WO2021107417A1 - Combustion device capable of maximizing combustor's operation efficiency and exhaust performance - Google Patents

Combustion device capable of maximizing combustor's operation efficiency and exhaust performance Download PDF

Info

Publication number
WO2021107417A1
WO2021107417A1 PCT/KR2020/014835 KR2020014835W WO2021107417A1 WO 2021107417 A1 WO2021107417 A1 WO 2021107417A1 KR 2020014835 W KR2020014835 W KR 2020014835W WO 2021107417 A1 WO2021107417 A1 WO 2021107417A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas fuel
combustion
mixing chamber
air
nozzle unit
Prior art date
Application number
PCT/KR2020/014835
Other languages
French (fr)
Korean (ko)
Inventor
이기만
김민국
강연세
안지환
김경모
Original Assignee
순천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천대학교 산학협력단 filed Critical 순천대학교 산학협력단
Priority to JP2022530337A priority Critical patent/JP7270111B2/en
Publication of WO2021107417A1 publication Critical patent/WO2021107417A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment

Definitions

  • the present invention is a combustion device capable of maximizing combustor operation efficiency and exhaust performance. More specifically, turbulence intensity without forming a high-temperature inner recirculation zone in the combustion field through the improvement of the double flow path system. ) is strengthened to reduce the residence time of high-temperature combustion products in the flame during combustion, thereby suppressing the generation of harmful substances such as nitrogen oxides sensitive to the residence time of combustion products. In case of possible flash-back, the operation of the entire combustion system is minimized due to the damage of structurally weak parts in the turbulence generator with enhanced turbulence intensity, thereby increasing the operation efficiency of the combustion apparatus and improving the operation efficiency and emission performance of the combustion apparatus. It relates to the turbulence generating grid structure of the combustion device that can maximize the
  • Nitrogen oxide is a compound of nitrogen and oxygen and refers to NO, NO2, NO3, N20, N2O3, N2O4 and N2O5. Of these, NO and NO2 are classified as the most serious air pollutants because they are emitted in large amounts when fossil fuels are burned using combustion air. NOx refers to all nitrogen oxides, but generally refers to NO and NO2 in the field of air pollution. Nitrogen oxides are mainly emitted during the combustion process of fossil fuels. During combustion, condensable fine dust (PM 2.5), which is discharged from gaseous state and condensed through a photochemical reaction, is converted into ultra-fine dust (PM 2.5), which is a major social issue.
  • PM 2.5 condensable fine dust
  • PM 2.5 which is discharged from gaseous state and condensed through a photochemical reaction
  • NOx a nitrogen oxide that is inevitably generated during fossil fuel combustion, is a precursor of nitrate, a kind of condensable ultrafine dust.
  • NOx is a representative atmospheric pollutant that is generated in a gaseous state from a combustion device and released into the atmosphere and then condensed through a photochemical smog reaction with water vapor, ozone, and ammonia to develop into solid fine dust. Therefore, it is very important to reduce the amount of harmful substances such as nitrogen oxides generated during combustion.
  • Korean Patent Publication No. 10-0016168 (July 23, 1997) discloses a technique related to a control method for reducing nitrogen oxides in a flue gas stream.
  • nitrogen oxides are removed step by step with a nitrogen-containing treatment agent or selective catalytic reduction treatment (SCR).
  • SCR selective catalytic reduction treatment
  • most of the technologies are designed for post-treatment after combustion, such as the need to move the harmful gas generated after combustion to a separate device and the need for a separate treatment material for nitrogen oxide treatment. There is a problem that the oxide cannot be reduced.
  • the plate-type turbulence generator configuration is concerned about thermal damage to the nozzle part when backfired, so the combustor operation is stopped and operated after inspection, or serious damage due to radiant heat from a high-temperature flame is caused by continuous operation for a long time even when there is no backfire. and, accordingly, there was a problem that continuous replacement was required after a certain period of time.
  • the present invention has been devised to solve the problems of the prior art as described above, and while reducing the amount of harmful gas generated during combustion through complete combustion of the combustion device in the combustion process rather than the post-combustion treatment technology, the efficiency of the combustion device is improved. It is aimed at maximizing
  • an object of the present invention is to maximize the durability, reliability and safety of the combustion device while increasing the operating efficiency by minimizing the stoppage of the combustion device due to a change in load, particularly a flashback phenomenon that may occur at a low load.
  • a change in load particularly a flashback phenomenon that may occur at a low load.
  • RPM revolutions per minute
  • the present invention enhances the flame stabilizing function of the turbulent flame by increasing the turbulence intensity through the fractal-shaped turbulence generator in maintaining the structurally robust fractal-shaped turbulence generator, and
  • the purpose of this is to effectively suppress combustion harmful substances such as nitrogen oxides by reducing the residence time of high-temperature combustion products by suppressing the generation of the inner recirculation zone in the salting.
  • the present invention aims to improve the pre-mixing performance of gas fuel through a double orthogonal flow structure and a double orthogonal flow structure because the harmful gas of nitrogen oxides has a property that depends on the mixing performance between air and fuel before combustion.
  • a gas nozzle for supplying gas fuel and a space are formed in communication with the gas nozzle, and gas fuel
  • the gas fuel distribution unit for distribution communicates with the gas fuel distribution unit by the first through hole to form a space in which gas fuel is premixed with air, and the gas fuel distribution unit communicates with the second through hole It is provided between the second mixing chamber and the first mixing chamber and the second mixing chamber to form a space in which the gas fuel is premixed with air, and the premix of the gas fuel and air premixed in the first mixing chamber is turbulent.
  • a first flow path through which the gas fuel injected through the first through-hole can be mixed in vertical contact with the swirled air and the gas fuel injected through the second through-hole communicated with the second mixing chamber is the and a second flow path for vertically contacting and mixing with air having a lower degree of rotation than the first flow path, and the turbulence generating nozzle unit is provided with a plurality of fractal-shaped lattice holes to form an example in the first mixing chamber.
  • a block-shaped turbulence generating unit for inducing turbulent flow of the mixed gas fuel and air mixture; and a cylindrical inner nozzle unit for allowing the pre-mixture of gas fuel and air that has passed through the turbulence generating unit to flow into the combustion chamber;
  • the turbulence generator is formed long in the longitudinal direction of the inner nozzle part and structurally maintains the rigidity of the material even when a flame is attached by a flashback phenomenon, thereby enabling continuous combustion operation without damage to the grids, thereby improving the safety of the system and the combustion efficiency of the combustor. characterized by increasing.
  • the combustion device capable of maximizing the combustor operation efficiency and emission performance of the present invention minimizes the stoppage of the combustion device due to a change in load, in particular, a backfire that may occur at a low load. , it is effective in securing the safety of the entire combustion system and maximizing the efficiency of the combustion apparatus.
  • the fractal-shaped turbulence generator and low vortex structure suppress the formation of the internal recirculation region in the combustion device, thereby reducing the amount of harmful gases that are closely related to the residence time of high-temperature combustion products such as thermal NOx (nitrogen oxide) during combustion. It is effective in reducing the amount of production.
  • the present invention since nitrogen oxides are closely related to the mixing performance of fuel and combustion air, the present invention has a mixing structure that maintains a double swirl structure, an orthogonal flow structure, and a fractal-shaped turbulence generating unit structure, thereby premixing gas fuel and air. It has an excellent effect in improving the premixing performance of
  • FIG. 1 is a cross-sectional view of a combustion device capable of maximizing the combustion efficiency and emission performance of a combustor according to a first embodiment of the present invention.
  • FIG. 2 shows an example of a turbulence generator of a combustion device capable of maximizing the combustion efficiency and emission performance of the combustor according to the first embodiment of the present invention.
  • FIG 3 is a view showing another embodiment of the turbulence generator of the combustion device capable of maximizing the combustor operation efficiency and emission performance according to the first embodiment of the present invention.
  • FIG. 4 shows another embodiment of the turbulence generating unit of the combustion apparatus capable of maximizing the combustion efficiency and the exhaust performance of the combustor according to the first embodiment of the present invention.
  • FIG. 5 is a view showing the pre-mixing action of the combustion device capable of maximizing the combustor operation efficiency and emission performance according to the first embodiment of the present invention.
  • FIG. 6 is a view showing the pre-mixing action of the combustion device capable of maximizing the combustor operation efficiency and emission performance according to the first embodiment of the present invention.
  • FIG. 7 is a view showing the pre-mixing action of the combustion device capable of maximizing the combustor operation efficiency and emission performance according to the first embodiment of the present invention.
  • FIG. 8 is a view showing the results of an operation performance experiment of a combustion device capable of maximizing the combustion efficiency and emission performance of the combustor according to the first embodiment of the present invention.
  • FIG. 9 is a view showing the results of measurement of the amount of harmful substances generated by the combustion device capable of maximizing the combustor operation efficiency and emission performance according to the first embodiment of the present invention.
  • FIG. 10 is a view showing a turbulence generating unit of a combustion device capable of maximizing the combustor operation efficiency and emission performance according to the second embodiment of the present invention.
  • FIG. 11 is a view showing a turbulence generating unit of a combustion device capable of maximizing the combustion efficiency and emission performance of the combustor according to the third embodiment of the present invention.
  • FIG. 12 is a view showing a turbulence generating unit of a combustion device capable of maximizing the combustor operation efficiency and emission performance according to the fourth embodiment of the present invention.
  • the combustion apparatus capable of maximizing the combustor operation efficiency and exhaust performance includes a gas nozzle unit 10 to which gas fuel is supplied and the gas nozzle.
  • the gas fuel distribution unit 20 communicates with the unit 10 to form a space and the gas fuel distribution unit 20 communicates with the first through hole 21 to form a space in which the gas fuel is premixed with air.
  • the first mixing chamber 22 and the second mixing chamber 24 communicated with the gas fuel distribution unit 20 and the second through hole 23 to form a space in which the gas fuel is premixed with air, and the The turbulence generating nozzle part 30 and the air nozzle part are provided between the first mixing chamber 22 and the second mixing chamber 24 so that the gas fuel premixed in the first mixing chamber 22 flows in a turbulent flow. and a turning nozzle unit 40 communicating with 50 to supply combustion air to the first mixing chamber 22 and the second mixing chamber 24, respectively.
  • the orbiting nozzle unit 40 communicates with the first mixing chamber 22 so that the gas fuel injected through the first through hole 21 is in vertical contact with the swirled air to be mixed.
  • the first flow passage 41 communicates with the second mixing chamber 24 and the gas fuel injected through the second through hole 23 is in vertical contact with air having a lower degree of rotation than the first flow passage 41 . and a second flow path 42 for mixing.
  • the gas fuel and air premixed through the first mixing chamber 22 are mixed with the gas fuel premixed through the second mixing chamber 24 through the turbulence generating nozzle unit 30 .
  • the ignition While being mixed with the pre-mixer of air, the ignition is maintained in a state of maintaining turbulent flow due to the pre-mixer slightly swirling through the second mixing chamber 24, thereby suppressing the formation of an internal recirculation region in the flame, and combustion products at high temperature By reducing the residence time, the generation of harmful substances is minimized.
  • the first gas fuel injected through the first through hole 21 from the gas fuel distribution unit 20 is provided at the end of the orbiting nozzle unit 40 in communication with the air inlet unit 51 .
  • the air for combustion strongly swirled through the flow path 41 is mixed while collided with it at right angles.
  • a portion of the combustion air in which the gas fuel distribution unit 20 communicates with the second through hole 23 and the gas fuel is introduced from the air inlet unit 51 is located at the center of the orbiting nozzle unit 40 .
  • the second flow path 42 provided in the it meets and mixes with the swirling flow, which is relatively weak compared to the first flow path 41 .
  • the pre-mixed gas fuel in the flame generated by a separate ignition device (not shown) at the outlet of the orbiting nozzle unit 40 by the pre-mixed gas fuel and air is transferred to the internal recirculation area (IRZ).
  • Inner Recirculation Zone is created to reduce the residence time of combustion products at high temperatures, thereby minimizing the generation of harmful substances such as thermal nitrogen oxides that are generated in proportion to the residence time.
  • the turbulence generating nozzle unit 30 is in the form of a circular block, and a plurality of fractal-shaped grids are provided throughout, and through this, pre-mixed in the first mixing chamber 22 .
  • the turbulence generating unit 31 is formed to have a predetermined thickness in the form of a cylindrical block, and structurally maintain the rigidity of the material even when a flame is attached by a flashback phenomenon, thereby enabling continuous combustion operation without damage to the grids.
  • the combustion efficiency should be increased.
  • the combustion device capable of maximizing the combustion efficiency and exhaust performance according to the present invention is provided with the gas nozzle unit 10 .
  • the gas nozzle unit 10 serves to guide external gas fuel to be supplied to the gas fuel distribution unit 20 .
  • the gas fuel distribution unit 20 is provided at an end of the gas nozzle unit 10 .
  • the gas fuel distribution unit 20 has a predetermined space therein, and serves to distribute the gas fuel flowing in from the gas nozzle unit 10 .
  • the gas fuel distribution unit 20 is provided in a cylindrical shape, and a plurality of the first through holes 21 are provided at one end of the gas fuel distribution unit 20 based on a cross section.
  • the first through hole 21 communicates with the gas fuel distribution unit 20 and the first mixing chamber 22 so that the gas fuel supplied from the gas nozzle unit 10 passes through the first mixing chamber 22 .
  • the gas fuel injected from the gas fuel distribution unit 20 through the first through-hole 21 is combined with a strong swirling motion of the combustion air introduced through the first flow path 41 in the first flow path ( 41), it is mixed with the combustion air while collided in a right-angled flow form (Jet in cross) and moved into the first mixing chamber 22 .
  • first through-hole 21 and the second through-hole 23 are arranged radially around the center of the turbulence generating nozzle, respectively.
  • first through hole 21 is located at the same distance from the center with respect to the cross section of the gas fuel distribution unit 20 .
  • the second through hole 23 does not interfere with the first flow path 41 and is formed to communicate with the second flow path 42 provided in the central portion of the orbiting nozzle unit 40 .
  • the second flow passage 42 is configured at a turning angle that enables a weaker turning motion compared to the first flow passage 42 .
  • the second through hole 23 communicates with the gas fuel distribution unit 20 and the second mixing chamber 24 so that the gas fuel supplied from the gas nozzle unit 10 passes through the second flow path 42 . ) is pre-mixed with the combustion air that has passed so that it can be moved to the second mixing chamber 24 .
  • the second through hole 23 is located at the same distance from the center with respect to the cross section of the gas fuel distribution unit 20 . That is, the first through-hole 21 and the second through-hole 23 are arranged in a circle spaced apart from each other by a predetermined distance with respect to the center of the turbulence generating nozzle unit 30 , respectively.
  • the first through hole 21 and the second through hole 23 are provided in a zigzag form with respect to the center of the gas fuel distribution unit 20 . That is, the gas fuel supplied from the gas nozzle unit 20 is uniformly distributed from the gas fuel distribution unit 20 to the first mixing chamber 22 and the second mixing chamber 24 , respectively. .
  • the number of the first through hole 21 and the second through hole 23 is preferably provided to be the same. This is also so that the gas fuel supplied from the gas nozzle 10 can be uniformly distributed from the gas fuel distribution unit 20 to the first mixing chamber 22 and the second mixing chamber 24 . .
  • the diameters of the cross-sections of the first through hole 21 and the second through hole 23 are adjusted to the first mixing chamber 22 and the second mixing chamber 24 . It is possible to control the flow rate of the gas fuel supplied. In addition, it is possible to achieve important combustion stabilization in lean combustion such as a gas turbine combustor by always supplying a constant amount of gas fuel regardless of pressure fluctuations in the combustion chamber 52 during combustion.
  • the diameter of the first through hole 21 and the second through hole 23 is a condition for gas fuel to become a choking flow, and the first through hole 21 and the second through hole 23 )
  • the pressure difference between the front and rear ends is manufactured to be maintained at 1.6 atm or more in the case of LNG fuel.
  • the diameters of the first through-hole 21 and the second through-hole 23 are set so that the pressure difference is 1.6 atm or more, the first through-hole 21 and the second through-hole 23
  • the injected gas fuel forms a choking flow with a Mach number of 1.0.
  • the first mixing chamber 22 and the second mixing chamber 24 are provided.
  • the first mixing chamber 22 has a space therein, and communicates with the gas fuel distribution unit 20 through the first through hole 21 . Accordingly, the combustion air introduced through the air nozzle unit 50 is introduced through the first flow path 41 and is adjacent to the outlet of the first flow path 41 inside the first mixing chamber 22 . While striking at right angles to the gas fuel, it is strongly swirled and pre-mixed.
  • the second mixing chamber 24 has a space therein, and communicates with the gas fuel distribution unit 20 through the second through hole 23 .
  • the combustion air introduced through the air nozzle unit 50 is introduced through the second flow path 42 and is adjacent to the outlet of the second flow path 42 inside the second mixing chamber 24 . It is rotated while colliding with the gas fuel at a right angle.
  • the turbulence generating nozzle unit 30 is provided between the first mixing chamber 22 and the second mixing chamber 24 .
  • the turbulence generating nozzle unit 30 is provided with a plurality of square lattice holes having a plurality of fractal shapes in a circular block shape as shown in FIG. 2 , so that the gas fuel and air pre-mixed in the first mixing chamber 22 .
  • the turbulence generator 31 has a cylindrical shape and is formed to be elongated along the longitudinal direction of the inner nozzle part 32, so that even if a flame is attached by a flashback phenomenon, it structurally maintains the rigidity of the material, so that the lattice is continuously burned without damage. By enabling operation, it is possible to secure the safety of the system and to increase the combustion efficiency. More specifically, the turbulence generating nozzle unit 30 is in the form of a pipe nozzle, and a turbulence generating unit 31 having a thickness in the form of a circular block is provided therein. The turbulence generator 31 functions to turbulence the premixed gas fuel and air premixed in the first mixing chamber 22 . That is, the turbulence performance (turbulence intensity) is greatly increased as the gas fuel and air premixer passes through the plurality of square lattice holes having a fractal shape of the turbulence generator 31 .
  • the length of the turbulence generating part 31 is formed to be about 0.3 to 0.6 times the length of the inner nozzle part 32 .
  • the thickness in the longitudinal direction of the turbulence generating unit 31 is formed to be less than 0.3 times the thickness in the longitudinal direction of the inner nozzle unit 32, a flashback phenomenon occurs at a change in load, especially at a low load, resulting in a combustor nozzle As the flame is attached to the inside, damage or breakage occurs in the turbulence generating unit 31 . For this reason, there is a problem in that the operation of the combustion device is stopped and the thermal efficiency is rapidly reduced.
  • the thickness in the longitudinal direction of the turbulence generating part 31 is 0.3 to 0.6 times the thickness in the longitudinal direction of the inner nozzle part 32 .
  • a guide unit 60 for guiding the premix of gas fuel and air premixed in the first mixing chamber 22 to flow to the turbulence generating unit 31 is provided.
  • the turbulence generator 31 may be formed in a fractal structure.
  • the fractal structure is a structure that effectively increases the turbulence intensity. It is a structure in which a small shape is repeated endlessly in a shape similar to the overall shape to form the overall shape.
  • the fractal structure is geometrically the same shape according to a certain rule, as the size and arrangement are arranged in different shapes, the fluid passing through such a fractal structure generates various turbulence lengths and energy to increase the turbulence intensity. It is a structure that can be effectively increased. In such a fractal structure, the thickness of the fractal grid decreases according to the law of a constant ratio.
  • the turbulence intensity is 2 to 3 times higher than that of the turbulence generator 31 having the radial hole. will increase twice Therefore, when the turbulence generator 31 is configured with such a fractal structure, the turbulence intensity can be effectively increased.
  • the turbulence generating unit 31 increases the turbulence intensity of the pre-mixer by allowing the pre-mixer to pass through the main body 32a supporting the turbulence generating unit 31. It includes a fractal hole portion (32b). In this case, the body portion 32a and the fractal hole portion 32b may have different lengths in the longitudinal direction of the turbulence generator 31 .
  • the length of the fractal hole 32b becomes shorter and shorter from the center of the turbulence generator 31 toward the outer circumferential surface. Therefore, even if the end of the main body 32a is damaged by a flame attached to the end of the main body 32a when a flashback phenomenon occurs at a change in load, particularly at a low load, the fractal hole 32b turbulence of the pre-mixer, so that it does not affect the In other words, by preventing the flame from damaging the fractal hole 32b, the turbulence intensity increase rate of the premixer passing through the turbulence generator 31 can be continuously maintained. As a result, there is an advantage in that the rigidity of the turbulence generating unit 31 can be increased while maintaining the thermal efficiency of the combustion device.
  • the length of the fractal hole 32b is longer than the length of the body portion 32a. Accordingly, as the time for the premixer to pass through the fractal hole 32b increases, there is an advantage that the turbulence intensity of the premixer can be further increased.
  • the ignition device may be provided at the outlet of the orbiting nozzle unit 40 communicating with the combustion chamber 52 to be driven by a separate power source. That is, the ignition device ignites the pre-mixture of unburned gas fuel and air injected from the outlet of the orbiting nozzle unit 40 to form a flame field without the internal recirculation region IRZ in the combustion chamber 52 .
  • the air nozzle part 50 and the orbiting nozzle part communicated with the air inlet part 51 so that combustion air can be supplied to the first mixing chamber 22 and the second mixing chamber 24 .
  • the air nozzle unit 50 is provided in a shape surrounding the outer peripheral surfaces of the first mixing chamber 22 and the second mixing chamber 24 .
  • a space is provided between the air nozzle part 50 and the orbiting nozzle part 40 through which air can flow by communicating with the first mixing chamber 22 and the second mixing chamber 24 .
  • the air inlet 51 includes a pre-mixer of gas fuel and air in the first mixing chamber 22 and the second mixing chamber 24 and a first flow path provided on one side of the orbiting nozzle unit 40, respectively. It serves to supply air to be mixed with the combustion air introduced through the 41 and the second flow path 42 .
  • the orbiting nozzle unit 40 communicates with the first mixing chamber 22 to provide a first flow path 41 and the second mixing chamber for supplying air of a strong swirling flow to the first mixing chamber 22 . It is preferable to be provided as a second flow path 42 communicating with the 24 and supplying air to the second mixing chamber 24 with a weak swirling flow with a swirling strength of 0.4 to 0.55.
  • first through hole 21 is positioned directly in front of the exit of the first passage 41
  • second through hole 23 is located on one side of the inner wall of the second passage 42 . Accordingly, the gas fuel supplied through the first through hole 21 and the combustion air supplied as a strong swirling flow through the first flow path 41 collide with an orthogonal jet flow advantageous for mixing. This is to enable efficient premixing.
  • the gas fuel supplied through the second through hole 23 is to be efficiently premixed with the combustion air having a weak turning strength supplied through the second flow passage 42 .
  • gas fuel is introduced into the gas fuel distribution unit 20 from the gas nozzle unit 10 , and the supplied gas fuel is supplied from the gas fuel distribution unit 20 to the first through hole.
  • the first mixing chamber 22 and the second mixing chamber 24 are divided and moved by the 21 and the second through-hole 23 .
  • the combustion air supplied through the air nozzle unit 50 and the orbiting nozzle unit 40 and the first through hole 21 is pre-mixed.
  • the mixer in a state of weak turning intensity in the second mixing chamber 24 is moved to the combustion chamber 52 while maintaining a weak turning motion around the mixer premixed with a strong turning intensity in the first mixing chamber 22 . do. In this state, it is ignited by the ignition device to form a high-temperature turbulent premixed flame in the combustion chamber 52 .
  • a method of reducing the generation of harmful substances such as thermal NOx is to lower the temperature of the flame or to reduce the residence time during which the high-temperature combustion products in the flame stay in the flame field, which is the reaction field.
  • TIT turbine inlet temperature
  • the strong swirling flow of the first flow path 41 meets the gas fuel injected from the first through hole 21 in a vertical jet form (Jet in cross) to premix. do.
  • the turbulence is generated while passing through the turbulence generating unit 31 mounted inside the turbulence generating nozzle unit 30 communicating with the first mixing chamber 22 .
  • the turbulence generating nozzle unit 30 passes through the second mixing chamber 22 and meets with the mixer premixed by a weak swirling flow.
  • a premixed flame is formed at the outlet of the orbiting nozzle unit 40 in communication with the combustion chamber 52 .
  • a premix of gas fuel and air premixed in the first mixing chamber 22 is strongly turbulent as it passes through the turbulence generator 31 .
  • the premix of gas fuel and air premixed in the first mixing chamber 22 is prevented from being generated by a rapid expansion flow in the combustion chamber 52 . That is, the premix of the gas fuel and air premixed in the second mixing chamber 24 is prevented from spreading outwardly from the premixed gas fuel and air premixed in the first mixing chamber 22 .
  • the pre-mixed gas fuel and air pre-mixed in the first mixing chamber 22 injected into the combustion chamber 52 is protected from the weak rotational motion from the second flow passage 42 while maintaining strong turbulent flow. It will be moved to the combustion chamber 52 as one. Due to this, it minimizes the formation of the internal recirculation region of the flame field generated in the combustion chamber 52, and reduces the residence time of the high-temperature combustion product in the flame field, such as thermal nitrogen oxides, which are closely related to the residence time. It is possible to minimize the generation of harmful substances.
  • the combustion device can be continuously operated because it has the strength to continuously operate even when the flame is attached due to a flashback phenomenon.
  • the thickness of the turbulence generator 31 increases, the operating range of the lean flammability limit and combustion exhaust gas emission performance, which is the downward combustion stabilization region of the combustion device, decrease slightly, but the combustion device that is always exposed to a high-temperature flame for a long period of time Since it is advantageous in thermal durability that is directly related to product lifespan due to its characteristics, it is possible to continuously operate, so that the turbulence generator 31 is designed to have a certain ratio of thickness, which is the most important thing in a combustor to increase efficiency through operation and maintain the product. It can be seen that the reliability is increased.
  • the present embodiment is different from the first embodiment in that the central portion of the turbulence generating unit 231 is formed to be convex.
  • the description of the first embodiment is referred to.
  • the turbulence generator 231 may be formed to be convex in a direction toward the combustion chamber. That is, when the central portion of the turbulence generating unit 231 is formed to be convex with respect to the direction toward the combustion chamber, the pre-mixer is sprayed to spread in the circumferential direction of the turbulence generating unit 231 to form a wider flame. do. Therefore, the width of the generated flame is wide and a thin flat flame is formed, so there is an advantage in that the generation of pollutants such as carbon monoxide and nitrogen oxide (NOx) can be further minimized.
  • pollutants such as carbon monoxide and nitrogen oxide (NOx)
  • the present embodiment is different from the first embodiment in that the central portion of the turbulence generating unit 331 is concave.
  • the description of the first embodiment is referred to.
  • the turbulence generating unit 331 may be concavely formed in a direction toward the combustion chamber. That is, when the central portion of the turbulence generator 231 is formed to be concave with respect to the direction toward the combustion chamber, the pre-mixer is sprayed to gather at the central portion of the turbulence generator 231 so that the flame is formed narrower. . Accordingly, there is an advantage that the temperature of the generated flame is formed higher, and thus the thermal efficiency of the combustion device is increased. In addition, as shown in FIG.
  • the pressure loss of the flow flowing to the central portion is small, so As the flow rate becomes faster, when a flashback occurs, the flame is pushed outward in the direction of the wall of the nozzle, so as in the second embodiment, the size of the flame becomes smaller and dispersed between the small grids, so that the backfired flames are separated from the wall Due to the cooling effect receiving heat loss, there is an advantage in that thermal damage to the turbulence generating unit 331 can be reduced.
  • the present embodiment is different from the first embodiment in that the center of the turbulence generating unit 431 is provided at the center of the inner nozzle unit 32 with respect to the longitudinal direction of the inner nozzle unit 32 .
  • the description of the first embodiment is referred to.
  • the center of the turbulence generating unit 431 is provided at the center of the inner nozzle unit 32 in the longitudinal direction of the inner nozzle unit 32 .
  • the flow of the premixer is caused by the lattice hole of the fractal.
  • the turbulence is rotated through the outer nozzle unit 43.
  • the center of the turbulence generating unit 431 is provided at the center of the inner nozzle unit 32 based on the longitudinal direction of the inner nozzle unit 32 .
  • the first flow path 41 passes through the first flow path 41 .
  • the fuel gas and air introduced into the first mixing chamber 22 follow the tapered guide part 60 in which the outlet area in the longitudinal direction is narrowed in the first mixing chamber 22, the inner nozzle part As it flows into (32), there is an effect that the fuel gas and air are uniformly introduced into the premixed flow up to the central portion where the center of the turbulence generating unit 431 is located.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

