WO2021107026A1 - Rotary electrical machine - Google Patents

Rotary electrical machine Download PDF

Info

Publication number
WO2021107026A1
WO2021107026A1 PCT/JP2020/044052 JP2020044052W WO2021107026A1 WO 2021107026 A1 WO2021107026 A1 WO 2021107026A1 JP 2020044052 W JP2020044052 W JP 2020044052W WO 2021107026 A1 WO2021107026 A1 WO 2021107026A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
magnet
slot
conductor
winding
Prior art date
Application number
PCT/JP2020/044052
Other languages
French (fr)
Japanese (ja)
Inventor
暁斗 田村
貴宏 土屋
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080082250.8A priority Critical patent/CN114762220A/en
Publication of WO2021107026A1 publication Critical patent/WO2021107026A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors

Definitions

  • the disclosure in this specification relates to a rotary electric machine.
  • a rotary electric machine including a field magnet including a magnet portion having a plurality of magnetic poles having alternating polarities in the circumferential direction and an armature having a multi-phase armature winding is known.
  • a concentrated winding coil short-section concentrated winding coil
  • a configuration is disclosed in which a slot (groove) to be opened is formed and a coil is incorporated in the slot.
  • every other tooth has a rectangular cross-sectional shape and a trapezoidal cross-sectional shape, and a coil having a rectangular cross section is incorporated in a slot formed between the teeth so as not to leave a gap in the slot. It is configured to accommodate the coil.
  • the rotary electric machine described in Patent Document 1 has a configuration in which one centralized winding coil is wound around a single tooth of an armature core, and the coils do not interfere with each other in the circumferential direction. Arranged side by side.
  • a distributed winding coil for example, a centralized winding coil for all nodes
  • the coil end portions of the coils interfere with each other when the coils are assembled in the radial direction. That is, when a distributed winding coil is used, each coil is arranged so as to straddle two or more teeth, and there is a concern about mutual interference in the circumferential direction. Therefore, it is considered that there is room for technical improvement in a rotary electric machine that uses a distributed winding coil as an armature winding.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a rotary electric machine capable of suitably assembling an armature winding to an armature core.
  • Means 1 A field magnet having a magnet portion containing a plurality of magnetic poles having alternating polarities in the circumferential direction, An armature having a multi-phase armature winding having a phase winding composed of a plurality of partial windings per phase, and an armature core integrally provided with the armature winding. It is a rotary electric machine equipped with The armature core has a cylindrical yoke and a plurality of teeth provided at predetermined intervals in the circumferential direction on the radial inner side or the radial outer side of the yoke, and between the respective teeth in the radial direction.
  • a slot extending to is formed,
  • the partial winding has a pair of intermediate conductor portions provided at predetermined intervals in the circumferential direction, and a crossover portion provided on one end side and the other end side in the axial direction to connect the pair of intermediate conductor portions in an annular shape.
  • the intermediate conducting wire portion is housed in the slot, and is arranged so as to straddle two or more of the teeth.
  • the first slot and the second slot which are a set of two slots, are a pair of slots in which the pair of intermediate conductors are housed.
  • the inner side walls that are inside each other in the circumferential direction are parallel to each other or close to each other on the anti-yoke side, and the outer walls that are outward to each other in the circumferential direction are parallel to each other or on the anti-yoke side. It is provided so as to move away from each other, and the circumferential width of the yoke side in each of these slots is smaller than the circumferential width of the anti-yoke side.
  • the pair of intermediate conductors are housed in the first slot and the second slot in a state of being close to the inner side wall and the outer wall.
  • the crossovers are separated from each other in the axial direction or the radial direction.
  • the armature core in the armature core, a plurality of teeth are provided at predetermined intervals in the circumferential direction on the radial inner side or the radial outer side of the cylindrical yoke, and between the teeth, the radial direction is provided.
  • a slot extending to is formed.
  • the armature winding has a plurality of partial windings including a pair of intermediate conductors and a crossover for each phase, and the partial windings include two or more intermediate conductors in slots. It is arranged so as to straddle the teeth of.
  • the slot in which the pair of intermediate conductors of the partial winding is housed is a slot pair consisting of a pair of slots (first slot and second slot), and the diameter is relative to this slot pair. It is possible to assemble partial windings from the direction.
  • the first slot and the second slot are provided so that the inner side walls of each of the slots are close to each other on the parallel or anti-yoke side, and the outer walls are separated from each other on the parallel or anti-yoke side.
  • the circumferential width (W1) on the yoke side of each slot is smaller than the circumferential width (W2) on the anti-yoke side (see FIG. 107).
  • the inner side walls are provided so as to be separated from each other on the anti-yoke side
  • the outer walls are provided so as to be close to each other on the anti-yoke side
  • the circumferential width of the yoke side in each slot is opposite.
  • the pair of intermediate conductors does not interfere with the corners on the tip side of the teeth, and there is unnecessary dead in the slot.
  • a pair of intermediate lead wires can be accommodated in the first slot and the second slot of the slot pair without creating a space. That is, it is possible to accommodate a pair of intermediate conductors in each slot in a state of being close to the inner side wall and the outer wall.
  • each partial winding is arranged so as to straddle two or more teeth, and the coil end is formed in each partial winding arranged adjacent to each other in the circumferential direction and partially overlapping.
  • the first center line, the first slot, and the straight line passing through the circumferential center position in the range from the first slot to the second slot and the armature center point in the slot pair are defined as the first center line, the first slot, and the second slot.
  • the second center lines are parallel to each other in the first slot and the second slot.
  • the first slot and the second slot are provided line-symmetrically in the circumferential direction with respect to the second center line.
  • the partial winding can be suitably assembled by sliding the partial winding in parallel along the first center line.
  • the first slot and the second slot symmetrically in the circumferential direction with respect to the second center line parallel to the first center line, the sizes of the teeth arranged in the circumferential direction in the armature core are equalized. It has an advantageous configuration for the purpose of conversion.
  • the inner side wall and the outer wall are parallel to each other in each of the first slot and the second slot, and the circumferential side surfaces of the pair of intermediate conductors are parallel to each other.
  • each slot is provided as a parallel slot having a uniform width in the circumferential direction.
  • each intermediate conductor portion of the partial winding is provided as a parallel conductor having a uniform width in the circumferential direction. In this case, by making each slot a parallel slot and each intermediate conductor portion being a parallel conductor, it is possible to improve the space factor of the armature winding.
  • each slot is a parallel slot
  • the partial winding is formed by winding a plurality of square wires having a quadrangular cross section of the conductor, and crosses the conductor collecting portion which is an aggregate of the square wires.
  • the surface has a quadrangular shape.
  • the circumferential width of the base end portion on the yoke side of each of the teeth arranged in the circumferential direction in the armature core is larger than the circumferential width of the tip end portion on the anti-yoke side.
  • a first tooth having a small size and a second tooth having a circumferential width of the base end portion larger than the circumferential width of the tip end portion are included, and the circumferential width of the base end portion in the first tooth and the first tooth.
  • the width of the tip in the two teeth in the circumferential direction is the same.
  • each tooth arranged in the circumferential direction is uniform. It includes the first tooth, which is "the circumferential width of the base end ⁇ the circumferential width of the tip portion", and the second tooth, which is "the circumferential width of the base end portion> the circumferential width of the tip portion". It will be.
  • the circumferential width of the base end portion in the first teeth and the circumferential width of the tip portion in the second teeth are made the same, the minimum width in the circumferential direction of each slot can be uniformly matched. .. As a result, it is possible to suppress the occurrence of local magnetic saturation in the armature core, and it is possible to suppress the deterioration in performance due to the local magnetic saturation.
  • the back side wall on the yoke side of the slot is provided so as to be oriented along a circle concentric with the inner peripheral surface on the anti-yoke side of the armature core.
  • the radial dimension (depth dimension) of the slot can be made the same in the circumferential direction.
  • the partial winding can be suitably arranged without creating an excess space in the slot.
  • the first partial winding and the second partial winding are used as the partial windings that are arranged side by side in a state of being adjacent to each other in the circumferential direction and partially overlapping.
  • the cross section is bent radially inward or radially outward, and in the second partial winding, the cross section is axially relative to the cross section of the first partial winding. Alternatively, it is provided at a position separated in the radial direction.
  • At least the crossover of the first partial winding is bent radially inward or radially outward, and the crossover of the second partial winding is axially or radially relative to the crossover of the first partial winding. Since it is provided at a position separated in the direction, interference between the crossovers can be suitably avoided in each of these partial windings, and a configuration excellent in assembling property can be realized.
  • the tip of the tooth has a flange portion extending in the circumferential direction so as to narrow the opening of the slot, and the flange portion is plastically deformed at the tip of the tooth.
  • the portion is plastically deformed, or the flange forming member is fixed to the tip of the tooth.
  • the opening of the slot is narrowed by the flange provided at the tip of the tooth, and it is possible to prevent the partial winding from falling off.
  • the collar portion is formed in a state where the plastically deformed portion at the tip of the tooth is plastically deformed, or a state where the collar forming member is fixed to the tip of the tooth, and the partial winding is from the radial direction with respect to the armature core.
  • a desired collar structure can be provided without any hindrance to assembly.
  • the partial winding is provided one for each phase in a one-pole pair.
  • one partial winding is provided for each phase in one pole pair, and in the armature core, one slot is provided for each phase in the circumferential direction.
  • It is a single slot specification.
  • at least two types of partial windings are used, it is possible to avoid interference between the partial windings, and a configuration advantageous from the viewpoint of manufacturing is realized. be able to.
  • the field magnet has a skew structure in which the magnetic pole positions in the magnet portion are different in the circumferential direction in the axial direction.
  • Cogging torque is an issue for single-slot armatures, but the field magnet has a skew structure, which makes it possible to reduce cogging torque. As a result, it is possible to realize a rotary electric machine in which the cogging torque is suppressed while improving the space factor.
  • FIG. 1 is a vertical cross-sectional perspective view of a rotary electric machine.
  • FIG. 2 is a vertical cross-sectional view of the rotary electric machine.
  • FIG. 3 is a sectional view taken along line III-III of FIG.
  • FIG. 4 is a cross-sectional view showing a part of FIG. 3 in an enlarged manner.
  • FIG. 5 is an exploded view of the rotary electric machine.
  • FIG. 6 is an exploded view of the inverter unit.
  • FIG. 7 is a torque diagram showing the relationship between the ampere turn of the stator winding and the torque density.
  • FIG. 8 is a cross-sectional view of the rotor and the stator.
  • FIG. 9 is an enlarged view of a part of FIG.
  • FIG. 10 is a cross-sectional view of the stator.
  • FIG. 11 is a vertical cross-sectional view of the stator.
  • FIG. 12 is a perspective view of the stator winding.
  • FIG. 13 is a perspective view showing the configuration of the conducting wire.
  • FIG. 14 is a schematic view showing the configuration of the strands.
  • FIG. 15 is a diagram showing the morphology of each conducting wire in the nth layer.
  • FIG. 16 is a side view showing the conductors of the nth layer and the n + 1th layer.
  • FIG. 17 is a diagram showing the relationship between the electric angle and the magnetic flux density of the magnet of the embodiment.
  • FIG. 18 is a diagram showing the relationship between the electric angle and the magnetic flux density of the magnet of the comparative example.
  • FIG. 19 is an electric circuit diagram of the control system of the rotary electric machine.
  • FIG. 20 is a functional block diagram showing a current feedback control process by the control device.
  • FIG. 21 is a functional block diagram showing torque feedback control processing by the control device.
  • FIG. 22 is a cross-sectional view of the rotor and the stator according to the second embodiment.
  • FIG. 23 is an enlarged view of a part of FIG. 22.
  • FIG. 24 is a diagram specifically showing the flow of magnetic flux in the magnet unit.
  • FIG. 25 is a cross-sectional view of the stator in the first modification.
  • FIG. 26 is a cross-sectional view of the stator in the first modification.
  • FIG. 25 is a cross-sectional view of the stator in the first modification.
  • FIG. 27 is a cross-sectional view of the stator in the modified example 2.
  • FIG. 28 is a cross-sectional view of the stator in the modified example 3.
  • FIG. 29 is a cross-sectional view of the stator in the modified example 4.
  • FIG. 30 is a cross-sectional view of the rotor and the stator in the modified example 7.
  • FIG. 31 is a functional block diagram showing a part of the processing of the operation signal generation unit in the modified example 8.
  • FIG. 32 is a flowchart showing the procedure of the carrier frequency change process.
  • FIG. 33 is a diagram showing a connection form of each of the conductors constituting the conductor group in the modified example 9.
  • FIG. 34 is a diagram showing a configuration in which four pairs of conducting wires are stacked and arranged in the modified example 9.
  • FIG. 35 is a cross-sectional view of the inner rotor type rotor and stator in the modified example 10.
  • FIG. 36 is an enlarged view of a part of FIG. 35.
  • FIG. 37 is a vertical sectional view of an inner rotor type rotary electric machine.
  • FIG. 38 is a vertical cross-sectional view showing a schematic configuration of an inner rotor type rotary electric machine.
  • FIG. 39 is a diagram showing a configuration of a rotary electric machine having an inner rotor structure in the modified example 11.
  • FIG. 40 is a diagram showing a configuration of a rotary electric machine having an inner rotor structure in the modified example 11.
  • FIG. 41 is a diagram showing a configuration of a rotary armature type rotary electric machine in the modified example 12.
  • FIG. 42 is a cross-sectional view showing the configuration of the conducting wire in the modified example 14.
  • FIG. 43 is a diagram showing the relationship between the reluctance torque, the magnet torque, and the DM.
  • FIG. 44 is a diagram showing teeth.
  • FIG. 45 is a perspective view showing a wheel having an in-wheel motor structure and its peripheral structure.
  • FIG. 46 is a vertical cross-sectional view of the wheel and its peripheral structure.
  • FIG. 47 is an exploded perspective view of the wheel.
  • FIG. 48 is a side view of the rotary electric machine as viewed from the protruding side of the rotating shaft.
  • FIG. 49 is a cross-sectional view taken along the line 49-49 of FIG. 48.
  • FIG. 50 is a cross-sectional view taken along the line 50-50 of FIG. 49.
  • FIG. 51 is an exploded sectional view of the rotary electric machine.
  • FIG. 52 is a partial cross-sectional view of the rotor.
  • FIG. 53 is a perspective view of the stator winding and the stator core.
  • FIG. 54 is a front view showing the stator winding developed in a plane.
  • FIG. 55 is a diagram showing the skew of the conductor.
  • FIG. 56 is an exploded sectional view of the inverter unit.
  • FIG. 57 is an exploded sectional view of the inverter unit.
  • FIG. 58 is a diagram showing a state of arrangement of each electric module in the inverter housing.
  • FIG. 59 is a circuit diagram showing the electrical configuration of the power converter.
  • FIG. 60 is a diagram showing an example of a cooling structure of the switch module.
  • FIG. 60 is a diagram showing an example of a cooling structure of the switch module.
  • FIG. 61 is a diagram showing an example of a cooling structure of the switch module.
  • FIG. 62 is a diagram showing an example of a cooling structure of the switch module.
  • FIG. 63 is a diagram showing an example of a cooling structure of the switch module.
  • FIG. 64 is a diagram showing an example of a cooling structure of the switch module.
  • FIG. 65 is a diagram showing the arrangement order of each electric module with respect to the cooling water passage.
  • FIG. 66 is a cross-sectional view taken along the line 66-66 of FIG. 49.
  • FIG. 67 is a cross-sectional view taken along the line 67-67 of FIG. 49.
  • FIG. 68 is a perspective view showing the bus bar module as a single unit.
  • FIG. 69 is a diagram showing an electrical connection state between each electric module and the bus bar module.
  • FIG. 70 is a diagram showing an electrical connection state between each electric module and the bus bar module.
  • FIG. 71 is a diagram showing an electrical connection state between each electric module and the bus bar module.
  • FIG. 72 is a configuration diagram for explaining a modification 1 of the in-wheel motor.
  • FIG. 73 is a configuration diagram for explaining a modification 2 of the in-wheel motor.
  • FIG. 74 is a configuration diagram for explaining a modification 3 of the in-wheel motor.
  • FIG. 75 is a configuration diagram for explaining a modification 4 of the in-wheel motor.
  • FIG. 76 is a perspective view showing the entire rotary electric machine in the modified example 15.
  • FIG. 77 is a vertical cross-sectional view of the rotary electric machine.
  • FIG. 78 is an exploded sectional view of the rotary electric machine.
  • FIG. 79 is a cross-sectional view of the rotor.
  • FIG. 80 is a partial cross-sectional view showing the cross-sectional structure of the magnet unit.
  • FIG. 81 is a partial cross-sectional view showing a part of the magnet unit in an enlarged manner.
  • FIG. 82 is a perspective view showing the configuration of the stator.
  • FIG. 83 is a perspective view showing the stator winding and the stator core in an exploded manner.
  • FIG. 84 is a perspective view showing only the configuration corresponding to the U-phase winding among the phase windings of each phase.
  • FIG. 85 is a vertical cross-sectional view of the stator.
  • FIG. 86 is a circuit diagram showing a connection state of partial windings in each of the three-phase windings.
  • FIG. 87 is a diagram showing the configuration of the coil module.
  • FIG. 88 is a diagram showing the configuration of the coil module.
  • FIG. 89 is a diagram showing the configuration of the coil module.
  • FIG. 90 is a diagram showing the configuration of the coil module.
  • FIG. 91 is a cross-sectional view showing a vertical cross section of the stator.
  • FIG. 92 is a cross-sectional view showing a cross section of the stator.
  • FIG. 93 is a cross-sectional view showing the stator core, the end ring, and the coil module separated from each other.
  • FIG. 91 is a cross-sectional view showing a vertical cross section of the stator.
  • FIG. 92 is a cross-sectional view showing a cross section of the stator.
  • FIG. 94 is a vertical sectional view of the inner unit.
  • FIG. 95 is a vertical sectional view of the inner unit.
  • FIG. 96 is a perspective view of the bus bar module.
  • FIG. 97 is a cross-sectional view showing a part of the vertical cross section of the bus bar module.
  • FIG. 98 is a schematic diagram showing the connection positions of the connection terminals for each bus bar.
  • FIG. 99 is a diagram showing the winding order of the conducting wires in the partial winding.
  • FIG. 100 is a diagram showing the configuration of the coil module.
  • FIG. 101 is a vertical cross-sectional view showing the configuration of the rotary electric machine in the modified example 16.
  • FIG. 102 is a cross-sectional view of the rotary electric machine.
  • FIG. 103 is an enlarged cross-sectional view showing a part of the configuration of the rotary electric machine.
  • FIG. 104 is a perspective view showing the configuration of the partial winding.
  • FIG. 105 is a side view showing the first partial winding and the second partial winding side by side in comparison.
  • FIG. 106 is a cross-sectional view taken along the line 106-106 in FIG. 104 (a).
  • FIG. 107 is a schematic view showing the configuration of the assembly of the partial winding with respect to the stator core.
  • FIG. 108 is a schematic view for explaining the assembly of the partial winding with respect to the stator core.
  • FIG. 109 is a schematic view showing the configuration of the assembly of the partial winding with respect to the stator core.
  • FIG. 110 is a schematic view showing the configuration of the assembly of the partial winding with respect to the stator core.
  • FIG. 111 is a schematic view showing the configuration of the assembly of the partial winding with respect to the stator core.
  • FIG. 112 is a schematic view for explaining the configuration of the partial winding.
  • FIG. 113 is a schematic view for explaining the skew structure of the rotor.
  • the rotary electric machine in this embodiment is used as a vehicle power source, for example.
  • the rotary electric machine can be widely used for industrial use, vehicle use, home appliance use, OA equipment use, game machine use, and the like.
  • parts that are the same or equal to each other are designated by the same reference numerals in the drawings, and the description thereof will be incorporated for the parts having the same reference numerals.
  • the rotary electric machine 10 is a synchronous multi-phase AC motor and has an outer rotor structure (abduction structure).
  • the outline of the rotary electric machine 10 is shown in FIGS. 1 to 5.
  • FIG. 1 is a vertical sectional perspective view of the rotary electric machine 10
  • FIG. 2 is a vertical sectional view of the rotary electric machine 10 in a direction along the rotation axis 11
  • FIG. 3 is a vertical sectional view in a direction orthogonal to the rotation axis 11.
  • It is a cross-sectional view of the rotary electric machine 10 (a cross-sectional view taken along line III-III of FIG. 2)
  • FIG. 4 is an enlarged cross-sectional view of a part of FIG. 3, and FIG. Is.
  • the hatching indicating the cut surface is omitted except for the rotating shaft 11.
  • the direction in which the rotating shaft 11 extends is the axial direction
  • the direction extending radially from the center of the rotating shaft 11 is the radial direction
  • the direction extending radially around the rotating shaft 11 is the circumferential direction.
  • the rotary electric machine 10 is roughly classified into a bearing unit 20, a housing 30, a rotor 40, a stator 50, and an inverter unit 60. Each of these members is arranged coaxially with the rotating shaft 11 and is assembled in the axial direction in a predetermined order to form the rotating electric machine 10.
  • the rotary electric machine 10 of the present embodiment has a configuration having a rotor 40 as a "field magnet” and a stator 50 as an "armature”, and is embodied as a rotary field type rotary electric machine. It has become a thing.
  • the bearing unit 20 has two bearings 21 and 22 arranged apart from each other in the axial direction, and a holding member 23 for holding the bearings 21 and 22.
  • the bearings 21 and 22 are, for example, radial ball bearings, each of which has an outer ring 25, an inner ring 26, and a plurality of balls 27 arranged between the outer ring 25 and the inner ring 26.
  • the holding member 23 has a cylindrical shape, and bearings 21 and 22 are assembled inside the holding member 23 in the radial direction.
  • the rotating shaft 11 and the rotor 40 are rotatably supported inside the bearings 21 and 22 in the radial direction.
  • Bearings 21 and 22 form a set of bearings that rotatably support the rotating shaft 11.
  • each bearing 21 and 22 the balls 27 are held by retainers (not shown), and the pitch between the balls is maintained in that state.
  • the bearings 21 and 22 have sealing members at the upper and lower portions in the axial direction of the retainer, and the inside thereof is filled with non-conductive grease (for example, non-conductive urea-based grease). Further, the position of the inner ring 26 is mechanically held by the spacer, and a constant pressure preload that is convex in the vertical direction from the inside is applied.
  • the housing 30 has a cylindrical peripheral wall 31.
  • the peripheral wall 31 has a first end and a second end facing each other in the axial direction thereof.
  • the peripheral wall 31 has an end face 32 at the first end and an opening 33 at the second end.
  • the opening 33 is open throughout the second end.
  • a circular hole 34 is formed in the center of the end surface 32, and the bearing unit 20 is fixed by a fixing tool such as a screw or a rivet while being inserted through the hole 34.
  • a hollow cylindrical rotor 40 and a hollow cylindrical stator 50 are housed in the housing 30, that is, in the internal space partitioned by the peripheral wall 31 and the end surface 32.
  • the rotary electric machine 10 is an outer rotor type, and a stator 50 is arranged inside the housing 30 in the radial direction of the cylindrical rotor 40.
  • the rotor 40 is cantilevered by the rotating shaft 11 on the side of the end face 32 in the axial direction.
  • the rotor 40 has a magnet holder 41 formed in a hollow tubular shape and an annular magnet unit 42 provided inside the magnet holder 41 in the radial direction.
  • the magnet holder 41 has a substantially cup shape and has a function as a magnet holding member.
  • the magnet holder 41 has a cylindrical portion 43 having a cylindrical shape, an attachment 44 having a cylindrical shape and a diameter smaller than that of the cylindrical portion 43, and an intermediate portion serving as a portion connecting the cylindrical portion 43 and the fixed portion 44. It has 45 and.
  • a magnet unit 42 is attached to the inner peripheral surface of the cylindrical portion 43.
  • the magnet holder 41 is made of a cold-rolled steel plate (SPCC) having sufficient mechanical strength, forging steel, carbon fiber reinforced plastic (CFRP), or the like.
  • SPCC cold-rolled steel plate
  • CFRP carbon fiber reinforced plastic
  • the rotating shaft 11 is inserted through the through hole 44a of the fixing portion 44.
  • the fixing portion 44 is fixed to the rotating shaft 11 arranged in the through hole 44a. That is, the magnet holder 41 is fixed to the rotating shaft 11 by the fixing portion 44.
  • the fixing portion 44 may be fixed to the rotating shaft 11 by spline coupling, key coupling, welding, caulking, or the like using unevenness. As a result, the rotor 40 rotates integrally with the rotating shaft 11.
  • bearings 21 and 22 of the bearing unit 20 are assembled on the radial outer side of the fixing portion 44.
  • the bearing unit 20 is fixed to the end surface 32 of the housing 30, the rotating shaft 11 and the rotor 40 are rotatably supported by the housing 30.
  • the rotor 40 is rotatable in the housing 30.
  • the rotor 40 is provided with a fixing portion 44 only on one of its two end portions facing in the axial direction, whereby the rotor 40 is cantilevered and supported by the rotating shaft 11.
  • the fixing portion 44 of the rotor 40 is rotatably supported by bearings 21 and 22 of the bearing unit 20 at two positions different in the axial direction. That is, the rotor 40 is rotatably supported by two bearings 21 and 22 which are separated from each other in the axial direction at one of the two end portions of the magnet holder 41 which face each other in the axial direction. Therefore, even if the rotor 40 is cantilevered and supported by the rotating shaft 11, stable rotation of the rotor 40 can be realized. In this case, the rotor 40 is supported by the bearings 21 and 22 at a position shifted to one side with respect to the axial center position of the rotor 40.
  • the bearing 22 near the center of the rotor 40 (lower side in the figure) and the bearing 21 on the opposite side (upper side in the figure) are the gaps between the outer ring 25 and the inner ring 26 and the ball 27.
  • the dimensions are different.
  • the bearing 22 near the center of the rotor 40 has a larger clearance dimension than the bearing 21 on the opposite side. In this case, even if vibration of the rotor 40 or vibration due to imbalance caused by component tolerance acts on the bearing unit 20 on the side closer to the center of the rotor 40, the influence of the vibration or vibration is well absorbed. Tolerant.
  • the vibration generated in the cantilever structure is absorbed by the play portion.
  • the preload may be either a fixed position preload or a constant pressure preload.
  • both the bearing 21 and the outer ring 25 of the bearing 22 are joined to the holding member 23 by a method such as press fitting or adhesion.
  • both the bearing 21 and the inner ring 26 of the bearing 22 are joined to the rotating shaft 11 by a method such as press fitting or adhesion.
  • the preload can be generated by arranging the outer ring 25 of the bearing 21 at different positions in the axial direction with respect to the inner ring 26 of the bearing 21.
  • Preload can also be generated by arranging the outer ring 25 of the bearing 22 at different positions in the axial direction with respect to the inner ring 26 of the bearing 22.
  • a preload spring for example, a wave washer 24 or the like is bearing so that a preload is generated from the region sandwiched between the bearing 22 and the bearing 21 toward the outer ring 25 of the bearing 22 in the axial direction. It is arranged in the same region sandwiched between the 22 and the bearing 21. Also in this case, both the bearing 21 and the inner ring 26 of the bearing 22 are joined to the rotating shaft 11 by a method such as press fitting or bonding. The bearing 21 or the outer ring 25 of the bearing 22 is arranged with respect to the holding member 23 via a predetermined clearance. With such a configuration, the spring force of the preload spring acts on the outer ring 25 of the bearing 22 in the direction away from the bearing 21.
  • a preload spring for example, a wave washer 24 or the like is bearing so that a preload is generated from the region sandwiched between the bearing 22 and the bearing 21 toward the outer ring 25 of the bearing 22 in the axial direction. It is arranged in the same region sandwiched between the 22 and the bearing 21.
  • a spring force may be applied to the outer ring 25 of the bearing 21.
  • the inner ring 26 of any of the bearings 21 and 22 is arranged with respect to the rotating shaft 11 through a predetermined clearance, and the outer ring 25 of the bearings 21 and 22 is press-fitted or bonded to the holding member 23. Preload may be applied to the two bearings by joining them together.
  • the intermediate portion 45 has an annular inner shoulder portion 49a and an annular outer shoulder portion 49b.
  • the outer shoulder portion 49b is located outside the inner shoulder portion 49a in the radial direction of the intermediate portion 45.
  • the inner shoulder portion 49a and the outer shoulder portion 49b are separated from each other in the axial direction of the intermediate portion 45.
  • the cylindrical portion 43 and the fixed portion 44 partially overlap in the radial direction of the intermediate portion 45. That is, the cylindrical portion 43 protrudes outward in the axial direction from the base end portion (lower end portion on the lower side of the figure) of the fixed portion 44.
  • the rotor 40 can be supported with respect to the rotating shaft 11 at a position near the center of gravity of the rotor 40, as compared with the case where the intermediate portion 45 is provided in a flat plate shape without a step.
  • the stable operation of 40 can be realized.
  • the rotor 40 has a bearing accommodating recess 46 that accommodates a part of the bearing unit 20 at a position that surrounds the fixing portion 44 in the radial direction and is inward of the intermediate portion 45.
  • the accommodating recesses 46 and 47 are arranged so as to be adjacent to each other inside and outside in the radial direction. That is, a part of the bearing unit 20 and the coil end 54 of the stator winding 51 are arranged so as to overlap in and out in the radial direction. This makes it possible to shorten the axial length dimension in the rotary electric machine 10.
  • the intermediate portion 45 is provided so as to project radially outward from the rotation shaft 11 side.
  • the intermediate portion 45 is provided with a contact avoiding portion that extends in the axial direction and avoids contact of the stator winding 51 of the stator 50 with respect to the coil end 54.
  • the intermediate portion 45 corresponds to the overhanging portion.
  • the axial dimension of the coil end 54 can be reduced, and the axial length of the stator 50 can be shortened.
  • the bending direction of the coil end 54 may be in consideration of assembly with the rotor 40. Assuming that the stator 50 is assembled inside the rotor 40 in the radial direction, the coil end 54 may be bent inward in the radial direction on the insertion tip side with respect to the rotor 40.
  • the bending direction of the coil end on the opposite side of the coil end 54 may be arbitrary, but a shape in which the coil end is bent outward with a sufficient space is preferable in manufacturing.
  • the magnet unit 42 as the magnet portion is composed of a plurality of permanent magnets arranged so as to alternately change the polarities along the circumferential direction inside the cylindrical portion 43 in the radial direction.
  • the magnet unit 42 has a plurality of magnetic poles in the circumferential direction.
  • the details of the magnet unit 42 will be described later.
  • the stator 50 is provided inside the rotor 40 in the radial direction.
  • the stator 50 has a stator winding 51 formed by winding in a substantially tubular shape (annular shape) and a stator core 52 as a base member arranged radially inside the stator winding.
  • the wire 51 is arranged so as to face the annular magnet unit 42 with a predetermined air gap in between.
  • the stator winding 51 is composed of a plurality of phase windings. Each of these phase windings is configured by connecting a plurality of conductors arranged in the circumferential direction to each other at a predetermined pitch.
  • a U-phase, V-phase, and W-phase three-phase winding and an X-phase, Y-phase, and Z-phase three-phase winding are used, and two of these three-phase windings are used.
  • the stator winding 51 is configured as a 6-phase phase winding.
  • the stator core 52 is formed in an annular shape by laminated steel plates on which electromagnetic steel plates which are soft magnetic materials are laminated, and is assembled inside the stator winding 51 in the radial direction.
  • the electromagnetic steel sheet is, for example, a silicon steel sheet in which about several% (for example, 3%) of silicon is added to iron.
  • the stator winding 51 corresponds to the armature winding
  • the stator core 52 corresponds to the armature core.
  • the stator winding 51 is a portion that overlaps the stator core 52 in the radial direction, and is a coil side portion 53 that is radially outside the stator core 52, and one end side of the stator core 52 and others in the axial direction. It has coil ends 54 and 55 overhanging on the end side, respectively.
  • the coil side portion 53 faces the stator core 52 and the magnet unit 42 of the rotor 40 in the radial direction, respectively.
  • the inverter unit 60 has a unit base 61 fixed to the housing 30 by fasteners such as bolts, and a plurality of electrical components 62 assembled to the unit base 61.
  • the unit base 61 is made of, for example, carbon fiber reinforced plastic (CFRP).
  • CFRP carbon fiber reinforced plastic
  • the unit base 61 has an end plate 63 fixed to the edge of the opening 33 of the housing 30, and a casing 64 integrally provided with the end plate 63 and extending in the axial direction.
  • the end plate 63 has a circular opening 65 at the center thereof, and the casing 64 is formed so as to stand up from the peripheral edge of the opening 65.
  • a stator 50 is assembled on the outer peripheral surface of the casing 64. That is, the outer diameter of the casing 64 is the same as the inner diameter of the stator core 52, or slightly smaller than the inner diameter of the stator core 52.
  • the stator core 52 By assembling the stator core 52 to the outside of the casing 64, the stator 50 and the unit base 61 are integrated. Further, since the unit base 61 is fixed to the housing 30, the stator 50 is integrated with the housing 30 when the stator core 52 is assembled to the casing 64.
  • the stator core 52 may be assembled to the unit base 61 by adhesion, shrink fitting, press fitting, or the like. As a result, the displacement of the stator core 52 in the circumferential direction or the axial direction with respect to the unit base 61 side is suppressed.
  • the radial inside of the casing 64 is a storage space for accommodating the electric component 62, and the electric component 62 is arranged so as to surround the rotating shaft 11 in the accommodation space.
  • the casing 64 has a role as a storage space forming portion.
  • the electric component 62 includes a semiconductor module 66 constituting an inverter circuit, a control board 67, and a capacitor module 68.
  • the unit base 61 is provided inside the stator 50 in the radial direction and corresponds to a stator holder (armature holder) that holds the stator 50.
  • the housing 30 and the unit base 61 constitute the motor housing of the rotary electric machine 10.
  • the holding member 23 is fixed to the housing 30 on one side in the axial direction with the rotor 40 interposed therebetween, and the housing 30 and the unit base 61 are coupled to each other on the other side.
  • the rotary electric machine 10 is attached to the vehicle or the like by attaching a motor housing to the side of the vehicle or the like.
  • FIG. 6 is an exploded view of the inverter unit 60.
  • the casing 64 has a tubular portion 71 and end faces 72 provided on one of both ends (ends on the bearing unit 20 side) facing each other in the axial direction thereof. Of both ends of the tubular portion 71 in the axial direction, the opposite side of the end surface 72 is completely opened through the opening 65 of the end plate 63.
  • a circular hole 73 is formed in the center of the end surface 72, and the rotating shaft 11 can be inserted into the hole 73.
  • the hole 73 is provided with a sealing material 171 that seals a gap between the rotating shaft 11 and the outer peripheral surface.
  • the sealing material 171 may be, for example, a sliding seal made of a resin material.
  • the tubular portion 71 of the casing 64 is a partition portion that partitions the rotor 40 and the stator 50 arranged on the outer side in the radial direction and the electric component 62 arranged on the inner side in the radial direction.
  • the rotor 40, the stator 50, and the electrical component 62 are arranged side by side in and out of the radial direction with the shape portion 71 in between.
  • the electric component 62 is an electric component constituting an inverter circuit, and has a power running function of passing a current through each phase winding of the stator winding 51 in a predetermined order to rotate the rotor 40, and a rotating shaft 11. It has a power generation function of inputting a three-phase AC current flowing through the stator winding 51 with the rotation of the stator winding 51 and outputting it to the outside as generated power.
  • the electric component 62 may have only one of the power running function and the power generation function.
  • the power generation function is, for example, a regenerative function that outputs regenerative power to the outside when the rotary electric machine 10 is used as a power source for a vehicle.
  • a hollow cylindrical capacitor module 68 is provided around the rotating shaft 11, and a plurality of capacitor modules 68 are provided on the outer peripheral surface of the capacitor module 68.
  • the semiconductor modules 66 of the above are arranged side by side in the circumferential direction.
  • the capacitor module 68 includes a plurality of smoothing capacitors 68a connected in parallel to each other.
  • the capacitor 68a is a laminated film capacitor in which a plurality of film capacitors are laminated, and has a trapezoidal cross section.
  • the capacitor module 68 is configured by arranging twelve capacitors 68a side by side in an annular shape.
  • the capacitor 68a for example, a long film having a predetermined width in which a plurality of films are laminated is used, the film width direction is the trapezoidal height direction, and the upper bottom and the lower bottom of the trapezoid are alternately alternated.
  • a capacitor element is made by cutting a long film into an isosceles trapezoidal shape so as to be. Then, a capacitor 68a is manufactured by attaching an electrode or the like to the capacitor element.
  • the semiconductor module 66 has a semiconductor switching element such as a MOSFET or an IGBT, and is formed in a substantially plate shape.
  • a semiconductor switching element such as a MOSFET or an IGBT
  • an inverter circuit is provided for each of the three-phase windings
  • a total of 12 semiconductor modules 66 are formed by arranging them in an annular shape.
  • the semiconductor module group 66A is provided in the electric component 62.
  • the semiconductor module 66 is arranged so as to be sandwiched between the tubular portion 71 of the casing 64 and the capacitor module 68.
  • the outer peripheral surface of the semiconductor module group 66A is in contact with the inner peripheral surface of the tubular portion 71, and the inner peripheral surface of the semiconductor module group 66A is in contact with the outer peripheral surface of the capacitor module 68.
  • the heat generated in the semiconductor module 66 is transferred to the end plate 63 via the casing 64 and released from the end plate 63.
  • the semiconductor module group 66A may have a spacer 69 on the outer peripheral surface side, that is, in the radial direction between the semiconductor module 66 and the tubular portion 71.
  • the cross-sectional shape of the cross section orthogonal to the axial direction is a regular dodecagon
  • the cross-sectional shape of the inner peripheral surface of the tubular portion 71 is circular, so that the spacer 69 is an inner peripheral surface. Is a flat surface and the outer peripheral surface is a curved surface.
  • the spacer 69 may be integrally provided so as to be connected in an annular shape on the radial outer side of the semiconductor module group 66A.
  • the spacer 69 is a good thermal conductor, and may be, for example, a metal such as aluminum, a heat radiating gel sheet, or the like. It is also possible to make the cross-sectional shape of the inner peripheral surface of the tubular portion 71 into a dodecagonal shape, which is the same as that of the capacitor module 68. In this case, it is preferable that both the inner peripheral surface and the outer peripheral surface of the spacer 69 are flat surfaces.
  • a cooling water passage 74 for flowing cooling water is formed in the tubular portion 71 of the casing 64, and the heat generated in the semiconductor module 66 is directed to the cooling water flowing through the cooling water passage 74. Even released. That is, the casing 64 is provided with a water cooling mechanism. As shown in FIGS. 3 and 4, the cooling water passage 74 is formed in an annular shape so as to surround the electrical component 62 (semiconductor module 66 and condenser module 68). The semiconductor module 66 is arranged along the inner peripheral surface of the tubular portion 71, and a cooling water passage 74 is provided at a position where the semiconductor module 66 overlaps the semiconductor module 66 in the radial direction inside and outside.
  • stator 50 Since the stator 50 is arranged on the outside of the tubular portion 71 and the electrical component 62 is arranged on the inside, the heat of the stator 50 is transferred to the tubular portion 71 from the outside, and the heat of the stator 50 is transferred to the tubular portion 71.
  • the heat of the electric component 62 (for example, the heat of the semiconductor module 66) is transferred from the inside. In this case, the stator 50 and the semiconductor module 66 can be cooled at the same time, and the heat of the heat generating member in the rotary electric machine 10 can be efficiently released.
  • the semiconductor module 66 constituting a part or the whole of the inverter circuit for operating the rotary electric machine by energizing the stator winding 51 is radially outside the tubular portion 71 of the casing 64. It is arranged in the area surrounded by the stator core 52 arranged in. Desirably, the entire semiconductor module 66 is arranged in the region surrounded by the stator core 52. Further, preferably, the entire semiconductor module 66 is arranged in the region surrounded by the stator core 52.
  • the semiconductor module 66 is arranged in the area surrounded by the cooling water passage 74. Desirably, the entire semiconductor module 66 is located in the region surrounded by the yoke 141.
  • the electrical component 62 includes an insulating sheet 75 provided on one end face of the capacitor module 68 and a wiring module 76 provided on the other end face in the axial direction.
  • the capacitor module 68 has two end faces facing each other in the axial direction, that is, a first end face and a second end face.
  • the first end surface of the capacitor module 68 near the bearing unit 20 faces the end surface 72 of the casing 64, and is superposed on the end surface 72 with the insulating sheet 75 sandwiched between them.
  • a wiring module 76 is assembled on the second end surface of the capacitor module 68 near the opening 65.
  • the wiring module 76 has a main body portion 76a made of a synthetic resin material and having a circular plate shape, and a plurality of bus bars 76b and 76c embedded therein.
  • the bus bars 76b and 76c are used to form a semiconductor module 66 and a capacitor. It has an electrical connection with module 68.
  • the semiconductor module 66 has a connecting pin 66a extending from its axial end face, and the connecting pin 66a is connected to the bus bar 76b on the radial outer side of the main body portion 76a.
  • the bus bar 76c extends to the side opposite to the capacitor module 68 on the radial outer side of the main body portion 76a, and is connected to the wiring member 79 at the tip end portion thereof (see FIG. 2).
  • the heat dissipation path of the capacitor module 68 is provided.
  • a path is formed from the first end face and the second end face of the capacitor module 68 to the end face 72 and the tubular portion 71. That is, a path from the first end face to the end face 72 and a path from the second end face to the tubular portion 71 are formed.
  • heat can be dissipated from the end surface portion other than the outer peripheral surface on which the semiconductor module 66 is provided. That is, not only heat dissipation in the radial direction but also heat dissipation in the axial direction is possible.
  • the capacitor module 68 has a hollow cylindrical shape and the rotating shaft 11 is arranged on the inner peripheral portion thereof with a predetermined gap interposed therebetween, the heat of the capacitor module 68 can be released from the hollow portion as well. ing. In this case, the rotation of the rotating shaft 11 causes an air flow to enhance the cooling effect.
  • a disk-shaped control board 67 is attached to the wiring module 76.
  • the control board 67 has a printed circuit board (PCB) on which a predetermined wiring pattern is formed, and a control device 77 corresponding to a control unit including various ICs and a microcomputer is mounted on the board. There is.
  • the control board 67 is fixed to the wiring module 76 by a fixture such as a screw.
  • the control board 67 has an insertion hole 67a in which the rotation shaft 11 is inserted in the central portion thereof.
  • the wiring module 76 has a first surface and a second surface that face each other in the axial direction, that is, face each other in the thickness direction thereof.
  • the first surface faces the capacitor module 68.
  • the wiring module 76 is provided with a control board 67 on the second surface thereof.
  • the bus bar 76c of the wiring module 76 extends from one side of both sides of the control board 67 to the other side.
  • the control board 67 may be provided with a notch for avoiding interference with the bus bar 76c.
  • the electric component 62 is generated in the inverter circuit.
  • Electromagnetic noise is suitably shielded. That is, in the inverter circuit, switching control is performed in each semiconductor module 66 by utilizing PWM control by a predetermined carrier frequency, and it is conceivable that electromagnetic noise is generated by the switching control. It can be suitably shielded by the housing 30, the rotor 40, the stator 50, etc. on the radial outer side of the 62.
  • the semiconductor module 66 is arranged in the region surrounded by the stator core 52 arranged radially outside the tubular portion 71 of the casing 64, whereby the semiconductor module 66 and the stator winding are arranged.
  • the semiconductor module 66 even if magnetic flux is generated from the semiconductor module 66, it is less likely to affect the stator winding 51. Further, even if the magnetic flux is generated from the stator winding 51, it is unlikely to affect the semiconductor module 66. It is more effective if the entire semiconductor module 66 is arranged in a region surrounded by the stator core 52 arranged on the radial outer side of the tubular portion 71 of the casing 64. Further, when at least a part of the semiconductor module 66 is surrounded by the cooling water passage 74, it is possible to obtain the effect that the heat generated from the stator winding 51 and the magnet unit 42 is difficult to reach the semiconductor module 66.
  • a through hole 78 is formed in the vicinity of the end plate 63 through which a wiring member 79 (see FIG. 2) for electrically connecting the outer stator 50 and the inner electrical component 62 is inserted.
  • the wiring member 79 is connected to the end of the stator winding 51 and the bus bar 76c of the wiring module 76 by crimping, welding, or the like.
  • the wiring member 79 is, for example, a bus bar, and it is desirable that the joint surface thereof be flattened.
  • the through holes 78 are preferably provided at one place or a plurality of places, and in the present embodiment, the through holes 78 are provided at two places. In a configuration in which through holes 78 are provided at two locations, winding terminals extending from two sets of three-phase windings can be easily connected by wiring members 79, which is suitable for multi-phase connection. It has become.
  • a rotor 40 and a stator 50 are provided in the housing 30 in this order from the outside in the radial direction, and an inverter unit 60 is provided inside the stator 50 in the radial direction.
  • the rotor 40 and the stator 50 are arranged radially outside the distance of d ⁇ 0.705 from the center of rotation of the rotor 40. There is.
  • the region of the rotor 40 and the stator 50 that is radially inward from the inner peripheral surface of the stator 50 that is radially inner is the first region X1 in the radial direction.
  • the cross-sectional area of the first region X1 is larger than the cross-sectional area of the second region X2.
  • the volume of the first region X1 is larger than the volume of the second region X2 when viewed in the range where the magnet unit 42 of the rotor 40 and the stator winding 51 overlap in the radial direction.
  • the first region X1 radially inside from the inner peripheral surface of the magnetic circuit component assembly in the housing 30 is the magnetic circuit component assembly in the radial direction.
  • the volume is larger than that of the second region X2 between the inner peripheral surface of the above and the housing 30.
  • a stator core made of a laminated steel plate and forming an annular shape is provided with a plurality of slots in the circumferential direction, and a stator winding is wound in the slots.
  • the stator core has a plurality of teeth extending in the radial direction from the yoke at predetermined intervals, and slots are formed between the teeth adjacent to each other in the circumferential direction. Then, for example, a plurality of layers of conductors are accommodated in the slot in the radial direction, and the stator winding is formed by the conductors.
  • stator winding when the stator winding is energized, magnetic saturation occurs in the teeth portion of the stator core as the magnetomotive force of the stator winding increases, which causes magnetic saturation in the rotating electric machine. It is possible that the torque density is limited. That is, in the stator core, it is considered that magnetic saturation occurs when the rotational magnetic flux generated by the energization of the stator winding is concentrated on the teeth.
  • a permanent magnet is arranged on the d-axis in the dq coordinate system, and a rotor core is arranged on the q-axis.
  • the stator winding near the d-axis is excited, so that the exciting magnetic flux flows from the stator to the q-axis of the rotor according to Fleming's law. It is considered that this causes a wide range of magnetic saturation in the q-axis core portion of the rotor.
  • FIG. 7 is a torque diagram showing the relationship between the ampere turn [AT] showing the magnetomotive force of the stator winding and the torque density [Nm / L].
  • the broken line shows the characteristics of a general IPM rotor type rotary electric machine.
  • FIG. 7 in a general rotary electric machine, by increasing the magnetomotive force in the stator, magnetic saturation occurs in two places, the tooth portion between the slots and the q-axis core portion, which causes magnetic saturation. The increase in torque is limited.
  • the ampere turn design value is limited by A1.
  • the rotary electric machine 10 in order to eliminate the limitation caused by magnetic saturation, is provided with the following configuration. That is, as a first device, in order to eliminate the magnetic saturation that occurs in the teeth of the stator core in the stator, a slotless structure is adopted in the stator 50, and in order to eliminate the magnetic saturation that occurs in the q-axis core portion of the IPM rotor. , SPM (Surface Permanent Magnet) rotor is used. According to the first device, it is possible to eliminate the above-mentioned two parts where magnetic saturation occurs, but it is conceivable that the torque in the low current region is reduced (see the alternate long and short dash line in FIG. 7).
  • SPM Surface Permanent Magnet
  • the magnet unit 42 of the rotor 40 adopts a polar anisotropic structure in which the magnetic path is lengthened to increase the magnetic force. ing.
  • the coil side portion 53 of the stator winding 51 adopts a flat conductor structure in which the radial thickness of the stator 50 of the conductor is reduced to recover the torque reduction.
  • a larger eddy current is generated in the stator winding 51 facing the magnet unit 42 due to the above-mentioned polar anisotropic structure in which the magnetic force is increased.
  • the flat conductor structure is thin in the radial direction, it is possible to suppress the generation of eddy current in the radial direction in the stator winding 51.
  • a magnet having a high magnetic force is adopted to expect a significant improvement in torque characteristics, but the magnet has a high magnetic force. Concerns about the generation of large eddy currents that can occur can also be improved.
  • a magnet unit that uses a polar anisotropic structure and has a magnetic flux density distribution close to a sine wave is adopted.
  • the sine wave matching rate can be increased by pulse control or the like described later to increase the torque, and eddy current loss (copper loss due to eddy current: eddy current loss) due to a gentler magnetic flux change than that of a radial magnet. ) Can also be further suppressed.
  • the sine wave matching factor will be described below.
  • the sine wave matching factor can be obtained by comparing the measured waveform of the surface magnetic flux density distribution measured by tracing the surface of the magnet with a magnetic flux probe and the sine wave having the same period and peak value.
  • the ratio of the amplitude of the primary waveform, which is the fundamental wave of the rotating electric machine, to the amplitude of the actually measured waveform, that is, the amplitude obtained by adding other harmonic components to the fundamental wave corresponds to the sine wave matching factor.
  • the sinusoidal matching factor increases, the waveform of the surface magnetic flux density distribution approaches the sinusoidal shape.
  • the surface magnetic flux density distribution may be estimated by a method other than actual measurement, for example, electromagnetic field analysis using Maxwell's equations.
  • the stator winding 51 has a wire conductor structure in which a plurality of wire wires are gathered and bundled. According to this, since the strands are connected in parallel, a large current can flow, and the eddy current generated by the conductors that spread in the circumferential direction of the stator 50 in the flat conductor structure is generated by the cross-sectional area of each strand. Is smaller, so it can be suppressed more effectively than thinning in the radial direction by the third device.
  • the torque can be increased while using the magnet with a high magnetic force, which is the second device, while suppressing the eddy current loss caused by the high magnetic force. Can be planned.
  • FIG. 8 is a cross-sectional view of the rotor 40 and the stator 50
  • FIG. 11 is a cross-sectional view showing a vertical cross section of the stator 50.
  • FIG. 12 is a perspective view of the stator winding 51.
  • the magnetization direction of the magnet in the magnet unit 42 is indicated by an arrow.
  • the stator core 52 has a cylindrical shape in which a plurality of electromagnetic steel sheets are laminated in the axial direction and has a predetermined thickness in the radial direction, and is on the rotor 40 side.
  • the stator winding 51 is assembled on the outer side in the radial direction.
  • the outer peripheral surface on the rotor 40 side serves as a conductor area.
  • the outer peripheral surface of the stator core 52 has a curved surface without unevenness, and a plurality of conductor groups 81 are arranged at predetermined intervals in the circumferential direction on the outer peripheral surface thereof.
  • the stator core 52 functions as a back yoke that is a part of a magnetic circuit for rotating the rotor 40.
  • a tooth that is, an iron core
  • a soft magnetic material is not provided between each of the two conductor groups 81 adjacent to each other in the circumferential direction (that is, a slotless structure).
  • the resin material of the sealing member 57 is inserted into the gap 56 of each of the conductor groups 81. That is, in the stator 50, the interconductor member provided between each conductor group 81 in the circumferential direction is configured as a sealing member 57 which is a non-magnetic material.
  • each conductor group 81 is composed of two conductors 82 as described later, and only the non-magnetic material occupies between the two conductor groups 81 adjacent to each other in the circumferential direction of the stator 50.
  • the non-magnetic material includes a non-magnetic gas such as air, a non-magnetic liquid, and the like in addition to the sealing member 57.
  • the sealing member 57 is also referred to as a conductor-to-conductor member.
  • the configuration in which the teeth are provided between the conductor groups 81 arranged in the circumferential direction means that the teeth have a predetermined thickness in the radial direction and a predetermined width in the circumferential direction, so that each conductor group has a predetermined width. It can be said that a part of the magnetic circuit, that is, a magnetic magnetic path is formed between 81. In this respect, it can be said that the configuration in which the teeth are not provided between the conducting wire groups 81 is the configuration in which the above-mentioned magnetic circuit is not formed.
  • the stator winding (that is, armature winding) 51 has a predetermined thickness T2 (hereinafter, also referred to as a first dimension) and a width W2 (hereinafter, also referred to as a second dimension). It is formed.
  • the thickness T2 is the shortest distance between the outer surface and the inner surface facing each other in the radial direction of the stator winding 51.
  • the width W2 is a fixation that functions as one of the polyphases of the stator winding 51 (three phases in the embodiment: three phases of U phase, V phase and W phase, or three phases of X phase, Y phase and Z phase). It is the length in the circumferential direction of the stator winding 51 which is a part of the child winding 51.
  • the thickness T2 is preferably smaller than the total width dimension of the two conductor groups 81 existing in the width W2. If the cross-sectional shape of the stator winding 51 (more specifically, the wire 82) is a perfect circle, an ellipse, or a polygon, the cross section of the stator 82 along the radial direction of the stator 50. In the cross section, the maximum length of the stator 50 in the radial direction may be W12, and the maximum length of the stator 50 in the circumferential direction may be W11.
  • the stator winding 51 is sealed by a sealing member 57 made of a synthetic resin material as a sealing material (molding material). That is, the stator winding 51 is molded by the molding material together with the stator core 52.
  • the sealing member 57 is provided between the conductor groups 81, that is, the gap 56 is filled with the synthetic resin material, and the sealing member 57 between the conductor groups 81. Insulation member is interposed in the structure. That is, the sealing member 57 functions as an insulating member in the gap 56.
  • the sealing member 57 is provided on the radial outer side of the stator core 52 in a range including all of the lead wire groups 81, that is, in a range in which the radial thickness dimension is larger than the radial thickness dimension of each lead wire group 81. It is provided.
  • the sealing member 57 is provided in a range including the turn portion 84 of the stator winding 51. Inside the stator winding 51 in the radial direction, a sealing member 57 is provided within a range including at least a part of the end faces of the stator core 52 facing in the axial direction. In this case, the stator winding 51 is resin-sealed almost entirely except for the ends of the phase windings of each phase, that is, the connection terminals with the inverter circuit.
  • the laminated steel plate of the stator core 52 can be pressed inward in the axial direction by the sealing member 57. Thereby, the laminated state of each steel plate can be maintained by using the sealing member 57.
  • the inner peripheral surface of the stator core 52 is not resin-sealed, but instead, the entire stator core 52 including the inner peripheral surface of the stator core 52 is resin-sealed. It may be a configuration.
  • the sealing member 57 is made of a highly heat-resistant fluororesin, epoxy resin, PPS resin, PEEK resin, LCP resin, silicon resin, PAI resin, PI resin, or the like. It is preferably configured. Further, considering the coefficient of linear expansion from the viewpoint of suppressing cracks due to the difference in expansion, it is desirable that the material is the same as the outer coating of the conductor of the stator winding 51. That is, a silicon resin having a coefficient of linear expansion that is generally more than double that of other resins is preferably excluded. For electric products that do not have an engine that utilizes combustion, such as electric vehicles, PPO resin, phenol resin, and FRP resin that have heat resistance of about 180 ° C. are also candidates. This does not apply in the field where the ambient temperature of the rotary electric machine can be regarded as less than 100 ° C.
  • the torque of the rotary electric machine 10 is proportional to the magnitude of the magnetic flux.
  • the maximum amount of magnetic flux in the stator is limited depending on the saturation magnetic flux density in the teeth, but the stator core does not have teeth. In this case, the maximum amount of magnetic flux in the stator is not limited. Therefore, the configuration is advantageous in increasing the energizing current for the stator winding 51 to increase the torque of the rotary electric machine 10.
  • the inductance of the stator 50 is reduced by using a structure (slotless structure) in which the stator 50 has no teeth.
  • the inductance is, for example, around 1 mH, whereas in the stator 50 of the present embodiment, the inductance is high. It is reduced to about 5 to 60 ⁇ H.
  • it is possible to reduce the mechanical time constant Tm by reducing the inductance of the stator 50 while using the rotary electric machine 10 having an outer rotor structure. That is, it is possible to reduce the mechanical time constant Tm while increasing the torque.
  • the mechanical time constant Tm (J ⁇ L) / (Kt ⁇ Ke) In this case, it can be confirmed that the mechanical time constant Tm is reduced by reducing the inductance L.
  • Each conductor group 81 on the radial outer side of the stator core 52 is configured by arranging a plurality of conductors 82 having a flat rectangular cross section side by side in the radial direction of the stator core 52.
  • Each of the conductors 82 is arranged in a direction such that "diameter dimension ⁇ circumferential dimension" in the cross section.
  • the thickness of each conductor group 81 is reduced in the radial direction.
  • the thickness in the radial direction is reduced, and the conductor region extends flat to the region where the teeth have been conventionally, forming a flat conductor region structure.
  • each of the conductor group 81 and each of the conductor 82 will also be referred to as a conductive member.
  • the conductor region occupied by the stator winding 51 in one circumference in the circumferential direction is designed to be larger than the conductor non-occupied region in which the stator winding 51 does not exist. be able to.
  • the conductor region / conductor non-occupied region in one circumference of the stator winding in the circumferential direction is 1 or less.
  • each conductor group 81 is provided so that the conductor region is equal to the conductor non-occupied region or the conductor region is larger than the conductor non-occupied region.
  • the conductor region in which the conductor 82 (that is, the straight line portion 83 described later) is arranged in the circumferential direction is WA and the region between the conductors 82 between the adjacent conductors 82 is WB, the conductor The region WA is larger in the circumferential direction than the interconductor region WB.
  • the thickness dimension of the conductor group 81 in the radial direction is smaller than the width dimension of one phase in one magnetic pole in the circumferential direction. That is, in a configuration in which the conductor group 81 is composed of two layers of conductors 82 in the radial direction and two conductor groups 81 are provided in the circumferential direction for each phase in one magnetic pole, the thickness dimension of each conductor 82 in the radial direction is set.
  • Tc and the width dimension of each conducting wire 82 in the circumferential direction are Wc, it is configured to be "Tc ⁇ 2 ⁇ Wc ⁇ 2".
  • the conductor group 81 is composed of two layers of conductors 82 and one conductor group 81 is provided in one magnetic pole in the circumferential direction for each phase. It is preferable that it is configured so as to be.
  • the conductor portions (conductor group 81) arranged at predetermined intervals in the circumferential direction in the stator winding 51 have a thickness dimension in the radial direction that is larger than the width dimension in the circumferential direction for one phase in one magnetic pole. It is small.
  • the thickness dimension Tc in the radial direction of each conductor 82 is smaller than the width dimension Wc in the circumferential direction. Furthermore, the radial thickness dimension (2Tc) of the conductor group 81 composed of two layers of conductors 82 in the radial direction, that is, the radial thickness dimension (2Tc) of the conductor group 81 is larger than the circumferential width dimension Wc. It should be small.
  • the torque of the rotary electric machine 10 is substantially inversely proportional to the radial thickness of the stator core 52 of the conductor group 81.
  • the thickness of the conductor group 81 is reduced on the radial outer side of the stator core 52, which is advantageous in increasing the torque of the rotary electric machine 10.
  • the reason is that the magnetic resistance can be lowered by reducing the distance from the magnet unit 42 of the rotor 40 to the stator core 52 (that is, the distance of the iron-free portion). According to this, the interlinkage magnetic flux of the stator core 52 by the permanent magnet can be increased, and the torque can be increased.
  • the thickness of the conductor group 81 even if the magnetic flux leaks from the conductor group 81, it is easily collected by the stator core 52, and the magnetic flux is not effectively used for improving torque and leaks to the outside. Can be suppressed. That is, it is possible to suppress a decrease in magnetic force due to magnetic flux leakage, and it is possible to increase the interlinkage magnetic flux of the stator core 52 by the permanent magnet to increase the torque.
  • the conductor 82 is composed of a coated conductor whose surface is coated with an insulating coating 82b, and is between the conductors 82 that overlap each other in the radial direction and between the conductor 82 and the stator core 52. Insulation is ensured in each.
  • the insulating coating 82b is composed of a coating thereof if the strand 86 described later is a self-bonding coated wire, or an insulating member laminated separately from the coating of the strand 86.
  • Each phase winding composed of the conducting wire 82 retains the insulating property by the insulating coating 82b except for the exposed portion for connection.
  • the exposed portion is, for example, an input / output terminal portion or a neutral point portion in the case of a star-shaped connection.
  • the conductors 82 adjacent to each other in the radial direction are fixed to each other by using resin fixing or self-bonding coated wire. As a result, dielectric breakdown, vibration, and sound due to the rubbing of the conducting wires 82 against each other are suppressed.
  • the conductor 82a is configured as an aggregate of a plurality of wires 86. Specifically, as shown in FIG. 13, the conductor 82a is formed in a twisted state by twisting a plurality of strands 86. Further, as shown in FIG. 14, the wire 86 is configured as a composite in which thin fibrous conductive materials 87 are bundled.
  • the wire 86 is a composite of CNT (carbon nanotube) fibers, and as the CNT fiber, a fiber containing boron-containing fine fibers in which at least a part of carbon is replaced with boron is used.
  • a vapor phase growth method carbon fiber (VGCF) or the like can be used in addition to the CNT fiber, but it is preferable to use the CNT fiber.
  • the surface of the wire 86 is covered with a polymer insulating layer such as enamel. Further, it is preferable that the surface of the wire 86 is covered with a so-called enamel film made of a polyimide film or an amidimide film.
  • the conductor 82 constitutes an n-phase winding in the stator winding 51. Then, the respective strands 86 of the conductor 82 (that is, the conductor 82a) are adjacent to each other in contact with each other.
  • the winding conductor has a portion formed by twisting a plurality of strands 86 at one or more places in the phase, and the resistance value between the twisted strands 86 is the strand 86 itself. It is a wire aggregate larger than the resistance value of.
  • the conducting wire 82 may be formed of a plurality of strands 86, and may be an aggregate of strands covering the plurality of strands 86 by an insulating member having an extremely high first electrical resistivity. Further, the conductor 82a of the conductor 82 is composed of a plurality of twisted strands 86.
  • the conductor 82a is configured by twisting a plurality of strands 86, the generation of eddy currents in each strands 86 can be suppressed, and the eddy currents in the conductor 82a can be reduced. Further, since each wire 86 is twisted, a portion where the magnetic field application directions are opposite to each other is generated in one wire 86, and the counter electromotive voltage is canceled out. Therefore, the eddy current can also be reduced. In particular, by forming the wire 86 with the fibrous conductive material 87, it is possible to make the wire thinner and to significantly increase the number of twists, and it is possible to more preferably reduce the eddy current.
  • the method of insulating the wires 86 from each other here is not limited to the above-mentioned polymer insulating film, and may be a method of making it difficult for current to flow between the twisted wires 86 by using contact resistance. That is, if the resistance value between the twisted strands 86 is larger than the resistance value of the strands 86 itself, the above effect can be obtained by the potential difference generated due to the difference in the resistance values. ..
  • the wire is used based on the movement time, work interval, and the like. 86 is suitable because it can be oxidized and the contact resistance can be increased.
