WO2021109502A1 - Configuration of random access preamble - Google Patents

Configuration of random access preamble Download PDF

Info

Publication number
WO2021109502A1
WO2021109502A1 PCT/CN2020/093382 CN2020093382W WO2021109502A1 WO 2021109502 A1 WO2021109502 A1 WO 2021109502A1 CN 2020093382 W CN2020093382 W CN 2020093382W WO 2021109502 A1 WO2021109502 A1 WO 2021109502A1
Authority
WO
WIPO (PCT)
Prior art keywords
preambles
communication method
wireless communication
predetermined
predetermined preambles
Prior art date
Application number
PCT/CN2020/093382
Other languages
French (fr)
Inventor
Chenchen Zhang
Nan Zhang
Wei Cao
Fangyu CUI
Kaibo Tian
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2020/093382 priority Critical patent/WO2021109502A1/en
Priority to EP20896047.6A priority patent/EP4066579A4/en
Priority to CN202080100483.6A priority patent/CN115516987A/en
Publication of WO2021109502A1 publication Critical patent/WO2021109502A1/en
Priority to US17/851,770 priority patent/US20220337464A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems

Definitions

  • This document is generally related to wireless communications.
  • IoT internet-of-thing
  • LEO low-Earth-orbit
  • RTT round-trip time
  • PRACH physical random access channel
  • This document relates to methods, systems, and devices for configuring random access preambles, and more particularly to methods, systems, and devices for configuring random access preambles in the NB-IoT.
  • the present disclosure relates to a wireless communication method for use in a wireless terminal.
  • the wireless communication method comprises transmitting, to a wireless network node, a random access preamble selected from a plurality of predetermined preambles for a random access.
  • the plurality of predetermined preambles is determined by disabling at least one symbol group of a plurality of reference preambles.
  • the plurality of predetermined preambles has a hopping between symbol groups for each of the plurality of predetermined preambles and the hopping is greater than 1 subcarrier spacing.
  • the hopping is 6 subcarrier spacings.
  • a length of a cyclic prefix in the plurality of predetermined preambles is adjusted based on the maximum time offset related to the wireless terminal.
  • a subcarrier spacing of the plurality of predetermined preambles is greater than twice the maximum frequency offset.
  • a subcarrier spacing of the plurality of predetermined preambles is smaller than a reciprocal of the maximum time offset.
  • a subcarrier spacing of the plurality of predetermined preambles is adjusted by at least one scaling factor.
  • the subcarrier spacing of the plurality of predetermined preambles is adjusted by different scaling factors in different frames.
  • the plurality of predetermined preambles is determined by disabling at least one resource occasion in a plurality of reference preambles.
  • the plurality of predetermined preambles has resource occasion gaps between every two symbol groups contiguous in frequency domain.
  • the resource occasion gaps have different numbers of subcarrier spacings.
  • symbols in each symbol group for the plurality of predetermined preambles form one of a Zadoff–Chu sequence or a pseudo-noise sequence.
  • a cyclic prefix in the plurality of predetermined preambles comprises at least one symbol in a tail of a symbol group of the cyclic prefix.
  • the wireless communication method further comprises receiving, from the wireless network node, a configuration associated to the plurality of predetermined preambles.
  • the configuration comprises at least one of disabling information for disabling at least one symbol group or at least one resource occasion of a plurality of reference preambles, a subcarrier spacing of the plurality of predetermined preambles, at least one scaling factor for adjusting the subcarrier spacing of the plurality of predetermined preambles, or a sequence of the at least one scaling factor.
  • the present disclosure relates to a wireless communication method for use in a wireless network node.
  • the wireless communication method comprises receiving, from a wireless terminal, a random access preamble selected from a plurality of predetermined preambles for a random access.
  • the plurality of predetermined preambles is determined by disabling at least one symbol group of a plurality of reference preambles.
  • the plurality of predetermined preambles has a hopping between symbol groups for each of the plurality of predetermined preambles and the hopping is greater than 1 subcarrier spacing.
  • the hopping is 6 subcarrier spacings.
  • a length of a cyclic prefix in the plurality of predetermined preambles is adjusted based on the maximum time offset related to the wireless terminal.
  • a subcarrier spacing of the plurality of predetermined preambles is greater than twice the maximum frequency offset.
  • a subcarrier spacing of the plurality of predetermined preambles is smaller than a reciprocal of the maximum time offset.
  • a subcarrier spacing of the plurality of predetermined preambles is adjusted by at least one scaling factor.
  • the subcarrier spacing of the plurality of predetermined preambles is adjusted by different scaling factors in different frames.
  • the plurality of predetermined preambles is acquired by disabling at least one resource occasion in a plurality of reference preambles.
  • the plurality of predetermined preambles has resource occasion gaps between every two symbol groups contiguous in frequency domain.
  • the resource occasion gaps have different numbers of subcarrier spacings.
  • symbols in each symbol group for the plurality of predetermined preambles form one of a Zadoff–Chu sequence or a pseudo-noise sequence.
  • a cyclic prefix in the plurality of predetermined preambles comprises at least one symbol in a tail of a symbol group of the cyclic prefix.
  • the wireless communication method further comprises transmitting, to the wireless terminal, a configuration associated to the plurality of predetermined preambles.
  • the configuration comprises at least one of disabling information for disabling at least one symbol group or at least one resource occasion of a plurality of reference preambles, a subcarrier spacing of the plurality of predetermined preambles, at least one scaling factor for adjusting the subcarrier spacing of the plurality of predetermined preambles, or a sequence of the at least one scaling factor.
  • the present disclosure relates to a wireless terminal comprising a communication unit, configured to transmit, to a wireless network node, a random access preamble selected from a plurality of predetermined preambles for a random access.
  • Various embodiments may preferably implement the following feature:
  • the wireless terminal further comprises a processor configured to perform a wireless communication method of any of the foregoing described methods.
  • the present disclosure relates to a wireless network node, comprising a communication unit, configured to receive, from a wireless terminal, a random access preamble selected from a plurality of predetermined preambles for a random access.
  • Various embodiments may preferably implement the following feature:
  • the wireless network node further comprises a processor configured to perform a wireless communication method of any of the foregoing described methods.
  • the present disclosure relates to a computer program product comprising a computer-readable program medium code stored thereupon, the code, when executed by a processor, causing the processor to implement a wireless communication method recited in any of the forgoing described methods.
  • the present disclosure is not limited to the exemplary embodiments and applications described and illustrated herein. Additionally, the specific order and/or hierarchy of steps in the methods disclosed herein are merely exemplary approaches. Based upon design preferences, the specific order or hierarchy of steps of the disclosed methods or processes can be re-arranged while remaining within the scope of the present disclosure. Thus, those of ordinary skill in the art will understand that the methods and techniques disclosed herein present various steps or acts in a sample order, and the present disclosure is not limited to the specific order or hierarchy presented unless expressly stated otherwise.
  • FIG. 1 shows an example of a schematic diagram of a wireless terminal according to an embodiment of the present disclosure.
  • FIG. 2 shows an example of a schematic diagram of a wireless network node according to an embodiment of the present disclosure.
  • FIG. 3 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
  • FIG. 4 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
  • FIG. 5 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
  • FIG. 6 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
  • FIG. 7 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
  • FIG. 8 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
  • FIG. 9 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
  • FIG. 10 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
  • FIG. 11 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
  • FIG. 12 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
  • FIG. 13 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
  • FIG. 14 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
  • FIG. 15 shows a flowchart of a process according to an embodiment of the present disclosure.
  • FIG. 16 shows a flowchart of a process according to an embodiment of the present disclosure.
  • FIG. 1 relates to a schematic diagram of a wireless terminal 10 according to an embodiment of the present disclosure.
  • the wireless terminal 10 may be a user equipment (UE) , a mobile phone, a laptop, a tablet computer, an electronic book or a portable computer system and is not limited herein.
  • the wireless terminal 10 may include a processor 100 such as a microprocessor or Application Specific Integrated Circuit (ASIC) , a storage unit 110 and a communication unit 120.
  • the storage unit 110 may be any data storage device that stores a program code 112, which is accessed and executed by the processor 100.
  • Embodiments of the storage unit 112 include but are not limited to a subscriber identity module (SIM) , read-only memory (ROM) , flash memory, random-access memory (RAM) , hard-disk, and optical data storage device.
  • SIM subscriber identity module
  • ROM read-only memory
  • RAM random-access memory
  • the communication unit 120 may a transceiver and is used to transmit and receive signals (e.g. messages or packets) according to processing results of the processor 100.
  • the communication unit 120 transmits and receives the signals via at least one antenna 122 shown in FIG. 1.
  • the storage unit 110 and the program code 112 may be omitted and the processor 100 may include a storage unit with stored program code.
  • the processor 100 may implement any one of the steps in exemplified embodiments on the wireless terminal 10, e.g., by executing the program code 112.
  • the communication unit 120 may be a transceiver.
  • the communication unit 120 may as an alternative or in addition be combining a transmitting unit and a receiving unit configured to transmit and to receive, respectively, signals to and from a wireless network node (e.g. a base station) .
  • a wireless network node e.g. a base station
  • FIG. 2 relates to a schematic diagram of a wireless network node 20 according to an embodiment of the present disclosure.
  • the wireless network node 20 may be a satellite, a base station (BS) , a network entity, a Mobility Management Entity (MME) , Serving Gateway (S-GW) , Packet Data Network (PDN) Gateway (P-GW) , a radio access network (RAN) , a next generation RAN (NG-RAN) , a data network, a core network or a Radio Network Controller (RNC) , and is not limited herein.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • PDN Packet Data Network Gateway
  • RAN radio access network
  • NG-RAN next generation RAN
  • RNC Radio Network Controller
  • the wireless network node 20 may comprise (perform) at least one network function such as an access and mobility management function (AMF) , a session management function (SMF) , a user place function (UPF) , a policy control function (PCF) , an application function (AF) , etc.
  • the wireless network node 20 may include a processor 200 such as a microprocessor or ASIC, a storage unit 210 and a communication unit 220.
  • the storage unit 210 may be any data storage device that stores a program code 212, which is accessed and executed by the processor 200. Examples of the storage unit 212 include but are not limited to a SIM, ROM, flash memory, RAM, hard-disk, and optical data storage device.