The present invention relates to a combustion device capable of maximizing a combustor's operation efficiency and exhaust performance and, more specifically, to a combustion device comprising: a gas nozzle unit that allows gas fuel to be supplied; a gas fuel distribution unit that is in communication with the gas nozzle unit to form a space and distributes gas fuel; a first mixing chamber that is in communication with the gas fuel distribution unit through a first through-hole to form a space in which gas fuel is premixed with air; a second mixing chamber that is in communication with the gas fuel distribution unit through a second through-hole to form a space in which gas fuel is premixed with air; a turbulence producing nozzle unit provided between the first mixing chamber and the second mixing chamber to produce a turbulent flow of a pre-mixture of gas fuel and air that are premixed in the first mixing chamber; and a swirl nozzle unit that is in communication with an air nozzle unit to allow air for combustion to be supplied into each of the first mixing chamber and the second mixing chamber. The swirl nozzle unit comprises: a first flow path that is in communication with the first mixing chamber to allow gas fuel ejected through the first through-hole to come into perpendicular contact and be mixed with swirling air; and a second flow path that is in communication with the second mixing chamber to allow gas fuel ejected through the second through-hole to come into perpendicular contact and be mixed with air having a lower swirl number than that in the first flow path. The turbulence producing nozzle unit comprises: a block-type turbulence producing unit including a plurality of grid holes having a fractal shape to induce a turbulent flow of the pre-mixture of gas fuel and air that are premixed in the first mixing chamber, and a cylindrical internal nozzle unit that allows the pre-mixture of gas fuel and air passing through the turbulence producing unit to flow into a combustion chamber, wherein the turbulence producing unit has an elongated form along the length direction of the internal nozzle unit and maintains rigidity, even when flames adhere thereto due to flash back, to enable continuous combustion, thus increasing combustion efficiency.