  • the conductor 82 has a flat rectangular cross section and is arranged side by side in the radial direction.
  • a plurality of conductors 82 covered with a self-bonding coated wire having a fusion layer and an insulating layer.
  • the wire 86 is assembled in a twisted state, and the fused layers are fused to maintain the shape.
  • the strands having no fusion layer or the strands of the self-bonding coated wire may be twisted and solidified into a desired shape with a synthetic resin or the like for molding.
  • the thickness of the insulating coating 82b in the conductor 82 is set to, for example, 80 ⁇ m to 100 ⁇ m and is thicker than the film thickness (5 to 40 ⁇ m) of the commonly used conductor, insulation is provided between the conductor 82 and the stator core 52. Insulation between the two can be ensured without the intervention of paper or the like.
  • the insulating coating 82b has higher insulating performance than the insulating layer of the wire 86 and is configured to be able to insulate between the phases.
  • the thickness of the polymer insulating layer of the wire 86 is set to, for example, about 5 ⁇ m
  • the thickness of the insulating coating 82b of the conducting wire 82 is set to about 80 ⁇ m to 100 ⁇ m so that insulation between the phases can be preferably performed. Is desirable.
  • the conductor 82 may have a configuration in which a plurality of strands 86 are bundled without being twisted. That is, the conductor 82 has a configuration in which a plurality of strands 86 are twisted in the total length, a configuration in which a plurality of strands 86 are twisted in a part of the total length, and a plurality of strands 86 are twisted in the total length. It may be any of the configurations that are bundled together.
  • each conductor 82 constituting the conductor portion is a wire aggregate in which a plurality of conductors 86 are bundled and the resistance value between the bundled wires is larger than the resistance value of the wire 86 itself. It has become.
  • Each conductor 82 is bent and formed so as to be arranged in a predetermined arrangement pattern in the circumferential direction of the stator winding 51, whereby a phase winding for each phase is formed as the stator winding 51. ..
  • the coil side portion 53 is formed by the straight portion 83 of each conducting wire 82 extending linearly in the axial direction, and the coil side portion 53 is formed on both outer sides of the coil side portion 53 in the axial direction.
  • the coil ends 54 and 55 are formed by the protruding turn portions 84.
  • Each conducting wire 82 is configured as a series of wave-shaped conducting wires by alternately repeating a straight line portion 83 and a turn portion 84.
  • the straight line portions 83 are arranged at positions facing the magnet unit 42 in the radial direction, and in-phase straight line portions 83 arranged at positions on the outer side in the axial direction of the magnet unit 42 at predetermined intervals are arranged. They are connected to each other by a turn portion 84.
  • the straight line portion 83 corresponds to the “magnet facing portion”.
  • the stator winding 51 is wound in an annular shape by distributed winding.
  • linear portions 83 are arranged in the circumferential direction at intervals corresponding to one pole pair of the magnet unit 42 for each phase, and in the coil ends 54 and 55, each linear portion 83 for each phase is arranged. , They are connected to each other by a turn portion 84 formed in a substantially V shape.
  • the directions of the currents of the linear portions 83 that are paired corresponding to the one-pole pair are opposite to each other.
  • the combination of the pair of linear portions 83 connected by the turn portion 84 is different between the one coil end 54 and the other coil end 55, and the connections at the coil ends 54 and 55 are in the circumferential direction.
  • the stator winding 51 is formed in a substantially cylindrical shape.
  • the stator winding 51 constitutes a winding for each phase by using two pairs of conductors 82 for each phase, and one of the stator windings 51 is a three-phase winding (U).
  • X phase, Y phase, Z phase the other three-phase winding
  • S the number of phases of the stator winding 51
  • m the number of conductors 82 per phase
  • the straight portions 83 are arranged so as to overlap in two layers adjacent in the radial direction, and in the coil ends 54 and 55, the linear portions overlapping in the radial direction are respectively arranged.
  • the turn portion 84 extends in the circumferential direction in directions opposite to each other in the circumferential direction. That is, in each of the conducting wires 82 adjacent to each other in the radial direction, the directions of the turn portions 84 are opposite to each other except for the end portion of the stator winding 51.
  • FIG. 15 (a) and 15 (b) are views showing the form of each conductor 82 in the nth layer, and FIG. 15 (a) shows the conductor 82 seen from the side of the stator winding 51. The shape is shown, and FIG. 15B shows the shape of the conducting wire 82 seen from one side in the axial direction of the stator winding 51.
  • FIG. 15A and FIG. 15B show the shape of the conducting wire 82 seen from one side in the axial direction of the stator winding 51.
  • the positions where the conductor group 81 is arranged are shown as D1, D2, D3, ..., Respectively. Further, for convenience of explanation, only three conductors 82 are shown, which are referred to as the first conductor 82_A, the second conductor 82_B, and the third conductor 82_C.
  • the straight line portions 83 are all arranged at the nth layer position, that is, at the same position in the radial direction, and the straight line portions 83 separated by 6 positions (3 ⁇ m pairs) in the circumferential direction are separated from each other. They are connected to each other by a turn portion 84.
  • a pair of straight lines 83 are arranged at D1 and D7, respectively, and the pair of straight lines 83 are connected to each other by an inverted V-shaped turn portion 84.
  • the other conductors 82_B and 82_C are arranged in the same nth layer with their circumferential positions shifted by one.
  • the turn portions 84 interfere with each other. Therefore, in the present embodiment, an interference avoidance portion is formed in the turn portion 84 of each of the conducting wires 82_A to 82_C by offsetting a part thereof in the radial direction.
  • the turn portion 84 of each of the conducting wires 82_A to 82_C is from one inclined portion 84a which is a portion extending in the circumferential direction on the same circle (first circle) and the same circle from the inclined portion 84a.
  • the inclined portion 84c extending in the circumferential direction on the second circle, and the first circle. It has a return portion 84d that returns to the second circle.
  • the top portion 84b, the inclined portion 84c, and the return portion 84d correspond to the interference avoidance portion.
  • the inclined portion 84c may be configured to shift outward in the radial direction with respect to the inclined portion 84a.
  • the turn portions 84 of the conducting wires 82_A to 82_C have an inclined portion 84a on one side and an inclined portion 84c on the other side on both sides of the top portion 84b which is a central position in the circumferential direction.
  • the radial positions of the inclined portions 84a and 84c are different from each other.
  • the turn portion 84 of the first lead wire 82_A extends along the circumferential direction starting from the D1 position of the n layer, bends in the radial direction (for example, inward in the radial direction) at the top portion 84b which is the central position in the circumferential direction, and then. By bending again in the circumferential direction, it extends along the circumferential direction again, and further bends in the radial direction (for example, outside in the radial direction) again at the return portion 84d to reach the D7 position of the n layer, which is the end point position. There is.
  • one of the inclined portions 84a is arranged vertically in the order of the first conductor 82_A ⁇ the second conductor 82_B ⁇ the third conductor 82_C from the top, and each conductor 82_A to the top 84b.
  • the top and bottom of 82_C are interchanged, and the other inclined portions 84c are arranged vertically in the order of the third conductor 82_C ⁇ the second conductor 82_B ⁇ the first conductor 82_A from the top. Therefore, the conductors 82_A to 82_C can be arranged in the circumferential direction without interfering with each other.
  • the turn portion 84 connected to the linear portion 83 on the inner side in the radial direction and the outer side in the radial direction among the straight line portions 83 of the plurality of layers is arranged so as to be radially separated from each of the straight portions 83.
  • the conductors 82 of a plurality of layers are bent to the same side in the radial direction near the end of the turn portion 84, that is, the boundary portion with the straight portion 83, the conductors 82 of the adjacent layers have an insulating property due to interference between the conductors 82. It is good to prevent the damage from being damaged.
  • the conducting wires 82 overlapping in the radial direction are bent in the radial direction at the return portion 84d of the turn portion 84, respectively.
  • the radius of curvature of the bent portion is different between the conductor 82 of the nth layer and the conductor 82 of the n + 1 layer.
  • the radius of curvature R1 of the conductive wire 82 on the inner side in the radial direction (nth layer) is made smaller than the radius of curvature R2 of the lead wire 82 on the outer side in the radial direction (n + 1th layer).
  • the shift amount in the radial direction is made larger than the shift amount S2 of the conductor 82 on the outer side (n + 1 layer) in the radial direction.
  • the permanent magnet used in this embodiment is a sintered magnet obtained by sintering and solidifying a granular magnetic material, and the intrinsic coercive force Hcj on the JH curve is 400 [kA / m] or more.
  • the residual magnetic flux density Br is 1.0 [T] or more.
  • the magnet unit 42 has a saturation magnetic flux density Js of 1.2 [T] or more, a crystal particle size of 10 [ ⁇ m] or less, and Js ⁇ ⁇ of 1 when the orientation ratio is ⁇ . It is 0.0 [T] or higher.
  • the magnet unit 42 is supplemented below.
  • the magnet unit 42 (magnet) is characterized in that 2.15 [T] ⁇ Js ⁇ 1.2 [T].
  • examples of the magnet used in the magnet unit 42 include NdFe11TiN, Nd2Fe14B, Sm2Fe17N3, and FeNi magnets having L10 type crystals.
  • the magnet unit 42 is characterized in that the size of the particle size in the fine powder state before orientation is 10 ⁇ m or less and the particle size in the single magnetic domain or more by using the magnet combination.
  • the coercive force is increased by refining the powder particles to the order of several hundred nm. Therefore, in recent years, powders as fine as possible have been used. However, if it is made too fine, the BH product of the magnet will drop due to oxidation or the like, so a single magnetic domain particle size or larger is preferable. It is known that the coercive force increases due to miniaturization when the particle size is up to the single magnetic domain particle size.
  • the size of the particle size described here is the size of the particle size in the fine powder state at the time of the alignment step in the magnet manufacturing process.
  • each of the first magnet 91 and the second magnet 92 of the magnet unit 42 is a sintered magnet formed by so-called sintering, in which magnetic powder is baked and hardened at a high temperature.
  • sintering when the saturation magnetization Js of the magnet unit 42 is 1.2 T or more, the crystal grain size of the first magnet 91 and the second magnet 92 is 10 ⁇ m or less, and the orientation ratio is ⁇ , Js ⁇ ⁇ is It is performed so as to satisfy the condition of 1.0 T (tesla) or more. Further, each of the first magnet 91 and the second magnet 92 is sintered so as to satisfy the following conditions.
  • the orientation ratio (orientation ratio) is different from the definition of the magnetic force direction by the magnetizing step of the isotropic magnet.
  • the saturation magnetization Js of the magnet unit 42 of the present embodiment is 1.2 T or more, and the orientation ratio ⁇ of the first magnet 91 and the second magnet 92 is high so that Jr ⁇ Js ⁇ ⁇ ⁇ 1.0 [T].
  • the orientation rate is set.
  • the orientation rate ⁇ referred to here means, for example, six easy-to-magnetize axes in each of the first magnet 91 and the second magnet 92, five of which face the direction A10 in the same direction, and the remaining one.
  • the first magnet 91 and the second magnet 92 are formed by sintering, but if the above conditions are satisfied, the first magnet 91 and the second magnet 92 may be molded by another method. .. For example, a method of forming an MQ3 magnet or the like can be adopted.
  • the magnetic circuit length inside the magnet is set to the magnetic circuit length of a linearly oriented magnet that conventionally produces 1.0 [T] or more. Compared, it can be made longer. That is, the magnetic circuit length per pole pair can be achieved with a small amount of magnets, and the reversible demagnetization range is maintained even when exposed to harsh high thermal conditions as compared with the conventional design using linearly oriented magnets. Can be done. Further, the discloser of the present application has found a configuration in which characteristics similar to those of a polar anisotropic magnet can be obtained even by using a magnet of the prior art.
  • the easy-to-magnetize axis refers to the crystal orientation that is easily magnetized in a magnet.
  • the orientation of the easy-to-magnetize axis in the magnet is a direction in which the orientation ratio indicating the degree to which the directions of the easy-magnetization axes are aligned is 50% or more, or a direction in which the orientation of the magnet is average.
  • the magnet unit 42 has an annular shape and is provided inside the magnet holder 41 (specifically, inside the cylindrical portion 43 in the radial direction).
  • the magnet unit 42 has a first magnet 91 and a second magnet 92, which are polar anisotropic magnets and have different polarities from each other.
  • the first magnet 91 and the second magnet 92 are arranged alternately in the circumferential direction.
  • the first magnet 91 is a magnet that forms an N pole in a portion close to the stator winding 51
  • the second magnet 92 is a magnet that forms an S pole in a portion close to the stator winding 51.
  • the first magnet 91 and the second magnet 92 are permanent magnets made of rare earth magnets such as neodymium magnets.
  • the magnetization direction extends in an arc shape with the q axis (quadrature-axis).
  • the magnetization direction is the radial direction of the annular magnet unit 42 on the d-axis side, and the magnetization direction of the annular magnet unit 42 is the circumferential direction on the q-axis side.
  • Each of the magnets 91 and 92 has a first portion 250 and two second portions 260 located on both sides of the first portion 250 in the circumferential direction of the magnet unit 42, as shown in FIG.
  • the first portion 250 is closer to the d-axis than the second portion 260
  • the second portion 260 is closer to the q-axis than the first portion 250.
  • the magnet unit 42 is configured so that the direction of the easy-to-magnetize axis 300 of the first portion 250 is more parallel to the d-axis than the direction of the easy-to-magnetize axis 310 of the second portion 260.
  • the magnet unit 42 is configured so that the angle ⁇ 11 formed by the easily magnetized axis 300 of the first portion 250 with the d-axis is smaller than the angle ⁇ 12 formed by the easily magnetized axis 310 of the second portion 260 with the q-axis.
  • the angle ⁇ 11 is the angle formed by the d-axis and the easily magnetized axis 300 when the direction from the stator 50 (armature) to the magnet unit 42 is positive on the d-axis.
  • the angle ⁇ 12 is an angle formed by the q-axis and the easily magnetized axis 310 when the direction from the stator 50 (armature) to the magnet unit 42 is positive on the q-axis. Both the angle ⁇ 11 and the angle ⁇ 12 are 90 ° or less in this embodiment.
  • Each of the easily magnetized axes 300 and 310 referred to here is defined by the following.
  • ) is set to the easy magnetization axis 300 or the easy magnetization axis 310.
  • the directions of the easy-to-magnetize axes of the magnets 91 and 92 are different between the d-axis side (the portion closer to the d-axis) and the q-axis side (the portion closer to the q-axis), and magnetization is performed on the d-axis side.
  • the direction of the easy axis is close to the direction parallel to the d-axis, and the direction of the easy magnetization axis is close to the direction orthogonal to the q-axis on the q-axis side.
  • an arcuate magnet magnetic path is formed according to the direction of the easily magnetized axis.
  • the easy magnetization axis may be oriented parallel to the d-axis on the d-axis side, and the easy-magnetization axis may be oriented orthogonal to the q-axis on the q-axis side.
  • the outer surface on the stator side on the stator 50 side (lower side in FIG. 9) and the end surface on the q-axis side in the circumferential direction are magnetic flux. It is a magnetic flux acting surface that is an inflow and outflow surface, and a magnetic magnetic path is formed so as to connect these magnetic flux acting surfaces (the outer surface on the stator side and the end surface on the q-axis side).
  • the magnet unit 42 magnetic flux flows in an arc shape between adjacent N and S poles due to the magnets 91 and 92, so that the magnet path is longer than, for example, a radial anisotropic magnet. Therefore, as shown in FIG. 17, the magnetic flux density distribution is close to that of a sine wave. As a result, unlike the magnetic flux density distribution of the radial anisotropic magnet shown as a comparative example in FIG. 18, the magnetic flux can be concentrated on the center side of the magnetic pole, and the torque of the rotary electric machine 10 can be increased. Further, it can be confirmed that the magnet unit 42 of the present embodiment has a difference in the magnetic flux density distribution as compared with the conventional Halbach array magnet. In FIGS.
  • the horizontal axis represents the electric angle and the vertical axis represents the magnetic flux density. Further, in FIGS. 17 and 18, 90 ° on the horizontal axis indicates the d-axis (that is, the center of the magnetic pole), and 0 ° and 180 ° on the horizontal axis indicate the q-axis.
  • the magnet magnetic flux on the d-axis is strengthened and the change in magnetic flux near the q-axis is suppressed.
  • magnets 91 and 92 in which the change in surface magnetic flux from the q-axis to the d-axis at each magnetic pole is gentle can be preferably realized.
  • the sine wave matching factor of the magnetic flux density distribution may be, for example, a value of 40% or more. By doing so, it is possible to surely improve the amount of magnetic flux in the central portion of the waveform as compared with the case of using a radial alignment magnet or a parallel alignment magnet having a sinusoidal matching factor of about 30%. Further, if the sine wave matching factor is 60% or more, the amount of magnetic flux in the central portion of the waveform can be surely improved as compared with the magnetic flux concentrated arrangement such as the Halbach array.
  • the magnetic flux density changes sharply near the q-axis.
  • the steeper the change in magnetic flux density the greater the eddy current generated in the stator winding 51.
  • the change in magnetic flux on the stator winding 51 side is also steep.
  • the magnetic flux density distribution is a magnetic flux waveform close to a sine wave. Therefore, the change in the magnetic flux density near the q-axis is smaller than the change in the magnetic flux density of the radial anisotropic magnet. As a result, the generation of eddy current can be suppressed.
  • a magnetic flux is generated in the vicinity of the d-axis (that is, the center of the magnetic pole) of each of the magnets 91 and 92 in a direction orthogonal to the magnetic flux action surface 280 on the stator 50 side, and the magnetic flux acts on the magnetic flux action on the stator 50 side.
  • the stator 50 can receive a strong magnetic flux from the rotor 40.
  • stator 50 is provided with a cylindrical stator core 52 on the radial inside of the stator winding 51, that is, on the opposite side of the rotor 40 with the stator winding 51 interposed therebetween. Therefore, the magnetic flux extending from the magnetic flux acting surface of each of the magnets 91 and 92 is attracted to the stator core 52 and orbits while using the stator core 52 as a part of the magnetic path. In this case, the direction and path of the magnetic flux of the magnet can be optimized.
  • the inverter unit 60 has a unit base 61 and an electric component 62, and each work process including an assembling process of the unit base 61 and the electric component 62 will be described.
  • the assembly including the stator 50 and the inverter unit 60 is referred to as the first unit
  • the assembly including the bearing unit 20, the housing 30 and the rotor 40 is referred to as the second unit.
  • This manufacturing process is -The first step of mounting the electrical component 62 inside the unit base 61 in the radial direction, and -The second step of mounting the unit base 61 inside the stator 50 in the radial direction to manufacture the first unit, and A third step of inserting the fixing portion 44 of the rotor 40 into the bearing unit 20 assembled to the housing 30 to manufacture the second unit, and ⁇ The fourth step of mounting the first unit inside the second unit in the radial direction, and Fifth step of fastening and fixing the housing 30 and the unit base 61, have.
  • the execution order of each of these steps is as follows: 1st step ⁇ 2nd step ⁇ 3rd step ⁇ 4th step ⁇ 5th step.
  • the bearing unit 20, the housing 30, the rotor 40, the stator 50, and the inverter unit 60 are assembled as a plurality of assemblies (subassemblies), and then the assemblies are assembled to each other. Ease of handling and completion of inspection for each unit can be realized, and a rational assembly line can be constructed. Therefore, it is possible to easily cope with high-mix production.
  • a good thermal conductor having good thermal conductivity is attached to at least one of the radial inside of the unit base 61 and the radial outside of the electric component 62 by coating, adhesion, etc., and in that state,
  • the electrical component 62 may be attached to the unit base 61. This makes it possible to effectively transmit the heat generated by the semiconductor module 66 to the unit base 61.
  • the third step it is advisable to insert the rotor 40 while maintaining the coaxiality between the housing 30 and the rotor 40.
  • the position of the outer peripheral surface of the rotor 40 (outer peripheral surface of the magnet holder 41) or the inner peripheral surface of the rotor 40 (inner peripheral surface of the magnet unit 42) is determined with reference to the inner peripheral surface of the housing 30.
  • the housing 30 and the rotor 40 are assembled while sliding either the housing 30 or the rotor 40 along the magnet.
  • heavy parts can be assembled without applying an eccentric load to the bearing unit 20, and the reliability of the bearing unit 20 is improved.
  • the fourth step it is advisable to assemble both units while maintaining the coaxiality between the first unit and the second unit.
  • a jig for determining the position of the inner peripheral surface of the unit base 61 with reference to the inner peripheral surface of the fixed portion 44 of the rotor 40 is used, and the first unit and the second unit are formed along the jig. Assemble each of these units while sliding one of them.
  • each of the above steps is as follows: 2nd step ⁇ 3rd step ⁇ 4th step ⁇ 5th step ⁇ 1st step.
  • the delicate electric component 62 is assembled last, and the stress on the electric component 62 in the assembling process can be minimized.
  • FIG. 19 is an electric circuit diagram of the control system of the rotary electric machine 10
  • FIG. 20 is a functional block diagram showing a control process by the control device 110.
  • FIG. 19 two sets of three-phase windings 51a and 51b are shown as the stator windings 51, and the three-phase winding 51a is composed of a U-phase winding, a V-phase winding, and a W-phase winding.
  • the phase winding 51b includes an X-phase winding, a Y-phase winding, and a Z-phase winding.
  • a first inverter 101 and a second inverter 102 corresponding to a power converter are provided for each of the three-phase windings 51a and 51b, respectively.
  • the inverters 101 and 102 are composed of a full bridge circuit having the same number of upper and lower arms as the number of phases of the phase windings, and the stator windings 51 can be turned on and off by turning on / off a switch (semiconductor switching element) provided on each arm. The energizing current is adjusted in each phase winding.
  • a DC power supply 103 and a smoothing capacitor 104 are connected in parallel to each of the inverters 101 and 102.
  • the DC power supply 103 is composed of, for example, an assembled battery in which a plurality of single batteries are connected in series.
  • the switches of the inverters 101 and 102 correspond to the semiconductor module 66 shown in FIG. 1 and the like, and the capacitor 104 corresponds to the capacitor module 68 shown in FIG. 1 and the like.
  • the control device 110 includes a microcomputer composed of a CPU and various memories, and performs energization control by turning on / off each switch in the inverters 101 and 102 based on various detection information in the rotary electric machine 10 and requests for power running and power generation. carry out.
  • the control device 110 corresponds to the control device 77 shown in FIG.
  • the detection information of the rotary electric machine 10 includes, for example, the rotation angle (electric angle information) of the rotor 40 detected by an angle detector such as a resolver, the power supply voltage (inverter input voltage) detected by the voltage sensor, and the current sensor. Includes the energizing current of each phase detected by.
  • the control device 110 generates and outputs an operation signal for operating each of the switches of the inverters 101 and 102.
  • the power generation requirement is, for example, a regenerative drive requirement when the rotary electric machine 10 is used as a power source for a vehicle.
  • the first inverter 101 includes a series connection body of the upper arm switch Sp and the lower arm switch Sn in three phases including the U phase, the V phase, and the W phase.
  • the high potential side terminal of the upper arm switch Sp of each phase is connected to the positive electrode terminal of the DC power supply 103, and the low potential side terminal of the lower arm switch Sn of each phase is connected to the negative electrode terminal (ground) of the DC power supply 103. ..
  • One ends of the U-phase winding, the V-phase winding, and the W-phase winding are connected to the intermediate connection points between the upper arm switch Sp and the lower arm switch Sn of each phase, respectively.
  • Each of these phase windings is star-shaped (Y-connected), and the other end of each phase winding is connected to each other at a neutral point.
  • the second inverter 102 has the same configuration as the first inverter 101, and includes a series connection body of the upper arm switch Sp and the lower arm switch Sn in three phases including the X phase, the Y phase, and the Z phase, respectively. ing.
  • the high potential side terminal of the upper arm switch Sp of each phase is connected to the positive electrode terminal of the DC power supply 103, and the low potential side terminal of the lower arm switch Sn of each phase is connected to the negative electrode terminal (ground) of the DC power supply 103. ..
  • One ends of the X-phase winding, the Y-phase winding, and the Z-phase winding are connected to the intermediate connection points between the upper arm switch Sp and the lower arm switch Sn of each phase, respectively.
  • Each of these phase windings is star-shaped (Y-connected), and the other end of each phase winding is connected to each other at a neutral point.
  • FIG. 20 shows a current feedback control process that controls each phase current of the U, V, and W phases, and a current feedback control process that controls each phase current of the X, Y, and Z phases.
  • the control processing on the U, V, and W phases will be described.
  • the current command value setting unit 111 uses a torque ⁇ dq map and is based on a power running torque command value or a power generation torque command value for the rotary electric machine 10 and an electric angular velocity ⁇ obtained by time-differentiating the electric angle ⁇ . ,
  • the d-axis current command value and the q-axis current command value are set.
  • the current command value setting unit 111 is commonly provided on the U, V, W phase side and the X, Y, Z phase side.
  • the power generation torque command value is, for example, a regenerative torque command value when the rotary electric machine 10 is used as a power source for a vehicle.
  • the dq conversion unit 112 sets the current detection values (three phase currents) by the current sensors provided for each phase to the orthogonal 2 with the field direction (direction of an axis of a magnetic field, or field direction) as the d-axis. It is converted into a d-axis current and a q-axis current, which are components of the dimensional rotation coordinate system.
  • the d-axis current feedback control unit 113 calculates the d-axis command voltage as an operation amount for feedback-controlling the d-axis current to the d-axis current command value. Further, the q-axis current feedback control unit 114 calculates the q-axis command voltage as an operation amount for feedback-controlling the q-axis current to the q-axis current command value. In each of these feedback control units 113 and 114, the command voltage is calculated using the PI feedback method based on the deviation of the d-axis current and the q-axis current with respect to the current command value.
  • the three-phase conversion unit 115 converts the d-axis and q-axis command voltages into U-phase, V-phase, and W-phase command voltages.
  • Each of the above units 111 to 115 is a feedback control unit that performs feedback control of the fundamental wave current according to the dq conversion theory, and the U-phase, V-phase, and W-phase command voltages are feedback control values.
  • the operation signal generation unit 116 uses a well-known triangular wave carrier comparison method to generate an operation signal of the first inverter 101 based on the three-phase command voltage. Specifically, the operation signal generation unit 116 switches the upper and lower arms in each phase by PWM control based on the magnitude comparison between the signal obtained by standardizing the command voltage of the three phases with the power supply voltage and the carrier signal such as the triangular wave signal. Generates an operation signal (duty signal).
  • the X, Y, and Z phases also have the same configuration, and the dq conversion unit 122 sets the current detection value (three phase currents) by the current sensor provided for each phase in the field direction. It is converted into a d-axis current and a q-axis current, which are components of an orthogonal two-dimensional rotating coordinate system having the d-axis.
  • the d-axis current feedback control unit 123 calculates the d-axis command voltage
  • the q-axis current feedback control unit 124 calculates the q-axis command voltage.
  • the three-phase conversion unit 125 converts the d-axis and q-axis command voltages into X-phase, Y-phase, and Z-phase command voltages.
  • the operation signal generation unit 126 generates an operation signal of the second inverter 102 based on the three-phase command voltage. Specifically, the operation signal generation unit 126 switches the upper and lower arms in each phase by PWM control based on the magnitude comparison between the signal obtained by standardizing the command voltage of the three phases with the power supply voltage and the carrier signal such as the triangular wave signal. Generates an operation signal (duty signal).
  • the driver 117 turns on / off the switches Sp and Sn of each of the three phases in the inverters 101 and 102 based on the switch operation signals generated by the operation signal generation units 116 and 126.
  • This process is mainly used for the purpose of increasing the output of the rotary electric machine 10 and reducing the loss under operating conditions in which the output voltage of each of the inverters 101 and 102 becomes large, such as in a high rotation region and a high output region.
  • the control device 110 selects and executes either the torque feedback control process or the current feedback control process based on the operating conditions of the rotary electric machine 10.
  • FIG. 21 shows a torque feedback control process corresponding to the U, V, and W phases and a torque feedback control process corresponding to the X, Y, and Z phases.
  • the same configuration as that in FIG. 20 is designated by the same reference numerals and the description thereof will be omitted.
  • the control processing on the U, V, and W phases will be described.
  • the voltage amplitude calculation unit 127 is a command value of the magnitude of the voltage vector based on the power running torque command value or the power generation torque command value for the rotary electric machine 10 and the electric angular velocity ⁇ obtained by time-differentiating the electric angle ⁇ . Calculate the voltage amplitude command.
  • the torque estimation unit 128a calculates the torque estimation value corresponding to the U, V, and W phases based on the d-axis current and the q-axis current converted by the dq conversion unit 112.
  • the torque estimation unit 128a may calculate the voltage amplitude command based on the map information associated with the d-axis current, the q-axis current, and the voltage amplitude command.
  • the torque feedback control unit 129a calculates a voltage phase command, which is a command value of the phase of the voltage vector, as an operation amount for feedback-controlling the torque estimation value to the power running torque command value or the generated torque command value.
  • the torque feedback control unit 129a calculates the voltage phase command using the PI feedback method based on the deviation of the torque estimated value with respect to the power running torque command value or the generated torque command value.
  • the operation signal generation unit 130a generates an operation signal of the first inverter 101 based on the voltage amplitude command, the voltage phase command, and the electric angle ⁇ . Specifically, the operation signal generation unit 130a calculates a three-phase command voltage based on the voltage amplitude command, the voltage phase command, and the electric angle ⁇ , and the calculated three-phase command voltage is standardized by the power supply voltage. And, by PWM control based on the magnitude comparison with the carrier signal such as the triangular wave signal, the switch operation signal of the upper and lower arms in each phase is generated.
  • the operation signal generation unit 130a is based on the pulse pattern information, the voltage amplitude command, the voltage phase command, and the electric angle ⁇ , which are map information related to the voltage amplitude command, the voltage phase command, the electric angle ⁇ , and the switch operation signal.
  • the switch operation signal may be generated.
  • the X, Y, Z phase side also has the same configuration, and the torque estimation unit 128b has the X, Y, X, Y, based on the d-axis current and the q-axis current converted by the dq conversion unit 122. The torque estimate corresponding to the Z phase is calculated.
  • the torque feedback control unit 129b calculates a voltage phase command as an operation amount for feedback-controlling the torque estimation value to the power running torque command value or the power generation torque command value.
  • the torque feedback control unit 129b calculates the voltage phase command using the PI feedback method based on the deviation of the torque estimated value with respect to the power running torque command value or the generated torque command value.
  • the operation signal generation unit 130b generates an operation signal of the second inverter 102 based on the voltage amplitude command, the voltage phase command, and the electric angle ⁇ . Specifically, the operation signal generation unit 130b calculates a three-phase command voltage based on the voltage amplitude command, the voltage phase command, and the electric angle ⁇ , and the calculated three-phase command voltage is standardized by the power supply voltage. And, by PWM control based on the magnitude comparison with the carrier signal such as the triangular wave signal, the switch operation signal of the upper and lower arms in each phase is generated. The driver 117 turns on / off the switches Sp and Sn of each of the three phases in the inverters 101 and 102 based on the switch operation signals generated by the operation signal generation units 130a and 130b.
  • the operation signal generation unit 130b is based on the pulse pattern information, the voltage amplitude command, the voltage phase command, and the electric angle ⁇ , which are map information related to the voltage amplitude command, the voltage phase command, the electric angle ⁇ , and the switch operation signal.
  • the switch operation signal may be generated.
  • the first electrolytic corrosion countermeasure is an electrolytic corrosion suppression countermeasure by reducing the inductance due to the coreless stator 50 and by smoothing the magnetic flux of the magnet of the magnet unit 42.
  • the second electrolytic corrosion countermeasure is an electrolytic corrosion suppression measure by adopting a cantilever structure with bearings 21 and 22 for the rotating shaft.
  • the third electrolytic corrosion countermeasure is an electrolytic corrosion suppression countermeasure by molding the annular stator winding 51 together with the stator core 52 with a molding material. The details of each of these measures will be described below individually.
  • the spaces between the conductor groups 81 in the circumferential direction are made toothless, and the seals between the conductor groups 81 are made of a non-magnetic material instead of the teeth (iron core).
  • the member 57 is provided (see FIG. 10). This makes it possible to reduce the inductance of the stator 50. By reducing the inductance of the stator 50, even if the switching timing shift occurs when the stator winding 51 is energized, the occurrence of magnetic flux distortion due to the shift timing shift can be suppressed, and eventually the bearings 21 and 22. It is possible to suppress the electrolytic corrosion of. It is preferable that the inductance of the d-axis is equal to or less than the inductance of the q-axis.
  • the magnets 91 and 92 are oriented so that the direction of the easy-magnetizing axis is parallel to the d-axis on the d-axis side as compared with the q-axis side (see FIG. 9).
  • the magnetic flux of the magnet on the d-axis is strengthened, and the change in surface magnetic flux (increase / decrease in magnetic flux) from the q-axis to the d-axis at each magnetic pole becomes gentle. Therefore, the sudden voltage change caused by the switching imbalance is suppressed, and the configuration is such that it can contribute to the suppression of electrolytic corrosion.
  • the bearings 21 and 22 are arranged unevenly on either side in the axial direction with respect to the center in the axial direction of the rotor 40 (see FIG. 2).
  • the influence of electrolytic corrosion can be reduced as compared with a configuration in which a plurality of bearings are provided on both sides of the rotor in the axial direction. That is, in a configuration in which the rotor is supported by a plurality of bearings, a closed circuit that passes through the rotor, the stator, and each bearing (that is, each bearing on both sides in the axial direction with the rotor in between) is generated as a high frequency magnetic flux is generated.
  • the rotary electric machine 10 has the following configurations in connection with the configuration for arranging the bearings 21 and 22 on one side.
  • a contact avoiding portion that extends in the axial direction and avoids contact with the stator 50 is provided at an intermediate portion 45 that projects in the radial direction of the rotor 40 (see FIG. 2).
  • the closed circuit length can be lengthened to increase the circuit resistance. Thereby, the electrolytic corrosion of the bearings 21 and 22 can be suppressed.
  • the holding member 23 of the bearing unit 20 is fixed to the housing 30 on one side in the axial direction with the rotor 40 interposed therebetween, and the housing 30 and the unit base 61 (stator holder) are coupled to each other on the other side. (See FIG. 2).
  • the unit base 61 since the unit base 61 is connected to the rotating shaft 11 via the housing 30, the unit base 61 can be arranged at a position electrically separated from the rotating shaft 11. If an insulating member such as resin is interposed between the unit base 61 and the housing 30, the unit base 61 and the rotating shaft 11 are electrically separated from each other. Thereby, the electrolytic corrosion of the bearings 21 and 22 can be appropriately suppressed.
  • the shaft voltage acting on the bearings 21 and 22 is reduced by arranging the bearings 21 and 22 on one side and the like. Further, the potential difference between the rotor 40 and the stator 50 is reduced. Therefore, it is possible to reduce the potential difference acting on the bearings 21 and 22 without using conductive grease in the bearings 21 and 22. Since the conductive grease generally contains fine particles such as carbon, it is considered that noise is generated. In this respect, in the present embodiment, the bearings 21 and 22 are configured to use non-conductive grease. Therefore, it is possible to suppress the inconvenience of noise in the bearings 21 and 22. For example, when it is applied to an electric vehicle such as an electric vehicle, it is considered that a countermeasure against the noise of the rotary electric machine 10 is required, and it is possible to preferably implement the countermeasure against the noise.
  • the stator winding 51 is molded together with the stator core 52 with a molding material to suppress the displacement of the stator winding 51 in the stator 50 (see FIG. 11). ).
  • the rotary electric machine 10 of the present embodiment does not have a wire-to-lead member (teeth) between the wire groups 81 in the circumferential direction of the stator winding 51, there is a concern that the stator winding 51 may be displaced.
  • the stator winding 51 by molding the stator winding 51 together with the stator core 52, deviation of the lead wire position of the stator winding 51 is suppressed. Therefore, it is possible to suppress the distortion of the magnetic flux due to the misalignment of the stator winding 51 and the occurrence of electrolytic corrosion of the bearings 21 and 22 due to the distortion.
  • the unit base 61 as a housing member for fixing the stator core 52 is made of carbon fiber reinforced plastic (CFRP), the discharge to the unit base 61 is suppressed as compared with the case where it is made of, for example, aluminum. As a result, suitable measures against electrolytic corrosion are possible.
  • CFRP carbon fiber reinforced plastic
  • the magnet unit 42 is configured by using a magnet array called a Halbach array. That is, the magnet unit 42 has a first magnet 131 whose radial direction is the magnetization direction (direction of the magnetization vector) and a second magnet 132 whose circumferential direction is the magnetization direction (direction of the magnetization vector).
  • the first magnet 131 is arranged at predetermined intervals in the circumferential direction
  • the second magnet 132 is arranged at a position between the adjacent first magnet 131 in the circumferential direction.
  • the first magnet 131 and the second magnet 132 are permanent magnets made of rare earth magnets such as neodymium magnets.
  • the first magnet 131 is arranged so as to be spaced apart from each other in the circumferential direction so that the poles on the side facing the stator 50 (inside in the radial direction) are alternately N poles and S poles. Further, the second magnet 132 is arranged next to each first magnet 131 so that the polarities alternate in the circumferential direction.
  • the cylindrical portion 43 provided so as to surround each of the magnets 131 and 132 is preferably a soft magnetic core made of a soft magnetic material, and functions as a back core.
  • the magnet unit 42 of the second embodiment also has the same relationship between the d-axis and the easy-magnetization axis with respect to the q-axis in the dq coordinate system as in the first embodiment.
  • a magnetic material 133 made of a soft magnetic material is arranged on the radial side of the first magnet 131, that is, on the side of the cylindrical portion 43 of the magnet holder 41.
  • the magnetic material 133 may be made of an electromagnetic steel plate, soft iron, or a dust core material.
  • the circumferential length of the magnetic body 133 is the same as the circumferential length of the first magnet 131 (particularly, the circumferential length of the outer peripheral portion of the first magnet 131).
  • the radial thickness of the integrated object in the state where the first magnet 131 and the magnetic body 133 are integrated is the same as the radial thickness of the second magnet 132.
  • the thickness of the first magnet 131 in the radial direction is thinner than that of the second magnet 132 by the amount of the magnetic body 133.
  • the magnets 131 and 132 and the magnetic material 133 are fixed to each other by, for example, an adhesive.
  • the radial outside of the first magnet 131 is on the opposite side of the stator 50, and the magnetic body 133 is on the opposite side of the stator 50 from both sides of the first magnet 131 in the radial direction (opposite). It is provided on the stator side).
  • a key 134 is formed on the outer peripheral portion of the magnetic body 133 as a convex portion protruding outward in the radial direction, that is, toward the cylindrical portion 43 of the magnet holder 41. Further, a key groove 135 is formed on the inner peripheral surface of the cylindrical portion 43 as a recess for accommodating the key 134 of the magnetic body 133.
  • the protruding shape of the key 134 and the groove shape of the key groove 135 are the same, and the same number of key grooves 135 as the key 134 are formed corresponding to the key 134 formed on each magnetic material 133.
  • the key 134 and the key groove 135 are provided in the cylindrical portion 43 or the magnetic body 133 of the magnet holder 41, and contrary to the above, on the outer peripheral portion of the magnetic body 133.
  • the key 134 and the key groove 135 are provided in the cylindrical portion 43 or the magnetic body 133 of the magnet holder 41, and contrary to the above, on the outer peripheral portion of the magnetic body 133.
  • the magnetic flux density in the first magnet 131 can be increased by alternately arranging the first magnet 131 and the second magnet 132. Therefore, in the magnet unit 42, the magnetic flux can be concentrated on one side, and the magnetic flux can be strengthened on the side closer to the stator 50.
  • the magnet unit 42 of the present embodiment has, so to speak, a configuration in which a portion of the first magnet 131 in which demagnetization is likely to occur is replaced with a magnetic body 133.
  • FIGS. 24 (a) and 24 (b) are views specifically showing the flow of magnetic flux in the magnet unit 42, and FIG. 24 (a) shows a conventional configuration in which the magnet unit 42 does not have a magnetic body 133.
  • 24 (b) shows the case where the configuration of the present embodiment having the magnetic material 133 in the magnet unit 42 is used.
  • the cylindrical portion 43 of the magnet holder 41 and the magnet unit 42 are shown in a straight line, with the lower side of the drawing being the stator side and the upper side being the anti-stator side. It is on the side.
  • the magnetic flux acting surface of the first magnet 131 and the side surface of the second magnet 132 are in contact with the inner peripheral surface of the cylindrical portion 43, respectively. Further, the magnetic flux acting surface of the second magnet 132 is in contact with the side surface of the first magnet 131.
  • the cylindrical portion 43 receives a magnetic flux F1 that enters the contact surface with the first magnet 131 through the outer path of the second magnet 132 and a magnetic flux F2 that is substantially parallel to the cylindrical portion 43 and enters the contact surface of the second magnet 132.
  • a combined magnetic flux with the attractive magnetic flux is generated. Therefore, there is a concern that magnetic saturation may partially occur in the vicinity of the contact surface between the first magnet 131 and the second magnet 132 in the cylindrical portion 43.
  • the magnetic material 133 is formed between the magnetic flux acting surface of the first magnet 131 and the inner peripheral surface of the cylindrical portion 43 on the side opposite to the stator 50 of the first magnet 131. Since it is provided, the magnetic body 133 allows the passage of magnetic flux. Therefore, magnetic saturation in the cylindrical portion 43 can be suppressed, and the proof stress against demagnetization is improved.
  • FIG. 24 (b) unlike FIG. 24 (a), F2 that promotes magnetic saturation can be erased. As a result, the permeance of the entire magnetic circuit can be effectively improved. With such a configuration, the magnetic circuit characteristics can be maintained even under severe high heat conditions.
  • the magnetic path through the inside of the magnet is longer than that of the radial magnet in the conventional SPM rotor. Therefore, the magnet permeance can be increased, the magnetic force can be increased, and the torque can be increased. Further, the magnetic flux is concentrated in the center of the d-axis, so that the sine wave matching rate can be increased. In particular, if the current waveform is made into a sine wave or a trapezoidal wave by PWM control, or if a switching IC energized at 120 degrees is used, the torque can be increased more effectively.
  • the radial thickness of the stator core 52 is preferably half or more than 1/2 of the radial thickness of the magnet unit 42.
  • the radial thickness of the stator core 52 is preferably 1 ⁇ 2 or more of the radial thickness of the first magnet 131 provided at the center of the magnetic pole in the magnet unit 42.
  • the radial thickness of the stator core 52 is preferably smaller than the radial thickness of the magnet unit 42.
  • the magnetic flux of the magnet is about 1 [T]
  • the saturation magnetic flux density of the stator core 52 is 2 [T]. Therefore, the radial thickness of the stator core 52 is the radial thickness of the magnet unit 42.
  • the magnetic path has a pseudo-arc shape, so the magnetic flux can be increased in proportion to the thickness of the magnet that handles the magnetic flux in the circumferential direction.
  • the magnetic flux flowing through the stator core 52 does not exceed the magnetic flux in the circumferential direction. That is, when an iron-based metal having a saturation magnetic flux density of 2 [T] is used with respect to the magnetic flux of the magnet 1 [T], if the thickness of the stator core 52 is set to half or more of the magnet thickness, magnetic saturation is not preferably performed. It is possible to provide a small and lightweight rotary electric machine.
  • the demagnetic field from the stator 50 acts on the magnet magnetic flux, the magnet magnetic flux is generally 0.9 [T] or less. Therefore, if the stator core has half the thickness of the magnet, its magnetic permeability can be kept suitably high.
  • the outer peripheral surface of the stator core 52 has a curved surface without unevenness, and a plurality of conductor groups 81 are arranged side by side at predetermined intervals on the outer peripheral surface, but this may be changed.
  • the stator core 52 includes an annular yoke 141 provided on both sides of the stator winding 51 in the radial direction opposite to the rotor 40 (lower side in the drawing). It has a protrusion 142 extending from the yoke 141 so as to project between the straight portions 83 adjacent to each other in the circumferential direction.
  • the protrusions 142 are provided at predetermined intervals on the radial outer side of the yoke 141, that is, on the rotor 40 side.
  • Each conductor group 81 of the stator winding 51 is engaged with the protrusion 142 in the circumferential direction, and is arranged side by side in the circumferential direction while using the protrusion 142 as a positioning portion of the conductor group 81.
  • the protrusion 142 corresponds to the "member between conductors".
  • the protrusion 142 has a thickness dimension in the radial direction from the yoke 141, in other words, as shown in FIG. 25, from the inner side surface 320 adjacent to the yoke 141 of the straight portion 83 in the radial direction of the yoke 141 to the protrusion 142.
  • the distance W to the apex is smaller than 1/2 (H1 in the figure) of the radial thickness dimension of the linear portion 83 radially adjacent to the yoke 141 among the linear portions 83 of the plurality of layers inside and outside the radial direction. It is composed.
  • the dimensions (thickness) of the conductor group 81 (conducting member) in the radial direction of the stator winding 51 (stator core 52) T1 (twice the thickness of the conductor 82, in other words, the stator core of the conductor group 81).
  • the non-magnetic member (sealing member 57) may occupy a range of three-quarters of the range (the shortest distance between the surface 320 in contact with the 52 and the surface 330 facing the rotor 40 of the conductor group 81).
  • the protrusion 142 does not function as a tooth between the conductor groups 81 (that is, the straight portion 83) adjacent to each other in the circumferential direction, and the magnetic path is not formed by the tooth. ..
  • the protrusions 142 may not be all provided between the conductor groups 81 arranged in the circumferential direction, but may be provided between at least one set of conductor groups 81 adjacent to each other in the circumferential direction.
  • the protrusions 142 may be provided at equal intervals in a predetermined number between the conductor groups 81 in the circumferential direction.
  • the shape of the protrusion 142 may be any shape such as a rectangular shape or an arc shape.
  • the straight portion 83 may be provided as a single layer on the outer peripheral surface of the stator core 52. Therefore, in a broad sense, the radial thickness dimension of the protrusion 142 from the yoke 141 may be smaller than 1/2 of the radial thickness dimension of the straight portion 83.
  • the protrusion 142 is within the range of the virtual circle. It is preferable that the shape protrudes from the yoke 141, in other words, the shape does not protrude outward in the radial direction (that is, the rotor 40 side) from the virtual circle.
  • the protrusion 142 has a limited thickness dimension in the radial direction and does not function as a teeth between the straight portions 83 adjacent to each other in the circumferential direction. Therefore, the teeth are formed between the straight portions 83. It is possible to bring the adjacent straight portions 83 closer to each other as compared with the case where is provided. As a result, the cross-sectional area of the conductor 82a can be increased, and the heat generated by the energization of the stator winding 51 can be reduced. In such a configuration, the absence of teeth makes it possible to eliminate magnetic saturation and increase the energizing current to the stator winding 51.
  • the thickness dimension of the protrusion 142 in the radial direction is shown in FIG. 25. It is not tied to H1. Specifically, if the yoke 141 and the magnet unit 42 are separated by 2 mm or more, the radial thickness dimension of the protrusion 142 may be H1 or more in FIG. 25.
  • the straight portion 83 when the radial thickness dimension of the straight portion 83 exceeds 2 mm and the conductor group 81 is composed of two layers of conductors 82 inside and outside the radial direction, the straight portion 83 not adjacent to the yoke 141, That is, the protrusion 142 may be provided in the range from the yoke 141 to the half position of the second layer conductor 82. In this case, if the radial thickness dimension of the protrusion 142 is up to "H1 x 3/2", the effect can be obtained not a little by increasing the cross-sectional area of the conductor in the conductor group 81.
  • stator core 52 may have the configuration shown in FIG. 26.
  • the sealing member 57 is omitted in FIG. 26, the sealing member 57 may be provided.
  • the magnet unit 42 and the stator core 52 are shown in a linearly developed manner.
  • the stator 50 has a protrusion 142 as a member between the conductors between the conductors 82 (that is, the straight line portion 83) adjacent to each other in the circumferential direction.
  • the stator winding 51 When the stator winding 51 is energized, the stator 50 magnetically functions together with one of the magnetic poles (N pole or S pole) of the magnet unit 42, and a part 350 extending in the circumferential direction of the stator 50 is formed.
  • the circumferential length of the stator 50 of this portion 350 is Wn
  • the total width of the protrusions 142 existing in this length range Wn that is, the total dimension of the stator 50 in the circumferential direction
  • the saturation magnetic flux density of the protrusion 142 is Bs
  • the width dimension of one pole of the magnet unit 42 in the circumferential direction is Wm
  • the residual magnetic flux density of the magnet unit 42 is Br
  • the protrusion 142 is Wt ⁇ Bs ⁇ Wm ⁇ Br... (1) It is composed of a magnetic material that serves as.
  • the range Wn is set to include a plurality of conductor groups 81 adjacent to each other in the circumferential direction and include a plurality of conductor groups 81 having overlapping excitation timings. At that time, it is preferable to set the center of the gap 56 of the conductor group 81 as a reference (boundary) when setting the range Wn.
  • the fourth conductor group 81 corresponds to the plurality of conductor groups 81 in order from the one having the shortest distance from the magnetic pole center of the N pole in the circumferential direction.
  • the range Wn is set so as to include the four conductor groups 81. At that time, the ends (starting point and ending point) of the range Wn are set as the center of the gap 56.
  • the three-phase winding of the stator winding 51 is a distributed winding, and in the stator winding 51, the number of protrusions 142 with respect to one pole of the magnet unit 42, that is, each The number of gaps 56 between the conductor groups 81 is "number of phases x Q".
  • Q is the number of the one-phase conducting wires 82 that are in contact with the stator core 52.
  • the protrusion 142 is configured as a magnetic material satisfying the relationship (1) above.
  • the total width dimension Wt is also the circumferential dimension of the portion where the relative magnetic permeability can be larger than 1 in one pole.
  • the total width dimension Wt may be set as the width dimension in the circumferential direction of the protrusion 142 at one magnetic pole.
  • the width dimension (total width dimension Wt) of the protrusions 142 in one magnetic pole in the circumferential direction is set to ".
  • the distributed winding referred to here is a one-pole pair period (N-pole and S-pole) of the magnetic poles, and has a one-pole pair of the stator winding 51.
  • the one-pole pair of the stator winding 51 referred to here is composed of two straight portions 83 and a turn portion 84 in which currents flow in opposite directions and are electrically connected by the turn portion 84. If the above conditions are met, even if it is a short Pitch Winding, it is regarded as an equivalent of the distribution volume of the Full Pitch Winding.
  • the centralized winding here means that the width of the one-pole pair of magnetic poles and the width of the one-pole pair of the stator winding 51 are different.
  • concentrated winding there are three conductor groups 81 for one magnetic pole pair, three conductor groups 81 for two magnetic pole pairs, nine conductor groups 81 for four magnetic pole pairs, and five. Examples thereof include a case in which the conductor group 81 has a relationship of nine with respect to one magnetic pole pair.
  • the stator winding 51 is a centralized winding
  • the stator windings 51 for two phases are excited.
  • the protrusions 142 for the two phases are excited. Therefore, the width dimension Wt in the circumferential direction of the protrusion 142 excited by the energization of the stator winding 51 in the range of one pole of the magnet unit 42 is “A ⁇ 2”. Then, after the width dimension Wt is defined in this way, the protrusion 142 is configured as a magnetic material satisfying the relationship (1) above.
  • the total width of the protrusions 142 in the circumferential direction of the stator 50 in the region surrounded by the conductors 81 of the same phase is defined as A.
  • Wm in the concentrated winding corresponds to "the entire circumference of the surface of the magnet unit 42 facing the air gap" x "the number of phases” ⁇ "the number of dispersions of the conductor group 81".
  • the protrusion 142 may be a magnetic material satisfying the relationship of Wt ⁇ 1/2 ⁇ Wm.
  • the conductor 82 when the conductor 82 includes the outer layer coating 182 as described later, the conductor 82 may be arranged in the circumferential direction of the stator core 52 so that the outer layer coatings 182 of the conductors 82 come into contact with each other.
  • Wt can be regarded as 0 or the thickness of the outer layer coating 182 of both conducting wires 82 in contact with each other.
  • the configurations shown in FIGS. 25 and 26 have a conductor-to-conductor member (projection 142) that is disproportionately small with respect to the magnetic flux of the magnet on the rotor 40 side.
  • the rotor 40 is a surface magnet type rotor having a low inductance and a flat surface, and has no reluctance in terms of magnetic resistance. In such a configuration, the inductance of the stator 50 can be reduced, the generation of magnetic flux distortion due to the deviation of the switching timing of the stator winding 51 is suppressed, and the electrolytic corrosion of the bearings 21 and 22 is suppressed. ..
  • a tooth-shaped portion 143 is provided as a member between conductors on the outer peripheral surface side (upper surface side in the drawing) of the stator core 52.
  • the dentate portions 143 are provided at predetermined intervals in the circumferential direction so as to protrude from the yoke 141, and have the same thickness dimension as the conductor group 81 in the radial direction.
  • the side surface of the dentate portion 143 is in contact with each of the conductors 82 of the conductor group 81. However, there may be a gap between the tooth-shaped portion 143 and each of the conducting wires 82.
  • the dentate portion 143 is provided with a limitation on the width dimension in the circumferential direction, and is provided with polar teeth (statoth teeth) that are disproportionately thin with respect to the amount of magnets. With such a configuration, the dentate portion 143 is surely saturated by the magnetic flux of the magnet at 1.8 T or more, and the inductance can be lowered by lowering the permeance.
  • the magnetic flux on the magnet unit side is, for example, "Sm x Br".
  • the surface area on the rotor side of each dentate portion 143 is St
  • the number per phase of the conducting wire 82 is m
  • the dentate portion 143 for two phases is excited in one pole by energization of the stator winding 51.
  • the magnetic flux on the stator side is, for example, "St ⁇ m ⁇ 2 ⁇ Bs”. in this case, St ⁇ m ⁇ 2 ⁇ Bs ⁇ Sm ⁇ Br...
  • the inductance is reduced by making the width dimension Wst of the tooth-shaped portion 143 smaller than 1/8 of the width dimension Wm of one pole of the magnet unit 42. If the number m is 1, the width dimension Wst of the tooth-shaped portion 143 may be smaller than 1/4 of the width dimension Wm of one pole of the magnet unit 42.
  • the interconductor member (dental portion 143) which is disproportionately small with respect to the magnetic flux of the magnet on the rotor 40 side is provided.
  • the inductance of the stator 50 can be reduced, the generation of magnetic flux distortion due to the deviation of the switching timing of the stator winding 51 is suppressed, and the electrolytic corrosion of the bearings 21 and 22 is suppressed. ..
  • the sealing member 57 covering the stator winding 51 is provided in a range including all the conductor groups 81 on the radial outside of the stator core 52, that is, the thickness dimension in the radial direction is the diameter of each conductor group 81.
  • the configuration is provided in a range larger than the thickness dimension in the direction, but this may be changed.
  • the sealing member 57 is provided so that a part of the conducting wire 82 protrudes. More specifically, the sealing member 57 is provided in a state where a part of the conductor 82 which is the outermost in the radial direction in the conductor group 81 is exposed on the radial outer side, that is, on the stator 50 side.
  • the radial thickness dimension of the sealing member 57 may be the same as or smaller than the radial thickness dimension of each conductor group 81.
  • each conductor group 81 may not be sealed by the sealing member 57. That is, the structure does not use the sealing member 57 that covers the stator winding 51. In this case, no interconductor member is provided between the conductor groups 81 arranged in the circumferential direction, and a gap is formed. In short, the conductors are not provided between the conductor groups 81 arranged in the circumferential direction.
  • the stator 50 may be configured not to include the stator core 52.
  • the stator 50 is composed of the stator winding 51 shown in FIG.
  • the stator winding 51 may be sealed with a sealing material.
  • the stator 50 may be configured to include an annular winding holding portion made of a non-magnetic material such as synthetic resin instead of the stator core 52 made of a soft magnetic material.
  • a plurality of magnets 91 and 92 arranged in the circumferential direction are used as the magnet unit 42 of the rotor 40, but this is changed and the magnet unit 42 is an annular permanent magnet.
  • a magnet may be used.
  • an annular magnet 95 is fixed inside the cylindrical portion 43 of the magnet holder 41 in the radial direction.
  • the annular magnet 95 is provided with a plurality of magnetic poles having alternating polarities in the circumferential direction, and the magnet is integrally formed on both the d-axis and the q-axis.
  • the annular magnet 95 is formed with an arcuate magnet magnetic path such that the direction of orientation is the radial direction on the d-axis of each magnetic pole and the direction of orientation is the circumferential direction on the q-axis between the magnetic poles.
  • the easy-magnetizing axis is parallel to the d-axis or close to parallel to the d-axis in the portion near the d-axis, and the easy-magnetizing axis is orthogonal to the q-axis or is in the q-axis in the portion near the q-axis. It suffices if the orientation is made so that an arcuate magnet magnetic path having a direction close to orthogonal is formed.
  • Modification 8 In this modification, a part of the control method of the control device 110 is changed. In this modification, the difference from the configuration described in the first embodiment will be mainly described.
  • the operation signal generation unit 116 includes a carrier generation unit 116a and U, V, W phase comparators 116bU, 116bV, 116bW.
  • the carrier generation unit 116a generates and outputs a triangular wave signal as the carrier signal SigmaC.
  • the carrier signal Sigma generated by the carrier generation unit 116a and the U, V, W phase command voltage calculated by the three-phase conversion unit 115 are input to the U, V, W phase comparators 116bU, 116bV, 116bW.
  • the U, V, and W phase command voltages are, for example, sinusoidal waveforms, and the phases are shifted by 120 ° depending on the electric angle.
  • the U, V, W phase comparators 116bU, 116bV, 116bW are U in the first inverter 101 by PWM (pulse width modulation) control based on the magnitude comparison between the U, V, W phase command voltage and the carrier signal Sigma.
  • V, W phase upper arm and lower arm switches Sp, Sn operation signals are generated.
  • the operation signal generation unit 116 performs each of the U, V, and W phases by PWM control based on the magnitude comparison between the signal obtained by normalizing the U, V, W phase command voltage with the power supply voltage and the carrier signal.
  • the driver 117 turns on / off the U, V, and W phase switches Sp and Sn in the first inverter 101 based on the operation signal generated by the operation signal generation unit 116.
  • the control device 110 performs a process of changing the carrier frequency fc of the carrier signal SignC, that is, the switching frequency of each of the switches Sp and Sn.
  • the carrier frequency fc is set high in the low torque region or high rotation region of the rotary electric machine 10 and low in the high torque region of the rotary electric machine 10. This setting is made in order to suppress a decrease in controllability of the current flowing through each phase winding.
  • the inductance of the stator 50 can be reduced.
  • the inductance becomes low, the electrical time constant of the rotary electric machine 10 becomes small.
  • the ripple of the current flowing through each phase winding increases, the controllability of the current flowing through the winding decreases, and there is a concern that the current control diverges.
  • the effect of this decrease in controllability can be more pronounced when the current flowing through the winding (for example, the effective value of the current) is included in the low current region than in the high current region.
  • the control device 110 changes the carrier frequency fc.
  • the process of changing the carrier frequency fc will be described with reference to FIG. 32. This process is repeatedly executed by the control device 110, for example, at a predetermined control cycle as the process of the operation signal generation unit 116.
  • step S10 it is determined whether or not the current flowing through the winding 51a of each phase is included in the low current region.
  • This process is a process for determining that the current torque of the rotary electric machine 10 is in the low torque region. Examples of the method for determining whether or not the product is included in the low current region include the following first and second methods.
  • the torque estimation value of the rotary electric machine 10 is calculated based on the d-axis current and the q-axis current converted by the dq conversion unit 112.
  • the torque threshold value may be set to, for example, 1/2 of the starting torque (also referred to as restraint torque) of the rotary electric machine 10.
  • the speed threshold value may be set to, for example, the rotation speed when the maximum torque of the rotary electric machine 10 becomes the torque threshold value.
  • step S10 If a negative determination is made in step S10, it is determined that the current region is high, and the process proceeds to step S11.
  • step S11 the carrier frequency fc is set to the first frequency fL.
  • step S10 If an affirmative determination is made in step S10, the process proceeds to step S12, and the carrier frequency fc is set to the second frequency fH, which is higher than the first frequency fL.
  • the carrier frequency fc is set higher when the current flowing through each phase winding is included in the low current region than when it is included in the high current region. Therefore, in the low current region, the switching frequencies of the switches Sp and Sn can be increased, and the increase in current ripple can be suppressed. As a result, it is possible to suppress a decrease in current controllability.
  • the carrier frequency fc when the current flowing through each phase winding is included in the high current region, the carrier frequency fc is set lower than when it is included in the low current region.
  • the amplitude of the current flowing through the winding is larger than in the low current region, so that the increase in current ripple due to the low inductance has a small effect on the current controllability. Therefore, in the high current region, the carrier frequency fc can be set lower than in the low current region, and the switching loss of the inverters 101 and 102 can be reduced.
  • the carrier frequency fc is set to the first frequency fL and a positive determination is made in step S10 of FIG. 32, the carrier frequency fc is gradually changed from the first frequency fL to the second frequency fH. May be good.
  • the carrier frequency fc when the carrier frequency fc is set to the second frequency fH and a negative determination is made in step S10, the carrier frequency fc may be gradually changed from the second frequency fH to the first frequency fL. ..
  • a switch operation signal may be generated by space vector modulation (SVM) control. Even in this case, the above-mentioned change in switching frequency can be applied.
  • SVM space vector modulation
  • FIG. 33A is a diagram showing the electrical connection of the first and second conductors 88a and 88b, which are two pairs of conductors.
  • the first and second conductors 88a and 88b may be connected in series.
  • FIG. 34 shows a configuration in which the first to fourth conductors 88a to 88d, which are four pairs of conductors, are laminated and arranged.
  • the first to fourth conductors 88a to 88d are arranged in the radial direction in the order of the first, second, third, and fourth conductors 88a, 88b, 88c, 88d from the side closer to the stator core 52. ..
  • the third and fourth conductors 88c and 88d are connected in parallel, the first conductor 88a is connected to one end of the parallel connection body, and the second conductor is connected to the other end. 88b may be connected.
  • the current density of the conductors connected in parallel can be reduced, and heat generation during energization can be suppressed. Therefore, in the configuration in which the tubular stator winding is assembled to the housing (unit base 61) in which the cooling water passage 74 is formed, the first and second conductors 88a and 88b that are not connected in parallel come into contact with the unit base 61.
  • the configuration is such that the third and fourth conductors 88c and 88d arranged in parallel on the stator core 52 side are arranged on the anti-stator core side. Thereby, the cooling performance of each of the conductors 88a to 88d in the multilayer conductor structure can be equalized.
  • the thickness dimension of the conductor group 81 composed of the first to fourth conductors 88a to 88d in the radial direction may be smaller than the width dimension of one phase in one magnetic pole in the circumferential direction.
  • the rotary electric machine 10 may have an inner rotor structure (additional structure).
  • the stator 50 is provided on the outer side in the radial direction and the rotor 40 is provided on the inner side in the radial direction.
  • the inverter unit 60 is provided on one side or both sides of both ends of the stator 50 and the rotor 40 in the axial direction.