  • the communication unit 220 may be a transceiver and is used to transmit and receive signals (e.g. messages or packets) according to processing results of the processor 200.
  • the communication unit 220 transmits and receives the signals via at least one antenna 222 shown in FIG. 2.
  • the storage unit 210 and the program code 212 may be omitted.
  • the processor 200 may include a storage unit with stored program code.
  • the processor 200 may implement any steps described in exemplified embodiments on the wireless network node 20, e.g., via executing the program code 212.
  • the communication unit 220 may be a transceiver.
  • the communication unit 220 may as an alternative or in addition be combining a transmitting unit and a receiving unit configured to transmit and to receive, respectively, signals to and from a wireless terminal (e.g. UE) .
  • a wireless terminal e.g. UE
  • the preamble may be a physical random access channel (PRACH) preamble, a random access preamble, a random access channel (RACH) preamble or a preamble used for random access (procedure) .
  • PRACH physical random access channel
  • RACH random access channel
  • the random access preamble (e.g. PRACH preamble) is used in wireless communications to fulfill uplink (UL) synchronization in initialization of access.
  • PRACH preamble e.g. PRACH preamble
  • the signal of each UE is concentrated on a narrow band of 180KHz.
  • the PRACH preamble is transmitted in a single subcarrier and hops within the narrow band.
  • a symbol group is the concatenation of a cyclic prefix and several identical orthogonal frequency-division multiplexing (OFDM) symbols. For example, each of the OFDM symbols only occupies one subcarrier and has value “1” in the frequency domain.
  • the PRACH preamble in the NB-IoT consists of several symbol groups (e.g. repetition units) with frequency hopping.
  • FIG. 3 shows a schematic diagram of predetermined PRACH preambles PRACH#0 to PRACH#11. Note that FIG. 3 illustrates timing and frequency relationships among the PRACH #0 to PRACH#11 and does not limit actual timing and/or frequency of each preamble. As shown in FIG.
  • each of PRACH #0 to PRACH#11 locates in a PRACH occasion of each subcarrier and hopping of each of PRACH #0 to PRACH#11 is determined by the frequency location of the corresponding first symbol group.
  • the symbol groups shown in FIG. 3 comprises 6 symbols (e.g. a cyclic prefix and 5 OFDM symbols with the value “1” ) .
  • a UE chooses (e.g. selects) one PRACH occasion and sends the corresponding random access preamble.
  • the BS is able to identify the UE according to the position of the PRACH occasions in which the random access preamble located.
  • the subcarrier spacing (SCS) is 3.75KHz and the hopping between symbol groups of each of PRACH #0 to PRACH#11 is single SCS or 6 SCSs. In an embodiment, the SCS may be 1.25KHz.
  • the Doppler shift and the RTT of the channel become larger than those in a terrestrial network scenario because of high velocity and altitude of the satellites.
  • the residual time offset (TO) and frequency offset (FO) may be still larger than a symbol length and the SCS, respectively.
  • the residual TO and FO may be further compensated based on the UE position and the ephemeris if the UE has global navigation satellite system (GNSS) capability.
  • GNSS global navigation satellite system
  • the TO and FO may remain large when the position estimation is inaccurate or when the UE cannot compensate the residual TO and FO.
  • the residual TO and FO can be divided into four situations as illustrated in the following.
  • the UE is able to get accurate estimation for its own position and the satellite’s position and the residual TO and FO after compensation are small.
  • a cyclic prefix (CP) of the symbol group in the PRACH preamble may be designed to be shorter.
  • the CP length may be determined (e.g. adjusted or reduced) according to the maximum (e.g. maximal) residual TO.
  • the small frequency hopping e.g. hopping with 1 SCS
  • the hopping between symbol groups of the PRACH preambles is enhanced by designing a new hopping pattern for repetition units of the PRACH preambles or by disabling certain symbol groups in reference preambles (e.g.
  • the new hopping pattern may only contain hopping larger than one SCS.
  • the hopping may be 6 SCSs.
  • the PRACH preamble configured to the UE may be determined by disabling the symbol groups which are corresponding to the reference preambles and have 1 SCS hopping.
  • the UE may have small residual TO and large residual FO because of the error in GNSS and/or because the UE is not able to perform frequency compensation.
  • 12 or 36 consecutive subcarriers are used for PRACH and each subcarrier can be regarded as one resource occasion (e.g. RACH occasion (RO) ) .
  • the BS cannot determine the correct RO corresponding to the preamble.
  • the SCS may be enlarged.
  • the SCS is determined (e.g. enlarged, adjusted) by a scaling factor chosen (e.g. configured) by the BS.
  • the SCS is determined (e.g. enlarged, adjusted) by a list of scaling factors chosen (e.g. configured) by the BS.
  • certain ROs may be disabled for the PRACH preambles.
  • certain ROs may be removed for inserting RO gaps between every two symbol groups for different PRACH preambles.
  • the symbols in each symbol group may have different values for enlarging the size of the preamble pool (i.e. increasing preamble capacity) .
  • the symbols in each symbol group may form a Zadoff–Chu sequence or a pseudo-noise sequence.
  • the CP length may also be reduced (e.g. adjusted) according to the maximum residual TO.
  • a product of the residual TO and FO may be smaller than 0.5 (i.e. TO*FO ⁇ 0.5) .
  • the SCS may be reduced to compensate the large TO.
  • the large TO may be covered by setting different values for the symbols in each symbol group.
  • the CP length may be extended to be up to the whole symbol group, to overcome the large TO.
  • both the residual TO and FO may be large.
  • the large TO and large FO may be compensated by setting different values to the symbols in each symbol group and/or inserting RO gaps between the symbol groups for different PRACH preambles.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a new hopping pattern is disclosed, e.g., for a scenario with small TO and small FO.
  • the small hopping e.g. hopping with one SCS
  • the new hopping pattern for the repetition unit of each of preambles may be redefined.
  • the frame structure type is 1, which refers to the hopping pattern of preamble formats 0 and 1 in the NB-IoT
  • a frequency position of the i-th symbol group may be described by:
  • FIG. 4 shows a schematic diagram of preambles PRACH #0 to PRACH #11 according to an embodiment of the present disclosure.
  • each symbol group consists of 5 symbols and one CP.
  • the length of CP is the same as the maximal TO.
  • each of PRACH #0 to PRACH #11 is the concatenation of several repetition units. For each repetition unit, the frequency position of the first symbol group is randomly generated. As shown in FIG. 4, the (frequency) hopping between symbol groups in the repetition units for each of PRACH#0 to PRACH#11 is 6 SCSs.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a new hopping pattern is disclosed, e.g., for a scenario with small TO and small FO.
  • the new hopping pattern is determined (e.g. acquired or obtained) based on a hopping pattern of reference preambles.
  • the reference preambles may be preambles of existing preamble formats in the NB-IoT.
  • the hopping pattern of the reference preamble may be expressed by:
  • the new hopping pattern may be determined, e.g., by disabling some components of the reference preambles.
  • the new hopping pattern may be constructed by:
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • certain symbol groups in the reference preambles may be disabled for a scenario of small TO and small RO.
  • each of the preambles has both small hopping and large hopping between its contiguous symbol groups.
  • certain symbol groups shown in FIG. 3 may be disabled to keep only the large hopping.
  • FIG. 5 shows a schematic diagram of preambles PRACH#1 to PRACH#11 according to an embodiment of the present disclosure.
  • the 1 st and 4 th symbol groups in the repetition unit of each of PRACH#0 to PRACH#11 shown in FIG. 5 are disabled.
  • each of PRACH#0 to PRACH#11 has only large frequency hopping between symbol groups in its repetition unit.
  • each of PRACH#0 to PRACH#11 only has the hopping of 6 SCSs.
  • the number of repetition units in each of PRACH#0 to PRACH#11 may be increased, e.g., when the link budget is considered.
  • the empty time-frequency resources generated by disabling may be used for new ROs of additional PRACH preambles.
  • the CP has the same length with the maximal residual TO.
  • the pattern (e.g. the preambles) shown in FIG. 5 may be expressed by the formula of new hopping pattern disclosed in Embodiment 2, i.e.:
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the SCS of the preambles is enlarged for compensating large FO.
  • the SCS is enlarged up to twice the maximum (maximal) FO, to overcome the large FO.
  • FIG. 6 shows a schematic diagram of preambles PRACH#0 to PRACH#11 according to an embodiment of the present disclosure.
  • the FO is larger than half of original SCS (i.e. 0.5*SCS) and a carrier-to-noise ratio (CNR) is sufficient to support the SCS of twice the maximum FO (2*FO) .
  • CNR carrier-to-noise ratio
  • the SCS may be adjusted to 7.5KHz which is twice the maximum FO (i.e. the maximum FO is 3.75KHz) .
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the BS may configure at least one scaling factor for adjusting the SCS of the predetermined preambles.
  • the residual FO has various values after the UE compensates based on the positioning results of the GNSS.
  • the BS may configure the scaling factor (s) for adjusting (e.g. determining) the SCS of the PRACH preambles.
  • the BS may configure different scaling factors for different radio frames. For example, the BS may configure a list of scaling factors and the scaling factors are corresponding to contiguous radio frames in a sequence of the list of scaling factors.
  • the UE is able to choose the ROs in different radio frames (i.e. different scaling factors) according to its own (coarse) FO estimation.
  • FIG. 7 shows a schematic diagram of preambles PRACH#0 to PRACH#11 according to an embodiment of the present disclosure.
  • the BS configures two scaling factors with values 1 and 2 and broadcasts the scaling factors to the UEs in the system information block (SIB) .
  • SIB system information block
  • the UE applies the scaling factors to different frames.
  • the SCS for each of PRACH#0 to PRACH#11 is 3.75KHz (e.g. the scaling factor with the value 1 is applied) in a first frame.
  • the SCS for each of PRACH#0 to PRACH#11 becomes 7.5KHz (e.g. the scaling factor with the value 2 is applied) in a second frame.
  • the first frame and the second frame may be repeated in the time domain and the UE may estimate its own FO and choose an appropriate frame to send the PRACH preamble.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the number of symbols in a single symbol group is reduced, e.g., for a situation of small TO.
  • the symbol group is the concatenation of N OFDM symbols, where N is a positive integer.
  • the CP may be designed to have a short length and N may be also configured to be a small number.
  • N reduced to be a small number the channel coefficients of the symbol groups may remain the same, to reduce the estimation error of the TO.
  • FIG. 8 shows a schematic diagram of preambles PRACH#0 to PRACH#11 according to an embodiment of the present disclosure.
  • the number N of symbols in each symbol group is reduced to 2.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • the RO gaps are inserted between the symbol groups of the PRACH preambles, e.g., when the FO is large. As a result, the effect caused by the FO may be eliminated.
  • FIG. 9 shows a schematic diagram of preambles PRACH#0 to PRACH#3 according to an embodiment of the present disclosure.
  • the maximum FO is 5KHz and the SCS is 3.5KHz.
  • the ROs with SCS indexes 0, 2, 3, 5, 6, 8, 9 and 11 are disabled.
  • the RO gaps with 2 SCSs are inserted between every two symbol groups contiguous in frequency domain.
  • the BS detects 3 subcarriers for single RO of each symbol group (i.e. the RO for each symbol group in FIG. 9 comprises 3 subcarriers) . Because the maximum FO is smaller than 1.5 times of the SCS, the effect of the FO may be eliminated by the preamble configuration/format shown in FIG. 9.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • the symbols of preamble group for each preamble may set to different values, to form a sequence (e.g. ZC sequences or PN sequences) .
  • the number of ROs for the preambles may be reduced because the SCS may be greatly increased for compensating the FO.