Description

연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치Combustion device that can maximize combustor operation efficiency and emission performance
본 발명은 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치로써 더욱 자세하게는, 이중 유로계 개선을 통해 연소장 내에 고온의 내부재순환영역(Inner Recirculation Zone)이 형성되지 않으면서 난류강도(turbulence intensity)가 강화되어, 연소 시 고온의 연소생성물이 화염 내에서 체류하는 체류시간을 단축시켜 연소생성물의 체류시간에 민감한 질소산화물 등과 같은 유해물질의 발생을 억제시키되, 부하의 변화 특히, 낮은 부하에서 발생할 수 있는 역화현상(flash-back)에서도 난류강도를 강화시킨 난류생성부에서 구조적으로 취약한 부위의 파손으로 연소장치 전체 시스템의 작동이 멈추는 것을 최소화함으로써 연소장치의 운전효율 증대와 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치의 난류생성 격자구조에 관한 것이다.The present invention is a combustion device capable of maximizing combustor operation efficiency and exhaust performance. More specifically, turbulence intensity without forming a high-temperature inner recirculation zone in the combustion field through the improvement of the double flow path system. ) is strengthened to reduce the residence time of high-temperature combustion products in the flame during combustion, thereby suppressing the generation of harmful substances such as nitrogen oxides sensitive to the residence time of combustion products. In case of possible flash-back, the operation of the entire combustion system is minimized due to the damage of structurally weak parts in the turbulence generator with enhanced turbulence intensity, thereby increasing the operation efficiency of the combustion apparatus and improving the operation efficiency and emission performance of the combustion apparatus. It relates to the turbulence generating grid structure of the combustion device that can maximize the
질소산화물(NOx)은 질소와 산소의 결합물질로 NO, NO2, NO3, N20, N2O3, N2O4 및 N2O5를 말한다. 이중 NO와 NO2가 연소용 공기를 사용하여 화석연료를 연소시킬 때 다량 배출되기 때문에 가장 심각한 대기오염물질로 분류된다. NOx는 모든 질소산화물을 통칭하지만, 대기오염분야에서는 일반적으로 NO와 NO2를 의미한다. 질소산화물은 화석연료의 연소과정에서 주로 배출되는데 연소 시 가스 상태에서 대기로 배출된 후 광화학 반응을 통해 응축되어 사회적 문제로 크게 이슈화되고 있는 초미세먼지(PM 2.5)로 변환되는 응축성 미세먼지(CPM)의 주범으로 알려져 있어 최근 정부로부터 대기배출 부과금 적용 대상 오염물질로 추가된 물질이기도 하다. 초미세 먼지는 지름이 10㎛ 정도인 일반 미세먼지(PM 10)와는 달리 머리카락 1/30 수준인 지름이 2.5㎛ 정도 크기로 우리 몸에서 걸러지지 못하고 그대로 폐나 혈관에 침투해 협심증, 뇌졸중, 심혈관 질환을 일으키기도 하여 세계보건기구(WHO) 산하 국제암연구소가 지정한 1군 발암물질이기도 하다.Nitrogen oxide (NOx) is a compound of nitrogen and oxygen and refers to NO, NO2, NO3, N20, N2O3, N2O4 and N2O5. Of these, NO and NO2 are classified as the most serious air pollutants because they are emitted in large amounts when fossil fuels are burned using combustion air. NOx refers to all nitrogen oxides, but generally refers to NO and NO2 in the field of air pollution. Nitrogen oxides are mainly emitted during the combustion process of fossil fuels. During combustion, condensable fine dust (PM 2.5), which is discharged from gaseous state and condensed through a photochemical reaction, is converted into ultra-fine dust (PM 2.5), which is a major social issue. It is known as the main culprit of CPM), and it is also a substance that has been recently added as a pollutant subject to the air emission charge by the government. Unlike general fine dust (PM 10), which has a diameter of about 10 µm, ultra-fine dust is about 2.5 µm in diameter, which is 1/30 of a human hair. It is also a group 1 carcinogen designated by the International Agency for Research on Cancer under the World Health Organization (WHO).
질소산화물 방출 기준은 대부분 NO가 NO2로 산화되는 것을 전제로 하는 수치를 근거로 하고 있는데, 화석연료 연소 시 불가피하게 발생되는 질소산화물인 NOx는 응축성 초미세먼지의 일종인 질산염의 전구물질(precursor)로 알려져 있으며, 연소장치로부터 가스 상태로 발생되어 대기로 방출된 후 수증기, 오존, 암모니아 등과 광화학 스모그 반응을 통해 응축되어 고체상태의 미세 먼지로 발전하게 되는 대표적인 대기환경 오염물질이다. 따라서, 연소 시 발생하는 질소산화물 등과 같은 유해물질의 발생량을 감소시키는 방법은 매우 중요한 일이라 할 수 있겠다.Most of the nitrogen oxide emission standards are based on the assumption that NO is oxidized to NO2. NOx, a nitrogen oxide that is inevitably generated during fossil fuel combustion, is a precursor of nitrate, a kind of condensable ultrafine dust. ), is a representative atmospheric pollutant that is generated in a gaseous state from a combustion device and released into the atmosphere and then condensed through a photochemical smog reaction with water vapor, ozone, and ammonia to develop into solid fine dust. Therefore, it is very important to reduce the amount of harmful substances such as nitrogen oxides generated during combustion.
일례로, 대한민국등록특허공보 제10-0016168호(1997.07.23)는 연도가스류에서의 질소산화물 감소 조절방법에 관한 기술이 개시되어 있다. 상기 연도가스류에서의 질소산화물 감소 조절방법의 기술적 특징을 살펴보면, 단계별로 질소함유 처리제제 또는 선택적 촉매환원처리(SCR)로 질소산화물을 제거하도록 하고 있다. 하지만, 연소가 끝나고 발생한 유해가스를 별도의 장치로 이동시켜야하고, 질소산화물 처리를 위한 별도의 처리재료가 필요하다는 단점이 있는 등 대부분 기술이 연소이후 후처리에 관한 고안들이며 연소과정에서 근원적으로 질소산화물을 저감시킬 수 없다는 문제점이 있다.For example, Korean Patent Publication No. 10-0016168 (July 23, 1997) discloses a technique related to a control method for reducing nitrogen oxides in a flue gas stream. Looking at the technical characteristics of the method for controlling the reduction of nitrogen oxides in the flue gas stream, nitrogen oxides are removed step by step with a nitrogen-containing treatment agent or selective catalytic reduction treatment (SCR). However, most of the technologies are designed for post-treatment after combustion, such as the need to move the harmful gas generated after combustion to a separate device and the need for a separate treatment material for nitrogen oxide treatment. There is a problem that the oxide cannot be reduced.
또한, 일본 공개특허공보 특개평 09-170716호에서는 가스연료와 공기의 혼합류를 선회시키는 것에 부가하여 연료노즐의 하류에 배치된 난류판으로 난류를 발생시킴으로써 혼합류의 혼합거리를 줄이고 역류, 역화 및 고온 영역의 발생을 방지하는 특징을 개시하고 있다. 그러나, 종래의 기술에는 난류를 발생시키는 구성이 얇은 판(plate)으로 형성되어 그 강도가 매우 취약하다는 문제점이 있었다. 일례로, 연소기 운전 중에는 부하 변동에 따라 연소기의 유량변화가 심하게 되는데 특히, 낮은 부하에서 가스연료와 공기의 혼합기 속도가 낮아지게 되면 화염이 분사노즐 안으로 타고 들어오는 역화현상(Flash-Back)이 발생하여 화염이 노즐 안에서 화염이 부착되어 난류판이나 선회기 등 연소기 노즐의 중요 부위를 손상시키거나 파손이 되어 연소장치 전체 시스템의 작동이 중지되는 치명적인 손실을 주게 된다. 이처럼 구조적으로 판형태의 난류생성기 구성은 역화되는 경우 노즐부위의 열적 손상이 우려되어 연소기 운전을 정지해서 점검 후 운전되거나 역화되질 않은 상태에서도 장시간 연속운전에 의해 고온의 화염으로부터 복사열 등으로 심각한 손상을 받게 되며, 이에 따라 일정 시간 후에는 계속해서 지속적인 교체가 필요하다는 문제점이 있었다.In addition, in Japanese Unexamined Patent Application Publication No. Hei 09-170716, in addition to swirling the mixed flow of gas fuel and air, turbulence is generated with a turbulent plate disposed downstream of the fuel nozzle to reduce the mixing distance of the mixed flow and reverse flow and backflow. and a feature for preventing the occurrence of a high-temperature region. However, in the prior art, there is a problem that the strength is very weak because the configuration for generating turbulence is formed of a thin plate. For example, during combustor operation, the flow rate of the combustor varies greatly depending on the load change. In particular, when the speed of the gas fuel and air mixture decreases at a low load, a flash-back phenomenon occurs, in which the flame burns into the injection nozzle. The flame attaches to the inside of the nozzle and damages or breaks important parts of the combustor nozzle, such as the turbulence plate or swirler, causing fatal losses that stop the operation of the entire combustion system. Structurally, the plate-type turbulence generator configuration is concerned about thermal damage to the nozzle part when backfired, so the combustor operation is stopped and operated after inspection, or serious damage due to radiant heat from a high-temperature flame is caused by continuous operation for a long time even when there is no backfire. and, accordingly, there was a problem that continuous replacement was required after a certain period of time.
본 발명은 상술한 바와 같은 선행 기술의 문제점을 해결하기 위하여 안출된 것으로, 연소 후처리 기술이 아닌 연소과정에서 연소장치의 완전연소를 통한 연소 시 유해가스의 발생량을 감소시키면서, 연소장치의 효율을 최대화하는데 그 목적이 있다.The present invention has been devised to solve the problems of the prior art as described above, and while reducing the amount of harmful gas generated during combustion through complete combustion of the combustion device in the combustion process rather than the post-combustion treatment technology, the efficiency of the combustion device is improved. It is aimed at maximizing
또한, 본 발명은 부하의 변화 특히, 낮은 부하에서 발생할 수 있는 역화현상에 의해 연소장치의 작동이 멈추는 것을 최소화하여 운전효율을 증대시키면서, 연소장치의 내구성과 신뢰성 및 안전성을 최대화하는데 그 목적이 있다. 일례로 발전 및 항공용 가스터빈 연소기에서는 연소기 후단에 수십만 RPM(revolution per minute)으로 고속 회전하고 있는 회전체인 터빈(turbine)에 연소기 노즐로부터 파괴된 아주 작은 파편은 마치 항공기엔진의 조류충돌(bird strike)과 같이 해당 가스터빈 전체시스템에 치명적인 손상을 방지하는데 그 목적이 있다. In addition, an object of the present invention is to maximize the durability, reliability and safety of the combustion device while increasing the operating efficiency by minimizing the stoppage of the combustion device due to a change in load, particularly a flashback phenomenon that may occur at a low load. . For example, in gas turbine combustors for power generation and aviation, very small fragments destroyed from the combustor nozzle in the turbine, a rotating body rotating at high speed at hundreds of thousands of revolutions per minute (RPM) at the rear end of the combustor, are like a bird collision in an aircraft engine. It aims to prevent fatal damage to the entire gas turbine system such as strike).
또한, 본 발명은 구조적으로 견고한 프렉탈(Fractal) 형상의 난류생성부를 유지함에 있어 프렉탈 형상의 난류생성기를 통해 난류강도를 증가시킴으로써 난류화염의 보염기능(flame stabilizing)이 강화되며, 저선회류로 인해 화염장 내 내부재순환영역(Inner Recirculation Zone) 발생이 억제되어 고온인 연소생성물의 체류시간을 단축시켜 질소산화물과 같은 연소 유해물질을 효과적으로 억제시키는데 그 목적이 있다.In addition, the present invention enhances the flame stabilizing function of the turbulent flame by increasing the turbulence intensity through the fractal-shaped turbulence generator in maintaining the structurally robust fractal-shaped turbulence generator, and The purpose of this is to effectively suppress combustion harmful substances such as nitrogen oxides by reducing the residence time of high-temperature combustion products by suppressing the generation of the inner recirculation zone in the salting.
또한, 본 발명은 질소산화물의 유해가스가 연소 전에 공기와 연료 간 혼합성능에 의존하는 성질이 있어 이중 선회구조와 직교 유동구조를 통해 가스연료의 예혼합 성능을 향상시키는데 그 목적이 있다.In addition, the present invention aims to improve the pre-mixing performance of gas fuel through a double orthogonal flow structure and a double orthogonal flow structure because the harmful gas of nitrogen oxides has a property that depends on the mixing performance between air and fuel before combustion.
본 발명이 해결하고자 하는 과제들은 이상에서 언급한 과제로 제한되지 않으며, 여기에 언급되지 않은 본 발명이 해결하려는 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present invention are not limited to the problems mentioned above, and other problems to be solved by the present invention not mentioned here are to those of ordinary skill in the art to which the present invention belongs from the description below. can be clearly understood.
본 발명의 바람직한 일 실시예에 따른 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치에 있어서, 가스연료가 공급되도록 하는 가스노즐부와 상기 가스노즐부와 연통되어 공간을 형성하며, 가스연료를 분배하는 가스연료분배부와 상기 가스연료분배부와 제1관통홀에 의해 연통되어 가스연료가 공기와 예혼합되는 공간을 형성하는 제1혼합실과 상기 가스연료분배부와 제2관통홀에 의해 연통되어 가스연료가 공기와 예혼합되는 공간을 형성하는 제2혼합실과 상기 제1혼합실과 제2혼합실 사이에 구비되어, 상기 제1혼합실에서 예혼합된 가스연료와 공기의 예혼합기를 난류화하는 난류생성노즐부와 공기노즐부와 연통되어, 상기 제1혼합실과 제2혼합실에 각각 연소용 공기가 공급될 수 있도록 하는 선회노즐부를 포함하고, 상기 선회노즐부는, 상기 제1혼합실과 연통되어 상기 제1관통홀을 통해 분사된 가스연료가 선회된 공기와 수직으로 접촉되어 혼합될 수 있도록 하는 제1유로와 상기 제2혼합실과 연통되어 상기 제2관통홀을 통해 분사된 가스연료가 상기 제1유로에 비해 선회도가 낮은 공기와 수직으로 접촉되어 혼합될 수 있도록 하는 제2유로를 포함하며, 상기 난류생성노즐부는, 복수개의 프렉탈 형상의 격자 홀이 구비되어 상기 제1혼합실에서 예혼합된 가스연료와 공기 혼합기의 난류유동을 유도하는 블록형태의 난류생성부와 상기 난류생성부를 통과한 가스연료와 공기의 예혼합기가 연소실로 유동할 수 있도록 하는 원통형상의 내측노즐부를 포함하고, 상기 난류생성부는, 상기 내측노즐부의 길이방향을 따라 길게 형성되어 역화현상에 의해 화염이 부착되어도 구조적으로 재질의 강성을 유지하여 격자들의 파손 없이 지속적인 연소운전을 가능하게 함으로써 시스템의 안전성과 연소기 운전효율을 증가시키는 것을 특징으로 한다.In the combustion apparatus capable of maximizing the combustor operation efficiency and emission performance according to a preferred embodiment of the present invention, a gas nozzle for supplying gas fuel and a space are formed in communication with the gas nozzle, and gas fuel The gas fuel distribution unit for distribution communicates with the gas fuel distribution unit by the first through hole to form a space in which gas fuel is premixed with air, and the gas fuel distribution unit communicates with the second through hole It is provided between the second mixing chamber and the first mixing chamber and the second mixing chamber to form a space in which the gas fuel is premixed with air, and the premix of the gas fuel and air premixed in the first mixing chamber is turbulent. and a swirling nozzle in communication with the turbulence generating nozzle and the air nozzle to supply combustion air to the first and second mixing chambers, respectively, wherein the orbiting nozzle communicates with the first mixing chamber. A first flow path through which the gas fuel injected through the first through-hole can be mixed in vertical contact with the swirled air and the gas fuel injected through the second through-hole communicated with the second mixing chamber is the and a second flow path for vertically contacting and mixing with air having a lower degree of rotation than the first flow path, and the turbulence generating nozzle unit is provided with a plurality of fractal-shaped lattice holes to form an example in the first mixing chamber. a block-shaped turbulence generating unit for inducing turbulent flow of the mixed gas fuel and air mixture; and a cylindrical inner nozzle unit for allowing the pre-mixture of gas fuel and air that has passed through the turbulence generating unit to flow into the combustion chamber; The turbulence generator is formed long in the longitudinal direction of the inner nozzle part and structurally maintains the rigidity of the material even when a flame is attached by a flashback phenomenon, thereby enabling continuous combustion operation without damage to the grids, thereby improving the safety of the system and the combustion efficiency of the combustor. characterized by increasing.
상기 과제의 해결 수단에 의해, 본 발명의 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치는, 부하의 변화 특히, 낮은 부하에서 발생할 수 있는 역화현상에 의해 연소장치의 작동이 멈추는 것을 최소화하여, 연소장치 전체 시스템의 안전성 확보와 연소장치의 효율을 최대화하는데 그 효과가 있다.By means of a solution to the above problem, the combustion device capable of maximizing the combustor operation efficiency and emission performance of the present invention minimizes the stoppage of the combustion device due to a change in load, in particular, a backfire that may occur at a low load. , it is effective in securing the safety of the entire combustion system and maximizing the efficiency of the combustion apparatus.
또한, 프렉탈 형상의 난류생성부와 저선회날개 구조로 연소장치 내 내부재순환영역의 형성을 억제하여 연소 시 열적 NOx(질소산화물)와 같이 고온인 연소생성물의 체류시간과 밀접한 관계가 있는 유해가스의 발생량을 감소시키는데 그 효과가 있다.In addition, the fractal-shaped turbulence generator and low vortex structure suppress the formation of the internal recirculation region in the combustion device, thereby reducing the amount of harmful gases that are closely related to the residence time of high-temperature combustion products such as thermal NOx (nitrogen oxide) during combustion. It is effective in reducing the amount of production.
또한, 질소산화물이 연료와 연소용공기와의 혼합성능에 밀접한 관계가 있으므로 혼합구조가 본 발명은 이중 선회구조와 직교 유동구조와 프렉탈 형상의 난류생성부 구조를 유지함으로써 가스연료와 공기의 예혼합기의 예혼합 성능을 향상시키는데 탁월한 효과가 있다.In addition, since nitrogen oxides are closely related to the mixing performance of fuel and combustion air, the present invention has a mixing structure that maintains a double swirl structure, an orthogonal flow structure, and a fractal-shaped turbulence generating unit structure, thereby premixing gas fuel and air. It has an excellent effect in improving the premixing performance of
도 1은 본 발명의 제1실시예에 따른 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치의 단면도를 나타낸 것이다.1 is a cross-sectional view of a combustion device capable of maximizing the combustion efficiency and emission performance of a combustor according to a first embodiment of the present invention.
도 2는 본 발명의 제1실시예에 따른 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치의 난류생성부의 일실시예를 나타낸 것이다.FIG. 2 shows an example of a turbulence generator of a combustion device capable of maximizing the combustion efficiency and emission performance of the combustor according to the first embodiment of the present invention.
도 3은 본 발명의 제1실시예에 따른 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치의 난류생성부의 다른 실시예를 나타낸 것이다.3 is a view showing another embodiment of the turbulence generator of the combustion device capable of maximizing the combustor operation efficiency and emission performance according to the first embodiment of the present invention.
도 4는 본 발명의 제1실시예에 따른 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치의 난류생성부의 또 따른 실시예를 나타낸 것이다.4 shows another embodiment of the turbulence generating unit of the combustion apparatus capable of maximizing the combustion efficiency and the exhaust performance of the combustor according to the first embodiment of the present invention.
도 5는 본 발명의 제1실시예에 따른 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치의 예혼합 작용을 나타낸 도면이다.5 is a view showing the pre-mixing action of the combustion device capable of maximizing the combustor operation efficiency and emission performance according to the first embodiment of the present invention.
도 6은 본 발명의 제1실시예에 따른 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치의 예혼합 작용을 나타낸 도면이다.6 is a view showing the pre-mixing action of the combustion device capable of maximizing the combustor operation efficiency and emission performance according to the first embodiment of the present invention.
도 7은 본 발명의 제1실시예에 따른 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치의 예혼합 작용을 나타낸 도면이다.7 is a view showing the pre-mixing action of the combustion device capable of maximizing the combustor operation efficiency and emission performance according to the first embodiment of the present invention.
