋转模块上,例如图2a至图2h、图7c所示。
在本发明的一些实施例中,还包括变焦组件9。具体的,参见图9a,旋转模块2的外围设有固定框21,变焦组件9设置在固定框21上,屈光放大部件5为反射式聚焦镜片,屈光放大部件5固定安装在靠近显示光源1的一侧,变焦组件9包括微型线性步进电机91,线性步进电机91的本体和输出轴分别抵接在旋转模块的固定框21和屈光放大部件5上,通过线性步进电机91的直线伸缩调节屈光放大部件5和固定框21的距离,实现变焦目的。本发明还提供一个实施例,参见图9b,旋转模块2的外围设有固定框21,屈光放大部件5为透射式聚焦镜片,屈光放大部件5固定安装在靠近人眼的一侧,变焦组件9包括微型线性步进电机91,线性步进电机91的本体和输出轴分别抵接在旋转模块的固定框21和屈光放大部件5上,通过线性步进电机91的直线伸缩调节屈光放大部件5和固定框21的距离,实现变焦目的。
在本发明的一些实施例中,还包括变焦组件9。参见图9c,屈光放大部件5为反射式聚焦镜片,变焦组件9安装在旋转模块2上和旋转模块2同心旋转,屈光放大部件5安装在变焦组件9上,屈光放大部件5只需覆盖住反射镜组3反射出来的光线即可,因此面积基本和反射镜组3最后一块反射镜的面积相当。参见图9d,屈光放大部件5为透射式聚焦镜片,变焦组件9安装在旋转模块2上和旋转模块2同心旋转,屈光放大部件5安装在变焦组件9上。参见图9e,变焦组件9的具体实现方式为:变焦组件9设置在旋转模块2上和旋转模块同心旋转,变焦组件9包括第一固定块92、第二固定块94、弹性件93和楔形块95,弹性件93的两端分别连接第一固定块92和第二固定块94,楔形块95设置在第一固定块92和第二固定块94之间的夹缝内,屈光放大部件5设置在第一固定件92上。当装置旋转时,根据转速大小,楔形块95会产生不同的离心力,从而使弹簧拉伸,调节屈光放大部件5和旋转模块2的距离,实现变焦目的。
以上仅为本申请的实施例而已,并不用于限制本申请。各个实施例间除相互矛盾的情况均可相互结合,对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (13)