  • the symbols of each symbol group may form a ZC sequence or a PN sequence, to increase PRACH preamble capacity.
  • FIG. 10 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
  • the maximal FO is 60KHz and the SCS is set to 30KHz to alleviate the effects of the FO.
  • each symbol group has a CP and symbols S 1 to S N , where N is a positive integer greater than 1. Note that only 2 symbol groups are shown with the CP and the symbols S 1 to S N for illustrations in FIG. 10.
  • the symbols S 1 to S N in each of symbol groups may set to different values (e.g. to form ZC sequence or PN sequence) . With different choices of the symbols S 1 to S N , each RO is able to support simultaneous transmissions of more than one preamble. Therefore, the collisions in the PRACH procedure is largely reduced.
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • the RO gaps with different numbers of SCSs are inserted between the symbol groups for the preambles.
  • the UEs within a beam may have different FOs. Therefore, the RO gaps between ROs can be set to have different numbers of SCSs. In an embodiment, the UE determines a coarse estimation for its FO and accordingly chooses an appropriate RO based on the RO gaps of the RO.
  • FIG. 11 shows a schematic diagram of preambles PRACH#0 to PRACH#3 according to an embodiment of the present disclosure.
  • the four ROs located at the same time respectively for the PRACH#0 to PRACH#3 are separated by gaps with different numbers of SCSs.
  • the gap between the ROs for PRACH#0 and PRACH#1 is 1
  • the gap between the ROs for PRACH#1 and PRACH#2 is 2
  • the gap between the ROs for PRACH#2 and PRACH#3 is 3. Therefore, the ROs for the RACH#0 to PRACH#3 can support maximal FO of 2.5, 1.5, 1.5, 0.5 times of SCS, respectively.
  • the gap between the ROs shown in FIG. 11 may be reduced for comprising more ROs.
  • Embodiment 10 is a diagrammatic representation of Embodiment 10:
  • the SCS may be shrank, e.g., for the situation with large TO and small FO.
  • the FO may be smaller than 0.5/maximum TO.
  • the TO may be overcome by adjusting (e.g. selecting) the SCS which is larger than 2*maximum FO and/or smaller than 1/maximum TO.
  • FIG. 12 shows a schematic diagram of preambles PRACH#0 to PRACH#11 according to an embodiment of the present disclosure.
  • the maximum TO is 3ms and the maximum FO is 100Hz.
  • the SCS is set to 312.5Hz for compensating the TO and the FO.
  • Embodiment 11 is a diagrammatic representation of Embodiment 11:
  • the CP may be extended, e.g., for the scenario with large TO.
  • the length of single symbol group may be greater than the maximum TO and symbols in each of the symbol groups have different values (e.g. form a sequence) .
  • the CP may be extended to estimate the TO.
  • FIG. 13 shows a schematic diagram of preambles PRACH#0 to PRACH#11 according to an embodiment of the present disclosure, wherein the SCS is 3.75KHz.
  • each preamble group consists of a CP and N symbols S 1 to S N .
  • the CP is extended by comprising M symbols in the tail of its symbol group, wherein M is a positive integer smaller than N.
  • M may be 12 and the extended CP comprises the CP and the symbols S N-11 , S N-10 , ...S N (N>12) .
  • the BS is able to estimate the TO up to 3.2ms.
  • Embodiment 12 is a diagrammatic representation of Embodiment 12
  • the symbols in each symbol group may have different values (e.g. form a sequence) and/or the RO gaps may be inserted between symbol groups for different preambles.
  • the Embodiments 7 and 11 may be combined.
  • FIG. 14 shows a schematic diagram of preambles according to an embodiment of the present disclosure, wherein the SCS is 3.75KHz.
  • the ROs in subcarriers with the indexes 0, 2, 3, 5, 6, 8, 9 and 11 are disabled.
  • each symbol group comprises a CP and N symbols S 1 to S N and the symbols S 1 to S N form a sequence (e.g. ZC sequence or PN sequence) . Therefore, each enabled subcarrier (e.g. RO) is able to comprise multiple symbol groups for multiple preambles (e.g. a preamble group) .
  • 1 st symbol group in the subcarrier #1 may be corresponding to a preamble group PG#0
  • 1 st symbol group in the subcarrier #4 may be corresponding to a preamble group PG#1, and so on.
  • each preamble in preamble groups PG#0 to PG#3 has the hopping larger than 1 SCS (i.e. 6 SCSs) from the 1 st symbol group to 2 nd symbol group.
  • the hopping for each preamble in preamble groups PG#0 to PG#3 may change to be 1 SCS.
  • FIG. 15 shows a flowchart of a process according to an embodiment of the present disclosure.
  • the process shown in FIG. 15 may be utilized in a wireless terminal (e.g. UE) and comprises the following step (s) :
  • Step 1500 Receive, from a wireless network node (e.g. BS) , a configuration associated to a plurality of predetermined preambles (Optional) .
  • a wireless network node e.g. BS
  • Optional a configuration associated to a plurality of predetermined preambles
  • Step 1502 Transmit, to the wireless network node, a random access preamble selected from the plurality of predetermined preambles for a random access.
  • the wireless terminal may receive a configuration associated to a plurality of predetermined preambles from a wireless network node (step 1500) (Optional) .
  • the wireless terminal transmits a random access preamble for a random access (procedure) to the wireless network node, wherein the random access preamble is selected from a plurality of predetermined preambles (step 1502) .
  • the plurality of predetermined preambles is determined by disabling at least one symbol group of a plurality of reference preambles in an embodiment.
  • the plurality of predetermined preambles has a hopping between symbol groups for each of the plurality of predetermined preambles and the hopping is greater than 1 subcarrier spacing.
  • the hopping is 6 subcarrier spacings.
  • a length of a cyclic prefix in the plurality of predetermined preambles is adjusted based on the maximum time offset related to the wireless terminal.
  • a subcarrier spacing of the plurality of predetermined preambles is greater than twice the maximum frequency offset.
  • a subcarrier spacing of the plurality of predetermined preambles is smaller than a reciprocal of the maximum time offset.
  • a subcarrier spacing of the plurality of predetermined preambles is adjusted by at least one scaling factor.
  • the subcarrier spacing of the plurality of predetermined preambles is adjusted by different scaling factors in different frames.
  • the plurality of predetermined preambles is determined by disabling at least one resource occasion in a plurality of reference preambles.
  • the plurality of predetermined preambles has resource occasion gaps between every two symbol groups contiguous in frequency domain.
  • the resource occasion gaps have different numbers of subcarrier spacings.
  • symbols in each symbol group for the plurality of predetermined preambles form one of a Zadoff–Chu sequence or a pseudo-noise sequence.
  • a cyclic prefix in the plurality of predetermined preambles comprises at least one symbol in a tail of a symbol group of the cyclic prefix.
  • the configuration comprises at least one of disabling information for disabling at least one symbol group or at least one resource occasion of a plurality of reference preambles, a subcarrier spacing of the plurality of predetermined preambles, at least one scaling factor for adjusting the subcarrier spacing of the plurality of predetermined preambles, or a sequence of the at least one scaling factor.
  • FIG. 16 shows a flowchart of a process according to an embodiment of the present disclosure.
  • the process shown in FIG. 16 may be utilized in a wireless network node (e.g. BS) and comprise the following step (s) :
  • a wireless network node e.g. BS
  • Step 1600 Transmit, to a wireless terminal (e.g. UE) , a configuration associated to a plurality of predetermined preambles (Optional) .
  • a wireless terminal e.g. UE
  • Optional a configuration associated to a plurality of predetermined preambles
  • Step 1602 Receive, from the wireless terminal, a random access preamble selected from the plurality of predetermined preambles for a random access.
  • the wireless network node may transmit a configuration associated to a plurality of predetermined preambles to a wireless terminal (step 1600) (Optional) .
  • the wireless network node may receive a random access preamble for a random access (procedure) from the wireless terminal, wherein the random access preamble is selected from a plurality of predetermined preambles (step 1602) .
  • the plurality of predetermined preambles is determined by disabling at least one symbol group of a plurality of reference preambles in an embodiment.
  • the plurality of predetermined preambles has a hopping between symbol groups for each of the plurality of predetermined preambles and the hopping is greater than 1 subcarrier spacing.
  • the hopping is 6 subcarrier spacings.
  • a length of a cyclic prefix in the plurality of predetermined preambles is adjusted based on the maximum time offset related to the wireless terminal.
  • a subcarrier spacing of the plurality of predetermined preambles is greater than twice the maximum frequency offset.
  • a subcarrier spacing of the plurality of predetermined preambles is smaller than a reciprocal of the maximum time offset.
  • a subcarrier spacing of the plurality of predetermined preambles is adjusted by at least one scaling factor.
  • the subcarrier spacing of the plurality of predetermined preambles is adjusted by different scaling factors in different frames.
  • the plurality of predetermined preambles is determined by disabling at least one resource occasion in a plurality of reference preambles.
  • the plurality of predetermined preambles has resource occasion gaps between every two symbol groups contiguous in frequency domain.
  • the resource occasion gaps have different numbers of subcarrier spacings.
  • symbols in each symbol group for the plurality of predetermined preambles form one of a Zadoff–Chu sequence or a pseudo-noise sequence.
  • a cyclic prefix in the plurality of predetermined preambles comprises at least one symbol in a tail of a symbol group of the cyclic prefix.
  • the configuration comprises at least one of disabling information for disabling at least one symbol group or at least one resource occasion of a plurality of reference preambles, a subcarrier spacing of the plurality of predetermined preambles, at least one scaling factor for adjusting the subcarrier spacing of the plurality of predetermined preambles, or a sequence of the at least one scaling factor.
  • any reference to an element herein using a designation such as “first, “ “second, “ and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
  • any of the various illustrative logical blocks, units, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software” or a “software unit” ) , or any combination of these techniques.
  • a processor, device, component, circuit, structure, machine, unit, etc. can be configured to perform one or more of the functions described herein.
  • IC integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the logical blocks, units, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device.
  • a general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine.
  • a processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein. If implemented in software, the functions can be stored as one or more instructions or code on a computer-readable medium. Thus, the steps of a method or algorithm disclosed herein can be implemented as software stored on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another.
  • a storage media can be any available media that can be accessed by a computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • unit refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various units are described as discrete units; however, as would be apparent to one of ordinary skill in the art, two or more units may be combined to form a single unit that performs the associated functions according embodiments of the present disclosure.
  • memory or other storage may be employed in embodiments of the present disclosure.
  • memory or other storage may be employed in embodiments of the present disclosure.
  • any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present disclosure.
  • functionality illustrated to be performed by separate processing logic elements, or controllers may be performed by the same processing logic element, or controller.
  • references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A wireless communication method for use in a wireless terminal is disclosed. The wireless communication method comprises transmitting, to a wireless network node, a random access preamble selected from a plurality of predetermined preambles for a random access.