도 8은 본 발명의 제1실시예에 따른 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치의 운전성능 실험결과를 나타낸 도면이다.8 is a view showing the results of an operation performance experiment of a combustion device capable of maximizing the combustion efficiency and emission performance of the combustor according to the first embodiment of the present invention.
도 9는 본 발명의 제1실시예에 따른 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치의 유해물질 발생량 측정결과를 나타낸 도면이다.9 is a view showing the results of measurement of the amount of harmful substances generated by the combustion device capable of maximizing the combustor operation efficiency and emission performance according to the first embodiment of the present invention.
도 10은 본 발명의 제2실시예에 따른 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치의 난류생성부를 나타낸 도면이다.10 is a view showing a turbulence generating unit of a combustion device capable of maximizing the combustor operation efficiency and emission performance according to the second embodiment of the present invention.
도 11은 본 발명의 제3실시예에 따른 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치의 난류생성부를 나타낸 도면이다.11 is a view showing a turbulence generating unit of a combustion device capable of maximizing the combustion efficiency and emission performance of the combustor according to the third embodiment of the present invention.
도 12는 본 발명의 제4실시예에 따른 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치의 난류생성부를 나타낸 도면이다.12 is a view showing a turbulence generating unit of a combustion device capable of maximizing the combustor operation efficiency and emission performance according to the fourth embodiment of the present invention.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 본 발명에 대해 구체적으로 설명하기로 한다.Terms used in this specification will be briefly described, and the present invention will be described in detail.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.The terms used in the present invention have been selected as currently widely used general terms as possible while considering the functions in the present invention, which may vary depending on the intention or precedent of a person skilled in the art, the emergence of new technology, and the like. Therefore, the term used in the present invention should be defined based on the meaning of the term and the overall content of the present invention, rather than the name of a simple term.
명세서 전체에서 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.In the entire specification, when a part “includes” a certain component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.
아래에서는 첨부한 도면을 참고하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, with reference to the accompanying drawings, embodiments of the present invention will be described in detail so that those of ordinary skill in the art can easily carry out the embodiments of the present invention. However, the present invention may be embodied in many different forms and is not limited to the embodiments described herein.
본 발명에 대한 해결하고자 하는 과제, 과제의 해결 수단, 발명의 효과를 포함한 구체적인 사항들은 다음에 기재할 실시 예 및 도면들에 포함되어 있다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다.Specific details including the problem to be solved for the present invention, the means for solving the problem, and the effect of the invention are included in the embodiments and drawings to be described below. Advantages and features of the present invention, and a method for achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings.
이하, 첨부된 도면을 참조하여 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
본 발명의 바람직한 제1실시예에 따른 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치는 도 1 및 도 2에 도시된 바와 같이, 가스연료가 공급되는 가스노즐부(10)와 상기 가스노즐부(10)와 연통되어 공간을 형성하는 가스연료분배부(20)와 상기 가스연료분배부(20)와 제1관통홀(21)에 의해 연통되어 가스연료가 공기와 예혼합되는 공간을 형성하는 제1혼합실(22)과 상기 가스연료분배부(20)와 제2관통홀(23)에 의해 연통되어 가스연료가 공기와 예혼합되는 공간을 형성하는 제2혼합실(24)과 상기 제1혼합실(22)과 제2혼합실(24) 사이에 구비되어, 상기 제1혼합실(22)에서 예혼합된 가스연료가 난류 유동하도록 하는 난류생성노즐부(30)와 공기노즐부(50)와 연통되어 상기 제1혼합실(22)과 제2혼합실(24)에 각각 연소용 공기를 공급하는 선회노즐부(40)를 포함한다.As shown in Figs. 1 and 2, the combustion apparatus capable of maximizing the combustor operation efficiency and exhaust performance according to the first preferred embodiment of the present invention includes a gas nozzle unit 10 to which gas fuel is supplied and the gas nozzle. The gas fuel distribution unit 20 communicates with the unit 10 to form a space and the gas fuel distribution unit 20 communicates with the first through hole 21 to form a space in which the gas fuel is premixed with air. The first mixing chamber 22 and the second mixing chamber 24 communicated with the gas fuel distribution unit 20 and the second through hole 23 to form a space in which the gas fuel is premixed with air, and the The turbulence generating nozzle part 30 and the air nozzle part are provided between the first mixing chamber 22 and the second mixing chamber 24 so that the gas fuel premixed in the first mixing chamber 22 flows in a turbulent flow. and a turning nozzle unit 40 communicating with 50 to supply combustion air to the first mixing chamber 22 and the second mixing chamber 24, respectively.
그리고, 상기 선회노즐부(40)는 상기 제1혼합실(22)과 연통되어 상기 제1관통홀(21)을 통해 분사된 가스연료가 선회된 공기와 수직으로 접촉되어 혼합될 수 있도록 하는 제1유로(41)와 상기 제2혼합실(24)과 연통되어 상기 제2관통홀(23)을 통해 분사된 가스연료가 상기 제1유로(41)에 비해 선회도가 낮은 공기와 수직으로 접촉되어 혼합될 수 있도록 하는 제2유로(42)를 포함한다.In addition, the orbiting nozzle unit 40 communicates with the first mixing chamber 22 so that the gas fuel injected through the first through hole 21 is in vertical contact with the swirled air to be mixed. The first flow passage 41 communicates with the second mixing chamber 24 and the gas fuel injected through the second through hole 23 is in vertical contact with air having a lower degree of rotation than the first flow passage 41 . and a second flow path 42 for mixing.
따라서, 상기 제1혼합실(22)을 통해 예혼합된 가스연료와 공기의 예혼합기가 상기 난류생성노즐부(30)를 통과하여 상기 제2혼합실(24)을 통해 예혼합된 가스연료와 공기의 예혼합기와 혼합되면서, 상기 제2혼합실(24)을 통해 약하게 선회된 예혼합기로 인해 난류유동을 유지한 상태로 점화됨으로서, 화염 내에 내부재순환영역의 형성이 억제되어, 고온에서 연소생성물이 체류하는 시간을 감소시켜 유해물질의 발생을 최소화한다.Accordingly, the gas fuel and air premixed through the first mixing chamber 22 are mixed with the gas fuel premixed through the second mixing chamber 24 through the turbulence generating nozzle unit 30 . While being mixed with the pre-mixer of air, the ignition is maintained in a state of maintaining turbulent flow due to the pre-mixer slightly swirling through the second mixing chamber 24, thereby suppressing the formation of an internal recirculation region in the flame, and combustion products at high temperature By reducing the residence time, the generation of harmful substances is minimized.
즉, 상기 가스연료분배부(20)에서 상기 제1관통홀(21)을 통해 분사된 가스연료가 공기유입부(51)와 연통된 상기 선회노즐부(40)의 끝부분에 마련된 상기 제1유로(41)를 통해 강하게 선회된 연소용 공기와 직각으로 부딪치면서 혼합된다. 또한, 상기 가스연료분배부(20)와 상기 제2관통홀(23)에 의해 연통되어 가스연료가 상기 공기유입부(51)로부터 유입된 연소용 공기 일부가 상기 선회노즐부(40)의 중앙부에 마련된 상기 제2유로(42)에서의 상기 제1유로(41)에 비해 비교적 약한 선회유동과 만나 혼합된다. 이를 통하여 상기 예혼합된 가스연료와 공기의 예혼합기가 상기 선회노즐부(40) 출구에서 별도의 점화장치(도면 미도시)에 의해 발생한 상기 화염 내에 상기 예혼합된 가스연료가 내부재순환영역(IRZ, Inner Recirculation Zone)이 없는 연소장을 만들어 고온에서 연소생성물이 체류하는 시간을 감소시켜 체류시간에 비례하여 발생하는 열적 질소산화물과 같은 유해물질의 발생을 최소화 하는 것이다.That is, the first gas fuel injected through the first through hole 21 from the gas fuel distribution unit 20 is provided at the end of the orbiting nozzle unit 40 in communication with the air inlet unit 51 . The air for combustion strongly swirled through the flow path 41 is mixed while collided with it at right angles. In addition, a portion of the combustion air in which the gas fuel distribution unit 20 communicates with the second through hole 23 and the gas fuel is introduced from the air inlet unit 51 is located at the center of the orbiting nozzle unit 40 . In the second flow path 42 provided in the , it meets and mixes with the swirling flow, which is relatively weak compared to the first flow path 41 . Through this, the pre-mixed gas fuel in the flame generated by a separate ignition device (not shown) at the outlet of the orbiting nozzle unit 40 by the pre-mixed gas fuel and air is transferred to the internal recirculation area (IRZ). , Inner Recirculation Zone) is created to reduce the residence time of combustion products at high temperatures, thereby minimizing the generation of harmful substances such as thermal nitrogen oxides that are generated in proportion to the residence time.
또한, 상기 난류생성노즐부(30)는 원형의 블록(block)형태로, 전체에 걸쳐 프렉탈 형상의 복수개의 격자(grid)가 구비되고, 이를 통해 상기 제1혼합실(22)에서 예혼합된 가스연료와 공기 예혼합기의 난류유동을 유도하는 난류생성부(31)와 상기 난류생성부(31)를 통과한 가스연료와 공기의 예혼합기가 연소실로 유동할 수 있도록 하는 원통형상의 내측노즐부(32)를 포함한다. 또한, 상기 난류생성부(31)는 원통형상의 블록형태로 소정의 두께를 가지도록 형성되어 역화현상에 의해 화염이 부착되어도 구조적으로 재질의 강성을 유지하여 격자들의 파손 없이 지속적인 연소운전을 가능하게 함으로써 시스템의 안전성 확보와 함께 연소효율을 증가시키도록 한다.In addition, the turbulence generating nozzle unit 30 is in the form of a circular block, and a plurality of fractal-shaped grids are provided throughout, and through this, pre-mixed in the first mixing chamber 22 . A turbulence generating unit 31 for inducing a turbulent flow of the gas fuel and air premixer, and a cylindrical inner nozzle unit for allowing the gas fuel and air premixture that has passed through the turbulence generating unit 31 to flow into the combustion chamber ( 32). In addition, the turbulence generating unit 31 is formed to have a predetermined thickness in the form of a cylindrical block, and structurally maintain the rigidity of the material even when a flame is attached by a flashback phenomenon, thereby enabling continuous combustion operation without damage to the grids. In addition to securing the safety of the system, the combustion efficiency should be increased.
먼저, 본 발명에 의한 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치는 상기 가스노즐부(10)가 마련된다. 상기 가스노즐부(10)는 외부의 가스연료가 상기 가스연료분배부(20)로 공급되도록 안내하는 역할을 한다.First, the combustion device capable of maximizing the combustion efficiency and exhaust performance according to the present invention is provided with the gas nozzle unit 10 . The gas nozzle unit 10 serves to guide external gas fuel to be supplied to the gas fuel distribution unit 20 .
상기 가스노즐부(10)의 말단에는 상기 가스연료분배부(20)가 마련된다. 상기 가스연료분배부(20)는 내부에 소정의 공간이 마련되며, 상기 가스노즐부(10)로부터 유입되는 가스연료를 분배하는 역할을 한다. 보다 상세하게, 상기 가스연료분배부(20)는 원통형으로 구비되며, 단면을 기준으로 상기 가스연료분배부(20)의 단부 일측에는 상기 제1관통홀(21)이 복수개로 구비된다. 상기 제1관통홀(21)은 상기 가스연료분배부(20)와 상기 제1혼합실(22)을 연통하여 상기 가스노즐부(10)로부터 공급된 가스연료가 상기 제1혼합실(22)로 이동될 수 있도록 한다. 이때 상기 가스연료분배부(20)에서 상기 제1관통홀(21)을 통해 분사된 가스연료는 상기 제1유로(41)를 통해 유입된 연소용 공기의 강한 선회운동과 함께 상기 제1유로(41)의 출구 바로 앞에서 직각의 유동형태(Jet in cross)로 부딪치면서 연소용 공기와 혼합되어 상기 제1혼합실(22) 내로 이동하게 된다. The gas fuel distribution unit 20 is provided at an end of the gas nozzle unit 10 . The gas fuel distribution unit 20 has a predetermined space therein, and serves to distribute the gas fuel flowing in from the gas nozzle unit 10 . In more detail, the gas fuel distribution unit 20 is provided in a cylindrical shape, and a plurality of the first through holes 21 are provided at one end of the gas fuel distribution unit 20 based on a cross section. The first through hole 21 communicates with the gas fuel distribution unit 20 and the first mixing chamber 22 so that the gas fuel supplied from the gas nozzle unit 10 passes through the first mixing chamber 22 . to be able to move to At this time, the gas fuel injected from the gas fuel distribution unit 20 through the first through-hole 21 is combined with a strong swirling motion of the combustion air introduced through the first flow path 41 in the first flow path ( 41), it is mixed with the combustion air while collided in a right-angled flow form (Jet in cross) and moved into the first mixing chamber 22 .
다음으로, 상기 제1관통홀(21)과 제2관통홀(23)은, 복수개로 각각 상기 난류생성노즐부의 중앙부를 중심으로 방사형으로 배열된다. 또한, 상기 제1관통홀(21)은 상기 가스연료분배부(20)의 단면을 기준으로 중심으로부터 동일한 거리에 위치한다. 보다 상세하게, 상기 제2관통홀(23)은 상기 제1유로(41)와 간섭되지 않으며, 상기 선회노즐부(40)의 중앙부에 마련된 상기 제2유로(42)와 연통되게 형성된다. 이때 상기 제2유로(42)는 상기 제1유로(42)와 비교하여 약한 선회운동을 할 수 있는 선회각도로 구성된다. 따라서, 상기 제2관통홀(23)은 상기 가스연료분배부(20)와 상기 제2혼합실(24)을 연통하여 상기 가스노즐부(10)로부터 공급된 가스연료가 상기 제2유로(42)를 통과한 연소용 공기와 예혼합되면서 상기 제2혼합실(24)로 이동될 수 있도록 한다. 또한, 상기 제2관통홀(23)은 상기 가스연료분배부(20)의 단면을 기준으로 중심으로부터 동일한 거리에 위치한다. 즉, 상기 제1관통홀(21)과 제2관통홀(23)은, 각각 상기 난류생성노즐부(30)의 중앙부를 중심으로 일정간격 떨어진 원형으로 배열되는 것이다.Next, a plurality of the first through-hole 21 and the second through-hole 23 are arranged radially around the center of the turbulence generating nozzle, respectively. In addition, the first through hole 21 is located at the same distance from the center with respect to the cross section of the gas fuel distribution unit 20 . In more detail, the second through hole 23 does not interfere with the first flow path 41 and is formed to communicate with the second flow path 42 provided in the central portion of the orbiting nozzle unit 40 . In this case, the second flow passage 42 is configured at a turning angle that enables a weaker turning motion compared to the first flow passage 42 . Accordingly, the second through hole 23 communicates with the gas fuel distribution unit 20 and the second mixing chamber 24 so that the gas fuel supplied from the gas nozzle unit 10 passes through the second flow path 42 . ) is pre-mixed with the combustion air that has passed so that it can be moved to the second mixing chamber 24 . In addition, the second through hole 23 is located at the same distance from the center with respect to the cross section of the gas fuel distribution unit 20 . That is, the first through-hole 21 and the second through-hole 23 are arranged in a circle spaced apart from each other by a predetermined distance with respect to the center of the turbulence generating nozzle unit 30 , respectively.
다음으로, 상기 제1관통홀(21)과 제2관통홀(23)은 상기 가스연료분배부(20)의 중심을 기준으로 지그재그 형식으로 구비된다. 즉, 상기 가스노즐부(20)로부터 공급된 가스연료가 상기 가스연료분배부(20)에서 각각 상기 제1혼합실(22)과 제2혼합실(24)로 균일하게 분배될 수 있도록 하는 것이다. 그리고, 상기 제1관통홀(21)과 제2관통홀(23)의 개수는 동일하게 구비되는 것이 바람직하다. 이 역시, 상기 가스노즐(10)로부터 공급된 가스연료가 상기 가스연료분배부(20)에서 상기 제1혼합실(22)과 제2혼합실(24)로 균일하게 분배될 수 있도록 하기 위함이다. 또한, 가스연료와 공기의 양에 따라 상기 제1관통홀(21)과 제2관통홀(23)의 단면의 직경을 조절하여 상기 제1혼합실(22)과 제2혼합실(24)로 공급되는 가스연료의 유량조절할 수 있도록 한다. 그리고, 연소 시 상기 연소실(52) 내 압력변동과 무관하게 항상 일정한 양의 가스연료를 공급해 줌으로써, 가스터빈 연소기와 같은 희박연소(lean combustion)에서 중요한 연소안정화를 도모할 수 있게 한다.Next, the first through hole 21 and the second through hole 23 are provided in a zigzag form with respect to the center of the gas fuel distribution unit 20 . That is, the gas fuel supplied from the gas nozzle unit 20 is uniformly distributed from the gas fuel distribution unit 20 to the first mixing chamber 22 and the second mixing chamber 24 , respectively. . In addition, the number of the first through hole 21 and the second through hole 23 is preferably provided to be the same. This is also so that the gas fuel supplied from the gas nozzle 10 can be uniformly distributed from the gas fuel distribution unit 20 to the first mixing chamber 22 and the second mixing chamber 24 . . In addition, according to the amount of gas fuel and air, the diameters of the cross-sections of the first through hole 21 and the second through hole 23 are adjusted to the first mixing chamber 22 and the second mixing chamber 24 . It is possible to control the flow rate of the gas fuel supplied. In addition, it is possible to achieve important combustion stabilization in lean combustion such as a gas turbine combustor by always supplying a constant amount of gas fuel regardless of pressure fluctuations in the combustion chamber 52 during combustion.
구체적으로, 상기 제1관통홀(21)과 제2관통홀(23)의 직경은 가스연료가 초킹(choking)유동이 되기 위한 조건으로 상기 제1관통홀(21)과 제2관통홀(23) 각각의 전후단의 압력 차가 일례로, LNG연료인 경우 1.6 atm 이상으로 유지되도록 제작된다. 이때 1.6 atm 이상의 압력 차가 될 수 있도록 상기 제1관통홀(21)과 제2관통홀(23)의 직경이 설정되면, 각각의 상기 제1관통홀(21)과 제2관통홀(23)에서 분사되는 가스연료는 마하(Mach) 수가 1.0이 되는 초킹유동이 형성된다. 따라서, 상기 선회노즐부(40)에서 분출되는 예혼합기 유동이 상기 선회노즐부(40) 출구에서 점화되어 연소된 후에도, 상기 연소실(52) 내부의 압력 변화에 영향을 받지 않는 상태가 되어 안정적이고 균일한 혼합기를 형성할 수 있게 된다. Specifically, the diameter of the first through hole 21 and the second through hole 23 is a condition for gas fuel to become a choking flow, and the first through hole 21 and the second through hole 23 ) The pressure difference between the front and rear ends, for example, is manufactured to be maintained at 1.6 atm or more in the case of LNG fuel. At this time, if the diameters of the first through-hole 21 and the second through-hole 23 are set so that the pressure difference is 1.6 atm or more, the first through-hole 21 and the second through-hole 23 The injected gas fuel forms a choking flow with a Mach number of 1.0. Therefore, even after the pre-mixer flow ejected from the orbiting nozzle unit 40 is ignited and combusted at the outlet of the orbiting nozzle unit 40, it is not affected by the pressure change inside the combustion chamber 52 and is stable and stable. It becomes possible to form a uniform mixer.
다음으로, 상기 제1혼합실(22)과 제2혼합실(24)이 마련된다. 상기 제1혼합실(22)은 내부에 공간이 마련되고, 상기 제1관통홀(21)에 의해 상기 가스연료분배부(20)와 연통된다. 따라서, 상기 공기노즐부(50)를 통해 유입된 연소용 공기가 상기 제1유로(41)를 통해 유입되어 상기 제1혼합실(22) 내부의 상기 제1유로(41)의 출구와 인접한 지점에서 상기 가스연료와 직각으로 부딪치면서 강하게 선회되어 예혼합된다.Next, the first mixing chamber 22 and the second mixing chamber 24 are provided. The first mixing chamber 22 has a space therein, and communicates with the gas fuel distribution unit 20 through the first through hole 21 . Accordingly, the combustion air introduced through the air nozzle unit 50 is introduced through the first flow path 41 and is adjacent to the outlet of the first flow path 41 inside the first mixing chamber 22 . While striking at right angles to the gas fuel, it is strongly swirled and pre-mixed.
또한, 상기 제2혼합실(24)은 내부에 공간이 마련되고, 상기 제2관통홀(23)에 의해 상기 가스연료분배부(20)와 연통된다. 이 역시 상기 공기노즐부(50)를 통해 유입된 연소용 공기가 상기 제2유로(42)를 통해 유입되어 상기 제2혼합실(24) 내부의 상기 제2유로(42)의 출구와 인접한 지점에서 상기 가스연료와 직각으로 부딪치면서 선회된다. In addition, the second mixing chamber 24 has a space therein, and communicates with the gas fuel distribution unit 20 through the second through hole 23 . Also in this case, the combustion air introduced through the air nozzle unit 50 is introduced through the second flow path 42 and is adjacent to the outlet of the second flow path 42 inside the second mixing chamber 24 . It is rotated while colliding with the gas fuel at a right angle.
