WO2021107180A1 - Manufacturing big data-based machine learning apparatus and method - Google Patents

Manufacturing big data-based machine learning apparatus and method Download PDF

Info

Publication number
WO2021107180A1
WO2021107180A1 PCT/KR2019/016445 KR2019016445W WO2021107180A1 WO 2021107180 A1 WO2021107180 A1 WO 2021107180A1 KR 2019016445 W KR2019016445 W KR 2019016445W WO 2021107180 A1 WO2021107180 A1 WO 2021107180A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
manufacturing
machine learning
present
big data
Prior art date
Application number
PCT/KR2019/016445
Other languages
French (fr)
Korean (ko)
Inventor
박덕근
김유진
권장환
신윤수
백우진
윤종필
강인식
Original Assignee
위즈코어 주식회사
에스케이텔레콤 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 위즈코어 주식회사, 에스케이텔레콤 주식회사 filed Critical 위즈코어 주식회사
Priority to PCT/KR2019/016445 priority Critical patent/WO2021107180A1/en
Publication of WO2021107180A1 publication Critical patent/WO2021107180A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a machine learning apparatus and method based on manufacturing big data.
  • Another object to be solved by the present invention is to provide a machine learning apparatus and method based on manufacturing big data capable of preprocessing according to real-time, variability, multidimensional, structured/unstructured, and large-capacity data characteristics.
  • Another problem to be solved by the present invention is to provide a machine learning apparatus and method based on manufacturing big data that can process streaming data based on high-speed parallel processing using machine learning.
  • Another problem to be solved by the present invention is to provide a machine learning apparatus and method based on manufacturing big data that can configure and combine data sets multiplexed based on attribute (KEY).
  • Another problem to be solved by the present invention is to provide a machine learning apparatus and method based on manufacturing big data having a dataset history and partition management function for analysis support using machine learning.
  • a manufacturing big data-based machine learning apparatus and method provides a vibration data-based pre-processing and anomaly detection method, a manufacturing big data processing apparatus, and a manufacturing big data-based machine learning apparatus and method.
  • the vibration data-based pre-processing and abnormality detection method includes the steps of collecting vibration-related data in a manufacturing process, pre-processing the collected data, and applying the pre-processed data to a model to perform abnormal detection. input, and detecting an abnormality.
  • the manufacturing big data processing apparatus includes the steps of collecting historical data related to an event, mapping the collected historical data to be tagged, clustering the mapped historical data, and collecting the clustered historical data.
  • a memory comprising instructions configured to perform the step of visualizing and processors operatively coupled to the memory.
  • Manufacturing big data-based machine learning apparatus and method includes receiving manufacturing-related data, based on the received manufacturing-related data, using a manufacturing risk prediction model configured to predict anomalies , predicting the anomaly in the manufacturing step, and providing the predicted anomaly in the manufacturing step.
  • the present invention has an effect of providing a machine learning apparatus and method based on manufacturing big data capable of preprocessing according to real-time, variability, multidimensional, structured/unstructured, and large-capacity data characteristics using machine learning.
  • the present invention has the effect of providing a machine learning apparatus and method based on manufacturing big data that can process high-speed parallel processing-based streaming data using machine learning.
  • the present invention has the effect of providing a machine learning apparatus and method based on manufacturing big data that can configure and combine data sets multiplexed based on attribute (KEY).
  • the present invention has the effect of providing a machine learning apparatus and method based on manufacturing big data having a dataset history and partition management function for analysis support using machine learning.
  • FIG. 1 is a block diagram for explaining a machine learning apparatus and method based on manufacturing big data according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining a machine learning apparatus and method based on manufacturing big data according to an embodiment of the present invention.
  • 3 to 8 are schematic diagrams for explaining specific details of a vibration data-based preprocessing and anomaly detection apparatus according to an embodiment of the present invention.
  • 9 to 15 are schematic diagrams for explaining specific details of a manufacturing big data processing apparatus according to an embodiment of the present invention.
  • 16 to 17 are schematic diagrams for explaining specific details of a manufacturing big data-based machine learning apparatus and method according to an embodiment of the present invention.
  • FIG. 1 is a block diagram for explaining a machine learning apparatus and method based on manufacturing big data according to an embodiment of the present invention.
  • the device may include a communication unit 110 , a user input unit 120 , an output unit 130 , a memory 140 , an interface unit 150 , a control unit 160 , and a power supply unit 170 . Since the components shown in FIG. 1 are not essential, an apparatus having more or fewer components may be implemented.
  • the communication unit 110 may include one or more modules that enable wired/wireless communication between the device and the network in which the device is located.
  • the communication unit 110 transmits/receives a signal to and from at least one of an external device and a server on a communication network such as the Internet.
  • the signal may include various types of data.
  • the communication unit 110 may receive video data from various devices.
  • the user input unit 120 generates input data for the user to control the operation of the device.
  • the user input unit 120 may include a keypad, a dome switch, a touch pad (static pressure/capacitance), a jog wheel, a jog switch, and the like.
  • the output unit 130 is for generating an output related to visual, auditory or tactile sense, and may include a display unit 131 , a sound output module 132 , and the like.
  • the display unit 131 displays (outputs) information processed by the device.
  • the device displays a user interface (UI) or graphic user interface (GUI) related to the system.
  • UI user interface
  • GUI graphic user interface
  • the display unit 131 may include a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), and a flexible display (Flexible Display). display) and at least one of a three-dimensional display (3D display).
  • LCD liquid crystal display
  • TFT LCD thin film transistor-liquid crystal display
  • OLED organic light-emitting diode
  • flexible display Flexible Display
  • display a three-dimensional display
  • a moving picture may be displayed, frames of the moving picture may be displayed, and an interface for selecting frames and 3D rendering may be displayed.
  • the sound output module 132 may output audio data received from the communication unit 110 or stored in the memory 160 .
  • the sound output module 132 also outputs a sound signal related to a function performed by the device.
  • the memory unit 140 may store a program for processing and control of the controller 160 , and may perform a function for temporarily storing input/output data.
  • the memory 140 may include a flash memory type, a hard disk type, a multimedia card micro type, a card type memory (eg, SD or XD memory), and a RAM.
  • RAM Random Access Memory
  • SRAM Static Random Access Memory
  • ROM Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • PROM Programgrammable Read-Only Memory
  • magnetic memory magnetic It may include at least one type of storage medium among a disk and an optical disk.
  • the device may operate in relation to a web storage that performs a storage function of the memory 160 on the Internet.
  • the interface unit 150 serves as a passage with all external devices connected to the device.
  • the interface unit 150 receives data from an external device, receives power and transmits it to each component inside the device, or allows data inside the device to be transmitted to an external device.
  • wired/wireless headset ports, external charger ports, wired/wireless data ports, memory card ports, ports for connecting devices equipped with identification modules, audio input/output (I/O) ports, A video input/output (I/O) port, an earphone port, etc. may be included in the interface unit 150 .
  • a controller 160 typically controls the overall operation of the device. For example, it performs processing of data or related control and processing for displaying processed data.
  • the controller 160 may include a graphic module 161 for parallel data processing.
  • the graphic module 161 may be implemented within the control unit 160 or may be implemented separately from the control unit 160 .
  • the power supply unit 170 receives external power and internal power under the control of the control unit 160 to supply power necessary for the operation of each component.
  • Various embodiments described herein may be implemented in a computer-readable recording medium using, for example, software, hardware, or a combination thereof.
  • the embodiments described herein include application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), It may be implemented using at least one of processors, controllers, micro-controllers, microprocessors, and other electrical units for performing functions.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • embodiments such as the procedures and functions described in this specification may be implemented as separate software modules.
  • Each of the software modules may perform one or more functions and operations described herein.
  • the software code may be implemented as a software application written in a suitable programming language.
  • the software code may be stored in the memory 160 and executed by the controller 160 .
  • FIG. 2 is a schematic diagram for explaining a machine learning apparatus and method based on manufacturing big data according to an embodiment of the present invention.
  • Time-series, variable, multidimensional, and large amounts of data are stored in the original DB, and continuous data sources may have some missing values.
  • the preprocessing engine automates preprocessing through preprocessing parallel execution threads.
  • missing values may be supplemented through interpolation, for example, and missing values may be added using statistical information.
  • Pattern-type data can be supplemented according to the pattern.
  • Unstructured data can be converted into structured data and preprocessed by pattern complementation, interpolation complementation, or statistical addition.
  • an access query optimization operation to speed up a large data query may be performed.
  • refinement can be performed for optimization search query.
  • High-speed or sophisticated data can be set to be accessible as a service API.
  • it may be set to be searched by metadata, managed to allow modification of metadata, and monitoring of storage management performance may be possible.
  • 3 to 8 are schematic diagrams for explaining specific details of a vibration data-based preprocessing and anomaly detection apparatus according to an embodiment of the present invention.
  • FIG. 3 an apparatus capable of collecting vibration-related data in a chamber using plasma and detecting abnormality by vibration will be described.
  • the core of the present system is an algorithm for detecting an important change (event) occurring in the process and an algorithm for detecting an abnormal situation in the process based on a separate event.
  • the process event detection module detects the start and end times of the process and plays a role in classifying the data of the actual process period.
  • This module is composed of the following detailed modules.
  • the sensor data input manager is responsible for fetching continuously incoming sensor data from the database.
  • the data preprocessor determines whether there is noise in the data that does not affect the process due to the unique characteristics of the facility or special environment settings, removes the noise if necessary, and transforms the data into a form suitable for analysis (Noise Smoothing Operator) do.
  • the event detection manager is responsible for detecting the actual start and end of the process.
  • Event Detector analyzes the variability and directionality of data (Changing State Analyzer) and detects important changes in the process to determine the start and end time of the process (Event Detector).
  • Event Detector detects important changes in the process to determine the start and end time of the process.
  • the event detection algorithm that changes from non-process to process state (Start Event) or from process to non-process state (End Event) proceeds in the following order.
  • Step 1 Ratio X ⁇ 3 ⁇ using the mean (X) and standard deviation ( ⁇ ) based on the data values obtained for a certain period of time under the assumption that the non-process state is maintained for a certain period of time after the process starts to detect the event Set in the range of the process state.
  • Step 2 Define 6 types of general types in which the direction of data is changed for the range of the set non-process state.
  • the direction In the non-process state, the direction is changed in an increasing direction (1).
  • it In an increasing direction, it is changed in a decreasing direction (2), or it is changed to a non-process state (3).
  • the decreasing direction In the decreasing direction, it is changed in the increasing direction (4), or it is changed to a non-process state (5).
  • the same direction is maintained (6).
  • Step 4 In order to distinguish the process start and end of the selected sensor data based on steps 2 and 3, a core sensor with clear characteristics of process and non-process states is used as an auxiliary sensor. That is, if the minimum threshold determined as a process event is specified and the selected sensor enters the start event state and the number of auxiliary sensors in the event state exceeds the threshold, it is determined as the start of the actual process and the same method is used for the end event.
  • the data division manager divides the actual process data (Event da-ta) based on the start and end times of the process determined by the event detection manager and stores it in the storage (Segmented Data Storage) (Segmentation Operator).
  • the similarity with the reference pattern stored in the reference pattern storage is measured to determine whether the current process is proceeding normally, and abnormal This is a module that notifies the operator of the current process status when a suspected result is obtained.
  • the process parameter data extracted from the inline facility has a characteristic of having a length dependent on the amount of input LCD panel. Therefore, when measuring the similarity of two data with different input amounts, preprocessing is required to adjust the length to be similar to each other. In the case of processing multiple LCD panels, most of the data extracted during the operation of the equipment has an internal cycle or is processed within a certain boundary.
  • the preprocessing of inline facility data is performed for the purpose of matching the lengths of the two data for pattern matching as closely as possible.
  • a preprocessing rule of calculating the length ratio between the separated actual process data and the reference pattern and duplicating the data was used.
  • the preprocessing rule replicates the short-side data by a factor close to the long-side length so that the short-length data approximates the long-side data (Rule 1), or duplicates the long-side data by 2 times and the short-side data by 3 times ( Rule 2), using the original two data as it is (rule 3) is used.
  • Rule 1 Rule 2 and Rule 3 are in principle used to make the length ratio of the two data closest to each other.
  • the process anomaly detection manager extracts the reference pattern of the corresponding sensor data based on the sensor information to be analyzed (Pattern Selector) and measures the similarity through pattern matching with the process data (Similar-ity Measuring Operator).
  • a watt-hour meter a temperature sensor, a pressure gauge, a rectifier current monitoring unit, and an ACDC converter and a communication module connected to each are shown. Data can be collected from the communication modules to the device through the hub and stored in the DB.
  • the device may perform real-time parameter monitoring, abnormal parameter detection, recipe management, recipe quality management, real-time equipment monitoring, and equipment performance analysis, and each report may be provided.
  • the device may be divided into Yield Management System, Fault Detection & Classification, and Equip Predictive Maintenance parts, and each part may use a pre-trained deep learning model or a deep reinforcement learning model.
  • FIG. 8 an example of detecting an abnormal signal through time series analysis is illustrated, and an example of predicting Perriodic and Major Trend information by deep learning is illustrated.
  • 9 to 15 are schematic diagrams for explaining specific details of a manufacturing big data processing apparatus according to an embodiment of the present invention.
  • Past data, present data and future data can be used to predict the future situation. Through this, the production and manufacturing status can be quickly and accurately grasped.
  • factories and respective lines in different regions are connected through an operation network, and an operation side and a business office are connected.
  • FIG. 11 a flow diagram of a connection relationship from an infrastructure to a user for connection, analysis, and insight provision in devices, machines, and systems is shown.
  • a manufacturing big data processing method that collects data from sources including plants, factories, and sites, performs hybrid analytics (using PlantPulse, for example), and makes them accessible to users with applications (eg, using PlantPulse).
  • RAW data is collected as events or points, the collected data is mapped to be tagged, and the tagged data is analyzed through filtering, clustered, and visualized will be described.
  • FIG. 14 a process in which the data of FIG. 7 is collected, tagged, and processed will be described in more detail.
  • an input event is shown, and an event output through EQL is described.
  • an event output through EQL is described.
  • analysis utilization filtering, database lookup, event pattern matching, and the like are described.
  • FIGS. 16 to 17 a manufacturing big data-based machine learning apparatus and methods according to an embodiment of the present invention will be described with reference to FIGS. 16 to 17 .
  • 16 to 17 are schematic diagrams for explaining specific details of a manufacturing big data-based machine learning apparatus and method according to an embodiment of the present invention.
  • the manufacturing risk prediction model configured to predict anomalies of the present invention may be configured to include one hidden layer composed of 64 nodes.
  • a learning rate value which may be a parameter for finding a weight that minimizes a prediction error in predictive learning, may be set to 0.0009.
  • a momentum value which is a parameter value for minimizing prediction error and increasing the learning rate, may be set to 0.9.
  • the predictive model of the present invention can be configured to use 'rmsprop' as an optimization function to update parameters in learning, and 'as a function to determine the intensity of the input value of various clinical data transmitted to the output value' It can be configured to use the relu' function.
  • the type of prediction model of the present invention is not limited thereto.
  • the prediction model may include a Deep Neural Network (DNN), a CNN Convolutional Neural Network (DNN), a Recurrent Neural Network (RNN), a Deep Convolutional Neural Network (DCNN), a Restricted Boltzmann Machine (RBM), and a Deep Belief Network (DBN).
  • DNN Deep Neural Network
  • DNN CNN Convolutional Neural Network
  • RNN Recurrent Neural Network
  • DCNN Deep Convolutional Neural Network
  • RBM Restricted Boltzmann Machine
  • DBN Deep Belief Network
  • it may be a single shot detector (SSD) model or a predictive model based on U-net.
  • SSD single shot detector
  • the predictive model of the present invention may be a predictive model based on the MLP algorithm, which is a multi-layered artificial neural network. More specifically, the predictive model of the present invention may be a multi-layered prediction model in which an output layer predicting anomalies to which manufacturing-related data is input and one hidden layer exist between these layers.
  • the evaluation of the predictive model may be performed based on the LRP algorithm or more various algorithms without being limited thereto.
  • data having relevance to predicting anomalies may be determined based on a Randomized Decision forest algorithm or a Penalized Logistic Regression algorithm.