Description

Configuration of Random Access Preamble
This document is generally related to wireless communications.
Under certain situations, internet-of-thing (IoT) devices may be distributed in remote areas. In these situations, it is challenging to provide a ubiquitous coverage for IoT services. In order to ensure the ubiquitous coverage and the service continuity, narrowband IoT (NB-IoT) over low-Earth-orbit (LEO) satellite becomes an attractive architecture. However, LEO channel may go along with large Doppler shifts and long round-trip time (RTT) which would has a significant impact on the random access process (e.g. physical random access channel (PRACH) process) in the NB-IoT. Thus, how to design the PRACH to support initial access of the IoT devices served by the LEO satellite becomes a topic to be discussed.
This document relates to methods, systems, and devices for configuring random access preambles, and more particularly to methods, systems, and devices for configuring random access preambles in the NB-IoT.
In particular, the present disclosure relates to a wireless communication method for use in a wireless terminal. The wireless communication method comprises transmitting, to a wireless network node, a random access preamble selected from a plurality of predetermined preambles for a random access.
Various embodiments may preferably implement the following features:
Preferably, the plurality of predetermined preambles is determined by disabling at least one symbol group of a plurality of reference preambles.
Preferably, the plurality of predetermined preambles has a hopping between symbol groups for each of the plurality of predetermined preambles and the hopping is greater than 1 subcarrier spacing.
Preferably, the hopping is 6 subcarrier spacings.
Preferably, a length of a cyclic prefix in the plurality of predetermined preambles is adjusted based on the maximum time offset related to the wireless terminal.
Preferably, a subcarrier spacing of the plurality of predetermined preambles is greater than twice the maximum frequency offset.
Preferably, a subcarrier spacing of the plurality of predetermined preambles is smaller than a reciprocal of the maximum time offset.
Preferably, a subcarrier spacing of the plurality of predetermined preambles is adjusted by at least one scaling factor.
Preferably, the subcarrier spacing of the plurality of predetermined preambles is adjusted by different scaling factors in different frames.
Preferably, the plurality of predetermined preambles is determined by disabling at least one resource occasion in a plurality of reference preambles.
Preferably, the plurality of predetermined preambles has resource occasion gaps between every two symbol groups contiguous in frequency domain.
Preferably, the resource occasion gaps have different numbers of subcarrier spacings.
Preferably, symbols in each symbol group for the plurality of predetermined preambles form one of a Zadoff–Chu sequence or a pseudo-noise sequence.
Preferably, a cyclic prefix in the plurality of predetermined preambles comprises at least one symbol in a tail of a symbol group of the cyclic prefix.
Preferably, the wireless communication method further comprises receiving, from the wireless network node, a configuration associated to the plurality of predetermined preambles.
Preferably, the configuration comprises at least one of disabling information for disabling at least one symbol group or at least one resource occasion of a plurality of reference preambles, a subcarrier spacing of the plurality of predetermined preambles, at least one scaling factor for adjusting the subcarrier spacing of the plurality of predetermined preambles, or a sequence of the at least one scaling factor.
The present disclosure relates to a wireless communication method for use in a wireless network node. The wireless communication method comprises receiving, from a wireless terminal,  a random access preamble selected from a plurality of predetermined preambles for a random access.
Various embodiments may preferably implement the following features:
Preferably, the plurality of predetermined preambles is determined by disabling at least one symbol group of a plurality of reference preambles.
Preferably, the plurality of predetermined preambles has a hopping between symbol groups for each of the plurality of predetermined preambles and the hopping is greater than 1 subcarrier spacing.
Preferably, the hopping is 6 subcarrier spacings.
Preferably, a length of a cyclic prefix in the plurality of predetermined preambles is adjusted based on the maximum time offset related to the wireless terminal.
Preferably, a subcarrier spacing of the plurality of predetermined preambles is greater than twice the maximum frequency offset.
Preferably, a subcarrier spacing of the plurality of predetermined preambles is smaller than a reciprocal of the maximum time offset.
Preferably, a subcarrier spacing of the plurality of predetermined preambles is adjusted by at least one scaling factor.
Preferably, the subcarrier spacing of the plurality of predetermined preambles is adjusted by different scaling factors in different frames.
Preferably, the plurality of predetermined preambles is acquired by disabling at least one resource occasion in a plurality of reference preambles.
Preferably, the plurality of predetermined preambles has resource occasion gaps between every two symbol groups contiguous in frequency domain.
Preferably, the resource occasion gaps have different numbers of subcarrier spacings.
Preferably, symbols in each symbol group for the plurality of predetermined preambles form one of a Zadoff–Chu sequence or a pseudo-noise sequence.
Preferably, a cyclic prefix in the plurality of predetermined preambles comprises at least one symbol in a tail of a symbol group of the cyclic prefix.
Preferably, the wireless communication method further comprises transmitting, to the wireless terminal, a configuration associated to the plurality of predetermined preambles.
Preferably, the configuration comprises at least one of disabling information for disabling at least one symbol group or at least one resource occasion of a plurality of reference preambles, a subcarrier spacing of the plurality of predetermined preambles, at least one scaling factor for adjusting the subcarrier spacing of the plurality of predetermined preambles, or a sequence of the at least one scaling factor.
The present disclosure relates to a wireless terminal comprising a communication unit, configured to transmit, to a wireless network node, a random access preamble selected from a plurality of predetermined preambles for a random access.
Various embodiments may preferably implement the following feature:
Preferably, the wireless terminal further comprises a processor configured to perform a wireless communication method of any of the foregoing described methods.
The present disclosure relates to a wireless network node, comprising a communication unit, configured to receive, from a wireless terminal, a random access preamble selected from a plurality of predetermined preambles for a random access.
Various embodiments may preferably implement the following feature:
Preferably, the wireless network node further comprises a processor configured to perform a wireless communication method of any of the foregoing described methods.
The present disclosure relates to a computer program product comprising a computer-readable program medium code stored thereupon, the code, when executed by a processor, causing the processor to implement a wireless communication method recited in any of the forgoing described methods.
The exemplary embodiments disclosed herein are directed to providing features that will become readily apparent by reference to the following description when taken in conjunction  with the accompany drawings. In accordance with various embodiments, exemplary systems, methods, devices and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and not limitation, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of the present disclosure.
Thus, the present disclosure is not limited to the exemplary embodiments and applications described and illustrated herein. Additionally, the specific order and/or hierarchy of steps in the methods disclosed herein are merely exemplary approaches. Based upon design preferences, the specific order or hierarchy of steps of the disclosed methods or processes can be re-arranged while remaining within the scope of the present disclosure. Thus, those of ordinary skill in the art will understand that the methods and techniques disclosed herein present various steps or acts in a sample order, and the present disclosure is not limited to the specific order or hierarchy presented unless expressly stated otherwise.
The above and other aspects and their implementations are described in greater detail in the drawings, the descriptions, and the claims.
FIG. 1 shows an example of a schematic diagram of a wireless terminal according to an embodiment of the present disclosure.
FIG. 2 shows an example of a schematic diagram of a wireless network node according to an embodiment of the present disclosure.
FIG. 3 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
FIG. 4 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
FIG. 5 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
FIG. 6 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
FIG. 7 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
FIG. 8 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
FIG. 9 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
FIG. 10 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
FIG. 11 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
FIG. 12 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
FIG. 13 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
FIG. 14 shows a schematic diagram of preambles according to an embodiment of the present disclosure.
FIG. 15 shows a flowchart of a process according to an embodiment of the present disclosure.
FIG. 16 shows a flowchart of a process according to an embodiment of the present disclosure.
FIG. 1 relates to a schematic diagram of a wireless terminal 10 according to an embodiment of the present disclosure. The wireless terminal 10 may be a user equipment (UE) , a mobile phone, a laptop, a tablet computer, an electronic book or a portable computer system and is not limited herein. The wireless terminal 10 may include a processor 100 such as a microprocessor or Application Specific Integrated Circuit (ASIC) , a storage unit 110 and a communication unit 120. The storage unit 110 may be any data storage device that stores a program code 112, which is accessed and executed by the processor 100. Embodiments of the storage unit 112 include but are  not limited to a subscriber identity module (SIM) , read-only memory (ROM) , flash memory, random-access memory (RAM) , hard-disk, and optical data storage device. The communication unit 120 may a transceiver and is used to transmit and receive signals (e.g. messages or packets) according to processing results of the processor 100. In an embodiment, the communication unit 120 transmits and receives the signals via at least one antenna 122 shown in FIG. 1.