다음으로, 상기 제1혼합실(22)과 제2혼합실(24) 사이에 상기 난류생성노즐부(30)가 마련된다. 보다 상세하게, 상기 난류생성노즐부(30)는 도 2와 같이 원형의 블록형태 내 복수개의 프렉탈 형상을 갖는 사각격자 홀이 구비되어 상기 제1혼합실(22)에서 예혼합된 가스연료와 공기 예혼합기의 난류유동을 유도하는 난류생성부(31)와 상기 난류생성부(31)를 통과한 가스연료와 공기의 예혼합기가 연소실(52)로 유동할 수 있도록 하는 내측노즐부(32)를 포함한다. 먼저, 상기 난류생성부(31)는 원통형상으로 상기 내측노즐부(32)의 길이방향을 따라 길게 형성되어 역화현상에 의해 화염이 부착되어도 구조적으로 재질의 강성을 유지하여 격자들의 파손 없이 지속적인 연소운전을 가능하게 함으로써 시스템의 안전성 확보와 함께 연소효율을 증가시키도록 한다. 보다 상세하게, 상기 난류생성노즐부(30)는 파이프 노즐 형태이며, 내부에 원형의 블록형태로 두께감이 있는 난류생성부(31)가 구비된다. 상기 난류생성부(31)는 상기 제1혼합실(22)에서 예혼합된 가스연료와 공기의 예혼합기를 난류화시키는 기능을 한다. 즉, 상기 가스연료와 공기의 예혼합기가 상기 난류생성부(31)의 프렉탈 형상을 갖는 복수개의 사각격자 홀을 통과하면서 난류성능(난류강도)이 크게 증가하게 되는 것이다. Next, the turbulence generating nozzle unit 30 is provided between the first mixing chamber 22 and the second mixing chamber 24 . In more detail, the turbulence generating nozzle unit 30 is provided with a plurality of square lattice holes having a plurality of fractal shapes in a circular block shape as shown in FIG. 2 , so that the gas fuel and air pre-mixed in the first mixing chamber 22 . A turbulence generating unit 31 for inducing a turbulent flow of the premixer and an inner nozzle unit 32 for allowing the premixed gas fuel and air that have passed through the turbulence generating unit 31 to flow into the combustion chamber 52. include First, the turbulence generator 31 has a cylindrical shape and is formed to be elongated along the longitudinal direction of the inner nozzle part 32, so that even if a flame is attached by a flashback phenomenon, it structurally maintains the rigidity of the material, so that the lattice is continuously burned without damage. By enabling operation, it is possible to secure the safety of the system and to increase the combustion efficiency. More specifically, the turbulence generating nozzle unit 30 is in the form of a pipe nozzle, and a turbulence generating unit 31 having a thickness in the form of a circular block is provided therein. The turbulence generator 31 functions to turbulence the premixed gas fuel and air premixed in the first mixing chamber 22 . That is, the turbulence performance (turbulence intensity) is greatly increased as the gas fuel and air premixer passes through the plurality of square lattice holes having a fractal shape of the turbulence generator 31 .
또한, 상기 난류생성부(31)의 길이는 상기 내측노즐부(32)의 길이에 0.3배 내지 0.6배 정도로 형성된다. 이때, 상기 난류생성부(31)의 길이방향의 두께가 상기 내측노즐부(32)의 길이방향의 두께에 0.3배 미만으로 형성되면, 부하의 변화 특히, 낮은 부하에서 역화현상이 발생하여 연소기 노즐 안으로 화염이 부착됨으로써, 상기 난류생성부(31)에 손상이나 파손이 발생하게 된다. 이로 인하여, 연소장치의 작동을 중지하게 되어 열효율이 급격히 감소하게 되는 문제점이 있다. 또한, 발전용이나 항공용 가스터빈과 같은 연소기에 적용된 경우, 연소기 노즐로부터 파괴된 작은 파편이 마치 항공기엔진의 조류충돌(bird strike)과 같이 해당 가스터빈 전체시스템에 치명적인 손상을 입히는 문제점이 있다. 그리고, 상기 난류생성부(31)의 길이방향의 두께가 상기 내측노즐부(32)의 길이방향의 두께에 0.6배를 초과하여 형성되면, 상기 난류생성부(31)의 홀을 통과하는 예혼합된 혼합기의 난류성능이 현저하게 감소하게 되어, 열효율이 감소하고, 질소산화물(NOx)와 같은 유해물질의 발생량이 증가하게 되는 문제점이 있다. 또한, 저하된 난류성능으로 인해 화염의 길이가 길어지게 되고, 이에 맞게 연소실의 크기를 보다 더 증가시키는 설계가 필수적이므로, 연소장치 시스템의 전체크기가 커지는 문제점이 있다. 따라서, 상기 난류생성부(31)의 길이방향의 두께는 상기 내측노즐부(32)의 길이방향의 두께에 0.3배 내지 0.6배로 형성되는 것이다.In addition, the length of the turbulence generating part 31 is formed to be about 0.3 to 0.6 times the length of the inner nozzle part 32 . At this time, when the thickness in the longitudinal direction of the turbulence generating unit 31 is formed to be less than 0.3 times the thickness in the longitudinal direction of the inner nozzle unit 32, a flashback phenomenon occurs at a change in load, especially at a low load, resulting in a combustor nozzle As the flame is attached to the inside, damage or breakage occurs in the turbulence generating unit 31 . For this reason, there is a problem in that the operation of the combustion device is stopped and the thermal efficiency is rapidly reduced. In addition, when applied to a combustor such as a gas turbine for power generation or aviation, small fragments destroyed from the combustor nozzle may cause fatal damage to the entire gas turbine system, such as a bird strike of an aircraft engine. And, when the thickness in the longitudinal direction of the turbulence generating unit 31 exceeds 0.6 times the thickness in the longitudinal direction of the inner nozzle unit 32, premixing passes through the hole of the turbulence generating unit 31. Since the turbulence performance of the mixed mixer is remarkably reduced, thermal efficiency is reduced, and there are problems in that the amount of harmful substances such as nitrogen oxide (NOx) is increased. In addition, the length of the flame becomes longer due to the reduced turbulence performance, and accordingly, it is necessary to design the combustion chamber to further increase the size, so there is a problem in that the overall size of the combustion device system is increased. Accordingly, the thickness in the longitudinal direction of the turbulence generating part 31 is 0.3 to 0.6 times the thickness in the longitudinal direction of the inner nozzle part 32 .
그리고, 상기 제1혼합실(22)에서 예혼합된 가스연료와 공기의 예혼합기가 상기 난류생성부(31)로 유동될 수 있도록 안내하는 안내부(60)가 마련되는 것이 바람직하다.In addition, it is preferable that a guide unit 60 for guiding the premix of gas fuel and air premixed in the first mixing chamber 22 to flow to the turbulence generating unit 31 is provided.
또한, 상기 난류생성부(31)는 프렉탈 구조로 형성될 수 있다. 프렉탈 구조는 난류강도를 효과적으로 증가시키는 구조로 작은 형상이 전체 형상과 비슷한 형태로 끝없이 반복되어 되풀이 되면서 전체 형상을 이루는 구조이다. 프렉탈 구조는 일정한 규칙에 따라 기하학적으로 같은 형상이지만 크기와 배열이 서로 다른 형태로 배치됨에 따라 이러한 프렉탈 구조를 통과하는 유체는 다양한 난류길이(turbulence length)와 에너지가 생성되어 난류강도(turbulence intensity)를 효과적으로 증가시킬 수 있는 구조이다. 이러한 프렉탈 구조는 일정한 비율 법칙으로 프렉탈 격자(grid) 굵기가 감소하게 된다. 상기 난류생성부(31)가 프렉탈 구조로 형성되고, 상기 프렉탈 격자의 굵기가 감소하는 비율이 0.6 이하일 때, 상기한 방사형 홀을 구비한 난류생성부(31)에 비해 난류강도가 2배 내지 3배 증가하게 된다. 따라서 이러한 프렉탈 구조로 상기 난류생성부(31)을 구성할 경우, 난류강도를 효과적으로 증가시킬 수 있는 것이다.In addition, the turbulence generator 31 may be formed in a fractal structure. The fractal structure is a structure that effectively increases the turbulence intensity. It is a structure in which a small shape is repeated endlessly in a shape similar to the overall shape to form the overall shape. Although the fractal structure is geometrically the same shape according to a certain rule, as the size and arrangement are arranged in different shapes, the fluid passing through such a fractal structure generates various turbulence lengths and energy to increase the turbulence intensity. It is a structure that can be effectively increased. In such a fractal structure, the thickness of the fractal grid decreases according to the law of a constant ratio. When the turbulence generator 31 is formed in a fractal structure and the rate of decrease in the thickness of the fractal lattice is 0.6 or less, the turbulence intensity is 2 to 3 times higher than that of the turbulence generator 31 having the radial hole. will increase twice Therefore, when the turbulence generator 31 is configured with such a fractal structure, the turbulence intensity can be effectively increased.
또한, 도 2 내지 도 4를 참조하면, 상기 난류생성부(31)는 상기 난류생성부(31)를 지지하는 본체부(32a)와 예혼합기가 통과하도록 하여 상기 예혼합기의 난류강도를 증가시키는 프렉탈홀부(32b)을 포함한다. 이때, 상기 본체부(32a)와 프렉탈홀부(32b)은 상기 난류생성부(31)의 길이방향을 기준으로 길이가 서로 다르게 형성될 수 있다.2 to 4, the turbulence generating unit 31 increases the turbulence intensity of the pre-mixer by allowing the pre-mixer to pass through the main body 32a supporting the turbulence generating unit 31. It includes a fractal hole portion (32b). In this case, the body portion 32a and the fractal hole portion 32b may have different lengths in the longitudinal direction of the turbulence generator 31 .
보다 상세하게, 도 3을 참조하면, 상기 난류생성부(31)의 중심에서 외주면을 향할수록, 상기 프렉탈홀(32b)의 길이가 점점 더 짧게 형성된다. 따라서, 부하의 변화 특히, 낮은 부하에서 역화현상이 발생 시에 화염이 상기 본체부(32a)의 단부에 부착되도록 함으로써, 상기 본체부(32a)의 단부를 손상시키더라도, 상기 프렉탈홀(32b)에는 영향을 미치지 않도록 하여, 예혼합기의 난류화를 지속적으로 수행할 수 있도록 한다. 다시 말하면, 화염이 상기 프렉탈홀(32b)을 손상시키는 것을 방지함으로써, 상기 난류생성부(31)를 통과한 예혼합기의 난류강도 증가률을 지속적으로 유지할 수 있는 것이다. 결과적으로, 연소장치의 열효율은 유지하면서, 상기 난류생성부(31)의 강성을 증가시킬 수 있는 이점이 있다.More specifically, referring to FIG. 3 , the length of the fractal hole 32b becomes shorter and shorter from the center of the turbulence generator 31 toward the outer circumferential surface. Therefore, even if the end of the main body 32a is damaged by a flame attached to the end of the main body 32a when a flashback phenomenon occurs at a change in load, particularly at a low load, the fractal hole 32b turbulence of the pre-mixer, so that it does not affect the In other words, by preventing the flame from damaging the fractal hole 32b, the turbulence intensity increase rate of the premixer passing through the turbulence generator 31 can be continuously maintained. As a result, there is an advantage in that the rigidity of the turbulence generating unit 31 can be increased while maintaining the thermal efficiency of the combustion device.
또한, 도 4를 참조하면, 상기 프렉탈홀(32b)의 길이가 상기 본체부(32a)의 길이보다 더 길게 형성된다. 따라서, 예혼합기가 상기 프렉탈홀(32b)을 통과하는 시간이 증가함으로써, 상기 예혼합기의 난류강도를 보다 더 증가시킬 수 있는 이점이 있다.Also, referring to FIG. 4 , the length of the fractal hole 32b is longer than the length of the body portion 32a. Accordingly, as the time for the premixer to pass through the fractal hole 32b increases, there is an advantage that the turbulence intensity of the premixer can be further increased.
다음으로, 상기 연소실(52)과 연통된 상기 선회노즐부(40) 출구에는 상기 점화장치가 구비되어 별도의 전원으로 구동될 수 있다. 즉, 상기 점화장치는 상기 선회노즐부(40) 출구에서 분사되는 미연 가스연료와 공기의 예혼합기를 점화시켜 상기 연소실(52) 내부에서 내부재순환영역(IRZ)이 없는 화염장을 형성하도록 한다.Next, the ignition device may be provided at the outlet of the orbiting nozzle unit 40 communicating with the combustion chamber 52 to be driven by a separate power source. That is, the ignition device ignites the pre-mixture of unburned gas fuel and air injected from the outlet of the orbiting nozzle unit 40 to form a flame field without the internal recirculation region IRZ in the combustion chamber 52 .
다음으로, 상기 제1혼합실(22) 및 제2혼합실(24)에 연소용 공기가 공급될 수 있도록 상기 공기유입부(51)와 연통된 상기 공기노즐부(50)과 상기 선회노즐부(40)이 마련된다. 보다 상세히, 상기 공기노즐부(50)는 상기 제1혼합실(22)과 제2혼합실(24)의 외주면을 감싸는 형태로 구비된다. 또한, 상기 공기노즐부(50)와 선회노즐부(40) 사이는 상기 제1혼합실(22) 및 제2혼합실(24)과 연통되어 공기가 유동할 수 있는 공간이 마련된다. 따라서, 상기 공기유입부(51)는 상기 제1혼합실(22) 및 제2혼합실(24)에서 가스연료와 공기의 예혼합기와 상기 선회노즐부(40) 일측에 각각 마련되어 있는 제1유로(41)와 제2유로(42)를 통해 유입된 연소용 공기와 혼합될 수 있도록 공기를 공급하는 역할을 한다.Next, the air nozzle part 50 and the orbiting nozzle part communicated with the air inlet part 51 so that combustion air can be supplied to the first mixing chamber 22 and the second mixing chamber 24 . (40) is provided. In more detail, the air nozzle unit 50 is provided in a shape surrounding the outer peripheral surfaces of the first mixing chamber 22 and the second mixing chamber 24 . In addition, a space is provided between the air nozzle part 50 and the orbiting nozzle part 40 through which air can flow by communicating with the first mixing chamber 22 and the second mixing chamber 24 . Accordingly, the air inlet 51 includes a pre-mixer of gas fuel and air in the first mixing chamber 22 and the second mixing chamber 24 and a first flow path provided on one side of the orbiting nozzle unit 40, respectively. It serves to supply air to be mixed with the combustion air introduced through the 41 and the second flow path 42 .
즉, 상기 선회노즐부(40)는 상기 제1혼합실(22)과 연통되어 상기 제1혼합실(22)에 강한 선회유동의 공기를 공급하는 제1유로 (41)와 상기 제2혼합실(24)과 연통되어 상기 제2혼합실(24)에 선회강도 0.4 내지 0.55의 약한 선회유동으로 공기를 공급하는 제2유로(42)로 구비되는 것이 바람직하다.That is, the orbiting nozzle unit 40 communicates with the first mixing chamber 22 to provide a first flow path 41 and the second mixing chamber for supplying air of a strong swirling flow to the first mixing chamber 22 . It is preferable to be provided as a second flow path 42 communicating with the 24 and supplying air to the second mixing chamber 24 with a weak swirling flow with a swirling strength of 0.4 to 0.55.
또한, 상기 제1유로(41)의 출구 바로 앞에는 상기 제1관통홀(21)이 위치되고, 상기 제2유로(42)의 내벽 일측에는 상기 제2관통홀(23)이 위치된다. 따라서, 상기 제1관통홀(21)을 통해 공급된 가스연료와 상기 제1유로(41)를 통해 강한 선회유동으로 공급된 연소용 공기가 혼합에 유리한 직교제트유동(Jet in cross)으로 부딪치게 되면서 효율적으로 예혼합될 수 있도록 하는 것이다. 마찬가지로, 상기 제2관통홀(23)을 통해 공급된 가스연료는 상기 제2유로(42)를 통해 공급된 약한 선회강도의 연소용 공기와 효율적으로 예혼합될 수 있도록 하는 것이다.In addition, the first through hole 21 is positioned directly in front of the exit of the first passage 41 , and the second through hole 23 is located on one side of the inner wall of the second passage 42 . Accordingly, the gas fuel supplied through the first through hole 21 and the combustion air supplied as a strong swirling flow through the first flow path 41 collide with an orthogonal jet flow advantageous for mixing. This is to enable efficient premixing. Similarly, the gas fuel supplied through the second through hole 23 is to be efficiently premixed with the combustion air having a weak turning strength supplied through the second flow passage 42 .
이하에서는 본 발명에 의한 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치에 대한 작용을 도 1 내지 도 5를 참조하여 상세히 설명한다.Hereinafter, the operation of the combustion device capable of maximizing the combustor operation efficiency and emission performance according to the present invention will be described in detail with reference to FIGS. 1 to 5 .
먼저, 연소장치를 가동시키면, 상기 가스노즐부(10)에서 가스연료가 상기 가스연료분배부(20)로 유입되고, 공급된 가스연료는 상기 가스연료분배부(20)에서 상기 제1관통홀(21) 및 제2관통홀(23)에 의해 상기 제1혼합실(22) 및 제2혼합실(24)로 나뉘어져 이동하게 된다. 이때, 상기 제1혼합실(22)와 제2혼합실(24)에서는 상기 공기노즐부(50)와 상기 선회노즐부(40)를 통해 공급된 연소용 공기와 상기 제1관통홀(21)과 제2관통홀(23)을 통해 공급된 가스연료가 예혼합된다. 이후, 상기 제2혼합실(24)에서 약한 선회강도 상태인 혼합기는 상기 제1혼합실(22)에서 강한 선회강도로 예혼합된 혼합기 주위로 약한 선회운동을 유지하면서 상기 연소실(52)로 이동한다. 이 상태에서, 상기 점화장치에 의해 점화되어 상기 연소실(52) 안에서 고온의 난류 예혼합화염을 형성하게 된다.First, when the combustion device is operated, gas fuel is introduced into the gas fuel distribution unit 20 from the gas nozzle unit 10 , and the supplied gas fuel is supplied from the gas fuel distribution unit 20 to the first through hole. The first mixing chamber 22 and the second mixing chamber 24 are divided and moved by the 21 and the second through-hole 23 . At this time, in the first mixing chamber 22 and the second mixing chamber 24 , the combustion air supplied through the air nozzle unit 50 and the orbiting nozzle unit 40 and the first through hole 21 . And the gas fuel supplied through the second through hole 23 is pre-mixed. Thereafter, the mixer in a state of weak turning intensity in the second mixing chamber 24 is moved to the combustion chamber 52 while maintaining a weak turning motion around the mixer premixed with a strong turning intensity in the first mixing chamber 22 . do. In this state, it is ignited by the ignition device to form a high-temperature turbulent premixed flame in the combustion chamber 52 .
이때, 상기 고온의 화염으로 인해 다량의 열적 NOx와 같은 유해물질이 발생한다. 상기 열적 NOx와 같은 유해물질의 발생을 감소시키는 방법으로는 화염의 온도를 낮추거나 화염 내 고온의 연소생성물이 반응장인 화염장 내에서 체류하는 체류시간을 감소시키는 것이다. 그런데 가스터빈과 같은 경우, 시스템의 열효율을 향상시키기 위해서는 터빈입구온도(TIT, Turbine Inlet Temperature)를 높이는 것이 가장 유효하다. 최근 모든 가스터빈용 연소기의 필수 요구조건이므로 상기한 방법 중 화염의 온도를 낮추는 방법의 경우, 가스터빈 전체 시스템의 열효율이 낮아지게 되므로 화염의 온도를 낮추질 않으면서 화염 내 고온인 연소생성물의 체류시간을 줄이는 것이 가장 바람직한 방법인 것이다.At this time, a large amount of harmful substances such as thermal NOx is generated due to the high-temperature flame. A method of reducing the generation of harmful substances such as thermal NOx is to lower the temperature of the flame or to reduce the residence time during which the high-temperature combustion products in the flame stay in the flame field, which is the reaction field. However, in the case of a gas turbine, it is most effective to increase the turbine inlet temperature (TIT) in order to improve the thermal efficiency of the system. Since it is an essential requirement for all gas turbine combustors in recent years, in the case of lowering the flame temperature among the above methods, the thermal efficiency of the entire gas turbine system is lowered, so the high temperature combustion products stay in the flame without lowering the flame temperature. Saving time is the best way.
따라서, 상기 제1혼합실(22)에서 상기 제1유로(41)의 강한 선회유동이 상기 제1관통홀(21)로부터 분사된 가스연료와 수직한 제트형태(Jet in cross)로 만나서 예혼합된다. 이후, 상기 제1혼합실(22)와 연통된 상기 난류생성노즐부(30) 내측에 장착된 상기 난류생성부(31)을 거치면서 난류화 된다. 이후, 상기 난류생성노즐부(30) 말단에서 제2혼합실(22)을 거쳐 약한 선회유동으로 예혼합된 혼합기와 만난다. 이후, 상기 연소실(52)와 연통된 선회노즐부(40) 출구에서 예혼합 화염을 형성하게 된다. 즉, 상기 화염의 중앙부에 재순환영역이 발생하지 않게 되고, 상기 화염이 완전연소에 가까워지게 되는 것이다. 상기 제1혼합실(22)에서 예혼합된 가스연료와 공기의 예혼합기가 상기 난류생성부(31)를 통과하면서 강하게 난류화된다. 이때, 상기 제1혼합실(22)에서 예혼합된 가스연료와 공기의 예혼합기가 상기 연소실(52)에서 급격한 확대유동으로 발전되지 않도록 한다. 즉, 상기 제2혼합실(24)에서 예혼합된 가스연료와 공기의 예혼합기가 상기 제1혼합실(22)에서 예혼합된 가스연료와 공기의 예혼합기가 바깥 방향으로 퍼지지 않도록 하는 것이다. 즉, 상기 연소실(52)로 분사되는 상기 제1혼합실(22)에서 예혼합된 가스연료와 공기의 예혼합기가 상기 제2유로(42)로부터 약한 선회운동의 보호를 받으면서 강한 난류유동을 유지한 채 상기 연소실(52)로 이동되는 것이다. 이로 인하여, 상기 연소실(52)에 생성되는 화염장의 내부재순환영역의 형성을 최소화하여, 상기 화염장 내에 상기 고온인 연소생성물이 체류하는 시간을 감소시켜 체류시간과 밀접한 관계가 있는 열적 질소산화물과 같은 유해물질의 발생을 최소화 할 수 있는 것이다.Accordingly, in the first mixing chamber 22 , the strong swirling flow of the first flow path 41 meets the gas fuel injected from the first through hole 21 in a vertical jet form (Jet in cross) to premix. do. Thereafter, the turbulence is generated while passing through the turbulence generating unit 31 mounted inside the turbulence generating nozzle unit 30 communicating with the first mixing chamber 22 . Thereafter, at the end of the turbulence generating nozzle unit 30, it passes through the second mixing chamber 22 and meets with the mixer premixed by a weak swirling flow. Thereafter, a premixed flame is formed at the outlet of the orbiting nozzle unit 40 in communication with the combustion chamber 52 . That is, the recirculation region does not occur in the central portion of the flame, and the flame approaches complete combustion. A premix of gas fuel and air premixed in the first mixing chamber 22 is strongly turbulent as it passes through the turbulence generator 31 . At this time, the premix of gas fuel and air premixed in the first mixing chamber 22 is prevented from being generated by a rapid expansion flow in the combustion chamber 52 . That is, the premix of the gas fuel and air premixed in the second mixing chamber 24 is prevented from spreading outwardly from the premixed gas fuel and air premixed in the first mixing chamber 22 . That is, the pre-mixed gas fuel and air pre-mixed in the first mixing chamber 22 injected into the combustion chamber 52 is protected from the weak rotational motion from the second flow passage 42 while maintaining strong turbulent flow. It will be moved to the combustion chamber 52 as one. Due to this, it minimizes the formation of the internal recirculation region of the flame field generated in the combustion chamber 52, and reduces the residence time of the high-temperature combustion product in the flame field, such as thermal nitrogen oxides, which are closely related to the residence time. It is possible to minimize the generation of harmful substances.