  1. 一种近眼显示装置,其特征在于:包括显示光源(1)、旋转模块(2)和屈光放大部件(5),所述旋转模块(2)绕旋转中心轴旋转,所述旋转模块(2)上设有光源扫描部件(4)和反射镜组(3),所述光源扫描部件(4)将显示光源(1)的部分像素点光线转为径向传播,然后光线经过反射镜组(3)和屈光放大部件(5)出射。
  2. 根据权利要求1所述的一种近眼显示装置,其特征在于:所述反射镜组(3)至少包括一个反射镜。
  3. 根据权利要求1所述的一种近眼显示装置,其特征在于:所述光源扫描件为反射镜、棱镜或传像光纤。
  4. 根据权利要求1所述的一种近眼显示装置,其特征在于:所述屈光放大部件(5)为透射式聚焦镜片或反射式聚焦镜片,所述透射式聚焦镜片或反射式聚焦镜片固定安装在所述旋转模块(2)一侧,不随所述旋转模块(2)旋转;或设置在所述旋转模块(2)上,和所述旋转模块(2)同心旋转。
  5. 根据权利要求1所述的一种近眼显示装置,其特征在于:所述屈光放大部件(5)为透射式聚焦镜片,所述透射式聚焦镜片设置在远离所述显示光源(1)的一侧,径向传播的光线依次经过反射镜组(3)和屈光放大部件(5)出射。或所述透射式聚焦镜片设置在旋转模块(2)内,所述显示光源(1)的光线经光源扫描部件(4)转为径向光线后依次经透射式聚焦镜片和反射镜组(3)出射。
  6. 根据权利要求1所述的一种近眼显示装置,其特征在于:所述屈光放大部件(5)为反射式聚焦镜片,所述反射式聚焦镜片设置在靠近所述显示光源(1)的一侧,径向传播的光线依次经过反射镜组(3)和反射式聚焦镜片出射。或所述反射式聚焦镜片设置在旋转模块(2)内,所述显示光源(1)的光线经光源扫描部件(4)转为径向光线后依次经反射式聚焦镜片和反射镜组(3)出射。
  7. 根据权利要求1或2所述的一种近眼显示装置,其特征在于:所述反射镜组(3)至少有两个,任意反射镜组(3)并排设置。
  8. 根据权利要求1所述的一种近眼显示装置,其特征在于:还包括半反半透镜(6),所述半反半透镜(6)同时透过外界光线并反射经过所述旋转模块(2)出射的光线。
  9. 根据权利要求1所述的一种近眼显示装置,其特征在于:所述显示光源(1)为平面环形光源或侧壁环形光源。
  10. 根据权利要求4或9所述的一种近眼显示装置,其特征在于:所述屈光放大部件(5)的大小和所述反射镜组(3)的出射光线面积相匹配。
  11. 根据权利要求9所述的一种近眼显示装置,其特征在于:所述屈光放大部件(5)为固定安装的透射式聚焦镜片或反射式聚焦镜片,所述屈光放大部件(5)上具有环形的无屈光聚焦区域(52)和位于无屈光聚焦区域间隔位置的屈光放大区域(51)。
  12. 根据权利要求1所述的一种近眼显示装置,其特征在于:还包括变焦组件(9)和固定框(21),所述固定框(21)设置在所述旋转模块(2)的外围,所述变焦组件(9)的两端分别抵接在旋转模块的固定框(21)和屈光放大部件(5)上。
  13. 根据权利要求1所述的一种近眼显示装置,其特征在于:还包括变焦组件(9), 所述变焦组件(9)设置在所述旋转模块(2)上,所述屈光放大部件(5)设置在所述变焦组件(9)上,所述变焦组件(9)用于调节屈光放大部件(5)和旋转模块(2)的距离。
PCT/CN2020/109915 2019-12-05 2020-08-19 一种近眼显示装置 WO2021109618A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/747,019 US11500215B2 (en) 2019-12-05 2022-05-18 Near-eye display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911233220.8A CN110955050A (zh) 2019-12-05 2019-12-05 一种近眼显示装置
CN201911233220.8 2019-12-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/747,019 Continuation US11500215B2 (en) 2019-12-05 2022-05-18 Near-eye display device

Publications (1)

Publication Number Publication Date
WO2021109618A1 true WO2021109618A1 (zh) 2021-06-10

Family

ID=69979992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109915 WO2021109618A1 (zh) 2019-12-05 2020-08-19 一种近眼显示装置

Country Status (3)