In an embodiment, the storage unit 110 and the program code 112 may be omitted and the processor 100 may include a storage unit with stored program code.
The processor 100 may implement any one of the steps in exemplified embodiments on the wireless terminal 10, e.g., by executing the program code 112.
The communication unit 120 may be a transceiver. The communication unit 120 may as an alternative or in addition be combining a transmitting unit and a receiving unit configured to transmit and to receive, respectively, signals to and from a wireless network node (e.g. a base station) .
FIG. 2 relates to a schematic diagram of a wireless network node 20 according to an embodiment of the present disclosure. The wireless network node 20 may be a satellite, a base station (BS) , a network entity, a Mobility Management Entity (MME) , Serving Gateway (S-GW) , Packet Data Network (PDN) Gateway (P-GW) , a radio access network (RAN) , a next generation RAN (NG-RAN) , a data network, a core network or a Radio Network Controller (RNC) , and is not limited herein. In addition, the wireless network node 20 may comprise (perform) at least one network function such as an access and mobility management function (AMF) , a session management function (SMF) , a user place function (UPF) , a policy control function (PCF) , an application function (AF) , etc. The wireless network node 20 may include a processor 200 such as a microprocessor or ASIC, a storage unit 210 and a communication unit 220. The storage unit 210 may be any data storage device that stores a program code 212, which is accessed and executed by the processor 200. Examples of the storage unit 212 include but are not limited to a SIM, ROM, flash memory, RAM, hard-disk, and optical data storage device. The communication unit 220 may be a transceiver and is used to transmit and receive signals (e.g. messages or packets) according to processing results of the processor 200. In an example, the communication unit 220 transmits and receives the signals via at least one antenna 222 shown in FIG. 2.
In an embodiment, the storage unit 210 and the program code 212 may be omitted. The processor 200 may include a storage unit with stored program code.
The processor 200 may implement any steps described in exemplified embodiments on the wireless network node 20, e.g., via executing the program code 212.
The communication unit 220 may be a transceiver. The communication unit 220 may as an alternative or in addition be combining a transmitting unit and a receiving unit configured to transmit and to receive, respectively, signals to and from a wireless terminal (e.g. UE) .
In present disclosure, the preamble may be a physical random access channel (PRACH) preamble, a random access preamble, a random access channel (RACH) preamble or a preamble used for random access (procedure) .
In an embodiment, the random access preamble (e.g. PRACH preamble) is used in wireless communications to fulfill uplink (UL) synchronization in initialization of access. In the NB-IoT, the signal of each UE is concentrated on a narrow band of 180KHz. In addition, the PRACH preamble is transmitted in a single subcarrier and hops within the narrow band.
In an embodiment, a symbol group is the concatenation of a cyclic prefix and several identical orthogonal frequency-division multiplexing (OFDM) symbols. For example, each of the OFDM symbols only occupies one subcarrier and has value “1” in the frequency domain. The PRACH preamble in the NB-IoT consists of several symbol groups (e.g. repetition units) with frequency hopping. FIG. 3 shows a schematic diagram of predetermined PRACH preambles PRACH#0 to PRACH#11. Note that FIG. 3 illustrates timing and frequency relationships among the PRACH #0 to PRACH#11 and does not limit actual timing and/or frequency of each preamble. As shown in FIG. 3, each of PRACH #0 to PRACH#11 locates in a PRACH occasion of each subcarrier and hopping of each of PRACH #0 to PRACH#11 is determined by the frequency location of the corresponding first symbol group. In addition, the symbol groups shown in FIG. 3 comprises 6 symbols (e.g. a cyclic prefix and 5 OFDM symbols with the value “1” ) . In an initialization process, a UE chooses (e.g. selects) one PRACH occasion and sends the corresponding random access preamble. The BS is able to identify the UE according to the position of the PRACH occasions in which the random access preamble located. In FIG. 3, the subcarrier  spacing (SCS) is 3.75KHz and the hopping between symbol groups of each of PRACH #0 to PRACH#11 is single SCS or 6 SCSs. In an embodiment, the SCS may be 1.25KHz.
In a LEO scenario, the Doppler shift and the RTT of the channel become larger than those in a terrestrial network scenario because of high velocity and altitude of the satellites. Even after compensations of common Doppler shift and the RTT for each beam, the residual time offset (TO) and frequency offset (FO) may be still larger than a symbol length and the SCS, respectively. In an embodiment, the residual TO and FO may be further compensated based on the UE position and the ephemeris if the UE has global navigation satellite system (GNSS) capability. However, the TO and FO may remain large when the position estimation is inaccurate or when the UE cannot compensate the residual TO and FO.
According to the accuracy of the GNSS estimation and the compensation ability of the UE, the residual TO and FO can be divided into four situations as illustrated in the following.
(1) Small TO and Small FO
In an embodiment, the UE is able to get accurate estimation for its own position and the satellite’s position and the residual TO and FO after compensation are small. In such a condition, a cyclic prefix (CP) of the symbol group in the PRACH preamble may be designed to be shorter. For example, the CP length may be determined (e.g. adjusted or reduced) according to the maximum (e.g. maximal) residual TO. In addition, the small frequency hopping (e.g. hopping with 1 SCS) may be unnecessary. In an embodiment, the hopping between symbol groups of the PRACH preambles is enhanced by designing a new hopping pattern for repetition units of the PRACH preambles or by disabling certain symbol groups in reference preambles (e.g. the preambles of existing PRACH preamble formats) . For example, the new hopping pattern may only contain hopping larger than one SCS. In an embodiment, the hopping may be 6 SCSs. As an alternative or in addition, the PRACH preamble configured to the UE may be determined by disabling the symbol groups which are corresponding to the reference preambles and have 1 SCS hopping.
(2) Small TO and Large FO
In an embodiment, the UE may have small residual TO and large residual FO because  of the error in GNSS and/or because the UE is not able to perform frequency compensation. In the NB-IoT, 12 or 36 consecutive subcarriers are used for PRACH and each subcarrier can be regarded as one resource occasion (e.g. RACH occasion (RO) ) . When the FO is larger than one half of the SCS, the BS cannot determine the correct RO corresponding to the preamble. In order to overcome the large FO (e.g. the FO greater than half of the SCS) , the SCS may be enlarged. In an embodiment, the SCS is determined (e.g. enlarged, adjusted) by a scaling factor chosen (e.g. configured) by the BS. In an embodiment, the SCS is determined (e.g. enlarged, adjusted) by a list of scaling factors chosen (e.g. configured) by the BS. In an embodiment with the large FO, certain ROs may be disabled for the PRACH preambles. For example, certain ROs may be removed for inserting RO gaps between every two symbol groups for different PRACH preambles. In an embodiment, in order to avoid collisions, the symbols in each symbol group may have different values for enlarging the size of the preamble pool (i.e. increasing preamble capacity) . For example, the symbols in each symbol group may form a Zadoff–Chu sequence or a pseudo-noise sequence. In an embodiment, the CP length may also be reduced (e.g. adjusted) according to the maximum residual TO.
(3) Large TO and small FO
In an embodiment with large TO and small FO, a product of the residual TO and FO may be smaller than 0.5 (i.e. TO*FO<0.5) . In this embodiment, the SCS may be reduced to compensate the large TO. As an alternative or in addition, the large TO may be covered by setting different values for the symbols in each symbol group. Furthermore, the CP length may be extended to be up to the whole symbol group, to overcome the large TO.
(4) Large TO and Large FO
In an embodiment, when the UE does not have the GNSS capability, both the residual TO and FO may be large. As discussed in the situations (2) and (3) , the large TO and large FO may be compensated by setting different values to the symbols in each symbol group and/or inserting RO gaps between the symbol groups for different PRACH preambles.
The following embodiments provide more details of configuration (s) and/or format (s) proposed in the present disclosure. Note that the person skilled in the art should acknowledge that  the embodiments disclosed in the present disclosure may be implemented individually or in any possible combination.
Embodiment 1:
In this embodiment, a new hopping pattern is disclosed, e.g., for a scenario with small TO and small FO. In the scenario of small TO, the small hopping (e.g. hopping with one SCS) may be unnecessary. Thus, the new hopping pattern for the repetition unit of each of preambles may be redefined. In an embodiment where the frame structure type is 1, which refers to the hopping pattern of  preamble formats  0 and 1 in the NB-IoT, a frequency position
Figure PCTCN2020093382-appb-000001
of the i-th symbol group may be described by:
Figure PCTCN2020093382-appb-000002
When i mod 4=0, 
Figure PCTCN2020093382-appb-000003
is all the same with the NB-IoT preamble.
FIG. 4 shows a schematic diagram of preambles PRACH #0 to PRACH #11 according to an embodiment of the present disclosure. In FIG. 4, each symbol group consists of 5 symbols and one CP. In an embodiment, the length of CP is the same as the maximal TO. In addition, each of PRACH #0 to PRACH #11 is the concatenation of several repetition units. For each repetition unit, the frequency position of the first symbol group is randomly generated. As shown in FIG. 4, the (frequency) hopping between symbol groups in the repetition units for each of PRACH#0 to PRACH#11 is 6 SCSs.
Embodiment 2:
In this embodiment, a new hopping pattern is disclosed, e.g., for a scenario with small TO and small FO. In addition, the new hopping pattern is determined (e.g. acquired or obtained) based on a hopping pattern of reference preambles. For example, the reference preambles may be preambles of existing preamble formats in the NB-IoT. In an embodiment, the hopping pattern of the reference preamble may be expressed by:
Figure PCTCN2020093382-appb-000004
where
Figure PCTCN2020093382-appb-000005
is the frequency position of the i-th symbol group.
In an embodiment, the new hopping pattern may be determined, e.g., by disabling some components of the reference preambles. For example, the new hopping pattern may be constructed by:
Figure PCTCN2020093382-appb-000006
where
Figure PCTCN2020093382-appb-000007
is the frequency position of the i-th symbol group.
Embodiment 3:
In this embodiment, certain symbol groups in the reference preambles may be disabled for a scenario of small TO and small RO. In FIG. 3, each of the preambles has both small hopping and large hopping between its contiguous symbol groups. When the TO and FO are both small, certain symbol groups shown in FIG. 3 may be disabled to keep only the large hopping.
FIG. 5 shows a schematic diagram of preambles PRACH#1 to PRACH#11 according to an embodiment of the present disclosure. Compared to the symbol groups shown in FIG. 3, the 1 st and 4 th symbol groups in the repetition unit of each of PRACH#0 to PRACH#11 shown in FIG. 5 are disabled. Thus, each of PRACH#0 to PRACH#11 has only large frequency hopping between symbol groups in its repetition unit. As shown in FIG. 5, each of PRACH#0 to PRACH#11 only has the hopping of 6 SCSs. In an embodiment, the number of repetition units in each of PRACH#0 to PRACH#11 may be increased, e.g., when the link budget is considered.
In an embodiment, the empty time-frequency resources generated by disabling may be used for new ROs of additional PRACH preambles.
In an embodiment, the CP has the same length with the maximal residual TO.
In an embodiment, the pattern (e.g. the preambles) shown in FIG. 5 may be expressed by the formula of new hopping pattern disclosed in Embodiment 2, i.e.:
Figure PCTCN2020093382-appb-000008
where
Figure PCTCN2020093382-appb-000009
is the frequency position of the i-th symbol group.
Embodiment 4:
In this embodiment, the SCS of the preambles is enlarged for compensating large FO.
In an embodiment, the SCS is enlarged up to twice the maximum (maximal) FO, to overcome the large FO.
FIG. 6 shows a schematic diagram of preambles PRACH#0 to PRACH#11 according to an embodiment of the present disclosure. In FIG. 6, the FO is larger than half of original SCS (i.e. 0.5*SCS) and a carrier-to-noise ratio (CNR) is sufficient to support the SCS of twice the maximum FO (2*FO) . In such a condition, the SCS may be adjusted to 7.5KHz which is twice the maximum FO (i.e. the maximum FO is 3.75KHz) .
Embodiment 5:
In this embodiment, the BS may configure at least one scaling factor for adjusting the SCS of the predetermined preambles.
In an embodiment, the residual FO has various values after the UE compensates based on the positioning results of the GNSS. In this embodiment, the BS may configure the scaling factor (s) for adjusting (e.g. determining) the SCS of the PRACH preambles. In addition, the BS may configure different scaling factors for different radio frames. For example, the BS may configure a list of scaling factors and the scaling factors are corresponding to contiguous radio frames in a sequence of the list of scaling factors. In this embodiment, the UE is able to choose the ROs in different radio frames (i.e. different scaling factors) according to its own (coarse) FO estimation.
FIG. 7 shows a schematic diagram of preambles PRACH#0 to PRACH#11 according to an embodiment of the present disclosure. In FIG. 7, the BS configures two scaling factors with  values  1 and 2 and broadcasts the scaling factors to the UEs in the system information block (SIB) . After receiving the scaling factors, the UE applies the scaling factors to different frames. As shown in FIG. 7, the SCS for each of PRACH#0 to PRACH#11 is 3.75KHz (e.g. the scaling factor with the value 1 is applied) in a first frame. After the first frame, the SCS for each of PRACH#0 to PRACH#11 becomes 7.5KHz (e.g. the scaling factor with the value 2 is applied) in a second frame. Note that the first frame and the second frame may be repeated in the time domain and the UE may estimate its own FO and choose an appropriate frame to send the PRACH preamble.
Embodiment 6:
In this embodiment, the number of symbols in a single symbol group is reduced, e.g., for a situation of small TO. In an embodiment, the symbol group is the concatenation of N OFDM symbols, where N is a positive integer. When N is large, the overhead caused by the CP is relatively alleviated. In an embodiment with the small TO, the CP may be designed to have a short length and N may be also configured to be a small number. In an embodiment of N reduced to be a small number, the channel coefficients of the symbol groups may remain the same, to reduce the estimation error of the TO.
FIG. 8 shows a schematic diagram of preambles PRACH#0 to PRACH#11 according to an embodiment of the present disclosure. In FIG. 8, the number N of symbols in each symbol group is reduced to 2.
Embodiment 7:
In this embodiment, the RO gaps are inserted between the symbol groups of the PRACH preambles, e.g., when the FO is large. As a result, the effect caused by the FO may be eliminated.
FIG. 9 shows a schematic diagram of preambles PRACH#0 to PRACH#3 according to an embodiment of the present disclosure. In this embodiment, the maximum FO is 5KHz and the SCS is 3.5KHz. In FIG. 9, the ROs with  SCS indexes  0, 2, 3, 5, 6, 8, 9 and 11 are disabled. In other  words, the RO gaps with 2 SCSs are inserted between every two symbol groups contiguous in frequency domain. In this embodiment, the BS detects 3 subcarriers for single RO of each symbol group (i.e. the RO for each symbol group in FIG. 9 comprises 3 subcarriers) . Because the maximum FO is smaller than 1.5 times of the SCS, the effect of the FO may be eliminated by the preamble configuration/format shown in FIG. 9.
Embodiment 8:
In this embodiment, the symbols of preamble group for each preamble may set to different values, to form a sequence (e.g. ZC sequences or PN sequences) .
In an embodiment, when the maximal FO is significantly large, the number of ROs for the preambles may be reduced because the SCS may be greatly increased for compensating the FO. In this embodiment, the symbols of each symbol group may form a ZC sequence or a PN sequence, to increase PRACH preamble capacity.
FIG. 10 shows a schematic diagram of preambles according to an embodiment of the present disclosure. In this embodiment, the maximal FO is 60KHz and the SCS is set to 30KHz to alleviate the effects of the FO. In FIG. 10, each symbol group has a CP and symbols S 1 to S N, where N is a positive integer greater than 1. Note that only 2 symbol groups are shown with the CP and the symbols S 1 to S N for illustrations in FIG. 10. In this embodiment, the symbols S 1 to S N in each of symbol groups may set to different values (e.g. to form ZC sequence or PN sequence) . With different choices of the symbols S 1 to S N, each RO is able to support simultaneous transmissions of more than one preamble. Therefore, the collisions in the PRACH procedure is largely reduced.
Embodiment 9:
In this embodiment, the RO gaps with different numbers of SCSs are inserted between the symbol groups for the preambles.
In an embodiment, the UEs within a beam may have different FOs. Therefore, the RO gaps between ROs can be set to have different numbers of SCSs. In an embodiment, the UE determines a coarse estimation for its FO and accordingly chooses an appropriate RO based on the  RO gaps of the RO.
FIG. 11 shows a schematic diagram of preambles PRACH#0 to PRACH#3 according to an embodiment of the present disclosure. In FIG. 11, the four ROs located at the same time respectively for the PRACH#0 to PRACH#3 are separated by gaps with different numbers of SCSs. For example, in the 1 st symbol group of the PRACH#0 to PRACH#3, the gap between the ROs for PRACH#0 and PRACH#1 is 1, the gap between the ROs for PRACH#1 and PRACH#2 is 2 and the gap between the ROs for PRACH#2 and PRACH#3 is 3. Therefore, the ROs for the RACH#0 to PRACH#3 can support maximal FO of 2.5, 1.5, 1.5, 0.5 times of SCS, respectively.
In an embodiment, the gap between the ROs shown in FIG. 11 may be reduced for comprising more ROs.
Embodiment 10:
In this embodiment, the SCS may be shrank, e.g., for the situation with large TO and small FO.
In an embodiment, the FO may be smaller than 0.5/maximum TO. In this embodiment, the TO may be overcome by adjusting (e.g. selecting) the SCS which is larger than 2*maximum FO and/or smaller than 1/maximum TO.
FIG. 12 shows a schematic diagram of preambles PRACH#0 to PRACH#11 according to an embodiment of the present disclosure. In this embodiment, the maximum TO is 3ms and the maximum FO is 100Hz. In such a condition, the SCS is set to 312.5Hz for compensating the TO and the FO.
Embodiment 11:
In an embodiment, the CP may be extended, e.g., for the scenario with large TO.
In an embodiment, the length of single symbol group may be greater than the maximum TO and symbols in each of the symbol groups have different values (e.g. form a sequence) . In this embodiment, the CP may be extended to estimate the TO.
FIG. 13 shows a schematic diagram of preambles PRACH#0 to PRACH#11 according to an embodiment of the present disclosure, wherein the SCS is 3.75KHz. In FIG. 13, each preamble group consists of a CP and N symbols S 1 to S N. In this embodiment, the CP is extended by comprising M symbols in the tail of its symbol group, wherein M is a positive integer smaller than N. For example, M may be 12 and the extended CP comprises the CP and the symbols S N-11, S N-10, …S N (N>12) . Based on the extended CP with 12 added symbols, the BS is able to estimate the TO up to 3.2ms.
Embodiment 12:
In this embodiment of large TO and large FO, the symbols in each symbol group may have different values (e.g. form a sequence) and/or the RO gaps may be inserted between symbol groups for different preambles. In other words, the  Embodiments  7 and 11 may be combined.
FIG. 14 shows a schematic diagram of preambles according to an embodiment of the present disclosure, wherein the SCS is 3.75KHz. In FIG. 14, the ROs in subcarriers with the  indexes  0, 2, 3, 5, 6, 8, 9 and 11 are disabled. In addition, each symbol group comprises a CP and N symbols S 1 to S N and the symbols S 1 to S N form a sequence (e.g. ZC sequence or PN sequence) . Therefore, each enabled subcarrier (e.g. RO) is able to comprise multiple symbol groups for multiple preambles (e.g. a preamble group) . For example, 1 st symbol group in the subcarrier #1 may be corresponding to a preamble  group PG# 0, 1 st symbol group in the subcarrier #4 may be corresponding to a preamble group PG#1, and so on. In FIG. 14, each preamble in preamble groups PG#0 to PG#3 has the hopping larger than 1 SCS (i.e. 6 SCSs) from the 1 st symbol group to 2 nd symbol group. In an embodiment, the hopping for each preamble in preamble groups PG#0 to PG#3 may change to be 1 SCS.
FIG. 15 shows a flowchart of a process according to an embodiment of the present disclosure. The process shown in FIG. 15 may be utilized in a wireless terminal (e.g. UE) and comprises the following step (s) :
Step 1500: Receive, from a wireless network node (e.g. BS) , a configuration associated to a plurality of predetermined preambles (Optional) .
Step 1502: Transmit, to the wireless network node, a random access preamble selected from the plurality of predetermined preambles for a random access.