Abstract

The manufacturing big data-based machine learning apparatus and method according to the present invention provide a vibration data-based method for preprocessing and anomaly detection, an apparatus for manufacturing big data processing, and manufacturing big data-based machine learning apparatus and method.

Description

제조 빅테이터 기반의 머신러닝 장치 및 방법Machine learning device and method based on manufacturing big data
본 발명은 제조 빅테이터 기반의 머신러닝 장치 및 방법에 관한 것이다.The present invention relates to a machine learning apparatus and method based on manufacturing big data.
한국데이터산업진흥원이 발표한 『2018 데이터산업현황조사』에 따르면 제조기업의 빅데이터 도입률은 12.6%이다. 61.8%의 제조기업은 도입 논의조차 시도하지 않고 있다. 인력(39.9%)과 시장(35.8%)에 관한 정보가 부족하다는 게 큰 이유이다. 상품이나 서비스에 관한 정보 부족(35.8%)도 빅데이터 도입이 늦어지는 이유 중 하나다. 이에 적용가능한 제조와 관련한 빅데이터 처리 방법이 요구되고 있다. According to the 『2018 Data Industry Status Survey』 announced by the Korea Data Industry Promotion Agency, the adoption rate of big data in manufacturing companies is 12.6%. 61.8% of manufacturing companies are not even trying to discuss introduction. The main reason is the lack of information on manpower (39.9%) and the market (35.8%). Lack of information on products or services (35.8%) is also one of the reasons for the delay in the introduction of big data. A manufacturing-related big data processing method applicable to this is required.
또한, 본 발명의 해결하고자 하는 다른 과제는, 실시간, 가변성, 다차원, 정형/비정형, 대용량 데이터 특성에 따른 전처리가 가능한 제조 빅테이터 기반의 머신러닝 장치 및 방법을 제공하는 것이다.In addition, another object to be solved by the present invention is to provide a machine learning apparatus and method based on manufacturing big data capable of preprocessing according to real-time, variability, multidimensional, structured/unstructured, and large-capacity data characteristics.
또한, 본 발명의 해결하고자 하는 다른 과제는, 기계학습을 이용한, 고속병렬처리 기반 스트리밍 데이터를 처리할 수 있는 제조 빅테이터 기반의 머신러닝 장치 및 방법을 제공하는 것이다.In addition, another problem to be solved by the present invention is to provide a machine learning apparatus and method based on manufacturing big data that can process streaming data based on high-speed parallel processing using machine learning.
본 발명의 해결하고자 하는 또 다른 과제는, 속성(KEY)기준 다중화된 데이터셋 구성 및 조합이 가능한 제조 빅테이터 기반의 머신러닝 장치 및 방법을 제공하는 것이다.Another problem to be solved by the present invention is to provide a machine learning apparatus and method based on manufacturing big data that can configure and combine data sets multiplexed based on attribute (KEY).
본 발명의 해결하고자 하는 또 다른 과제는, 기계학습을 이용하여 분석 지원을 위한 데이터셋 히스토리 및 파티션 관리 기능을 가지는 제조 빅테이터 기반의 머신러닝 장치 및 방법을 제공하는 것이다.Another problem to be solved by the present invention is to provide a machine learning apparatus and method based on manufacturing big data having a dataset history and partition management function for analysis support using machine learning.
본 발명의 일 실시예에 따른 제조 빅데이터 기반의 머신러닝 장치 및 방법은 진동 데이터 기반의 전처리 및 이상감지 방법, 제조 빅데이터 처리 장치 및 제조 빅데이터 기반 기계학습 장치 및 방법을 제공한다.A manufacturing big data-based machine learning apparatus and method according to an embodiment of the present invention provides a vibration data-based pre-processing and anomaly detection method, a manufacturing big data processing apparatus, and a manufacturing big data-based machine learning apparatus and method.
본 발명의 일 실시예에 따른 진동 데이터 기반의 전처리 및 이상감지 방법은 제조 공정에서 진동과 관련한 데이터를 수집하는 단계, 수집된 데이터를 전처리하는 단계, 전처리된 데이터를 이상감지를 수행하도록 하는 모델에 입력하여, 이상을 감지하는 단계를 포함한다.The vibration data-based pre-processing and abnormality detection method according to an embodiment of the present invention includes the steps of collecting vibration-related data in a manufacturing process, pre-processing the collected data, and applying the pre-processed data to a model to perform abnormal detection. input, and detecting an abnormality.
본 발명의 일 실시예에 따른 제조 빅데이터 처리 장치는 이벤트와 관련한 과거 데이터를 수집하는 단계, 수집된 과거 데이터가 태깅되도록 매핑하는 단계, 매핑된 과거 데이터를 클러스터링하는 단계, 및 클러스터링된 과거 데이터를 시각화하는 단계를 수행하도록 구성된 인스트럭션들을 포함하는 메모리 및 상기 메모리와 동작가능하게 연결된 프로세서들을 포함한다.The manufacturing big data processing apparatus according to an embodiment of the present invention includes the steps of collecting historical data related to an event, mapping the collected historical data to be tagged, clustering the mapped historical data, and collecting the clustered historical data. A memory comprising instructions configured to perform the step of visualizing and processors operatively coupled to the memory.
본 발명의 일 실시예에 따른 제조 빅테이터 기반 기계학습 장치 및 방법은 제조와 연관된 데이터를 수신하는 단계, 수신된 제조와 연관된 데이터를 기초로, 이상 징후를 예측하도록 구성된 제조 위험도 예측 모델을 이용하여, 제조 단계에서의 이상 징후를 예측하는 단계, 및 예측된 제조 단계에서의 이상 징후를 제공하는 단계를 포함한다.Manufacturing big data-based machine learning apparatus and method according to an embodiment of the present invention includes receiving manufacturing-related data, based on the received manufacturing-related data, using a manufacturing risk prediction model configured to predict anomalies , predicting the anomaly in the manufacturing step, and providing the predicted anomaly in the manufacturing step.
또한, 본 발명은, 기계학습을 이용한, 실시간, 가변성, 다차원, 정형/비정형, 대용량 데이터 특성에 따른 전처리가 가능한 제조 빅테이터 기반의 머신러닝 장치 및 방법을 제공하는 효과가 있다.In addition, the present invention has an effect of providing a machine learning apparatus and method based on manufacturing big data capable of preprocessing according to real-time, variability, multidimensional, structured/unstructured, and large-capacity data characteristics using machine learning.
또한, 본 발명은, 기계학습을 이용한, 고속병렬처리 기반 스트리밍 데이터를 처리할 수 있는 제조 빅테이터 기반의 머신러닝 장치 및 방법을 제공할 수 있는 효과가 있다.In addition, the present invention has the effect of providing a machine learning apparatus and method based on manufacturing big data that can process high-speed parallel processing-based streaming data using machine learning.
본 발명은, 속성(KEY)기준 다중화된 데이터셋 구성 및 조합이 가능한 제조 빅테이터 기반의 머신러닝 장치 및 방법을 제공할 수 있는 효과가 있다.The present invention has the effect of providing a machine learning apparatus and method based on manufacturing big data that can configure and combine data sets multiplexed based on attribute (KEY).
본 발명은, 기계학습을 이용한, 분석 지원을 위한 데이터셋 히스토리 및 파티션 관리 기능을 가지는 제조 빅테이터 기반의 머신러닝 장치 및 방법을 제공할 수 있는 효과가 있다.The present invention has the effect of providing a machine learning apparatus and method based on manufacturing big data having a dataset history and partition management function for analysis support using machine learning.
도 1은 본 발명의 일 실시예에 따른 제조 빅테이터 기반의 머신러닝 장치 및 방법을 설명하기 위한 블록도이다.1 is a block diagram for explaining a machine learning apparatus and method based on manufacturing big data according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 제조 빅테이터 기반의 머신러닝 장치 및 방법을 설명하기 위한 개략도이다.2 is a schematic diagram for explaining a machine learning apparatus and method based on manufacturing big data according to an embodiment of the present invention.
도 3 내지 8은 본 발명의 일 실시예에 따른 진동 데이터 기반의 전처리 및 이상감지 장치의 구체 사항들을 설명하기 위한 개략도들이다.3 to 8 are schematic diagrams for explaining specific details of a vibration data-based preprocessing and anomaly detection apparatus according to an embodiment of the present invention.
도 9 내지 15는 본 발명의 일 실시예에 따른 제조 빅데이터 처리 장치의 구체 사항들을 설명하기 위한 개략도들이다.9 to 15 are schematic diagrams for explaining specific details of a manufacturing big data processing apparatus according to an embodiment of the present invention.