  • FIG. 35 is a cross-sectional view of the rotor 40 and the stator 50
  • FIG. 36 is an enlarged view of a part of the rotor 40 and the stator 50 shown in FIG. 35.
  • FIGS. 35 and 36 which are premised on the inner rotor structure, have the rotor 40 and the stator 50 reversed in the radial direction with respect to the configurations of FIGS. 8 and 9 which are premised on the outer rotor structure. Except for, it has the same configuration.
  • the stator 50 has a stator winding 51 having a flat conductor structure and a stator core 52 having no teeth.
  • the stator winding 51 is assembled inside the stator core 52 in the radial direction.
  • the stator core 52 has one of the following configurations, as in the case of the outer rotor structure.
  • a conductor-to-conductor member is provided between each conductor portion in the circumferential direction, and as the conductor-to-conductor member, the width dimension of the conductor-to-conductor member at one magnetic pole in the circumferential direction is Wt, and the conductor-to-conductor member is saturated.
  • the magnetic flux density is Bs
  • the width dimension of the magnet unit at one magnetic pole in the circumferential direction is Wm
  • the residual magnetic flux density of the magnet unit is Br
  • a magnetic material having a relationship of Wt ⁇ Bs ⁇ Wm ⁇ Br is used.
  • stator 50 In the stator 50, a conductor-to-conductor member is provided between the conductors in the circumferential direction, and a non-magnetic material is used as the conductor-to-conductor member.
  • the stator 50 has a configuration in which no interconductor member is provided between the conductors in the circumferential direction.
  • the magnet unit 42 is oriented so that the direction of the easy magnetization axis is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, as compared with the q-axis side, which is the magnetic pole boundary. Is configured using. Details such as the magnetization directions of the magnets 91 and 92 are as described above. It is also possible to use an annular magnet 95 (see FIG. 30) in the magnet unit 42.
  • FIG. 37 is a vertical cross-sectional view of the rotary electric machine 10 in the case of an inner rotor type, which is a drawing corresponding to FIG. 2 described above. Differences from the configuration of FIG. 2 will be briefly described.
  • an annular stator 50 is fixed to the inside of the housing 30, and a rotor 40 is rotatably provided inside the stator 50 with a predetermined air gap interposed therebetween.
  • the bearings 21 and 22 are arranged so as to be biased to one side in the axial direction with respect to the axial center of the rotor 40, whereby the rotor 40 is cantilevered and supported.
  • an inverter unit 60 is provided inside the magnet holder 41 of the rotor 40.
  • FIG. 38 shows another configuration of the rotary electric machine 10 having an inner rotor structure.
  • the rotating shaft 11 is rotatably supported by bearings 21 and 22 in the housing 30, and the rotor 40 is fixed to the rotating shaft 11.
  • the bearings 21 and 22 are arranged so as to be biased to either one side in the axial direction with respect to the center in the axial direction of the rotor 40.
  • the rotor 40 has a magnet holder 41 and a magnet unit 42.
  • the rotary electric machine 10 of FIG. 38 is different from the rotary electric machine 10 of FIG. 37 in that the inverter unit 60 is not provided inside the rotor 40 in the radial direction.
  • the magnet holder 41 is connected to the rotating shaft 11 at a position inside the magnet unit 42 in the radial direction.
  • the stator 50 has a stator winding 51 and a stator core 52, and is attached to the housing 30.
  • FIG. 39 is an exploded perspective view of the rotary electric machine 200
  • FIG. 40 is a side sectional view of the rotary electric machine 200.
  • the vertical direction is shown with reference to the states of FIGS. 39 and 40.
  • the rotary electric machine 200 is rotatably arranged inside the stator core 201 and the stator 203 having an annular stator core 201 and a multi-phase stator winding 202. It is equipped with a rotor 204.
  • the stator 203 corresponds to the armature and the rotor 204 corresponds to the field magnet.
  • the stator core 201 is formed by laminating a large number of silicon steel plates, and a stator winding 202 is attached to the stator core 201.
  • the rotor 204 has a rotor core and a plurality of permanent magnets as magnet units.
  • the rotor core is provided with a plurality of magnet insertion holes at equal intervals in the circumferential direction.
  • Each of the magnet insertion holes is equipped with a permanent magnet magnetized so that the magnetization direction changes alternately for each adjacent magnetic pole.
  • the permanent magnet of the magnet unit may have a Halbach array or a similar configuration as described with reference to FIG. 23.
  • the permanent magnet of the magnet unit has a pole in which the orientation direction (magnetization direction) extends in an arc shape between the d-axis, which is the center of the magnetic pole, and the q-axis, which is the boundary between the magnetic poles, as described with reference to FIGS. 9 and 30. It is preferable that the magnet has anisotropy characteristics.
  • the stator 203 may have any of the following configurations.
  • a conductor-to-conductor member is provided between each conductor portion in the circumferential direction, and as the conductor-to-conductor member, the width dimension of the conductor-to-conductor member at one magnetic pole in the circumferential direction is Wt, and the conductor-to-conductor member is saturated.
  • the magnetic flux density is Bs
  • the width dimension of the magnet unit at one magnetic pole in the circumferential direction is Wm
  • the residual magnetic flux density of the magnet unit is Br
  • a magnetic material having a relationship of Wt ⁇ Bs ⁇ Wm ⁇ Br is used.
  • stator 203 In the stator 203, a conductor-to-conductor member is provided between the conductors in the circumferential direction, and a non-magnetic material is used as the conductor-to-conductor member.
  • the stator 203 has a configuration in which no interconductor member is provided between the conductors in the circumferential direction.
  • the magnet unit is oriented on the d-axis side, which is the center of the magnetic pole, so that the direction of the easy-magnetizing axis is parallel to the d-axis as compared with the side of the q-axis, which is the magnetic pole boundary. It is configured using a plurality of magnets.
  • An annular inverter case 211 is provided on one end side of the rotary electric machine 200 in the axial direction.
  • the inverter case 211 is arranged so that the lower surface of the case is in contact with the upper surface of the stator core 201.
  • a plurality of power modules 212 constituting the inverter circuit, a smoothing capacitor 213 that suppresses voltage / current pulsation (ripple) generated by the switching operation of the semiconductor switching element, and a control board 214 having a control unit are provided inside the inverter case 211.
  • a current sensor 215 that detects the phase current and a resolver stator 216 that is a rotation speed sensor of the rotor 204 are provided.
  • the power module 212 has an IGBT and a diode which are semiconductor switching elements.
  • the inverter case 211 On the periphery of the inverter case 211, there is a power connector 217 connected to the DC circuit of the battery mounted on the vehicle, and a signal connector 218 used for passing various signals between the rotary electric machine 200 side and the vehicle side control device. Is provided.
  • the inverter case 211 is covered with a top cover 219.
  • the DC power from the in-vehicle battery is input via the power connector 217, converted into AC by switching of the power module 212, and sent to the stator winding 202 of each phase.
  • the bearing unit 221 On both sides of the stator core 201 in the axial direction, on the opposite side of the inverter case 211, there are a bearing unit 221 that rotatably holds the rotating shaft of the rotor 204 and an annular rear case 222 that houses the bearing unit 221. It is provided.
  • the bearing unit 221 has, for example, a set of two bearings, and is arranged so as to be biased to either one side in the axial direction with respect to the center in the axial direction of the rotor 204.
  • a plurality of bearings in the bearing unit 221 may be provided so as to be dispersed on both sides in the axial direction of the stator core 201, and the rotating shaft may be supported by both bearings.
  • the rotary electric machine 200 can be mounted on the vehicle side by bolting and fixing the rear case 222 to a mounting portion such as a gear case or a transmission of the vehicle.
  • a cooling flow path 211a for flowing a refrigerant is formed in the inverter case 211.
  • the cooling flow path 211a is formed by closing a space recessed in an annular shape from the lower surface of the inverter case 211 with the upper surface of the stator core 201.
  • the cooling flow path 211a is formed so as to surround the coil end of the stator winding 202.
  • the module case 212a of the power module 212 is inserted in the cooling flow path 211a.
  • the rear case 222 is also formed with a cooling flow path 222a so as to surround the coil end of the stator winding 202.
  • the cooling flow path 222a is formed by closing a space recessed in an annular shape from the upper surface of the rear case 222 with the lower surface of the stator core 201.
  • FIG. 41 shows the configuration of the rotary armature type rotary electric machine 230.
  • bearings 232 are fixed to the housings 231a and 231b, respectively, and the rotary shaft 233 is rotatably supported by the bearings 232.
  • the bearing 232 is, for example, an oil-impregnated bearing made by impregnating a porous metal with oil.
  • a rotor 234 as an armature is fixed to the rotating shaft 233.
  • the rotor 234 has a rotor core 235 and a polyphase rotor winding 236 fixed to the outer peripheral portion thereof.
  • the rotor core 235 has a slotless structure
  • the rotor winding 236 has a flat conductor structure. That is, the rotor winding 236 has a flat structure in which the region for each phase is longer in the circumferential direction than in the radial direction.
  • a stator 237 as a field magnet is provided on the radial outer side of the rotor 234.
  • the stator 237 has a stator core 238 fixed to the housing 231a and a magnet unit 239 fixed to the inner peripheral side of the stator core 238.
  • the magnet unit 239 has a configuration including a plurality of magnetic poles having alternating polarities in the circumferential direction, and is a magnetic pole boundary on the d-axis side, which is the center of the magnetic poles, like the magnet unit 42 described above. It is configured so that the direction of the easy-to-magnetize axis is parallel to the d-axis as compared with the side of the axis.
  • the magnet unit 239 has an oriented sintered neodymium magnet, the intrinsic coercive force thereof is 400 [kA / m] or more, and the residual magnetic flux density is 1.0 [T] or more.
  • the rotary electric machine 230 of this example is a 2-pole 3-coil brushed coreless motor, the rotor winding 236 is divided into three, and the magnet unit 239 has two poles.
  • the number of poles and the number of coils of the brushed motor varies depending on the application, such as 2: 3, 4:10, 4:21.
  • a commutator 241 is fixed to the rotating shaft 233, and a plurality of brushes 242 are arranged on the outer side in the radial direction thereof.
  • the commutator 241 is electrically connected to the rotor winding 236 via a conductor 243 embedded in the rotating shaft 233.
  • a direct current flows in and out of the rotor winding 236 through the commutator 241, the brush 242, and the conducting wire 243.
  • the commutator 241 is appropriately divided in the circumferential direction according to the number of phases of the rotor winding 236.
  • the brush 242 may be directly connected to a DC power source such as a storage battery via electrical wiring, or may be connected to a DC power source via a terminal block or the like.
  • the rotating shaft 233 is provided with a resin washer 244 as a sealing material between the bearing 232 and the commutator 241.
  • the resin washer 244 suppresses the oil seeping out from the bearing 232, which is an oil-impregnated bearing, from flowing out to the commutator 241 side.
  • each conducting wire 82 may have a plurality of insulating coatings inside and outside.
  • the insulating coating of the wire constitutes the inner insulating coating
  • the outer layer coating constitutes the outer insulating coating.
  • the insulating capacity of the outer insulating coating among the plurality of insulating coatings on the conductor 82 is higher than the insulating capacity of the inner insulating coating.
  • the thickness of the outer insulating coating is made thicker than the thickness of the inner insulating coating.
  • the thickness of the outer insulating coating is 100 ⁇ m, and the thickness of the inner insulating coating is 40 ⁇ m.
  • a material having a lower dielectric constant than the inner insulating coating may be used as the outer insulating coating. At least one of these may be applied.
  • the strands are configured as an aggregate of a plurality of conductive materials.
  • the rotary electric machine 10 can be properly driven even in highlands where the atmospheric pressure is low.
  • the conductor 82 includes a plurality of (four in the figure) strands 181 and, for example, a resin outer layer coating 182 (outer insulating coating) surrounding the plurality of strands 181 and each of the conductors in the outer layer coating 182. It has an intermediate layer 183 (intermediate insulating film) filled around the wire 181.
  • the wire 181 has a conductive portion 181a made of a copper material and a conductor coating 181b (inner insulating coating) made of an insulating material.
  • the outer layer coating 182 insulates the phases.
  • the strand 181 is configured as an aggregate of a plurality of conductive materials.
  • the intermediate layer 183 has a higher coefficient of linear expansion than the conductor coating 181b of the wire 181 and a lower coefficient of linear expansion than the outer layer coating 182. That is, in the conductor 82, the coefficient of linear expansion is higher toward the outside.
  • the outer layer coating 182 has a higher coefficient of linear expansion than the conductor coating 181b, but by providing an intermediate layer 183 having an intermediate linear expansion coefficient between them, the intermediate layer 183 functions as a cushioning material. , Simultaneous cracking on the outer layer side and the inner layer side can be prevented.
  • the conductive portion 181a and the conductor coating 181b are adhered to each other in the wire 181 and the conductor coating 181b and the intermediate layer 183, and the intermediate layer 183 and the outer layer coating 182 are adhered to each other. Then, the adhesive strength becomes weaker toward the outside of the conductor 82. That is, the adhesive strength of the conductive portion 181a and the conductor coating 181b is weaker than the adhesive strength of the conductor coating 181b and the intermediate layer 183 and the adhesive strength of the intermediate layer 183 and the outer layer coating 182.
  • the adhesive strength of the conductor coating 181b and the intermediate layer 183 is weaker or equivalent.
  • the magnitude of the adhesive strength between the coatings can be grasped from, for example, the tensile strength required when peeling off the two layers of coatings.
  • the heat generation and temperature change of the rotary electric machine mainly occur as copper loss generated from the conductive portion 181a of the wire 181 and iron loss generated from the inside of the iron core, and these two types of losses occur in the conducting wire 82. It is transmitted from the outside of the conductive portion 181a or the conducting wire 82 of the above, and the intermediate layer 183 does not have a heat generating source. In this case, the intermediate layer 183 has an adhesive force that can serve as a cushion for both of them, so that simultaneous cracking can be prevented. Therefore, suitable use is possible even when used in fields with high withstand voltage or large temperature changes such as vehicle applications.
  • the strand 181 may be, for example, an enamel wire, and in such a case, it has a resin coating layer (conductor coating 181b) such as PA, PI, and PAI. Further, it is desirable that the outer layer coating 182 outside the wire 181 is made of the same PA, PI, PAI, etc., and has a large thickness. As a result, the destruction of the coating film due to the difference in linear expansion coefficient is suppressed.
  • the outer layer coating 182 has a dielectric constant such as PPS, PEEK, fluorine, polycarbonate, silicon, epoxy, polyethylene naphthalate, and LCP, in addition to those made by thickening the above materials such as PA, PI, and PAI.
  • PI and PAI are also desirable to use in order to increase the conductor density of the rotating machine.
  • these resins even if they are thinner than the PI and PAI coatings equivalent to the conductor coating 181b or the thickness equivalent to the conductor coating 181b, their dielectric strength can be increased, thereby occupying the conductive portion. Can be increased.
  • the resin has better insulation than the insulating coating of enamel wire in terms of dielectric constant.
  • PPS and PEEK are suitable as the outer layer coating of the second layer because their linear expansion coefficient is generally larger than that of the enamel coating but smaller than that of other resins.
  • the adhesive strength between the two types of coatings (intermediate insulating coating and outer insulating coating) on the outside of the strand 181 and the enamel coating on the strand 181 is the adhesive strength between the copper wire and the enamel coating on the strand 181. It is desirable to be weaker than that. As a result, the phenomenon that the enamel coating and the two types of coatings are destroyed at once is suppressed.
  • thermal stress or impact stress is basically applied to the outer layer coating 182 first.
  • the thermal stress and impact stress can be reduced by providing a portion where the coatings are not adhered. That is, the insulating structure is formed by providing a wire (enamel wire) and a gap and arranging fluorine, polycarbonate, silicon, epoxy, polyethylene naphthalate, and LCP.
  • Formability of epoxy, PPS, PEEK, LCP, etc. is used as the outermost layer fixing, which is generally the final step around the stator winding, which is responsible for mechanical strength, fixing, etc. to the lead wire 82 having the above configuration. It is preferable to use a resin having properties such as dielectric constant and coefficient of linear expansion similar to those of an enamel film.
  • the distance DM between the surface of the magnet unit 42 on the armature side in the radial direction and the axial center of the rotor in the radial direction may be 50 mm or more.
  • the distance DM may be 50 mm or more.
  • the mainstream rotary electric machines in recent years are roughly classified into the following four types. These rotary electric machines are a brushed motor, a basket type induction motor, a permanent magnet type synchronous motor, and a reluctance motor.
  • the reluctance motor is a motor that utilizes the reluctance change of the iron core, and it is not desirable to eliminate the iron core in principle.
  • IPM that is, embedded magnet type rotor
  • IPM has the characteristic of having both magnet torque and reluctance torque, and is operated while the ratio of those torques is adjusted in a timely manner by inverter control. Therefore, the IPM is a small motor with excellent controllability.
  • the torque on the surface of the rotor that generates the magnet torque and the relaxation torque is determined by the distance DM in the radial direction between the surface of the magnet unit on the armature side in the radial direction and the axial center of the rotor, that is, The radius of the stator core of a general inner rotor is drawn with the horizontal axis as shown in FIG. 43.
  • the potential of the magnet torque is determined by the magnetic field strength generated by the permanent magnet as shown in the following equation (eq1), whereas the reluctance torque is determined by the inductance, especially q, as shown in the following equation (eq2).
  • the magnitude of the shaft inductance determines its potential.
  • Magnet torque k ⁇ ⁇ ⁇ Iq ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ (eq1)
  • Reluctance torque k ⁇ (Lq-Ld) ⁇ Iq ⁇ Id ⁇ ⁇ ⁇ ⁇ ⁇ (eq2)
  • the magnetic field strength generated by the permanent magnet that is, the amount of magnetic flux ⁇
  • the magnetic field strength generated by the permanent magnet is proportional to the total area of the permanent magnet on the surface facing the stator. If it is a cylindrical rotor, it will be the surface area of the cylinder. Strictly speaking, since there are N pole and S pole, it is proportional to the occupied area of half of the cylindrical surface.
  • the surface area of a cylinder is proportional to the radius of the cylinder and the length of the cylinder. That is, if the cylinder length is constant, it is proportional to the radius of the cylinder.
  • the inductance Lq of the winding depends on the shape of the iron core, but its sensitivity is low, and rather it is proportional to the square of the number of turns of the stator winding, so the dependence on the number of turns is high.
  • is the magnetic permeability of the magnetic circuit
  • N is the number of turns
  • S is the cross-sectional area of the magnetic circuit
  • is the effective length of the magnetic circuit
  • the inductance L ⁇ ⁇ N ⁇ 2 ⁇ S / ⁇ . Since the number of turns of the winding depends on the size of the winding space, in the case of a cylindrical motor, it depends on the winding space of the stator, that is, the slot area. As shown in FIG. 44, since the slot shape is substantially quadrangular, the slot area is proportional to the product a ⁇ b of the circumferential length dimension a and the radial length dimension b.
  • the length dimension in the circumferential direction of the slot increases as the diameter of the cylinder increases, so it is proportional to the diameter of the cylinder.
  • the radial length dimension of the slot is exactly proportional to the diameter of the cylinder. That is, the slot area is proportional to the square of the diameter of the cylinder.
  • the reluctance torque is proportional to the square of the stator current, so the performance of the rotating electric machine is determined by how large the current can flow, and that performance depends on the slot area of the stator. Dependent. From the above, if the length of the cylinder is constant, the reluctance torque is proportional to the square of the diameter of the cylinder. Based on this, FIG. 43 is a diagram plotting the relationship between the magnet torque and the reluctance torque and DM.
  • the magnet torque increases linearly with respect to DM, and the reluctance torque increases quadratically with respect to DM. It can be seen that the magnet torque is dominant when the DM is relatively small, and the reluctance torque is dominant as the stator core radius increases.
  • the magnetic flux is shared by three to six teeth per magnetic pole, but the magnetic flux tends to concentrate on the teeth in the circumferential direction.
  • the magnetic flux does not flow evenly over the three to six teeth.
  • the teeth that are magnetically saturated with the rotation of the rotor also move in the circumferential direction. This also causes slot ripple.
  • the rotary electric machine having an outer rotor structure has a distance DM of 50 mm or more in the radial direction between the surface of the magnet unit on the armature side and the axial center of the rotor. You may be.
  • the straight portion 83 of the conducting wire 82 may be provided in a single layer in the radial direction. Further, when the linear portion 83 is arranged in a plurality of layers inside and outside the radial direction, the number of layers may be arbitrary, and may be provided in three layers, four layers, five layers, six layers and the like.
  • the rotating shaft 11 is provided so as to project to both one end side and the other end side of the rotary electric machine 10 in the axial direction. May be good.
  • the rotating shaft 11 may be provided so as to extend outward in the axial direction, with a portion that is cantilevered by the bearing unit 20 as an end portion.
  • the internal space of the inverter unit 60 specifically the internal space of the tubular portion 71, can be used more widely.
  • the bearings 21 and 22 are configured to use non-conductive grease, but this may be changed to a configuration in which the bearings 21 and 22 use conductive grease.
  • a conductive grease containing metal particles, carbon particles, or the like is used.
  • bearings may be provided at two locations, one end side and the other end side in the axial direction of the rotor 40. In this case, in the configuration of FIG. 1, it is preferable that bearings are provided at two locations on one end side and the other end side of the inverter unit 60.
  • the intermediate portion 45 of the magnet holder 41 has an inner shoulder portion 49a and an emotional outer shoulder portion 49b.
  • these shoulder portions 49a and 49b are eliminated and the rotor portion is flat. It may be configured to have various surfaces.
  • the conductor 82a is configured as an aggregate of a plurality of strands 86 in the conductor 82 of the stator winding 51, but this is changed and a square conductor having a rectangular cross section is used as the conductor 82. It may be configured. Further, as the conducting wire 82, a round conducting wire having a circular cross section or an elliptical cross section may be used.
  • the inverter unit 60 is provided inside the stator 50 in the radial direction, but instead of this, the inverter unit 60 may not be provided inside the stator 50 in the radial direction. .. In this case, it is possible to set an internal region inside the stator 50 in the radial direction as a space. Further, it is possible to arrange parts different from the inverter unit 60 in the internal region.
  • the rotary electric machine 10 having the above configuration may not include the housing 30.
  • the rotor 40, the stator 50, and the like may be held in a part of the wheel or other vehicle parts.
  • FIG. 45 is a perspective view showing the wheel 400 having an in-wheel motor structure and its peripheral structure
  • FIG. 46 is a vertical sectional view of the wheel 400 and its peripheral structure
  • FIG. 47 is an exploded perspective view of the wheel 400. is there.
  • Each of these figures is a perspective view of the wheel 400 as viewed from the inside of the vehicle.
  • the in-wheel motor structure of the present embodiment can be applied in various forms. For example, in a vehicle having two wheels in front of and behind the vehicle, two wheels on the front side of the vehicle and two wheels on the rear side of the vehicle.
  • the in-wheel motor structure of the present embodiment can be applied to two wheels or four wheels in front of and behind the vehicle. However, it can also be applied to a vehicle in which at least one of the front and rear of the vehicle is one wheel.
  • the in-wheel motor is an application example as a vehicle drive unit.
  • the wheel 400 is fixed to, for example, the tire 401, which is a well-known pneumatic tire, the wheel 402 fixed to the inner peripheral side of the tire 401, and the inner peripheral side of the wheel 402. It is equipped with a rotary electric machine 500.
  • the rotary electric machine 500 has a fixed portion which is a portion including a stator (stator) and a rotating portion which is a portion including a rotor (rotor), and the fixed portion is fixed to the vehicle body side and the rotating portion is formed. It is fixed to the wheel 402, and the tire 401 and the wheel 402 rotate due to the rotation of the rotating portion.
  • the detailed configuration of the rotary electric machine 500 including the fixed portion and the rotating portion will be described later.
  • peripheral devices a suspension device for holding the wheels 400 with respect to a vehicle body (not shown), a steering device for changing the direction of the wheels 400, and a braking device for braking the wheels 400 are attached to the wheels 400. Has been done.
  • the suspension device is an independent suspension type suspension, and any type such as trailing arm type, strut type, wishbone type, and multi-link type can be applied.
  • the lower arm 411 is provided so as to extend toward the center of the vehicle body, and the suspension arm 412 and the spring 413 are provided so as to extend in the vertical direction.
  • the suspension arm 412 may be configured as, for example, a shock absorber. However, the detailed illustration is omitted.
  • the lower arm 411 and the suspension arm 412 are each connected to the vehicle body side and to a disk-shaped base plate 405 fixed to a fixed portion of the rotary electric machine 500. As shown in FIG. 46, the lower arm 411 and the suspension arm 412 are supported on the rotary electric machine 500 side (base plate 405 side) by the support shafts 414 and 415 in a coaxial state with each other.
  • a rack device 421 and a tie rod 422 are provided as steering devices, and the rack device 421 is connected to the base plate 405 on the rotary electric machine 500 side via the tie rod 422.
  • the tie rod 422 moves in the left-right direction of the vehicle.
  • the wheel 400 rotates around the support shafts 414 and 415 of the lower arm 411 and the suspension arm 412, and the wheel direction is changed.
  • a disc brake or a drum brake As a braking device, it is preferable to apply a disc brake or a drum brake.
  • a disc rotor 431 fixed to the rotary shaft 501 of the rotary electric machine 500 and a brake caliper 432 fixed to the base plate 405 on the rotary electric machine 500 side are provided.
  • the brake pads are operated by flood control or the like, and when the brake pads are pressed against the disc rotor 431, a braking force due to friction is generated and the rotation of the wheels 400 is stopped.
  • the wheel 400 is attached with an accommodation duct 440 that accommodates the electric wiring H1 extending from the rotary electric machine 500 and the cooling pipe H2.
  • the accommodating duct 440 extends from the end of the rotary electric machine 500 on the fixed portion side along the end surface of the rotary electric machine 500 and is provided so as to avoid the suspension arm 412, and is fixed to the suspension arm 412 in that state.
  • the connection portion of the accommodation duct 440 in the suspension arm 412 has a fixed positional relationship with the base plate 405. Therefore, it is possible to suppress the stress caused by the vibration of the vehicle in the electric wiring H1 and the cooling pipe H2.
  • the electrical wiring H1 is connected to an in-vehicle power supply unit and an in-vehicle ECU (not shown), and the cooling pipe H2 is connected to a radiator (not shown).
  • the rotary electric machine 500 has excellent operating efficiency and output as compared with the motor of a vehicle drive unit having a speed reducer as in the prior art. That is, if the rotary electric machine 500 is adopted in an application in which a practical price can be realized by reducing the cost as compared with the conventional technology, it may be used as a motor for applications other than the vehicle drive unit. Even in such a case, the excellent performance is exhibited as in the case of applying it to an in-wheel motor.
  • the operating efficiency refers to an index used during a test in a driving mode that derives the fuel efficiency of the vehicle.
  • FIG. 48 is a side view of the rotary electric machine 500 as viewed from the protruding side (inside the vehicle) of the rotary shaft 501
  • FIG. 49 is a vertical sectional view of the rotary electric machine 500 (cross-sectional view taken along lines 49-49 of FIG. 48).
  • 50 is a cross-sectional view of the rotary electric machine 500 (a cross-sectional view taken along the line 50-50 of FIG. 49)
  • FIG. 51 is an exploded cross-sectional view of the components of the rotary electric machine 500.
  • the direction in which the rotating shaft 501 extends outward of the vehicle body is the axial direction
  • the direction extending radially from the rotating shaft 501 is the radial direction
  • the center of the rotating shaft 501 in other words.
  • the circumferential direction is defined as two directions extending in a circumferential shape from an arbitrary point other than the rotation center of the rotating portion on the center line drawn to form a cross section 49 passing through the rotation center of the rotating portion.
  • the circumferential direction may be either a clockwise direction starting from an arbitrary point on the cross section 49 or a counterclockwise direction.
  • the right side is the outside of the vehicle and the left side is the inside of the vehicle in FIG. 49.
  • the rotor 510 which will be described later, is arranged in the outer direction of the vehicle body with respect to the rotor cover 670.
  • the rotary electric machine 500 is an outer rotor type surface magnet type rotary electric machine.
  • the rotary electric machine 500 is roughly classified into a rotor 510, a stator 520, an inverter unit 530, a bearing 560, and a rotor cover 670.
  • Each of these members is arranged coaxially with respect to the rotating shaft 501 integrally provided on the rotor 510, and is assembled in the axial direction in a predetermined order to form the rotating electric machine 500.
  • the rotor 510 and the stator 520 each have a cylindrical shape, and are arranged so as to face each other with an air gap in between.
  • the rotor 510 rotates integrally with the rotation shaft 501, the rotor 510 rotates on the radial outer side of the stator 520.
  • the rotor 510 corresponds to the "field magnet” and the stator 520 corresponds to the "armature”.
  • the rotor 510 has a substantially cylindrical rotor carrier 511 and an annular magnet unit 512 fixed to the rotor carrier 511.
  • the rotation shaft 501 is fixed to the rotor carrier 511.
  • the rotor carrier 511 has a cylindrical portion 513.
  • a magnet unit 512 is fixed to the inner peripheral surface of the cylindrical portion 513. That is, the magnet unit 512 is provided in a state of being surrounded by the cylindrical portion 513 of the rotor carrier 511 from the outside in the radial direction.
  • the cylindrical portion 513 has a first end and a second end facing each other in the axial direction thereof. The first end is located in the direction outside the vehicle body, and the second end is located in the direction in which the base plate 405 is present.
  • an end plate 514 is continuously provided at the first end of the cylindrical portion 513. That is, the cylindrical portion 513 and the end plate 514 have an integral structure.
  • the second end of the cylindrical portion 513 is open.
  • the rotor carrier 511 is formed of, for example, a cold-rolled steel plate having sufficient mechanical strength (SPCC or SPHC thicker than SPCC), forging steel, carbon fiber reinforced plastic (CFRP), or the like.
  • the axial length of the rotating shaft 501 is longer than the axial dimension of the rotor carrier 511.
  • the rotating shaft 501 projects toward the open end side (inward direction of the vehicle) of the rotor carrier 511, and the above-mentioned brake device or the like is attached to the protruding end side.
  • a through hole 514a is formed in the central portion of the end plate 514 of the rotor carrier 511.
  • the rotary shaft 501 is fixed to the rotor carrier 511 in a state of being inserted into the through hole 514a of the end plate 514.
  • the rotating shaft 501 has a flange 502 extending in a direction intersecting (orthogonal) in the axial direction at a portion where the rotor carrier 511 is fixed, and the flange and the outer surface of the end plate 514 are surface-joined.
  • the rotation shaft 501 is fixed to the rotor carrier 511.
  • the wheel 402 is fixed by using a fastener such as a bolt erected from the flange 502 of the rotating shaft 501 toward the outside of the vehicle.
  • the magnet unit 512 is composed of a plurality of permanent magnets arranged so that the polarities alternate along the circumferential direction of the rotor 510. As a result, the magnet unit 512 has a plurality of magnetic poles in the circumferential direction.
  • the permanent magnet is fixed to the rotor carrier 511 by, for example, adhesion.
  • the magnet unit 512 has the configuration described as the magnet unit 42 in FIGS. 8 and 9 of the first embodiment, and as a permanent magnet, has an intrinsic coercive force of 400 [kA / m] or more and a residual magnetic flux. It is constructed by using a sintered neodymium magnet having a density Br of 1.0 [T] or more.
  • the magnet unit 512 has a first magnet 91 and a second magnet 92, which are polar anisotropic magnets and have different polarities. As described with reference to FIGS. 8 and 9, the directions of the easy magnetization axes of the magnets 91 and 92 differ between the d-axis side (the portion closer to the d-axis) and the q-axis side (the portion closer to the q-axis), respectively.
  • the direction of the easy-magnetization axis is close to the direction parallel to the d-axis
  • the direction of the easy-magnetization axis is close to the direction orthogonal to the q-axis.
  • an arcuate magnet magnetic path is formed by the orientation according to the direction of the easily magnetized axis.
  • the easy magnetization axis may be oriented parallel to the d-axis on the d-axis side
  • the easy-magnetization axis may be oriented orthogonal to the q-axis on the q-axis side.
  • the magnet unit 512 is configured so that the direction of the easy magnetization axis is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, as compared with the q-axis side, which is the magnetic pole boundary. ..
  • the magnets 91 and 92 According to the magnets 91 and 92, the magnetic flux on the d-axis is strengthened and the change in magnetic flux near the q-axis is suppressed. As a result, magnets 91 and 92 in which the change in surface magnetic flux from the q-axis to the d-axis at each magnetic pole is gentle can be preferably realized.
  • the magnet unit 512 the configuration of the magnet unit 42 shown in FIGS. 22 and 23 and the configuration of the magnet unit 42 shown in FIG. 30 can also be used.
  • the magnet unit 512 has a rotor core (back yoke) formed by laminating a plurality of electromagnetic steel sheets in the axial direction on the side of the cylindrical portion 513 of the rotor carrier 511, that is, on the outer peripheral surface side. May be good. That is, it is also possible to provide the rotor core on the radial inside of the cylindrical portion 513 of the rotor carrier 511 and to provide the permanent magnets (magnets 91, 92) on the radial inside of the rotor core.
  • a rotor core back yoke
  • the cylindrical portion 513 of the rotor carrier 511 is formed with recesses 513a in a direction extending in the axial direction at predetermined intervals in the circumferential direction.
  • the concave portion 513a is formed by, for example, press working, and as shown in FIG. 52, a convex portion 513b is formed on the inner peripheral surface side of the cylindrical portion 513 at a position on the back side of the concave portion 513a.
  • a concave portion 512a is formed in accordance with the convex portion 513b of the cylindrical portion 513, and the convex portion 513b of the cylindrical portion 513 enters the concave portion 512a, whereby the magnet unit 512 The displacement in the circumferential direction of the magnet is suppressed. That is, the convex portion 513b on the rotor carrier 511 side functions as a detent portion of the magnet unit 512.
  • the method of forming the convex portion 513b may be any method other than press working.
  • the direction of the magnetic path of the magnet in the magnet unit 512 is indicated by an arrow.
  • the magnet magnetic path extends in an arc shape so as to straddle the q-axis which is the magnetic pole boundary, and the d-axis which is the center of the magnetic pole is in a direction parallel to or close to parallel to the d-axis.
  • the magnet unit 512 is formed with recesses 512b at positions corresponding to the q-axis on the inner peripheral surface side thereof.
  • the length of the magnet magnetic path differs between the side closer to the stator 520 (lower side in the figure) and the side farther from the stator 520 (upper side in the figure), and the side closer to the stator 520 is magnetized.
  • the path length is shortened, and the recess 512b is formed at a position where the magnetic path length is the shortest. That is, in consideration of the fact that it is difficult for the magnet unit 512 to generate a sufficient magnet magnetic flux in a place where the magnet magnetic path length is short, the magnet is deleted in a place where the magnet magnetic flux is weak.
  • the effective magnetic flux density Bd of the magnet increases as the length of the magnetic circuit passing through the inside of the magnet becomes longer.
  • the permeance coefficient Pc and the effective magnetic flux density Bd of the magnet are in a relationship that the higher one is, the higher the other is.
  • the amount of magnets can be reduced while suppressing a decrease in the permeance coefficient Pc, which is an index of the height of the effective magnetic flux density Bd of the magnet.
  • the intersection of the permeance straight line and the demagnetization curve according to the shape of the magnet is the operating point, and the magnetic flux density at the operating point is the effective magnetic flux density Bd of the magnet.
  • the rotary electric machine 500 of the present embodiment has a configuration in which the amount of iron in the stator 520 is reduced, and in such a configuration, a method of setting a magnetic circuit straddling the q-axis is extremely effective.
  • the recess 512b of the magnet unit 512 can be used as an air passage extending in the axial direction. Therefore, it is possible to improve the air cooling performance.
  • the stator 520 has a stator winding 521 and a stator core 522.
  • FIG. 53 is a perspective view showing the stator winding 521 and the stator core 522 in an exploded manner.
  • the stator winding 521 is composed of a plurality of phase windings formed by winding in a substantially tubular shape (annular shape), and a stator core 522 as a base member is assembled inside the stator winding 521 in the radial direction.
  • the stator winding 521 is configured as a three-phase phase winding by using U-phase, V-phase, and W-phase phase windings.
  • Each phase winding is composed of two inner and outer layers of conducting wires 523 in the radial direction.
  • the stator 520 is characterized by having a slotless structure and a flat conductor structure of the stator winding 521, similarly to the stator 50 described above, with the stator 50 shown in FIGS. 8 to 16. It has a similar or similar configuration.
  • the stator core 522 has a cylindrical shape in which a plurality of electromagnetic steel sheets are laminated in the axial direction and has a predetermined thickness in the radial direction.
  • the stator winding 521 is assembled on the outer side in the radial direction on the rotor 510 side.
  • the outer peripheral surface of the stator core 522 has a curved shape without unevenness, and when the stator winding 521 is assembled, the conductor 523 constituting the stator winding 521 is attached to the outer peripheral surface of the stator core 522. They are arranged side by side in the circumferential direction.
  • the stator core 522 functions as a back core.
  • the stator 520 may use any of the following (A) to (C).
  • the magnetic flux density is Bs
  • the width dimension of the magnet unit 512 at one magnetic pole in the circumferential direction is Wm
  • the residual magnetic flux density of the magnet unit 512 is Br
  • a magnetic material having a relationship of Wt ⁇ Bs ⁇ Wm ⁇ Br is used. There is.
  • stator 520 In the stator 520, a conductor-to-conductor member is provided between each conductor 523 in the circumferential direction, and a non-magnetic material is used as the conductor-to-conductor member.
  • the stator 520 has a configuration in which no interconductor member is provided between the conductors 523 in the circumferential direction.
  • the inductance is higher than that of a rotating electric machine having a general teeth structure in which a tooth (iron core) for establishing a magnetic path is provided between each conducting portion as a stator winding. It will be reduced. Specifically, the inductance can be reduced to 1/10 or less. In this case, since the impedance decreases as the inductance decreases, the output power with respect to the input power of the rotary electric machine 500 can be increased, which in turn can contribute to the increase in torque. In addition, it is possible to provide a rotary electric machine with a higher output than a rotary electric machine using an embedded magnet type rotor that outputs torque using the voltage of the impedance component (in other words, uses reluctance torque). ing.
  • the stator winding 521 is integrally molded together with the stator core 522 by a molding material (insulating member) made of resin or the like, and the molding material is formed between the conducting wires 523 arranged in the circumferential direction. It has an intervening configuration. Based on such a configuration, the stator 520 of the present embodiment corresponds to the configuration of (B) among the above (A) to (C). Further, the conductor wires 523 adjacent to each other in the circumferential direction are in contact with each other in the circumferential direction, or are arranged close to each other at a minute interval. May be good.
  • the stator core 522 is aligned with the direction of the conducting wire 523 in the axial direction, that is, according to the skew angle of the stator winding 521 having a skew structure, for example. It is preferable that a protrusion is provided on the outer peripheral surface.
  • FIG. 54 is a front view showing the stator winding 521 developed in a plane
  • FIG. 54 (a) shows each conducting wire 523 located in the outer layer in the radial direction
  • FIG. 54 (b) shows the diameter.
  • Each conductor 523 located in the inner layer in the direction is shown.
  • the stator winding 521 is wound in an annular shape by distributed winding.
  • the conductor material is wound around the inner and outer two layers in the radial direction, and the conductors 523 on the inner layer side and the outer layer side are skewed in different directions (FIG. 54 (a), FIG. See FIG. 54 (b)).
  • Each conductor 523 is isolated from each other.
  • the conductor 523 may be configured as an aggregate of a plurality of strands 86 (see FIG. 13). Further, for example, two conducting wires 523 having the same phase and the same energizing direction are provided side by side in the circumferential direction.
  • one conductor portion having the same phase is formed by each conductor 523 having two layers in the radial direction and two conductors in the circumferential direction (that is, a total of four conductors), and the conductor portions are one by one in one magnetic pole. It is provided.
  • the thickness dimension of the conductor portion in the radial direction be smaller than the width dimension in the circumferential direction of one phase in one magnetic pole, whereby the stator winding 521 has a flat conductor structure.
  • one conductor portion having two layers in the radial direction and four conductors 523 in the circumferential direction may form one conductor portion having the same phase.
  • the width dimension in the circumferential direction may be larger than the thickness dimension in the radial direction.
  • the stator winding 51 shown in FIG. 12 can also be used. However, in this case, it is necessary to secure a space in the rotor carrier 511 for accommodating the coil end of the stator winding.
  • the conductor wires 523 are arranged side by side in the circumferential direction at a coil side 525 that overlaps the stator core 522 in the radial direction at a predetermined angle, and are axially outside the stator core 522.
  • the coil ends 526 on both sides are inverted (folded back) inward in the axial direction to form a continuous connection.
  • FIG. 54A shows a range of the coil side 525 and a range of the coil end 526, respectively.
  • the conductor 523 on the inner layer side and the conductor 523 on the outer layer side are connected to each other at the coil end 526, so that the conductor 523 is rotated at the coil end 526 each time the conductor 523 is inverted in the axial direction (each time it is folded back).
  • the inner layer side and the outer layer side are switched alternately.
  • the stator winding 521 has a configuration in which the inner and outer layers are switched in accordance with the reversal of the direction of the current in each of the conducting wires 523 that are continuous in the circumferential direction.
  • the skew angle ⁇ s1 in the central region and the skew angle ⁇ s2 in the end region are different, and the skew angle ⁇ s1 is smaller than the skew angle ⁇ s2.
  • the end region is defined to include the coil side 525.
  • the skew angle ⁇ s1 and the skew angle ⁇ s2 are inclination angles at which each conducting wire 523 is inclined with respect to the axial direction.
  • the skew angle ⁇ s1 in the central region may be set in an angle range appropriate for reducing the harmonic component of the magnetic flux generated by the energization of the stator winding 521.
  • the coil end 526 is reduced by making the skew angle of each conductor 523 in the stator winding 521 different between the central region and the end region and making the skew angle ⁇ s1 in the central region smaller than the skew angle ⁇ s2 in the end region.
  • the winding coefficient of the stator winding 521 can be increased.
  • the length of the coil end 526 that is, the conductor length of the portion protruding in the axial direction from the stator core 522 can be shortened while ensuring a desired winding coefficient. As a result, it is possible to improve the torque while reducing the size of the rotary electric machine 500.
  • the Xth-order harmonic component is a component that constitutes a composite wave of the X-1st-order harmonic component and the X + 1st-order harmonic component, the X-1st-order harmonic component or the X + 1 It was noted that the Xth harmonic component can be reduced by reducing at least one of the following harmonic components. Based on this focus, the discloser of the present application sets the skew angle ⁇ s1 within the angle range of “360 ° / (X + 1) to 360 ° / (X-1)” in terms of the electric angle, thereby setting the X-th order harmonic component. It was found that can be reduced.
  • the magnet magnetic fluxes alternating with NS can be positively interlocked in the central region, and the winding coefficient of the stator winding 521 is increased. be able to.
  • the skew angle ⁇ s2 in the end region is larger than the skew angle ⁇ s1 in the central region described above.
  • the angle range of the skew angle ⁇ s2 is “ ⁇ s1 ⁇ s2 ⁇ 90 °”.
  • the conductor 523 on the inner layer side and the conductor 523 on the outer layer side may be connected by welding or adhesion between the ends of the conductors 523, or may be connected by bending.
  • the end of each phase winding is electrically connected to a power converter (inverter) via a bus bar or the like on one side (that is, one end side in the axial direction) of each coil end 526 on both sides in the axial direction. It is configured to be connected to. Therefore, here, the configuration in which the conductors are connected to each other at the coil end 526 will be described while distinguishing between the coil end 526 on the bus bar connection side and the coil end 526 on the opposite side.
  • the first configuration is such that each conductor 523 is connected by welding at the coil end 526 on the bus bar connection side, and each conductor 523 is connected by means other than welding at the coil end 526 on the opposite side.
  • a connection by bending a conducting wire material can be considered.
  • the bus bar is connected by welding to the end of each phase winding. Therefore, by connecting each conducting wire 523 by welding at the same coil end 526, each welded portion can be performed in a series of steps, and work efficiency can be improved.
  • the second configuration is such that each conductor 523 is connected by means other than welding at the coil end 526 on the bus bar connection side, and each conductor 523 is connected by welding at the coil end 526 on the opposite side.
  • each conductor 523 is connected by welding at the coil end 526 on the bus bar connection side, the separation distance between the bus bar and the coil end 526 is sufficient to avoid contact between the welded portion and the bus bar.
  • the separation distance between the bus bar and the coil end 526 can be reduced. Thereby, the regulation regarding the length of the stator winding 521 in the axial direction or the bus bar can be relaxed.
  • the third configuration is such that each conductor 523 is connected by welding at the coil ends 526 on both sides in the axial direction.
  • all of the conductors prepared before welding may have a short wire length, and the work efficiency can be improved by reducing the bending process.
  • each conductor 523 is connected at the coil ends 526 on both sides in the axial direction by means other than welding.
  • the portion of the stator winding 521 to be welded can be reduced as much as possible, and the concern that insulation peeling may occur in the welding process can be reduced.
  • the strip-shaped windings arranged in a plane shape and then to form the strip-shaped windings in an annular shape.
  • the strip winding may be wound directly around the stator core 522.
  • the skew angles of the central region and the end region may be the same.
  • the ends of the in-phase conducting wires 523 adjacent to each other in the circumferential direction are connected by a crossover portion extending in a direction orthogonal to the axial direction. It may be.
  • the number of layers of the stator winding 521 may be 2 ⁇ n layers (n is a natural number), and the stator winding 521 can be made into 4 layers, 6 layers, or the like in addition to the 2 layers.
  • FIGS. 56 and 57 are exploded sectional views of the inverter unit 530.
  • each member shown in FIG. 56 is shown as two subassemblies.
  • the inverter unit 530 has an inverter housing 531, a plurality of electric modules 532 assembled to the inverter housing 531 and a bus bar module 533 for electrically connecting each of the electric modules 532.
  • the inverter housing 531 has a cylindrical outer wall member 541, an inner wall member 542 having an outer peripheral diameter smaller than that of the outer wall member 541 and arranged inside the outer wall member 541 in the radial direction, and a shaft of the inner wall member 542. It has a boss forming member 543 fixed to one end side in the direction.
  • Each of these members 541 to 543 is preferably made of a conductive material, for example, made of carbon fiber reinforced plastic (CFRP).
  • CFRP carbon fiber reinforced plastic
  • the inverter housing 531 is configured such that the outer wall member 541 and the inner wall member 542 are overlapped and combined in the radial direction inside and outside, and the boss forming member 543 is assembled on one end side in the axial direction of the inner wall member 542.
  • the assembled state is the state shown in FIG. 57.
  • the stator core 522 is fixed to the radial outside of the outer wall member 541 of the inverter housing 531. As a result, the stator 520 and the inverter unit 530 are integrated.
  • the outer wall member 541 is formed with a plurality of recesses 541a, 541b, 541c on the inner peripheral surface thereof
  • the inner wall member 542 is formed with a plurality of recesses 542a, 542b, 542c on the outer peripheral surface thereof. Is formed. Then, by assembling the outer wall member 541 and the inner wall member 542 to each other, three hollow portions 544a, 544b, and 544c are formed between them (see FIG. 57). Of these, the central hollow portion 544b is used as a cooling water passage 545 for circulating cooling water as a refrigerant.
  • the sealing material 546 is housed in the hollow portions 544a and 544c on both sides of the hollow portion 544b (cooling water passage 545).
  • the hollow portion 544b (cooling water passage 545) is sealed by the sealing material 546.
  • the cooling water passage 545 will be described in detail later.
  • the boss forming member 543 is provided with a disk ring-shaped end plate 547 and a boss portion 548 protruding from the end plate 547 toward the inside of the housing.
  • the boss portion 548 is provided in a hollow tubular shape.
  • the boss forming member 543 is the second end of the first end of the inner wall member 542 in the axial direction and the second end on the protruding side (that is, inside the vehicle) of the rotating shaft 501 facing the first end. It is fixed to.
  • the base plate 405 is fixed to the inverter housing 531 (more specifically, the end plate 547 of the boss forming member 543).
  • the inverter housing 531 has a configuration having a double peripheral wall in the radial direction about the axis, and the outer peripheral wall of the double peripheral wall is formed by the outer wall member 541 and the inner wall member 542, and the inner peripheral wall is formed. Is formed by the boss portion 548.
  • the outer peripheral wall formed by the outer wall member 541 and the inner wall member 542 is also referred to as “outer peripheral wall WA1”
  • the inner peripheral wall formed by the boss portion 548 is also referred to as "inner peripheral wall WA2”.
  • an annular space is formed between the outer peripheral wall WA1 and the inner peripheral wall WA2, and a plurality of electric modules 532 are arranged side by side in the circumferential direction in the annular space.
  • the electric module 532 is fixed to the inner peripheral surface of the inner wall member 542 by adhesion, screw tightening, or the like.
  • the inverter housing 531 corresponds to the "housing member” and the electric module 532 corresponds to the "electric component".
  • a bearing 560 is housed inside the inner peripheral wall WA2 (boss portion 548), and the rotating shaft 501 is rotatably supported by the bearing 560.
  • the bearing 560 is a hub bearing that rotatably supports the wheel 400 at the center of the wheel.
  • the bearing 560 is provided at a position where the rotor 510, the stator 520, and the inverter unit 530 overlap in the axial direction.
  • the magnet unit 512 can be made thinner in accordance with the orientation of the rotor 510, and the stator 520 adopts a slotless structure or a flat lead wire structure.
  • the boss portion 548 is a bearing holding portion that holds the bearing 560 inside the boss portion 548.
  • the bearing 560 is, for example, a radial ball bearing, and has a tubular inner ring 561, an outer ring 562 having a diameter larger than that of the inner ring 561 and arranged radially outside the inner ring 561, and the inner ring 561 and the outer ring. It has a plurality of balls 563 arranged between 562.
  • the bearing 560 is fixed to the inverter housing 531 by assembling the outer ring 562 to the boss forming member 543, and the inner ring 561 is fixed to the rotating shaft 501.
  • the inner ring 561, the outer ring 562, and the ball 563 are all made of a metal material such as carbon steel.
  • the inner ring 561 of the bearing 560 has a tubular portion 561a for accommodating the rotating shaft 501 and a flange 561b extending in an axially intersecting (orthogonal) direction from one end in the axial direction of the tubular portion 561a. ..
  • the flange 561b is a portion that comes into contact with the end plate 514 of the rotor carrier 511 from the inside, and is sandwiched between the flange 502 of the rotating shaft 501 and the flange 561b of the inner ring 561 when the bearing 560 is assembled to the rotating shaft 501. In this state, the rotor carrier 511 is held.
  • the flange 502 of the rotating shaft 501 and the flange 561b of the inner ring 561 have the same angle of intersection with respect to the axial direction (both are right angles in the present embodiment), and are sandwiched between the flanges 502 and 561b.
  • the rotor carrier 511 is held in this state.
  • the angle of the rotor carrier 511 with respect to the rotating shaft 501 can be maintained at an appropriate angle, and the parallelism of the magnet unit 512 with respect to the rotating shaft 501 is improved. Can be kept. As a result, resistance to vibration and the like can be increased even in a configuration in which the rotor carrier 511 is expanded in the radial direction.
  • the plurality of electric modules 532 are obtained by dividing electric components such as semiconductor switching elements and smoothing capacitors constituting a power converter into a plurality of individual modules, and the electric module 532 is a power element.
  • a switch module 532A having a semiconductor switching element and a capacitor module 532B having a smoothing capacitor are included.
  • a plurality of spacers 549 having a flat surface for attaching the electric module 532 are fixed to the inner peripheral surface of the inner wall member 542, and the electric module 532 is attached to the spacer 549.
  • the mounting surface of the electric module 532 is a flat surface, so that the spacer 549 forms a flat surface on the inner peripheral surface side of the inner wall member 542.
  • the electric module 532 is fixed to a flat surface.
  • the configuration in which the spacer 549 is interposed between the inner wall member 542 and the electric module 532 is not essential, and the inner wall is made by flattening the inner peripheral surface of the inner wall member 542 or by making the mounting surface of the electric module 532 curved. It is also possible to attach the electric module 532 directly to the member 542. It is also possible to fix the electric module 532 to the inverter housing 531 in a state of non-contact with the inner peripheral surface of the inner wall member 542. For example, the electric module 532 is fixed to the end plate 547 of the boss forming member 543. It is also possible to fix the switch module 532A to the inner peripheral surface of the inner wall member 542 in a contact state, and to fix the capacitor module 532B to the inner peripheral surface of the inner wall member 542 in a non-contact state.
  • the outer peripheral wall WA1 and the spacer 549 correspond to the "cylindrical portion".
  • the outer peripheral wall WA1 corresponds to the "cylindrical portion”.
  • the outer peripheral wall WA1 of the inverter housing 531 is formed with a cooling water passage 545 through which cooling water as a refrigerant flows, so that each electric module 532 is cooled by the cooling water flowing through the cooling water passage 545. It has become. It is also possible to use cooling oil as the refrigerant instead of the cooling water.
  • the cooling water passage 545 is provided in an annular shape along the outer peripheral wall WA1, and the cooling water flowing in the cooling water passage 545 flows from the upstream side to the downstream side via each electric module 532. In the present embodiment, the cooling water passage 545 is provided in an annular shape so as to overlap each of the electric modules 532 in the radial direction and to surround each of the electric modules 532.
  • the inner wall member 542 is provided with an inlet passage 571 for flowing cooling water into the cooling water passage 545 and an outlet passage 572 for discharging cooling water from the cooling water passage 545.
  • a plurality of electric modules 532 are fixed to the inner peripheral surface of the inner wall member 542, and in such a configuration, the distance between the electric modules adjacent to each other in the circumferential direction is expanded by only one place, and the expansion thereof.
  • a part of the inner wall member 542 is projected inward in the radial direction to form a protruding portion 573.
  • the protruding portion 573 is provided with an inlet passage 571 and an outlet passage 572 in a state of being arranged side by side along the radial direction.
  • FIG. 58 shows the arrangement state of each electric module 532 in the inverter housing 531. Note that FIG. 58 is the same vertical cross-sectional view as that of FIG. 50.
  • the electric modules 532 are arranged side by side in the circumferential direction with the distance between the electric modules in the circumferential direction as the first interval INT1 or the second interval INT2.
  • the second interval INT2 is a wider interval than the first interval INT1.
  • Each interval INT1 and INT2 is, for example, the distance between the center positions of two electric modules 532 adjacent to each other in the circumferential direction.
  • the distance between the electric modules adjacent to each other in the circumferential direction without sandwiching the protrusion 573 is the first interval INT1
  • the distance between the electric modules adjacent to each other in the circumferential direction across the protrusion 573 is the second interval INT2. ing. That is, the distance between the electric modules adjacent to each other in the circumferential direction is partially expanded, and the protruding portion 573 is provided at, for example, the central portion of the expanded distance (second interval INT2).
  • Each interval INT1 and INT2 may be the distance of an arc between the center positions of two electric modules 532 adjacent to each other in the circumferential direction on the same circle centered on the rotation axis 501.
  • the distance between the electric modules in the circumferential direction may be defined by the angular distances ⁇ i1 and ⁇ i2 centered on the rotation axis 501 ( ⁇ i1 ⁇ i2).
  • the electric modules 532 arranged at the first interval INT1 are arranged in a state of being separated from each other in the circumferential direction (non-contact state), but instead of this configuration, the electric modules are arranged.
  • the 532s may be arranged so as to be in contact with each other in the circumferential direction.
  • the end plate 547 of the boss forming member 543 is provided with a water channel port 574 in which the passage ends of the inlet passage 571 and the outlet passage 57 2 are formed.
  • a circulation path 575 for circulating cooling water is connected to the inlet passage 571 and the outlet passage 572.
  • the circulation path 575 comprises a cooling water pipe.
  • a pump 576 and a heat radiating device 575 are provided in the circulation path 575, and the cooling water circulates through the cooling water passage 545 and the circulation path 575 as the pump 576 is driven.
  • Pump 576 is an electric pump.
  • the heat radiating device 577 is, for example, a radiator that releases the heat of the cooling water to the atmosphere.
  • stator 520 is arranged on the outside of the outer peripheral wall WA1 and the electric module 532 is arranged on the inner side, the stator 520 is arranged from the outside of the outer peripheral wall WA1. As the heat is transferred, the heat of the electric module 532 is transferred from the inside. In this case, the stator 520 and the electric module 532 can be cooled at the same time by the cooling water flowing through the cooling water passage 545, and the heat of the heat generating parts in the rotary electric machine 500 can be efficiently released.
  • the stator winding 521 is composed of a U-phase winding, a V-phase winding, and a W-phase winding, and an inverter 600 is connected to the stator winding 521.
  • the inverter 600 is composed of a full bridge circuit having the same number of upper and lower arms as the number of phases, and a series connection body including an upper arm switch 601 and a lower arm switch 602 is provided for each phase.
  • Each of these switches 601, 602 is turned on and off by the drive circuit 603, and the windings of each phase are energized by the on / off.
  • Each switch 601, 602 is composed of a semiconductor switching element such as a MOSFET or an IGBT.
  • the upper and lower arms of each phase are connected in parallel with the series connection body of the switches 601, 602 to a charge supply capacitor 604 for supplying the charges required for switching to the switches 601, 602.
  • the control device 607 includes a microcomputer composed of a CPU and various memories, and performs energization control by turning on / off the switches 601 and 602 based on various detection information in the rotary electric machine 500 and requests for power running and power generation. ..
  • the control device 607 performs on / off control of each switch 601 and 602 by, for example, PWM control at a predetermined switching frequency (carrier frequency) and rectangular wave control.
  • the control device 607 may be a built-in control device built in the rotary electric machine 500, or an external control device provided outside the rotary electric machine 500.
  • the electric time constant is small because the inductance of the stator 520 is reduced, and in a situation where the electric time constant is small, the switching frequency (carrier frequency). ) Is increased and the switching speed is increased.
  • the charge supply capacitor 604 is connected in parallel to the series connection of the switches 601, 602 of each phase, the wiring inductance becomes low, and an appropriate surge even in a configuration in which the switching speed is increased. Countermeasures are possible.
  • the high potential side terminal of the inverter 600 is connected to the positive electrode terminal of the DC power supply 605, and the low potential side terminal is connected to the negative electrode terminal (ground) of the DC power supply 605. Further, a smoothing capacitor 606 is connected in parallel with the DC power supply 605 to the high potential side terminal and the low potential side terminal of the inverter 600.
  • the switch module 532A has each switch 601, 602 (semiconductor switching element), a drive circuit 603 (specifically, an electric element constituting the drive circuit 603), and a capacitor 604 for electric charge supply as heat generating parts. Further, the capacitor module 532B has a smoothing capacitor 606 as a heat generating component. A specific configuration example of the switch module 532A is shown in FIG.
  • the switch module 532A has a module case 611 as a storage case, and one phase of switches 601, 602 housed in the module case 611, a drive circuit 603, and a charge supply. It has a capacitor 604 and.
  • the drive circuit 603 is configured as a dedicated IC or a circuit board and is provided in the switch module 532A.
  • the module case 611 is made of an insulating material such as resin, and is fixed to the outer peripheral wall WA1 with its side surface in contact with the inner peripheral surface of the inner wall member 542 of the inverter unit 530.
  • the module case 611 is filled with a molding material such as resin.
  • the switches 601, 602 and the drive circuit 603, and the switches 601, 602 and the capacitor 604 are electrically connected by wiring 612, respectively. More specifically, the switch module 532A is attached to the outer peripheral wall WA1 via the spacer 549, but the spacer 549 is not shown.
  • the order of arrangement of the drive circuit 603 and the capacitor 604 is defined. Specifically, when comparing the calorific value, the order is from the largest to the switches 601, 602, the capacitor 604, and the drive circuit 603. Therefore, the switches are switched from the side closer to the outer peripheral wall WA1 according to the order of the calorific value. These are arranged in the order of 601, 602, the capacitor 604, and the drive circuit 603.
  • the contact surface of the switch module 532A is preferably smaller than the contactable surface on the inner peripheral surface of the inner wall member 542.
  • the capacitor module 532B is configured such that the capacitor 606 is housed in a module case having the same shape and size as the switch module 532A. Similar to the switch module 532A, the capacitor module 532B is fixed to the outer peripheral wall WA1 in a state where the side surface of the module case 611 is in contact with the inner peripheral surface of the inner wall member 542 of the inverter housing 531.
  • the switch module 532A and the capacitor module 532B do not necessarily have to be arranged concentrically on the radial inside of the outer peripheral wall WA1 of the inverter housing 531.
  • the switch module 532A may be arranged radially inside the capacitor module 532B, or vice versa.
  • Each electric module 532 may have a configuration in which cooling water is drawn into the module and the cooling water is used to cool the inside of the module.
  • the water cooling structure of the switch module 532A will be described with reference to FIGS. 61 (a) and 61 (b).
  • FIG. 61 (a) is a vertical sectional view showing a cross-sectional structure of the switch module 532A in a direction crossing the outer peripheral wall WA1
  • FIG. 61 (b) is a sectional view taken along line 61B-61B of FIG. 61 (a). ..
  • the switch module 532A has a module case 611, one-phase switches 601, 602, a drive circuit 603, and a capacitor 604, as in FIG. 60.
  • it has a cooling device including a pair of piping portions 621 and 622 and a cooler 623.
  • the pair of piping portions 621 and 622 are the piping portion 621 on the inflow side for flowing the cooling water from the cooling water passage 545 of the outer peripheral wall WA1 to the cooler 623, and the cooling water from the cooler 623 to the cooling water passage 545. It is composed of a piping portion 622 on the outflow side that allows the outflow.
  • the cooler 623 is provided according to the object to be cooled, and a one-stage or a plurality of stages of the cooler 623 is used in the cooling device.
  • two-stage coolers 623 are provided in a direction away from the cooling water passage 545, that is, in the radial direction of the inverter unit 530, in a state of being separated from each other, and a pair of pipes. Cooling water is supplied to each of the coolers 623 via the sections 621 and 622.
  • the cooler 623 has, for example, a hollow inside. However, an inner fin may be provided inside the cooler 623.
  • the outer peripheral wall WA1 side of the first-stage cooler 623 In the configuration including the two-stage cooler 623, (1) the outer peripheral wall WA1 side of the first-stage cooler 623, (2) between the first-stage and second-stage coolers 623, and (3) the second stage.
  • the opposite outer peripheral wall side of the cooler 623 is a place where the electric parts to be cooled are arranged, and each of these places is (2), (1), (3) in order from the one having the highest cooling performance.
  • the place sandwiched between the two coolers 623 has the highest cooling performance
  • the place adjacent to any one of the coolers 623 the place closer to the outer peripheral wall WA1 (cooling water passage 545) has higher cooling performance. ing. Taking this into consideration, in the configurations shown in FIGS.
  • the switches 601, 602 are arranged between (2) the first-stage and second-stage coolers 623, and the condenser 604 is (2).
  • the drive circuit 603 is arranged on the outer peripheral wall WA1 side of the first-stage cooler 623, and the drive circuit 603 is arranged on the anti-outer peripheral wall side of the second-stage cooler 623.
  • the drive circuit 603 and the capacitor 604 may be arranged in reverse.