In FIG. 15, the wireless terminal may receive a configuration associated to a plurality of predetermined preambles from a wireless network node (step 1500) (Optional) . In addition, the wireless terminal transmits a random access preamble for a random access (procedure) to the wireless network node, wherein the random access preamble is selected from a plurality of predetermined preambles (step 1502) .
More specifically, the plurality of predetermined preambles is determined by disabling at least one symbol group of a plurality of reference preambles in an embodiment.
In an embodiment, the plurality of predetermined preambles has a hopping between symbol groups for each of the plurality of predetermined preambles and the hopping is greater than 1 subcarrier spacing.
In an embodiment, the hopping is 6 subcarrier spacings.
In an embodiment, a length of a cyclic prefix in the plurality of predetermined preambles is adjusted based on the maximum time offset related to the wireless terminal.
In an embodiment, a subcarrier spacing of the plurality of predetermined preambles is greater than twice the maximum frequency offset.
In an embodiment, a subcarrier spacing of the plurality of predetermined preambles is smaller than a reciprocal of the maximum time offset.
In an embodiment, a subcarrier spacing of the plurality of predetermined preambles is adjusted by at least one scaling factor.
In an embodiment, the subcarrier spacing of the plurality of predetermined preambles is adjusted by different scaling factors in different frames.
In an embodiment, the plurality of predetermined preambles is determined by disabling at least one resource occasion in a plurality of reference preambles.
In an embodiment, the plurality of predetermined preambles has resource occasion gaps between every two symbol groups contiguous in frequency domain.
In an embodiment, the resource occasion gaps have different numbers of subcarrier spacings.
In an embodiment, symbols in each symbol group for the plurality of predetermined preambles form one of a Zadoff–Chu sequence or a pseudo-noise sequence.
In an embodiment, a cyclic prefix in the plurality of predetermined preambles comprises at least one symbol in a tail of a symbol group of the cyclic prefix.
In an embodiment of receiving the configuration associated to the plurality of predetermined preambles from the wireless network node, the configuration comprises at least one of disabling information for disabling at least one symbol group or at least one resource occasion of a plurality of reference preambles, a subcarrier spacing of the plurality of predetermined preambles, at least one scaling factor for adjusting the subcarrier spacing of the plurality of predetermined preambles, or a sequence of the at least one scaling factor.
FIG. 16 shows a flowchart of a process according to an embodiment of the present disclosure. The process shown in FIG. 16 may be utilized in a wireless network node (e.g. BS) and comprise the following step (s) :
Step 1600: Transmit, to a wireless terminal (e.g. UE) , a configuration associated to a plurality of predetermined preambles (Optional) .
Step 1602: Receive, from the wireless terminal, a random access preamble selected from the plurality of predetermined preambles for a random access.
In FIG. 16, the wireless network node may transmit a configuration associated to a plurality of predetermined preambles to a wireless terminal (step 1600) (Optional) . In addition, the wireless network node may receive a random access preamble for a random access (procedure) from the wireless terminal, wherein the random access preamble is selected from a plurality of predetermined preambles (step 1602) .
More specifically, the plurality of predetermined preambles is determined by disabling at least one symbol group of a plurality of reference preambles in an embodiment.
In an embodiment, the plurality of predetermined preambles has a hopping between symbol groups for each of the plurality of predetermined preambles and the hopping is greater than 1 subcarrier spacing.
In an embodiment, the hopping is 6 subcarrier spacings.
In an embodiment, a length of a cyclic prefix in the plurality of predetermined preambles is adjusted based on the maximum time offset related to the wireless terminal.
In an embodiment, a subcarrier spacing of the plurality of predetermined preambles is greater than twice the maximum frequency offset.
In an embodiment, a subcarrier spacing of the plurality of predetermined preambles is smaller than a reciprocal of the maximum time offset.
In an embodiment, a subcarrier spacing of the plurality of predetermined preambles is adjusted by at least one scaling factor.
In an embodiment, the subcarrier spacing of the plurality of predetermined preambles is adjusted by different scaling factors in different frames.
In an embodiment, the plurality of predetermined preambles is determined by disabling at least one resource occasion in a plurality of reference preambles.
In an embodiment, the plurality of predetermined preambles has resource occasion gaps between every two symbol groups contiguous in frequency domain.
In an embodiment, the resource occasion gaps have different numbers of subcarrier spacings.
In an embodiment, symbols in each symbol group for the plurality of predetermined preambles form one of a Zadoff–Chu sequence or a pseudo-noise sequence.
In an embodiment, a cyclic prefix in the plurality of predetermined preambles comprises  at least one symbol in a tail of a symbol group of the cyclic prefix.
In an embodiment of transmitting the configuration associated to the plurality of predetermined preambles to the wireless terminal, the configuration comprises at least one of disabling information for disabling at least one symbol group or at least one resource occasion of a plurality of reference preambles, a subcarrier spacing of the plurality of predetermined preambles, at least one scaling factor for adjusting the subcarrier spacing of the plurality of predetermined preambles, or a sequence of the at least one scaling factor.
While various embodiments of the present disclosure have been described above, it should be understood that they have been presented by way of example only, and not by way of limitation. Likewise, the various diagrams may depict an example architectural or configuration, which are provided to enable persons of ordinary skill in the art to understand exemplary features and functions of the present disclosure. Such persons would understand, however, that the present disclosure is not restricted to the illustrated example architectures or configurations, but can be implemented using a variety of alternative architectures and configurations. Additionally, as would be understood by persons of ordinary skill in the art, one or more features of one embodiment can be combined with one or more features of another embodiment described herein. Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments.
It is also understood that any reference to an element herein using a designation such as "first, " "second, " and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
Additionally, a person having ordinary skill in the art would understand that information and signals can be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits and symbols, for example, which may be referenced in the above description can be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination  thereof.
A skilled person would further appreciate that any of the various illustrative logical blocks, units, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software" or a "software unit” ) , or any combination of these techniques.
To clearly illustrate this interchangeability of hardware, firmware and software, various illustrative components, blocks, units, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware or software, or a combination of these techniques, depends upon the particular application and design constraints imposed on the overall system. Skilled artisans can implement the described functionality in various ways for each particular application, but such implementation decisions do not cause a departure from the scope of the present disclosure. In accordance with various embodiments, a processor, device, component, circuit, structure, machine, unit, etc. can be configured to perform one or more of the functions described herein. The term “configured to” or “configured for” as used herein with respect to a specified operation or function refers to a processor, device, component, circuit, structure, machine, unit, etc. that is physically constructed, programmed and/or arranged to perform the specified operation or function.
Furthermore, a skilled person would understand that various illustrative logical blocks, units, devices, components and circuits described herein can be implemented within or performed by an integrated circuit (IC) that can include a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, or any combination thereof. The logical blocks, units, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device. A general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in  conjunction with a DSP core, or any other suitable configuration to perform the functions described herein. If implemented in software, the functions can be stored as one or more instructions or code on a computer-readable medium. Thus, the steps of a method or algorithm disclosed herein can be implemented as software stored on a computer-readable medium.
Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another. A storage media can be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
In this document, the term "unit" as used herein, refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various units are described as discrete units; however, as would be apparent to one of ordinary skill in the art, two or more units may be combined to form a single unit that performs the associated functions according embodiments of the present disclosure.
Additionally, memory or other storage, as well as communication components, may be employed in embodiments of the present disclosure. It will be appreciated that, for clarity purposes, the above description has described embodiments of the present disclosure with reference to different functional units and processors. However, it will be apparent that any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present disclosure. For example, functionality illustrated to be performed by separate processing logic elements, or controllers, may be performed by the same processing logic element, or controller. Hence, references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.
Various modifications to the implementations described in this disclosure will be readily apparent to those skilled in the art, and the general principles defined herein can be applied  to other implementations without departing from the scope of this disclosure. Thus, the disclosure is not intended to be limited to the implementations shown herein, but is to be accorded the widest scope consistent with the novel features and principles disclosed herein, as recited in the claims below.