도 16 내지 17은 본 발명의 일 실시예에 따른 제조 빅데이터 기반 기계학습 장치 및 방법의 구체 사항들을 설명하기 위한 개략도들이다. 16 to 17 are schematic diagrams for explaining specific details of a manufacturing big data-based machine learning apparatus and method according to an embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be embodied in various different forms, and only these embodiments allow the disclosure of the present invention to be complete, and common knowledge in the art to which the present invention pertains It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.Although the first, second, etc. are used to describe various elements, these elements are not limited by these terms, of course. These terms are only used to distinguish one component from another. Therefore, it goes without saying that the first component mentioned below may be the second component within the spirit of the present invention.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Like reference numerals refer to like elements throughout.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하며, 당업자가 충분히 이해할 수 있듯이 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시 가능할 수도 있다.Each feature of the various embodiments of the present invention may be partially or wholly combined or combined with each other, and as those skilled in the art will fully understand, technically various interlocking and driving are possible, and each embodiment may be implemented independently of each other, and It may be possible to implement together in a related relationship.
이하, 첨부된 도면을 참조하여 본 발명의 다양한 실시예들을 상세히 설명한다.Hereinafter, various embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 제조 빅테이터 기반의 머신러닝 장치 및 방법를 설명하기 위한 블록도이다.1 is a block diagram for explaining a machine learning apparatus and method based on manufacturing big data according to an embodiment of the present invention.
상기 장치는 통신부(110), 사용자 입력부(120), 출력부(130), 메모리(140), 인터페이스부(150), 제어부(160) 및 전원 공급부(170) 등을 포함할 수 있다. 도 1에 도시된 구성요소들이 필수적인 것은 아니어서, 그보다 많은 구성요소들을 가지거나 그보다 적은 구성요소들을 갖는 장치가 구현될 수도 있다.The device may include a communication unit 110 , a user input unit 120 , an output unit 130 , a memory 140 , an interface unit 150 , a control unit 160 , and a power supply unit 170 . Since the components shown in FIG. 1 are not essential, an apparatus having more or fewer components may be implemented.
이하, 상기 구성요소들에 대해 차례로 살펴본다.Hereinafter, the components will be described in turn.
통신부(110)는 장치와 장치가 위치한 네트워크 사이의 유무선 통신을 가능하게 하는 하나 이상의 모듈을 포함할 수 있다. 통신부(110)는, 인터넷 등의 통신망 상에서 외부의 장치, 서버 중 적어도 하나와 신호를 송수신한다. 상기 신호는, 다양한 형태의 데이터를 포함할 수 있다. 통신부(110)는 다양한 장치로부터 동영상 데이터를 수신할 수 있다.The communication unit 110 may include one or more modules that enable wired/wireless communication between the device and the network in which the device is located. The communication unit 110 transmits/receives a signal to and from at least one of an external device and a server on a communication network such as the Internet. The signal may include various types of data. The communication unit 110 may receive video data from various devices.
사용자 입력부(120)는 사용자가 장치기의 동작 제어를 위한 입력 데이터를 발생시킨다. 사용자 입력부(120)는 키 패드(key pad) 돔 스위치 (domeswitch), 터치 패드(정압/정전), 조그 휠, 조그 스위치 등으로 구성될 수 있다. The user input unit 120 generates input data for the user to control the operation of the device. The user input unit 120 may include a keypad, a dome switch, a touch pad (static pressure/capacitance), a jog wheel, a jog switch, and the like.
출력부(130)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시키기 위한 것으로, 이에는 디스플레이부(131), 음향 출력 모듈(132) 등이 포함될 수 있다.The output unit 130 is for generating an output related to visual, auditory or tactile sense, and may include a display unit 131 , a sound output module 132 , and the like.
디스플레이부(131)는 장치에서 처리되는 정보를 표시(출력)한다. 예를 들어, 장치가 시스템과 관련된 UI(User Interface) 또는 GUI(Graphic User Interface)를 표시한다. The display unit 131 displays (outputs) information processed by the device. For example, the device displays a user interface (UI) or graphic user interface (GUI) related to the system.
디스플레이부(131)는 액정 디스플레이(liquid crystal display, LCD), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display, TFT LCD), 유기 발광 다이오드(organic light-emitting diode, OLED), 플렉시블 디스플레이(flexible display), 3차원 디스플레이(3D display) 중에서 적어도 하나를 포함할 수 있다. 디스플레이부(131)를 통해, 동영상을 표시하고, 동영상의 프레임들을 표시하며, 프레임들의 선택 및 3D 렌더링을 위한 인터페이스를 표시할 수 있다.The display unit 131 may include a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), and a flexible display (Flexible Display). display) and at least one of a three-dimensional display (3D display). Through the display unit 131 , a moving picture may be displayed, frames of the moving picture may be displayed, and an interface for selecting frames and 3D rendering may be displayed.
음향 출력 모듈(132)은 통신부(110)로부터 수신되거나 메모리(160)에 저장된 오디오 데이터를 출력할 수 있다. 음향 출력 모듈(132)은 장치에서 수행되는 기능과 관련된 음향 신호를 출력하기도 한다.The sound output module 132 may output audio data received from the communication unit 110 or stored in the memory 160 . The sound output module 132 also outputs a sound signal related to a function performed by the device.
메모리부(140)는 제어부(160)의 처리 및 제어를 위한 프로그램이 저장될 수도 있고, 입/출력되는 데이터들의 임시 저장을 위한 기능을 수행할 수도 있다. 메모리(140)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예를 들어 SD 또는 XD 메모리 등), 램(Random Access Memory, RAM), SRAM(Static Random Access Memory), 롬(Read-Only Memory, ROM), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory), 자기 메모리, 자기 디스크, 광디스크 중 적어도 하나의 타입의 저장매체를 포함할 수 있다. 장치는 인터넷(internet)상에서 상기 메모리(160)의 저장 기능을 수행하는 웹 스토리지(web storage)와 관련되어 동작할 수도 있다.The memory unit 140 may store a program for processing and control of the controller 160 , and may perform a function for temporarily storing input/output data. The memory 140 may include a flash memory type, a hard disk type, a multimedia card micro type, a card type memory (eg, SD or XD memory), and a RAM. (Random Access Memory, RAM), SRAM (Static Random Access Memory), ROM (Read-Only Memory, ROM), EEPROM (Electrically Erasable Programmable Read-Only Memory), PROM (Programmable Read-Only Memory), magnetic memory, magnetic It may include at least one type of storage medium among a disk and an optical disk. The device may operate in relation to a web storage that performs a storage function of the memory 160 on the Internet.
인터페이스부(150)는 장치에 연결되는 모든 외부기기와의 통로 역할을 한다. 인터페이스부(150)는 외부 기기로부터 데이터를 전송받거나, 전원을 공급받아 장치 내부의 각 구성 요소에 전달하거나, 장치 내부의 데이터가 외부 기기로 전송되도록 한다. 예를 들어, 유/무선 헤드셋 포트, 외부 충전기 포트, 유/무선 데이터 포트, 메모리 카드(memory card) 포트, 식별 모듈이 구비된 장치를 연결하는 포트, 오디오 I/O(Input/Output) 포트, 비디오 I/O(Input/Output) 포트, 이어폰 포트 등이 인터페이스부(150)에 포함될 수 있다. The interface unit 150 serves as a passage with all external devices connected to the device. The interface unit 150 receives data from an external device, receives power and transmits it to each component inside the device, or allows data inside the device to be transmitted to an external device. For example, wired/wireless headset ports, external charger ports, wired/wireless data ports, memory card ports, ports for connecting devices equipped with identification modules, audio input/output (I/O) ports, A video input/output (I/O) port, an earphone port, etc. may be included in the interface unit 150 .