이하에서는 본 발명에 의한 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치의 난류생상부의 두께에 따른 연소성능과 대표적 연소공해물질인 질소산화물 발생량을 비교하는 실험에 대해 설명한다.Hereinafter, an experiment comparing the combustion performance according to the thickness of the turbulence generating part of the combustion device capable of maximizing the combustor operation efficiency and emission performance according to the present invention and the amount of nitrogen oxide generated, which is a representative combustion pollutant, will be described.
실험방법으로는, 먼저 LNG 가스연료의 주성분이 메탄(CH4) 성분임을 감안하여 실험결과의 정밀성을 높이기 위해 순도 99.95%의 고순도 메탄가스를 연료로 사용하였다. 또한, 실험실 규모의 유량을 감안한 랩-크기(Lab-scale) 연소기 열용량(Thermal power)에 따라 산화제(공기)가 상대적으로 많은 산화제(공기) 과잉상태인 희박상태에서도 연소기가 정상적으로 운전이 가능한지를 파악하는 희박가연한계(Lean flammability limit) 성능을 연료-산화제(공기)의 혼합비인 당량비(Equivalence ratio)와 혼합기 조건(온도, 압력)에서 해당 당량비의 단열화염온도(Adiabatic flame temperature)로 표시된 수치를 도 8에 표시하였다. 또한, 질소산화물(NOx) 발생억제를 위해서 최근 저공해 연소기 대부분이 자동차의 희박엔진(Lean burn engine)처럼 연료-산화제의 혼합비율이 희박연소(Lean combustion) 상태로 운전이 되므로 혼합비인 당량비를 양론비(Stoichiometric ratio)인 1.0 이하로 낮추어가면서 질소산화물인 NOx의 배출농도를 측정하여, 가스터빈 연소기의 배기가스배출 기준인 15% 산소(O2) 농도로 환산한 농도 값을 도 9에 표시하였다.As the experimental method, first, considering that the main component of LNG gas fuel is methane (CH 4 ), high-purity methane gas having a purity of 99.95% was used as fuel to increase the precision of the experimental results. In addition, according to the thermal power of the lab-scale combustor considering the laboratory-scale flow rate, it is determined whether the combustor can be operated normally even in a lean state with a relatively large amount of oxidant (air). The lean flammability limit performance is shown by the equivalence ratio, which is the fuel-oxidizer (air) mixing ratio, and the adiabatic flame temperature of the corresponding equivalence ratio under the mixing conditions (temperature, pressure). 8 is indicated. In addition, in order to suppress the generation of nitrogen oxides (NOx), most of the recent low-emission combustors are operated in a state of lean combustion in which the fuel-oxidizer mixing ratio is lean like a lean burn engine of a car. (Stoichiometric ratio) was measured while lowering the emission concentration of NOx, which is nitrogen oxide, to less than 1.0, and the concentration value converted into 15% oxygen (O 2 ) concentration, which is the exhaust gas emission standard of the gas turbine combustor, is shown in FIG. 9 .
실험 결과, 도 8 및 9를 참조하면, 상기 난류생성부(31)의 두께가 증가할수록 연소장치의 운전가능 열용량범위인 TDR(Turn down ratio)성능과 유사하게 희박가연한계 값에 해당되는 당량비 값이 상대적으로 증가하여, 연소기가 낮은 당량비에서도 연료를 연소시킬 수 있는 연소안정화영역(Stable flame region)이 축소되는 것을 볼 수 있다. 특히 가스터빈시스템의 연소기의 경우, 이러한 연소기 운전범위축소는 가스터빈연소기의 성능인자인 희박운전한계(LBO, Lean blow-off)성능이 다소 낮아지고, 질소산화물(NOx)과 같은 공해물질의 발생량이 소폭 증가하는 것을 확인할 수 있다. 그러나, 두께 1mm의 판형상의 난류생성부(31)의 경우, 부하의 변화 특히, 낮은 부하(열용량)에서는 화염이 노즐 안으로 타고 들어오는 역화현상이 발생하여, 상기 난류생성노즐부(30)에 화염이 부착된 경우에, 부착된 화염에 의해 열화 되어 얇은 격자의 연결막대(bar) 혹은 격자 조각들이 파손되면서 난류생성기능이 불량해짐에 따라, 연소성능이 현저하게 저하되어 연소장치의 운전을 중단해야하는 상황이 발생하게 된다. 심지어 가스터빈시스템의 연소기의 경우, 연소기 노즐로부터 파손된 (격자)조각들이 마치 항공기엔진에서 조류충돌(bird strike)과 같이 고속으로 회전하는 연소기 후단의 회전체 날개와 부딪치게 되면서, 가스터빈시스템 혹은 가스터빈엔진에 치명적인 손상을 주게 된다. 즉, 두께 1mm 정도로 얇은 판(plate) 형상을 갖는 난류생성부(31)를 활용하는 연소장치는 지속적인 운전중지를 반복함으로써, 발생하는 에너지 손실과 함께 운전성능 및 연소기 신뢰성이 급격하게 감소되는 것이다. 이와 반대로, 두께 12.5mm, 25mm로 형성되는 난류생성부(31)의 경우, 역화현상에 의한 화염의 부착에도 지속적으로 운전할 수 있는 강도를 가짐으로써, 연소장치의 운전을 지속적으로 수행할 수 있다. 결과적으로, 상기 난류생성부(31)의 두께가 증가할수록 연소장치의 하향 연소안정화영역인 희박가연한계의 운전범위와 연소배가스 배출성능은 소량 감소하지만, 장기간 항상 고온의 화염에 노출되어 있는 연소장치 특성상 제품수명과 직결되는 열적 내구성에서 유리하여 지속적으로 운전이 가능하다는 점에서, 상기 난류생성부(31)가 일정 비율의 두께가 있게 설계되는 것이 연소기에서 가장 중요한 운전유지를 통한 효율증가와 제품의 신뢰성을 높인다는 것을 알 수 있다.As a result of the experiment, referring to FIGS. 8 and 9 , as the thickness of the turbulence generator 31 increases, the equivalence ratio value corresponding to the lean flammability limit value similarly to the TDR (Turn down ratio) performance, which is the operable heat capacity range of the combustion device. As this relatively increases, it can be seen that the stable flame region in which the combustor can burn fuel even at a low equivalence ratio is reduced. In particular, in the case of a combustor of a gas turbine system, such a reduction in the operation range of the combustor lowers the performance factor of the gas turbine combustor, Lean blow-off (LBO), and the amount of pollutants such as nitrogen oxide (NOx) It can be seen that this increases slightly. However, in the case of the plate-shaped turbulence generating unit 31 having a thickness of 1 mm, when the load is changed, especially at a low load (heat capacity), the flame burns into the nozzle and a backfire occurs, so that the flame in the turbulence generating nozzle unit 30 occurs. In the case of attachment, as the turbulence generating function deteriorates as the thin grid connecting bar or grid fragments are damaged due to deterioration by the attached flame, the combustion performance is remarkably reduced and the operation of the combustion device must be stopped this will happen Even in the case of a combustor of a gas turbine system, broken (lattice) pieces from the combustor nozzle collide with the rotor blades at the rear end of the combustor rotating at high speed like a bird strike in an aircraft engine. It causes fatal damage to the turbine engine. That is, the combustion device using the turbulence generating unit 31 having a plate shape as thin as 1 mm in thickness is repeatedly stopped, resulting in energy loss and a sharp decrease in operating performance and combustor reliability. On the contrary, in the case of the turbulence generator 31 formed to have a thickness of 12.5 mm and 25 mm, the combustion device can be continuously operated because it has the strength to continuously operate even when the flame is attached due to a flashback phenomenon. As a result, as the thickness of the turbulence generator 31 increases, the operating range of the lean flammability limit and combustion exhaust gas emission performance, which is the downward combustion stabilization region of the combustion device, decrease slightly, but the combustion device that is always exposed to a high-temperature flame for a long period of time Since it is advantageous in thermal durability that is directly related to product lifespan due to its characteristics, it is possible to continuously operate, so that the turbulence generator 31 is designed to have a certain ratio of thickness, which is the most important thing in a combustor to increase efficiency through operation and maintain the product. It can be seen that the reliability is increased.
이하에서는 본 발명의 제2실시예에 따른 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치에 대하여 첨부한 도면을 참조하여 상세히 설명한다. 본 실시예는, 제1실시예와 비교하여 난류생성부(231)의 중앙부가 볼록하게 형성된다는 점에서 차이가 있다. 본 실시예에서 제1실시예와 중첩되는 구성에 대해서는 제1실시예의 설명을 원용한다.Hereinafter, a combustion apparatus capable of maximizing the combustor operation efficiency and emission performance according to a second embodiment of the present invention will be described in detail with reference to the accompanying drawings. The present embodiment is different from the first embodiment in that the central portion of the turbulence generating unit 231 is formed to be convex. For the configuration overlapping with the first embodiment in this embodiment, the description of the first embodiment is referred to.
도 10을 참조하면, 상기 난류생성부(231)는 상기 연소실을 향하는 방향을 기준으로 볼록하게 형성될 수 있다. 즉, 상기 난류생성부(231)의 중앙부가 상기 연소실을 향하는 방향을 기준으로 볼록하게 형성되면, 예혼합기가 상기 난류생성부(231)의 원주방향으로 퍼지도록 분사되어 화염이 보다 더 넓게 형성되도록 한다. 따라서, 생성되는 화염의 폭은 넓고, 두께는 얇은 평면화염이 형성되어 일산화탄소, 질소산화물(NOx) 등과 같은 공해물질의 발생을 보다 더 최소화할 수 있는 이점이 있다. 또한, 낮은 부하에서 역화가 발생하더라도 중앙부가 볼록한 구조로 역화된 화염에서 화염의 중앙부분이 소염(extinction)되어 도넛(doughnut)형태로 형성된다. 이에 따라, 화염의 크기가 작아지고 작은 격자들 사이사이로 분산되어 역화된 화염들이 각 격자들 벽으로부터 받는 열손실의 증가로 화염의 강도(intensity)가 약화되는 냉각효과(quenching effect)로 난류생성부(231)의 열적손상을 경감시킬 수 있는 이점이 있다.Referring to FIG. 10 , the turbulence generator 231 may be formed to be convex in a direction toward the combustion chamber. That is, when the central portion of the turbulence generating unit 231 is formed to be convex with respect to the direction toward the combustion chamber, the pre-mixer is sprayed to spread in the circumferential direction of the turbulence generating unit 231 to form a wider flame. do. Therefore, the width of the generated flame is wide and a thin flat flame is formed, so there is an advantage in that the generation of pollutants such as carbon monoxide and nitrogen oxide (NOx) can be further minimized. In addition, even if flashback occurs at a low load, the central portion of the flame is extinguished and formed in a donut shape in the flame backfired with a convex structure. Accordingly, the size of the flame becomes smaller and the flames backfired by being dispersed between the small grids have a quenching effect that weakens the intensity of the flame due to an increase in heat loss received from the walls of each grid. (231) has the advantage of reducing the thermal damage.
이하에서는 본 발명의 제3실시예에 따른 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치에 대하여 첨부한 도면을 참조하여 상세히 설명한다. 본 실시예는, 제1실시예와 비교하여 난류생성부(331)의 중앙부가 오목하게 형성된다는 점에서 차이가 있다. 본 실시예에서 제1실시예와 중첩되는 구성에 대해서는 제1실시예의 설명을 원용한다.Hereinafter, a combustion apparatus capable of maximizing the combustor operation efficiency and emission performance according to a third embodiment of the present invention will be described in detail with reference to the accompanying drawings. The present embodiment is different from the first embodiment in that the central portion of the turbulence generating unit 331 is concave. For the configuration overlapping with the first embodiment in this embodiment, the description of the first embodiment is referred to.
도 11을 참조하면, 상기 난류생성부(331)는 상기 연소실을 향하는 방향을 기준으로 오목하게 형성될 수 있다. 즉, 상기 난류생성부(231)의 중앙부가 상기 연소실을 향하는 방향을 기준으로 오목하게 형성되면, 예혼합기가 상기 난류생성부(231)의 중앙부로 모이도록 분사되어 화염이 보다 더 좁게 형성되도록 한다. 따라서, 생성되는 화염의 온도가 보다 더 높게 형성되고, 그에 따라 연소장치의 열효율이 증가하게 되는 이점이 있다. 또한, 상기 난류생성부(331)의 중앙부가 도 11에 도시된 것과 같이, 중앙부위에서 덕트(duct)형태인 격자통로의 길이가 짧아지는 오목형에서는, 중앙부위로 흐르는 유동의 압력손실이 적어 중앙부위에서 유속이 더욱 빠르게 되어, 역화 발생 시, 화염을 바깥 방향인 노즐의 벽면 방향으로 밀어내어 앞서 제2실시예와 같이, 화염의 크기가 작아지고 작은 격자들 사이사이로 분산되어, 역화된 화염들이 벽으로부터 열손실을 받는 냉각효과로 인해, 상기 난류생성부(331)의 열적손상을 경감시킬 수 있는 이점이 있다.Referring to FIG. 11 , the turbulence generating unit 331 may be concavely formed in a direction toward the combustion chamber. That is, when the central portion of the turbulence generator 231 is formed to be concave with respect to the direction toward the combustion chamber, the pre-mixer is sprayed to gather at the central portion of the turbulence generator 231 so that the flame is formed narrower. . Accordingly, there is an advantage that the temperature of the generated flame is formed higher, and thus the thermal efficiency of the combustion device is increased. In addition, as shown in FIG. 11 in the central portion of the turbulence generating unit 331, in the concave type in which the length of the lattice passage in the form of a duct is shortened in the central portion, the pressure loss of the flow flowing to the central portion is small, so As the flow rate becomes faster, when a flashback occurs, the flame is pushed outward in the direction of the wall of the nozzle, so as in the second embodiment, the size of the flame becomes smaller and dispersed between the small grids, so that the backfired flames are separated from the wall Due to the cooling effect receiving heat loss, there is an advantage in that thermal damage to the turbulence generating unit 331 can be reduced.
이하에서는 본 발명의 제4실시예에 따른 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치에 대하여 첨부한 도면을 참조하여 상세히 설명한다. 본 실시예는, 제1실시예와 비교하여 난류생성부(431)의 중심이 상기 내측노즐부(32)의 길이방향을 기준으로, 상기 내측노즐부(32)의 중앙부에 구비된다는 점에서 차이가 있다. 본 실시예에서 제1실시예와 중첩되는 구성에 대해서는 제1실시예의 설명을 원용한다. Hereinafter, a combustion apparatus capable of maximizing the combustor operation efficiency and emission performance according to a fourth embodiment of the present invention will be described in detail with reference to the accompanying drawings. The present embodiment is different from the first embodiment in that the center of the turbulence generating unit 431 is provided at the center of the inner nozzle unit 32 with respect to the longitudinal direction of the inner nozzle unit 32 . there is For the configuration overlapping with the first embodiment in this embodiment, the description of the first embodiment is referred to.
도 12를 참조하면, 상기 난류생성부(431)의 중심은 상기 내측노즐부(32)의 길이방향을 기준으로, 상기 내측노즐부(32)의 중앙부에 구비된다. 이때, 상기 난류생성부(431)의 중심이 상기 내측노즐부(32)의 길이방향을 기준으로, 상기 내측노즐부(32)의 상부에 위치하게 되면, 예혼합기의 유동이 상기 프렉탈의 격자홀(31b)을 통과하면서 난류화가 최대화되는데 있어서, 상기 난류생성노즐부(30)의 외곽측인 선회노즐부(40)의 제2유로(42)를 통해 상기 외측노즐부(43)를 거쳐 선회된 유동과 직접적으로 부딪치게 되어, 생성된 강한 난류화가 보존되기도 전에 난류 강도가 약해지는 문제점과, 역화현상에 의해 화염이 노즐 안쪽에 부착되면, 직접적으로 화염에 노출되어 파손이나 손상이 발생함으로써, 열효율이 감소하게 되는 문제점이 있다. 따라서, 상기 난류생성부(431)의 중심은 상기 내측노즐부(32)의 길이방향을 기준으로, 상기 내측노즐부(32)의 중앙부에 구비되는 것이다. 또한, 상기 난류생성부(431)의 중심이 상기 내측노즐부(32)의 길이방향을 기준으로 상기 내측노즐부(32)의 중앙부에 위치하게 되면, 상기 제1유로(41)를 통해 상기 제1혼합실(22)로 유입된 연료가스와 공기가 상기 제1혼합실(22)에서 길이방향으로 출구면적이 좁아지게 되는 테이퍼(taper)형태의 안내부(60)를 따라, 상기 내측노즐부(32)로 유입하게 되면서, 상기 난류생성부(431)의 중심이 위치하는 중앙부까지 연료가스와 공기가 균일하게 예혼합된 유동으로 유입되는 효과가 있다.Referring to FIG. 12 , the center of the turbulence generating unit 431 is provided at the center of the inner nozzle unit 32 in the longitudinal direction of the inner nozzle unit 32 . At this time, when the center of the turbulence generating part 431 is located above the inner nozzle part 32 with respect to the longitudinal direction of the inner nozzle part 32, the flow of the premixer is caused by the lattice hole of the fractal. In maximizing turbulence while passing through 31b, through the second flow path 42 of the orbiting nozzle unit 40, which is the outer side of the turbulence generating nozzle unit 30, the turbulence is rotated through the outer nozzle unit 43. The problem that the intensity of turbulence is weakened even before the strong turbulence generated is directly impacted by the flow, and if the flame is attached to the inside of the nozzle due to the flashback phenomenon, it is directly exposed to the flame and damage or damage occurs, so that the thermal efficiency is reduced There is a problem of reduction. Accordingly, the center of the turbulence generating unit 431 is provided at the center of the inner nozzle unit 32 based on the longitudinal direction of the inner nozzle unit 32 . In addition, when the center of the turbulence generating unit 431 is located at the center of the inner nozzle unit 32 with respect to the longitudinal direction of the inner nozzle unit 32 , the first flow path 41 passes through the first flow path 41 . The fuel gas and air introduced into the first mixing chamber 22 follow the tapered guide part 60 in which the outlet area in the longitudinal direction is narrowed in the first mixing chamber 22, the inner nozzle part As it flows into (32), there is an effect that the fuel gas and air are uniformly introduced into the premixed flow up to the central portion where the center of the turbulence generating unit 431 is located.
이와 같이, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술 분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.As such, those skilled in the art to which the present invention pertains will understand that the above-described technical configuration of the present invention may be implemented in other specific forms without changing the technical spirit or essential characteristics of the present invention.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타나며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the embodiments described above are to be understood as illustrative and not restrictive in all respects, and the scope of the present invention is indicated by the following claims rather than the above detailed description, and the meaning and scope of the claims and their All changes or modifications derived from the concept of equivalents should be construed as being included in the scope of the present invention.
[부호의 설명][Explanation of code]
1 : 연소장치1: Combustion device
10 : 가스노즐부10: gas nozzle unit
20 : 가스연료분배부20: gas fuel distribution unit
21 : 제1관통홀21: first through hole
22 : 제1혼합실22: first mixing room
23 : 제2관통홀23: second through hole
24 : 제2혼합실24: 2nd mixing room
30 : 난류생성노즐부30: turbulence generating nozzle unit
31 : 난류생성부31: turbulence generator
32 : 내측노즐부32: inner nozzle part
40 : 선회노즐부40: slewing nozzle unit
41 : 제1유로41: 1st Euro
42 : 제2유로42: 2nd Euro
43 : 외측노즐부43: outer nozzle part
50 : 공기노즐부50: air nozzle unit
51 : 공기유입부51: air inlet
52 : 연소실52: combustion chamber
60 : 안내부60: guide