Claims (37)

  1. A wireless communication method for use in a wireless terminal, the wireless communication method comprising:
    transmitting, to a wireless network node, a random access preamble selected from a plurality of predetermined preambles for a random access.
  2. The wireless communication method of claim 1, wherein the plurality of predetermined preambles is determined by disabling at least one symbol group of a plurality of reference preambles.
  3. The wireless communication method of claim 1 or 2, wherein the plurality of predetermined preambles has a hopping between symbol groups for each of the plurality of predetermined preambles and the hopping is greater than 1 subcarrier spacing.
  4. The wireless communication method of claim 3, wherein the hopping is 6 subcarrier spacings.
  5. The wireless communication method of any of claims 1 to 4, wherein a length of a cyclic prefix in the plurality of predetermined preambles is adjusted based on the maximum time offset related to the wireless terminal.
  6. The wireless communication method of any of claims 1 to 5, wherein a subcarrier spacing of the plurality of predetermined preambles is greater than twice the maximum frequency offset.
  7. The wireless communication method of any of claims 1 to 6, wherein a subcarrier spacing of the plurality of predetermined preambles is smaller than a reciprocal of the maximum time offset.
  8. The wireless communication method of any of claims 1 to 7, wherein a subcarrier spacing of the plurality of predetermined preambles is adjusted by at least one scaling factor.
  9. The wireless communication method of claim 8, wherein the subcarrier spacing of the plurality of predetermined preambles is adjusted by different scaling factors in different frames.
  10. The wireless communication method of any of claims 1 to 9, wherein the plurality of predetermined preambles is determined by disabling at least one resource occasion in a plurality of reference preambles.
  11. The wireless communication method of claim 10, wherein the plurality of predetermined preambles has resource occasion gaps between every two symbol groups contiguous in frequency domain.
  12. The wireless communication method of claim 11, wherein the resource occasion gaps have different numbers of subcarrier spacings.
  13. The wireless communication method of any of claims 1 to 12, wherein symbols in each  symbol group for the plurality of predetermined preambles form one of a Zadoff–Chu sequence or a pseudo-noise sequence.
  14. The wireless communication method of any of claims 1 to 13, wherein a cyclic prefix in the plurality of predetermined preambles comprises at least one symbol in a tail of a symbol group of the cyclic prefix.
  15. The wireless communication method of any of claims 1 to 14, further comprising:
    receiving, from the wireless network node, a configuration associated to the plurality of predetermined preambles.
  16. The wireless communication method of claim 15, wherein the configuration comprises at least one of disabling information for disabling at least one symbol group or at least one resource occasion of a plurality of reference preambles, a subcarrier spacing of the plurality of predetermined preambles, at least one scaling factor for adjusting the subcarrier spacing of the plurality of predetermined preambles, or a sequence of the at least one scaling factor.
  17. A wireless communication method for use in a wireless network node, the wireless communication method comprising:
    receiving, from a wireless terminal, a random access preamble selected from a plurality of predetermined preambles for a random access.
  18. The wireless communication method of claim 17, wherein the plurality of predetermined preambles is determined by disabling at least one symbol group of a  plurality of reference preambles.
  19. The wireless communication method of claim 17 or 18, wherein the plurality of predetermined preambles has a hopping between symbol groups for each of the plurality of predetermined preambles and the hopping is greater than 1 subcarrier spacing.
  20. The wireless communication method of claim 19, wherein the hopping is 6 subcarrier spacings.
  21. The wireless communication method of any of claims 17 to 20, wherein a length of a cyclic prefix in the plurality of predetermined preambles is adjusted based on the maximum time offset related to the wireless terminal.
  22. The wireless communication method of any of claims 17 to 21, wherein a subcarrier spacing of the plurality of predetermined preambles is greater than twice the maximum frequency offset.
  23. The wireless communication method of any of claims 17 to 22, wherein a subcarrier spacing of the plurality of predetermined preambles is smaller than a reciprocal of the maximum time offset.
  24. The wireless communication method of any of claims 17 to 23, wherein a subcarrier spacing of the plurality of predetermined preambles is adjusted by at least one scaling factor.
  25. The wireless communication method of claim 24, wherein the subcarrier spacing of the plurality of predetermined preambles is adjusted by different scaling factors in different frames.
  26. The wireless communication method of any of claims 17 to 25, wherein the plurality of predetermined preambles is acquired by disabling at least one resource occasion in a plurality of reference preambles.
  27. The wireless communication method of claim 26, wherein the plurality of predetermined preambles has resource occasion gaps between every two symbol groups contiguous in frequency domain.
  28. The wireless communication method of claim 27, wherein the resource occasion gaps have different numbers of subcarrier spacings.
  29. The wireless communication method of any of claims 17 to 28, wherein symbols in each symbol group for the plurality of predetermined preambles form one of a Zadoff–Chu sequence or a pseudo-noise sequence.
  30. The wireless communication method of any of claims 17 to 29, wherein a cyclic prefix in the plurality of predetermined preambles comprises at least one symbol in a tail of a symbol group of the cyclic prefix.
  31. The wireless communication method of any of claims 17 to 30, further comprising:
    transmitting, to the wireless terminal, a configuration associated to the plurality of predetermined preambles.
  32. The wireless communication method of claim 31, wherein the configuration comprises at least one of disabling information for disabling at least one symbol group or at least one resource occasion of a plurality of reference preambles, a subcarrier spacing of the plurality of predetermined preambles, at least one scaling factor for adjusting the subcarrier spacing of the plurality of predetermined preambles, or a sequence of the at least one scaling factor.
  33. A wireless terminal, comprising:
    a communication unit, configured to transmit, to a wireless network node, a random access preamble selected from a plurality of predetermined preambles for a random access.
  34. The wireless terminal of claim 33, further comprising a processor configured to perform a wireless communication method of any of claims 2 to 16.
  35. A wireless network node, comprising:
    a communication unit, configured to receive, from a wireless terminal, a random access preamble selected from a plurality of predetermined preambles for a random access.
  36. The wireless network node of claim 35, further comprising a processor configured to  perform a wireless communication method of any of claims 18 to 32.
  37. A computer program product comprising a computer-readable program medium code stored thereupon, the code, when executed by a processor, causing the processor to implement a wireless communication method recited in any of claims 1 to 32.
PCT/CN2020/093382 2020-05-29 2020-05-29 Configuration of random access preamble WO2021109502A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/093382 WO2021109502A1 (en) 2020-05-29 2020-05-29 Configuration of random access preamble
EP20896047.6A EP4066579A4 (en) 2020-05-29 2020-05-29 Configuration of random access preamble
CN202080100483.6A CN115516987A (en) 2020-05-29 2020-05-29 Configuration of random access preamble
US17/851,770 US20220337464A1 (en) 2020-05-29 2022-06-28 Configuration of random access preamble

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093382 WO2021109502A1 (en) 2020-05-29 2020-05-29 Configuration of random access preamble

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/851,770 Continuation US20220337464A1 (en) 2020-05-29 2022-06-28 Configuration of random access preamble

Publications (1)

Publication Number Publication Date
WO2021109502A1 true WO2021109502A1 (en) 2021-06-10

Family

ID=76220908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093382 WO2021109502A1 (en) 2020-05-29 2020-05-29 Configuration of random access preamble

Country Status (4)

Country Link
US (1) US20220337464A1 (en)
EP (1) EP4066579A4 (en)
CN (1) CN115516987A (en)
WO (1) WO2021109502A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190037605A1 (en) * 2017-07-27 2019-01-31 Samsung Electronics Co., Ltd. Method and apparatus for performing random access procedure
WO2019031864A1 (en) 2017-08-09 2019-02-14 엘지전자 주식회사 Method for performing random access process and device therefor
WO2019066705A1 (en) * 2017-09-28 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) Nprach formats for nb-iot transmission in tdd mode
CN110234151A (en) * 2019-05-05 2019-09-13 中国联合网络通信集团有限公司 A kind of terminal access method and device
EP3550922A1 (en) 2018-04-02 2019-10-09 LG Electronics Inc. Method and apparatus for transmitting and receiving random access preambles in a wireless communication system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102235419B1 (en) * 2016-01-29 2021-04-02 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) Frequency hopping for random access
US10667259B2 (en) * 2017-08-17 2020-05-26 Qualcomm Incorporated Channel reservation transmission schemes in shared radio frequency spectrum

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190037605A1 (en) * 2017-07-27 2019-01-31 Samsung Electronics Co., Ltd. Method and apparatus for performing random access procedure
WO2019031864A1 (en) 2017-08-09 2019-02-14 엘지전자 주식회사 Method for performing random access process and device therefor
WO2019066705A1 (en) * 2017-09-28 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) Nprach formats for nb-iot transmission in tdd mode
EP3550922A1 (en) 2018-04-02 2019-10-09 LG Electronics Inc. Method and apparatus for transmitting and receiving random access preambles in a wireless communication system
CN110234151A (en) * 2019-05-05 2019-09-13 中国联合网络通信集团有限公司 A kind of terminal access method and device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Design of NPRACH for TDD support in feNB-IoT", 3GPP DRAFT; R1-1714122, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech Republic; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051316911 *
LG ELECTRONICS: "Discussion on Channel Structure for 2-step RACH", 3GPP DRAFT; R1-1912262, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051823327 *
See also references of EP4066579A4
ZHEN LI ET AL.: "Preamble Design and Detection for 5G Enabled Satellite Random Access", IEEE ACCESS, vol. 8, 10 March 2020 (2020-03-10), pages 49873 - 49884, XP011778919, DOI: 10.1109/ACCESS.2020.2979871

Also Published As

Publication number Publication date
EP4066579A4 (en) 2022-11-23
CN115516987A (en) 2022-12-23
EP4066579A1 (en) 2022-10-05
US20220337464A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
US12096479B2 (en) System and method for configuring random access preambles
CN115426093B (en) Method and apparatus for random access procedure
US20240345209A1 (en) Wireless communication and sensing method and device thereof
US20220338150A1 (en) Method for synchronization
WO2011053215A1 (en) Component carrier selection method and apparatus for random access attempts in a communications network
US20230012036A1 (en) Random access preamble for non-terrestrial network
WO2021109502A1 (en) Configuration of random access preamble
AU2020462141B2 (en) Systems and methods for random access channel resource determination
WO2024216737A1 (en) Wireless communication method and device thereof
EP4066580A1 (en) Systems and methods for prach resource configuration
RU2792133C1 (en) Method and device for random access procedure
CN107113780A (en) A kind of data transmission method, device and system
WO2024216441A1 (en) Reference signal transmission
WO2024031465A1 (en) Method and apparatus for sidelink operation on unlicensed spectrum
WO2024065488A1 (en) Method and apparatus for sidelink channel structure
US20240080908A1 (en) Systems and methods for indication of a random access channel occasion
WO2021087979A1 (en) Wireless communication method for random access procedure
US20240188144A1 (en) Systems and methods for calculating and configuring random access channel
WO2022027445A1 (en) Method and apparatus for determining timing advance value
WO2024103767A1 (en) SYSTEMS AND METHODS FOR PRACH ENHANCEMENT IN UAVs
WO2024216717A1 (en) Reference signal insertion method for passive iot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020896047

Country of ref document: EP

Effective date: 20220629

NENP Non-entry into the national phase

Ref country code: DE