제어부(controller, 160)는 통상적으로 장치의 전반적인 동작을 제어한다. 예를 들어 데이터의 처리나 처리된 데이터를 디스플레이하기 위한 관련된 제어 및 처리를 수행한다. 제어부(160)는 병렬 데이터 처리를 위한 그래픽 모듈(161)을 구비할 수도 있다. 그래픽 모듈(161)은 제어부(160) 내에 구현될 수도 있고, 제어부(160)와 별도로 구현될 수도 있다.A controller 160 typically controls the overall operation of the device. For example, it performs processing of data or related control and processing for displaying processed data. The controller 160 may include a graphic module 161 for parallel data processing. The graphic module 161 may be implemented within the control unit 160 or may be implemented separately from the control unit 160 .
전원 공급부(170)는 제어부(160)의 제어에 의해 외부의 전원, 내부의 전원을 인가받아 각 구성요소들의 동작에 필요한 전원을 공급한다.The power supply unit 170 receives external power and internal power under the control of the control unit 160 to supply power necessary for the operation of each component.
여기에 설명되는 다양한 실시예는 예를 들어, 소프트웨어, 하드웨어 또는 이들의 조합된 것을 이용하여 컴퓨터 또는 이와 유사한 장치로 읽을 수 있는 기록매체 내에서 구현될 수 있다.Various embodiments described herein may be implemented in a computer-readable recording medium using, for example, software, hardware, or a combination thereof.
하드웨어적인 구현에 의하면, 여기에 설명되는 실시예는 ASICs(application specific integrated circuits), DSPs (digital signal processors), DSPDs (digital signal processing devices), PLDs (programmable logic devices), FPGAs (field programmable gate arrays, 프로세서(processors), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적인 유닛 중 적어도 하나를 이용하여 구현될 수 있다. 일부의 경우에 본 명세서에서 설명되는 실시예들이 제어부(160) 자체로 구현될 수 있다.According to the hardware implementation, the embodiments described herein include application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), It may be implemented using at least one of processors, controllers, micro-controllers, microprocessors, and other electrical units for performing functions. The described embodiments may be implemented by the controller 160 itself.
소프트웨어적인 구현에 의하면, 본 명세서에서 설명되는 절차 및 기능과 같은 실시예들은 별도의 소프트웨어 모듈들로 구현될 수 있다. 상기 소프트웨어 모듈들 각각은 본 명세서에서 설명되는 하나 이상의 기능 및 작동을 수행할 수 있다. 적절한 프로그램 언어로 쓰여진 소프트웨어 어플리케이션으로 소프트웨어 코드가 구현될 수 있다. 상기 소프트웨어 코드는 메모리(160)에 저장되고, 제어부(160)에 의해 실행될 수 있다.According to the software implementation, embodiments such as the procedures and functions described in this specification may be implemented as separate software modules. Each of the software modules may perform one or more functions and operations described herein. The software code may be implemented as a software application written in a suitable programming language. The software code may be stored in the memory 160 and executed by the controller 160 .
도 2는 본 발명의 일 실시예에 따른 제조 빅테이터 기반의 머신러닝 장치 및 방법을 설명하기 위한 개략도이다.2 is a schematic diagram for explaining a machine learning apparatus and method based on manufacturing big data according to an embodiment of the present invention.
시계열적, 가변성, 다차원 그리고 대용량의 데이터가 원본 DB에 저장되고, 연속 데이터 원본은 일부 결측치를 가질 수 있다. 전처리 엔진은 전처리 병렬 실행 쓰레드들을 통해 전처리를 자동화한다. 연속 데이터는 예를 들어 보간 작업을 통해 결측치가 보완될 수 있으며, 통계 정보를 이용해 결측치가 추가될 수도 있다. 패턴형 자료는 패턴에 따라 보완될 수 있다. 비정형 자료는 정형 데이터로 변환되고 패턴 보완, 보간 보완 또는 통계 추가 방식으로 전처리될 수 있다. Time-series, variable, multidimensional, and large amounts of data are stored in the original DB, and continuous data sources may have some missing values. The preprocessing engine automates preprocessing through preprocessing parallel execution threads. For continuous data, missing values may be supplemented through interpolation, for example, and missing values may be added using statistical information. Pattern-type data can be supplemented according to the pattern. Unstructured data can be converted into structured data and preprocessed by pattern complementation, interpolation complementation, or statistical addition.
다음으로, 대용량 데이터 쿼리를 고속화하기 위한 접근 쿼리 최적화 작업이 수행될 수 있다. 또한, 비정형, 패턴형 자료는 최적화 탐색 쿼리를 위해 정교화 작접이 수행될 수 있다. 고속화 또는 정교화된 데이터는 서비스 API로 접근가능하도록 설정될 수 있다. 또한, 메타데이터로 검색되도록 설정될 수 있으며, 메타데이터가 수정이 가능하도록 관리될 수 있으며, 스토리지 관리 성능 모니터링이 가능할 수도 있다.Next, an access query optimization operation to speed up a large data query may be performed. In addition, for unstructured and patterned data, refinement can be performed for optimization search query. High-speed or sophisticated data can be set to be accessible as a service API. In addition, it may be set to be searched by metadata, managed to allow modification of metadata, and monitoring of storage management performance may be possible.
이하에서는, 도 3 내지 8을 참조하여, 본 발명의 일 실시예에 따른 진동 데이터 기반의 전처리 및 이상감지 장치의 구체 사항들을 설명한다.Hereinafter, specific details of the vibration data-based preprocessing and anomaly detection apparatus according to an embodiment of the present invention will be described with reference to FIGS. 3 to 8 .
도 3 내지 8은 본 발명의 일 실시예에 따른 진동 데이터 기반의 전처리 및 이상감지 장치의 구체 사항들을 설명하기 위한 개략도들이다.3 to 8 are schematic diagrams for explaining specific details of a vibration data-based preprocessing and anomaly detection apparatus according to an embodiment of the present invention.
도 3을 참조하면, 플라즈마를 이용하는 챔버 내에서 진동과 연관된 데이터를 수집하고, 진동에 의한 이상감지를 수행할 수 있는 장치가 설명된다.Referring to FIG. 3 , an apparatus capable of collecting vibration-related data in a chamber using plasma and detecting abnormality by vibration will be described.
도 4를 참조하면, 본 시스템의 핵심은 공정상에서 발생하는 중요한 변화(이벤트)를 감지하는 알고리즘과 구분된 이벤트를 대상으로 공정의 이상상황을 감지하는 알고리즘이다. 공정 이벤트 감지 모듈은 공정의 시작과 종료 시점을 발견하여 실제 공정 기간의 데이터를 구분해주는 역할을 한다. 본 모듈은 다음의 세부 모듈로 구성이 된다. 센서 데이터 입력 관리자는 연속적으로 들어오는 센서 데이터를 데이터베이스로부터 가져오는 역할을 수행한다. 데이터 전처리기는 설비의 고유 특성이나 특수한 환경 설정으로 인해 공정에 영향을 주지 않는 데이터의 잡음 여부를 판단하여, 필요한 경우 잡음을 제거하고 분석에 적합한 형태의 데이터로 변형하는(Noise Smoothing Operator) 역할을 수행한다. 이벤트 감지 관리자는 공정의 실제 시작과 종료를 감지하는 역할을 수행한다. 이를 위해 데이터의 변동성과 방향성을 분석하고(Changing State Analyzer) 공정상의 중요한 변화를 감지하여 공정의 시작과 종료 시점을 판단한다(Event Detector). 비공정에서 공정 상태로 변경(Start Event)되거나, 공정에서 비공정 상태로 변경(End Event)되는 이벤트 감지 알고리즘은 다음 순서대로 진행된다. Referring to FIG. 4 , the core of the present system is an algorithm for detecting an important change (event) occurring in the process and an algorithm for detecting an abnormal situation in the process based on a separate event. The process event detection module detects the start and end times of the process and plays a role in classifying the data of the actual process period. This module is composed of the following detailed modules. The sensor data input manager is responsible for fetching continuously incoming sensor data from the database. The data preprocessor determines whether there is noise in the data that does not affect the process due to the unique characteristics of the facility or special environment settings, removes the noise if necessary, and transforms the data into a form suitable for analysis (Noise Smoothing Operator) do. The event detection manager is responsible for detecting the actual start and end of the process. To this end, it analyzes the variability and directionality of data (Changing State Analyzer) and detects important changes in the process to determine the start and end time of the process (Event Detector). The event detection algorithm that changes from non-process to process state (Start Event) or from process to non-process state (End Event) proceeds in the following order.
단계 1: 이벤트를 감지하기 위해 공정이 시작된 후 일정시간 동안 비공정 상태가 유지된다는 가정 하에 일정 시간 동안 얻은 데이터 값을 바탕으로 평균(X)과 표준편차(σ)를 이용하여 X±3σ를 비공정 상태의 범위로 설정한다. Step 1: Ratio X±3σ using the mean (X) and standard deviation (σ) based on the data values obtained for a certain period of time under the assumption that the non-process state is maintained for a certain period of time after the process starts to detect the event Set in the range of the process state.