  • the switches 601, 602 and the drive circuit 603, and the switches 601, 602 and the capacitor 604 are electrically connected by wiring 612, respectively. Further, since the switches 601, 602 are located between the drive circuit 603 and the capacitor 604, the wiring 612 extending from the switches 601, 602 toward the drive circuit 603 and the wiring 612 extending from the switches 601, 602 toward the capacitor 604 Is a relationship that extends in opposite directions.
  • the pair of piping portions 621 and 622 are arranged side by side in the circumferential direction, that is, on the upstream side and the downstream side of the cooling water passage 545, and the piping portions on the inflow side located on the upstream side. Cooling water flows into the cooler 623 from 621, and then the cooling water flows out from the outflow side piping portion 622 located on the downstream side.
  • the cooling water is provided in the cooling water passage 545 at a position between the inflow side piping portion 621 and the outflow side piping portion 621 when viewed in the circumferential direction.
  • a regulation unit 624 is provided to regulate the flow of the water.
  • the regulating portion 624 may be a blocking portion that shuts off the cooling water passage 545 or a throttle portion that reduces the passage area of the cooling water passage 545.
  • FIG. 62 shows another cooling structure of the switch module 532A.
  • 62 (a) is a vertical sectional view showing a cross-sectional structure of the switch module 532A in a direction crossing the outer peripheral wall WA1
  • FIG. 62 (b) is a sectional view taken along line 62B-62B of FIG. 62 (a). ..
  • FIGS. 62 (a) and 62 (b) differ from the configurations of FIGS. 61 (a) and 61 (b) described above in that the pair of piping portions 621 and 622 in the cooling device are arranged differently.
  • the piping portions 621 and 622 of the above are arranged side by side in the axial direction.
  • FIG. 62 (c) in the cooling water passage 545, the passage portion communicating with the inflow side piping portion 621 and the passage portion communicating with the outflow side piping portion 622 are separated in the axial direction.
  • Each of these passage portions communicates with each other through each piping portion 621, 622 and each cooler 623.
  • the following configuration can be used as the switch module 532A.
  • the cooler 623 is changed from two stages to one stage as compared with the configuration shown in FIG. 61 (a).
  • the location with the highest cooling performance in the module case 611 is different from that in FIG. 61 (a), and the location on the outer peripheral wall WA1 side of the radial sides of the cooler 623 (both sides in the left-right direction in the figure) is the highest.
  • the cooling performance is high, and then the cooling performance is lowered in the order of the place on the opposite outer peripheral wall side of the cooler 623 and the place away from the cooler 623. Taking this into consideration, in the configuration shown in FIG.
  • the switches 601, 602 are arranged on the outer peripheral wall WA1 side of the radial sides of the cooler 623 (both sides in the left-right direction in the figure), and the condenser 604 is installed.
  • the drive circuit 603 is arranged at a place on the opposite outer peripheral wall side of the cooler 623, and is arranged at a place away from the cooler 623.
  • the switch module 532A it is possible to change the configuration in which the switches 601, 602 for one phase, the drive circuit 603, and the capacitor 604 are housed in the module case 611.
  • the module case 611 may accommodate one of the switches 601, 602 for one phase, the drive circuit 603, and the capacitor 604.
  • a pair of piping portions 621 and 622 and a two-stage cooler 623 are provided in the module case 611, and switches 601, 602 are installed in the first-stage and second-stage coolers 623.
  • the capacitor 604 or the drive circuit 603 is arranged between them, and is arranged on the outer peripheral wall WA1 side of the first stage cooler 623. Further, it is also possible to integrate the switches 601, 602 and the drive circuit 603 into a semiconductor module, and to accommodate the semiconductor module and the capacitor 604 in the module case 611.
  • the condenser is arranged on the opposite side of the switches 601, 602 in at least one of the coolers 623 arranged on both sides of the switches 601, 602. It should be done. That is, there is a configuration in which the condenser 604 is arranged only on one of the outer peripheral wall WA1 side of the first-stage cooler 623 and the opposite peripheral wall side of the second-stage cooler 623, or a configuration in which the condenser 604 is arranged on both sides. It is possible.
  • the switch module 532A is configured to draw cooling water from the cooling water passage 545 into the module.
  • the configuration may be changed so that cooling water is drawn into both modules 532A and 532B from the cooling water passage 545.
  • each electric module 532 it is also possible to cool each electric module 532 by directly applying cooling water to the outer surface of each electric module 532.
  • the cooling water is applied to the outer surface of the electric module 532.
  • a part of the electric module 532 is immersed in the cooling water passage 545, or the cooling water passage 545 is expanded in the radial direction from the configuration shown in FIG. It is conceivable to immerse it in.
  • the cooling performance can be further improved by providing fins in the module case 611 (the immersed portion of the module case 611) to be immersed.
  • the electric module 532 includes a switch module 532A and a capacitor module 532B, and there is a difference in the amount of heat generated when both of them are compared. In consideration of this point, it is possible to devise the arrangement of each electric module 532 in the inverter housing 531.
  • a plurality of switch modules 532A are arranged in the circumferential direction without being dispersed, and arranged on the upstream side of the cooling water passage 545, that is, on the side close to the inlet passage 571.
  • the cooling water flowing in from the inlet passage 571 is first used for cooling the three switch modules 532A, and then used for cooling each capacitor module 532B.
  • the pair of piping portions 621 and 622 are arranged side by side in the axial direction as shown in FIGS. 62 (a) and 62 (b), but the present invention is not limited to this, and FIG. 61 (a) above is not limited to this.
  • (B) a pair of piping portions 621 and 622 may be arranged side by side in the circumferential direction.
  • FIG. 66 is a cross-sectional view taken along the line 66-66 of FIG. 49
  • FIG. 67 is a cross-sectional view taken along the line 67-67 of FIG.
  • FIG. 68 is a perspective view showing the bus bar module 533 as a single unit.
  • the configuration related to the electrical connection of each electric module 532 and the bus bar module 533 will be described with reference to each of these figures.
  • the inverter housing 531 is provided with a protruding portion 573 provided on the inner wall member 542 (that is, a protruding portion 573 provided with an inlet passage 571 and an outlet passage 57 2 leading to the cooling water passage 545) in the circumferential direction.
  • a protruding portion 573 provided on the inner wall member 542 (that is, a protruding portion 573 provided with an inlet passage 571 and an outlet passage 57 2 leading to the cooling water passage 545) in the circumferential direction.
  • Three switch modules 532A are arranged side by side in the circumferential direction at positions adjacent to the above, and six capacitor modules 532B are arranged side by side in the circumferential direction next to the three switch modules 532A.
  • the inside of the outer peripheral wall WA1 is equally divided into 10 regions (that is, the number of modules + 1) in the circumferential direction, and one electric module 532 is arranged in each of the nine regions. At the same time, a protrusion 573 is provided in the remaining one area.
  • the three switch modules 532A are a U-phase module, a V-phase module, and a W-phase module.
  • each electric module 532 (switch module 532A and capacitor module 532B) has a plurality of module terminals 615 extending from the module case 611.
  • the module terminal 615 is a module input / output terminal for performing electrical input / output in each electric module 532.
  • the module terminal 615 is provided so as to extend in the axial direction, and more specifically, the module terminal 615 is provided so as to extend from the module case 611 toward the back side (outside the vehicle) of the rotor carrier 511 (FIG. 51). reference).
  • the module terminals 615 of each electric module 532 are connected to the bus bar module 533, respectively.
  • the number of module terminals 615 differs between the switch module 532A and the capacitor module 532B.
  • the switch module 532A is provided with four module terminals 615
  • the capacitor module 532B is provided with two module terminals 615.
  • the bus bar module 533 extends from the annular portion 631 forming an annular shape and the annular portion 631 to enable connection with an external device such as a power supply device or an ECU (electronic control device). It has three external connection terminals 632 and a winding connection terminal 633 connected to the winding end of each phase in the stator winding 521.
  • the bus bar module 533 corresponds to the "terminal module”.
  • the annular portion 631 is arranged in the inverter housing 531 at a position on the inner side in the radial direction of the outer peripheral wall WA1 and on one side in the axial direction of each electric module 532.
  • the annular portion 631 has an annular main body formed of, for example, an insulating member such as a resin, and a plurality of bus bars embedded therein.
  • the plurality of bus bars are connected to the module terminal 615 of each electric module 532, each external connection terminal 632, and each phase winding of the stator winding 521. The details will be described later.
  • the external connection terminal 632 includes a high potential side power terminal 632A and a low potential side power terminal 632B connected to the power supply device, and one signal terminal 632C connected to the external ECU.
  • Each of these external connection terminals 632 (632A to 632C) is provided so as to be arranged in a line in the circumferential direction and to extend in the radial direction inside the annular portion 631 in the radial direction.
  • FIG. 51 when the bus bar module 533 is assembled to the inverter housing 531 together with each electric module 532, one end of the external connection terminal 632 is configured to protrude from the end plate 547 of the boss forming member 543. .. Specifically, as shown in FIGS.
  • the end plate 547 of the boss forming member 543 is provided with an insertion hole 547a, and a cylindrical grommet 635 is attached to the insertion hole 547a, and the grommet is attached.
  • the external connection terminal 632 is provided with the 635 inserted.
  • the grommet 635 also functions as a sealed connector.
  • the winding connection terminal 633 is a terminal connected to the winding end of each phase of the stator winding 521, and is provided so as to extend radially outward from the annular portion 631.
  • the winding connection terminal 633 is a winding connection terminal 633U connected to the end of the U-phase winding in the stator winding 521, a winding connection terminal 633V connected to the end of the V-phase winding, and a W-phase winding.
  • Each end of the wire has a winding connection terminal 633W connected to the connection. It is preferable that each of these winding connection terminals 633 and a current sensor 634 for detecting the current (U-phase current, V-phase current, W-phase current) flowing through each phase winding are provided (see FIG. 70).
  • the current sensor 634 may be arranged outside the electric module 532 and around each winding connection terminal 633, or may be arranged inside the electric module 532.
  • FIG. 69 is a diagram showing each electric module 532 developed in a plane and schematically showing an electrical connection state between each electric module 532 and a bus bar module 533.
  • FIG. 70 is a diagram schematically showing the connection between each electric module 532 and the bus bar module 533 in a state where each electric module 532 is arranged in an annular shape.
  • the path for power transmission is shown by a solid line
  • the path of the signal transmission system is shown by a chain double-dashed line.
  • FIG. 70 shows only the path for power transmission.
  • the bus bar module 533 has a first bus bar 641, a second bus bar 642, and a third bus bar 643 as bus bars for power transmission.
  • the first bus bar 641 is connected to the power terminal 632A on the high potential side
  • the second bus bar 642 is connected to the power terminal 632B on the low potential side.
  • three third bus bars 643 are connected to the U-phase winding connection terminal 633U, the V-phase winding connection terminal 633V, and the W-phase winding connection terminal 633W, respectively.
  • winding connection terminal 633 and the third bus bar 643 are parts that easily generate heat due to the operation of the rotary electric machine 10. Therefore, a terminal block (not shown) may be interposed between the winding connection terminal 633 and the third bus bar 643, and the terminal block may be brought into contact with the inverter housing 531 having the cooling water passage 545. Alternatively, the winding connection terminal 633 or the third bus bar 643 may be bent into a crank shape to bring the winding connection terminal 633 or the third bus bar 643 into contact with the inverter housing 531 having the cooling water passage 545.
  • the heat generated at the winding connection terminal 633 and the third bus bar 643 can be dissipated to the cooling water in the cooling water passage 545.
  • the first bus bar 641 and the second bus bar 642 are shown as bus bars having a ring shape, but each of these bus bars 641 and 642 does not necessarily have to be connected in a ring shape and is one in the circumferential direction. It may have a substantially C-shape with a broken portion. Further, since each winding connection terminal 633U, 633V, 633W may be individually connected to the switch module 532A corresponding to each phase, each switch module 532A (actually, actually) does not go through the bus bar module 533. It may be configured to be connected to the module terminal 615).
  • each switch module 532A has four module terminals 615 including a positive electrode side terminal, a negative electrode side terminal, a winding terminal, and a signal terminal.
  • the positive electrode side terminal is connected to the first bus bar 641
  • the negative electrode side terminal is connected to the second bus bar 642
  • the winding terminal is connected to the third bus bar 643.
  • bus bar module 533 has a fourth bus bar 644 as a bus bar of the signal transmission system.
  • the signal terminal of each switch module 532A is connected to the fourth bus bar 644, and the fourth bus bar 644 is connected to the signal terminal 632C.
  • each switch module 532A is input from the external ECU via the signal terminal 632C. That is, each of the switches 601, 602 in each switch module 532A is turned on and off by a control signal input via the signal terminal 632C. Therefore, each switch module 532A is connected to the signal terminal 632C without going through a control device built in the rotary electric machine on the way.
  • it is also possible to change this configuration so that the rotary electric machine has a built-in control device and the control signal from the control device is input to each switch module 532A. Such a configuration is shown in FIG.
  • control board 651 on which the control device 652 is mounted is provided, and the control device 652 is connected to each switch module 532A. Further, a signal terminal 632C is connected to the control device 652.
  • the control device 652 inputs a command signal related to power running or power generation from, for example, an external ECU which is a higher-level control device, and appropriately turns on / off the switches 601, 602 of each switch module 532A based on the command signal.
  • control board 651 is arranged on the outside of the vehicle (inside the rotor carrier 511) of the bus bar module 533.
  • control board 651 may be arranged between each electric module 532 and the end plate 547 of the boss forming member 543.
  • the control board 651 may be arranged so that at least a part thereof overlaps with each electric module 532 in the axial direction.
  • each capacitor module 532B has two module terminals 615 composed of a positive electrode side terminal and a negative electrode side terminal, the positive electrode side terminal is connected to the first bus bar 641, and the negative electrode side terminal is connected to the second bus bar 642. Has been done.
  • a projecting portion 573 having an inlet passage 571 and an outlet passage 572 for cooling water is provided in the inverter housing 531 at a position aligned with each electric module 532 in the circumferential direction.
  • the external connection terminal 632 is provided so as to be adjacent to the protruding portion 573 in the radial direction.
  • the protrusion 573 and the external connection terminal 632 are provided at the same angular position in the circumferential direction.
  • the external connection terminal 632 is provided at a position inside the protruding portion 573 in the radial direction.
  • the end plate 547 of the boss forming member 543 is provided with the water channel port 574 and the external connection terminal 632 arranged in the radial direction (see FIG. 48).
  • the inverter unit 530 can be downsized, and the rotary electric machine 500 can be downsized.
  • the cooling pipe H2 is connected to the water channel port 574, and the electric wiring H1 is connected to the external connection terminal 632.
  • the pipe H2 is housed in the storage duct 440.
  • the three switch modules 532A are arranged side by side in the circumferential direction next to the external connection terminal 632 in the inverter housing 531, and the six capacitor modules 532B are arranged side by side in the circumferential direction next to the three switch modules 532A.
  • the three switch modules 532A may be arranged side by side at a position farthest from the external connection terminal 632, that is, a position opposite to the rotation shaft 501. It is also possible to disperse each switch module 532A so that the capacitor modules 532B are arranged on both sides of each switch module 532A.
  • each switch module 532A is arranged at the position farthest from the external connection terminal 632, that is, on the opposite side of the rotating shaft 501, the mutual inductance between the external connection terminal 632 and each switch module 532A. It is possible to suppress malfunctions caused by the above.
  • the inverter housing 531 is provided with a resolver 660 for detecting the electric angle ⁇ of the rotary electric machine 500.
  • the resolver 660 is an electromagnetic induction type sensor, and includes a resolver rotor 661 fixed to a rotating shaft 501 and a resolver stator 662 arranged so as to face each other on the radial outer side of the resolver rotor 661.
  • the resolver rotor 661 has a disk ring shape, and is provided coaxially with the rotating shaft 501 in a state where the rotating shaft 501 is inserted.
  • the resolver stator 662 includes an annular stator core 663 and a stator coil 664 wound around a plurality of teeth formed on the stator core 663.
  • the stator coil 664 includes a one-phase excitation coil and a two-phase output coil.
  • the exciting coil of the stator coil 664 is excited by a sinusoidal exciting signal, and the magnetic flux generated in the exciting coil by the exciting signal interlinks the pair of output coils.
  • the pair of output coils are interlocked.
  • the number of magnetic fluxes to be applied changes periodically.
  • the pair of output coils and the exciting coil are arranged so that the phases of the voltages generated in the pair of output coils are shifted by ⁇ / 2 from each other.
  • the output voltage of each of the pair of output coils becomes a modulated wave in which the excitation signal is modulated by the modulated waves sin ⁇ and cos ⁇ , respectively. More specifically, when the excitation signal is "sin ⁇ t", the modulated waves are "sin ⁇ ⁇ sin ⁇ t" and “cos ⁇ ⁇ sin ⁇ t”, respectively.
  • the resolver 660 has a resolver digital converter.
  • the resolver digital converter calculates the electric angle ⁇ by detecting the generated modulated wave and the excitation signal.
  • the resolver 660 is connected to the signal terminal 632C, and the calculation result of the resolver digital converter is output to an external device via the signal terminal 632C.
  • the calculation result of the resolver digital converter is input to the control device.
  • the boss portion 548 of the boss forming member 543 constituting the inverter housing 531 has a hollow tubular shape, and the inner peripheral side of the boss portion 548 is oriented orthogonal to the axial direction. A protrusion 548a extending to the surface is formed. Then, the resolver stator 662 is fixed by a screw or the like in a state of being in contact with the protruding portion 548a in the axial direction.
  • a bearing 560 is provided on one side in the axial direction with the protrusion 548a interposed therebetween, and a resolver 660 is coaxially provided on the other side.
  • a protruding portion 548a is provided on one side of the resolver 660 in the axial direction, and a disk ring-shaped housing cover 666 that closes the accommodating space of the resolver 660 is provided on the other side.
  • the housing cover 666 is made of a conductive material such as carbon fiber reinforced plastic (CFRP).
  • a hole 666a through which the rotary shaft 501 is inserted is formed in the central portion of the housing cover 666.
  • a sealing material 667 is provided inside the hole 666a to seal the gap between the rotating shaft 501 and the outer peripheral surface.
  • the resolver accommodating space is sealed by the sealing material 667.
  • the sealing material 667 may be, for example, a sliding seal made of a resin material.
  • the space in which the resolver 660 is housed is a space surrounded by an annular boss portion 548 in the boss forming member 543 and sandwiched between the bearing 560 and the housing cover 666 in the axial direction, and the circumference of the resolver 660 is conductive. Surrounded by material. This makes it possible to suppress the influence of electromagnetic noise on the resolver 660.
  • the inverter housing 531 has a double outer peripheral wall WA1 and an inner peripheral wall WA2 (see FIG. 57), and is located outside the double peripheral wall (outside the outer peripheral wall WA1).
  • the stator 520 is arranged, the electric module 532 is arranged between the double peripheral walls (between WA1 and WA2), and the resolver 660 is arranged inside the double peripheral wall (inside the inner peripheral wall WA2).
  • the inverter housing 531 is a conductive member
  • the stator 520 and the resolver 660 are arranged so as to be separated from each other by a conductive partition wall (particularly a double conductive partition wall in the present embodiment) and are fixed. The occurrence of mutual magnetic interference between the child 520 side (magnetic circuit side) and the resolver 660 can be suitably suppressed.
  • one side of the rotor carrier 511 in the axial direction is open, and a substantially disk ring-shaped rotor cover 670 is attached to the open end.
  • the rotor cover 670 may be fixed to the rotor carrier 511 by any joining method such as welding, bonding, or screwing. It is more preferable that the rotor cover 670 has a portion whose dimensions are set smaller than the inner circumference of the rotor carrier 511 so that the movement of the magnet unit 512 in the axial direction can be suppressed.
  • the outer diameter of the rotor cover 670 matches the outer diameter of the rotor carrier 511, and the inner diameter of the rotor cover 670 is slightly larger than the outer diameter of the inverter housing 531.
  • the outer diameter of the inverter housing 531 and the inner diameter of the stator 520 are the same.
  • the stator 520 is fixed on the radial outer side of the inverter housing 531.
  • the inverter housing 531 is shafted with respect to the stator 520. It protrudes in the direction.
  • a rotor cover 670 is attached so as to surround the protruding portion of the inverter housing 531.
  • a sealing material 671 for sealing the gap between the end surface of the rotor cover 670 on the inner peripheral side and the outer peripheral surface of the inverter housing 531 is provided.
  • the accommodating space of the magnet unit 512 and the stator 520 is sealed by the sealing material 671.
  • the sealing material 671 may be, for example, a sliding seal made of a resin material.
  • the outer peripheral wall WA1 of the inverter housing 531 was arranged inside the magnetic circuit portion including the magnet unit 512 and the stator winding 521 in the radial direction, and the cooling water passage 545 was formed on the outer peripheral wall WA1. Further, a plurality of electric modules 532 are arranged in the radial direction of the outer peripheral wall WA1 along the outer peripheral wall WA1 in the circumferential direction. As a result, the magnetic circuit unit, the cooling water passage 545, and the power converter can be arranged so as to be stacked in the radial direction of the rotary electric machine 500, and efficient component arrangement is possible while reducing the dimensions in the axial direction. It becomes. Further, the plurality of electric modules 532 constituting the power converter can be efficiently cooled. As a result, the rotary electric machine 500 can be realized with high efficiency and miniaturization.
  • An electric module 532 (switch module 532A, capacitor module 532B) having heat generating parts such as a semiconductor switching element and a capacitor is provided in a state of being in contact with the inner peripheral surface of the outer peripheral wall WA1. As a result, the heat in each electric module 532 is transferred to the outer peripheral wall WA1, and the electric module 532 is suitably cooled by the heat exchange in the outer peripheral wall WA1.
  • coolers 623 are arranged on both sides of the switches 601, 602, respectively, and at least one of the coolers 623 on both sides of the switches 601, 602 is on the opposite side of the switches 601,602.
  • the configuration is such that the capacitor 604 is arranged. As a result, the cooling performance of the switches 601, 602 can be improved, and the cooling performance of the capacitor 604 can also be improved.
  • coolers 623 are arranged on both sides of the switches 601, 602, respectively, and one of the coolers 623 on both sides of the switches 601, 602 is driven to the opposite side of the switches 601,602.
  • the circuit 603 is arranged, and the capacitor 604 is arranged on the opposite side of the switches 601, 602 in the other cooler 623.
  • cooling water is made to flow into the module from the cooling water passage 545, and the semiconductor switching element or the like is cooled by the cooling water.
  • the switch module 532A is cooled by heat exchange by the cooling water inside the module in addition to heat exchange by the cooling water on the outer peripheral wall WA1. Thereby, the cooling effect of the switch module 532A can be enhanced.
  • the switch module 532A is arranged on the upstream side near the inlet passage 571 of the cooling water passage 545, and the condenser module 532B is placed on the switch module 532A. It is configured to be placed on the downstream side of the. In this case, assuming that the cooling water flowing through the cooling water passage 545 is lower in temperature toward the upstream side, it is possible to realize a configuration in which the switch module 532A is preferentially cooled.
  • the distance between the electric modules adjacent to each other in the circumferential direction was partially widened, and a protruding portion 573 having an inlet passage 571 and an outlet passage 57 2 was provided in the portion where the distance was widened (second interval INT2).
  • the inlet passage 571 and the outlet passage 572 of the cooling water passage 545 can be suitably formed in the portion on the outer peripheral wall WA1 in the radial direction. That is, in order to improve the cooling performance, it is necessary to secure the flow amount of the refrigerant, and for that purpose, it is conceivable to increase the opening areas of the inlet passage 571 and the outlet passage 572.
  • the inlet passage 571 and the outlet passage 572 having a desired size can be suitably formed.
  • the external connection terminal 632 of the bus bar module 533 is arranged at a position radially aligned with the protrusion 573 on the radial inside of the outer peripheral wall WA1. That is, the external connection terminal 632 is arranged together with the protrusion 573 in the portion where the distance between the electric modules adjacent to each other in the circumferential direction is widened (the part corresponding to the second distance INT2). As a result, the external connection terminal 632 can be preferably arranged while avoiding interference with each electric module 532.
  • the stator 520 is fixed on the radial outside of the outer peripheral wall WA1, and a plurality of electric modules 532 are arranged on the radial inside.
  • the heat of the stator 520 is transferred to the outer peripheral wall WA1 from the radial outer side, and the heat of the electric module 532 is transferred from the radial inner side.
  • the stator 520 and the electric module 532 can be cooled at the same time by the cooling water flowing through the cooling water passage 545, and the heat of the heat generating member in the rotary electric machine 500 can be efficiently released.
  • the electric module 532 on the inner side in the radial direction and the stator winding 521 on the outer side in the radial direction are electrically connected by the winding connection terminal 633 of the bus bar module 533 with the outer peripheral wall WA1 interposed therebetween. Further, in this case, the winding connection terminal 633 is provided at a position axially separated from the cooling water passage 545. As a result, even if the cooling water passage 545 is formed in an annular shape on the outer peripheral wall WA1, that is, the inside and outside of the outer peripheral wall WA1 are separated by the cooling water passage 545, the electric module 532 and the stator winding 521 Can be suitably connected to.
  • the torque is limited due to the magnetic saturation generated between the conductors 523.
  • the torque drop is suppressed by making the conductor 523 flat and thin.
  • An outer peripheral wall WA1 having a water passage 545 and a plurality of electric modules 532 provided radially inside the outer peripheral wall WA1 can be preferably arranged.
  • the magnetic flux on the d-axis is strengthened by collecting the magnetic flux on the d-axis side in the magnet unit 512, and the torque can be increased accordingly.
  • the thickness dimension in the radial direction can be reduced (thinned) in the magnet unit 512
  • the area inside the magnetic circuit portion in the radial direction can be expanded, and the inner area is used. Therefore, the outer peripheral wall WA1 having the cooling water passage 545 and a plurality of electric modules 532 provided on the inner side in the radial direction of the outer peripheral wall WA1 can be preferably arranged.
  • the magnetic circuit unit not only the magnetic circuit unit, the outer peripheral wall WA1, and the plurality of electric modules 532, but also the bearing 560 and the resolver 660 can be preferably arranged in the radial direction.
  • the wheel 400 using the rotary electric machine 500 as an in-wheel motor is mounted on the vehicle body via a base plate 405 fixed to the inverter housing 531 and a mounting mechanism such as a suspension device.
  • a base plate 405 fixed to the inverter housing 531 and a mounting mechanism such as a suspension device.
  • the rotary electric machine 500 since the rotary electric machine 500 has been miniaturized, it is possible to save space even if it is assumed to be assembled to the vehicle body. Therefore, it is possible to realize an advantageous configuration in expanding the installation area of the power supply device such as a battery in the vehicle and expanding the vehicle interior space.
  • the electric module 532 and the bus bar module 533 are arranged radially inside the outer peripheral wall WA1 of the inverter unit 530, and the electric module 532 and the bus bar are arranged radially inside and outside across the outer peripheral wall WA1.
  • the module 533 and the stator 520 are arranged respectively.
  • the position of the bus bar module 533 with respect to the electric module 532 can be arbitrarily set.
  • the winding connection line for example, winding connection terminal 633 used for the connection is connected.
  • the guide position can be set arbitrarily.
  • the position of the bus bar module 533 with respect to the electric module 532 is such that the ( ⁇ 1) bus bar module 533 is located outside the vehicle in the axial direction, that is, behind the rotor carrier 511 side. ( ⁇ 2) The bus bar module 533 is located inside the vehicle in the axial direction from the electric module 532, that is, on the front side of the rotor carrier 511 side. Can be considered.
  • ( ⁇ 1) A configuration in which the winding connection wire is guided in the axial direction on the outside of the vehicle, that is, on the back side of the rotor carrier 511.
  • ( ⁇ 2) A configuration in which the winding connection wire is guided inside the vehicle in the axial direction, that is, on the front side of the rotor carrier 511 side. Can be considered.
  • FIGS. 72 (a) to 72 (d) are vertical cross-sectional views showing the configuration of the rotary electric machine 500 in a simplified manner, and the same reference numerals are given to the configurations already described in the drawings.
  • the winding connection line 637 is an electric wiring that connects each phase winding of the stator winding 521 and the bus bar module 533, and for example, the winding connection terminal 633 described above corresponds to this.
  • the above ( ⁇ 1) is adopted as the position of the bus bar module 533 with respect to the electric module 532, and the above ( ⁇ 1) is adopted as the position for guiding the winding connection line 637. That is, the electric module 532, the bus bar module 533, the stator winding 521, and the bus bar module 533 are all connected on the outside of the vehicle (the back side of the rotor carrier 511). This corresponds to the configuration shown in FIG. 49.
  • the cooling water passage 545 can be provided on the outer peripheral wall WA1 without fear of interference with the winding connection line 637. Further, the winding connection line 637 that connects the stator winding 521 and the bus bar module 533 can be easily realized.
  • the above ( ⁇ 1) is adopted as the position of the bus bar module 533 with respect to the electric module 532, and the above ( ⁇ 2) is adopted as the position for guiding the winding connection line 637. That is, the electric module 532 and the bus bar module 533 are connected on the outside of the vehicle (the back side of the rotor carrier 511), and the stator winding 521 and the bus bar module 533 are connected on the inside of the vehicle (the front side of the rotor carrier 511). It is configured to be connected with.
  • the cooling water passage 545 can be provided on the outer peripheral wall WA1 without fear of interference with the winding connection line 637.
  • the above ( ⁇ 2) is adopted as the position of the bus bar module 533 with respect to the electric module 532, and the above ( ⁇ 1) is adopted as the position for guiding the winding connection line 637. That is, the electric module 532 and the bus bar module 533 are connected inside the vehicle (front side of the rotor carrier 511), and the stator winding 521 and the bus bar module 533 are connected outside the vehicle (back side of the rotor carrier 511). It is configured to be connected with.
  • the above ( ⁇ 2) is adopted as the position of the bus bar module 533 with respect to the electric module 532, and the above ( ⁇ 2) is adopted as the position for guiding the winding connection line 637. That is, the electric module 532, the bus bar module 533, the stator winding 521, and the bus bar module 533 are all connected inside the vehicle (on the front side of the rotor carrier 511).
  • the bus bar module 533 is arranged inside the vehicle (on the front side of the rotor carrier 511) to temporarily add an electric component such as a fan motor. In that case, it is considered that the wiring becomes easy. Further, it is possible that the bus bar module 533 can be brought closer to the resolver 660 arranged inside the vehicle than the bearing, and it is considered that the wiring to the resolver 660 becomes easier.
  • FIGS. 73 (a) to 73 (c) are block diagrams showing an example of a mounting structure of the resolver rotor 661 to the rotating body.
  • the resolver 660 is provided in a closed space surrounded by a rotor carrier 511, an inverter housing 531 and the like, and protected from external water and mud.
  • the bearing 560 in FIG. 73 (a), has the same configuration as that in FIG. 49.
  • the bearing 560 has a configuration different from that of FIG. 49, and is arranged at a position away from the end plate 514 of the rotor carrier 511.
  • the resolver stator 662 is not shown, for example, the boss portion 548 of the boss forming member 543 may be extended to the outer peripheral side of the resolver rotor 661 or its vicinity, and the resolver stator 662 may be fixed to the boss portion 548. ..
  • the resolver rotor 661 is attached to the inner ring 561 of the bearing 560. Specifically, the resolver rotor 661 is provided on the axial end face of the flange 561b of the inner ring 561, or is provided on the axial end face of the tubular portion 561a of the inner ring 561.
  • the resolver rotor 661 is attached to the rotor carrier 511. Specifically, the resolver rotor 661 is provided on the inner surface of the end plate 514 in the rotor carrier 511. Alternatively, in a configuration in which the rotor carrier 511 has a tubular portion 515 extending from the inner peripheral edge portion of the end plate 514 along the rotation shaft 501, the resolver rotor 661 is provided on the outer peripheral surface of the tubular portion 515 of the rotor carrier 511. ing. In the latter case, the resolver rotor 661 is arranged between the end plate 514 of the rotor carrier 511 and the bearing 560.
  • the resolver rotor 661 is attached to the rotating shaft 501. Specifically, the resolver rotor 661 is provided between the end plate 514 of the rotor carrier 511 and the bearing 560 on the rotating shaft 501, or is opposite to the rotor carrier 511 with the bearing 560 sandwiched on the rotating shaft 501. It is located on the side.
  • FIG. 74 (a) and 74 (b) are vertical cross-sectional views showing a simplified configuration of the rotary electric machine 500, in which the same reference numerals are given to the configurations already described.
  • the configuration shown in FIG. 74 (a) substantially corresponds to the configuration described in FIG. 49 and the like, and the configuration shown in FIG. 74 (b) is a configuration in which a part of the configuration of FIG. 74 (a) is modified. Corresponds to.
  • a rotor cover 670 fixed to the open end of the rotor carrier 511 is provided so as to surround the outer peripheral wall WA1 of the inverter housing 531. That is, the end surface on the inner diameter side of the rotor cover 670 faces the outer peripheral surface of the outer peripheral wall WA1, and a sealing material 671 is provided between them.
  • a housing cover 666 is attached to the hollow portion of the boss portion 548 of the inverter housing 531, and a sealing material 667 is provided between the housing cover 666 and the rotating shaft 501.
  • the external connection terminal 632 constituting the bus bar module 533 penetrates the inverter housing 531 and extends to the inside of the vehicle (lower side in the figure).
  • the inverter housing 531 is formed with an inlet passage 571 and an outlet passage 57 2 communicating with the cooling water passage 545, and a water channel port 574 including the passage ends of the inlet passage 571 and the outlet passage 572. ..
  • the inverter housing 531 (specifically, the boss forming member 543) is formed with an annular convex portion 681 extending toward the protruding side (inside the vehicle) of the rotating shaft 501.
  • the rotor cover 670 is provided so as to surround the convex portion 681 of the inverter housing 531. That is, the end surface on the inner diameter side of the rotor cover 670 faces the outer peripheral surface of the convex portion 681, and the sealing material 671 is provided between them.
  • the external connection terminal 632 constituting the bus bar module 533 penetrates the boss portion 548 of the inverter housing 531 and extends into the hollow region of the boss portion 548, and also penetrates the housing cover 666 and penetrates the inside of the vehicle (lower side of the figure). Extends to.
  • the inverter housing 531 is formed with an inlet passage 571 and an outlet passage 572 communicating with the cooling water passage 545, and the inlet passage 571 and the outlet passage 572 extend into the hollow region of the boss portion 548 and are a relay pipe. It extends to the inside of the vehicle (lower side of the figure) from the housing cover 666 via 682. In this configuration, the piping portion extending from the housing cover 666 to the inside of the vehicle is the water channel port 574.
  • the rotor carrier 511 and the rotor cover 670 are integrated with the rotor carrier 511 and the rotor cover 670 while maintaining the airtightness of the internal space of the rotor carrier 511 and the rotor cover 670. It can be suitably rotated with respect to the housing 531.
  • the inner diameter of the rotor cover 670 is smaller than that of the configuration of FIG. 74 (a). Therefore, the inverter housing 531 and the rotor cover 670 are provided twice in the axial direction at a position inside the vehicle from the electric module 532, and the inconvenience caused by electromagnetic noise, which is a concern in the electric module 532, is suppressed. can do. Further, by reducing the inner diameter of the rotor cover 670, the sliding diameter of the sealing material 671 can be reduced, and mechanical loss in the rotating sliding portion can be suppressed.
  • FIG. 75 shows a modified example of the stator winding 521.
  • the stator winding 521 uses a conducting wire having a rectangular cross section, and is wound by a wave winding with the long side of the conducting wire extending in the circumferential direction.
  • the lead wires 523 of each phase on the coil side of the stator winding 521 are arranged at predetermined pitch intervals for each phase and are connected to each other at the coil ends.
  • the conductive wires 523 adjacent to each other in the circumferential direction on the coil side are in contact with each other at the end faces in the circumferential direction, or are arranged close to each other at a minute interval.
  • the conducting wire material is bent in the radial direction for each phase at the coil end. More specifically, the stator winding 521 (conductor) is bent inward in the radial direction at different positions for each phase in the axial direction, whereby the U-phase, V-phase, and W-phase windings are formed. Interference with each other is avoided. In the illustrated configuration, the conductors are bent at right angles inward in the radial direction for each phase, with each phase winding being different by the thickness of the conductor. In each of the conductors 523 arranged in the circumferential direction, the length dimension between both ends in the axial direction may be the same for each of the conductors 523.
  • stator core 522 When the stator core 522 is assembled to the stator winding 521 to manufacture the stator 520, a part of the annular shape of the stator winding 521 is disconnected as a non-connection (that is, the stator winding).
  • 521 may be substantially C-shaped), and after assembling the stator core 522 on the inner peripheral side of the stator winding 521, the disconnecting portions may be connected to each other to form the stator winding 521 in an annular shape.
  • stator core 522 is divided into a plurality of parts (for example, three or more) in the circumferential direction, and the core pieces divided into a plurality of pieces are formed on the inner peripheral side of the stator winding 521 formed in an annular shape. It is also possible to assemble.
  • the inlet passage 571 and the outlet passage 572 of the cooling water passage 545 are provided together in one place.
  • this configuration has been changed to change the configuration so that the inlet passage 571 and the outlet are provided.
  • the passages 572 may be provided at different positions in the circumferential direction.
  • the inlet passage 571 and the exit passage 57 2 may be provided at positions different from each other by 180 degrees in the circumferential direction, or at least one of the inlet passage 571 and the exit passage 572 may be provided in a plurality of positions.
  • the wheel 400 of the above embodiment has a configuration in which the rotary shaft 501 protrudes on one side in the axial direction of the rotary electric machine 500, but this may be changed to a configuration in which the rotary shaft 501 protrudes in both axial directions.
  • a suitable configuration can be realized in a vehicle in which at least one of the front and rear of the vehicle is one wheel.
  • FIG. 76 is a perspective view showing the entire rotary electric machine 700
  • FIG. 77 is a vertical sectional view of the rotary electric machine 700
  • FIG. 78 is an exploded sectional view of components of the rotary electric machine 700.
  • the rotary electric machine 700 is an outer rotor type surface magnet type rotary electric machine.
  • the rotary electric machine 700 is roughly classified into a rotary electric machine main body having a rotor 710, a stator 730, an inner unit 770 and a bus bar module 810, and a housing 831 and a cover 832 provided so as to surround the rotary electric machine main body. ..
  • Each of these members is arranged coaxially with respect to the rotating shaft 701 integrally provided on the rotor 710, and is assembled in the axial direction in a predetermined order to form the rotating electric machine 700.
  • the rotor 710 is cantilevered by a pair of bearings 791 and 792 provided inside the inner unit 770 in the radial direction, and can rotate in that state.
  • the rotating shaft 701 is integrally provided with a connecting shaft 705 fixed to the axle, wheels, or the like of the vehicle.
  • the rotor 710 and the stator 730 each have a cylindrical shape, and are arranged so as to face each other in the radial direction with an air gap in between.
  • the rotor 710 rotates integrally with the rotation shaft 701
  • the rotor 710 rotates on the radial outer side of the stator 730.
  • the rotor 710 corresponds to the "field magnet” and the stator 730 corresponds to the "armature”.
  • the rotor 710 has a substantially cylindrical rotor carrier 711 and an annular magnet unit 712 fixed to the rotor carrier 711.
  • the rotor carrier 711 has an end plate portion 713 and a tubular portion 714 extending in the axial direction from the outer peripheral portion of the end plate portion 713.
  • a through hole 713a is formed in the end plate portion 713, and the rotating shaft 701 is fixed to the end plate portion 713 by a fastener 715 such as a bolt in a state of being inserted into the through hole 713a.
  • the rotating shaft 701 has a flange 702 extending in a direction intersecting (orthogonal) in the axial direction at a portion where the rotor carrier 711 is fixed, and the flange 702 and the end plate portion 713 are surface-joined. In this state, the rotor carrier 711 is fixed to the rotating shaft 701.
  • the magnet unit 712 includes a cylindrical magnet holder 721, a magnet 722 fixed to the inner peripheral surface of the magnet holder 721, and an end plate fixed on both sides of the magnet 722 in the axial direction opposite to the rotor carrier 711. It has 723 and.
  • the magnet holder 721 has the same length dimension as the magnet 722 in the axial direction.
  • the magnet 722 is provided in the magnet holder 721 in a state of being surrounded from the outside in the radial direction. Further, the magnet holder 721 and the magnet 722 are fixed in a state where one end side of both ends in the axial direction is in contact with the rotor carrier 711, and the other end side is fixed in a state of being in contact with the end plate 723.
  • the rotor carrier 711, the magnet holder 721, and the end plate 723 are all made of non-magnetic aluminum or non-magnetic stainless steel (for example, SUS304).
  • Each of these members is preferably made of a light metal such as aluminum, but can be made of a synthetic resin instead.
  • Each of these members may be joined by adhesion or welding.
  • FIG. 80 is a partial cross-sectional view showing the cross-sectional structure of the magnet unit 712.
  • the easy magnetization axis of the magnet 722 is indicated by an arrow.
  • the magnets 722 are arranged side by side so that the polarities alternate along the circumferential direction of the rotor 710. As a result, the magnet 722 has a plurality of magnetic poles in the circumferential direction.
  • the magnet 722 is a polar anisotropy permanent magnet, and uses a sintered neodymium magnet having an intrinsic coercive force of 400 [kA / m] or more and a residual magnetic flux density Br of 1.0 [T] or more. It is configured.
  • the magnet 722 is provided as one magnet between the d-axis, which is the center of each magnetic pole, in two magnetic poles adjacent to each other in the circumferential direction. That is, the magnet 722 has one magnetic pole as one magnet, and the center in the circumferential direction thereof is the q-axis.
  • the peripheral surface on the inner side of the magnet 722 in the radial direction is the magnetic flux transfer surface 724 on which magnetic flux is transferred.
  • the direction of the easy magnetization axis is different between the d-axis side (the part closer to the d-axis) and the q-axis side (the part closer to the q-axis), and the direction of the easy magnetization axis is the d-axis on the d-axis side.
  • the direction of the easy magnetization axis is orthogonal to the q-axis.
  • an arcuate magnet magnetic path is formed along the direction of the easy magnetization axis.
  • the magnet 722 is oriented so that the direction of the easy magnetization axis is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, as compared with the q-axis side, which is the magnetic pole boundary.
  • each magnet 722 arranged in the circumferential direction the magnet magnetic flux on the d-axis is strengthened and the change in magnetic flux near the q-axis is suppressed.
  • the magnet 722 may have a configuration in which the center in the circumferential direction is the d-axis instead of the configuration in which the center in the circumferential direction is the q-axis.
  • the magnet 722 may be configured to use magnets connected in an annular shape instead of using the same number of magnets as the number of magnetic poles.
  • the magnet 722 has the following configuration.
  • the arc length of the magnetic flux transfer surface 724 between the dq axes is longer than the radial thickness of the magnet 722.
  • a circle whose center point CP is the intersection of the q-axis and the magnetic flux transfer surface 724 and whose radius is the radial thickness dimension of the magnet 722 is the easily magnetized axis of the magnet 722.
  • the magnet 722 is configured to include a quarter circle of the orientation circle X when the orientation circle X is used.
  • the magnet 722 is provided with an arc-shaped easy-to-magnetize axis that crosses the q-axis, and among the easy-to-magnetize axes, the peripheral surface on the side opposite to the magnetic flux transfer surface 724 in the radial direction and the q-axis.
  • the strongest magnet magnetic flux is generated by the easily magnetized axis passing through the intersection, that is, the easily magnetized axis passing through the alignment circle X.
  • the magnet 722 since the magnet 722 includes the quarter circle of the orientation circle X, the length of the magnet magnetic path passing through the d-axis is secured as the length defined by the orientation circle X, and then the magnet magnetic flux. It is possible to generate.
  • the magnet 722 is radially outside, that is, toward the anti-stator side. There is a concern about magnetic flux leakage. However, in the configuration of this example, since the magnet holder 721 is made of a non-magnetic material, the influence of magnetic flux leakage can be reduced.
  • the magnet 722 is formed with a recess 725 in a predetermined range including the d-axis on the outer peripheral surface in the radial direction, and a recess 726 is formed in a predetermined range including the q-axis on the inner peripheral surface in the radial direction. It is formed.
  • the magnetic path is shortened near the d-axis on the outer peripheral surface of the magnet 722, and the magnetic path is shortened near the q-axis on the inner peripheral surface of the magnet 722. .. Therefore, in consideration of the fact that it becomes difficult to generate a sufficient magnet magnetic flux in the place where the magnet magnetic path length is short in the magnet 722, the magnet is deleted in the place where the magnet magnetic flux is weak.
  • the magnet holder 721 is provided on the outer side in the radial direction of each magnet 722 arranged in the circumferential direction. Further, the magnet holder 721 may be provided in a range including between each magnet 722 in the circumferential direction and the inside in the radial direction of each magnet 722. That is, the magnet holder 721 may be provided so as to surround the magnet 722. When the magnet holder 721 has a radial outer portion and a radial inner portion of each magnet 722, it is preferable that the radial outer portion has a higher strength than the radial inner portion.
  • the magnet holder 721 has a convex portion 727 that penetrates into the concave portion 725 of the magnet 722. In this case, the displacement of the magnet 722 in the circumferential direction is suppressed by the engagement between the concave portion 725 of the magnet 722 and the convex portion 727 of the magnet holder 721. That is, the convex portion 727 of the magnet holder 721 functions as a detent portion of the magnet 722. Further, when the magnet holder 721 has a portion that is radially inside (the stator 730 side) of the magnet 722, the portion is provided with a convex portion that enters the recess 726 of the magnet 722. You may.
  • the stator 730 has a stator winding 731 and a stator core 732.
  • FIG. 82 is a perspective view showing the configuration of the stator 730
  • FIG. 83 is a perspective view showing the stator winding 731 and the stator core 732 in an exploded manner
  • FIG. 84 is a phase winding of each phase. It is a perspective view which shows only the structure corresponding to the U-phase winding among lines
  • FIG. 85 is a vertical sectional view of the stator 730.
  • the stator core 732 is configured as a core sheet laminate in which a plurality of core sheets 732a made of an electromagnetic steel plate which is a magnetic material are used and the plurality of core sheets 732a are laminated in the axial direction, and has a predetermined thickness in the radial direction. It has a cylindrical shape with a diameter.
  • a stator winding 731 is assembled on the radial outer side of the stator core 732 on the rotor 710 side.
  • the outer peripheral surface of the stator core 732 has a curved surface without unevenness.
  • the stator core 732 has a slotless structure and functions as a back yoke.
  • the stator core 732 is configured by, for example, a plurality of core sheets 732a punched out in an annular plate shape and laminated in the axial direction. However, a stator core 732 having a helical core structure may be used. A band-shaped core sheet is used in the stator core 732 having a helical core structure, and the core sheet is wound in an annular shape and laminated in the axial direction to form a cylindrical stator core 732 as a whole. Has been done.
  • end rings 733 are fixed to the end faces on both sides in the axial direction.
  • the end ring 733 is a positioning member having a function of holding the stator winding 731 at a predetermined position in the circumferential direction in a state where the stator winding 731 is assembled to the stator core 732.
  • the stator core 732 and the end ring 733 are the base member 736.
  • An engaging surface 734 is formed on the outer peripheral surface of the end ring 733 in a direction inclined with respect to a tangent line on a concentric circle concentric with the stator core 732 and the end ring 733.
  • the engaging surface 734 is provided by dividing the outer peripheral surface of the end ring 733 into a plurality of equal parts.
  • the same number of engaging surfaces 734 as the coil side conducting wire portions (straight line portion 744 of the coil module 740 described later) arranged in the circumferential direction are provided in the circumferential direction.
  • the direction of inclination with respect to the tangent line is opposite to each other on the engaging surfaces 734 adjacent to each other in the circumferential direction, so that a tapered engaging portion is formed on the outer peripheral surface of the end ring 733. Has been done. In this case, a recess 735 is formed between the tapered protrusions.
  • each end ring 733 on both sides in the axial direction the positions of the unevenness in the circumferential direction are the same on one end side and the other end side in the axial direction. That is, the end ring 733 on the one end side in the axial direction and the end ring 733 on the other end side in the axial direction are fixed to the stator core 732 so that the positions of the convex tops of the engaging surface 734 coincide with each other in the circumferential direction. There is.
  • the inner diameter of the end ring 733 is the same as the inner diameter of the stator core 732. Further, the outer diameter of the end ring 733 is the same as the outer diameter of the stator core 732 at the portion where the maximum diameter is reached, and is smaller than the outer diameter of the stator core 732 at the portion where the minimum diameter is reached.
  • the end ring 733 is made of a non-magnetic material such as aluminum or copper.
  • the end ring 733 is fixed to the stator core 732 by welding.
  • the end ring 733 may be mechanically fixed by pin insertion, key press fitting, or bolt fastening. By such mechanical fixing, the displacement of the end ring 733 with respect to the stator core 732 in the circumferential direction is suppressed.
  • the stator 730 has a portion corresponding to the coil side CS that faces the magnet 722 in the rotor 710 in the axial direction in the axial direction, and a coil end CE1 that is outside the coil side CS in the axial direction. , It has a part corresponding to CE2.
  • the stator core 732 is provided in the axial direction in a range corresponding to the coil side CS
  • the end ring 733 is provided in the coil end CE1 on one end side in the axial direction and the coil end CE2 on the other end side, respectively. ..
  • the coil end CE1 corresponds to the first coil end
  • the coil end CE2 corresponds to the second coil end.
  • the configuration in which the end ring 733 is engaged with the stator winding 731 will be described later.
  • the stator winding 731 has a plurality of phase windings, and the phase windings of each phase are arranged in a predetermined order in the circumferential direction to form a cylindrical shape (annular shape).
  • a stator core 732 is assembled inside the stator winding 731 in the radial direction.
  • the stator winding 731 has a configuration having three-phase phase windings.
  • each phase winding of each phase has a plurality of partial windings 741 (see FIG. 86), and the partial windings 741 are individually provided as coil modules 740. That is, the coil module 740 is integrally provided with partial windings 741 in the phase windings of each phase.
  • the conductor portions of each phase are arranged in a predetermined order on the coil side of the stator winding 731.
  • FIG. 82 shows the arrangement order of the U-phase, V-phase, and W-phase conductors on the coil side.
  • FIG. 84 only the coil module 740 constituting the U-phase winding is extracted and shown from the three-phase windings.
  • the number of magnetic poles is 24, but the number is arbitrary.
  • FIG. 86 is a circuit diagram showing a connection state of the partial winding 741 in each of the three-phase windings.
  • FIG. 86 shows a state in which the partial windings 741 in the phase windings of each phase are connected in parallel.
  • the coil module 740 is assembled on the radial outer side of the stator core 732.
  • the stator winding 731 has a portion corresponding to the coil side CS and a portion corresponding to the coil ends CE1 and CE2.
  • the coil module 740 is assembled in a state in which both ends in the axial direction are projected outward in the axial direction (that is, the coil end side) from the stator core 732.
  • the coil module 740 is formed in a substantially L shape by bending one of both ends in the axial direction in the radial direction, and the bending suppresses interference between adjacent coil modules 740 in the circumferential direction.
  • the coil module 740A is arranged so that the portion on the one end side in the axial direction faces outward in the axial direction
  • the coil module 740A is arranged so that the portion on one end side in the axial direction faces inward in the radial direction.
  • restraint rings 760 are attached at two positions in the axial direction on the radial outer side of the coil module 740. ..
  • the restraint ring 760 is a restraint member that restrains each coil module 740 (stator winding 731) in the radial direction.
  • the restraint ring 760 is, for example, a metal annular ring.
  • a C ring or multiple rings having both ends as free ends may be used as the restraint ring 760, and the ends of the restraint ring 760 may be connected to each other by welding, adhesion, or the like.
  • the restraint ring 760 is preferably elastic and has a diameter smaller than that of the stator winding 731 in a natural state.
  • a linear member such as a thread, a string, or a wire may be used as a restraining member, and the restraining member may be spirally wound around the outer peripheral side of the stator winding 731.
  • a string impregnated with varnish may be used to strengthen the string fixing with the varnish.
  • the coil module 740A among the coil module 740A and the coil module 740B will be described.
  • the coil module 740 is a subassembly having a partial winding 741 and a winding holder 742.
  • the partial winding 741 of the coil module 740A is also referred to as “partial winding 741A”
  • the winding holder 742 is also referred to as “winding holder 742A”
  • the partial winding 741 of the coil module 740B is referred to as "partial winding 741B”.
  • the winding holder 742 is also referred to as "winding holder 742B”.
  • the partial winding 741A corresponds to the first partial winding
  • the partial winding 741B corresponds to the second partial winding.
  • FIG. 87 (a) is a perspective view of the coil module 740A
  • FIG. 87 (b) is a perspective view showing only the partial winding 741A in the coil module 740A
  • FIG. 87 (c) is a perspective view of the coil module 740A. It is a perspective view which shows only the winding holder 742A
  • FIG. 87 (d) is a side view of the coil module 740A.
  • 88 (a) and 88 (b) are cross-sectional views showing a cross section of the coil module 740A
  • FIG. 88 (a) is a cross-sectional view taken along the line 88A-88A of FIG. 87 (d), FIG. 88 (b).
  • FIG. 87 (d) Is a sectional view taken along line 88B-88B of FIG. 87 (d).
  • the left side of the coil module 740A is the stator core 732 side
  • the lower side of the coil module 740A is the stator core 732 side.
  • the coil module 740A has a partial winding 741A formed by multiple winding of the conducting wire 743, and an insulating winding holder 742A integrally provided with the partial winding 741A.
  • the winding holder 742A is provided to insulate the partial winding 741A from the surroundings, and in particular, is provided to insulate between the partial winding 741A and the stator core 732.
  • the coil module 740A is formed in an elongated annular shape having a longitudinal direction in the axial direction.
  • the coil module 740A has a pair of straight portions 744 extending parallel to each other in the axial direction, and has bent portions 745 extending in a direction orthogonal to the axial direction at one ends on both sides in the axial direction.
  • the coil module 740A has a structure formed in a substantially L shape as a whole.
  • the partial winding 741A includes a pair of intermediate conductors 746 provided in parallel and linearly with each other, a first crossover 747 that connects the pair of intermediate conductors 746 on one end side in the axial direction, and a pair of intermediate conductors 746.
  • the pair of intermediate conductors 746 are provided so as to be separated by a predetermined coil pitch, and the intermediate conductors 746 of the partial winding 741 of the other phase can be arranged between the pair of intermediate conductors 746 in the circumferential direction. It has become.
  • the pair of intermediate conductors 746 are provided so as to be separated by two coil pitches, and the intermediate conductors 746 of the other two-phase partial windings 741 are arranged one by one between the pair of intermediate conductors 746. It has a structure of
  • the first crossover portion 747 and the second crossover portion 748 are provided as portions corresponding to the coil ends CE1 and CE2 (see FIG. 85), respectively. That is, these crossover portions 747 and 748 are provided as coil end conductor portions that connect the intermediate conductor portions 746 of the same phase at two positions different in the circumferential direction in the coil ends CE1 and CE2.
  • the first crossover portion 747 is a portion corresponding to the bent portion 745 in the coil module 740A, and is bent in a direction orthogonal to the intermediate conductor portion 746, that is, in a direction orthogonal to the axial direction. It is provided as.
  • the second crossover portion 748 is provided so as to extend in the same direction as the intermediate conductor portion 746 on the inner side in the axial direction, that is, linearly in the axial direction.
  • the partial winding 741A has a structure formed in a substantially L shape as a whole.
  • the boundary portion BD between the coil side CS and the coil ends CE1 and CE2 is shown by a broken line.
  • an outer bending portion Y1 that is bent outward in the radial direction is provided at the first crossing portion 747 (the first crossing portion 747 on the coil end CE1 side in the partial winding 741A).
  • the partial winding 741A has a configuration in which an outer bent portion Y1 is provided on the coil end CE1 side and is not bent in the radial direction on the coil end CE2 side.
  • the partial winding 741A is formed by winding the conducting wires 743 in multiple directions so that the cross section has a quadrangular shape.
  • FIG. 88A shows a cross section of the coil module 740A at the intermediate conducting wire portion 746, and the conducting wires 743 are multiplely wound around the intermediate conducting wire portion 746 so as to be aligned in the circumferential direction and the radial direction.
  • the circumferential length on the outer diameter side and the circumferential length on the inner diameter side are the same.
  • the conducting wires 743 are wound in multiple directions so as to be aligned in the axial direction and the radial direction.
  • the partial winding 741A is formed by winding the conducting wire 743 by concentric winding.
  • the winding method of the conductor 743 is arbitrary, and instead of the concentric winding, the conductor 743 may be wound multiple times by the alpha winding.
  • the cross section of the partial winding 741A may have a substantially trapezoidal shape in which the circumferential length on the outer diameter side is larger than the circumferential length on the inner diameter side.
  • the end of the conducting wire 743 is axially pulled out from the side of the first crossover 747, specifically from the tip of the bent portion 745, and the end thereof.
  • the portions are winding end portions 743a and 743b.
  • the winding end portions 743a and 743b are the winding start and winding end of the conducting wire 743, respectively.
  • the winding end 743a is connected to the current input / output terminal, and the winding end 743b is connected to the neutral point.
  • the partial winding 741A is preferably configured so that a higher potential is applied toward the outer side in the radial direction. That is, in the partial winding 741A, when the radial outer side and the radial inner side are compared, the distance between the pair of intermediate lead wire portions 746 becomes longer as the radial outer side increases. It is desirable that the configuration is such that a high potential is applied.
  • FIG. 99 shows the winding order of the conductor 743 in the partial winding 741A. In FIG. 99, the intermediate conductor portion 746 in the same partial winding 741A is shown by a solid line, and the intermediate conductor portion 746 in a different partial winding 741B (that is, the different phase partial winding 741B) is shown by a broken line.
  • the conducting wire 743 is wound so as to shift from the outer side in the radial direction to the inner side in the radial direction, and the winding start on the outer side in the radial direction is the winding end portion 743a. Further, the winding end on the inner side in the radial direction is the winding end portion 743b.
  • the winding end portion 743a is connected to the current input / output terminal, and the winding end portion 743b is connected to the neutral point, so that a higher potential is applied toward the outer side in the radial direction.
  • the winding order itself of the conducting wire 743 may be such that the winding start and the winding end are reversed on the radial outer side and the radial inner side.
  • the separation distance between the intermediate conducting wire portions 746 of the different phases adjacent to each other in the circumferential direction is different between the radial outer side and the radial inner side.
  • K1 the separation distance on the outer side in the radial direction
  • K1 the separation distance on the inner side in the radial direction
  • K1> K2 the separation distance between the intermediate conducting wire portions 746 of the different phases adjacent to each other in the circumferential direction.
  • the winding holder 742A has a bobbin shape and is made of an insulating material such as synthetic resin. Like the partial winding 741A, the winding holder 742A has a structure formed in a substantially L shape as a whole, and a portion provided along the intermediate conductor portion 746 of the partial winding 741A and each crossover portion 747. , 748.
  • the winding holder 742A is provided so as to surround the partial winding 741A from three sides in the cross section of the partial winding 741A, and is a first wall on the stator core 732 side. It has a portion 751, a second wall portion 752 on the anti-stator core side, and a third wall portion 753 connecting the first wall portion 751 and the second wall portion 752.
  • the first wall portion 751 corresponds to the back yoke side insulating wall
  • the second wall portion 752 corresponds to the anti-back yoke side insulating wall
  • the third wall portion 753 corresponds to the circumferential insulating wall.
  • the third wall portion 753 is provided on the inner side in the circumferential direction in a pair of straight line portions 744 arranged in the circumferential direction.
  • the third wall portion 753 is provided so as to extend toward the center of the circle of the stator core 732.
  • the winding holder 742A has an accommodating portion 754 formed by the first to third wall portions 751 to 753, and the partial winding 741A is provided in a state of being accommodating in the accommodating portion 754.
  • the partial winding 741A is insulated by the wall portions 751 to 753 on the stator core 732 side, the anti-stator core side, and one side in the circumferential direction. That is, the first wall portion 751 insulates the intermediate conductor portion 746 from the stator core 732.
  • the second wall portion 752 covers the intermediate conductor portion 746 so as not to be exposed to the rotor 710 side (air gap side).
  • the third wall portion 753 insulates the intermediate conductor portions 746 from each other in the circumferential direction.
  • the thickness dimension of the first wall portion 751 in the wall thickness direction (radial direction) is T11
  • the thickness dimension of the second wall portion 752 in the wall thickness direction (radial direction) is T12, the third.
  • the thickness dimension of the wall portion 753 in the wall thickness direction (circumferential direction) is T13
  • the thickness dimension T12 of the second wall portion 752 is smaller than the thickness dimension T11 of the first wall portion 751 ( T11> T12). That is, the second wall portion 752 is an insulating wall on the magnet 722 side (air gap side), and the thin insulating wall reduces the distance between the magnet 722 and the partial winding 741, specifically, the distance on the magnetic circuit.
  • T11> T12 by making the thickness dimension T11 of the first wall portion 751 thicker and thinning the thickness dimension T12 of the second wall portion 752 as compared with the configuration of FIG. 88 (a). The configuration is shown.
  • the insulation distance between the first wall portion 751 and the stator core 732 can be secured, and the insulation performance thereof can be improved. it can.
  • T11 T12 may be used.
  • the thickness dimension T13 of the third wall portion 753 may be the same as, for example, the thickness dimension T11 of the first wall portion 751. However, T13> T11 or T13 ⁇ T11 may be satisfied.
  • the thickness dimension T13 is made different at each position of the radial inner side and the radial outer side so that the thickness dimension T13 is larger on the radial outer side.
  • the third wall portion 753 has a tapered cross section that is wider toward the outer side in the radial direction.
  • the thickness dimension T13 of the third wall portion 753 is set to be larger on the radial outer side than on the radial inner side, so that the circumferential length differs between the radial inner side and the radial outer side. It is possible to appropriately arrange each intermediate lead wire portion 746 arranged in the circumferential direction while taking into consideration the above.
  • the thickness dimension T13 of the third wall portion 753 is made uniform in the radial direction, when the cross section of the partial winding 741A is made into a quadrangular shape, the two intermediate conductor portions 746 adjacent to each other in the circumferential direction are formed.
  • the side of the third wall portion 753 is too close, and the opposite side is too far away. Therefore, there is a concern that the rotating magnetic flux becomes uneven in the circumferential direction.
  • the rotational magnetic flux can be equalized in the circumferential direction. In addition, it is possible to make the insulation performance uniform in the circumferential direction.
  • the intermediate conductor portion 746 (partial winding 741A) is positioned. It is also suitable for fixing and fixing.
  • the first wall portion 751 is the wall portion (the wall portion on the inner side in the axial direction) opposite to the bent portion 745, and is the first wall portion.
  • the two wall portion 752 is a wall portion (a wall portion on the outer side in the axial direction) on the bent portion 745 side.
  • the partial winding 741A is provided in the accommodating portion 754 in a state of being in contact with or close to each of the wall portions 751 to 753 on three sides, and is opposite to the third wall portion 753 in the circumferential direction, and the first wall portion 751 and It is arranged in an area inside the end of the second wall portion 752. That is, in the winding holder 742A, the third wall portion 753 is provided on one side of both sides of the intermediate conductor portion 746 in the first wall portion 751 and the second wall portion 752 in the circumferential direction, and the other side is provided with the third wall portion 753. Protruding portions 751a and 752a protruding in the circumferential direction from the intermediate conductor portion 746 are provided.