Claims (5)

  1. 가스연료가 공급되도록 하는 가스노즐부;a gas nozzle for supplying gas fuel;
    상기 가스노즐부와 연통되어 공간을 형성하며, 가스연료를 분배하는 가스연료분배부;a gas fuel distribution unit communicating with the gas nozzle unit to form a space and distributing gas fuel;
    상기 가스연료분배부와 제1관통홀;에 의해 연통되어 가스연료가 공기와 예혼합되는 공간을 형성하는 제1혼합실;a first mixing chamber communicating with the gas fuel distribution unit by a first through hole to form a space in which gas fuel is premixed with air;
    상기 가스연료분배부와 제2관통홀;에 의해 연통되어 가스연료가 공기와 예혼합되는 공간을 형성하는 제2혼합실;a second mixing chamber communicating with the gas fuel distribution unit by a second through hole to form a space in which gas fuel is premixed with air;
    상기 제1혼합실과 제2혼합실 사이에 구비되어, 상기 제1혼합실에서 예혼합된 가스연료와 공기의 예혼합기를 난류화하는 난류생성노즐부; 및a turbulence generating nozzle unit provided between the first mixing chamber and the second mixing chamber to turbulence the premixed gas fuel and air premixed in the first mixing chamber; and
    공기노즐부;와 연통되어, 상기 제1혼합실과 제2혼합실에 각각 연소용 공기가 공급될 수 있도록 하는 선회노즐부;를 포함하고,and an air nozzle unit; and a turning nozzle unit communicating with the first mixing chamber and the second mixing chamber so that combustion air can be supplied to each of the first and second mixing chambers.
    상기 선회노즐부는,The orbiting nozzle unit,
    상기 제1혼합실과 연통되어 상기 제1관통홀을 통해 분사된 가스연료가 선회된 공기와 수직으로 접촉되어 혼합될 수 있도록 하는 제1유로; 및a first flow passage communicating with the first mixing chamber so that the gas fuel injected through the first through hole is vertically contacted with the swirled air and mixed; and
    상기 제2혼합실과 연통되어 상기 제2관통홀을 통해 분사된 가스연료가 상기 제1유로에 비해 선회도가 낮은 공기와 수직으로 접촉되어 혼합될 수 있도록 하는 제2유로;를 포함하며,a second flow path communicating with the second mixing chamber and allowing the gas fuel injected through the second through hole to vertically contact and mix with air having a lower degree of rotation than the first flow path; and
    상기 난류생성노즐부는,The turbulence generating nozzle unit,
    복수개의 프렉탈 형상의 격자 홀이 구비되어 상기 제1혼합실에서 예혼합된 가스연료와 공기 예혼합기의 난류유동을 유도하는 블록형태의 난류생성부; 및a block-type turbulence generator provided with a plurality of fractal-shaped lattice holes to induce turbulent flow of the gas fuel and air premixed in the first mixing chamber; and
    상기 난류생성부를 통과한 가스연료와 공기의 예혼합기가 연소실로 유동할 수 있도록 하는 원통형상의 내측노즐부;를 포함하고,and a cylindrical inner nozzle for allowing the pre-mixture of gas fuel and air that has passed through the turbulence generator to flow into the combustion chamber; and
    상기 난류생성부는,The turbulence generator,
    상기 내측노즐부의 길이방향을 따라 길게 형성되어 역화현상에 의해 화염이 부착되어도 강성을 유지하여 지속적인 연소를 가능하게 함으로써 연소효율을 증가시키는 것을 특징으로 하는 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치.Combustion capable of maximizing operation efficiency and exhaust performance of the combustor, characterized in that it is formed long in the longitudinal direction of the inner nozzle part to increase the combustion efficiency by enabling continuous combustion by maintaining rigidity even when a flame is attached by a flashback phenomenon Device.
  2. 제1항에 있어서,According to claim 1,
    상기 난류생성부의 길이는 상기 내측노즐부의 길이의 0.3배 내지 0.6배로 형성되는 것을 특징으로 하는 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치.The combustion device capable of maximizing the combustion efficiency and discharge performance of the combustor, characterized in that the length of the turbulence generator is formed to be 0.3 to 0.6 times the length of the inner nozzle.
  3. 제1항에 있어서,According to claim 1,
    상기 난류생성부는,The turbulence generator,
    상기 연소실을 향하는 방향을 기준으로 볼록하게 형성되는 것을 특징으로 하는 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치.Combustion device capable of maximizing combustion efficiency and exhaust performance, characterized in that it is convexly formed based on the direction toward the combustion chamber.
  4. 제1항에 있어서,According to claim 1,
    상기 난류생성부는,The turbulence generator,
    상기 연소실을 향하는 방향을 기준으로 오목하게 형성되는 것을 특징으로 하는 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치.Combustion device capable of maximizing combustion efficiency and exhaust performance, characterized in that it is concavely formed based on the direction toward the combustion chamber.
  5. 제1항에 있어서,According to claim 1,
    상기 난류생성부의 중심은,The center of the turbulence generator is
    상기 내측노즐부의 길이방향을 기준으로, 상기 내측노즐부의 중앙부에 구비되는 것을 특징으로 하는 연소기 운전효율과 배출성능을 최대화 할 수 있는 연소장치.Combustion device capable of maximizing combustion efficiency and discharge performance of a combustor, characterized in that it is provided in the central portion of the inner nozzle portion based on the longitudinal direction of the inner nozzle portion.
PCT/KR2020/014835 2019-11-25 2020-10-28 Combustion device capable of maximizing combustor's operation efficiency and exhaust performance WO2021107417A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022530337A JP7270111B2 (en) 2019-11-25 2020-10-28 Combustion equipment that maximizes combustor operating efficiency and emissions performance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190152381A KR102096749B1 (en) 2019-11-25 2019-11-25 Combustion apparatus to maximize running efficiency and emission performance
KR10-2019-0152381 2019-11-25