단계 2: 설정된 비공정 상태의 범위에 대해서 데이터의 방향이 변경되는 일반적인 형태에 대해 6가지 형태를 정의한다. 비공정 상태에서는 증가하는 방향으로 방향성이 변화된다(1). 증가하는 방향에서는 감소하는 방향으로 변화되거나(2), 비공정 상태로 변화된다(3). 감소하는 방향에서는 증가하는 방향으로 변화되거나(4), 비공정 상태로 변화된다(5). 그리고 같은 방향을 유지하는 경우도 발생한다(6).Step 2: Define 6 types of general types in which the direction of data is changed for the range of the set non-process state. In the non-process state, the direction is changed in an increasing direction (1). In an increasing direction, it is changed in a decreasing direction (2), or it is changed to a non-process state (3). In the decreasing direction, it is changed in the increasing direction (4), or it is changed to a non-process state (5). And there are cases where the same direction is maintained (6).
(4)의 경우 공정 종료와 동시에 시작이 발생되는 이벤트를 의미한다. 단계 4: 단계 2와 단계 3을 바탕으로 선택한 센서 데이터의 공정 시작과 종료을 구분하기 위해서 공정과 비공정 상태의 특성이 명확한 핵심 센서를 보조센서로 사용한다. 즉, 공정 이벤트로 결정한 최소한의 임계치를 지정하여 선택 센서가 시작 이벤트 상태가 되고 이벤트 상태인 보조센서의 수가 임계치 이상이 될 경우 실제 공정의 시작으로 판단하고 종료 이벤트의 경우에도 같은 방식을 사용한다.In case of (4), it means an event that starts at the same time as the process ends. Step 4: In order to distinguish the process start and end of the selected sensor data based on steps 2 and 3, a core sensor with clear characteristics of process and non-process states is used as an auxiliary sensor. That is, if the minimum threshold determined as a process event is specified and the selected sensor enters the start event state and the number of auxiliary sensors in the event state exceeds the threshold, it is determined as the start of the actual process and the same method is used for the end event.
데이터 구분 관리자는 이벤트 감지 관리자로부터 판단된 공정의 시작과 종료 시점을 바탕으로 실제 공정 데이터(Event da-ta)를 구분하여 저장소(Segmented Data Storage)에 저장하는 역할을 수행한다(Segmentation Operator).The data division manager divides the actual process data (Event da-ta) based on the start and end times of the process determined by the event detection manager and stores it in the storage (Segmented Data Storage) (Segmentation Operator).
구분된 데이터 저장소(Segmented Data Storage)에 저장된 실제 공정 부분 데이터를 이용하여 레퍼런스 패턴 저장소(Reference Pattern Storage)에 보관된 레퍼런스 패턴과의 유사도를 측정하여 현 공정이 정상적으로 진행되고 있는지의 여부를 판단하고 비정상으로 의심되는 결과가 나올 경우 작업자에게 현 공정의 상태를 알리는 역할을 수행하는 모듈이다. 인라인 설비에서 추출되는 공정 매개 변수 데이터는 투입되는 LCD 패널의 양에 의존적인 길이를 갖는 특징을 갖는다. 따라서 서로 투입된 양이 다른 두 데이터의 유사도를 측정하는 경우에는 서로 길이가 비슷하도록 조정하는 전처리가 필요하다. 여러 개의 LCD 패널을 처리할 경우 설비가 가동된 기간 동안 추출된 데이터는 대부분 내부적인 주기를 띄거나 일정 경계선 안에서 공정이 이루어진다.Using the actual process part data stored in the segmented data storage, the similarity with the reference pattern stored in the reference pattern storage is measured to determine whether the current process is proceeding normally, and abnormal This is a module that notifies the operator of the current process status when a suspected result is obtained. The process parameter data extracted from the inline facility has a characteristic of having a length dependent on the amount of input LCD panel. Therefore, when measuring the similarity of two data with different input amounts, preprocessing is required to adjust the length to be similar to each other. In the case of processing multiple LCD panels, most of the data extracted during the operation of the equipment has an internal cycle or is processed within a certain boundary.
인라인 설비 데이터의 전처리는 패턴 매칭을 위한 두 데이터의 길이를 최대한 비슷하게 맞춰주는 것을 목적으로 수행된다. 이를 위해 구분된 실제 공정 데이터와 레퍼런스 패턴과의 길이 비율을 계산하고 데이터를 복제하는 방식의 전처리 규칙을 사용하였다. 전처리 규칙은 짧은 길이의 데이터를 길이가 긴 데이터에 근접해지도록 짧은 쪽 데이터를 긴 쪽 길이에 근접한 배율만큼 복제하거나(규칙 1), 긴 쪽 데이터를 2배, 짧은 쪽 데이터를 3배씩 각각 복제하거나(규칙 2), 원래의 두 데이터를 그대로 이용하는(규칙 3) 방식을 사용한다. 이 3가지 규칙 외에 복제 배율을 다양하게 하여 더 근접한 결과를 얻을 수 있지만 패턴 매칭의 유사도 측정 속도 및 다양성만큼 성능 개선 효과가 많이 않음을 고려하여 다른 규칙은 고려하지 않는다. 규칙 1, 규칙 2, 규칙 3의 사용은 두 데이터의 길이 비율을 가장 근접하게 만드는 규칙 사용을 원칙으로 한다. The preprocessing of inline facility data is performed for the purpose of matching the lengths of the two data for pattern matching as closely as possible. For this, a preprocessing rule of calculating the length ratio between the separated actual process data and the reference pattern and duplicating the data was used. The preprocessing rule replicates the short-side data by a factor close to the long-side length so that the short-length data approximates the long-side data (Rule 1), or duplicates the long-side data by 2 times and the short-side data by 3 times ( Rule 2), using the original two data as it is (rule 3) is used. In addition to these three rules, a closer result can be obtained by varying the replication magnification, but considering that the performance improvement effect is not as great as the similarity measurement speed and diversity of pattern matching, other rules are not considered. Rule 1, Rule 2, and Rule 3 are in principle used to make the length ratio of the two data closest to each other.
공정 이상 감지 관리자는 분석 대상 센서 정보를 바탕으로 해당 센서 데이터의 레퍼런스 패턴을 추출하고(Pattern Selector) 공정 데이터와의 패턴 매칭을 통한 유사도를 측정한다(Similar-ity Measuring Operator). The process anomaly detection manager extracts the reference pattern of the corresponding sensor data based on the sensor information to be analyzed (Pattern Selector) and measures the similarity through pattern matching with the process data (Similar-ity Measuring Operator).
도 5를 참조하면, 전력량계, 온도센서, 압력계, 정류기 전류감시 유닛 그리고 각각에 연결된 ACDC컨버터와 통신 모듈이 도시된다. 통신모듈들로부터 허브를 통해 장치로 데이터가 수집되고 DB에 저장될 수 있다.Referring to FIG. 5 , a watt-hour meter, a temperature sensor, a pressure gauge, a rectifier current monitoring unit, and an ACDC converter and a communication module connected to each are shown. Data can be collected from the communication modules to the device through the hub and stored in the DB.
도 6을 참조하면, 장치는 리얼타임 파라미터 모니터링과 비정상 파라미터 검측, 레시피 메니지먼트, 레시피 퀄리티 관리 및 리얼타임 장비 모니터링 및 장비 퍼포먼스 분석을 수행할 수 있으며, 각각의 리포트가 제공될 수 있다.Referring to FIG. 6 , the device may perform real-time parameter monitoring, abnormal parameter detection, recipe management, recipe quality management, real-time equipment monitoring, and equipment performance analysis, and each report may be provided.
도 7을 참조하면, 장치는 Yield Management System, Fault Detection & Classification, Equip Predictive Maintenance 부분으로 나누어질 수 있으며, 각각 부분은 미리 트레이닝된 딥러닝 모델 또는 딥강화학습된 모델을 이용할 수 있다. Referring to FIG. 7 , the device may be divided into Yield Management System, Fault Detection & Classification, and Equip Predictive Maintenance parts, and each part may use a pre-trained deep learning model or a deep reinforcement learning model.
도 8을 참조하면, 시계열 분석을 통한 비정상 신호를 감지하는 모습의 예시가 도시되며, Perriodic 및 Major Trend 정보를 딥러닝으로 예측하는 모습의 예시가 도시된다.Referring to FIG. 8 , an example of detecting an abnormal signal through time series analysis is illustrated, and an example of predicting Perriodic and Major Trend information by deep learning is illustrated.
이하에서는, 도 9 내지 15를 참조하여, 본 발명의 일 실시예에 따른 제조 빅데이터 처리 장치의 구체 사항들을 설명한다.Hereinafter, specific details of the manufacturing big data processing apparatus according to an embodiment of the present invention will be described with reference to FIGS. 9 to 15 .
도 9 내지 15는 본 발명의 일 실시예에 따른 제조 빅데이터 처리 장치의 구체 사항들을 설명하기 위한 개략도들이다.9 to 15 are schematic diagrams for explaining specific details of a manufacturing big data processing apparatus according to an embodiment of the present invention.
도 9을 참조하면, 최적화를 통한 스마트 팩토리 경영을 위해 데이터 자산의 활용방안이 설명된다. 과거 데이터, 현재 데이터 및 미래 데이터를 이용하여 향후 상황을 예측할 수 있다. 이를 통해 생산 제조 현황이 빠르고 정확하게 파악될 수 있다.Referring to FIG. 9 , a method of utilizing data assets for smart factory management through optimization is described. Past data, present data and future data can be used to predict the future situation. Through this, the production and manufacturing status can be quickly and accurately grasped.