  • the protruding portions 751a and 752a are surplus portions that are surplus in the circumferential direction with respect to the partial winding 741A.
  • an empty area SZ in which the partial winding 741A is not accommodated is provided on one side in the circumferential direction in the accommodating portion 754.
  • the free area SZ prevents the partial winding 741A in the accommodating portion 754 from protruding outside the winding holder 742.
  • first wall portion 751 and the second wall portion 752 have extension portions extending in the circumferential direction from the intermediate conductor portion 746 on both sides of the intermediate conductor portion 746 of the partial winding 741A in the circumferential direction.
  • a third wall portion 753 extending in the radial direction from the first wall portion 751 and the second wall portion 752 is provided on one side of the extension portions on both sides in the circumferential direction.
  • protruding portions 751a and 752a are provided on one side of the extension portions on both sides in the circumferential direction.
  • a resin material is filled in the accommodating portion 754 as an insulating material, and the partial winding 741A is accommodated in a state of being molded by the resin material.
  • the resin layer 755 is formed on the opposite side of the third wall portion 753 with the intermediate conductor portion 746 sandwiched in the accommodating portion 754.
  • the resin material also enters the gap between the conductors 743 of the partial winding 741A, so that in the partial winding 741A, the multiplely wound conductors 743 are close to each other using the mold resin as a bonding material. It is joined.
  • the conductors 743 in the partial winding 741A can be maintained in a desired proximity state because the adjacent conductors 743 that are wound multiple times in the partial winding 741A are joined to each other by a joining material. .. That is, the state of multiple windings in the partial winding 741A can be maintained in a desired state.
  • the resin layer 755 Similar to the third wall portion 753, the resin layer 755 has different thickness dimensions (circumferential dimensions) at each position of the radial inner side and the radial outer side, and the radial outer side has a larger circumferential dimension. It is preferable that the configuration is as follows (see FIG. 100).
  • the distance between the intermediate conductors 746 of the different phases adjacent to each other in the circumferential direction is different between the outer side in the radial direction and the inner side in the radial direction.
  • the intermediate conductor portions 746 that are lined up in the circumferential direction taking into consideration that the circumferential length is different between the inner side in the radial direction and the outer side in the radial direction.
  • the third wall portion 753 and the resin layer 755 correspond to the insulating portion in the circumferential direction.
  • the partial winding 741A may be hardened by impregnating the housing portion 754 with an adhesive containing varnish. Further, both the resin mold and the impregnation of the varnish may be performed. Further, when the conducting wire 743 is a coated conducting wire whose conductor is covered with an insulating coating, the conducting wires 743 may be fixed (bonded) to each other by self-welding of the insulating coating. However, the accommodating portion 754 may not be filled with a resin material or the like, that is, an empty area SZ may be provided as a space area.
  • the coil module 740A is assembled to the tubular stator core 732 from the outside in the radial direction, and the first wall portion 751 on the stator core 732 side has the same curvature as the outer peripheral surface of the stator core 732. It is formed on an arcuate surface. As a result, the adhesion of the coil module 740A to the stator core 732 is enhanced.
  • the second wall portion 752 on the anti-stator core side may be linear or arcuate, but in this example, it is formed in an arc shape concentric with the first wall portion 751. ..
  • the coil module 740A is assembled to the stator core 732 with the bent portion 745 radially outward, and the bent portion 745 is provided on the side of the second wall portion 752 (that is, the opposite side of the first wall portion 751). Have. Further, in this case, the circumferential distance including the two second wall portions 752 in the pair of straight portions 744 is longer than the circumferential distance including the two first wall portions 751, and the longer circumferential distance thereof.
  • a bent portion 745 having the same dimensions as the above and which is outward in the radial direction is provided.
  • the side opposite to the bent portion 745 that is, Protruding portions 756 projecting inward in the radial direction (on the stator core 732 side) are provided at two upper and lower positions.
  • the coil end CE1 on the first crossover 747 side and the protruding portion 756 are provided at a position outside the boundary portion BD in the axial direction, and the coil end CE2 on the second crossover 748 side.
  • the protruding portion 756 is provided at a position outside the boundary portion BD in the axial direction.
  • the first wall portion 751 has a portion (yoke outer portion) extending axially outward from the axial end face of the stator core 732, and the stator core is in that portion.
  • a protruding portion 756 projecting toward the stator core 732 side from the surface facing the 732 in the circumferential direction is integrally molded.
  • the protrusion 756 is formed at the same time as the first wall portion 751 by, for example, injection molding of a resin material.
  • the protruding portion 756 is provided so as to protrude from the first wall portion 751 on the stator core 732 side.
  • the protruding portion 756 is configured to have an inclined surface 756a that is inclined to one side in the range from one end in the circumferential direction to the other end in the circumferential direction of the first wall portion 751.
  • the protruding portion 756 is formed so that the inner end portion (inside in the circumferential direction) of the first wall portion 751 becomes higher in the pair of left and right straight portions 744.
  • the protruding portion 756 is formed so that the outer end portion (outside in the circumferential direction) of the first wall portion 751 is raised in the pair of left and right straight portions 744. Good.
  • the direction in which the bent portion 745 extends in the radial direction is different from that of the coil module 740A, and although there is a difference in the configuration due to this, the basic configuration is the same as that of the coil module 740A. The differences from the 740A will be mainly described.
  • FIG. 89A is a perspective view of the coil module 740B
  • FIG. 89B is a side view of the coil module 740B
  • 90 (a) and 90 (b) are cross-sectional views showing a cross section of the coil module 740B
  • FIG. 90 (a) is a cross-sectional view taken along the line 90A-90A of FIG. 89 (b) and FIG. 90 (b).
  • the left side of the coil module 740B is the stator core 732 side
  • FIGS. 90 (a) and 90 (b) the lower side of the coil module 740B is the stator core 732 side.
  • the coil module 740B has a partial winding 741B formed by multiple winding of the conducting wire 743, and an insulating winding holder 742B integrally provided with the partial winding 741B. Further, the coil module 740B has a pair of straight portions 744 extending parallel to each other in the axial direction, and has bent portions 745 extending in a direction orthogonal to the axial direction on one end side on both sides in the axial direction as a whole. It has a structure formed in a substantially L shape.
  • the configuration of the partial winding 741B is basically the same as that of the partial winding 741A. That is, the partial winding 741B is the same as the partial winding 741A, and has a first crossover that connects a pair of intermediate conductors 746 provided in parallel and linearly with each other and a pair of intermediate conductors 746 on one end side in the axial direction. It has a second crossing portion 748 that connects the portion 747 and the pair of intermediate conductor portions 746 on the other end side in the axial direction, and the pair of intermediate conductor portions 746, the first crossing portion 747, and the second crossing portion 748. It is formed in a ring shape.
  • the coil module 740A and the coil module 740B have different extending directions of the bent portion 745 when assembled to the stator core 732, and the axial directions are opposite to each other. As a result, the coil modules 740A and 740B have different configurations.
  • the first crossover 747 (the first crossover 747 on the coil end CE2 side in the partial winding 741B) is provided with an inwardly bent portion Y2 that is bent inward in the radial direction.
  • the partial winding 741B has an inwardly bent portion Y2 provided on the coil end CE2 side and is not bent in the radial direction on the coil end CE1 side.
  • the winding end portions 743a and 743b are pulled out from the side of the second crossover portion 748, specifically from the tip opposite to the bending portion 745.
  • the winding end portions 743a and 743b are pulled out on the same side in the axial direction (coil end CE1 side).
  • the winding holder 742B has a first wall portion 751 on the stator core 732 side and a first wall portion 751 on the anti-stator core side, similarly to the configuration of the winding holder 742A. It has two wall portions 752 and a third wall portion 753 connecting the first wall portion 751 and the second wall portion 752. Further, in the winding holder 742B, unlike the configuration of the winding holder 742A, in the pair of straight portions 744, the first wall portion 751 becomes the wall portion on the bent portion 745 side (the wall portion on the inner side in the axial direction), and the second wall portion 751 becomes a wall portion on the inner side in the axial direction.
  • the wall portion 752 is a wall portion (a wall portion on the outer side in the axial direction) on the opposite side of the bent portion 745.
  • the coil module 740B is assembled to the stator core 732 with the bent portion 745 inside in the radial direction, and has the bent portion 745 on the side of the first wall portion 751.
  • the circumferential distance including the two first wall portions 751 in the pair of straight portions 744 is shorter than the circumferential distance including the two second wall portions 752, and the shorter circumferential distance and the circumferential distance.
  • a bent portion 745 having the same dimensions and being inward in the radial direction is provided.
  • the bent portion 745 side that is, the inside in the radial direction is located near the boundary portion BD between the coil side CS and the coil ends CE1 and CE2.
  • Protruding portions 756 protruding toward (the stator core 732 side) are provided at two upper and lower positions.
  • the protruding portion 756 is provided at the coil end CE2 on the first crossover portion 747 side and at a position outside the boundary portion BD in the axial direction, and the coil end on the second crossover portion 748 side. It is CE1 and is provided at a position outside the boundary portion BD in the axial direction.
  • the configuration of the protrusion 756 is also the same as that of the winding holder 742A (see FIG. 90B).
  • the manufacturing method of the coil module 740 will be described.
  • the method of manufacturing the coil module 740A will be described, but the same applies to the coil module 740B.
  • the partial winding 741A is manufactured as an air-core winding coil.
  • the conducting wire 743 is wound in multiple directions using a jig to produce a partial winding 741A having the shape shown in FIG. 87 (b) as an air-core winding coil.
  • the winding holder 742A is assembled to the partial winding 741A.
  • the winding holder 742A may be individually assembled to the partial winding 741A in a state of being divided into a plurality of parts. It is preferable that the winding holder 742A can be divided into two or three in the radial direction or the axial direction.
  • the coil module 740A by winding the lead wire 743 multiple times around the winding holder 742A.
  • a protrusion or a groove for guiding the conducting wire 743 may be provided on the inner peripheral surface of the accommodating portion 754 accommodating the partial winding 741A. It may be configured to be tied with the outer conductor 743 so that the partial winding 741A is not unwound.
  • the accommodating portion 754 is filled with resin.
  • the resin layer 755 is formed in the accommodating portion 754.
  • FIG. 91 is a cross-sectional view showing a vertical cross section of the stator 730
  • FIG. 92 is a cross-sectional view showing a cross section of the stator 730
  • FIG. 93 is a stator core 732 and an end ring 733 and a coil module 740A. It is sectional drawing which shows and separated from each other. Note that FIG. 92 is a cross-sectional view taken along the line 92-92 of FIG. 91.
  • the coil modules 740A and 740B are assembled to the stator core 732 so that the bending portions 745 are opposite to each other in the axial direction and the bending directions are opposite to each other in the radial direction. ing. In this case, interference between the coil modules 740A and 740B adjacent to each other in the circumferential direction is avoided depending on the position and orientation of the bent portion 745 in each coil module 740A and 740B.
  • the partial winding 741A is provided with the outer bending portion Y1 and the partial winding 741B is provided with the inner bending portion Y2, so that the partial windings 741A are adjacent to each other in the circumferential direction.
  • 741B are designed to avoid interference with each other.
  • the outer bent portion Y1 and the inner bent portion Y2 correspond to the interference avoiding portion.
  • the coil module 740B (the second crossover portion 748 of the partial winding 741B) is located outside the coil module 740A (the first crossover portion 747 of the partial winding 741A) in the axial direction. ) Is located. Further, on the coil end CE2 side, the coil module 740A (second crossing portion 748 of the partial winding 741A) is located outside the coil module 740B (first crossing portion 747 of the partial winding 741B) in the axial direction. , The partial windings 741A and 741B are arranged side by side in the circumferential direction. As a result, the partial windings 741A and 741B are appropriately arranged in the circumferential direction while avoiding mutual interference, and the physique can be reduced.
  • end rings 733 are provided at both ends in the axial direction of the stator core 732, and the end rings 733 are engaged with the upper and lower protruding portions 756, respectively.
  • Coil modules 740A and 740B are assembled to the stator core 732.
  • the protruding portions 756 of the coil modules 740A and 740B project in a state of overlapping in the axial direction with the axial end faces (upper end face and lower end face in the figure) of the stator core 732.
  • the stator core 732 is in a state of being sandwiched in the axial direction by a pair of protruding portions 756 in the coil modules 740A and 740B (that is, in a state of being pressed in the axial direction).
  • the stator core 732 is configured by laminating a plurality of core sheets 732a in the axial direction, and the stator core 732 is sandwiched by a pair of protrusions 756 in the laminating direction of the core sheets 732a. It has become.
  • the pair of projecting portions 756 function as pressing portions that press the axial end faces of the stator core 732 in the axial direction from the outside in the axial direction.
  • the laminated holding structure of the above is provided.
  • the laminated holding structure is provided at the Q position indicated by the thick broken line.
  • the core sheet 732a is joined by welding, the core sheet 732a is joined by caulking, the adhesive (including varnish) is used, and the outer cylinder member 772 (which is press-fitted inside the stator core 732 in the radial direction) is assembled. Stacking and holding due to the frictional force of the tubular member) can be considered.
  • a restraint ring 760 is attached to the outer peripheral side of the coil modules 740A and 740B. Due to the restraint of the restraint ring 760, the coil modules 740A and 740B are pressed in the direction in which the protrusion 756 engages with the end ring 733. In particular, since the restraint ring 760 is provided at a position where the end ring 733 and the protruding portion 756 overlap in the axial direction with respect to the engaging portion, the engaged state of the end ring 733 and the protruding portion 756 can be more reliably maintained. It is supposed to be done.
  • the restraint ring 760 is provided on the radial outside of the coil modules 740A and 740B, that is, on the side of the rotor 710 facing the magnet 722. Therefore, in order to avoid interference with the rotor 710 side, it is desirable that the restraint ring 760 is as thin as possible in the radial direction. Further, the coil side CS may not be provided in the axial direction, but may be provided in the coil end CE1 and CE2 regions. In this case, it is preferable that the restraint ring 760 is provided at a position within the range of the coil ends CE1 and CE2 and at a position outside the coil modules 740A and 740B in the radial direction. However, the position where the restraint ring 760 is provided and the number of restraint rings 760 are arbitrary.
  • the restraint ring 760 is attached to the outside of the second wall portion 752 of the winding holder 742. That is, the restraint ring 760 is configured to contact the winding holder 742 but not the partial winding 741. As a result, for example, even in a configuration in which a metal restraint ring 760 is used to increase the fixing strength, it is possible to suppress a decrease in the insulating property of the partial winding 741.
  • the inclined surface 756a of the protruding portion 756 is in contact with the engaging surface 734 of the end ring 733.
  • the engaging surface 734 of the end ring 733 corresponds to the first engaging portion
  • the protruding portions 756 of the coil modules 740A and 740B correspond to the second engaging portion.
  • the inclined surface 756a corresponds to the engaged surface.
  • the end ring 733 is provided with a plurality of engaging surfaces 734 continuously in the circumferential direction so that the inclination directions are staggered, and the recess 735 is provided by the two engaging surfaces 734 adjacent to each other in the circumferential direction. Is formed (see FIG. 93).
  • one protrusion 756 of each of the two coil modules 740A and 740B is inserted into the recess 735.
  • the top of the protrusion 756 reaches the bottom of the recess 735.
  • the third wall portions 753 of the coil modules 740A and 740B are in contact with each other in the circumferential direction.
  • the first wall portions 751 and the second wall portions 752 of the coil modules 740A and 740B are in contact with each other or close to each other in the circumferential direction. It is in a state.
  • the protruding portions 756 of the two coil modules 740A and 740B are guided in the circumferential direction toward each other by the two engaging surfaces 734 forming the recess 735.
  • rattling of the two partial windings 741 adjacent to each other in the circumferential direction can be suppressed, and the displacement of the stator winding 731 due to vibration or electromagnetic force can be suitably suppressed.
  • the gap between the intermediate conductors 746 can be reduced, an improvement in the space factor can be expected.
  • each of the coil modules 740A and 740B has protrusions 756 on two first wall portions 751 separated from each other in the circumferential direction, and the two protrusions 756 are inclined at the end ring 733 with respect to each other. It is in contact with two opposite engaging surfaces 734, respectively.
  • the two protrusions 756 engage with the engaging surface 734 side of the end ring 733, so that the misalignment of the coil modules 740A and 740B in the circumferential direction is less likely to occur. can do.
  • the inclined surface 756a of the protruding portion 756 comes into contact with the engaging surface 734 of the end ring 733 in a pressed state. ..
  • the coil modules 740A and 740B can be more firmly fixed to the stator core 732.
  • the partial windings 741 housed in the accommodating portion 754 are separated from each other by a predetermined interval in the circumferential direction. It is placed in position. More specifically, the peripherally adjacent partial windings 741 are isolated from each other by the third wall portion 753 of the winding holder 742, or by the free space SZ in the accommodating portion 754 of the winding holder 742. Has been done. As a result, the insulation between the partial windings 741 having different phases adjacent to each other in the circumferential direction is ensured.
  • Two third wall portions 753 are interposed between the partial windings 741 of different phases adjacent to each other in the circumferential direction. In this case, by stacking two third wall portions 753, the insulating property of the stator winding 731 is further enhanced.
  • two free areas SZ are interposed between the partial windings 741 of different phases adjacent to each other in the circumferential direction. In this case, the free areas SZ in the accommodating portion 754 are continuous in the circumferential direction, and moreover, the free areas SZ are resin-molded, so that the insulation property of the stator winding 731 is further enhanced. ing.
  • the third wall portion 753 of the different winding holder 742 is continuously provided in the circumferential direction between the intermediate conductor portions 746 adjacent to each other in the circumferential direction, or the different winding holder 742 protrudes.
  • the portions 751a and 752a are continuously provided in the circumferential direction.
  • the thickness dimension T13 of the third wall portion 753 is the thickness of the first wall portion 751. It should be larger than the dimension T11. That is, it is preferable that 2 ⁇ T13> T11. In this case, even if a larger potential difference occurs between the intermediate conductors 746s arranged in the circumferential direction than between the stator core 732 and the intermediate conductors 746, appropriate interphase insulation is performed.
  • the first wall portion 751 and the second wall portion 752 have the third wall portion 753 on one of the circumferential directions of the intermediate conductor portions 746 of the partial windings 741A and 741B, and the other.
  • the protruding portions 751a and 752a are provided on the side. Further, in the first wall portion 751 and the second wall portion 752, the portion to which the third wall portion 753 is connected and the protruding portions 751a and 752a correspond to extension portions extending in the circumferential direction from the intermediate conductor portion 746, respectively.
  • Extensions of different coil modules 740A and 740B are provided so as to face each other in the circumferential direction between the intermediate conductors 746 that are adjacent to each other in the circumferential direction.
  • the intermediate conductor portions 746 adjacent to each other in the circumferential direction are separated from each other by the extension portion of the first wall portion 751 in the coil modules 740A and 740B, so that mutual insulation is ensured.
  • interphase insulation in the circumferential direction can be suitably realized.
  • the third wall portions 753 of the different coil modules 740A and 740B are provided in a state of facing each other in the circumferential direction on one side in the circumferential direction of each of the intermediate conductor portions 746 arranged in the circumferential direction, and in the circumferential direction.
  • the third wall portion 753 is absent and separated by the protruding portions 751a and 752a.
  • one first wall portion 751 is provided between the stator cores 732 arranged in the radial direction and the intermediate conductor portion 746, while the two first wall portions 746 are provided between the intermediate conductor portions 746 arranged in the circumferential direction.
  • the protruding portions 756 and the end ring 733 of the coil modules 740A and 740B may be fixed to each other by an adhesive such as varnish. Further, rattling may be suppressed by filling a synthetic resin or varnish between the protruding portion 756 of the coil modules 740A and 740B and the end ring 733.
  • the plurality of partial windings 741A and 741B have the same conductor cross-sectional area in the state of multiple winding and the number of multiple windings.
  • the interlinkage magnetic flux of each of the partial windings 741A and 741B constituting the parallel circuit can be made uniform.
  • the mutual potential difference between the partial windings 741A and 741B can be eliminated, and the generation of circulating current in the parallel circuit can be suppressed.
  • the interlinkage magnetic flux can be made uniform including the leakage flux at the coil ends CE1 and CE2.
  • the potential difference between the partial windings 741A and 741B can be eliminated, and the circulating current in the parallel circuit can be suppressed.
  • the stator 730 may use any of the following (A) to (C).
  • the saturation magnetic flux density of the conductor-to-conductor member is Bs
  • the width dimension of the magnet 722 at one magnetic pole in the circumferential direction is Wm
  • the residual magnetic flux density of the magnet 722 is Br
  • the magnetic relationship is Wt ⁇ Bs ⁇ Wm ⁇ Br.
  • the material is used.
  • stator 730 In the stator 730, a conductor-to-conductor member is provided between each conductor portion (intermediate conductor portion 746) in the circumferential direction, and a non-magnetic material is used as the conductor-to-conductor member.
  • the stator 730 has a configuration in which no interconductor member is provided between each conductor portion (intermediate conductor portion 746) in the circumferential direction.
  • FIG. 95 shows a state in which bearings 791 and 792 that support the rotating shaft 701 are assembled to the inner unit 770.
  • the bearing 791 will also be referred to as a first bearing 791
  • the bearing 792 will also be referred to as a second bearing 792.
  • the first bearing 791 is a bearing provided on the base end side in the axial direction of the rotating shaft 701, that is, on the connecting shaft 705 side
  • the second bearing 792 is a bearing provided on the tip end side of the rotating shaft 701.
  • the inner unit 770 has an inner housing 771.
  • the inner housing 771 has a cylindrical outer cylinder member 772, and an inner cylinder member 773 having an outer peripheral diameter smaller than that of the outer cylinder member 772 and arranged inside the outer cylinder member 772 in the radial direction. It has a substantially disk-shaped end plate 774 fixed to one end side in the axial direction of the outer cylinder member 772 and the inner cylinder member 773.
  • Each of these members 772 to 774 is preferably made of a conductive material, for example, made of carbon fiber reinforced plastic (CFRP).
  • CFRP carbon fiber reinforced plastic
  • the outer cylinder member 772 and the end plate 774 have the same external dimensions, and the inner cylinder member 773 is provided in the space formed by the outer cylinder member 772 and the end plate 774.
  • the inner cylinder member 773 is fixed to the outer cylinder member 772 and the end plate 774 by fasteners 775 such as bolts, respectively.
  • the stator core 732 is fixed to the radial outer side of the outer cylinder member 772 of the inner housing 771. As a result, the stator 730 and the inner unit 770 are integrated.
  • a refrigerant passage 777 for circulating a refrigerant such as cooling water is formed between the outer cylinder member 772 and the inner cylinder member 773.
  • the refrigerant passage 777 is provided in an annular shape in the circumferential direction of the inner housing 771.
  • a refrigerant pipe is connected to the refrigerant passage 777, and the refrigerant flowing from the refrigerant pipe exchanges heat in the refrigerant passage 777 and then flows out to the refrigerant pipe again.
  • An annular space is formed inside the inner cylinder member 773 in the radial direction, and it is preferable that, for example, an electric component constituting an inverter as a power converter is arranged in the annular space.
  • the electric component is, for example, an electric module in which a semiconductor switching element or a capacitor is packaged.
  • the outer cylinder member 772 has a cylindrical boss portion 780 radially inside the inner cylinder member 773.
  • the boss portion 780 is provided in a hollow tubular shape, and the rotating shaft 701 is inserted into the hollow portion.
  • the boss portion 780 is a bearing holding portion that holds the bearings 791 and 792, and the bearings 791 and 792 are fixed to the hollow portion thereof (see FIG. 95).
  • the bearings 791 and 792 are, for example, radial ball bearings having a tubular inner ring, a tubular outer ring arranged radially outside the inner ring, and a plurality of balls arranged between the inner ring and the outer ring.
  • the outer ring is fixed to the boss portion 780 and is assembled to the inner unit 770.
  • the hollow portion of the boss portion 780 is provided with a first fixing portion 781 for fixing the first bearing 791 and a second fixing portion 782 for fixing the second bearing 792.
  • the first bearing 791 and the second bearing 792 have different physiques depending on the support position on the rotary shaft 701 in consideration of the vibration and the centrifugal load of the rotor 710, and support the proximal end side of the rotary shaft 701.
  • 1 Bearing 791 is a bearing having a larger size, that is, a bearing having a larger bearing load. Therefore, the first fixed portion 781 is formed to have a larger diameter than the second fixed portion 782.
  • the first bearing 791 Comparing the first bearing 791 and the second bearing 792, the first bearing 791 has a larger radial internal gap, that is, a radial gap than the second bearing 792.
  • the radial gap is the amount of play in the axial direction between the inner ring, the outer ring, and the ball of the bearing.
  • the first bearing 791 is a bearing that is more susceptible to vibration and centrifugal load of the rotor 710 than the second bearing 792, and by increasing the radial gap of the first bearing 791, the effect of load absorption can be obtained. Can be enhanced. As a result, the load acting on the boss portion 780 on the base end side of the rotating shaft 701 is reduced, and the runout on the tip end side of the rotating shaft 701 is suppressed.
  • the first fixed portion 781 is formed by a parallel surface 781a parallel to the axial direction and an orthogonal surface 781b orthogonal to the axial direction in the boss portion 780, and the first bearing 791 is in contact with each of these surfaces. It is fixed.
  • the second fixed portion 782 is formed by a parallel surface 782a parallel to the axial direction and an orthogonal surface 782b orthogonal to the axial direction in the boss portion 780, and the second bearing is in contact with each of these surfaces. 792 is fixed.
  • a third fixing portion 783 for fixing the resolver 800 as a rotation sensor is provided on the side of the second fixing portion 782 of the first fixing portion 781 and the second fixing portion 782.
  • the third fixed portion 783 is formed by expanding the diameter of the second fixed portion 782 in a stepped shape.
  • the resolver 800 includes a resolver rotor 801 fixed to a rotating shaft 701 and a resolver stator 802 arranged so as to face each other on the radial outer side of the resolver rotor 801.
  • the resolver rotor 801 has a disk ring shape, and is provided coaxially with the rotating shaft 701 in a state where the rotating shaft 701 is inserted.
  • the resolver stator 802 has a stator core and a stator coil (not shown), and is fixed to a third fixing portion 783 of the boss portion 780.
  • the hollow portion of the boss portion 780 has a diameter smaller than that of each of the fixed portions 781 and 782 at a position between the first fixed portion 781 and the second fixed portion 782 in the axial direction.
  • Diameter portions 784 and 785 are provided.
  • the reduced diameter portion 784 is a hole having a smaller diameter than the first fixed portion 781
  • the reduced diameter portion 785 is a hole having a smaller diameter than the second fixed portion 782.
  • the third fixing portion 783 for fixing the resolver 800 is wider than the second fixing portion 782 at a position outside the second fixing portion 782 in the axial direction, in other words, at a position at the tip end side of the rotating shaft 701. It is provided as a diameterd part.
  • the second fixed portion 782 and the third fixed portion 783 are provided at positions adjacent to each other in the axial direction.
  • the second fixing portion 782 and the third fixing portion 783 can be continuously machined coaxially from the same direction. Therefore, the coaxiality between the second bearing 792 fixed to the second fixed portion 782 and the resolver stator 802 fixed to the third fixed portion 783 is increased, and the coaxiality between the resolver rotor 801 and the resolver stator 802 is increased. Will be. In this case, the runout of the resolver stator 802 with respect to the resolver rotor 801 is reduced, and the angle detection error in the resolver 800 is reduced.
  • the bus bar module 810 is electrically connected to the partial winding 741 of each coil module 740 in the stator winding 731, and one end of the partial winding 741 of each phase is connected in parallel for each phase, and each of these partial windings is connected in parallel. It is a winding connecting member that connects the other end of 741 at a neutral point.
  • FIG. 96 is a perspective view of the bus bar module 810
  • FIG. 97 is a cross-sectional view showing a part of a vertical cross section of the bus bar module 810.
  • the bus bar module 810 is connected to an annular portion 811 forming an annular shape, a plurality of connection terminals 812 extending from the annular portion 811, three input / output terminals 813 provided for each phase winding, and a current sensor for each phase. It has a current detection terminal 814.
  • the annular portion 811 is formed in an annular shape by, for example, an insulating member such as a resin, and a plurality of bus bars 821 to 824 are provided in a state of being embedded therein.
  • Each bus bar 821 to 824 is composed of a U-phase bus bar 821, a V-phase bus bar 822, a W-phase bus bar 823, and a neutral point bus bar 824 so that the plate surfaces face each other. They are arranged side by side in the axial direction.
  • the connection terminals 812 are connected to the bus bars 821 to 824 so as to project radially outward from the annular portion 811.
  • the connection terminals 812 are provided so as to be arranged in the circumferential direction of the annular portion 811 and to extend in the axial direction on the outer side in the radial direction.
  • FIG. 98 shows the connection positions of the connection terminals 812 for each bus bar 821 to 824 as a schematic diagram.
  • the left-right direction corresponds to the circumferential direction of the annular portion 811.
  • U indicates a connection terminal 812 connected to the U-phase winding
  • V indicates a connection terminal 812 connected to the V-phase winding
  • W indicates a connection terminal connected to the W-phase winding.
  • 812 is indicated
  • NE indicates a connection terminal 812 connected to the neutral point.
  • connection terminals 812 (NE) connected to the neutral point are arranged every other in the circumferential direction, and the connection terminals 812 (U), V connected to the U-phase winding are in between.
  • a connection terminal 812 (V) connected to the phase winding and a connection terminal 812 (W) connected to the W phase winding are arranged one by one.
  • These connection terminals 812 are provided in the same number as the winding ends 743a and 743b of each partial winding 741 in the coil module 740, and the connection terminals 812 and the winding ends 743a and 743b are connected one by one. It has become so.
  • connection terminal 812 and the winding end portions 743a and 743b is bent or curved in the radial direction and is brought into contact with each other as necessary, and in the contact state, joining by welding, adhesion or the like is performed. It should be done.
  • the annular portion 811 has a plurality of fixed portions 815 on the inner peripheral side, and by assembling fasteners such as bolts to the fixed portion 815, the bus bar module is attached to the end plate 774 of the inner housing 771.
  • the 810 is fixed.
  • the input / output terminals 813 are input / output terminals 813U for U phase, input / output terminals 813V for V phase, and input / output terminals 813W for W phase, and these are bus bars 821 to 823 for each phase in the annular portion 811. Are each connected to. Through each of these input / output terminals 813, power is input / output from an inverter (not shown) to the phase windings of each phase of the stator winding 731.
  • the annular portion 811 is provided with a current sensor 816 for each phase, and the detection result of the current sensor 816 is output to a control device (not shown) through the current detection terminal 814.
  • the partial winding 741 is configured by winding the conducting wire 743 multiple times between the conducting wires having the same phase provided apart from each other in the circumferential direction. Further, the phase windings of each phase are configured by connecting a plurality of partial windings 741 in parallel.
  • the cross-sectional area of the stator winding 731 can be subdivided, the occurrence of copper vortex loss can be suppressed, and the motor efficiency and the thermal rating performance can be improved.
  • the number of poles of the magnetic poles is P and the number of partial windings 741A and the number of partial windings 741B per phase are N
  • the number of poles P is 4 ⁇ N
  • N partial windings 741A and N partial windings 741B are all connected in parallel for each phase.
  • the number (N) of the partial windings 741A and 741B per phase is 6, and the number of poles P is 24, respectively.
  • FIG. 84 shows a coil module 740 of one of the three phases, as a coil module 740A having a partial winding 741A, as a coil module 740A having six coil modules 740A, and as a coil module 740B having a partial winding 741B.
  • Six coil modules 740B are shown. In each phase winding, six partial windings 741A and six partial windings 741B are all connected in parallel for each phase.
  • the number of parallel windings 741 is 12 in each case.
  • the number of parallel windings 741 is 12 in each case.
  • FIG. 101 is a vertical cross-sectional view of the inner rotor type rotary electric machine 900
  • FIG. 102 is a horizontal vertical cross-sectional view of the rotary electric machine 900
  • FIG. 103 is a cross section showing a part of the configuration shown in FIG. 102 in an enlarged manner. It is a top view.
  • the rotary electric machine 900 has a rotor 910 provided so as to be rotatable integrally with the rotary shaft 901, and a stator 920 provided on the radial outer side of the rotor 910. An air gap is formed between the rotor 910 and the stator 920 in the radial direction.
  • the rotary shaft 901 is rotatably supported by bearings (not shown) as in the above-described configuration.
  • the rotor 910 corresponds to the "field magnet” and the stator 920 corresponds to the "armature”.
  • the rotor 910 has a rotor carrier 911 formed in a hollow tubular shape and an annular magnet unit 912 fixed to the outside in the radial direction of the rotor carrier 911.
  • the rotor carrier 911 is fixed to the rotating shaft 901 and has a function as a magnet holding member.
  • the magnet unit 912 has a plurality of magnetic poles having alternating polarities in the circumferential direction of the rotor 910.
  • the magnet unit 912 corresponds to the "magnet portion".
  • the magnet unit 912 has a plurality of magnets 913 (permanent magnets) arranged side by side in the circumferential direction, and a plurality of magnetic poles having polarities alternating in the circumferential direction due to each of the magnets 913. Is formed.
  • the magnet 913 is a sintered neodymium magnet having an intrinsic coercive force of 400 [kA / m] or more and a residual magnetic flux density Br of 1.0 [T] or more.
  • each magnet 913 the stator 920 side (upper side in the figure) of both sides in the radial direction is the magnetic flux acting surface 913a, and the magnetic flux is concentrated in the region near the d-axis which is the center of the magnetic pole on the magnetic flux acting surface 913a. Is to occur.
  • each magnet 913 is a polar anisotropy magnet, and the direction of the easy magnetization axis is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, as compared with the side of the q-axis, which is the magnetic pole boundary. It is configured so that it is oriented so as to be.
  • the direction of the easy-to-magnetize axis is different between the d-axis side (the part closer to the d-axis) and the q-axis side (the part closer to the q-axis), and the direction of the easy-to-magnetize axis is parallel to the d-axis on the d-axis side.
  • the direction of the easy-to-magnetize axis is close to the direction orthogonal to the q-axis. Then, an arcuate magnet magnetic path is formed by the orientation according to the direction of the easily magnetized axis.
  • the easy magnetization axis may be oriented parallel to the d-axis on the d-axis side, and the easy-magnetization axis may be oriented orthogonal to the q-axis on the q-axis side.
  • the direction of the easy-magnetizing axis is oblique to the d-axis between the magnetic flux acting surfaces on both sides in the radial direction, the stator 920 side approaches the d-axis in the circumferential direction, and the d-axis is on the anti-stator side. It may be linearly oriented so as to be oriented away from. Even with this configuration, magnetic flux can be intensively generated in the region near the d-axis on the magnetic flux acting surface 913a on the stator 920 side of the magnet 913.
  • the configuration of the magnet 913 can be changed to other than the above.
  • a radial anisotropy permanent magnet whose magnetization direction is the radial direction and a parallel anisotropy permanent magnet whose magnetization direction is parallel can be changed. It is also possible to use.
  • the rotor 910 may have an embedded magnet type rotor structure in addition to the surface magnet type rotor structure.
  • the stator 920 has a multi-phase stator winding 921 and a stator core 922 integrally provided with the stator winding 921.
  • the stator core 922 is configured as a core sheet laminate in which a plurality of core sheets made of electrical steel sheets are laminated in the axial direction.
  • the stator core 922 has a cylindrical yoke 923 and a plurality of teeth 924 provided at predetermined intervals in the circumferential direction inside the yoke 923 in the radial direction, and is provided between the teeth 924 in the radial direction.
  • a slot 925 extending into is formed.
  • the slots 925 are formed in a substantially rectangular shape having a longitudinal direction in the radial direction, and each slot 925 opens inward in the radial direction.
  • the stator winding 921 has a plurality of phase windings, and the phase windings of each phase are arranged in a predetermined order in the circumferential direction.
  • the stator winding 921 has a configuration having three-phase phase windings.
  • the stator 920 has a portion corresponding to a coil side CS that faces the magnet unit 912 in the rotor 910 in the axial direction in the axial direction, and a coil end that is outside the coil side CS in the axial direction. It has a part corresponding to CE.
  • the stator core 922 is provided in a range corresponding to the coil side CS in the axial direction.
  • the coil end CE is a portion axially outside of the axial end face of the stator core 922.
  • the phase winding of each phase has two types of partial windings 931 having different coil end shapes.
  • the partial winding 931 is an annular coil formed by winding a conducting wire material in multiple directions
  • FIG. 104 (a) is a perspective view showing the configuration of a first partial winding 931A which is one partial winding 931, FIG. 104.
  • (B) is a perspective view which shows the structure of the 2nd partial winding 931B which is the other partial winding 931.
  • FIG. 105 is a side view showing the partial windings 931A and 931B side by side for comparison.
  • the partial windings 931A and 931B have different axial lengths and different end shapes on both sides in the axial direction.
  • the first partial winding 931A has a substantially C shape in the side view
  • the second partial winding 931B has a substantially I shape in the side view.
  • the first partial winding 931A is a pair of intermediate conductors 932 provided parallel to each other and linearly connected to each other and a pair of intermediate conductors 932 connected at both ends in the axial direction. It has a crossover portion 933, and is formed in an annular shape by the pair of intermediate conductor portions 932 and the pair of crossover portions 933.
  • Each intermediate conductor portion 932 is provided as a coil side conductor portion arranged in the circumferential direction in the coil side CS.
  • each crossover portion 933 is provided as a coil end lead wire portion for connecting the intermediate lead wire portions 932 having two positions different in the circumferential direction in the coil end CE.
  • the pair of crossovers 933 have the same shape on both sides in the axial direction, and both are provided as portions corresponding to the coil end CE (see FIG. 105). Each crossover 933 is provided so as to bend in a direction orthogonal to the intermediate conductor 932, that is, in a direction orthogonal to the axial direction.
  • the shape of the crossover 933 is different between the first partial winding 931A and the second partial winding 931B, and in order to clarify the distinction, the crossover 933 of the first partial winding 931A is referred to as "the first”.
  • 1 Crossover 933A ”and the crossover 933 of the second partial winding 931B are also referred to as“ second crossover 933B ”.
  • FIG. 106 is a cross-sectional view taken along the line 106-106 in FIG. 104 (a).
  • the pair of intermediate lead wire portions 932 are provided so as to be separated by a predetermined slot pitch.
  • the distance D between the centers in the circumferential direction corresponds to a three-slot pitch. That is, the distance corresponds to the slot pitch of the number of phases.
  • the slot positions between the pair of intermediate conductors 932 are shown by virtual lines. Each slot 925 between the pair of intermediate conductors 932 accommodates the intermediate conductor 932 of the other phase partial winding 931.
  • the partial winding 931 is arranged so as to straddle the three teeth 924 in the stator core 922.
  • the partial winding 931 is a centralized winding coil for all nodes, and is provided one for each phase in a one-pole pair.
  • the first partial winding 931A is formed by winding the conducting wire material CR multiple times so that the cross section of the conducting wire gathering portion becomes a quadrangle.
  • a conductor assembly having a rectangular cross section is formed by winding a conductor CR composed of flat wires having a rectangular cross section in a plurality of directions so as to be arranged in the circumferential direction and the radial direction. It is configured. That is, the first partial winding 931A is configured by winding the square wires multiple times, and the cross section of the conducting wire collecting portion, which is an aggregate of the square wires, has a quadrangular shape.
  • the pair of intermediate conductors 932 has a rectangular shape whose cross-sectional shape is the longitudinal side in the radial direction (vertical direction in the figure), and the center lines L1 and L2 of the intermediate conductors 932 are in the longitudinal direction. They are parallel to each other.
  • the tip of the first crossover 933A is configured to be multiplely wound so that the conductor CRs are aligned in the axial direction and the radial direction due to the bending in the radial direction.
  • the first partial winding 931A is configured by winding the conductor CR by concentric winding.
  • the method of winding the conductor CR is arbitrary, and instead of concentric winding, the conductor CR may be wound multiple times by alpha winding.
  • the second partial winding 931B connects a pair of intermediate conductor portions 932 provided in parallel and linearly with each other and a pair of intermediate conductor portions 932 at both ends in the axial direction. It has a pair of second crossover portions 933B, and is formed in an annular shape by the pair of intermediate conductor portions 932 and the pair of second crossover portions 933B.
  • the pair of intermediate conductors 932 in the second partial winding 931B has the same configuration as the intermediate conductor 932 of the first partial winding 931A.
  • the pair of second crossover portions 933B has a different configuration from the first crossover portion 933A of the first partial winding 931A.
  • the second crossover portion 933B of the second partial winding 931B is provided so as to extend linearly in the axial direction from the intermediate conductor portion 932 without being bent in the radial direction.
  • the first partial winding 931A and the second partial winding 931B have the same configuration except that the coil end shape is different, and in FIG. 105, the differences between the partial windings 931A and 931B are clearly shown in comparison. There is.
  • Each partial winding 931A, 931B may be configured by covering a part or all of the partial windings with an insulating material such as synthetic resin.
  • the partial windings 931A and 931B may be integrated with an insulating winding holder as shown in FIG. 87, for example.
  • the partial windings 931A and 931B are assembled to the stator core 922 by accommodating each intermediate conductor portion 932 in the slot 925 of the stator core 922. Since each of the partial windings 931A and 931B has two types of coil end shapes, interference between the partial windings 931 adjacent to each other in the circumferential direction is suppressed.
  • the first crossing portion 933A of the first partial winding 931A is provided so as to be bent in a direction (diameter direction) orthogonal to the intermediate conductor portion 932.
  • the second crossing portion 933B of the second partial winding 931B is provided so as to extend linearly in the axial direction from the intermediate conductor portion 932 without being bent in the radial direction.
  • the partial windings 931A and 931B are assembled to the stator core 922 in a state where the partial windings 931A and 931B partially overlap each other in the circumferential direction, but the crossover portions 933A and 933B are separated from each other in the axial direction. Interference between the crossovers 933A and 933B is avoided.
  • each of the partial windings 931A and 931B has a crossover portion 933, when the partial windings 931A and 931B are assembled to the stator core 922, the partial windings 931A and 931B are used. , Is inserted into the slot 925 from the inside in the radial direction instead of the axial direction. Further, each of the partial windings 931A and 931B has a pair of intermediate conductor portions 932, and it is desirable that each of the intermediate conductor portions 932 is accommodated in the slot 925 without causing a wasteful dead space. ..
  • the configuration for assembling the partial windings 931A and 931B to the stator core 922 will be described below.
  • FIG. 107 is a schematic view showing a configuration in which an arbitrary partial winding 931X is assembled to the stator core 922.
  • a plurality of slots 925 are formed in the stator core 922 at predetermined intervals in the circumferential direction, and two of the slots 925A and 925B are slots where the partial winding 931X is assembled.
  • Each of these slots 925A and 925B corresponds to a slot pair SP accommodating a pair of intermediate lead portions 932 of the partial winding 931X.
  • the slot 925A is referred to as "first slot 925A” and the slot 925B is referred to as "first slot 925A”.
  • Second slot 925B “.
  • the slot-to-SP is provided so as to straddle two other slots 925 for each partial winding 931.
  • the slot walls that are inside each other in the circumferential direction are referred to as an inner side wall 941
  • the slot walls that are outside each other in the circumferential direction are referred to as an outer wall 942.
  • the slots 925A and 925B are provided so that the inner side walls 941 are parallel to each other and the outer walls 942 are parallel to each other.
  • the slots 925A and 925B are parallel to each other, and the side surfaces of the pair of intermediate conductors 932 in the circumferential direction are parallel to each other. That is, the slots 925A and 925B are provided as parallel slots having a uniform width in the circumferential direction. Further, each intermediate conductor portion 932 of the partial winding 931X is provided as a parallel conductor having a uniform width in the circumferential direction.
  • a straight line passing through the circumferential center position in the range from the first slot 925A to the second slot 925B and the stator center point CP in the slot vs. SP is drawn at the first center line L11, the first slot 925A and the second slot 925B.
  • the straight line passing through each circumferential center position and parallel to the first center line L1 is defined as the second center line L12.
  • the second center lines L12 of the slots 925A and 925B are parallel to each other, and the slots 925A and 925B are provided line-symmetrically in the circumferential direction with respect to the second center line L12.
  • the first slot 925A is the left slot of the two left and right slots 925 constituting the slot vs. SP, and another slot 925 next to the first slot 925A is the right slot of the other slot vs. SP (specifically). See FIG. 108 for the arrangement of the various slots. Therefore, in each of the teeth 924 between the slots, the teeth 924 (first teeth 924A) between the two inner side walls 941 and the teeth 924 (second teeth 924B) between the two outer walls 942 alternate. It will be lined up. In this case, since the slots 925A and 925B are provided line-symmetrically in the circumferential direction with respect to the second center line L12, the sizes of the teeth 924 arranged in the circumferential direction can be equalized.
  • the shapes of the teeth 924 arranged in the circumferential direction are not uniform. That is, the stator core 922 has a first tooth 924A in which the circumferential width W11 of the base end portion on the yoke 923 side is smaller than the circumferential width W12 of the tip end portion on the anti-yoke side, and the circumferential width W11 of the base end portion.
  • the second teeth 924B which is larger than the circumferential width W12 of the tip portion, is included, and the teeth 924A and 924B are arranged alternately in the circumferential direction.
  • the circumferential width W11 of the base end portion in the first teeth 924A and the circumferential width W12 of the tip end portion in the second teeth 924B are the same.
  • the magnetic characteristics of the teeth 924A and 924B are made equal.
  • FIG. 108 is a schematic view for explaining the assembly of the partial windings 931A and 931B to each slot 925 of the stator core 922.
  • reference numerals 1 to 8 are attached to each slot 925 for the sake of assistance in explanation.
  • the 1st-4th slots, the 3rd-6th slots, and the 5th-8th slots are slot pairs SP1, SP2, SP3, respectively, and each of these slots pairs SP1 to SP3 is partially wound.
  • Lines 931A and 931B are assembled.
  • the first partial winding 931A and the second partial winding 931B the first partial winding 931A in which the crossing portion 933 is bent toward the yoke 923 side is first assembled to the slot vs. SP2, and then.
  • the second partial winding 931B is assembled to the slot pairs SP1 and SP3.
  • the partial windings 931A and 931B are preferably assembled into the slots 925A and 925B by sliding in the radial direction.
  • the first partial windings 931A are arranged side by side so that the first partial windings 931A do not overlap each other in the circumferential direction, and the second partial windings 931B have the second partial windings 931B overlapping each other in the circumferential direction. They are arranged side by side so as not to. The first partial winding 931A and the second partial winding 931B overlap each other in the circumferential direction.
  • the partial winding 931 can be assembled from the radial direction to the slot pair SP in which the pair of intermediate conductors 932 of the partial winding 931 are accommodated.
  • the inner side walls 941 and the outer wall 942 of each of the slots 925A and 925B are parallel to each other, and the yoke 923 side of each slot 925.
  • the circumferential width W1 of the above and the circumferential width W2 on the anti-yoke side are made the same.
  • the inner side walls 941 are provided so as to be separated from each other on the anti-yoke side
  • the outer walls 942 are provided so as to be close to each other on the anti-yoke side
  • the yoke 923 side in each slot 925 is provided.
  • the pair of intermediate conductors 932 do not interfere with the corners on the tip side of the teeth.
  • the pair of intermediate conductors 932 can be accommodated in the slots 925A and 925B without creating a wasteful dead space in the slot 925. That is, it is possible to accommodate the pair of intermediate conductors 932 in each slot 925 in a state of being close to the inner side wall 941 and the outer wall 942.
  • each partial winding 931 is arranged so as to straddle two or more teeth 924, and interference at the coil end portion in each partial winding 931 arranged adjacent to each other in the circumferential direction and partially overlapping.
  • the crossing portions 933 of the partial windings 931 are separated from each other in the axial direction, the partial windings 931 can be arranged without causing interference between the partial windings 931.
  • the conductor space factor in the slot 925 can be improved, and the loss of the rotary electric machine 900 can be reduced and the amount of heat generated can be suppressed.
  • the partial winding 931 is assembled to the slot vs. SP. It can be preferably realized. That is, the partial winding 931 can be suitably assembled by sliding the partial winding 931 in parallel along the first center line L11. Further, by providing the first slot 925A and the second slot 925B in line symmetry in the circumferential direction with respect to the second center line L12 parallel to the first center line L11, each teeth arranged in the circumferential direction in the stator core 922. It has an advantageous configuration for equalizing the size of the 924.
  • each slot 925 is provided as a parallel slot having a uniform width in the circumferential direction and each intermediate conductor portion 932 of the partial winding 931 is provided as a parallel conductor having a uniform width in the circumferential direction, the stator winding 921 is occupied.
  • the product ratio can be improved.
  • each slot 925 is a parallel slot, it is possible to match the shape and size of the teeth 924 between the slots 925, which is an advantageous configuration for equalizing the amount of iron in each tooth 924. It has become.
  • the partial winding 931 has a configuration in which square wires having a quadrangular cross section of the conductor are wound in multiple directions, and the cross section of the conductor assembly portion, which is an aggregate of the square wires, has a quadrangular shape. In this case, the space factor of the stator winding 921 can be further improved.
  • the second teeth 924B which becomes "W12" will be included.
  • the first crossover 933A of the first partial winding 931A is bent radially outward, and the second crossover 933B of the second partial winding 931B is shafted with respect to the first crossover 933A of the first partial winding 931A. It is configured to be provided at a position separated in the direction. As a result, interference between the crossover portions 933A and 933B can be suitably avoided in each of these partial windings 931A and 931B, and a configuration excellent in assembling property can be realized.
  • the inner side walls 941 are provided so as to approach each other on the anti-yoke side, and the outer walls 942 are provided so as to be separated from each other on the anti-yoke side. It may have been. Further, in the slots 925A and 925B shown in FIG. 109, either the inner side wall 941 or the outer wall 942 may be provided so as to be parallel to each other. In the configuration of FIG. 109, in each slot 925, the circumferential width W1 on the yoke 923 side and the circumferential width W2 on the anti-yoke side are W1 ⁇ W2.
  • the back side wall 943 on the yoke 923 side of the slot 915 may be provided in a direction along the circular CL concentric with the inner peripheral surface SA on the anti-yoke side of the stator core 922.
  • the slot center line (second center line L12) Is in a direction different from the normal direction of the core inner peripheral surface SA, but as described above, by providing the inner side wall 943 of the slot 915 in the direction along the circular CL, the radial dimension (depth dimension) of the slot 925 can be rotated. Can be the same in direction.
  • Each slot 925 has a substantially parallelogram in cross-sectional shape.
  • the cross section of the intermediate conductor portion 932 has a substantially parallel four-sided shape according to the slot shape.
  • the partial winding 931 can be suitably arranged in the slot 925 without creating an excess space. That is, in the configuration in which the radial dimensions of the slots 925 are the same in the circumferential direction, the radial outer diameter or the diameter in the slot 925 is different from that in the configuration in which the radial dimensions of the slots 925 are different in the circumferential direction (for example, the configuration of FIG. 107). It is possible to make it difficult to generate excess space inside in the direction, and it is possible to make the assembly of the partial winding 931 more suitable.
  • a flange portion 951 extending in the circumferential direction is provided at the tip of the teeth 924 in the stator core 922 so as to narrow the opening of the slot 925.
  • the collar portion 951 is provided in a state in which the plastically deformed portion 952 at the tip of the tooth is plastically deformed.
  • the flange portion 951 may be formed by fixing the flange forming member 953 to the tip of the teeth of the stator core 922.
  • the flange portion 951 provided at the tip of the tooth can prevent the partial winding 931 from falling off. Further, the collar portion 951 is formed in a state where the plastically deformed portion 952 at the tip of the tooth is plastically deformed or a flange forming member 953 is fixed to the tip of the tooth, and is partially wound with respect to the stator core 922. A desired collar structure can be provided without causing any trouble in assembling the 931 from the radial direction.
  • the first teeth 924A having "the circumferential width W11 of the base end portion ⁇ the circumferential width W12 of the tip portion” and “the circumferential width W11 of the base end portion> the circumferential direction of the tip portion".
  • the circumferential width W11 of the first teeth 924A and the circumferential width W12 of the second teeth 924B are made the same, but this may be changed.
  • all the teeth 924 may have the same circumferential width W12 at the tip, or all the teeth 924 may have the same circumferential width W11 at the base end.
  • the configuration shown below can be used as a configuration for suppressing mutual interference between the partial windings 931.
  • the upper crossover portion shown in the drawing is provided so as to extend in the axial direction, and the lower crossover portion shown in the drawing is provided so as to be bent toward the radial core side.
  • the upper crossover portion is provided so as to be bent toward the radial opposite core side, and the lower crossover portion is provided so as to extend in the axial direction.
  • the upper crossover portion is provided so as to be bent toward the radial opposite core side, and the lower crossover portion is provided on the radial core side. It is bent and provided.
  • the partial windings 931A and 931B are assembled to the stator core 922 in a state of being offset from each other in the axial direction, and in that state, the crossovers are separated from each other in the axial direction, and the crossovers interfere with each other. Is designed to be avoided.
  • the upper crossover portion and the lower crossover portion are provided so as to be bent toward the radial core side.
  • the upper crossover portion and the lower crossover portion are provided so as to be bent toward the opposite core side in the radial direction.
  • the crossovers are separated from each other in the radial direction so that the crossovers do not interfere with each other.
  • the rotor 910 has a skew structure in which the magnetic pole positions of the magnet unit 912 are different in the circumferential direction in the axial direction. As a result, it is possible to realize a rotary electric machine 900 in which the cogging torque is suppressed while improving the space factor.
  • Specific skew structures for the rotor 910 are shown in FIGS. 113 (a) and 113 (b).
  • FIGS. 113 (a) and 113 (b) are front views of the rotor 910, and the figure shows only one pole of the magnet 913 of the magnet unit 912.
  • the rotor 910 shown in FIG. 113A has an oblique skew structure, and a magnet 913 is provided so as to obliquely change the circumferential position in the axial direction. Further, the rotor 910 shown in FIG. 113B has a step skew structure, and a magnet 913 is provided so as to change the circumferential position in the axial direction in a stepped manner.
  • the rotary electric machine 900 may be an outer rotor type rotary electric machine.
  • the outer rotor type in the stator 920, a plurality of teeth 924 are provided on the radial outside of the cylindrical yoke 923, and each partial winding 931 is assembled from the radial outside to the slot 925 between the teeth. Be done.
  • the stator winding may have a configuration having two-phase phase windings (U-phase winding and V-phase winding).
  • a pair of intermediate conductors 932 are provided at a distance corresponding to a two-slot pitch in the distance between the centers in the circumferential direction, and the pair of intermediate conductors 932 are provided. It suffices that one intermediate conducting wire portion 932 in the other one-phase partial winding 931 is arranged between the two.
  • rotating electric machines 700 and 900 it is also possible to adopt a rotating armature type rotating electric machine having an armature as a rotor instead of a rotating field type rotating electric machine using a field magnet as a rotor.
  • disclosure in this specification is not limited to the illustrated embodiments.
  • the disclosure includes exemplary embodiments and modifications by those skilled in the art based on them.
  • disclosure is not limited to the parts and / or element combinations shown in the embodiments. Disclosure can be carried out in various combinations.
  • the disclosure can have additional parts that can be added to the embodiments. Disclosures include those in which the parts and / or elements of the embodiment are omitted. Disclosures include the replacement or combination of parts and / or elements between one embodiment and another.
  • the technical scope disclosed is not limited to the description of the embodiments. Some technical scopes disclosed are indicated by the claims description and should be understood to include all modifications within the meaning and scope equivalent to the claims statement.

Abstract

An armature core (922) comprises a cylindrical yoke (923) and a plurality of teeth (924), with a slot (925) formed between the teeth. In the armature core, a set of two slots, i.e., a first slot (925A) and a second slot (925B), is a slot pair (SP) in which a pair of intermediate conductor wire portions (932) of a partial winding are respectively accommodated. The first slot and the second slot are provided such that inner walls (941) thereof that are both on the inside in a circumferential direction are parallel or closer to each other on an anti-yoke side, and outer walls (942) thereof that are both on the outside in the circumferential direction are parallel to each other or farther from each other on the anti-yoke side, wherein each of the slots has a yoke-side circumferential width (W1) less than or equal to an anti-yoke-side circumferential width (W2). The pair of intermediate conductor wire portions are accommodated in the first slot and the second slot in proximity to and opposing the inner walls and the outer walls.

Description

回転電機Rotating machine 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年11月27日に出願された日本出願番号2019-214098号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese application number 2019-214098, which was filed on November 27, 2019, and the contents of the description are incorporated herein by reference.
 この明細書における開示は、回転電機に関する。 The disclosure in this specification relates to a rotary electric machine.
 従来、周方向に極性が交互となる複数の磁極を有する磁石部を含む界磁子と、多相の電機子巻線を有する電機子と、を備える回転電機が知られている。また、例えば特許文献1には、相ごとに設けられた集中巻コイル(短節集中巻コイル)を電機子コアに取り付ける構成として、周方向に設けられた複数のティース間に、径方向内側に開口するスロット(溝)を形成し、そのスロットに対してコイルを組み入れるようにした構成が開示されている。具体的には回転電機において、ティースを、1つおきにそれぞれ長方形断面形状、台形断面形状とし、そのティース間に形成されたスロットに長方形断面のコイルを組み入れることで、スロット内の隙間を残さずにコイルを収容する構成としている。 Conventionally, a rotary electric machine including a field magnet including a magnet portion having a plurality of magnetic poles having alternating polarities in the circumferential direction and an armature having a multi-phase armature winding is known. Further, for example, in Patent Document 1, a concentrated winding coil (short-section concentrated winding coil) provided for each phase is attached to the armature core, and is provided in the radial direction between a plurality of teeth provided in the circumferential direction. A configuration is disclosed in which a slot (groove) to be opened is formed and a coil is incorporated in the slot. Specifically, in a rotary electric machine, every other tooth has a rectangular cross-sectional shape and a trapezoidal cross-sectional shape, and a coil having a rectangular cross section is incorporated in a slot formed between the teeth so as not to leave a gap in the slot. It is configured to accommodate the coil.
特表2009-528811号公報Special Table 2009-528811
 ところで、上記特許文献1に記載の回転電機は、電機子コアの単一のティースに対して、1つの集中巻コイルを巻装する構成であり、それら各コイルが周方向において互いに干渉することなく並べて配置される。しかしながら、電機子巻線として分布巻コイル(例えば全節集中巻コイル)を用いる場合には、それら各コイルを径方向に組み付ける際に、各コイルのコイルエンド部分が互いに干渉することが考えられる。つまり、分布巻コイルを用いる場合には、各コイルが2以上のティースを跨ぐように配置されることになり、周方向における互いの干渉が懸念される。そのため、電機子巻線として分布巻コイルを用いる回転電機において、技術改善の余地があると考えられる。 By the way, the rotary electric machine described in Patent Document 1 has a configuration in which one centralized winding coil is wound around a single tooth of an armature core, and the coils do not interfere with each other in the circumferential direction. Arranged side by side. However, when a distributed winding coil (for example, a centralized winding coil for all nodes) is used as the armature winding, it is conceivable that the coil end portions of the coils interfere with each other when the coils are assembled in the radial direction. That is, when a distributed winding coil is used, each coil is arranged so as to straddle two or more teeth, and there is a concern about mutual interference in the circumferential direction. Therefore, it is considered that there is room for technical improvement in a rotary electric machine that uses a distributed winding coil as an armature winding.
 本開示は、上記事情に鑑みてなされたものであり、電機子コアに対して電機子巻線を好適に組み付けることができる回転電機を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a rotary electric machine capable of suitably assembling an armature winding to an armature core.
 この明細書における開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。この明細書に開示される目的、特徴、および効果は、後続の詳細な説明、および添付の図面を参照することによってより明確になる。 The plurality of aspects disclosed herein employ different technical means to achieve their respective objectives. The objectives, features, and effects disclosed herein will be made clearer by reference to the subsequent detailed description and accompanying drawings.
 手段1は、
 周方向に極性が交互となる複数の磁極を含む磁石部を有する界磁子と、
 相あたり複数の部分巻線からなる相巻線を有する多相の電機子巻線と、前記電機子巻線に一体に設けられる電機子コアとを備える電機子と、
を備える回転電機であって、
 前記電機子コアは、円筒状のヨークと、該ヨークの径方向内側又は径方向外側において周方向に所定間隔で設けられた複数のティースとを有し、前記各ティースどうしの間に、径方向に延びるスロットが形成されており、
 前記部分巻線は、周方向に所定間隔を離して設けられる一対の中間導線部と、軸方向一端側及び他端側に設けられ前記一対の中間導線部を環状に接続する渡り部とを有し、前記スロットに前記中間導線部が収容され、かつ2以上の前記ティースを跨ぐように配置されるものであり、
 前記電機子コアにおいて2つ一組のスロットである第1スロット及び第2スロットが前記一対の中間導線部がそれぞれ収容されるスロット対であり、
 前記第1スロット及び前記第2スロットは、周方向に互いに内側となる内側壁どうしが平行又は反ヨーク側で互いに近づき、かつ周方向に互いに外側となる外側壁どうしが平行又は反ヨーク側で互いに遠ざかるように設けられ、それら各スロットにおける前記ヨーク側の周方向幅が、反ヨーク側の周方向幅以下の大きさとなっており、
 前記一対の中間導線部が、前記内側壁及び前記外側壁に近接対向した状態で前記第1スロット及び前記第2スロットに収容されており、
 周方向に隣り合いかつ一部が重複した状態で並べて配置された前記各部分巻線において前記渡り部が軸方向又は径方向に互いに離間している。
Means 1
A field magnet having a magnet portion containing a plurality of magnetic poles having alternating polarities in the circumferential direction,
An armature having a multi-phase armature winding having a phase winding composed of a plurality of partial windings per phase, and an armature core integrally provided with the armature winding.
It is a rotary electric machine equipped with
The armature core has a cylindrical yoke and a plurality of teeth provided at predetermined intervals in the circumferential direction on the radial inner side or the radial outer side of the yoke, and between the respective teeth in the radial direction. A slot extending to is formed,
The partial winding has a pair of intermediate conductor portions provided at predetermined intervals in the circumferential direction, and a crossover portion provided on one end side and the other end side in the axial direction to connect the pair of intermediate conductor portions in an annular shape. However, the intermediate conducting wire portion is housed in the slot, and is arranged so as to straddle two or more of the teeth.
In the armature core, the first slot and the second slot, which are a set of two slots, are a pair of slots in which the pair of intermediate conductors are housed.
In the first slot and the second slot, the inner side walls that are inside each other in the circumferential direction are parallel to each other or close to each other on the anti-yoke side, and the outer walls that are outward to each other in the circumferential direction are parallel to each other or on the anti-yoke side. It is provided so as to move away from each other, and the circumferential width of the yoke side in each of these slots is smaller than the circumferential width of the anti-yoke side.
The pair of intermediate conductors are housed in the first slot and the second slot in a state of being close to the inner side wall and the outer wall.
In each of the partial windings arranged side by side in a circumferential direction adjacent to each other and partially overlapping, the crossovers are separated from each other in the axial direction or the radial direction.