Publications (1)

Publication Number Publication Date
WO2021107417A1 true WO2021107417A1 (en) 2021-06-03

Family

ID=70281694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014835 WO2021107417A1 (en) 2019-11-25 2020-10-28 Combustion device capable of maximizing combustor's operation efficiency and exhaust performance

Country Status (3)

Country Link
JP (1) JP7270111B2 (en)
KR (1) KR102096749B1 (en)
WO (1) WO2021107417A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102096749B1 (en) * 2019-11-25 2020-04-02 순천대학교 산학협력단 Combustion apparatus to maximize running efficiency and emission performance
KR102586498B1 (en) * 2022-11-25 2023-10-11 순천대학교 산학협력단 Partial premixed burner for boiler that can prevent flashback of hydrogen fuel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194337A (en) * 2001-12-25 2003-07-09 National Aerospace Laboratory Of Japan Premixing unit for gas turbine combustor
US20030186181A1 (en) * 2002-04-02 2003-10-02 Korea Institute Of Energy Research Hybrid type high pressure combustion burner employing catalyst and CST combustion with staged mixing system
KR20120098171A (en) * 2011-02-28 2012-09-05 김영대 The eco-burner for energy saving
KR101984952B1 (en) * 2018-12-11 2019-06-03 순천대학교 산학협력단 Combustion device to minimise hazardous materials
KR102096749B1 (en) * 2019-11-25 2020-04-02 순천대학교 산학협력단 Combustion apparatus to maximize running efficiency and emission performance

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743136B2 (en) * 1987-07-31 1995-05-15 株式会社日立製作所 Turbulent premixed burner that reduces nitrogen oxides by reducing combustion
JPH09170716A (en) 1995-12-19 1997-06-30 Hitachi Ltd Fuel premixing device and gas turbine combustion device
GB9929601D0 (en) * 1999-12-16 2000-02-09 Rolls Royce Plc A combustion chamber
WO2009022449A1 (en) * 2007-08-10 2009-02-19 Kawasaki Jukogyo Kabushiki Kaisha Combustor
JP2012037103A (en) * 2010-08-05 2012-02-23 Hitachi Ltd Gas turbine combustor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194337A (en) * 2001-12-25 2003-07-09 National Aerospace Laboratory Of Japan Premixing unit for gas turbine combustor
US20030186181A1 (en) * 2002-04-02 2003-10-02 Korea Institute Of Energy Research Hybrid type high pressure combustion burner employing catalyst and CST combustion with staged mixing system
KR20120098171A (en) * 2011-02-28 2012-09-05 김영대 The eco-burner for energy saving
KR101984952B1 (en) * 2018-12-11 2019-06-03 순천대학교 산학협력단 Combustion device to minimise hazardous materials
KR102096749B1 (en) * 2019-11-25 2020-04-02 순천대학교 산학협력단 Combustion apparatus to maximize running efficiency and emission performance

Also Published As

Publication number Publication date
JP7270111B2 (en) 2023-05-09
KR102096749B1 (en) 2020-04-02
JP2022548420A (en) 2022-11-18

Similar Documents

Publication Publication Date Title
CA2155374C (en) Dual fuel mixer for gas turbine combuster
JP2597785B2 (en) Air-fuel mixer for gas turbine combustor
CN100554785C (en) Be used for combustion tube and method that the air of gas turbine is mixed
EP1985927B1 (en) Gas turbine combustor system with lean-direct injection for reducing NOx emissions
WO2022124751A1 (en) Hydrogen gas burner capable of flashback prevention
JP2006207996A (en) Multiple venturi tube gas fuel injector for combustor
WO2021107417A1 (en) Combustion device capable of maximizing combustor's operation efficiency and exhaust performance
CN107036128B (en) Combustion chamber of gas turbine
CN110388643A (en) The gas-air premixed device of hydrogen-enriched fuel gas combustion with reduced pollutants
US8596074B2 (en) Gas turbine combustor
CN109442398A (en) A kind of multi-point direct spray is to cutting mixed radial spray low NO fastly
EP1335163B2 (en) Ultra low NOx burner for process heating
JPS5838686B2 (en) Burner device for gaseous fuel
WO2020122336A1 (en) Combustion device capable of minimizing hazardous materials
EP2340398B1 (en) Alternately swirling mains in lean premixed gas turbine combustors
CN105889980A (en) Novel Method For Air Entry In Liner To Reduce Water Requirement To Control Nox
CN115435324B (en) Backfire-proof multi-fuel mixing device and burner
RU2062405C1 (en) Combustion chamber
CN212390408U (en) Low nitrogen oxide emission combustion chamber for gas turbine and gas turbine
RU2315913C2 (en) Gas turbine low-emission combustion chamber
CN212081299U (en) Low-nitrogen combustion equipment and air material supply device thereof
RU2121113C1 (en) Gas turbine combustion chamber
RU2138738C1 (en) Gas turbine combustion chamber
CN111271708A (en) Low-nitrogen combustor
KR101041466B1 (en) The low NOx gas turbine combustor having the multi-fuel mixing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530337

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893196

Country of ref document: EP

Kind code of ref document: A1