도 10를 참조하면, 서로 다른 지역의 공장과 각각의 라인들이 오퍼레이션 네트워크로 연결되며, 오퍼레이션측과 비즈니스 오피스가 연결되는 것을 나타낸다.Referring to FIG. 10 , factories and respective lines in different regions are connected through an operation network, and an operation side and a business office are connected.
도 11를 참조하면, 디바이스, 머신 및 시스템 등에서의 연결, 분석, 인사이트 제공을 위한, 인프라스트럭처에서부터 사용자까지의 연결 관계 흐름도가 나타내어진다.Referring to FIG. 11 , a flow diagram of a connection relationship from an infrastructure to a user for connection, analysis, and insight provision in devices, machines, and systems is shown.
도 12을 참조하면, 플랜트, 공장, 사이트를 포함하는 소스로부터 데이터를 수집하고, 하이브리드 분석을 수행하고, (예컨대 PlantPulse 사용) 응용프로그램으로 사용자들이 액세스할 수 있도록 하는 제조 빅데이터 처리 방법이 설명된다.12 , a manufacturing big data processing method is described that collects data from sources including plants, factories, and sites, performs hybrid analytics (using PlantPulse, for example), and makes them accessible to users with applications (eg, using PlantPulse). .
도 13을 참조하면, RAW데이터가 이벤트 또는 포인트로 수집되고, 수집된 데이터가 태깅되도록 매핑되고, 태깅된 데이터는 필터링 등을 통해 분석되고, 클러스터링되며, 시각화되는 과정이 설명된다. Referring to FIG. 13 , a process in which RAW data is collected as events or points, the collected data is mapped to be tagged, and the tagged data is analyzed through filtering, clustered, and visualized will be described.
도 14을 참조하면, 도 7의 데이터가 수집되고, 테깅되고, 처리되는 과정이 보다 구체적으로 설명된다.Referring to FIG. 14 , a process in which the data of FIG. 7 is collected, tagged, and processed will be described in more detail.
도 15를 참조하면, 입력되는 이벤트가 도시되고, EQL을 통해서 출력되는 이벤트가 설명된다. 또한, 분석활용의 예로서, 필터링, 데이터베이스 룩업, 이벤트 패턴 매칭등이 설명된다.Referring to FIG. 15 , an input event is shown, and an event output through EQL is described. In addition, as examples of analysis utilization, filtering, database lookup, event pattern matching, and the like are described.
이하에서는, 도 16 내지 17을 참조하여, 본 발명의 일 실시예에 따른 제조 빅데이터 기반 기계학습 장치 및 방법들을 설명한다.Hereinafter, a manufacturing big data-based machine learning apparatus and methods according to an embodiment of the present invention will be described with reference to FIGS. 16 to 17 .
도 16 내지 17은 본 발명의 일 실시예에 따른 제조 빅데이터 기반 기계학습 장치 및 방법의 구체 사항들을 설명하기 위한 개략도들이다. 16 to 17 are schematic diagrams for explaining specific details of a manufacturing big data-based machine learning apparatus and method according to an embodiment of the present invention.
보다 구체적으로, 본 발명의 이상 징후를 예측하도록 구성된 제조 위험도 예측 모델은, 64 개의 노드로 구성된 1 개의 히든 레이어를 포함하도록 구성될 수 있다. 나아가, 상기 예측 모델은, 예측 학습에 있어서 예측의 오차를 최소화하는 가중치를 찾기 위한 파라미터일 수 있는 학습 비율 (learning rate) 값이 0.0009로 설정될 수 있다. 또한, 예측의 오차를 최소화하며 학습 속도를 증가시키기 위한 파라미터 값인 모멘텀 (momentum) 값이 0.9로 설정될 수 있다. 또한, 본 발명의 예측 모델은, 학습에 있어서 매개 변수를 갱신하는 최적화 함수로서 'rmsprop'를 이용하도록 구성될 수 있고, 다양한 임상적 데이터들의 입력 값이 출력값에 전달되는 강도를 결정하는 함수로서 'relu'함수를 이용하도록 구성될 수 있다.More specifically, the manufacturing risk prediction model configured to predict anomalies of the present invention may be configured to include one hidden layer composed of 64 nodes. Furthermore, in the predictive model, a learning rate value, which may be a parameter for finding a weight that minimizes a prediction error in predictive learning, may be set to 0.0009. Also, a momentum value, which is a parameter value for minimizing prediction error and increasing the learning rate, may be set to 0.9. In addition, the predictive model of the present invention can be configured to use 'rmsprop' as an optimization function to update parameters in learning, and 'as a function to determine the intensity of the input value of various clinical data transmitted to the output value' It can be configured to use the relu' function.
그러나, 본 발명의 예측 모델 종류는 이에 제한되는 것이 아니다. 예를 들어, 상기 예측 모델은, DNN (Deep Neural Network), CNN Convolutional Neural Network), RNN (Recurrent Neural Network), DCNN (Deep Convolutional Neural Network), RBM (Restricted Boltzmann Machine), DBN (Deep Belief Network), SSD (Single Shot Detector) 모델 또는 U-net을 기반으로 하는 예측 모델일 수도 있다.However, the type of prediction model of the present invention is not limited thereto. For example, the prediction model may include a Deep Neural Network (DNN), a CNN Convolutional Neural Network (DNN), a Recurrent Neural Network (RNN), a Deep Convolutional Neural Network (DCNN), a Restricted Boltzmann Machine (RBM), and a Deep Belief Network (DBN). , it may be a single shot detector (SSD) model or a predictive model based on U-net.
도 16을 참조하면, 발명의 예측 모델은 다층 인공 신경망인 MLP 알고리즘에 기초한 예측 모델일 수 있다. 보다 구체적으로, 본 발명의 예측 모델은, 제조와 연관된 데이터가 입력되는 이상 징후를 예측하는 출력 레이어와 이들 레이어 사이에 1 개의 히든 레이어가 존재하는 다층 구조의 예측 모델일 수 있다.Referring to FIG. 16 , the predictive model of the present invention may be a predictive model based on the MLP algorithm, which is a multi-layered artificial neural network. More specifically, the predictive model of the present invention may be a multi-layered prediction model in which an output layer predicting anomalies to which manufacturing-related data is input and one hidden layer exist between these layers.
도 17를 참조하면, 예측 모델의 평가는 LRP알고리즘 또는 이에 제한되지 않고 보다 다양한 알고리즘에 기초하여 수행될 수 있다. 예를 들어, Randomized Decision forest 알고리즘, Penalized Logistic Regression 알고리즘에 기초하여 이상 징후를 예측하는 것에 관련도가 데이터가 결정될 수 있다.Referring to FIG. 17 , the evaluation of the predictive model may be performed based on the LRP algorithm or more various algorithms without being limited thereto. For example, data having relevance to predicting anomalies may be determined based on a Randomized Decision forest algorithm or a Penalized Logistic Regression algorithm.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 더욱 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시예로 국한되는 것은 아니고, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.Although the embodiments of the present invention have been described in more detail with reference to the accompanying drawings, the present invention is not necessarily limited to these embodiments, and various modifications may be made within the scope without departing from the technical spirit of the present invention. . Therefore, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention, but to explain, and the scope of the technical spirit of the present invention is not limited by these embodiments. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. The protection scope of the present invention should be construed by the following claims, and all technical ideas within the equivalent range should be construed as being included in the scope of the present invention.
[이 발명을 지원한 국가연구개발사업][National R&D project supporting this invention]
[과제고유번호] 1711093793[Project identification number] 1711093793
[부처명] 과학기술정보통신부[Name of Ministry] Ministry of Science and ICT
[연구관리전문기관] 정보통신기획평가원[Research management agency] Information and Communication Planning and Evaluation Institute
[연구사업명] 고성능 플랫폼/SW 기술[Research project name] High-performance platform/SW technology
[연구과제명] 5G 기반 생산/물류관리 서비스 및 Cloud향 제조특화 ML 플랫폼 개발[Research project name] 5G-based production/logistics management service and cloud-oriented manufacturing-specialized ML platform development
[기여율] 1/1[Contribution rate] 1/1
[주관기관] 에스케이텔레콤(주)[Organizer] SK Telecom Co., Ltd.
[연구기간] 2019.01.01 ~ 2019.12.31[Research period] 2019.01.01 ~ 2019.12.31