 上記構成の回転電機では、電機子コアにおいて、円筒状のヨークの径方向内側又は径方向外側には周方向に所定間隔で複数のティースが設けられており、各ティースどうしの間に、径方向に延びるスロットが形成されている。また、電機子巻線は、相ごとに、一対の中間導線部と渡り部とを含む複数の部分巻線を有し、その部分巻線は、スロットに中間導線部が収容され、かつ2以上のティースを跨ぐように配置されるものとなっている。この場合特に、部分巻線の一対の中間導線部が収容されるスロットは、2つ一組のスロット(第1スロット及び第2スロット)からなるスロット対であり、このスロット対に対して、径方向からの部分巻線の組み付けが可能となっている。具体的には、第1スロット及び第2スロットは、それら各スロットの内側壁どうしが平行又は反ヨーク側で互いに近づき、かつ外側壁どうしが平行又は反ヨーク側で互いに遠ざかるように設けられ、それら各スロットにおけるヨーク側の周方向幅(W1)が、反ヨーク側の周方向幅(W2)以下の大きさとなっている(図107参照)。そのため、内側壁どうしが反ヨーク側で互いに遠ざかるように設けられている構成や、外側壁どうしが反ヨーク側で互いに近づくように設けられている構成、各スロットにおけるヨーク側の周方向幅が反ヨーク側の周方向幅よりも大きい構成(W1>W2の構成)とは異なり、一対の中間導線部を、ティース先端側の角部との干渉を生じさせることなく、さらにスロット内に無駄なデッドスペースを生じさせることなく、一対の中間導線部を、スロット対の第1スロット及び第2スロットに収容することが可能になっている。つまり、各スロットにおいて内側壁及び外側壁に近接対向した状態で一対の中間導線部を収容することが可能になっている。 In the rotary electric machine having the above configuration, in the armature core, a plurality of teeth are provided at predetermined intervals in the circumferential direction on the radial inner side or the radial outer side of the cylindrical yoke, and between the teeth, the radial direction is provided. A slot extending to is formed. Further, the armature winding has a plurality of partial windings including a pair of intermediate conductors and a crossover for each phase, and the partial windings include two or more intermediate conductors in slots. It is arranged so as to straddle the teeth of. In this case, in particular, the slot in which the pair of intermediate conductors of the partial winding is housed is a slot pair consisting of a pair of slots (first slot and second slot), and the diameter is relative to this slot pair. It is possible to assemble partial windings from the direction. Specifically, the first slot and the second slot are provided so that the inner side walls of each of the slots are close to each other on the parallel or anti-yoke side, and the outer walls are separated from each other on the parallel or anti-yoke side. The circumferential width (W1) on the yoke side of each slot is smaller than the circumferential width (W2) on the anti-yoke side (see FIG. 107). Therefore, the inner side walls are provided so as to be separated from each other on the anti-yoke side, the outer walls are provided so as to be close to each other on the anti-yoke side, and the circumferential width of the yoke side in each slot is opposite. Unlike the configuration (W1> W2 configuration) that is larger than the circumferential width on the yoke side, the pair of intermediate conductors does not interfere with the corners on the tip side of the teeth, and there is unnecessary dead in the slot. A pair of intermediate lead wires can be accommodated in the first slot and the second slot of the slot pair without creating a space. That is, it is possible to accommodate a pair of intermediate conductors in each slot in a state of being close to the inner side wall and the outer wall.
 また、上記構成の電機子は、各部分巻線が2以上のティースを跨ぐように配置されるものであり、周方向に隣り合いかつ一部が重複した状態で並ぶ各部分巻線においてコイルエンド部分での干渉が懸念されるが、それら各部分巻線において渡り部が軸方向又は径方向に互いに離間しているため、部分巻線どうしの干渉を招くことなく各部分巻線を配置できる。その結果、電機子コアに対して電機子巻線を好適に組み付けることができる電機子の実現が可能になっている。 Further, in the armature having the above configuration, each partial winding is arranged so as to straddle two or more teeth, and the coil end is formed in each partial winding arranged adjacent to each other in the circumferential direction and partially overlapping. Although there is a concern about interference in the parts, since the crossovers are separated from each other in the axial direction or the radial direction in each of the partial windings, the partial windings can be arranged without causing interference between the partial windings. As a result, it has become possible to realize an armature in which the armature winding can be suitably assembled to the armature core.
 手段2では、手段1において、前記スロット対における前記第1スロットから前記第2スロットまでの範囲の周方向中心位置と電機子中心点とを通る直線を第1中心線、前記第1スロット及び前記第2スロットにおいて各々の周方向中心位置を通りかつ前記第1中心線に平行な直線を第2中心線とする場合に、前記第1スロット及び前記第2スロットにおいて前記第2中心線は互いに平行であり、かつ前記第1スロット及び前記第2スロットは、前記第2中心線に対して周方向に線対称で設けられている。 In the means 2, in the means 1, the first center line, the first slot, and the straight line passing through the circumferential center position in the range from the first slot to the second slot and the armature center point in the slot pair are defined as the first center line, the first slot, and the second slot. When a straight line passing through each circumferential center position in the second slot and parallel to the first center line is set as the second center line, the second center lines are parallel to each other in the first slot and the second slot. The first slot and the second slot are provided line-symmetrically in the circumferential direction with respect to the second center line.
 上記構成では、スロット対における第1中心線と、第1スロット及び第2スロットの各々の第2中心線とを互いに平行にすることで、そのスロット対に対する部分巻線の組み付けを好適に実現できる。つまり、部分巻線を第1中心線に沿って平行にスライドさせることで、部分巻線を好適に組み付けることができる。また、第1スロット及び第2スロットを、第1中心線に平行な第2中心線に対して周方向に線対称で設けることで、電機子コアにおいて周方向に並ぶ各ティースの大きさの均等化を図る上で有利な構成となっている。 In the above configuration, by making the first center line of the slot pair and the second center line of each of the first slot and the second slot parallel to each other, it is possible to suitably realize the assembly of the partial winding to the slot pair. .. That is, the partial winding can be suitably assembled by sliding the partial winding in parallel along the first center line. Further, by providing the first slot and the second slot symmetrically in the circumferential direction with respect to the second center line parallel to the first center line, the sizes of the teeth arranged in the circumferential direction in the armature core are equalized. It has an advantageous configuration for the purpose of conversion.
 手段3では、手段2において、前記第1スロット及び前記第2スロットの各々において前記内側壁及び前記外側壁は互いに平行であり、前記一対の中間導線部の周方向の側面は互いに平行である。 In the means 3, in the means 2, the inner side wall and the outer wall are parallel to each other in each of the first slot and the second slot, and the circumferential side surfaces of the pair of intermediate conductors are parallel to each other.
 上記構成では、各スロットが、周方向の幅が均一な平行スロットとして設けられている。また、部分巻線の各中間導線部が、周方向の幅が均一な平行導線として設けられている。この場合、各スロットを平行スロットとし、かつ各中間導線部を平行導線とすることで、電機子巻線の占積率の向上を図ることができる。 In the above configuration, each slot is provided as a parallel slot having a uniform width in the circumferential direction. Further, each intermediate conductor portion of the partial winding is provided as a parallel conductor having a uniform width in the circumferential direction. In this case, by making each slot a parallel slot and each intermediate conductor portion being a parallel conductor, it is possible to improve the space factor of the armature winding.
 また、各スロットを平行スロットとした構成では、スロット間のティースの形状や大きさを合わせ込むことが可能となり、各ティースでの鉄量の均等化を図る上で有利な構成となっている。 In addition, in the configuration where each slot is a parallel slot, it is possible to match the shape and size of the teeth between the slots, which is an advantageous configuration for equalizing the amount of iron in each tooth.
 手段4では、手段3において、前記部分巻線は、導体断面が四角形形状をなす角線を多重に巻回されることで構成されており、前記角線の集合体である導線集合部の横断面が四角形形状をなしている。 In the means 4, in the means 3, the partial winding is formed by winding a plurality of square wires having a quadrangular cross section of the conductor, and crosses the conductor collecting portion which is an aggregate of the square wires. The surface has a quadrangular shape.
 上記構成では、角線を多重に巻回してなる部分巻線を用い、その部分巻線において角線の集合体である導線集合部の横断面が四角形形状をなしているため、電機子巻線における一層の占積率向上を図ることができる。 In the above configuration, a partial winding formed by winding square wires in multiple directions is used, and since the cross section of the conductor assembly portion, which is an aggregate of square wires, has a quadrangular shape in the partial winding, the armature winding It is possible to further improve the space factor in.
 手段5では、手段2~4のいずれかにおいて、前記電機子コアにおいて周方向に並ぶ前記各ティースは、前記ヨーク側の基端部の周方向幅が反ヨーク側の先端部の周方向幅よりも小さい第1ティースと、前記基端部の周方向幅が前記先端部の周方向幅よりも大きい第2ティースとを含み、前記第1ティースにおける前記基端部の周方向幅と、前記第2ティースにおける前記先端部の周方向幅とが同一である。 In the means 5, in any of the means 2 to 4, the circumferential width of the base end portion on the yoke side of each of the teeth arranged in the circumferential direction in the armature core is larger than the circumferential width of the tip end portion on the anti-yoke side. A first tooth having a small size and a second tooth having a circumferential width of the base end portion larger than the circumferential width of the tip end portion are included, and the circumferential width of the base end portion in the first tooth and the first tooth. The width of the tip in the two teeth in the circumferential direction is the same.
 上記のとおり電機子コアの各スロットに対して部分巻線(詳しくは部分巻線の一対の中間導線部)を径方向から組み付け可能にする構成では、周方向に並ぶ各ティースの形態が均一でなくなり、「基端部の周方向幅<先端部の周方向幅」となる第1ティースと、「基端部の周方向幅>先端部の周方向幅」となる第2ティースとが含まれることとなる。そしてかかる構成において、第1ティースにおける基端部の周方向幅と、第2ティースにおける先端部の周方向幅とを同一にしたため、各スロットの周方向の最小幅を一様に合わせることができる。これにより、電機子コアにおいて局所的に磁気飽和が生じることを抑制でき、局所的な磁気飽和に起因する性能低下を抑制することができる。 As described above, in the configuration in which the partial winding (specifically, a pair of intermediate conductors of the partial winding) can be assembled to each slot of the armature core from the radial direction, the form of each tooth arranged in the circumferential direction is uniform. It includes the first tooth, which is "the circumferential width of the base end <the circumferential width of the tip portion", and the second tooth, which is "the circumferential width of the base end portion> the circumferential width of the tip portion". It will be. In such a configuration, since the circumferential width of the base end portion in the first teeth and the circumferential width of the tip portion in the second teeth are made the same, the minimum width in the circumferential direction of each slot can be uniformly matched. .. As a result, it is possible to suppress the occurrence of local magnetic saturation in the armature core, and it is possible to suppress the deterioration in performance due to the local magnetic saturation.
 手段6では、手段2~5のいずれかにおいて、前記スロットの前記ヨーク側の奥側壁が、前記電機子コアの反ヨーク側の内周面と同心の円に沿う向きで設けられている。 In the means 6, in any of the means 2 to 5, the back side wall on the yoke side of the slot is provided so as to be oriented along a circle concentric with the inner peripheral surface on the anti-yoke side of the armature core.
 上記構成によれば、スロットの径方向寸法(奥行き寸法)を周方向に同一にすることができる。これにより、スロット内において余剰スペースを生じさせることなく好適に部分巻線を配置することができる。 According to the above configuration, the radial dimension (depth dimension) of the slot can be made the same in the circumferential direction. As a result, the partial winding can be suitably arranged without creating an excess space in the slot.
 手段7では、手段1~6のいずれかにおいて、周方向に隣り合いかつ一部が重複した状態で並べて配置される前記各部分巻線として第1部分巻線及び第2部分巻線を用い、前記第1部分巻線では、前記渡り部が径方向内側又は径方向外側に折り曲げられ、前記第2部分巻線では、前記渡り部が、前記第1部分巻線の渡り部に対して軸方向又は径方向に離間する位置に設けられている。 In the means 7, in any of the means 1 to 6, the first partial winding and the second partial winding are used as the partial windings that are arranged side by side in a state of being adjacent to each other in the circumferential direction and partially overlapping. In the first partial winding, the cross section is bent radially inward or radially outward, and in the second partial winding, the cross section is axially relative to the cross section of the first partial winding. Alternatively, it is provided at a position separated in the radial direction.
 上記構成では、少なくとも第1部分巻線の渡り部が径方向内側又は径方向外側に折り曲げられ、第2部分巻線の渡り部が、第1部分巻線の渡り部に対して軸方向又は径方向に離間する位置に設けられているため、これら各部分巻線において渡り部どうしの干渉を好適に回避でき、組み付け性に優れる構成を実現できる。 In the above configuration, at least the crossover of the first partial winding is bent radially inward or radially outward, and the crossover of the second partial winding is axially or radially relative to the crossover of the first partial winding. Since it is provided at a position separated in the direction, interference between the crossovers can be suitably avoided in each of these partial windings, and a configuration excellent in assembling property can be realized.
 手段8では、手段1~7のいずれかにおいて、前記ティースの先端に、前記スロットの開口部を狭めるように周方向に延びる鍔部を有しており、前記鍔部は、ティース先端の塑性変形部が塑性変形された状態、又はティース先端に鍔形成部材が固定された状態で形成されている。 In the means 8, in any of the means 1 to 7, the tip of the tooth has a flange portion extending in the circumferential direction so as to narrow the opening of the slot, and the flange portion is plastically deformed at the tip of the tooth. The portion is plastically deformed, or the flange forming member is fixed to the tip of the tooth.
 上記構成では、ティース先端に設けられた鍔部によりスロットの開口部が狭められており、部分巻線の脱落等を抑制できるものとなっている。また、鍔部は、ティース先端の塑性変形部が塑性変形された状態、又はティース先端に鍔形成部材が固定された状態で形成されており、電機子コアに対して部分巻線が径方向から組み付けられることに何ら支障を及ぼすことなく所望の鍔構造を設けることができる。 In the above configuration, the opening of the slot is narrowed by the flange provided at the tip of the tooth, and it is possible to prevent the partial winding from falling off. Further, the collar portion is formed in a state where the plastically deformed portion at the tip of the tooth is plastically deformed, or a state where the collar forming member is fixed to the tip of the tooth, and the partial winding is from the radial direction with respect to the armature core. A desired collar structure can be provided without any hindrance to assembly.
 手段9では、手段1~8のいずれかにおいて、前記部分巻線は、1極対において相ごとに1つずつ設けられている。 In the means 9, in any of the means 1 to 8, the partial winding is provided one for each phase in a one-pole pair.
 上記構成では、1極対において相ごとに1つずつの割合で部分巻線が設けられており、電機子コアで言えば、周方向において1相1極あたり1個の割合でスロットが設けられるシングルスロット仕様となっている。この場合、例えばダブルスロット仕様とする構成とは異なり、少なくとも2種類の部分巻線を用いれば、部分巻線どうしの干渉の回避が可能となり、製造の観点からしても有利な構成を実現することができる。 In the above configuration, one partial winding is provided for each phase in one pole pair, and in the armature core, one slot is provided for each phase in the circumferential direction. It is a single slot specification. In this case, for example, unlike the configuration of the double slot specification, if at least two types of partial windings are used, it is possible to avoid interference between the partial windings, and a configuration advantageous from the viewpoint of manufacturing is realized. be able to.
 手段10では、手段9において、前記界磁子は、軸方向において、前記磁石部における磁極位置を周方向に異ならせたスキュー構造を有している。 In the means 10, in the means 9, the field magnet has a skew structure in which the magnetic pole positions in the magnet portion are different in the circumferential direction in the axial direction.
 シングルスロット仕様の電機子ではコギングトルクが課題となるが、界磁子がスキュー構造を有していることにより、コギングトルクの低減が可能となる。これにより、占積率を向上しつつコギングトルクを抑制した回転電機を実現できる。 Cogging torque is an issue for single-slot armatures, but the field magnet has a skew structure, which makes it possible to reduce cogging torque. As a result, it is possible to realize a rotary electric machine in which the cogging torque is suppressed while improving the space factor.
 界磁子のスキュー構造としては、軸方向において周方向位置を斜めに変化させるようにして永久磁石を設けた斜めスキュー構造、又は軸方向において周方向位置を段差状に変化させるようにして永久磁石を設けた段スキュー構造とするとよい。 As the skew structure of the field magnet, a diagonal skew structure in which a permanent magnet is provided so as to change the circumferential position diagonally in the axial direction, or a permanent magnet in which the circumferential position is changed in a stepped shape in the axial direction. It is preferable to use a step skew structure provided with.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、回転電機の縦断面斜視図であり、 図2は、回転電機の縦断面図であり、 図3は、図2のIII-III線断面図であり、 図4は、図3の一部を拡大して示す断面図であり、 図5は、回転電機の分解図であり、 図6は、インバータユニットの分解図であり、 図7は、固定子巻線のアンペアターンとトルク密度との関係を示すトルク線図であり、 図8は、回転子及び固定子の横断面図であり、 図9は、図8の一部を拡大して示す図であり、 図10は、固定子の横断面図であり、 図11は、固定子の縦断面図であり、 図12は、固定子巻線の斜視図であり、 図13は、導線の構成を示す斜視図であり、 図14は、素線の構成を示す模式図であり、 図15は、n層目における各導線の形態を示す図であり、 図16は、n層目とn+1層目の各導線を示す側面図であり、 図17は、実施形態の磁石について電気角と磁束密度との関係を示す図であり、 図18は、比較例の磁石について電気角と磁束密度との関係を示す図であり、 図19は、回転電機の制御システムの電気回路図であり、 図20は、制御装置による電流フィードバック制御処理を示す機能ブロック図であり、 図21は、制御装置によるトルクフィードバック制御処理を示す機能ブロック図であり、 図22は、第2実施形態における回転子及び固定子の横断面図であり、 図23は、図22の一部を拡大して示す図であり、 図24は、磁石ユニットにおける磁束の流れを具体的に示す図であり、 図25は、変形例1における固定子の断面図であり、 図26は、変形例1における固定子の断面図であり、 図27は、変形例2における固定子の断面図であり、 図28は、変形例3における固定子の断面図であり、 図29は、変形例4における固定子の断面図であり、 図30は、変形例7における回転子及び固定子の横断面図であり、 図31は、変形例8において操作信号生成部の処理の一部を示す機能ブロック図であり、 図32は、キャリア周波数変更処理の手順を示すフローチャートであり、 図33は、変形例9において導線群を構成する各導線の接続形態を示す図であり、 図34は、変形例9において4対の導線が積層配置されている構成を示す図であり、 図35は、変形例10においてインナロータ型の回転子及び固定子の横断面図であり、 図36は、図35の一部を拡大して示す図であり、 図37は、インナロータ型の回転電機の縦断面図であり、 図38は、インナロータ型の回転電機の概略構成を示す縦断面図であり、 図39は、変形例11においてインナロータ構造の回転電機の構成を示す図であり、 図40は、変形例11においてインナロータ構造の回転電機の構成を示す図であり、 図41は、変形例12において回転電機子形の回転電機の構成を示す図であり、 図42は、変形例14における導線の構成を示す断面図であり、 図43は、リラクタンストルク、磁石トルク及びDMの関係を示す図であり、 図44は、ティースを示す図であり、 図45は、インホイールモータ構造の車輪及びその周辺構造を示す斜視図であり、 図46は、車輪及びその周辺構造の縦断面図であり、 図47は、車輪の分解斜視図であり、 図48は、回転電機を回転軸の突出側から見た側面図であり、 図49は、図48の49-49線断面図であり、 図50は、図49の50-50線断面図であり、 図51は、回転電機の分解断面図であり、 図52は、回転子の部分断面図であり、 図53は、固定子巻線及び固定子コアの斜視図であり、 図54は、固定子巻線を平面状に展開して示す正面図であり、 図55は、導線のスキューを示す図であり、 図56は、インバータユニットの分解断面図であり、 図57は、インバータユニットの分解断面図であり、 図58は、インバータハウジングでの各電気モジュールの配置の状態を示す図であり、 図59は、電力変換器の電気的構成を示す回路図であり、 図60は、スイッチモジュールの冷却構造例を示す図であり、 図61は、スイッチモジュールの冷却構造例を示す図であり、 図62は、スイッチモジュールの冷却構造例を示す図であり、 図63は、スイッチモジュールの冷却構造例を示す図であり、 図64は、スイッチモジュールの冷却構造例を示す図であり、 図65は、冷却水通路に対する各電気モジュールの配列順序を示す図であり、 図66は、図49の66-66線断面図であり、 図67は、図49の67-67線断面図であり、 図68は、バスバーモジュールを単体で示す斜視図であり、 図69は、各電気モジュールとバスバーモジュールとの電気的な接続状態を示す図であり、 図70は、各電気モジュールとバスバーモジュールとの電気的な接続状態を示す図であり、 図71は、各電気モジュールとバスバーモジュールとの電気的な接続状態を示す図であり、 図72は、インホイールモータにおける変形例1を説明するための構成図であり、 図73は、インホイールモータにおける変形例2を説明するための構成図であり、 図74は、インホイールモータにおける変形例3を説明するための構成図であり、 図75は、インホイールモータにおける変形例4を説明するための構成図であり、 図76は、変形例15における回転電機の全体を示す斜視図であり、 図77は、回転電機の縦断面図であり、 図78は、回転電機の分解断面図であり、 図79は、回転子の断面図であり、 図80は、磁石ユニットの断面構造を示す部分断面図であり、 図81は、磁石ユニットの一部を拡大して示す部分断面図であり、 図82は、固定子の構成を示す斜視図であり、 図83は、固定子巻線と固定子コアとを分解して示す斜視図であり、 図84は、各相の相巻線のうちU相巻線に相当する構成のみを示す斜視図であり、 図85は、固定子の縦断面図であり、 図86は、3相の各相巻線における部分巻線の接続状態を示す回路図であり、 図87は、コイルモジュールの構成を示す図であり、 図88は、コイルモジュールの構成を示す図であり、 図89は、コイルモジュールの構成を示す図であり、 図90は、コイルモジュールの構成を示す図であり、 図91は、固定子の縦断面を示す断面図であり、 図92は、固定子の横断面を示す断面図であり、 図93は、固定子コア及びエンドリングとコイルモジュールとを互いに分離して示す断面図であり、 図94は、インナユニットの縦断面図であり、 図95は、インナユニットの縦断面図であり、 図96は、バスバーモジュールの斜視図であり、 図97は、バスバーモジュールの縦断面の一部を示す断面図であり、 図98は、各バスバーに対する接続端子の接続位置を示す略図であり、 図99は、部分巻線における導線の巻回順序を示す図であり、 図100は、コイルモジュールの構成を示す図であり、 図101は、変形例16における回転電機の構成を示す縦断面図であり、 図102は、回転電機の横断面図であり、 図103は、回転電機の構成の一部を拡大して示す横断面図であり、 図104は、部分巻線の構成を示す斜視図であり、 図105は、第1部分巻線及び第2部分巻線を横に並べて対比して示す側面図であり、 図106は、図104(a)における106-106線断面図であり、 図107は、固定子コアに対する部分巻線の組み付けの構成を示す概略図であり、 図108は、固定子コアに対する部分巻線の組み付けを説明するための概略図であり、 図109は、固定子コアに対する部分巻線の組み付けの構成を示す概略図であり、 図110は、固定子コアに対する部分巻線の組み付けの構成を示す概略図であり、 図111は、固定子コアに対する部分巻線の組み付けの構成を示す概略図であり、 図112は、部分巻線の構成を説明するための概略図であり、 図113は、回転子のスキュー構造を説明するための概略図である。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a vertical cross-sectional perspective view of a rotary electric machine. FIG. 2 is a vertical cross-sectional view of the rotary electric machine. FIG. 3 is a sectional view taken along line III-III of FIG. FIG. 4 is a cross-sectional view showing a part of FIG. 3 in an enlarged manner. FIG. 5 is an exploded view of the rotary electric machine. FIG. 6 is an exploded view of the inverter unit. FIG. 7 is a torque diagram showing the relationship between the ampere turn of the stator winding and the torque density. FIG. 8 is a cross-sectional view of the rotor and the stator. FIG. 9 is an enlarged view of a part of FIG. FIG. 10 is a cross-sectional view of the stator. FIG. 11 is a vertical cross-sectional view of the stator. FIG. 12 is a perspective view of the stator winding. FIG. 13 is a perspective view showing the configuration of the conducting wire. FIG. 14 is a schematic view showing the configuration of the strands. FIG. 15 is a diagram showing the morphology of each conducting wire in the nth layer. FIG. 16 is a side view showing the conductors of the nth layer and the n + 1th layer. FIG. 17 is a diagram showing the relationship between the electric angle and the magnetic flux density of the magnet of the embodiment. FIG. 18 is a diagram showing the relationship between the electric angle and the magnetic flux density of the magnet of the comparative example. FIG. 19 is an electric circuit diagram of the control system of the rotary electric machine. FIG. 20 is a functional block diagram showing a current feedback control process by the control device. FIG. 21 is a functional block diagram showing torque feedback control processing by the control device. FIG. 22 is a cross-sectional view of the rotor and the stator according to the second embodiment. FIG. 23 is an enlarged view of a part of FIG. 22. FIG. 24 is a diagram specifically showing the flow of magnetic flux in the magnet unit. FIG. 25 is a cross-sectional view of the stator in the first modification. FIG. 26 is a cross-sectional view of the stator in the first modification. FIG. 27 is a cross-sectional view of the stator in the modified example 2. FIG. 28 is a cross-sectional view of the stator in the modified example 3. FIG. 29 is a cross-sectional view of the stator in the modified example 4. FIG. 30 is a cross-sectional view of the rotor and the stator in the modified example 7. FIG. 31 is a functional block diagram showing a part of the processing of the operation signal generation unit in the modified example 8. FIG. 32 is a flowchart showing the procedure of the carrier frequency change process. FIG. 33 is a diagram showing a connection form of each of the conductors constituting the conductor group in the modified example 9. FIG. 34 is a diagram showing a configuration in which four pairs of conducting wires are stacked and arranged in the modified example 9. FIG. 35 is a cross-sectional view of the inner rotor type rotor and stator in the modified example 10. FIG. 36 is an enlarged view of a part of FIG. 35. FIG. 37 is a vertical sectional view of an inner rotor type rotary electric machine. FIG. 38 is a vertical cross-sectional view showing a schematic configuration of an inner rotor type rotary electric machine. FIG. 39 is a diagram showing a configuration of a rotary electric machine having an inner rotor structure in the modified example 11. FIG. 40 is a diagram showing a configuration of a rotary electric machine having an inner rotor structure in the modified example 11. FIG. 41 is a diagram showing a configuration of a rotary armature type rotary electric machine in the modified example 12. FIG. 42 is a cross-sectional view showing the configuration of the conducting wire in the modified example 14. FIG. 43 is a diagram showing the relationship between the reluctance torque, the magnet torque, and the DM. FIG. 44 is a diagram showing teeth. FIG. 45 is a perspective view showing a wheel having an in-wheel motor structure and its peripheral structure. FIG. 46 is a vertical cross-sectional view of the wheel and its peripheral structure. FIG. 47 is an exploded perspective view of the wheel. FIG. 48 is a side view of the rotary electric machine as viewed from the protruding side of the rotating shaft. FIG. 49 is a cross-sectional view taken along the line 49-49 of FIG. 48. FIG. 50 is a cross-sectional view taken along the line 50-50 of FIG. 49. FIG. 51 is an exploded sectional view of the rotary electric machine. FIG. 52 is a partial cross-sectional view of the rotor. FIG. 53 is a perspective view of the stator winding and the stator core. FIG. 54 is a front view showing the stator winding developed in a plane. FIG. 55 is a diagram showing the skew of the conductor. FIG. 56 is an exploded sectional view of the inverter unit. FIG. 57 is an exploded sectional view of the inverter unit. FIG. 58 is a diagram showing a state of arrangement of each electric module in the inverter housing. FIG. 59 is a circuit diagram showing the electrical configuration of the power converter. FIG. 60 is a diagram showing an example of a cooling structure of the switch module. FIG. 61 is a diagram showing an example of a cooling structure of the switch module. FIG. 62 is a diagram showing an example of a cooling structure of the switch module. FIG. 63 is a diagram showing an example of a cooling structure of the switch module. FIG. 64 is a diagram showing an example of a cooling structure of the switch module. FIG. 65 is a diagram showing the arrangement order of each electric module with respect to the cooling water passage. FIG. 66 is a cross-sectional view taken along the line 66-66 of FIG. 49. FIG. 67 is a cross-sectional view taken along the line 67-67 of FIG. 49. FIG. 68 is a perspective view showing the bus bar module as a single unit. FIG. 69 is a diagram showing an electrical connection state between each electric module and the bus bar module. FIG. 70 is a diagram showing an electrical connection state between each electric module and the bus bar module. FIG. 71 is a diagram showing an electrical connection state between each electric module and the bus bar module. FIG. 72 is a configuration diagram for explaining a modification 1 of the in-wheel motor. FIG. 73 is a configuration diagram for explaining a modification 2 of the in-wheel motor. FIG. 74 is a configuration diagram for explaining a modification 3 of the in-wheel motor. FIG. 75 is a configuration diagram for explaining a modification 4 of the in-wheel motor. FIG. 76 is a perspective view showing the entire rotary electric machine in the modified example 15. FIG. 77 is a vertical cross-sectional view of the rotary electric machine. FIG. 78 is an exploded sectional view of the rotary electric machine. FIG. 79 is a cross-sectional view of the rotor. FIG. 80 is a partial cross-sectional view showing the cross-sectional structure of the magnet unit. FIG. 81 is a partial cross-sectional view showing a part of the magnet unit in an enlarged manner. FIG. 82 is a perspective view showing the configuration of the stator. FIG. 83 is a perspective view showing the stator winding and the stator core in an exploded manner. FIG. 84 is a perspective view showing only the configuration corresponding to the U-phase winding among the phase windings of each phase. FIG. 85 is a vertical cross-sectional view of the stator. FIG. 86 is a circuit diagram showing a connection state of partial windings in each of the three-phase windings. FIG. 87 is a diagram showing the configuration of the coil module. FIG. 88 is a diagram showing the configuration of the coil module. FIG. 89 is a diagram showing the configuration of the coil module. FIG. 90 is a diagram showing the configuration of the coil module. FIG. 91 is a cross-sectional view showing a vertical cross section of the stator. FIG. 92 is a cross-sectional view showing a cross section of the stator. FIG. 93 is a cross-sectional view showing the stator core, the end ring, and the coil module separated from each other. FIG. 94 is a vertical sectional view of the inner unit. FIG. 95 is a vertical sectional view of the inner unit. FIG. 96 is a perspective view of the bus bar module. FIG. 97 is a cross-sectional view showing a part of the vertical cross section of the bus bar module. FIG. 98 is a schematic diagram showing the connection positions of the connection terminals for each bus bar. FIG. 99 is a diagram showing the winding order of the conducting wires in the partial winding. FIG. 100 is a diagram showing the configuration of the coil module. FIG. 101 is a vertical cross-sectional view showing the configuration of the rotary electric machine in the modified example 16. FIG. 102 is a cross-sectional view of the rotary electric machine. FIG. 103 is an enlarged cross-sectional view showing a part of the configuration of the rotary electric machine. FIG. 104 is a perspective view showing the configuration of the partial winding. FIG. 105 is a side view showing the first partial winding and the second partial winding side by side in comparison. FIG. 106 is a cross-sectional view taken along the line 106-106 in FIG. 104 (a). FIG. 107 is a schematic view showing the configuration of the assembly of the partial winding with respect to the stator core. FIG. 108 is a schematic view for explaining the assembly of the partial winding with respect to the stator core. FIG. 109 is a schematic view showing the configuration of the assembly of the partial winding with respect to the stator core. FIG. 110 is a schematic view showing the configuration of the assembly of the partial winding with respect to the stator core. FIG. 111 is a schematic view showing the configuration of the assembly of the partial winding with respect to the stator core. FIG. 112 is a schematic view for explaining the configuration of the partial winding. FIG. 113 is a schematic view for explaining the skew structure of the rotor.
 図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的におよび/または構造的に対応する部分および/または関連付けられる部分には同一の参照符号、または百以上の位が異なる参照符号が付される場合がある。対応する部分および/又は関連付けられる部分については、他の実施形態の説明を参照することができる。 A plurality of embodiments will be described with reference to the drawings. In a plurality of embodiments, functionally and / or structurally corresponding parts and / or related parts may be designated with the same reference code or reference codes having a hundreds or more different digits. References can be made to the description of other embodiments for the corresponding and / or associated parts.
 本実施形態における回転電機は、例えば車両動力源として用いられるものとなっている。ただし、回転電機は、産業用、車両用、家電用、OA機器用、遊技機用などとして広く用いられることが可能となっている。なお、以下の各実施形態相互において、互いに同一又は均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。 The rotary electric machine in this embodiment is used as a vehicle power source, for example. However, the rotary electric machine can be widely used for industrial use, vehicle use, home appliance use, OA equipment use, game machine use, and the like. In each of the following embodiments, parts that are the same or equal to each other are designated by the same reference numerals in the drawings, and the description thereof will be incorporated for the parts having the same reference numerals.
 (第1実施形態)
 本実施形態に係る回転電機10は、同期式多相交流モータであり、アウタロータ構造(外転構造)のものとなっている。回転電機10の概要を図1乃至図5に示す。図1は、回転電機10の縦断面斜視図であり、図2は、回転電機10の回転軸11に沿う方向での縦断面図であり、図3は、回転軸11に直交する方向での回転電機10の横断面図(図2のIII-III線断面図)であり、図4は、図3の一部を拡大して示す断面図であり、図5は、回転電機10の分解図である。なお、図3では、図示の都合上、回転軸11を除き、切断面を示すハッチングを省略している。以下の記載では、回転軸11が延びる方向を軸方向とし、回転軸11の中心から放射状に延びる方向を径方向とし、回転軸11を中心として円周状に延びる方向を周方向としている。
(First Embodiment)
The rotary electric machine 10 according to the present embodiment is a synchronous multi-phase AC motor and has an outer rotor structure (abduction structure). The outline of the rotary electric machine 10 is shown in FIGS. 1 to 5. FIG. 1 is a vertical sectional perspective view of the rotary electric machine 10, FIG. 2 is a vertical sectional view of the rotary electric machine 10 in a direction along the rotation axis 11, and FIG. 3 is a vertical sectional view in a direction orthogonal to the rotation axis 11. It is a cross-sectional view of the rotary electric machine 10 (a cross-sectional view taken along line III-III of FIG. 2), FIG. 4 is an enlarged cross-sectional view of a part of FIG. 3, and FIG. Is. In FIG. 3, for convenience of illustration, the hatching indicating the cut surface is omitted except for the rotating shaft 11. In the following description, the direction in which the rotating shaft 11 extends is the axial direction, the direction extending radially from the center of the rotating shaft 11 is the radial direction, and the direction extending radially around the rotating shaft 11 is the circumferential direction.
 回転電機10は、大別して、軸受ユニット20と、ハウジング30と、回転子40と、固定子50と、インバータユニット60とを備えている。これら各部材は、いずれも回転軸11と共に同軸上に配置され、所定順序で軸方向に組み付けられることで回転電機10が構成されている。本実施形態の回転電機10は、「界磁子」としての回転子40と、「電機子」としての固定子50とを有する構成となっており、回転界磁形の回転電機として具体化されるものとなっている。 The rotary electric machine 10 is roughly classified into a bearing unit 20, a housing 30, a rotor 40, a stator 50, and an inverter unit 60. Each of these members is arranged coaxially with the rotating shaft 11 and is assembled in the axial direction in a predetermined order to form the rotating electric machine 10. The rotary electric machine 10 of the present embodiment has a configuration having a rotor 40 as a "field magnet" and a stator 50 as an "armature", and is embodied as a rotary field type rotary electric machine. It has become a thing.
 軸受ユニット20は、軸方向に互いに離間して配置される2つの軸受21,22と、その軸受21,22を保持する保持部材23とを有している。軸受21,22は、例えばラジアル玉軸受であり、それぞれ外輪25と、内輪26と、それら外輪25及び内輪26の間に配置された複数の玉27とを有している。保持部材23は円筒状をなしており、その径方向内側に軸受21,22が組み付けられている。そして、軸受21,22の径方向内側に、回転軸11及び回転子40が回転自在に支持されている。軸受21,22により、回転軸11を回転可能に支持する一組の軸受が構成されている。 The bearing unit 20 has two bearings 21 and 22 arranged apart from each other in the axial direction, and a holding member 23 for holding the bearings 21 and 22. The bearings 21 and 22 are, for example, radial ball bearings, each of which has an outer ring 25, an inner ring 26, and a plurality of balls 27 arranged between the outer ring 25 and the inner ring 26. The holding member 23 has a cylindrical shape, and bearings 21 and 22 are assembled inside the holding member 23 in the radial direction. The rotating shaft 11 and the rotor 40 are rotatably supported inside the bearings 21 and 22 in the radial direction. Bearings 21 and 22 form a set of bearings that rotatably support the rotating shaft 11.
 各軸受21,22では、不図示のリテーナにより玉27が保持され、その状態で各玉同士のピッチが保たれている。軸受21,22は、リテーナの軸方向上下部に封止部材を有し、その内部に非導電性グリース(例えば非導電性のウレア系グリース)が充填されている。また、内輪26の位置がスペーサにより機械的に保持され、内側から上下方向に凸となる定圧予圧が施されている。 In each bearing 21 and 22, the balls 27 are held by retainers (not shown), and the pitch between the balls is maintained in that state. The bearings 21 and 22 have sealing members at the upper and lower portions in the axial direction of the retainer, and the inside thereof is filled with non-conductive grease (for example, non-conductive urea-based grease). Further, the position of the inner ring 26 is mechanically held by the spacer, and a constant pressure preload that is convex in the vertical direction from the inside is applied.
 ハウジング30は、円筒状をなす周壁31を有する。周壁31は、その軸方向に対向する第1端と第2端を有する。周壁31は、第1端に端面32と有するとともに、第2端に開口33を有する。開口33は、第2端の全体において開放されている。端面32には、その中央に円形の孔34が形成されており、その孔34に挿通させた状態で、ネジやリベット等の固定具により軸受ユニット20が固定されている。また、ハウジング30内、すなわち周壁31及び端面32により区画された内部スペースには、中空円筒状の回転子40と中空円筒状の固定子50とが収容されている。本実施形態では回転電機10がアウタロータ式であり、ハウジング30内には、筒状をなす回転子40の径方向内側に固定子50が配置されている。回転子40は、軸方向において端面32の側で回転軸11に片持ち支持されている。 The housing 30 has a cylindrical peripheral wall 31. The peripheral wall 31 has a first end and a second end facing each other in the axial direction thereof. The peripheral wall 31 has an end face 32 at the first end and an opening 33 at the second end. The opening 33 is open throughout the second end. A circular hole 34 is formed in the center of the end surface 32, and the bearing unit 20 is fixed by a fixing tool such as a screw or a rivet while being inserted through the hole 34. Further, a hollow cylindrical rotor 40 and a hollow cylindrical stator 50 are housed in the housing 30, that is, in the internal space partitioned by the peripheral wall 31 and the end surface 32. In the present embodiment, the rotary electric machine 10 is an outer rotor type, and a stator 50 is arranged inside the housing 30 in the radial direction of the cylindrical rotor 40. The rotor 40 is cantilevered by the rotating shaft 11 on the side of the end face 32 in the axial direction.
 回転子40は、中空筒状に形成された磁石ホルダ41と、その磁石ホルダ41の径方向内側に設けられた環状の磁石ユニット42とを有している。磁石ホルダ41は、略カップ状をなし、磁石保持部材としての機能を有する。磁石ホルダ41は、円筒状をなす円筒部43と、同じく円筒状をなしかつ円筒部43よりも小径の固定部(attachment)44と、それら円筒部43及び固定部44を繋ぐ部位となる中間部45とを有している。円筒部43の内周面に磁石ユニット42が取り付けられている。 The rotor 40 has a magnet holder 41 formed in a hollow tubular shape and an annular magnet unit 42 provided inside the magnet holder 41 in the radial direction. The magnet holder 41 has a substantially cup shape and has a function as a magnet holding member. The magnet holder 41 has a cylindrical portion 43 having a cylindrical shape, an attachment 44 having a cylindrical shape and a diameter smaller than that of the cylindrical portion 43, and an intermediate portion serving as a portion connecting the cylindrical portion 43 and the fixed portion 44. It has 45 and. A magnet unit 42 is attached to the inner peripheral surface of the cylindrical portion 43.
 なお、磁石ホルダ41は、機械強度が充分な冷間圧延鋼板(SPCC)や、鍛造用鋼、炭素繊維強化プラスチック(CFRP)等により構成されている。 The magnet holder 41 is made of a cold-rolled steel plate (SPCC) having sufficient mechanical strength, forging steel, carbon fiber reinforced plastic (CFRP), or the like.
 固定部44の貫通孔44aには回転軸11が挿通される。貫通孔44a内に配置された回転軸11に対して固定部44が固定されている。つまり、固定部44により、回転軸11に対して磁石ホルダ41が固定されている。なお、固定部44は、凹凸を利用したスプライン結合やキー結合、溶接、又はかしめ等により回転軸11に対して固定されているとよい。これにより、回転子40が回転軸11と一体に回転する。 The rotating shaft 11 is inserted through the through hole 44a of the fixing portion 44. The fixing portion 44 is fixed to the rotating shaft 11 arranged in the through hole 44a. That is, the magnet holder 41 is fixed to the rotating shaft 11 by the fixing portion 44. The fixing portion 44 may be fixed to the rotating shaft 11 by spline coupling, key coupling, welding, caulking, or the like using unevenness. As a result, the rotor 40 rotates integrally with the rotating shaft 11.
 また、固定部44の径方向外側には、軸受ユニット20の軸受21,22が組み付けられている。上述のとおり軸受ユニット20はハウジング30の端面32に固定されているため、回転軸11及び回転子40は、ハウジング30に回転可能に支持されるものとなっている。これにより、ハウジング30内において回転子40が回転自在となっている。 Further, bearings 21 and 22 of the bearing unit 20 are assembled on the radial outer side of the fixing portion 44. As described above, since the bearing unit 20 is fixed to the end surface 32 of the housing 30, the rotating shaft 11 and the rotor 40 are rotatably supported by the housing 30. As a result, the rotor 40 is rotatable in the housing 30.
 回転子40には、その軸方向に対向する二つの端部の一方にのみ固定部44が設けられており、これにより、回転子40が回転軸11に片持ち支持されている。ここで、回転子40の固定部44は、軸受ユニット20の軸受21,22により、軸方向に異なる2位置で回転可能に支持されている。すなわち、回転子40は、磁石ホルダ41の、その軸方向に対向する二つの端部の一方において、その軸方向に離間する二つの軸受21,22により回転可能に支持されている。そのため、回転子40が回転軸11に片持ち支持される構造であっても、回転子40の安定回転が実現されるようになっている。この場合、回転子40の軸方向中心位置に対して片側にずれた位置で、回転子40が軸受21,22により支持されている。 The rotor 40 is provided with a fixing portion 44 only on one of its two end portions facing in the axial direction, whereby the rotor 40 is cantilevered and supported by the rotating shaft 11. Here, the fixing portion 44 of the rotor 40 is rotatably supported by bearings 21 and 22 of the bearing unit 20 at two positions different in the axial direction. That is, the rotor 40 is rotatably supported by two bearings 21 and 22 which are separated from each other in the axial direction at one of the two end portions of the magnet holder 41 which face each other in the axial direction. Therefore, even if the rotor 40 is cantilevered and supported by the rotating shaft 11, stable rotation of the rotor 40 can be realized. In this case, the rotor 40 is supported by the bearings 21 and 22 at a position shifted to one side with respect to the axial center position of the rotor 40.
 また、軸受ユニット20において回転子40の中心寄り(図の下側)の軸受22と、その逆側(図の上側)の軸受21とは、外輪25及び内輪26と玉27との間の隙間寸法が相違しており、例えば回転子40の中心寄りの軸受22の方が、その逆側の軸受21よりも隙間寸法が大きいものとなっている。この場合、回転子40の中心寄りの側において、回転子40の振れや、部品公差に起因するインバランスによる振動が軸受ユニット20に作用しても、その振れや振動の影響が良好に吸収される。具体的には、回転子40の中心寄り(図の下側)の軸受22において予圧により遊び寸法(隙間寸法)を大きくしていることで、片持ち構造において生じる振動がその遊び部分により吸収される。前記予圧は、定位置予圧、又は定圧予圧のいずれであっても良い。定位置予圧の場合、軸受21と軸受22の外輪25はいずれも保持部材23に対して、圧入、又は接着等の方法を用いて接合されている。また、軸受21と軸受22の内輪26はいずれも回転軸11に対して、圧入、又は接着等の方法を用いて接合されている。ここで軸受21の外輪25を軸受21の内輪26に対して軸方向に異なる位置に配置する事で予圧を発生させることができる。軸受22の外輪25を軸受22の内輪26に対して軸方向に異なる位置に配置する事でも予圧を発生させることができる。 Further, in the bearing unit 20, the bearing 22 near the center of the rotor 40 (lower side in the figure) and the bearing 21 on the opposite side (upper side in the figure) are the gaps between the outer ring 25 and the inner ring 26 and the ball 27. The dimensions are different. For example, the bearing 22 near the center of the rotor 40 has a larger clearance dimension than the bearing 21 on the opposite side. In this case, even if vibration of the rotor 40 or vibration due to imbalance caused by component tolerance acts on the bearing unit 20 on the side closer to the center of the rotor 40, the influence of the vibration or vibration is well absorbed. Tolerant. Specifically, by increasing the play dimension (gap dimension) by preloading the bearing 22 near the center of the rotor 40 (lower side of the figure), the vibration generated in the cantilever structure is absorbed by the play portion. To. The preload may be either a fixed position preload or a constant pressure preload. In the case of fixed position preload, both the bearing 21 and the outer ring 25 of the bearing 22 are joined to the holding member 23 by a method such as press fitting or adhesion. Further, both the bearing 21 and the inner ring 26 of the bearing 22 are joined to the rotating shaft 11 by a method such as press fitting or adhesion. Here, the preload can be generated by arranging the outer ring 25 of the bearing 21 at different positions in the axial direction with respect to the inner ring 26 of the bearing 21. Preload can also be generated by arranging the outer ring 25 of the bearing 22 at different positions in the axial direction with respect to the inner ring 26 of the bearing 22.
 また定圧予圧を採用する場合には、軸方向において、軸受22と軸受21に挟まれた領域から軸受22の外輪25に向けて予圧が発生する様に予圧用バネ、例えばウェーブワッシャ24等を軸受22と軸受21に挟まれた同領域に配置する。この場合も、軸受21と軸受22の内輪26はいずれも回転軸11に対して、圧入、又は接着等の方法を用いて接合されている。軸受21、又は軸受22の外輪25は、保持部材23に対して所定のクリアランスを介して配置される。このような構成とすることで、軸受22の外輪25には軸受21から離れる方向に予圧用バネのバネ力が作用する。そして、この力が回転軸11を伝わることで、軸受21の内輪26を軸受22の方向に押し付ける力が作用する。これにより、軸受21,22ともに、外輪25と内輪26の軸方向の位置がずれ、前述した定位置予圧と同様に2つのベアリングに予圧を掛けることができる。 When a constant pressure preload is adopted, a preload spring, for example, a wave washer 24 or the like is bearing so that a preload is generated from the region sandwiched between the bearing 22 and the bearing 21 toward the outer ring 25 of the bearing 22 in the axial direction. It is arranged in the same region sandwiched between the 22 and the bearing 21. Also in this case, both the bearing 21 and the inner ring 26 of the bearing 22 are joined to the rotating shaft 11 by a method such as press fitting or bonding. The bearing 21 or the outer ring 25 of the bearing 22 is arranged with respect to the holding member 23 via a predetermined clearance. With such a configuration, the spring force of the preload spring acts on the outer ring 25 of the bearing 22 in the direction away from the bearing 21. Then, when this force is transmitted through the rotating shaft 11, a force that presses the inner ring 26 of the bearing 21 in the direction of the bearing 22 acts. As a result, the positions of the outer ring 25 and the inner ring 26 in the axial direction of both the bearings 21 and 22 are displaced, and the preload can be applied to the two bearings in the same manner as the above-mentioned fixed position preload.
 なお、定圧予圧を発生させる際には、必ずしも図2に示す様に軸受22の外輪25にバネ力を印加する必要は無い。例えば、軸受21の外輪25にバネ力を印加しても良い。また軸受21,22のいずれかの内輪26を回転軸11に対して所定のクリアランスを介して配置し、軸受21,22の外輪25を保持部材23に対して圧入、又は接着等の方法を用いて接合することで、2つのベアリングに予圧を掛けても良い。 When generating the constant pressure preload, it is not always necessary to apply the spring force to the outer ring 25 of the bearing 22 as shown in FIG. For example, a spring force may be applied to the outer ring 25 of the bearing 21. Further, the inner ring 26 of any of the bearings 21 and 22 is arranged with respect to the rotating shaft 11 through a predetermined clearance, and the outer ring 25 of the bearings 21 and 22 is press-fitted or bonded to the holding member 23. Preload may be applied to the two bearings by joining them together.
 更には、軸受21の内輪26が軸受22に対して離れるように力を作用させる場合には、軸受22の内輪26も軸受21に対して離れるように力を作用させる方が良い。逆に、軸受21の内輪26が軸受22に対して近づくように力を作用させる場合には、軸受22の内輪26も軸受21に対して近づくように力を作用させる方が良い。 Furthermore, when a force is applied so that the inner ring 26 of the bearing 21 is separated from the bearing 22, it is better to apply a force so that the inner ring 26 of the bearing 22 is also separated from the bearing 21. On the contrary, when the force is applied so that the inner ring 26 of the bearing 21 approaches the bearing 22, it is better to apply the force so that the inner ring 26 of the bearing 22 also approaches the bearing 21.
 なお、本回転電機10を車両動力源等の目的で車両に適用する場合には、予圧を発生させる機構に対して予圧の発生方向の成分を持つ振動が加わる可能性や、予圧を印加する対象物に掛る重力の方向が変動してしまう可能性がある。その為、本回転電機10を車両に適用する場合には、定位置予圧を採用することが望ましい。 When the rotary electric machine 10 is applied to a vehicle for the purpose of a vehicle power source or the like, there is a possibility that vibration having a component in the direction in which the preload is generated is applied to the mechanism for generating the preload, and a target to which the preload is applied. The direction of gravity on an object may fluctuate. Therefore, when applying the rotary electric machine 10 to a vehicle, it is desirable to adopt a fixed position preload.
 また、中間部45は、環状の内側肩部49aと環状の外側肩部49bを有する。外側肩部49bは、中間部45の径方向において内側肩部49aの外側に位置している。内側肩部49aと外側肩部49bは、中間部45の軸方向において互いに離間している。これにより、中間部45の径方向において、円筒部43と固定部44とは部分的に重複している。つまり、固定部44の基端部(図の下側の奥側端部)よりも軸方向外側に、円筒部43が突出するものとなっている。本構成では、中間部45が段差無しで平板状に設けられる場合に比べて、回転子40の重心近くの位置で、回転軸11に対して回転子40を支持させることが可能となり、回転子40の安定動作が実現できるものとなっている。 Further, the intermediate portion 45 has an annular inner shoulder portion 49a and an annular outer shoulder portion 49b. The outer shoulder portion 49b is located outside the inner shoulder portion 49a in the radial direction of the intermediate portion 45. The inner shoulder portion 49a and the outer shoulder portion 49b are separated from each other in the axial direction of the intermediate portion 45. As a result, the cylindrical portion 43 and the fixed portion 44 partially overlap in the radial direction of the intermediate portion 45. That is, the cylindrical portion 43 protrudes outward in the axial direction from the base end portion (lower end portion on the lower side of the figure) of the fixed portion 44. In this configuration, the rotor 40 can be supported with respect to the rotating shaft 11 at a position near the center of gravity of the rotor 40, as compared with the case where the intermediate portion 45 is provided in a flat plate shape without a step. The stable operation of 40 can be realized.
 上述した中間部45の構成によれば、回転子40には、径方向において固定部44を囲みかつ中間部45の内寄りとなる位置に、軸受ユニット20の一部を収容する軸受収容凹部46が環状に形成されるとともに、径方向において軸受収容凹部46を囲みかつ中間部45の外寄りとなる位置に、後述する固定子50の固定子巻線51のコイルエンド54を収容するコイル収容凹部47が形成されている。そして、これら各収容凹部46,47が、径方向の内外で隣り合うように配置されるようになっている。つまり、軸受ユニット20の一部と、固定子巻線51のコイルエンド54とが径方向内外に重複するように配置されている。これにより、回転電機10において軸方向の長さ寸法の短縮が可能となっている。 According to the configuration of the intermediate portion 45 described above, the rotor 40 has a bearing accommodating recess 46 that accommodates a part of the bearing unit 20 at a position that surrounds the fixing portion 44 in the radial direction and is inward of the intermediate portion 45. Is formed in an annular shape, and a coil accommodating recess that accommodates the coil end 54 of the stator winding 51 of the stator 50, which will be described later, at a position that surrounds the bearing accommodating recess 46 in the radial direction and is located on the outer side of the intermediate portion 45. 47 is formed. The accommodating recesses 46 and 47 are arranged so as to be adjacent to each other inside and outside in the radial direction. That is, a part of the bearing unit 20 and the coil end 54 of the stator winding 51 are arranged so as to overlap in and out in the radial direction. This makes it possible to shorten the axial length dimension in the rotary electric machine 10.
 中間部45は、回転軸11側から径方向外側に張り出すように設けられている。そして、その中間部45に、軸方向に延び、固定子50の固定子巻線51のコイルエンド54に対する接触を回避する接触回避部が設けられている。中間部45が張出部に相当する。 The intermediate portion 45 is provided so as to project radially outward from the rotation shaft 11 side. The intermediate portion 45 is provided with a contact avoiding portion that extends in the axial direction and avoids contact of the stator winding 51 of the stator 50 with respect to the coil end 54. The intermediate portion 45 corresponds to the overhanging portion.
 コイルエンド54は、径方向の内側又は外側に曲げられることで、そのコイルエンド54の軸方向寸法を小さくすることができ、固定子50の軸長を短縮することが可能である。コイルエンド54の曲げ方向は、回転子40との組み付けを考慮したものであるとよい。回転子40の径方向内側に固定子50を組み付けることを想定すると、その回転子40に対する挿入先端側では、コイルエンド54が径方向内側に曲げられるとよい。コイルエンド54の反対側のコイルエンドの曲げ方向は任意でよいが、空間的に余裕のある外側に曲げた形状が製造上好ましい。 By bending the coil end 54 inward or outward in the radial direction, the axial dimension of the coil end 54 can be reduced, and the axial length of the stator 50 can be shortened. The bending direction of the coil end 54 may be in consideration of assembly with the rotor 40. Assuming that the stator 50 is assembled inside the rotor 40 in the radial direction, the coil end 54 may be bent inward in the radial direction on the insertion tip side with respect to the rotor 40. The bending direction of the coil end on the opposite side of the coil end 54 may be arbitrary, but a shape in which the coil end is bent outward with a sufficient space is preferable in manufacturing.
 また、磁石部としての磁石ユニット42は、円筒部43の径方向内側において、周方向に沿って極性が交互に変わるように配置された複数の永久磁石により構成されている。これにより、磁石ユニット42は、周方向に複数の磁極を有する。ただし、磁石ユニット42の詳細については後述する。 Further, the magnet unit 42 as the magnet portion is composed of a plurality of permanent magnets arranged so as to alternately change the polarities along the circumferential direction inside the cylindrical portion 43 in the radial direction. As a result, the magnet unit 42 has a plurality of magnetic poles in the circumferential direction. However, the details of the magnet unit 42 will be described later.
 固定子50は、回転子40の径方向内側に設けられている。固定子50は、略筒状(環状)に巻回形成された固定子巻線51と、その径方向内側に配置されたベース部材としての固定子コア52とを有しており、固定子巻線51が、所定のエアギャップを挟んで円環状の磁石ユニット42に対向するように配置されている。固定子巻線51は複数の相巻線よりなる。それら各相巻線は、周方向に配列された複数の導線が所定ピッチで互いに接続されることで構成されている。本実施形態では、U相、V相及びW相の3相巻線と、X相、Y相及びZ相の3相巻線とを用い、それら3相の巻線を2つ用いることで、固定子巻線51が6相の相巻線として構成されている。 The stator 50 is provided inside the rotor 40 in the radial direction. The stator 50 has a stator winding 51 formed by winding in a substantially tubular shape (annular shape) and a stator core 52 as a base member arranged radially inside the stator winding. The wire 51 is arranged so as to face the annular magnet unit 42 with a predetermined air gap in between. The stator winding 51 is composed of a plurality of phase windings. Each of these phase windings is configured by connecting a plurality of conductors arranged in the circumferential direction to each other at a predetermined pitch. In the present embodiment, a U-phase, V-phase, and W-phase three-phase winding and an X-phase, Y-phase, and Z-phase three-phase winding are used, and two of these three-phase windings are used. The stator winding 51 is configured as a 6-phase phase winding.
 固定子コア52は、軟磁性材である電磁鋼板が積層された積層鋼板により円環状に形成されており、固定子巻線51の径方向内側に組み付けられている。電磁鋼板は、例えば鉄に数%程度(例えば3%)の珪素を添加した珪素鋼板である。固定子巻線51が電機子巻線に相当し、固定子コア52が電機子コアに相当する。 The stator core 52 is formed in an annular shape by laminated steel plates on which electromagnetic steel plates which are soft magnetic materials are laminated, and is assembled inside the stator winding 51 in the radial direction. The electromagnetic steel sheet is, for example, a silicon steel sheet in which about several% (for example, 3%) of silicon is added to iron. The stator winding 51 corresponds to the armature winding, and the stator core 52 corresponds to the armature core.
 固定子巻線51は、径方向において固定子コア52に重複する部分であり、かつ固定子コア52の径方向外側となるコイルサイド部53と、軸方向において固定子コア52の一端側及び他端側にそれぞれ張り出すコイルエンド54,55とを有している。コイルサイド部53は、径方向において固定子コア52と回転子40の磁石ユニット42にそれぞれ対向している。回転子40の内側に固定子50が配置された状態では、軸方向両側のコイルエンド54,55のうち軸受ユニット20の側(図の上側)となるコイルエンド54が、回転子40の磁石ホルダ41により形成されたコイル収容凹部47に収容されている。ただし、固定子50の詳細については後述する。 The stator winding 51 is a portion that overlaps the stator core 52 in the radial direction, and is a coil side portion 53 that is radially outside the stator core 52, and one end side of the stator core 52 and others in the axial direction. It has coil ends 54 and 55 overhanging on the end side, respectively. The coil side portion 53 faces the stator core 52 and the magnet unit 42 of the rotor 40 in the radial direction, respectively. When the stator 50 is arranged inside the rotor 40, the coil end 54 on the side of the bearing unit 20 (upper side in the figure) of the coil ends 54 and 55 on both sides in the axial direction is the magnet holder of the rotor 40. It is housed in the coil accommodating recess 47 formed by 41. However, the details of the stator 50 will be described later.
 インバータユニット60は、ハウジング30に対してボルト等の締結具により固定されるユニットベース61と、そのユニットベース61に組み付けられる複数の電気コンポーネント62とを有している。ユニットベース61は、例えば炭素繊維強化プラスチック(CFRP)により構成されている。ユニットベース61は、ハウジング30の開口33の縁に対して固定されるエンドプレート63と、そのエンドプレート63に一体に設けられ、軸方向に延びるケーシング64とを有している。エンドプレート63は、その中心部に円形の開口65を有しており、開口65の周縁部から起立するようにしてケーシング64が形成されている。 The inverter unit 60 has a unit base 61 fixed to the housing 30 by fasteners such as bolts, and a plurality of electrical components 62 assembled to the unit base 61. The unit base 61 is made of, for example, carbon fiber reinforced plastic (CFRP). The unit base 61 has an end plate 63 fixed to the edge of the opening 33 of the housing 30, and a casing 64 integrally provided with the end plate 63 and extending in the axial direction. The end plate 63 has a circular opening 65 at the center thereof, and the casing 64 is formed so as to stand up from the peripheral edge of the opening 65.
 ケーシング64の外周面には固定子50が組み付けられている。つまり、ケーシング64の外径寸法は、固定子コア52の内径寸法と同じか、又は固定子コア52の内径寸法よりも僅かに小さい寸法になっている。ケーシング64の外側に固定子コア52が組み付けられることで、固定子50とユニットベース61とが一体化されている。また、ユニットベース61がハウジング30に固定されることからすると、ケーシング64に固定子コア52が組み付けられた状態では、固定子50がハウジング30に対して一体化された状態となっている。 A stator 50 is assembled on the outer peripheral surface of the casing 64. That is, the outer diameter of the casing 64 is the same as the inner diameter of the stator core 52, or slightly smaller than the inner diameter of the stator core 52. By assembling the stator core 52 to the outside of the casing 64, the stator 50 and the unit base 61 are integrated. Further, since the unit base 61 is fixed to the housing 30, the stator 50 is integrated with the housing 30 when the stator core 52 is assembled to the casing 64.
 なお、固定子コア52は、ユニットベース61に対して接着、焼きばめ、圧入等により組み付けられているとよい。これにより、ユニットベース61側に対する固定子コア52の周方向又は軸方向の位置ずれが抑制される。 The stator core 52 may be assembled to the unit base 61 by adhesion, shrink fitting, press fitting, or the like. As a result, the displacement of the stator core 52 in the circumferential direction or the axial direction with respect to the unit base 61 side is suppressed.
 また、ケーシング64の径方向内側は、電気コンポーネント62を収容する収容空間となっており、その収容空間には、回転軸11を囲むようにして電気コンポーネント62が配置されている。ケーシング64は、収容空間形成部としての役目を有している。電気コンポーネント62は、インバータ回路を構成する半導体モジュール66や、制御基板67、コンデンサモジュール68を具備する構成となっている。 Further, the radial inside of the casing 64 is a storage space for accommodating the electric component 62, and the electric component 62 is arranged so as to surround the rotating shaft 11 in the accommodation space. The casing 64 has a role as a storage space forming portion. The electric component 62 includes a semiconductor module 66 constituting an inverter circuit, a control board 67, and a capacitor module 68.
 なお、ユニットベース61が、固定子50の径方向内側に設けられ、固定子50を保持する固定子ホルダ(電機子ホルダ)に相当する。ハウジング30及びユニットベース61により、回転電機10のモータハウジングが構成されている。このモータハウジングでは、回転子40を挟んで軸方向の一方側においてハウジング30に対して保持部材23が固定されるとともに、他方側においてハウジング30及びユニットベース61が互いに結合されている。例えば電気自動車である電動車両等においては、その車両等の側にモータハウジングが取り付けられることで、回転電機10が車両等に装着される。 The unit base 61 is provided inside the stator 50 in the radial direction and corresponds to a stator holder (armature holder) that holds the stator 50. The housing 30 and the unit base 61 constitute the motor housing of the rotary electric machine 10. In this motor housing, the holding member 23 is fixed to the housing 30 on one side in the axial direction with the rotor 40 interposed therebetween, and the housing 30 and the unit base 61 are coupled to each other on the other side. For example, in an electric vehicle or the like which is an electric vehicle, the rotary electric machine 10 is attached to the vehicle or the like by attaching a motor housing to the side of the vehicle or the like.