Country Link
US (1) US11500215B2 (zh)
CN (1) CN110955050A (zh)
WO (1) WO2021109618A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110955050A (zh) * 2019-12-05 2020-04-03 张炎召 一种近眼显示装置
CN116413911A (zh) * 2021-12-31 2023-07-11 北京耐德佳显示技术有限公司 一种超薄型镜片、使用其的虚像成像装置和近眼显示器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080212196A1 (en) * 2006-12-01 2008-09-04 Yazaki Corporation Display device for vehicle and supporting method for adjusting display position thereof
CN104704800A (zh) * 2012-10-17 2015-06-10 索尼公司 移动终端
CN207488620U (zh) * 2017-11-16 2018-06-12 北京蚁视科技有限公司 一种旋转式近眼显示装置
CN108717235A (zh) * 2018-08-29 2018-10-30 深圳珑璟光电技术有限公司 一种可调视度波导近眼显示光学装置
CN109407313A (zh) * 2018-10-29 2019-03-01 北京枭龙科技有限公司 一种衍射波导显示装置
CN110221439A (zh) * 2019-07-11 2019-09-10 Oppo广东移动通信有限公司 增强现实设备及增强现实调节方法
CN110955050A (zh) * 2019-12-05 2020-04-03 张炎召 一种近眼显示装置
CN111448504A (zh) * 2018-10-05 2020-07-24 谷歌有限责任公司 带有机械扫描的头戴式显示器
CN111505827A (zh) * 2020-05-22 2020-08-07 Oppo广东移动通信有限公司 光学显示组件和智能穿戴设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3237958A1 (en) * 2014-12-26 2017-11-01 CY Vision Inc. Near-to-eye display device with spatial light modulator and pupil tracker
CN106020496B (zh) * 2016-07-01 2019-04-30 成都理想境界科技有限公司 一种近眼显示系统、虚拟现实设备和增强现实设备
US10114215B1 (en) * 2017-04-17 2018-10-30 Microvision, Inc. Scanning laser devices with reduced exit pupil disparity
CN211123488U (zh) * 2019-12-05 2020-07-28 张炎召 一种近眼显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080212196A1 (en) * 2006-12-01 2008-09-04 Yazaki Corporation Display device for vehicle and supporting method for adjusting display position thereof
CN104704800A (zh) * 2012-10-17 2015-06-10 索尼公司 移动终端
CN207488620U (zh) * 2017-11-16 2018-06-12 北京蚁视科技有限公司 一种旋转式近眼显示装置
CN108717235A (zh) * 2018-08-29 2018-10-30 深圳珑璟光电技术有限公司 一种可调视度波导近眼显示光学装置
CN111448504A (zh) * 2018-10-05 2020-07-24 谷歌有限责任公司 带有机械扫描的头戴式显示器
CN109407313A (zh) * 2018-10-29 2019-03-01 北京枭龙科技有限公司 一种衍射波导显示装置
CN110221439A (zh) * 2019-07-11 2019-09-10 Oppo广东移动通信有限公司 增强现实设备及增强现实调节方法
CN110955050A (zh) * 2019-12-05 2020-04-03 张炎召 一种近眼显示装置
CN111505827A (zh) * 2020-05-22 2020-08-07 Oppo广东移动通信有限公司 光学显示组件和智能穿戴设备

Also Published As

Publication number Publication date
US20220276496A1 (en) 2022-09-01
US11500215B2 (en) 2022-11-15
CN110955050A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
US11867906B2 (en) Wearable AR system and AR display device
US4269476A (en) Helmet-mounted display system
JP3865906B2 (ja) 画像表示装置
JP3429320B2 (ja) 眼鏡及びフェースマスクに対するイメージコンバイニングシステム
US7397607B2 (en) Micro-display engine
US20040070839A1 (en) Wide field of view head mounted display device
JP2001290102A (ja) 表示装置
US11500215B2 (en) Near-eye display device
JP2001264681A (ja) ディスプレイ装置
US11536963B2 (en) Optical device for augmented reality having improved light efficiency
WO2021179786A1 (zh) Ar光学系统和ar显示设备
CN111679360A (zh) 一种大视场光栅波导元件及近眼显示装置
JPH10239628A (ja) 複合表示装置
US20220276471A1 (en) Camera module using small reflector, and optical device for augmented reality using same
JPH08278448A (ja) 鏡筒光学系
JP2020020859A (ja) 虚像表示装置
KR20140097748A (ko) 헤드 마운트 디스플레이 장치
US20220082836A1 (en) Thin near-to-eye display device with large field of view angle
CN211123488U (zh) 一种近眼显示装置
KR102099231B1 (ko) 근접 거리의 증강 현실용 화상을 제공할 수 있는 증강 현실용 광학 장치
WO2020087195A1 (zh) 一种全像显示系统及形成全像的方法
US12105304B2 (en) Augmented reality display device
KR20150094891A (ko) 헤드 마운트 디스플레이용 광학계
CN107272203B (zh) 折衍射反射式头戴显示器光学系统
KR20090086618A (ko) 광각 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.11.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20897064

Country of ref document: EP

Kind code of ref document: A1