Claims (3)

  1. 제조 공정에서 진동과 관련한 데이터를 수집하는 단계;collecting data related to vibration in the manufacturing process;
    수집된 데이터를 전처리하는 단계, 및 preprocessing the collected data; and
    전처리된 데이터를 이상감지를 수행하도록 하는 모델에 입력하여, 이상을 감지하는 단계를 포함하는, 진동 데이터 기반의 전처리 및 이상감지 방법.Pre-processing and anomaly detection method based on vibration data, comprising the step of inputting the preprocessed data into a model to perform abnormality detection, and detecting anomaly.
  2. 이벤트와 관련한 과거 데이터를 수집하는 단계;collecting historical data related to the event;
    수집된 과거 데이터가 태깅되도록 매핑하는 단계; mapping the collected historical data to be tagged;
    매핑된 과거 데이터를 클러스터링하는 단계, 및 clustering the mapped historical data, and
    클러스터링된 과거 데이터를 시각화하는 단계를 수행하도록 구성된 인스트럭션들을 포함하는 메모리, 및 a memory comprising instructions configured to perform the step of visualizing clustered historical data, and
    상기 메모리와 동작가능하게 연결된 프로세서들을 포함하는, 제조 빅데이터 처리 장치.and processors operatively coupled with the memory.
  3. 제조와 연관된 데이터를 수신하는 단계;receiving data associated with manufacturing;
    수신된 제조와 연관된 데이터를 기초로, 이상 징후를 예측하도록 구성된 제조 위험도 예측 모델을 이용하여, 제조 단계에서의 이상 징후를 예측하는 단계, 및predicting an anomaly in a manufacturing step using a manufacturing risk prediction model configured to predict the anomaly based on the received manufacturing-related data; and
    예측된 제조 단계에서의 이상 징후를 제공하는 단계를 포함하는, 제조 빅데이터 기반 기계학습 방법.A machine learning method based on manufacturing big data, comprising the step of providing anomalies in a predicted manufacturing step.
PCT/KR2019/016445 2019-11-27 2019-11-27 Manufacturing big data-based machine learning apparatus and method WO2021107180A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/016445 WO2021107180A1 (en) 2019-11-27 2019-11-27 Manufacturing big data-based machine learning apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/016445 WO2021107180A1 (en) 2019-11-27 2019-11-27 Manufacturing big data-based machine learning apparatus and method