 ここで、上記図1~図5に加え、インバータユニット60の分解図である図6を用いて、インバータユニット60の構成をさらに説明する。 Here, in addition to FIGS. 1 to 5 above, the configuration of the inverter unit 60 will be further described with reference to FIG. 6, which is an exploded view of the inverter unit 60.
 ユニットベース61において、ケーシング64は、筒状部71と、その軸方向において対向する両端の一方(軸受ユニット20側の端部)に設けられた端面72とを有している。筒状部71の軸方向両端部のうち端面72の反対側は、エンドプレート63の開口65を通じて全面的に開放されている。端面72には、その中央に円形の孔73が形成されており、その孔73に回転軸11が挿通可能となっている。孔73には、回転軸11の外周面との間の空隙を封鎖するシール材171が設けられている。シール材171は、例えば樹脂材料よりなる摺動シールであるとよい。 In the unit base 61, the casing 64 has a tubular portion 71 and end faces 72 provided on one of both ends (ends on the bearing unit 20 side) facing each other in the axial direction thereof. Of both ends of the tubular portion 71 in the axial direction, the opposite side of the end surface 72 is completely opened through the opening 65 of the end plate 63. A circular hole 73 is formed in the center of the end surface 72, and the rotating shaft 11 can be inserted into the hole 73. The hole 73 is provided with a sealing material 171 that seals a gap between the rotating shaft 11 and the outer peripheral surface. The sealing material 171 may be, for example, a sliding seal made of a resin material.
 ケーシング64の筒状部71は、その径方向外側に配置される回転子40及び固定子50と、その径方向内側に配置される電気コンポーネント62との間を仕切る仕切り部となっており、筒状部71を挟んで径方向内外に、回転子40及び固定子50と電気コンポーネント62とが並ぶようにそれぞれ配置されている。 The tubular portion 71 of the casing 64 is a partition portion that partitions the rotor 40 and the stator 50 arranged on the outer side in the radial direction and the electric component 62 arranged on the inner side in the radial direction. The rotor 40, the stator 50, and the electrical component 62 are arranged side by side in and out of the radial direction with the shape portion 71 in between.
 また、電気コンポーネント62は、インバータ回路を構成する電気部品であり、固定子巻線51の各相巻線に対して所定順序で電流を流して回転子40を回転させる力行機能と、回転軸11の回転に伴い固定子巻線51に流れる3相交流電流を入力し、発電電力として外部に出力する発電機能とを有している。なお、電気コンポーネント62は、力行機能と発電機能とのうちいずれか一方のみを有するものであってもよい。発電機能は、例えば回転電機10が車両用動力源として用いられる場合、回生電力として外部に出力する回生機能である。 Further, the electric component 62 is an electric component constituting an inverter circuit, and has a power running function of passing a current through each phase winding of the stator winding 51 in a predetermined order to rotate the rotor 40, and a rotating shaft 11. It has a power generation function of inputting a three-phase AC current flowing through the stator winding 51 with the rotation of the stator winding 51 and outputting it to the outside as generated power. The electric component 62 may have only one of the power running function and the power generation function. The power generation function is, for example, a regenerative function that outputs regenerative power to the outside when the rotary electric machine 10 is used as a power source for a vehicle.
 電気コンポーネント62の具体的な構成として、図4に示すように、回転軸11の周りには、中空円筒状をなすコンデンサモジュール68が設けられており、そのコンデンサモジュール68の外周面上に、複数の半導体モジュール66が周方向に並べて配置されている。コンデンサモジュール68は、互いに並列接続された平滑用のコンデンサ68aを複数備えている。具体的には、コンデンサ68aは、複数枚のフィルムコンデンサが積層されてなる積層型フィルムコンデンサであり、横断面が台形状をなしている。コンデンサモジュール68は、12個のコンデンサ68aが環状に並べて配置されることで構成されている。 As a specific configuration of the electric component 62, as shown in FIG. 4, a hollow cylindrical capacitor module 68 is provided around the rotating shaft 11, and a plurality of capacitor modules 68 are provided on the outer peripheral surface of the capacitor module 68. The semiconductor modules 66 of the above are arranged side by side in the circumferential direction. The capacitor module 68 includes a plurality of smoothing capacitors 68a connected in parallel to each other. Specifically, the capacitor 68a is a laminated film capacitor in which a plurality of film capacitors are laminated, and has a trapezoidal cross section. The capacitor module 68 is configured by arranging twelve capacitors 68a side by side in an annular shape.
 なお、コンデンサ68aの製造過程においては、例えば、複数のフィルムが積層されてなる所定幅の長尺フィルムを用い、フィルム幅方向を台形高さ方向とし、かつ台形の上底と下底とが交互になるように長尺フィルムが等脚台形状に切断されることにより、コンデンサ素子が作られる。そして、そのコンデンサ素子に電極等を取り付けることでコンデンサ68aが作製される。 In the manufacturing process of the capacitor 68a, for example, a long film having a predetermined width in which a plurality of films are laminated is used, the film width direction is the trapezoidal height direction, and the upper bottom and the lower bottom of the trapezoid are alternately alternated. A capacitor element is made by cutting a long film into an isosceles trapezoidal shape so as to be. Then, a capacitor 68a is manufactured by attaching an electrode or the like to the capacitor element.
 半導体モジュール66は、例えばMOSFETやIGBT等の半導体スイッチング素子を有し、略板状に形成されている。本実施形態では、回転電機10が2組の3相巻線を備えており、その3相巻線ごとにインバータ回路が設けられていることから、計12個の半導体モジュール66を環状に並べて形成された半導体モジュール群66Aが電気コンポーネント62に設けられている。 The semiconductor module 66 has a semiconductor switching element such as a MOSFET or an IGBT, and is formed in a substantially plate shape. In the present embodiment, since the rotary electric machine 10 includes two sets of three-phase windings and an inverter circuit is provided for each of the three-phase windings, a total of 12 semiconductor modules 66 are formed by arranging them in an annular shape. The semiconductor module group 66A is provided in the electric component 62.
 半導体モジュール66は、ケーシング64の筒状部71とコンデンサモジュール68との間に挟まれた状態で配置されている。半導体モジュール群66Aの外周面は筒状部71の内周面に当接し、半導体モジュール群66Aの内周面はコンデンサモジュール68の外周面に当接している。この場合、半導体モジュール66で生じた熱は、ケーシング64を介してエンドプレート63に伝わり、エンドプレート63から放出される。 The semiconductor module 66 is arranged so as to be sandwiched between the tubular portion 71 of the casing 64 and the capacitor module 68. The outer peripheral surface of the semiconductor module group 66A is in contact with the inner peripheral surface of the tubular portion 71, and the inner peripheral surface of the semiconductor module group 66A is in contact with the outer peripheral surface of the capacitor module 68. In this case, the heat generated in the semiconductor module 66 is transferred to the end plate 63 via the casing 64 and released from the end plate 63.
 半導体モジュール群66Aは、外周面側、すなわち径方向において半導体モジュール66と筒状部71との間にスペーサ69を有しているとよい。この場合、コンデンサモジュール68では軸方向に直交する横断面の断面形状が正12角形である一方、筒状部71の内周面の横断面形状が円形であるため、スペーサ69は、内周面が平坦面、外周面が曲面となっている。スペーサ69は、半導体モジュール群66Aの径方向外側において円環状に連なるように一体に設けられていてもよい。スペーサ69は、良熱伝導体であり、例えばアルミニウム等の金属、又は放熱ゲルシート等であるとよい。なお、筒状部71の内周面の横断面形状をコンデンサモジュール68と同じ12角形にすることも可能である。この場合、スペーサ69の内周面及び外周面がいずれも平坦面であるとよい。 The semiconductor module group 66A may have a spacer 69 on the outer peripheral surface side, that is, in the radial direction between the semiconductor module 66 and the tubular portion 71. In this case, in the capacitor module 68, the cross-sectional shape of the cross section orthogonal to the axial direction is a regular dodecagon, while the cross-sectional shape of the inner peripheral surface of the tubular portion 71 is circular, so that the spacer 69 is an inner peripheral surface. Is a flat surface and the outer peripheral surface is a curved surface. The spacer 69 may be integrally provided so as to be connected in an annular shape on the radial outer side of the semiconductor module group 66A. The spacer 69 is a good thermal conductor, and may be, for example, a metal such as aluminum, a heat radiating gel sheet, or the like. It is also possible to make the cross-sectional shape of the inner peripheral surface of the tubular portion 71 into a dodecagonal shape, which is the same as that of the capacitor module 68. In this case, it is preferable that both the inner peripheral surface and the outer peripheral surface of the spacer 69 are flat surfaces.
 また、本実施形態では、ケーシング64の筒状部71に、冷却水を流通させる冷却水通路74が形成されており、半導体モジュール66で生じた熱は、冷却水通路74を流れる冷却水に対しても放出される。つまり、ケーシング64は水冷機構を備えている。図3や図4に示すように、冷却水通路74は、電気コンポーネント62(半導体モジュール66及びコンデンサモジュール68)を囲むように環状に形成されている。半導体モジュール66は筒状部71の内周面に沿って配置されており、その半導体モジュール66に対して径方向内外に重なる位置に冷却水通路74が設けられている。 Further, in the present embodiment, a cooling water passage 74 for flowing cooling water is formed in the tubular portion 71 of the casing 64, and the heat generated in the semiconductor module 66 is directed to the cooling water flowing through the cooling water passage 74. Even released. That is, the casing 64 is provided with a water cooling mechanism. As shown in FIGS. 3 and 4, the cooling water passage 74 is formed in an annular shape so as to surround the electrical component 62 (semiconductor module 66 and condenser module 68). The semiconductor module 66 is arranged along the inner peripheral surface of the tubular portion 71, and a cooling water passage 74 is provided at a position where the semiconductor module 66 overlaps the semiconductor module 66 in the radial direction inside and outside.
 筒状部71の外側には固定子50が配置され、内側には電気コンポーネント62が配置されていることから、筒状部71に対しては、その外側から固定子50の熱が伝わるとともに、内側から電気コンポーネント62の熱(例えば半導体モジュール66の熱)が伝わることになる。この場合、固定子50と半導体モジュール66とを同時に冷やすことが可能となっており、回転電機10における発熱部材の熱を効率良く放出することができる。 Since the stator 50 is arranged on the outside of the tubular portion 71 and the electrical component 62 is arranged on the inside, the heat of the stator 50 is transferred to the tubular portion 71 from the outside, and the heat of the stator 50 is transferred to the tubular portion 71. The heat of the electric component 62 (for example, the heat of the semiconductor module 66) is transferred from the inside. In this case, the stator 50 and the semiconductor module 66 can be cooled at the same time, and the heat of the heat generating member in the rotary electric machine 10 can be efficiently released.
 更に、固定子巻線51への通電を行うことで回転電機を動作させるインバータ回路の一部、又は全部を構成する半導体モジュール66の少なくとも一部が、ケーシング64の筒状部71の径方向外側に配置された固定子コア52に囲まれた領域内に配置されている。望ましくは、1つの半導体モジュール66の全体が固定子コア52に囲まれた領域内に配置されている。更に、望ましくは、全ての半導体モジュール66の全体が固定子コア52に囲まれた領域内に配置されている。 Further, at least a part of the semiconductor module 66 constituting a part or the whole of the inverter circuit for operating the rotary electric machine by energizing the stator winding 51 is radially outside the tubular portion 71 of the casing 64. It is arranged in the area surrounded by the stator core 52 arranged in. Desirably, the entire semiconductor module 66 is arranged in the region surrounded by the stator core 52. Further, preferably, the entire semiconductor module 66 is arranged in the region surrounded by the stator core 52.
 また、半導体モジュール66の少なくとも一部が、冷却水通路74により囲まれた領域内に配置されている。望ましくは、全ての半導体モジュール66の全体がヨーク141に囲まれた領域内に配置されている。 Further, at least a part of the semiconductor module 66 is arranged in the area surrounded by the cooling water passage 74. Desirably, the entire semiconductor module 66 is located in the region surrounded by the yoke 141.
 また、電気コンポーネント62は、軸方向において、コンデンサモジュール68の一方の端面に設けられた絶縁シート75と、他方の端面に設けられた配線モジュール76とを備えている。この場合、コンデンサモジュール68は、その軸方向に対向した二つの端面、すなわち第1端面と第2端面を有している。コンデンサモジュール68の軸受ユニット20に近い第1端面は、ケーシング64の端面72に対向しており、絶縁シート75を挟んだ状態で端面72に重ね合わされている。また、コンデンサモジュール68の開口65に近い第2端面には、配線モジュール76が組み付けられている。 Further, the electrical component 62 includes an insulating sheet 75 provided on one end face of the capacitor module 68 and a wiring module 76 provided on the other end face in the axial direction. In this case, the capacitor module 68 has two end faces facing each other in the axial direction, that is, a first end face and a second end face. The first end surface of the capacitor module 68 near the bearing unit 20 faces the end surface 72 of the casing 64, and is superposed on the end surface 72 with the insulating sheet 75 sandwiched between them. A wiring module 76 is assembled on the second end surface of the capacitor module 68 near the opening 65.
 配線モジュール76は、合成樹脂材よりなり円形板状をなす本体部76aと、その内部に埋設された複数のバスバー76b,76cを有しており、そのバスバー76b,76cにより、半導体モジュール66やコンデンサモジュール68と電気的接続がなされている。具体的には、半導体モジュール66は、その軸方向端面から延びる接続ピン66aを有しており、その接続ピン66aが、本体部76aの径方向外側においてバスバー76bに接続されている。また、バスバー76cは、本体部76aの径方向外側においてコンデンサモジュール68とは反対側に延びており、その先端部にて配線部材79に接続されるようになっている(図2参照)。 The wiring module 76 has a main body portion 76a made of a synthetic resin material and having a circular plate shape, and a plurality of bus bars 76b and 76c embedded therein. The bus bars 76b and 76c are used to form a semiconductor module 66 and a capacitor. It has an electrical connection with module 68. Specifically, the semiconductor module 66 has a connecting pin 66a extending from its axial end face, and the connecting pin 66a is connected to the bus bar 76b on the radial outer side of the main body portion 76a. Further, the bus bar 76c extends to the side opposite to the capacitor module 68 on the radial outer side of the main body portion 76a, and is connected to the wiring member 79 at the tip end portion thereof (see FIG. 2).
 上記のとおりコンデンサモジュール68の軸方向に対向する第1端面に絶縁シート75が設けられ、かつコンデンサモジュール68の第2端面に配線モジュール76が設けられた構成によれば、コンデンサモジュール68の放熱経路として、コンデンサモジュール68の第1端面および第2端面から端面72及び筒状部71に至る経路が形成される。すなわち、第1端面から端面72への経路と、第2端面から筒状部71へ至る経路が形成される。これにより、コンデンサモジュール68において半導体モジュール66が設けられた外周面以外の端面部からの放熱が可能になっている。つまり、径方向への放熱だけでなく、軸方向への放熱も可能となっている。 According to the configuration in which the insulating sheet 75 is provided on the first end surface of the capacitor module 68 facing the axial direction and the wiring module 76 is provided on the second end surface of the capacitor module 68 as described above, the heat dissipation path of the capacitor module 68 is provided. As a result, a path is formed from the first end face and the second end face of the capacitor module 68 to the end face 72 and the tubular portion 71. That is, a path from the first end face to the end face 72 and a path from the second end face to the tubular portion 71 are formed. As a result, in the capacitor module 68, heat can be dissipated from the end surface portion other than the outer peripheral surface on which the semiconductor module 66 is provided. That is, not only heat dissipation in the radial direction but also heat dissipation in the axial direction is possible.
 また、コンデンサモジュール68は中空円筒状をなし、その内周部には所定の隙間を介在させて回転軸11が配置されることから、コンデンサモジュール68の熱はその中空部からも放出可能となっている。この場合、回転軸11の回転により空気の流れが生じることにより、その冷却効果が高められるようになっている。 Further, since the capacitor module 68 has a hollow cylindrical shape and the rotating shaft 11 is arranged on the inner peripheral portion thereof with a predetermined gap interposed therebetween, the heat of the capacitor module 68 can be released from the hollow portion as well. ing. In this case, the rotation of the rotating shaft 11 causes an air flow to enhance the cooling effect.
 配線モジュール76には、円板状の制御基板67が取り付けられている。制御基板67は、所定の配線パターンが形成されたプリントサーキットボード(PCB)を有しており、そのボード上には各種ICや、マイコン等からなる制御部に相当する制御装置77が実装されている。制御基板67は、ネジ等の固定具により配線モジュール76に固定されている。制御基板67は、その中央部に、回転軸11を挿通させる挿通孔67aを有している。 A disk-shaped control board 67 is attached to the wiring module 76. The control board 67 has a printed circuit board (PCB) on which a predetermined wiring pattern is formed, and a control device 77 corresponding to a control unit including various ICs and a microcomputer is mounted on the board. There is. The control board 67 is fixed to the wiring module 76 by a fixture such as a screw. The control board 67 has an insertion hole 67a in which the rotation shaft 11 is inserted in the central portion thereof.
 なお、配線モジュール76は、軸方向に互いに対向する、すなわち、その厚み方向において互いに対向する第1面と第2面を有する。第1面は、コンデンサモジュール68に面する。配線モジュール76は、その第2面に、制御基板67を設けている。制御基板67の両面の一方側から他方側に配線モジュール76のバスバー76cが延びる構成となっている。かかる構成において、制御基板67には、バスバー76cとの干渉を回避する切欠が設けられているとよい。例えば、円形状をなす制御基板67の外縁部の一部が切り欠かれているとよい。 The wiring module 76 has a first surface and a second surface that face each other in the axial direction, that is, face each other in the thickness direction thereof. The first surface faces the capacitor module 68. The wiring module 76 is provided with a control board 67 on the second surface thereof. The bus bar 76c of the wiring module 76 extends from one side of both sides of the control board 67 to the other side. In such a configuration, the control board 67 may be provided with a notch for avoiding interference with the bus bar 76c. For example, it is preferable that a part of the outer edge portion of the control board 67 having a circular shape is cut out.
 上述のとおり、ケーシング64に囲まれた空間内に電気コンポーネント62が収容され、その外側に、ハウジング30、回転子40及び固定子50が層状に設けられている構成によれば、インバータ回路で生じる電磁ノイズが好適にシールドされるようになっている。すなわち、インバータ回路では、所定のキャリア周波数によるPWM制御を利用して各半導体モジュール66でのスイッチング制御が行われ、そのスイッチング制御により電磁ノイズが生じることが考えられるが、その電磁ノイズを、電気コンポーネント62の径方向外側のハウジング30、回転子40、固定子50等により好適にシールドできる。 As described above, according to the configuration in which the electric component 62 is housed in the space surrounded by the casing 64 and the housing 30, the rotor 40 and the stator 50 are provided in layers on the outside thereof, the electric component 62 is generated in the inverter circuit. Electromagnetic noise is suitably shielded. That is, in the inverter circuit, switching control is performed in each semiconductor module 66 by utilizing PWM control by a predetermined carrier frequency, and it is conceivable that electromagnetic noise is generated by the switching control. It can be suitably shielded by the housing 30, the rotor 40, the stator 50, etc. on the radial outer side of the 62.
 更に、半導体モジュール66の少なくとも一部が、ケーシング64の筒状部71の径方向外側に配置された固定子コア52に囲まれた領域内に配置することで、半導体モジュール66と固定子巻線51とが固定子コア52を介さずに配置されている構成に比べて、半導体モジュール66から磁束が発生したとしても、固定子巻線51に影響を与えにくい。また、固定子巻線51から磁束が発生したとしても、半導体モジュール66に影響を与えにくい。なお、半導体モジュール66の全体が、ケーシング64の筒状部71の径方向外側に配置された固定子コア52に囲まれた領域内に配置されると更に効果的である。また、半導体モジュール66の少なくとも一部が、冷却水通路74により囲まれている場合、固定子巻線51や磁石ユニット42からの発熱が半導体モジュール66に届きにくいという効果を得ることができる。 Further, at least a part of the semiconductor module 66 is arranged in the region surrounded by the stator core 52 arranged radially outside the tubular portion 71 of the casing 64, whereby the semiconductor module 66 and the stator winding are arranged. Compared to the configuration in which 51 and 51 are arranged without the stator core 52, even if magnetic flux is generated from the semiconductor module 66, it is less likely to affect the stator winding 51. Further, even if the magnetic flux is generated from the stator winding 51, it is unlikely to affect the semiconductor module 66. It is more effective if the entire semiconductor module 66 is arranged in a region surrounded by the stator core 52 arranged on the radial outer side of the tubular portion 71 of the casing 64. Further, when at least a part of the semiconductor module 66 is surrounded by the cooling water passage 74, it is possible to obtain the effect that the heat generated from the stator winding 51 and the magnet unit 42 is difficult to reach the semiconductor module 66.
 筒状部71においてエンドプレート63の付近には、その外側の固定子50と内側の電気コンポーネント62とを電気的に接続する配線部材79(図2参照)を挿通させる貫通孔78が形成されている。図2に示すように、配線部材79は、圧着、溶接などにより、固定子巻線51の端部と配線モジュール76のバスバー76cとにそれぞれ接続されている。配線部材79は、例えばバスバーであり、その接合面は平たく潰されていることが望ましい。貫通孔78は、1カ所又は複数箇所に設けられているとよく、本実施形態では2カ所に貫通孔78が設けられている。2カ所に貫通孔78が設けられる構成では、2組の3相巻線から延びる巻線端子を、それぞれ配線部材79により容易に結線することが可能となり、多相結線を行う上で好適なものとなっている。 In the tubular portion 71, a through hole 78 is formed in the vicinity of the end plate 63 through which a wiring member 79 (see FIG. 2) for electrically connecting the outer stator 50 and the inner electrical component 62 is inserted. There is. As shown in FIG. 2, the wiring member 79 is connected to the end of the stator winding 51 and the bus bar 76c of the wiring module 76 by crimping, welding, or the like. The wiring member 79 is, for example, a bus bar, and it is desirable that the joint surface thereof be flattened. The through holes 78 are preferably provided at one place or a plurality of places, and in the present embodiment, the through holes 78 are provided at two places. In a configuration in which through holes 78 are provided at two locations, winding terminals extending from two sets of three-phase windings can be easily connected by wiring members 79, which is suitable for multi-phase connection. It has become.
 上述のとおりハウジング30内には、図4に示すように径方向外側から順に回転子40、固定子50が設けられ、固定子50の径方向内側にインバータユニット60が設けられている。ここで、ハウジング30の内周面の半径をdとした場合に、回転子40の回転中心からd×0.705の距離よりも径方向外側に回転子40と固定子50とが配置されている。この場合、回転子40及び固定子50のうち径方向内側の固定子50の内周面(すなわち固定子コア52の内周面)から径方向内側となる領域を第1領域X1、径方向において固定子50の内周面からハウジング30までの間の領域を第2領域X2とすると、第1領域X1の横断面の面積は、第2領域X2の横断面の面積よりも大きい構成となっている。また、径方向において回転子40の磁石ユニット42及び固定子巻線51が重複する範囲で見て、第1領域X1の容積が第2領域X2の容積よりも大きい構成となっている。 As described above, as shown in FIG. 4, a rotor 40 and a stator 50 are provided in the housing 30 in this order from the outside in the radial direction, and an inverter unit 60 is provided inside the stator 50 in the radial direction. Here, assuming that the radius of the inner peripheral surface of the housing 30 is d, the rotor 40 and the stator 50 are arranged radially outside the distance of d × 0.705 from the center of rotation of the rotor 40. There is. In this case, the region of the rotor 40 and the stator 50 that is radially inward from the inner peripheral surface of the stator 50 that is radially inner (that is, the inner peripheral surface of the stator core 52) is the first region X1 in the radial direction. Assuming that the region between the inner peripheral surface of the stator 50 and the housing 30 is the second region X2, the cross-sectional area of the first region X1 is larger than the cross-sectional area of the second region X2. There is. Further, the volume of the first region X1 is larger than the volume of the second region X2 when viewed in the range where the magnet unit 42 of the rotor 40 and the stator winding 51 overlap in the radial direction.
 なお、回転子40及び固定子50を磁気回路コンポーネントアッセンブリとすると、ハウジング30内において、その磁気回路コンポーネントアッセンブリの内周面から径方向内側となる第1領域X1が、径方向において磁気回路コンポーネントアッセンブリの内周面からハウジング30までの間の第2領域X2よりも容積が大きい構成となっている。 When the rotor 40 and the stator 50 are magnetic circuit component assemblies, the first region X1 radially inside from the inner peripheral surface of the magnetic circuit component assembly in the housing 30 is the magnetic circuit component assembly in the radial direction. The volume is larger than that of the second region X2 between the inner peripheral surface of the above and the housing 30.
 次いで、回転子40及び固定子50の構成をより詳しく説明する。 Next, the configurations of the rotor 40 and the stator 50 will be described in more detail.
 一般に、回転電機における固定子の構成として、積層鋼板よりなりかつ円環状をなす固定子コアに周方向に複数のスロットを設け、そのスロット内に固定子巻線を巻装するものが知られている。具体的には、固定子コアは、ヨークから所定間隔で径方向に延びる複数のティースを有しており、周方向に隣り合うティース間にスロットが形成されている。そして、スロット内に、例えば径方向に複数層の導線が収容され、その導線により固定子巻線が構成されている。 Generally, as a structure of a stator in a rotary electric machine, a stator core made of a laminated steel plate and forming an annular shape is provided with a plurality of slots in the circumferential direction, and a stator winding is wound in the slots. There is. Specifically, the stator core has a plurality of teeth extending in the radial direction from the yoke at predetermined intervals, and slots are formed between the teeth adjacent to each other in the circumferential direction. Then, for example, a plurality of layers of conductors are accommodated in the slot in the radial direction, and the stator winding is formed by the conductors.
 ただし、上述した固定子構造では、固定子巻線の通電時において、固定子巻線の起磁力が増加するのに伴い固定子コアのティース部分で磁気飽和が生じ、それに起因して回転電機のトルク密度が制限されることが考えられる。つまり、固定子コアにおいて、固定子巻線の通電により生じた回転磁束がティースに集中することで、磁気飽和が生じると考えられる。 However, in the above-mentioned stator structure, when the stator winding is energized, magnetic saturation occurs in the teeth portion of the stator core as the magnetomotive force of the stator winding increases, which causes magnetic saturation in the rotating electric machine. It is possible that the torque density is limited. That is, in the stator core, it is considered that magnetic saturation occurs when the rotational magnetic flux generated by the energization of the stator winding is concentrated on the teeth.
 また、一般的に、回転電機におけるIPM(Interior Permanent Magnet)ロータの構成として、永久磁石がd-q座標系におけるd軸に配置され、q軸にロータコアが配置されたものが知られている。このような場合、d軸近傍の固定子巻線が励磁されることで、フレミングの法則により固定子から回転子のq軸に励磁磁束が流入される。そしてこれにより、回転子のq軸コア部分に、広範囲の磁気飽和が生じると考えられる。 Further, in general, as a configuration of an IPM (Interior Permanent Magnet) rotor in a rotary electric machine, a permanent magnet is arranged on the d-axis in the dq coordinate system, and a rotor core is arranged on the q-axis. In such a case, the stator winding near the d-axis is excited, so that the exciting magnetic flux flows from the stator to the q-axis of the rotor according to Fleming's law. It is considered that this causes a wide range of magnetic saturation in the q-axis core portion of the rotor.
 図7は、固定子巻線の起磁力を示すアンペアターン[AT]とトルク密度[Nm/L]との関係を示すトルク線図である。破線が一般的なIPMロータ型の回転電機における特性を示す。図7に示すように、一般的な回転電機では、固定子において起磁力を増加させていくことにより、スロット間のティース部分及びq軸コア部分の2カ所で磁気飽和が生じ、それが原因でトルクの増加が制限されてしまう。このように、当該一般的な回転電機では、アンペアターン設計値がA1で制限されることになる。 FIG. 7 is a torque diagram showing the relationship between the ampere turn [AT] showing the magnetomotive force of the stator winding and the torque density [Nm / L]. The broken line shows the characteristics of a general IPM rotor type rotary electric machine. As shown in FIG. 7, in a general rotary electric machine, by increasing the magnetomotive force in the stator, magnetic saturation occurs in two places, the tooth portion between the slots and the q-axis core portion, which causes magnetic saturation. The increase in torque is limited. As described above, in the general rotary electric machine, the ampere turn design value is limited by A1.
 そこで本実施形態では、磁気飽和に起因する制限を解消すべく、回転電機10において、以下に示す構成を付与するものとしている。すなわち、第1の工夫として、固定子において固定子コアのティースで生じる磁気飽和をなくすべく、固定子50においてスロットレス構造を採用し、かつIPMロータのq軸コア部分で生じる磁気飽和をなくすべく、SPM(Surface Permanent Magnet)ロータを採用している。第1の工夫によれば、磁気飽和が生じる上記2カ所の部分をなくすことができるが、低電流域でのトルクが減少することが考えられる(図7の一点鎖線参照)。そのため、第2の工夫として、SPMロータの磁束増強を図ることでトルク減少を挽回すべく、回転子40の磁石ユニット42において磁石磁路を長くして磁力を高めた極異方構造を採用している。 Therefore, in the present embodiment, in order to eliminate the limitation caused by magnetic saturation, the rotary electric machine 10 is provided with the following configuration. That is, as a first device, in order to eliminate the magnetic saturation that occurs in the teeth of the stator core in the stator, a slotless structure is adopted in the stator 50, and in order to eliminate the magnetic saturation that occurs in the q-axis core portion of the IPM rotor. , SPM (Surface Permanent Magnet) rotor is used. According to the first device, it is possible to eliminate the above-mentioned two parts where magnetic saturation occurs, but it is conceivable that the torque in the low current region is reduced (see the alternate long and short dash line in FIG. 7). Therefore, as a second device, in order to recover the torque decrease by increasing the magnetic flux of the SPM rotor, the magnet unit 42 of the rotor 40 adopts a polar anisotropic structure in which the magnetic path is lengthened to increase the magnetic force. ing.
 また、第3の工夫として、固定子巻線51のコイルサイド部53において導線の固定子50における径方向厚さを小さくした扁平導線構造を採用してトルク減少の挽回を図っている。ここで、上述の磁力を高めた極異方構造によって、磁石ユニット42に対向する固定子巻線51には、より大きな渦電流が発生することが考えられる。しかしながら、第3の工夫によれば、径方向に薄い扁平導線構造のため、固定子巻線51における径方向の渦電流の発生を抑制することができる。このように、これら第1~第3の各構成によれば、図7に実線で示すように、磁力の高い磁石を採用してトルク特性の大幅な改善を見込みつつも、磁力の高い磁石ゆえに生じ得る大きい渦電流発生の懸念も改善できるものとなっている。 Further, as a third device, the coil side portion 53 of the stator winding 51 adopts a flat conductor structure in which the radial thickness of the stator 50 of the conductor is reduced to recover the torque reduction. Here, it is conceivable that a larger eddy current is generated in the stator winding 51 facing the magnet unit 42 due to the above-mentioned polar anisotropic structure in which the magnetic force is increased. However, according to the third device, since the flat conductor structure is thin in the radial direction, it is possible to suppress the generation of eddy current in the radial direction in the stator winding 51. As described above, according to each of the first to third configurations, as shown by the solid line in FIG. 7, a magnet having a high magnetic force is adopted to expect a significant improvement in torque characteristics, but the magnet has a high magnetic force. Concerns about the generation of large eddy currents that can occur can also be improved.
 さらに、第4の工夫として、極異方構造を利用し正弦波に近い磁束密度分布を有する磁石ユニットを採用している。これによれば、後述するパルス制御等によって正弦波整合率を高めてトルク増強を図ることができるとともに、ラジアル磁石と比べ緩やかな磁束変化のため渦電流損(渦電流による銅損:eddy current loss)もまた更に抑制することができるのである。 Furthermore, as a fourth device, a magnet unit that uses a polar anisotropic structure and has a magnetic flux density distribution close to a sine wave is adopted. According to this, the sine wave matching rate can be increased by pulse control or the like described later to increase the torque, and eddy current loss (copper loss due to eddy current: eddy current loss) due to a gentler magnetic flux change than that of a radial magnet. ) Can also be further suppressed.
 以下、正弦波整合率について説明する。正弦波整合率は、磁石の表面を磁束プローブでなぞる等して計測した表面磁束密度分布の実測波形と周期及びピーク値が同じ正弦波との比較から求める事ができる。そして、回転電機の基本波である1次波形の振幅が、実測波形の振幅、即ち基本波に他の高調波成分を加えた振幅に対して、占める割合が正弦波整合率に相当する。正弦波整合率が高くなると、表面磁束密度分布の波形が正弦波形状に近づいていく。そして、正弦波整合率を向上させた磁石を備えた回転電機に対して、インバータから1次の正弦波の電流を供給すると、磁石の表面磁束密度分布の波形が正弦波形状に近い事と相まって、大きなトルクを発生させることができる。なお、表面磁束密度分布は実測以外の方法、例えばマクスウェルの方程式を用いた電磁界解析によって推定しても良い。 The sine wave matching factor will be described below. The sine wave matching factor can be obtained by comparing the measured waveform of the surface magnetic flux density distribution measured by tracing the surface of the magnet with a magnetic flux probe and the sine wave having the same period and peak value. The ratio of the amplitude of the primary waveform, which is the fundamental wave of the rotating electric machine, to the amplitude of the actually measured waveform, that is, the amplitude obtained by adding other harmonic components to the fundamental wave, corresponds to the sine wave matching factor. As the sinusoidal matching factor increases, the waveform of the surface magnetic flux density distribution approaches the sinusoidal shape. Then, when a primary sine wave current is supplied from the inverter to a rotating electric machine equipped with a magnet having an improved sine wave matching rate, the waveform of the surface magnetic flux density distribution of the magnet is close to the sine wave shape. , Can generate a large torque. The surface magnetic flux density distribution may be estimated by a method other than actual measurement, for example, electromagnetic field analysis using Maxwell's equations.
 また、第5の工夫として、固定子巻線51を複数の素線を寄せ集めて束ねた素線導体構造としている。これによれば、素線が並列結線されているため、大電流が流せるとともに、扁平導線構造で固定子50の周方向に広がった導線で発生する渦電流の発生を、素線それぞれの断面積が小さくなるため、第3の工夫による径方向に薄くする以上に効果的に抑制することができる。そして、複数の素線を撚り合わせた構成にすることで、導体からの起磁力に対しては、電流通電方向に対して右ネジの法則で発生する磁束に対する渦電流を相殺することができる。 Further, as a fifth device, the stator winding 51 has a wire conductor structure in which a plurality of wire wires are gathered and bundled. According to this, since the strands are connected in parallel, a large current can flow, and the eddy current generated by the conductors that spread in the circumferential direction of the stator 50 in the flat conductor structure is generated by the cross-sectional area of each strand. Is smaller, so it can be suppressed more effectively than thinning in the radial direction by the third device. Then, by forming a structure in which a plurality of strands are twisted together, it is possible to cancel the eddy current with respect to the magnetic flux generated by the right-handed screw rule with respect to the current energizing direction with respect to the magnetomotive force from the conductor.
 このように、第4の工夫、第5の工夫をさらに加えると、第2の工夫である磁力の高い磁石を採用しながら、さらにその高い磁力に起因する渦電流損を抑制しながらトルク増強を図ることができる。 In this way, if the fourth and fifth devices are further added, the torque can be increased while using the magnet with a high magnetic force, which is the second device, while suppressing the eddy current loss caused by the high magnetic force. Can be planned.
 以下に、上述した固定子50のスロットレス構造、固定子巻線51の扁平導線構造、及び磁石ユニット42の極異方構造について個別に説明を加える。ここではまずは、固定子50におけるスロットレス構造と固定子巻線51の扁平導線構造とを説明する。図8は、回転子40及び固定子50の横断面図であり、図9は、図8に示す回転子40及び固定子50の一部を拡大して示す図である。図10は、図11のX‐X線に沿った固定子50の横断面を示す断面図であり、図11は、固定子50の縦断面を示す断面図である。また、図12は、固定子巻線51の斜視図である。なお、図8及び図9には、磁石ユニット42における磁石の磁化方向を矢印にて示している。 Below, the slotless structure of the stator 50, the flat conductor structure of the stator winding 51, and the polar anisotropic structure of the magnet unit 42 will be individually described. Here, first, the slotless structure of the stator 50 and the flat conductor structure of the stator winding 51 will be described. FIG. 8 is a cross-sectional view of the rotor 40 and the stator 50, and FIG. 9 is an enlarged view of a part of the rotor 40 and the stator 50 shown in FIG. 10 is a cross-sectional view showing a cross section of the stator 50 along the line XX of FIG. 11, and FIG. 11 is a cross-sectional view showing a vertical cross section of the stator 50. Further, FIG. 12 is a perspective view of the stator winding 51. In addition, in FIG. 8 and FIG. 9, the magnetization direction of the magnet in the magnet unit 42 is indicated by an arrow.
 図8乃至図11に示すように、固定子コア52は、軸方向に複数の電磁鋼板が積層され、かつ径方向に所定の厚さを有する円筒状をなしており、回転子40側となる径方向外側に固定子巻線51が組み付けられるものとなっている。固定子コア52において、回転子40側の外周面が導線設置部(導体エリア)となっている。固定子コア52の外周面は凹凸のない曲面状をなしており、その外周面において周方向に所定間隔で複数の導線群81が配置されている。固定子コア52は、回転子40を回転させるための磁気回路の一部となるバックヨークとして機能する。この場合、周方向に隣り合う各2つの導線群81の間には軟磁性材からなるティース(つまり、鉄心)が設けられていない構成(つまり、スロットレス構造)となっている。本実施形態において、それら各導線群81の間隙56には、封止部材57の樹脂材料が入り込む構造となっている。つまり、固定子50において、周方向における各導線群81の間に設けられる導線間部材が、非磁性材料である封止部材57として構成されている。封止部材57の封止前の状態で言えば、固定子コア52の径方向外側には、それぞれ導線間領域である間隙56を隔てて周方向に所定間隔で導線群81が配置されており、これによりスロットレス構造の固定子50が構築されている。言い換えれば、各導線群81は、後述するように二つの導線(conductor)82からなり、固定子50の周方向に隣り合う各二つの導線群81の間は、非磁性材のみが占有している。この非磁性材とは、封止部材57以外に空気などの非磁性気体や非磁性液体などをも含む。なお、以下において、封止部材57は導線間部材(conductor-to- conductor member)ともいう。 As shown in FIGS. 8 to 11, the stator core 52 has a cylindrical shape in which a plurality of electromagnetic steel sheets are laminated in the axial direction and has a predetermined thickness in the radial direction, and is on the rotor 40 side. The stator winding 51 is assembled on the outer side in the radial direction. In the stator core 52, the outer peripheral surface on the rotor 40 side serves as a conductor area. The outer peripheral surface of the stator core 52 has a curved surface without unevenness, and a plurality of conductor groups 81 are arranged at predetermined intervals in the circumferential direction on the outer peripheral surface thereof. The stator core 52 functions as a back yoke that is a part of a magnetic circuit for rotating the rotor 40. In this case, a tooth (that is, an iron core) made of a soft magnetic material is not provided between each of the two conductor groups 81 adjacent to each other in the circumferential direction (that is, a slotless structure). In the present embodiment, the resin material of the sealing member 57 is inserted into the gap 56 of each of the conductor groups 81. That is, in the stator 50, the interconductor member provided between each conductor group 81 in the circumferential direction is configured as a sealing member 57 which is a non-magnetic material. Speaking in the state before sealing of the sealing member 57, the conducting wire groups 81 are arranged at predetermined intervals in the circumferential direction with a gap 56 which is a region between the conducting wires, respectively, on the outer side in the radial direction of the stator core 52. As a result, the stator 50 having a slotless structure is constructed. In other words, each conductor group 81 is composed of two conductors 82 as described later, and only the non-magnetic material occupies between the two conductor groups 81 adjacent to each other in the circumferential direction of the stator 50. There is. The non-magnetic material includes a non-magnetic gas such as air, a non-magnetic liquid, and the like in addition to the sealing member 57. In the following, the sealing member 57 is also referred to as a conductor-to-conductor member.
 なお、周方向に並ぶ各導線群81の間においてティースが設けられている構成とは、ティースが、径方向に所定厚さを有し、かつ周方向に所定幅を有することで、各導線群81の間に磁気回路の一部、すなわち磁石磁路を形成する構成であると言える。この点において、各導線群81の間にティースが設けられていない構成とは、上記の磁気回路の形成がなされていない構成であると言える。 The configuration in which the teeth are provided between the conductor groups 81 arranged in the circumferential direction means that the teeth have a predetermined thickness in the radial direction and a predetermined width in the circumferential direction, so that each conductor group has a predetermined width. It can be said that a part of the magnetic circuit, that is, a magnetic magnetic path is formed between 81. In this respect, it can be said that the configuration in which the teeth are not provided between the conducting wire groups 81 is the configuration in which the above-mentioned magnetic circuit is not formed.
 図10に示すように、固定子巻線(すなわち電機子巻線)51は、所定の厚みT2(以下、第1寸法とも言う)と幅W2(以下、第2寸法とも言う)を有するように形成されている。厚みT2は、固定子巻線51の径方向において互いに対向する外側面と内側面との間の最短距離である。幅W2は、固定子巻線51の多相(実施例では3相:U相、V相及びW相の3相あるいはX相、Y相及びZ相の3相)の一つとして機能する固定子巻線51の一部分の固定子巻線51の周方向の長さである。具体的には、図10において、周方向に隣り合う2つの導線群81が3相の内の一つである例えばU相として機能する場合、周方向において当該2つの導線群81の端から端までの幅W2である。そして、厚みT2は幅W2より小さくなっている。 As shown in FIG. 10, the stator winding (that is, armature winding) 51 has a predetermined thickness T2 (hereinafter, also referred to as a first dimension) and a width W2 (hereinafter, also referred to as a second dimension). It is formed. The thickness T2 is the shortest distance between the outer surface and the inner surface facing each other in the radial direction of the stator winding 51. The width W2 is a fixation that functions as one of the polyphases of the stator winding 51 (three phases in the embodiment: three phases of U phase, V phase and W phase, or three phases of X phase, Y phase and Z phase). It is the length in the circumferential direction of the stator winding 51 which is a part of the child winding 51. Specifically, in FIG. 10, when two conductor groups 81 adjacent to each other in the circumferential direction function as one of the three phases, for example, the U phase, the two conductor groups 81 are end-to-end in the circumferential direction. Width up to W2. The thickness T2 is smaller than the width W2.
 なお、厚みT2は、幅W2内に存在する2つの導線群81の合計幅寸法より小さいことが好ましい。また、仮に固定子巻線51(より詳しくは導線82)の断面形状が真円形状や楕円形状、又は多角形形状である場合、固定子50の径方向に沿った導線82の断面のうち、その断面において固定子50の径方向の最大の長さをW12、同断面のうち固定子50の周方向の最大の長さをW11としても良い。 The thickness T2 is preferably smaller than the total width dimension of the two conductor groups 81 existing in the width W2. If the cross-sectional shape of the stator winding 51 (more specifically, the wire 82) is a perfect circle, an ellipse, or a polygon, the cross section of the stator 82 along the radial direction of the stator 50. In the cross section, the maximum length of the stator 50 in the radial direction may be W12, and the maximum length of the stator 50 in the circumferential direction may be W11.
 図10及び図11に示すように、固定子巻線51は、封止材(モールド材)としての合成樹脂材からなる封止部材57により封止されている。つまり、固定子巻線51は、固定子コア52と共にモールド材によりモールドされている。なお樹脂は、非磁性体、又は非磁性体の均等物としてBs=0と看做すことができる。 As shown in FIGS. 10 and 11, the stator winding 51 is sealed by a sealing member 57 made of a synthetic resin material as a sealing material (molding material). That is, the stator winding 51 is molded by the molding material together with the stator core 52. The resin can be regarded as a non-magnetic material or an equivalent of the non-magnetic material as Bs = 0.
 図10の横断面で見れば、封止部材57は、各導線群81の間、すなわち間隙56に合成樹脂材が充填されて設けられており、封止部材57により、各導線群81の間に絶縁部材が介在する構成となっている。つまり、間隙56において封止部材57が絶縁部材として機能する。封止部材57は、固定子コア52の径方向外側において、各導線群81を全て含む範囲、すなわち径方向の厚さ寸法が各導線群81の径方向の厚さ寸法よりも大きくなる範囲で設けられている。 Looking at the cross section of FIG. 10, the sealing member 57 is provided between the conductor groups 81, that is, the gap 56 is filled with the synthetic resin material, and the sealing member 57 between the conductor groups 81. Insulation member is interposed in the structure. That is, the sealing member 57 functions as an insulating member in the gap 56. The sealing member 57 is provided on the radial outer side of the stator core 52 in a range including all of the lead wire groups 81, that is, in a range in which the radial thickness dimension is larger than the radial thickness dimension of each lead wire group 81. It is provided.
 また、図11の縦断面で見れば、封止部材57は、固定子巻線51のターン部84を含む範囲で設けられている。固定子巻線51の径方向内側では、固定子コア52の軸方向に対向する端面の少なくとも一部を含む範囲で封止部材57が設けられている。この場合、固定子巻線51は、各相の相巻線の端部、すなわちインバータ回路との接続端子を除く略全体で樹脂封止されている。 Further, when viewed in the vertical cross section of FIG. 11, the sealing member 57 is provided in a range including the turn portion 84 of the stator winding 51. Inside the stator winding 51 in the radial direction, a sealing member 57 is provided within a range including at least a part of the end faces of the stator core 52 facing in the axial direction. In this case, the stator winding 51 is resin-sealed almost entirely except for the ends of the phase windings of each phase, that is, the connection terminals with the inverter circuit.
 封止部材57が固定子コア52の端面を含む範囲で設けられた構成では、封止部材57により、固定子コア52の積層鋼板を軸方向内側に押さえ付けることができる。これにより、封止部材57を用いて、各鋼板の積層状態を保持することができる。なお、本実施形態では、固定子コア52の内周面を樹脂封止していないが、これに代えて、固定子コア52の内周面を含む固定子コア52の全体を樹脂封止する構成であってもよい。 In the configuration in which the sealing member 57 is provided in a range including the end face of the stator core 52, the laminated steel plate of the stator core 52 can be pressed inward in the axial direction by the sealing member 57. Thereby, the laminated state of each steel plate can be maintained by using the sealing member 57. In the present embodiment, the inner peripheral surface of the stator core 52 is not resin-sealed, but instead, the entire stator core 52 including the inner peripheral surface of the stator core 52 is resin-sealed. It may be a configuration.
 回転電機10が車両動力源として使用される場合には、封止部材57が、高耐熱のフッ素樹脂や、エポキシ樹脂、PPS樹脂、PEEK樹脂、LCP樹脂、シリコン樹脂、PAI樹脂、PI樹脂等により構成されていることが好ましい。また、膨張差による割れ抑制の観点から線膨張係数を考えると、固定子巻線51の導線の外被膜と同じ材質であることが望ましい。すなわち、線膨張係数が、一般的に他樹脂の倍以上であるシリコン樹脂は望ましくは除外される。なお、電気車両の如く、燃焼を利用した機関を持たない電気製品においては、180℃程度の耐熱性を持つPPO樹脂やフェノール樹脂、FRP樹脂も候補となる。回転電機の周囲温度が100℃未満と見做せる分野においては、この限りではない。 When the rotary electric machine 10 is used as a vehicle power source, the sealing member 57 is made of a highly heat-resistant fluororesin, epoxy resin, PPS resin, PEEK resin, LCP resin, silicon resin, PAI resin, PI resin, or the like. It is preferably configured. Further, considering the coefficient of linear expansion from the viewpoint of suppressing cracks due to the difference in expansion, it is desirable that the material is the same as the outer coating of the conductor of the stator winding 51. That is, a silicon resin having a coefficient of linear expansion that is generally more than double that of other resins is preferably excluded. For electric products that do not have an engine that utilizes combustion, such as electric vehicles, PPO resin, phenol resin, and FRP resin that have heat resistance of about 180 ° C. are also candidates. This does not apply in the field where the ambient temperature of the rotary electric machine can be regarded as less than 100 ° C.
 回転電機10のトルクは磁束の大きさに比例する。ここで、固定子コアがティースを有している場合には、固定子での最大磁束量がティースでの飽和磁束密度に依存して制限されるが、固定子コアがティースを有していない場合には、固定子での最大磁束量が制限されない。そのため、固定子巻線51に対する通電電流を増加して回転電機10のトルク増加を図る上で、有利な構成となっている。 The torque of the rotary electric machine 10 is proportional to the magnitude of the magnetic flux. Here, when the stator core has teeth, the maximum amount of magnetic flux in the stator is limited depending on the saturation magnetic flux density in the teeth, but the stator core does not have teeth. In this case, the maximum amount of magnetic flux in the stator is not limited. Therefore, the configuration is advantageous in increasing the energizing current for the stator winding 51 to increase the torque of the rotary electric machine 10.
 本実施形態では、固定子50においてティースを無くした構造(スロットレス構造)を用いたことにより、固定子50のインダクタンスが低減される。具体的には、複数のティースにより仕切られた各スロットに導線が収容される一般的な回転電機の固定子ではインダクタンスが例えば1mH前後であるのに対し、本実施形態の固定子50ではインダクタンスが5~60μH程度に低減される。本実施形態では、アウタロータ構造の回転電機10としつつも、固定子50のインダクタンス低減により機械的時定数Tmを下げることが可能となっている。つまり、高トルク化を図りつつ、機械的時定数Tmの低減が可能となっている。なお、イナーシャをJ、インダクタンスをL、トルク定数をKt、逆起電力定数をKeとすると、機械的時定数Tmは、次式により算出される。
Tm=(J×L)/(Kt×Ke)
この場合、インダクタンスLの低減により機械的時定数Tmが低減されることが確認できる。
In the present embodiment, the inductance of the stator 50 is reduced by using a structure (slotless structure) in which the stator 50 has no teeth. Specifically, in the stator of a general rotary electric machine in which a conducting wire is accommodated in each slot partitioned by a plurality of teeth, the inductance is, for example, around 1 mH, whereas in the stator 50 of the present embodiment, the inductance is high. It is reduced to about 5 to 60 μH. In the present embodiment, it is possible to reduce the mechanical time constant Tm by reducing the inductance of the stator 50 while using the rotary electric machine 10 having an outer rotor structure. That is, it is possible to reduce the mechanical time constant Tm while increasing the torque. Assuming that the inertia is J, the inductance is L, the torque constant is Kt, and the counter electromotive force constant is Ke, the mechanical time constant Tm is calculated by the following equation.
Tm = (J × L) / (Kt × Ke)
In this case, it can be confirmed that the mechanical time constant Tm is reduced by reducing the inductance L.
 固定子コア52の径方向外側における各導線群81は、断面が扁平矩形状をなす複数の導線82が固定子コア52の径方向に並べて配置されて構成されている。各導線82は、横断面において「径方向寸法<周方向寸法」となる向きで配置されている。これにより、各導線群81において径方向の薄肉化が図られている。また、径方向の薄肉化を図るとともに、導体領域が、ティースが従来あった領域まで平らに延び、扁平導線領域構造となっている。これにより、薄肉化により断面積が小さくなることで懸念される導線の発熱量の増加を、周方向に扁平化して導体の断面積を稼ぐことで抑えている。なお、複数の導線を周方向に並べ、かつそれらを並列結線とする構成であっても、導体被膜分の導体断面積低下は起こるものの、同じ理屈に依る効果が得られる。なお、以下において、導線群81のそれぞれ、および導線82のそれぞれを、伝導部材(conductive member)とも言う。 Each conductor group 81 on the radial outer side of the stator core 52 is configured by arranging a plurality of conductors 82 having a flat rectangular cross section side by side in the radial direction of the stator core 52. Each of the conductors 82 is arranged in a direction such that "diameter dimension <circumferential dimension" in the cross section. As a result, the thickness of each conductor group 81 is reduced in the radial direction. In addition, the thickness in the radial direction is reduced, and the conductor region extends flat to the region where the teeth have been conventionally, forming a flat conductor region structure. As a result, the increase in the calorific value of the conducting wire, which is a concern because the cross-sectional area becomes smaller due to the thinning, is suppressed by flattening in the circumferential direction to increase the cross-sectional area of the conductor. Even if a plurality of conductors are arranged in the circumferential direction and connected in parallel, the conductor cross-sectional area of the conductor coating is reduced, but the same reasoning effect can be obtained. In the following, each of the conductor group 81 and each of the conductor 82 will also be referred to as a conductive member.
 スロットがないことから、本実施形態における固定子巻線51では、その周方向の一周における固定子巻線51が占める導体領域を、固定子巻線51が存在しない導体非占有領域より大きく設計することができる。なお、従来の車両用回転電機は、固定子巻線の周方向の一周における導体領域/導体非占有領域は1以下であるのが当然であった。一方、本実施形態では、導体領域が導体非占有領域と同等又は導体領域が導体非占有領域よりも大きくなるようにして、各導線群81が設けられている。ここで、図10に示すように、周方向において導線82(つまり、後述する直線部83)が配置された導線領域をWA、隣り合う導線82の間となる導線間領域をWBとすると、導線領域WAは、導線間領域WBより周方向において大きいものとなっている。 Since there is no slot, in the stator winding 51 in the present embodiment, the conductor region occupied by the stator winding 51 in one circumference in the circumferential direction is designed to be larger than the conductor non-occupied region in which the stator winding 51 does not exist. be able to. In the conventional rotary electric machine for vehicles, it is natural that the conductor region / conductor non-occupied region in one circumference of the stator winding in the circumferential direction is 1 or less. On the other hand, in the present embodiment, each conductor group 81 is provided so that the conductor region is equal to the conductor non-occupied region or the conductor region is larger than the conductor non-occupied region. Here, as shown in FIG. 10, assuming that the conductor region in which the conductor 82 (that is, the straight line portion 83 described later) is arranged in the circumferential direction is WA and the region between the conductors 82 between the adjacent conductors 82 is WB, the conductor The region WA is larger in the circumferential direction than the interconductor region WB.
 固定子巻線51における導線群81の構成として、その導線群81の径方向の厚さ寸法は、1磁極内における1相分の周方向の幅寸法よりも小さいものとなっている。すなわち、導線群81が径方向に2層の導線82よりなり、かつ1磁極内に1相につき周方向に2つの導線群81が設けられる構成では、各導線82の径方向の厚さ寸法をTc、各導線82の周方向の幅寸法をWcとした場合に、「Tc×2<Wc×2」となるように構成されている。なお、他の構成として、導線群81が2層の導線82よりなり、かつ1磁極内に1相につき周方向に1つの導線群81が設けられる構成では、「Tc×2<Wc」の関係となるように構成されるとよい。要するに、固定子巻線51において周方向に所定間隔で配置される導線部(導線群81)は、その径方向の厚さ寸法が、1磁極内における1相分の周方向の幅寸法よりも小さいものとなっている。 As a configuration of the conductor group 81 in the stator winding 51, the thickness dimension of the conductor group 81 in the radial direction is smaller than the width dimension of one phase in one magnetic pole in the circumferential direction. That is, in a configuration in which the conductor group 81 is composed of two layers of conductors 82 in the radial direction and two conductor groups 81 are provided in the circumferential direction for each phase in one magnetic pole, the thickness dimension of each conductor 82 in the radial direction is set. When Tc and the width dimension of each conducting wire 82 in the circumferential direction are Wc, it is configured to be "Tc × 2 <Wc × 2". As another configuration, in a configuration in which the conductor group 81 is composed of two layers of conductors 82 and one conductor group 81 is provided in one magnetic pole in the circumferential direction for each phase, the relationship of "Tc × 2 <Wc" is provided. It is preferable that it is configured so as to be. In short, the conductor portions (conductor group 81) arranged at predetermined intervals in the circumferential direction in the stator winding 51 have a thickness dimension in the radial direction that is larger than the width dimension in the circumferential direction for one phase in one magnetic pole. It is small.
 言い換えると、1本1本の各導線82は、径方向の厚さ寸法Tcが周方向の幅寸法Wcよりも小さいとよい。またさらに、径方向に2層の導線82よりなる導線群81の径方向の厚さ寸法(2Tc)、すなわち導線群81の径方向の厚さ寸法(2Tc)が周方向の幅寸法Wcよりも小さいとよい。 In other words, it is preferable that the thickness dimension Tc in the radial direction of each conductor 82 is smaller than the width dimension Wc in the circumferential direction. Furthermore, the radial thickness dimension (2Tc) of the conductor group 81 composed of two layers of conductors 82 in the radial direction, that is, the radial thickness dimension (2Tc) of the conductor group 81 is larger than the circumferential width dimension Wc. It should be small.
 回転電機10のトルクは、導線群81の固定子コア52の径方向の厚さに略反比例する。この点、固定子コア52の径方向外側において導線群81の厚さを薄くしたことにより、回転電機10のトルク増加を図る上で有利な構成となっている。その理由としては、回転子40の磁石ユニット42から固定子コア52までの距離(つまり鉄の無い部分の距離)を小さくして磁気抵抗を下げることができるためである。これによれば、永久磁石による固定子コア52の鎖交磁束を大きくすることができ、トルクを増強することができる。 The torque of the rotary electric machine 10 is substantially inversely proportional to the radial thickness of the stator core 52 of the conductor group 81. In this respect, the thickness of the conductor group 81 is reduced on the radial outer side of the stator core 52, which is advantageous in increasing the torque of the rotary electric machine 10. The reason is that the magnetic resistance can be lowered by reducing the distance from the magnet unit 42 of the rotor 40 to the stator core 52 (that is, the distance of the iron-free portion). According to this, the interlinkage magnetic flux of the stator core 52 by the permanent magnet can be increased, and the torque can be increased.
 また、導線群81の厚さを薄くしたことにより、導線群81から磁束が漏れても固定子コア52に回収されやすくなり、磁束がトルク向上のために有効に利用されずに外部に漏れることを抑制することができる。つまり、磁束漏れにより磁力が低下することを抑制でき、永久磁石による固定子コア52の鎖交磁束を大きくして、トルクを増強することができる。 Further, by reducing the thickness of the conductor group 81, even if the magnetic flux leaks from the conductor group 81, it is easily collected by the stator core 52, and the magnetic flux is not effectively used for improving torque and leaks to the outside. Can be suppressed. That is, it is possible to suppress a decrease in magnetic force due to magnetic flux leakage, and it is possible to increase the interlinkage magnetic flux of the stator core 52 by the permanent magnet to increase the torque.
 導線82(conductor)は、導体(conductor body)82aの表面が絶縁被膜82bにより被覆された被覆導線よりなり、径方向に互いに重なる導線82同士の間、及び導線82と固定子コア52との間においてそれぞれ絶縁性が確保されている。この絶縁被膜82bは、後述する素線86が自己融着被覆線であるならその被膜、又は、素線86の被膜とは別に重ねられた絶縁部材で構成されている。なお、導線82により構成される各相巻線は、接続のための露出部分を除き、絶縁被膜82bによる絶縁性が保持されるものとなっている。露出部分としては、例えば、入出力端子部や、星形結線とする場合の中性点部分である。導線群81では、樹脂固着や自己融着被覆線を用いて、径方向に隣り合う各導線82が相互に固着されている。これにより、導線82同士が擦れ合うことによる絶縁破壊や、振動、音が抑制される。 The conductor 82 is composed of a coated conductor whose surface is coated with an insulating coating 82b, and is between the conductors 82 that overlap each other in the radial direction and between the conductor 82 and the stator core 52. Insulation is ensured in each. The insulating coating 82b is composed of a coating thereof if the strand 86 described later is a self-bonding coated wire, or an insulating member laminated separately from the coating of the strand 86. Each phase winding composed of the conducting wire 82 retains the insulating property by the insulating coating 82b except for the exposed portion for connection. The exposed portion is, for example, an input / output terminal portion or a neutral point portion in the case of a star-shaped connection. In the conductor group 81, the conductors 82 adjacent to each other in the radial direction are fixed to each other by using resin fixing or self-bonding coated wire. As a result, dielectric breakdown, vibration, and sound due to the rubbing of the conducting wires 82 against each other are suppressed.
 本実施形態では、導体82aが複数の素線(wire)86の集合体として構成されている。具体的には、図13に示すように、導体82aは、複数の素線86を撚ることで撚糸状に形成されている。また、図14に示すように、素線86は、細い繊維状の導電材87を束ねた複合体として構成されている。例えば、素線86はCNT(カーボンナノチューブ)繊維の複合体であり、CNT繊維として、炭素の少なくとも一部をホウ素で置換したホウ素含有微細繊維を含む繊維が用いられている。炭素系微細繊維としては、CNT繊維以外に、気相成長法炭素繊維(VGCF)等を用いることができるが、CNT繊維を用いることが好ましい。なお、素線86の表面は、エナメルなどの高分子絶縁層で覆われている。また、素線86の表面は、ポリイミドの被膜やアミドイミドの被膜からなる、いわゆるエナメル被膜で覆われていることが好ましい。 In this embodiment, the conductor 82a is configured as an aggregate of a plurality of wires 86. Specifically, as shown in FIG. 13, the conductor 82a is formed in a twisted state by twisting a plurality of strands 86. Further, as shown in FIG. 14, the wire 86 is configured as a composite in which thin fibrous conductive materials 87 are bundled. For example, the wire 86 is a composite of CNT (carbon nanotube) fibers, and as the CNT fiber, a fiber containing boron-containing fine fibers in which at least a part of carbon is replaced with boron is used. As the carbon-based fine fiber, a vapor phase growth method carbon fiber (VGCF) or the like can be used in addition to the CNT fiber, but it is preferable to use the CNT fiber. The surface of the wire 86 is covered with a polymer insulating layer such as enamel. Further, it is preferable that the surface of the wire 86 is covered with a so-called enamel film made of a polyimide film or an amidimide film.
 導線82は、固定子巻線51においてn相の巻線を構成する。そして導線82(すなわち、導体82a)の各々の素線86は、互いに接触状態で隣接している。導線82は、巻線導体が、複数の素線86が撚られて形成される部位を、相内の1か所以上に持つとともに、撚られた素線86間の抵抗値が素線86そのものの抵抗値よりも大きい素線集合体となっている。言い換えると、隣接する各2つの素線86はその隣接する方向において第1電気抵抗率を有し、素線86の各々はその長さ方向において第2電気抵抗率を有する場合、第1電気抵抗率は第2電気抵抗率より大きい値になっている。なお、導線82が複数の素線86により形成されるとともに、第1電気抵抗率が極めて高い絶縁部材により複数の素線86を覆う素線集合体となっていても良い。また、導線82の導体82aは、撚り合わされた複数の素線86により構成されている。 The conductor 82 constitutes an n-phase winding in the stator winding 51. Then, the respective strands 86 of the conductor 82 (that is, the conductor 82a) are adjacent to each other in contact with each other. In the lead wire 82, the winding conductor has a portion formed by twisting a plurality of strands 86 at one or more places in the phase, and the resistance value between the twisted strands 86 is the strand 86 itself. It is a wire aggregate larger than the resistance value of. In other words, if each of the two adjacent strands 86 has a first electrical resistivity in its adjacent direction and each of the strands 86 has a second electrical resistivity in its length direction, then the first electrical resistance The rate is larger than the second electrical resistivity. The conducting wire 82 may be formed of a plurality of strands 86, and may be an aggregate of strands covering the plurality of strands 86 by an insulating member having an extremely high first electrical resistivity. Further, the conductor 82a of the conductor 82 is composed of a plurality of twisted strands 86.