Publications (1)

Publication Number Publication Date
WO2021107180A1 true WO2021107180A1 (en) 2021-06-03

Family

ID=76129666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016445 WO2021107180A1 (en) 2019-11-27 2019-11-27 Manufacturing big data-based machine learning apparatus and method

Country Status (1)

Country Link
WO (1) WO2021107180A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180059656A1 (en) * 2015-03-12 2018-03-01 Hitachi, Ltd. Machine Diagnostic Device and Machine Diagnostic Method
JP2018151821A (en) * 2017-03-13 2018-09-27 株式会社日立製作所 Abnormality diagnosis system of facility apparatus
KR20190021560A (en) * 2017-08-23 2019-03-06 주식회사 에스씨티 Failure prediction system using big data and failure prediction method
KR20190100847A (en) * 2018-02-08 2019-08-29 주식회사 포스코아이씨티 Smart Factory System Based on Application Programming Interface
KR20190105646A (en) * 2017-01-23 2019-09-17 에이에스엠엘 네델란즈 비.브이. Generate predictive data to control or monitor your production process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180059656A1 (en) * 2015-03-12 2018-03-01 Hitachi, Ltd. Machine Diagnostic Device and Machine Diagnostic Method
KR20190105646A (en) * 2017-01-23 2019-09-17 에이에스엠엘 네델란즈 비.브이. Generate predictive data to control or monitor your production process
JP2018151821A (en) * 2017-03-13 2018-09-27 株式会社日立製作所 Abnormality diagnosis system of facility apparatus
KR20190021560A (en) * 2017-08-23 2019-03-06 주식회사 에스씨티 Failure prediction system using big data and failure prediction method
KR20190100847A (en) * 2018-02-08 2019-08-29 주식회사 포스코아이씨티 Smart Factory System Based on Application Programming Interface

Similar Documents

Publication Publication Date Title
WO2022252505A1 (en) Device state monitoring method based on multi-index cluster analysis
WO2018101722A2 (en) Machine learning-based semiconductor manufacturing yield prediction system and method
US10423647B2 (en) Descriptive datacenter state comparison
CN108694071A (en) More cluster panels for distributed virtualization infrastructure elements monitoring and policy control
CN110008288A (en) The construction method in the knowledge mapping library for Analysis of Network Malfunction and its application
CN113645232B (en) Intelligent flow monitoring method, system and storage medium for industrial Internet
CN113632099A (en) Distributed product defect analysis system, method and computer readable storage medium
Han et al. Anomaly detection based on multidimensional data processing for protecting vital devices in 6G-enabled massive IIoT
KR20190062739A (en) Method, algorithm and device for Data analytics for predictive maintenance using multiple sensors
US20210097058A1 (en) Aircraft fault troubleshooting system using supplemented aircraft maintenance log data
CN107223243A (en) Distributed for embedded controller
CN111949429A (en) Server fault monitoring method and system based on density clustering algorithm
Khuat et al. Ensemble learning for software fault prediction problem with imbalanced data.
CN107679089A (en) A kind of cleaning method for electric power sensing data, device and system
CN109634816A (en) Application management method and terminal device
CN108241348A (en) A kind of industrial process of data-driven monitors in real time and fault detection method
CN110474799A (en) Fault Locating Method and device
WO2023085717A1 (en) Device for clustering-based labeling, device for anomaly detection, and methods therefor
CN110455397A (en) A kind of shop equipment failure optical fiber sensing method and system based on LSTM
CN108694448A (en) PHM platforms
CN106030565A (en) Computer performance prediction using search technologies
CN112241424A (en) Air traffic control equipment application system and method based on knowledge graph
WO2021107180A1 (en) Manufacturing big data-based machine learning apparatus and method
WO2019221461A1 (en) Apparatus and method for analyzing cause of network failure
CN110333709A (en) A kind of rolling process fault diagnosis method and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953976

Country of ref document: EP

Kind code of ref document: A1