 上記の導体82aでは、複数の素線86が撚り合わされて構成されているため、各素線86での渦電流の発生が抑えられ、導体82aにおける渦電流の低減を図ることができる。また、各素線86が捻られていることで、1本の素線86において磁界の印加方向が互いに逆になる部位が生じて逆起電圧が相殺される。そのため、やはり渦電流の低減を図ることができる。特に、素線86を繊維状の導電材87により構成することで、細線化することと捻り回数を格段に増やすこととが可能になり、渦電流をより好適に低減することができる。 Since the conductor 82a is configured by twisting a plurality of strands 86, the generation of eddy currents in each strands 86 can be suppressed, and the eddy currents in the conductor 82a can be reduced. Further, since each wire 86 is twisted, a portion where the magnetic field application directions are opposite to each other is generated in one wire 86, and the counter electromotive voltage is canceled out. Therefore, the eddy current can also be reduced. In particular, by forming the wire 86 with the fibrous conductive material 87, it is possible to make the wire thinner and to significantly increase the number of twists, and it is possible to more preferably reduce the eddy current.
 なお、ここでいう素線86同士の絶縁方法は、前述の高分子絶縁膜に限定されず、接触抵抗を利用し撚られた素線86間で電流を流れにくくする方法であってもよい。すなわち撚られた素線86間の抵抗値が、素線86そのものの抵抗値よりも大きい関係になっていれば、抵抗値の差に起因して発生する電位差により、上記効果を得ることができる。たとえば、素線86を作成する製造設備と、回転電機10の固定子50(電機子)を作成する製造設備とを別の非連続の設備として用いることで、移動時間や作業間隔などから素線86が酸化し、接触抵抗を増やすことができ、好適である。 The method of insulating the wires 86 from each other here is not limited to the above-mentioned polymer insulating film, and may be a method of making it difficult for current to flow between the twisted wires 86 by using contact resistance. That is, if the resistance value between the twisted strands 86 is larger than the resistance value of the strands 86 itself, the above effect can be obtained by the potential difference generated due to the difference in the resistance values. .. For example, by using the manufacturing equipment for creating the wire 86 and the manufacturing equipment for making the stator 50 (armature) of the rotary electric machine 10 as different discontinuous equipment, the wire is used based on the movement time, work interval, and the like. 86 is suitable because it can be oxidized and the contact resistance can be increased.
 上述のとおり導線82は、断面が扁平矩形状をなし、径方向に複数並べて配置されるものとなっており、例えば融着層と絶縁層とを備えた自己融着被覆線で被覆された複数の素線86を撚った状態で集合させ、その融着層同士を融着させることで形状を維持している。なお、融着層を備えない素線や自己融着被覆線の素線を撚った状態で合成樹脂等により所望の形状に固めて成形してもよい。導線82における絶縁被膜82bの厚さを例えば80μm~100μmとし、一般に使用される導線の被膜厚さ(5~40μm)よりも厚肉とした場合、導線82と固定子コア52との間に絶縁紙等を介在させることをしなくても、これら両者の間の絶縁性が確保することができる。 As described above, the conductor 82 has a flat rectangular cross section and is arranged side by side in the radial direction. For example, a plurality of conductors 82 covered with a self-bonding coated wire having a fusion layer and an insulating layer. The wire 86 is assembled in a twisted state, and the fused layers are fused to maintain the shape. It should be noted that the strands having no fusion layer or the strands of the self-bonding coated wire may be twisted and solidified into a desired shape with a synthetic resin or the like for molding. When the thickness of the insulating coating 82b in the conductor 82 is set to, for example, 80 μm to 100 μm and is thicker than the film thickness (5 to 40 μm) of the commonly used conductor, insulation is provided between the conductor 82 and the stator core 52. Insulation between the two can be ensured without the intervention of paper or the like.
 また、絶縁被膜82bは、素線86の絶縁層よりも高い絶縁性能を有し、相間を絶縁することができるように構成されていることが望ましい。例えば、素線86の高分子絶縁層の厚さを例えば5μm程度にした場合、導線82の絶縁被膜82bの厚さを80μm~100μm程度にして、相間の絶縁を好適に実施できるようにすることが望ましい。 Further, it is desirable that the insulating coating 82b has higher insulating performance than the insulating layer of the wire 86 and is configured to be able to insulate between the phases. For example, when the thickness of the polymer insulating layer of the wire 86 is set to, for example, about 5 μm, the thickness of the insulating coating 82b of the conducting wire 82 is set to about 80 μm to 100 μm so that insulation between the phases can be preferably performed. Is desirable.
 また、導線82は、複数の素線86が撚られることなく束ねられている構成であってもよい。つまり、導線82は、その全長において複数の素線86が撚られている構成、全長のうち一部で複数の素線86が撚られている構成、全長において複数の素線86が撚られることなく束ねられている構成のいずれかであればよい。まとめると、導線部を構成する各導線82は、複数の素線86が束ねられているとともに、束ねられた素線間の抵抗値が素線86そのものの抵抗値よりも大きい素線集合体となっている。 Further, the conductor 82 may have a configuration in which a plurality of strands 86 are bundled without being twisted. That is, the conductor 82 has a configuration in which a plurality of strands 86 are twisted in the total length, a configuration in which a plurality of strands 86 are twisted in a part of the total length, and a plurality of strands 86 are twisted in the total length. It may be any of the configurations that are bundled together. In summary, each conductor 82 constituting the conductor portion is a wire aggregate in which a plurality of conductors 86 are bundled and the resistance value between the bundled wires is larger than the resistance value of the wire 86 itself. It has become.
 各導線82は、固定子巻線51の周方向に所定の配置パターンで配置されるように折り曲げ形成されており、これにより、固定子巻線51として相ごとの相巻線が形成されている。図12に示すように、固定子巻線51では、各導線82のうち軸方向に直線状に延びる直線部83によりコイルサイド部53が形成され、軸方向においてコイルサイド部53よりも両外側に突出するターン部84によりコイルエンド54,55が形成されている。各導線82は、直線部83とターン部84とが交互に繰り返されることにより、波巻状の一連の導線として構成されている。直線部83は、磁石ユニット42に対して径方向に対向する位置に配置されており、磁石ユニット42の軸方向外側となる位置において所定間隔を隔てて配置される同相の直線部83同士が、ターン部84により互いに接続されている。なお、直線部83が「磁石対向部」に相当する。 Each conductor 82 is bent and formed so as to be arranged in a predetermined arrangement pattern in the circumferential direction of the stator winding 51, whereby a phase winding for each phase is formed as the stator winding 51. .. As shown in FIG. 12, in the stator winding 51, the coil side portion 53 is formed by the straight portion 83 of each conducting wire 82 extending linearly in the axial direction, and the coil side portion 53 is formed on both outer sides of the coil side portion 53 in the axial direction. The coil ends 54 and 55 are formed by the protruding turn portions 84. Each conducting wire 82 is configured as a series of wave-shaped conducting wires by alternately repeating a straight line portion 83 and a turn portion 84. The straight line portions 83 are arranged at positions facing the magnet unit 42 in the radial direction, and in-phase straight line portions 83 arranged at positions on the outer side in the axial direction of the magnet unit 42 at predetermined intervals are arranged. They are connected to each other by a turn portion 84. The straight line portion 83 corresponds to the “magnet facing portion”.
 本実施形態では、固定子巻線51が分布巻きにより円環状に巻回形成されている。この場合、コイルサイド部53では、相ごとに、磁石ユニット42の1極対に対応する間隔で周方向に直線部83が配置され、コイルエンド54,55では、相ごとの各直線部83が、略V字状に形成されたターン部84により互いに接続されている。1極対に対応して対となる各直線部83は、それぞれ電流の向きが互いに逆になるものとなっている。また、一方のコイルエンド54と他方のコイルエンド55とでは、ターン部84により接続される一対の直線部83の組み合わせがそれぞれ相違しており、そのコイルエンド54,55での接続が周方向に繰り返されることにより、固定子巻線51が略円筒状に形成されている。 In the present embodiment, the stator winding 51 is wound in an annular shape by distributed winding. In this case, in the coil side portion 53, linear portions 83 are arranged in the circumferential direction at intervals corresponding to one pole pair of the magnet unit 42 for each phase, and in the coil ends 54 and 55, each linear portion 83 for each phase is arranged. , They are connected to each other by a turn portion 84 formed in a substantially V shape. The directions of the currents of the linear portions 83 that are paired corresponding to the one-pole pair are opposite to each other. Further, the combination of the pair of linear portions 83 connected by the turn portion 84 is different between the one coil end 54 and the other coil end 55, and the connections at the coil ends 54 and 55 are in the circumferential direction. By repeating the process, the stator winding 51 is formed in a substantially cylindrical shape.
 より具体的には、固定子巻線51は、各相2対ずつの導線82を用いて相ごとの巻線を構成しており、固定子巻線51のうち一方の3相巻線(U相、V相、W相)と他方の3相巻線(X相、Y相、Z相)とが径方向内外の2層に設けられるものとなっている。この場合、固定子巻線51の相数をS(実施例の場合は6)、導線82の一相あたりの数をmとすれば、極対ごとに2×S×m=2Sm個の導線82が形成されることになる。本実施形態では、相数Sが6、数mが4であり、8極対(16極)の回転電機であることから、6×4×8=192の導線82が固定子コア52の周方向に配置されている。 More specifically, the stator winding 51 constitutes a winding for each phase by using two pairs of conductors 82 for each phase, and one of the stator windings 51 is a three-phase winding (U). (Phase, V phase, W phase) and the other three-phase winding (X phase, Y phase, Z phase) are provided in two layers inside and outside in the radial direction. In this case, if the number of phases of the stator winding 51 is S (6 in the case of the embodiment) and the number of conductors 82 per phase is m, then 2 × S × m = 2 Sm conductors for each pole pair. 82 will be formed. In the present embodiment, the number of phases S is 6, the number of m is 4, and since it is an 8-pole pair (16-pole) rotary electric machine, the lead wire 82 of 6 × 4 × 8 = 192 is the circumference of the stator core 52. Arranged in the direction.
 図12に示す固定子巻線51では、コイルサイド部53において、径方向に隣接する2層で直線部83が重ねて配置されるとともに、コイルエンド54,55において、径方向に重なる各直線部83から、互いに周方向逆となる向きでターン部84が周方向に延びる構成となっている。つまり、径方向に隣り合う各導線82では、固定子巻線51の端部を除き、ターン部84の向きが互いに逆となっている。 In the stator winding 51 shown in FIG. 12, in the coil side portion 53, the straight portions 83 are arranged so as to overlap in two layers adjacent in the radial direction, and in the coil ends 54 and 55, the linear portions overlapping in the radial direction are respectively arranged. From 83, the turn portion 84 extends in the circumferential direction in directions opposite to each other in the circumferential direction. That is, in each of the conducting wires 82 adjacent to each other in the radial direction, the directions of the turn portions 84 are opposite to each other except for the end portion of the stator winding 51.
 ここで、固定子巻線51における導線82の巻回構造を具体的に説明する。本実施形態では、波巻にて形成された複数の導線82を、径方向に隣接する複数層(例えば2層)に重ねて設ける構成としている。図15(a)、図15(b)は、n層目における各導線82の形態を示す図であり、図15(a)には、固定子巻線51の側方から見た導線82の形状を示し、図15(b)には、固定子巻線51の軸方向一側から見た導線82の形状を示している。なお、図15(a)、図15(b)では、導線群81が配置される位置をそれぞれD1,D2,D3,…と示している。また、説明の便宜上、3本の導線82のみを示しており、それを第1導線82_A、第2導線82_B、第3導線82_Cとしている。 Here, the winding structure of the conducting wire 82 in the stator winding 51 will be specifically described. In the present embodiment, a plurality of conductors 82 formed by wave winding are provided so as to be stacked on a plurality of layers (for example, two layers) adjacent to each other in the radial direction. 15 (a) and 15 (b) are views showing the form of each conductor 82 in the nth layer, and FIG. 15 (a) shows the conductor 82 seen from the side of the stator winding 51. The shape is shown, and FIG. 15B shows the shape of the conducting wire 82 seen from one side in the axial direction of the stator winding 51. In addition, in FIG. 15A and FIG. 15B, the positions where the conductor group 81 is arranged are shown as D1, D2, D3, ..., Respectively. Further, for convenience of explanation, only three conductors 82 are shown, which are referred to as the first conductor 82_A, the second conductor 82_B, and the third conductor 82_C.
 各導線82_A~82_Cでは、直線部83が、いずれもn層目の位置、すなわち径方向において同じ位置に配置され、周方向に6位置(3×m対分)ずつ離れた直線部83同士がターン部84により互いに接続されている。換言すると、各導線82_A~82_Cでは、いずれも回転子40の軸心を中心とする同一の円上において、固定子巻線51の周方向に隣接して並ぶ7個の直線部83の両端の二つが一つのターン部84により互いに接続されている。例えば第1導線82_Aでは、一対の直線部83がD1,D7にそれぞれ配置され、その一対の直線部83同士が、逆V字状のターン部84により接続されている。また、他の導線82_B,82_Cは、同じn層目において周方向の位置を1つずつずらしてそれぞれ配置されている。この場合、各導線82_A~82_Cは、いずれも同じ層に配置されるため、ターン部84が互いに干渉することが考えられる。そのため本実施形態では、各導線82_A~82_Cのターン部84に、その一部を径方向にオフセットした干渉回避部を形成することとしている。 In each of the conducting wires 82_A to 82_C, the straight line portions 83 are all arranged at the nth layer position, that is, at the same position in the radial direction, and the straight line portions 83 separated by 6 positions (3 × m pairs) in the circumferential direction are separated from each other. They are connected to each other by a turn portion 84. In other words, in each of the conducting wires 82_A to 82_C, on the same circle centered on the axis of the rotor 40, both ends of the seven straight line portions 83 arranged adjacent to each other in the circumferential direction of the stator winding 51. The two are connected to each other by one turn 84. For example, in the first conductor 82_A, a pair of straight lines 83 are arranged at D1 and D7, respectively, and the pair of straight lines 83 are connected to each other by an inverted V-shaped turn portion 84. Further, the other conductors 82_B and 82_C are arranged in the same nth layer with their circumferential positions shifted by one. In this case, since the conductors 82_A to 82_C are all arranged in the same layer, it is conceivable that the turn portions 84 interfere with each other. Therefore, in the present embodiment, an interference avoidance portion is formed in the turn portion 84 of each of the conducting wires 82_A to 82_C by offsetting a part thereof in the radial direction.
 具体的には、各導線82_A~82_Cのターン部84は、同一の円(第1の円)上で周方向に延びる部分である1つの傾斜部84aと、傾斜部84aからその同一の円よりも径方向内側(図15(b)において上側)にシフトし、別の円(第2の円)に達する頂部84b、第2の円上で周方向に延びる傾斜部84c及び第1の円から第2の円に戻る戻り部84dとを有している。頂部84b、傾斜部84c及び戻り部84dが干渉回避部に相当する。なお、傾斜部84cは、傾斜部84aに対して径方向外側にシフトする構成であってもよい。 Specifically, the turn portion 84 of each of the conducting wires 82_A to 82_C is from one inclined portion 84a which is a portion extending in the circumferential direction on the same circle (first circle) and the same circle from the inclined portion 84a. From the top 84b, which shifts inward in the radial direction (upper side in FIG. 15B) and reaches another circle (second circle), the inclined portion 84c extending in the circumferential direction on the second circle, and the first circle. It has a return portion 84d that returns to the second circle. The top portion 84b, the inclined portion 84c, and the return portion 84d correspond to the interference avoidance portion. The inclined portion 84c may be configured to shift outward in the radial direction with respect to the inclined portion 84a.
 つまり、各導線82_A~82_Cのターン部84は、周方向の中央位置である頂部84bを挟んでその両側に、一方側の傾斜部84aと他方側の傾斜部84cとを有しており、それら各傾斜部84a,84cの径方向の位置(図15(a)では紙面前後方向の位置、図15(b)では上下方向の位置)が互いに相違するものとなっている。例えば第1導線82_Aのターン部84は、n層のD1位置を始点位置として周方向に沿って延び、周方向の中央位置である頂部84bで径方向(例えば径方向内側)に曲がった後、周方向に再度曲がることで、再び周方向に沿って延び、さらに戻り部84dで再び径方向(例えば径方向外側)に曲がることで、終点位置であるn層のD7位置に達する構成となっている。 That is, the turn portions 84 of the conducting wires 82_A to 82_C have an inclined portion 84a on one side and an inclined portion 84c on the other side on both sides of the top portion 84b which is a central position in the circumferential direction. The radial positions of the inclined portions 84a and 84c (the position in the front-rear direction of the paper surface in FIG. 15A and the position in the vertical direction in FIG. 15B) are different from each other. For example, the turn portion 84 of the first lead wire 82_A extends along the circumferential direction starting from the D1 position of the n layer, bends in the radial direction (for example, inward in the radial direction) at the top portion 84b which is the central position in the circumferential direction, and then. By bending again in the circumferential direction, it extends along the circumferential direction again, and further bends in the radial direction (for example, outside in the radial direction) again at the return portion 84d to reach the D7 position of the n layer, which is the end point position. There is.
 上記構成によれば、導線82_A~82_Cでは、一方の各傾斜部84aが、上から第1導線82_A→第2導線82_B→第3導線82_Cの順に上下に並ぶとともに、頂部84bで各導線82_A~82_Cの上下が入れ替わり、他方の各傾斜部84cが、上から第3導線82_C→第2導線82_B→第1導線82_Aの順に上下に並ぶ構成となっている。そのため、各導線82_A~82_Cが互いに干渉することなく周方向に配置できるようになっている。 According to the above configuration, in the conductors 82_A to 82_C, one of the inclined portions 84a is arranged vertically in the order of the first conductor 82_A → the second conductor 82_B → the third conductor 82_C from the top, and each conductor 82_A to the top 84b. The top and bottom of 82_C are interchanged, and the other inclined portions 84c are arranged vertically in the order of the third conductor 82_C → the second conductor 82_B → the first conductor 82_A from the top. Therefore, the conductors 82_A to 82_C can be arranged in the circumferential direction without interfering with each other.
 ここで、複数の導線82を径方向に重ねて導線群81とする構成において、複数層の各直線部83のうち径方向内側の直線部83に接続されたターン部84と、径方向外側の直線部83に接続されたターン部84とが、それら各直線部83同士よりも径方向に離して配置されているとよい。また、ターン部84の端部、すなわち直線部83との境界部付近で、複数層の導線82が径方向の同じ側に曲げられる場合に、その隣り合う層の導線82同士の干渉により絶縁性が損なわれることが生じないようにするとよい。 Here, in a configuration in which a plurality of lead wires 82 are stacked in the radial direction to form a lead wire group 81, the turn portion 84 connected to the linear portion 83 on the inner side in the radial direction and the outer side in the radial direction among the straight line portions 83 of the plurality of layers It is preferable that the turn portion 84 connected to the straight portion 83 is arranged so as to be radially separated from each of the straight portions 83. Further, when the conductors 82 of a plurality of layers are bent to the same side in the radial direction near the end of the turn portion 84, that is, the boundary portion with the straight portion 83, the conductors 82 of the adjacent layers have an insulating property due to interference between the conductors 82. It is good to prevent the damage from being damaged.
 例えば図15(a)、図15(b)のD7~D9では、径方向に重なる各導線82が、ターン部84の戻り部84dでそれぞれ径方向に曲げられる。この場合、図16に示すように、n層目の導線82とn+1層目の導線82とで、曲がり部の曲率半径を相違させるとよい。具体的には、径方向内側(n層目)の導線82の曲率半径R1を、径方向外側(n+1層目)の導線82の曲率半径R2よりも小さくする。 For example, in D7 to D9 of FIGS. 15A and 15B, the conducting wires 82 overlapping in the radial direction are bent in the radial direction at the return portion 84d of the turn portion 84, respectively. In this case, as shown in FIG. 16, it is preferable that the radius of curvature of the bent portion is different between the conductor 82 of the nth layer and the conductor 82 of the n + 1 layer. Specifically, the radius of curvature R1 of the conductive wire 82 on the inner side in the radial direction (nth layer) is made smaller than the radius of curvature R2 of the lead wire 82 on the outer side in the radial direction (n + 1th layer).
 また、n層目の導線82とn+1層目の導線82とで、径方向のシフト量を相違させるとよい。具体的には、径方向内側(n層目)の導線82のシフト量S1を、径方向外側(n+1層目)の導線82のシフト量S2よりも大きくする。 Further, it is advisable to make the shift amount in the radial direction different between the conductor 82 of the nth layer and the conductor 82 of the n + 1 layer. Specifically, the shift amount S1 of the conductor 82 on the inner side (nth layer) in the radial direction is made larger than the shift amount S2 of the conductor 82 on the outer side (n + 1 layer) in the radial direction.
 上記構成により、径方向に重なる各導線82が同じ向きに曲げられる場合であっても、各導線82の相互干渉を好適に回避することができる。これにより、良好な絶縁性が得られることとなる。 With the above configuration, mutual interference between the conductors 82 can be suitably avoided even when the conductors 82 overlapping in the radial direction are bent in the same direction. As a result, good insulation can be obtained.
 次に、回転子40における磁石ユニット42の構造について説明する。本実施形態では、磁石ユニット42が永久磁石からなり、残留磁束密度Br=1.0[T]、固有保磁力Hcj=400[kA/m]以上のものを想定している。要は、本実施形態で用いる永久磁石は、粒状の磁性材料を焼結して成型固化した焼結磁石であり、J-H曲線上の固有保磁力Hcjは400[kA/m]以上であり、かつ残留磁束密度Brは1.0[T]以上である。5000~10000[AT]が相間励磁により掛かる場合、1極対、すなわちN極とS極の磁気的長さ、言い換えれば、N極とS極間の磁束が流れる経路のうち、磁石内を通る長さが25[mm]の永久磁石を使えば、Hcj=10000[A]となり、減磁をしないことが伺える。 Next, the structure of the magnet unit 42 in the rotor 40 will be described. In the present embodiment, it is assumed that the magnet unit 42 is made of a permanent magnet, has a residual magnetic flux density Br = 1.0 [T], and has an intrinsic coercive force Hcj = 400 [kA / m] or more. In short, the permanent magnet used in this embodiment is a sintered magnet obtained by sintering and solidifying a granular magnetic material, and the intrinsic coercive force Hcj on the JH curve is 400 [kA / m] or more. And the residual magnetic flux density Br is 1.0 [T] or more. When 5000 to 10000 [AT] is applied by interphase excitation, it passes through the magnet in the magnetic length of one pole pair, that is, the north pole and the south pole, in other words, the path through which the magnetic flux flows between the north pole and the south pole. If a permanent magnet with a length of 25 [mm] is used, Hcj = 10000 [A], which indicates that demagnetization is not performed.
 また換言すれば、磁石ユニット42は、飽和磁束密度Jsが1.2[T]以上で、かつ結晶粒径が10[μm]以下であり、配向率をαとした場合にJs×αが1.0[T]以上であるものとなっている。 In other words, the magnet unit 42 has a saturation magnetic flux density Js of 1.2 [T] or more, a crystal particle size of 10 [μm] or less, and Js × α of 1 when the orientation ratio is α. It is 0.0 [T] or higher.
 以下に磁石ユニット42について補足する。磁石ユニット42(磁石)は、2.15[T]≧Js≧1.2[T]であることが特徴である。言い換えれば、磁石ユニット42に用いられる磁石として、NdFe11TiN、Nd2Fe14B、Sm2Fe17N3、L10型結晶を有するFeNi磁石などが挙げられる。なお、通例サマコバと言われるSmCo5や、FePt、Dy2Fe14B、CoPtなどの構成は使うことができない。注意としては、同型の化合物、例えばDy2Fe14BとNd2Fe14Bのように、一般的に、重希土類であるディスプロシウムを利用して、ネオジウムの高いJs特性を少しだけ失いながらも、Dyの持つ高い保磁力を持たせた磁石でも2.15[T]≧Js≧1.2[T]を満たす場合があり、この場合も採用可能である。このような場合は、例えば([Nd1-xDyx]2Fe14B)と呼ぶこととする。更に、異なる組成の2種類以上の磁石、例えば、FeNiプラスSm2Fe17N3というように2種類以上の材料からなる磁石でも、達成が可能であるし、例えば、Js=1.6[T]と、Jsに余裕のあるNd2Fe14Bの磁石に、Js<1[T]の、例えばDy2Fe14Bを少量混ぜ、保磁力を増加させた混合磁石などでも達成が可能である。 The magnet unit 42 is supplemented below. The magnet unit 42 (magnet) is characterized in that 2.15 [T] ≧ Js ≧ 1.2 [T]. In other words, examples of the magnet used in the magnet unit 42 include NdFe11TiN, Nd2Fe14B, Sm2Fe17N3, and FeNi magnets having L10 type crystals. In addition, SmCo5, which is usually called Samarium-cobalt, and configurations such as FePt, Dy2Fe14B, and CoPt cannot be used. Note that the same type of compounds, such as Dy2Fe14B and Nd2Fe14B, generally utilize the heavy rare earth dysprosium to slightly lose the high Js properties of neodymium, but the high coercive force of Dy. 2.15 [T] ≧ Js ≧ 1.2 [T] may be satisfied even with a magnet provided with the above, and this case can also be adopted. In such a case, it is called ([Nd1-xDyx] 2Fe14B), for example. Furthermore, it can be achieved with two or more types of magnets having different compositions, for example, magnets made of two or more types of materials such as FeNi plus Sm2Fe17N3, and for example, Js = 1.6 [T] and Js. This can be achieved by mixing a small amount of Js <1 [T], for example, Dy2Fe14B, with a magnet of Nd2Fe14B that has a margin to increase the coercive force.
 また、人間の活動範囲外の温度、例えば砂漠の温度を超える60℃以上で動作されるような回転電機、例えば、夏においておけば車中温度が80℃近くなる車両用モータ用途などにおいては、特に温度依存係数の小さい、FeNi、Sm2Fe17N3の成分を含むことが望ましい。これは、人間の活動範囲内である北欧の-40℃近い温度状態から、先述の砂漠温度を超える60℃以上、又はコイルエナメル被膜の耐熱温度180~240℃程度までのモータ動作において温度依存係数によって大きくモータ特性を異ならせるため、同一のモータドライバでの最適制御などが困難となるためである。前記L10型結晶を有するFeNi、又はSm2Fe17N3などを用いれば、Nd2Fe14Bと比べ、半分以下の温度依存係数を所持しているその特性から、モータドライバの負担を好適に減らすことができる。 In addition, in rotary electric machines that operate at temperatures outside the range of human activity, for example, 60 ° C or higher, which exceeds the temperature of deserts, for example, in vehicle motor applications where the temperature inside the vehicle is close to 80 ° C in summer. In particular, it is desirable to contain the components of FeNi and Sm2Fe17N3, which have a small temperature dependence coefficient. This is a temperature dependence coefficient in motor operation from a temperature state close to -40 ° C in Scandinavia, which is within the range of human activity, to 60 ° C or higher, which exceeds the desert temperature mentioned above, or a heat resistant temperature of 180 to 240 ° C for coil enamel coatings. This is because the motor characteristics differ greatly depending on the motor, and it becomes difficult to perform optimum control with the same motor driver. If FeNi having the L10 type crystal, Sm2Fe17N3, or the like is used, the burden on the motor driver can be suitably reduced due to its characteristic of having a temperature dependence coefficient of less than half that of Nd2Fe14B.
 加えて、磁石ユニット42は、前記磁石配合を用いて、配向以前の微粉体状態の粒子径の大きさが10μm以下、単磁区粒子径以上としていることを特徴としている。磁石では、粉体の粒子を数百nmオーダまで微細化することにより保磁力が大きくなるため、近年では、できるだけ微細化された粉体が使用されている。ただし、細かくしすぎると、酸化などにより磁石のBH積が落ちてしまうため、単磁区粒子径以上が好ましい。単磁区粒子径までの粒子径であれば、微細化により保磁力が上昇することが知られている。なお、ここで述べてきた粒子径の大きさは、磁石の製造工程でいうところの配向工程の際の微粉体状態の粒子径の大きさである。 In addition, the magnet unit 42 is characterized in that the size of the particle size in the fine powder state before orientation is 10 μm or less and the particle size in the single magnetic domain or more by using the magnet combination. In magnets, the coercive force is increased by refining the powder particles to the order of several hundred nm. Therefore, in recent years, powders as fine as possible have been used. However, if it is made too fine, the BH product of the magnet will drop due to oxidation or the like, so a single magnetic domain particle size or larger is preferable. It is known that the coercive force increases due to miniaturization when the particle size is up to the single magnetic domain particle size. The size of the particle size described here is the size of the particle size in the fine powder state at the time of the alignment step in the magnet manufacturing process.
 更に、磁石ユニット42の第1磁石91と第2磁石92の各々は、磁性粉末を高温で焼き固めた、いわゆる焼結により形成された焼結磁石である。この焼結は、磁石ユニット42の飽和磁化Jsが1.2T以上で、第1磁石91および第2磁石92の結晶粒径が10μm以下であり、配向率をαとした場合、Js×αが1.0T(テスラ)以上の条件を満足するよう行われる。また、第1磁石91と第2磁石92の各々は、以下の条件を満足するように焼結されている。そして、その製造過程において配向工程にて配向が行われることにより、等方性磁石の着磁工程による磁力方向の定義とは異なり、配向率(orientation ratio)を持つ。本実施形態の磁石ユニット42の飽和磁化Jsが1.2T以上で、第1磁石91と第2磁石92の配向率αが、Jr≧Js×α≧1.0[T]となるように高い配向率を設定されている。なお、ここで言う配向率αとは、第1磁石91又は第2磁石92の各々において、例えば、磁化容易軸が6つあり、そのうちの5つが同じ方向である方向A10を向き、残りの一つが方向A10に対して90度傾いた方向B10を向いている場合、α=5/6であり、残りの一つが方向A10に対して45度傾いた方向B10を向いている場合には、残りの一つの方向A10を向く成分はcos45°=0.707であるため、α=(5+0.707)/6となる。本実施例では焼結により第1磁石91と第2磁石92を形成しているが、上記条件が満足されれば、第1磁石91と第2磁石92は他の方法により成形してもよい。例えば、MQ3磁石などを形成する方法を採用することができる。 Further, each of the first magnet 91 and the second magnet 92 of the magnet unit 42 is a sintered magnet formed by so-called sintering, in which magnetic powder is baked and hardened at a high temperature. In this sintering, when the saturation magnetization Js of the magnet unit 42 is 1.2 T or more, the crystal grain size of the first magnet 91 and the second magnet 92 is 10 μm or less, and the orientation ratio is α, Js × α is It is performed so as to satisfy the condition of 1.0 T (tesla) or more. Further, each of the first magnet 91 and the second magnet 92 is sintered so as to satisfy the following conditions. Then, since the orientation is performed in the alignment step in the manufacturing process, the orientation ratio (orientation ratio) is different from the definition of the magnetic force direction by the magnetizing step of the isotropic magnet. The saturation magnetization Js of the magnet unit 42 of the present embodiment is 1.2 T or more, and the orientation ratio α of the first magnet 91 and the second magnet 92 is high so that Jr ≧ Js × α ≧ 1.0 [T]. The orientation rate is set. The orientation rate α referred to here means, for example, six easy-to-magnetize axes in each of the first magnet 91 and the second magnet 92, five of which face the direction A10 in the same direction, and the remaining one. If one is facing the direction B10 that is tilted 90 degrees with respect to the direction A10, α = 5/6, and if the other one is facing the direction B10 that is tilted 45 degrees with respect to the direction A10, the rest. Since the component facing one direction A10 is cos45 ° = 0.707, α = (5 + 0.707) / 6. In this embodiment, the first magnet 91 and the second magnet 92 are formed by sintering, but if the above conditions are satisfied, the first magnet 91 and the second magnet 92 may be molded by another method. .. For example, a method of forming an MQ3 magnet or the like can be adopted.
 本実施形態においては、配向により磁化容易軸をコントロールした永久磁石を利用しているから、その磁石内部の磁気回路長を、従来1.0[T]以上を出す直線配向磁石の磁気回路長と比べて、長くすることができる。すなわち、1極対あたりの磁気回路長を、少ない磁石量で達成できる他、従来の直線配向磁石を利用した設計と比べ、過酷な高熱条件に曝されても、その可逆減磁範囲を保つことができる。また、本願開示者は、従来技術の磁石を用いても、極異方性磁石と近しい特性を得られる構成を見いだした。 In this embodiment, since a permanent magnet whose magnetization easy axis is controlled by orientation is used, the magnetic circuit length inside the magnet is set to the magnetic circuit length of a linearly oriented magnet that conventionally produces 1.0 [T] or more. Compared, it can be made longer. That is, the magnetic circuit length per pole pair can be achieved with a small amount of magnets, and the reversible demagnetization range is maintained even when exposed to harsh high thermal conditions as compared with the conventional design using linearly oriented magnets. Can be done. Further, the discloser of the present application has found a configuration in which characteristics similar to those of a polar anisotropic magnet can be obtained even by using a magnet of the prior art.
 なお、磁化容易軸は、磁石において磁化されやすい結晶方位のことをいう。磁石における磁化容易軸の向きとは、磁化容易軸の方向が揃っている程度を示す配向率が50%以上となる方向、又は、その磁石の配向の平均となる方向である。 The easy-to-magnetize axis refers to the crystal orientation that is easily magnetized in a magnet. The orientation of the easy-to-magnetize axis in the magnet is a direction in which the orientation ratio indicating the degree to which the directions of the easy-magnetization axes are aligned is 50% or more, or a direction in which the orientation of the magnet is average.
 図8及び図9に示すように、磁石ユニット42は、円環状をなしており、磁石ホルダ41の内側(詳しくは円筒部43の径方向内側)に設けられている。磁石ユニット42は、それぞれ極異方性磁石でありかつ極性が互いに異なる第1磁石91及び第2磁石92を有している。第1磁石91及び第2磁石92は周方向に交互に配置されている。第1磁石91は、固定子巻線51に近い部分においてN極を形成する磁石であり、第2磁石92は、固定子巻線51に近い部分においてS極を形成する磁石である。第1磁石91及び第2磁石92は、例えばネオジム磁石等の希土類磁石からなる永久磁石である。 As shown in FIGS. 8 and 9, the magnet unit 42 has an annular shape and is provided inside the magnet holder 41 (specifically, inside the cylindrical portion 43 in the radial direction). The magnet unit 42 has a first magnet 91 and a second magnet 92, which are polar anisotropic magnets and have different polarities from each other. The first magnet 91 and the second magnet 92 are arranged alternately in the circumferential direction. The first magnet 91 is a magnet that forms an N pole in a portion close to the stator winding 51, and the second magnet 92 is a magnet that forms an S pole in a portion close to the stator winding 51. The first magnet 91 and the second magnet 92 are permanent magnets made of rare earth magnets such as neodymium magnets.
 各磁石91,92では、図9に示すように、公知のd-q座標系において磁極中心であるd軸(direct-axis)とN極とS極の磁極境界である(言い換えれば、磁束密度が0テスラである)q軸(quadrature-axis)との間において磁化方向が円弧状に延びている。各磁石91,92それぞれにおいて、d軸側では磁化方向が円環状の磁石ユニット42の径方向とされ、q軸側では円環状の磁石ユニット42の磁化方向が周方向とされている。以下、更に詳細に説明する。磁石91,92のそれぞれは、図9に示すように、第1部分250と、磁石ユニット42の周方向において第1部分250の両側に位置する二つの第2部分260とを有する。言い換えれば、第1部分250は、第2部分260よりd軸に近く、第2部分260は、第1部分250よりq軸に近い。そして、第1部分250の磁化容易軸300の方向は、第2部分260の磁化容易軸310の方向よりもd軸に対してより平行となるように磁石ユニット42が構成されている。言い換えれば、第1部分250の磁化容易軸300がd軸となす角度θ11が、第2部分260の磁化容易軸310がq軸となす角度θ12よりも小さくなるように磁石ユニット42が構成されている。 In each of the magnets 91 and 92, as shown in FIG. 9, in the known dq coordinate system, the d-axis (direct-axis) which is the center of the magnetic pole and the magnetic pole boundary between the N pole and the S pole (in other words, the magnetic flux density). The magnetization direction extends in an arc shape with the q axis (quadrature-axis). In each of the magnets 91 and 92, the magnetization direction is the radial direction of the annular magnet unit 42 on the d-axis side, and the magnetization direction of the annular magnet unit 42 is the circumferential direction on the q-axis side. Hereinafter, it will be described in more detail. Each of the magnets 91 and 92 has a first portion 250 and two second portions 260 located on both sides of the first portion 250 in the circumferential direction of the magnet unit 42, as shown in FIG. In other words, the first portion 250 is closer to the d-axis than the second portion 260, and the second portion 260 is closer to the q-axis than the first portion 250. The magnet unit 42 is configured so that the direction of the easy-to-magnetize axis 300 of the first portion 250 is more parallel to the d-axis than the direction of the easy-to-magnetize axis 310 of the second portion 260. In other words, the magnet unit 42 is configured so that the angle θ11 formed by the easily magnetized axis 300 of the first portion 250 with the d-axis is smaller than the angle θ12 formed by the easily magnetized axis 310 of the second portion 260 with the q-axis. There is.
 より詳細には、角度θ11は、d軸において固定子50(電機子)から磁石ユニット42に向かう方向を正とした時に、d軸と磁化容易軸300とがなす角度である。角度θ12は、q軸において固定子50(電機子)から磁石ユニット42に向かう方向を正とした時に、q軸と磁化容易軸310とがなす角度である。なお角度θ11及び角度θ12共に、本実施形態では90°以下である。ここでいう、磁化容易軸300,310のそれぞれは、以下の定義による。磁石91,92のそれぞれの部分において、一つの磁化容易軸が方向A11を向き、もう一つの磁化容易軸が方向B11を向いているとした場合、方向A11と方向B11の成す角度θのコサインの絶対値(|cosθ|)を磁化容易軸300或いは磁化容易軸310とする。 More specifically, the angle θ11 is the angle formed by the d-axis and the easily magnetized axis 300 when the direction from the stator 50 (armature) to the magnet unit 42 is positive on the d-axis. The angle θ12 is an angle formed by the q-axis and the easily magnetized axis 310 when the direction from the stator 50 (armature) to the magnet unit 42 is positive on the q-axis. Both the angle θ11 and the angle θ12 are 90 ° or less in this embodiment. Each of the easily magnetized axes 300 and 310 referred to here is defined by the following. Assuming that one easy-to-magnetize axis points to the direction A11 and the other easy-to-magnetize axis points to the direction B11 in each of the magnets 91 and 92, the cosine of the angle θ formed by the direction A11 and the direction B11. The absolute value (| cosθ |) is set to the easy magnetization axis 300 or the easy magnetization axis 310.
 すなわち、各磁石91,92のそれぞれは、d軸側(d軸寄りの部分)とq軸側(q軸寄りの部分)とで磁化容易軸の向きが相違しており、d軸側では磁化容易軸の向きがd軸に平行な方向に近い向きとなり、q軸側では磁化容易軸の向きがq軸に直交する方向に近い向きとなっている。そして、この磁化容易軸の向きに応じて円弧状の磁石磁路が形成されている。なお、各磁石91,92において、d軸側では磁化容易軸をd軸に平行な向きとし、q軸側では磁化容易軸をq軸に直交する向きとしてもよい。 That is, the directions of the easy-to-magnetize axes of the magnets 91 and 92 are different between the d-axis side (the portion closer to the d-axis) and the q-axis side (the portion closer to the q-axis), and magnetization is performed on the d-axis side. The direction of the easy axis is close to the direction parallel to the d-axis, and the direction of the easy magnetization axis is close to the direction orthogonal to the q-axis on the q-axis side. Then, an arcuate magnet magnetic path is formed according to the direction of the easily magnetized axis. In each of the magnets 91 and 92, the easy magnetization axis may be oriented parallel to the d-axis on the d-axis side, and the easy-magnetization axis may be oriented orthogonal to the q-axis on the q-axis side.
 また、磁石91,92では、各磁石91,92の周面のうち固定子50側(図9の下側)となる固定子側外面と、周方向においてq軸側の端面とが、磁束の流入流出面である磁束作用面となっており、それらの磁束作用面(固定子側外面及びq軸側の端面)を繋ぐように磁石磁路が形成されている。 Further, in the magnets 91 and 92, of the peripheral surfaces of the magnets 91 and 92, the outer surface on the stator side on the stator 50 side (lower side in FIG. 9) and the end surface on the q-axis side in the circumferential direction are magnetic flux. It is a magnetic flux acting surface that is an inflow and outflow surface, and a magnetic magnetic path is formed so as to connect these magnetic flux acting surfaces (the outer surface on the stator side and the end surface on the q-axis side).
 磁石ユニット42では、各磁石91,92により、隣接するN,S極間を円弧状に磁束が流れるため、例えばラジアル異方性磁石に比べて磁石磁路が長くなっている。このため、図17に示すように、磁束密度分布が正弦波に近いものとなる。その結果、図18に比較例として示すラジアル異方性磁石の磁束密度分布とは異なり、磁極の中心側に磁束を集中させることができ、回転電機10のトルクを高めることができる。また、本実施形態の磁石ユニット42では、従来のハルバッハ配列の磁石と比べても、磁束密度分布の差異があることが確認できる。なお、図17及び図18において、横軸は電気角を示し、縦軸は磁束密度を示す。また、図17及び図18において、横軸の90°はd軸(すなわち磁極中心)を示し、横軸の0°,180°はq軸を示す。 In the magnet unit 42, magnetic flux flows in an arc shape between adjacent N and S poles due to the magnets 91 and 92, so that the magnet path is longer than, for example, a radial anisotropic magnet. Therefore, as shown in FIG. 17, the magnetic flux density distribution is close to that of a sine wave. As a result, unlike the magnetic flux density distribution of the radial anisotropic magnet shown as a comparative example in FIG. 18, the magnetic flux can be concentrated on the center side of the magnetic pole, and the torque of the rotary electric machine 10 can be increased. Further, it can be confirmed that the magnet unit 42 of the present embodiment has a difference in the magnetic flux density distribution as compared with the conventional Halbach array magnet. In FIGS. 17 and 18, the horizontal axis represents the electric angle and the vertical axis represents the magnetic flux density. Further, in FIGS. 17 and 18, 90 ° on the horizontal axis indicates the d-axis (that is, the center of the magnetic pole), and 0 ° and 180 ° on the horizontal axis indicate the q-axis.
 つまり、上記構成の各磁石91,92によれば、d軸での磁石磁束が強化され、かつq軸付近での磁束変化が抑えられる。これにより、各磁極においてq軸からd軸にかけての表面磁束変化がなだらかになる磁石91,92を好適に実現することができる。 That is, according to the magnets 91 and 92 having the above configuration, the magnet magnetic flux on the d-axis is strengthened and the change in magnetic flux near the q-axis is suppressed. As a result, magnets 91 and 92 in which the change in surface magnetic flux from the q-axis to the d-axis at each magnetic pole is gentle can be preferably realized.
 磁束密度分布の正弦波整合率は、例えば40%以上の値とされていればよい。このようにすれば、正弦波整合率が30%程度であるラジアル配向磁石、パラレル配向磁石を用いる場合に比べ、確実に波形中央部分の磁束量を向上させることができる。また、正弦波整合率を60%以上とすれば、ハルバッハ配列のような磁束集中配列と比べ、確実に波形中央部分の磁束量を向上させることができる。 The sine wave matching factor of the magnetic flux density distribution may be, for example, a value of 40% or more. By doing so, it is possible to surely improve the amount of magnetic flux in the central portion of the waveform as compared with the case of using a radial alignment magnet or a parallel alignment magnet having a sinusoidal matching factor of about 30%. Further, if the sine wave matching factor is 60% or more, the amount of magnetic flux in the central portion of the waveform can be surely improved as compared with the magnetic flux concentrated arrangement such as the Halbach array.
 図18に示すラジアル異方性磁石では、q軸付近において磁束密度が急峻に変化する。磁束密度の変化が急峻なほど、固定子巻線51に発生する渦電流が増加してしまう。また、固定子巻線51側での磁束変化も急峻となる。これに対し、本実施形態では、磁束密度分布が正弦波に近い磁束波形となる。このため、q軸付近において、磁束密度の変化が、ラジアル異方性磁石の磁束密度の変化よりも小さい。これにより、渦電流の発生を抑制することができる。 In the radial anisotropic magnet shown in FIG. 18, the magnetic flux density changes sharply near the q-axis. The steeper the change in magnetic flux density, the greater the eddy current generated in the stator winding 51. Further, the change in magnetic flux on the stator winding 51 side is also steep. On the other hand, in the present embodiment, the magnetic flux density distribution is a magnetic flux waveform close to a sine wave. Therefore, the change in the magnetic flux density near the q-axis is smaller than the change in the magnetic flux density of the radial anisotropic magnet. As a result, the generation of eddy current can be suppressed.
 磁石ユニット42では、各磁石91,92のd軸付近(すなわち磁極中心)において、固定子50側の磁束作用面280に直交する向きで磁束が生じ、その磁束は、固定子50側の磁束作用面280から離れるほど、d軸から離れるような円弧状をなす。また、磁束作用面に直交する磁束であるほど、強い磁束となる。この点において、本実施形態の回転電機10では、上述のとおり各導線群81を径方向に薄くしたため、導線群81の径方向の中心位置が磁石ユニット42の磁束作用面に近づくことになり、固定子50において回転子40から強い磁石磁束を受けることができる。 In the magnet unit 42, a magnetic flux is generated in the vicinity of the d-axis (that is, the center of the magnetic pole) of each of the magnets 91 and 92 in a direction orthogonal to the magnetic flux action surface 280 on the stator 50 side, and the magnetic flux acts on the magnetic flux action on the stator 50 side. The farther away from the surface 280, the more arcuate the shape is from the d-axis. Further, the magnetic flux orthogonal to the magnetic flux acting surface becomes stronger. In this respect, in the rotary electric machine 10 of the present embodiment, since each lead wire group 81 is thinned in the radial direction as described above, the radial center position of the lead wire group 81 approaches the magnetic flux acting surface of the magnet unit 42. The stator 50 can receive a strong magnetic flux from the rotor 40.
 また、固定子50には、固定子巻線51の径方向内側、すなわち固定子巻線51を挟んで回転子40の逆側に円筒状の固定子コア52が設けられている。そのため、各磁石91,92の磁束作用面から延びる磁束は、固定子コア52に引きつけられ、固定子コア52を磁路の一部として用いつつ周回する。この場合、磁石磁束の向き及び経路を適正化することができる。 Further, the stator 50 is provided with a cylindrical stator core 52 on the radial inside of the stator winding 51, that is, on the opposite side of the rotor 40 with the stator winding 51 interposed therebetween. Therefore, the magnetic flux extending from the magnetic flux acting surface of each of the magnets 91 and 92 is attracted to the stator core 52 and orbits while using the stator core 52 as a part of the magnetic path. In this case, the direction and path of the magnetic flux of the magnet can be optimized.
 以下に、回転電機10の製造方法として、図5に示す軸受ユニット20、ハウジング30、回転子40、固定子50及びインバータユニット60についての組み付け手順について説明する。なお、インバータユニット60は、図6に示すようにユニットベース61と電気コンポーネント62とを有しており、それらユニットベース61及び電気コンポーネント62の組み付け工程を含む各作業工程を説明する。以下の説明では、固定子50及びインバータユニット60よりなる組立品を第1ユニット、軸受ユニット20、ハウジング30及び回転子40よりなる組立品を第2ユニットとしている。 The procedure for assembling the bearing unit 20, the housing 30, the rotor 40, the stator 50, and the inverter unit 60 shown in FIG. 5 will be described below as a method for manufacturing the rotary electric machine 10. As shown in FIG. 6, the inverter unit 60 has a unit base 61 and an electric component 62, and each work process including an assembling process of the unit base 61 and the electric component 62 will be described. In the following description, the assembly including the stator 50 and the inverter unit 60 is referred to as the first unit, and the assembly including the bearing unit 20, the housing 30 and the rotor 40 is referred to as the second unit.
 本製造工程は、
・ユニットベース61の径方向内側に電気コンポーネント62を装着する第1工程と、
・固定子50の径方向内側にユニットベース61を装着して第1ユニットを製作する第2工程と、
・ハウジング30に組み付けられた軸受ユニット20に、回転子40の固定部44を挿入して第2ユニットを製作する第3工程と、
・第2ユニットの径方向内側に第1ユニットを装着する第4工程と、
・ハウジング30とユニットベース61とを締結固定する第5工程と、
を有している。これら各工程の実施順序は、第1工程→第2工程→第3工程→第4工程→第5工程である。
This manufacturing process is
-The first step of mounting the electrical component 62 inside the unit base 61 in the radial direction, and
-The second step of mounting the unit base 61 inside the stator 50 in the radial direction to manufacture the first unit, and
A third step of inserting the fixing portion 44 of the rotor 40 into the bearing unit 20 assembled to the housing 30 to manufacture the second unit, and
・ The fourth step of mounting the first unit inside the second unit in the radial direction, and
Fifth step of fastening and fixing the housing 30 and the unit base 61,
have. The execution order of each of these steps is as follows: 1st step → 2nd step → 3rd step → 4th step → 5th step.
 上記の製造方法によれば、軸受ユニット20、ハウジング30、回転子40、固定子50及びインバータユニット60を複数の組立品(サブアセンブリ)として組み立てた後に、それら組立品同士を組み付けるようにしたため、ハンドリングのし易さやユニット毎の検査完結などを実現でき、合理的な組み立てラインの構築が可能となる。したがって、多品種生産にも容易に対応が可能となる。 According to the above manufacturing method, the bearing unit 20, the housing 30, the rotor 40, the stator 50, and the inverter unit 60 are assembled as a plurality of assemblies (subassemblies), and then the assemblies are assembled to each other. Ease of handling and completion of inspection for each unit can be realized, and a rational assembly line can be constructed. Therefore, it is possible to easily cope with high-mix production.
 第1工程では、ユニットベース61の径方向内側及び電気コンポーネント62の径方向外部の少なくともいずれかに、熱伝導が良好な良熱伝導体を塗布や接着等により付着させておき、その状態で、ユニットベース61に対して電気コンポーネント62を装着するとよい。これにより、半導体モジュール66の発熱をユニットベース61に対して効果的に伝達させることが可能となる。 In the first step, a good thermal conductor having good thermal conductivity is attached to at least one of the radial inside of the unit base 61 and the radial outside of the electric component 62 by coating, adhesion, etc., and in that state, The electrical component 62 may be attached to the unit base 61. This makes it possible to effectively transmit the heat generated by the semiconductor module 66 to the unit base 61.
 第3工程では、ハウジング30と回転子40との同軸を維持しながら、回転子40の挿入作業を実施するとよい。具体的には、例えばハウジング30の内周面を基準として回転子40の外周面(磁石ホルダ41の外周面)又は回転子40の内周面(磁石ユニット42の内周面)の位置を定める治具を用い、その治具に沿ってハウジング30及び回転子40のいずれかをスライドさせながら、ハウジング30と回転子40との組み付けを実施する。これにより、軸受ユニット20に偏荷重を掛けることなく重量部品を組み付けることが可能となり、軸受ユニット20の信頼性が向上する。 In the third step, it is advisable to insert the rotor 40 while maintaining the coaxiality between the housing 30 and the rotor 40. Specifically, for example, the position of the outer peripheral surface of the rotor 40 (outer peripheral surface of the magnet holder 41) or the inner peripheral surface of the rotor 40 (inner peripheral surface of the magnet unit 42) is determined with reference to the inner peripheral surface of the housing 30. Using a magnet, the housing 30 and the rotor 40 are assembled while sliding either the housing 30 or the rotor 40 along the magnet. As a result, heavy parts can be assembled without applying an eccentric load to the bearing unit 20, and the reliability of the bearing unit 20 is improved.
 第4工程では、第1ユニットと第2ユニットとの同軸を維持しながら、それら両ユニットの組み付けを実施するとよい。具体的には、例えば回転子40の固定部44の内周面を基準としてユニットベース61の内周面の位置を定める治具を用い、その治具に沿って第1ユニット及び第2ユニットのいずれかをスライドさせながら、これら各ユニットの組み付けを実施する。これにより、回転子40と固定子50との極少隙間間での互いの干渉を防止しながら組み付けることが可能となるため、固定子巻線51へのダメージや永久磁石の欠け等、組み付け起因の不良品の撲滅が可能となる。 In the fourth step, it is advisable to assemble both units while maintaining the coaxiality between the first unit and the second unit. Specifically, for example, a jig for determining the position of the inner peripheral surface of the unit base 61 with reference to the inner peripheral surface of the fixed portion 44 of the rotor 40 is used, and the first unit and the second unit are formed along the jig. Assemble each of these units while sliding one of them. As a result, it is possible to assemble while preventing mutual interference between the rotor 40 and the stator 50, which is caused by the assembly such as damage to the stator winding 51 and chipping of permanent magnets. It is possible to eradicate defective products.
 上記各工程の順序を、第2工程→第3工程→第4工程→第5工程→第1工程とすることも可能である。この場合、デリケートな電気コンポーネント62を最後に組み付けることになり、組み付け工程内での電気コンポーネント62へのストレスを最小限にとどめることができる。 It is also possible that the order of each of the above steps is as follows: 2nd step → 3rd step → 4th step → 5th step → 1st step. In this case, the delicate electric component 62 is assembled last, and the stress on the electric component 62 in the assembling process can be minimized.
 次に、回転電機10を制御する制御システムの構成について説明する。図19は、回転電機10の制御システムの電気回路図であり、図20は、制御装置110による制御処理を示す機能ブロック図である。 Next, the configuration of the control system that controls the rotary electric machine 10 will be described. FIG. 19 is an electric circuit diagram of the control system of the rotary electric machine 10, and FIG. 20 is a functional block diagram showing a control process by the control device 110.
 図19では、固定子巻線51として2組の3相巻線51a,51bが示されており、3相巻線51aはU相巻線、V相巻線及びW相巻線よりなり、3相巻線51bはX相巻線、Y相巻線及びZ相巻線よりなる。3相巻線51a,51bごとに、電力変換器に相当する第1インバータ101と第2インバータ102とがそれぞれ設けられている。インバータ101,102は、相巻線の相数と同数の上下アームを有するフルブリッジ回路により構成されており、各アームに設けられたスイッチ(半導体スイッチング素子)のオンオフにより、固定子巻線51の各相巻線において通電電流が調整される。 In FIG. 19, two sets of three-phase windings 51a and 51b are shown as the stator windings 51, and the three-phase winding 51a is composed of a U-phase winding, a V-phase winding, and a W-phase winding. The phase winding 51b includes an X-phase winding, a Y-phase winding, and a Z-phase winding. A first inverter 101 and a second inverter 102 corresponding to a power converter are provided for each of the three-phase windings 51a and 51b, respectively. The inverters 101 and 102 are composed of a full bridge circuit having the same number of upper and lower arms as the number of phases of the phase windings, and the stator windings 51 can be turned on and off by turning on / off a switch (semiconductor switching element) provided on each arm. The energizing current is adjusted in each phase winding.
 各インバータ101,102には、直流電源103と平滑用のコンデンサ104とが並列に接続されている。直流電源103は、例えば複数の単電池が直列接続された組電池により構成されている。なお、インバータ101,102の各スイッチが、図1等に示す半導体モジュール66に相当し、コンデンサ104が、図1等に示すコンデンサモジュール68に相当する。 A DC power supply 103 and a smoothing capacitor 104 are connected in parallel to each of the inverters 101 and 102. The DC power supply 103 is composed of, for example, an assembled battery in which a plurality of single batteries are connected in series. The switches of the inverters 101 and 102 correspond to the semiconductor module 66 shown in FIG. 1 and the like, and the capacitor 104 corresponds to the capacitor module 68 shown in FIG. 1 and the like.
 制御装置110は、CPUや各種メモリからなるマイコンを備えており、回転電機10における各種の検出情報や、力行駆動及び発電の要求に基づいて、インバータ101,102における各スイッチのオンオフにより通電制御を実施する。制御装置110が、図6に示す制御装置77に相当する。回転電機10の検出情報には、例えば、レゾルバ等の角度検出器により検出される回転子40の回転角度(電気角情報)や、電圧センサにより検出される電源電圧(インバータ入力電圧)、電流センサにより検出される各相の通電電流が含まれる。制御装置110は、インバータ101,102の各スイッチを操作する操作信号を生成して出力する。なお、発電の要求は、例えば回転電機10が車両用動力源として用いられる場合、回生駆動の要求である。 The control device 110 includes a microcomputer composed of a CPU and various memories, and performs energization control by turning on / off each switch in the inverters 101 and 102 based on various detection information in the rotary electric machine 10 and requests for power running and power generation. carry out. The control device 110 corresponds to the control device 77 shown in FIG. The detection information of the rotary electric machine 10 includes, for example, the rotation angle (electric angle information) of the rotor 40 detected by an angle detector such as a resolver, the power supply voltage (inverter input voltage) detected by the voltage sensor, and the current sensor. Includes the energizing current of each phase detected by. The control device 110 generates and outputs an operation signal for operating each of the switches of the inverters 101 and 102. The power generation requirement is, for example, a regenerative drive requirement when the rotary electric machine 10 is used as a power source for a vehicle.
 第1インバータ101は、U相、V相及びW相からなる3相において上アームスイッチSpと下アームスイッチSnとの直列接続体をそれぞれ備えている。各相の上アームスイッチSpの高電位側端子は直流電源103の正極端子に接続され、各相の下アームスイッチSnの低電位側端子は直流電源103の負極端子(グランド)に接続されている。各相の上アームスイッチSpと下アームスイッチSnとの間の中間接続点には、それぞれU相巻線、V相巻線、W相巻線の一端が接続されている。これら各相巻線は星形結線(Y結線)されており、各相巻線の他端は中性点にて互いに接続されている。 The first inverter 101 includes a series connection body of the upper arm switch Sp and the lower arm switch Sn in three phases including the U phase, the V phase, and the W phase. The high potential side terminal of the upper arm switch Sp of each phase is connected to the positive electrode terminal of the DC power supply 103, and the low potential side terminal of the lower arm switch Sn of each phase is connected to the negative electrode terminal (ground) of the DC power supply 103. .. One ends of the U-phase winding, the V-phase winding, and the W-phase winding are connected to the intermediate connection points between the upper arm switch Sp and the lower arm switch Sn of each phase, respectively. Each of these phase windings is star-shaped (Y-connected), and the other end of each phase winding is connected to each other at a neutral point.
 第2インバータ102は、第1インバータ101と同様の構成を有しており、X相、Y相及びZ相からなる3相において上アームスイッチSpと下アームスイッチSnとの直列接続体をそれぞれ備えている。各相の上アームスイッチSpの高電位側端子は直流電源103の正極端子に接続され、各相の下アームスイッチSnの低電位側端子は直流電源103の負極端子(グランド)に接続されている。各相の上アームスイッチSpと下アームスイッチSnとの間の中間接続点には、それぞれX相巻線、Y相巻線、Z相巻線の一端が接続されている。これら各相巻線は星形結線(Y結線)されており、各相巻線の他端は中性点で互いに接続されている。 The second inverter 102 has the same configuration as the first inverter 101, and includes a series connection body of the upper arm switch Sp and the lower arm switch Sn in three phases including the X phase, the Y phase, and the Z phase, respectively. ing. The high potential side terminal of the upper arm switch Sp of each phase is connected to the positive electrode terminal of the DC power supply 103, and the low potential side terminal of the lower arm switch Sn of each phase is connected to the negative electrode terminal (ground) of the DC power supply 103. .. One ends of the X-phase winding, the Y-phase winding, and the Z-phase winding are connected to the intermediate connection points between the upper arm switch Sp and the lower arm switch Sn of each phase, respectively. Each of these phase windings is star-shaped (Y-connected), and the other end of each phase winding is connected to each other at a neutral point.
 図20には、U,V,W相の各相電流を制御する電流フィードバック制御処理と、X,Y,Z相の各相電流を制御する電流フィードバック制御処理とが示されている。ここではまず、U,V,W相側の制御処理について説明する。 FIG. 20 shows a current feedback control process that controls each phase current of the U, V, and W phases, and a current feedback control process that controls each phase current of the X, Y, and Z phases. Here, first, the control processing on the U, V, and W phases will be described.
 図20において、電流指令値設定部111は、トルク-dqマップを用い、回転電機10に対する力行トルク指令値又は発電トルク指令値や、電気角θを時間微分して得られる電気角速度ωに基づいて、d軸の電流指令値とq軸の電流指令値とを設定する。なお、電流指令値設定部111は、U,V,W相側及びX,Y,Z相側において共通に設けられている。なお、発電トルク指令値は、例えば回転電機10が車両用動力源として用いられる場合、回生トルク指令値である。 In FIG. 20, the current command value setting unit 111 uses a torque −dq map and is based on a power running torque command value or a power generation torque command value for the rotary electric machine 10 and an electric angular velocity ω obtained by time-differentiating the electric angle θ. , The d-axis current command value and the q-axis current command value are set. The current command value setting unit 111 is commonly provided on the U, V, W phase side and the X, Y, Z phase side. The power generation torque command value is, for example, a regenerative torque command value when the rotary electric machine 10 is used as a power source for a vehicle.
 dq変換部112は、相ごとに設けられた電流センサによる電流検出値(3つの相電流)を、界磁方向(direction of an axis of a magnetic field,or field direction)をd軸とする直交2次元回転座標系の成分であるd軸電流とq軸電流とに変換する。 The dq conversion unit 112 sets the current detection values (three phase currents) by the current sensors provided for each phase to the orthogonal 2 with the field direction (direction of an axis of a magnetic field, or field direction) as the d-axis. It is converted into a d-axis current and a q-axis current, which are components of the dimensional rotation coordinate system.
 d軸電流フィードバック制御部113は、d軸電流をd軸の電流指令値にフィードバック制御するための操作量としてd軸の指令電圧を算出する。また、q軸電流フィードバック制御部114は、q軸電流をq軸の電流指令値にフィードバック制御するための操作量としてq軸の指令電圧を算出する。これら各フィードバック制御部113,114では、d軸電流及びq軸電流の電流指令値に対する偏差に基づき、PIフィードバック手法を用いて指令電圧が算出される。 The d-axis current feedback control unit 113 calculates the d-axis command voltage as an operation amount for feedback-controlling the d-axis current to the d-axis current command value. Further, the q-axis current feedback control unit 114 calculates the q-axis command voltage as an operation amount for feedback-controlling the q-axis current to the q-axis current command value. In each of these feedback control units 113 and 114, the command voltage is calculated using the PI feedback method based on the deviation of the d-axis current and the q-axis current with respect to the current command value.
 3相変換部115は、d軸及びq軸の指令電圧を、U相、V相及びW相の指令電圧に変換する。なお、上記の各部111~115が、dq変換理論による基本波電流のフィードバック制御を実施するフィードバック制御部であり、U相、V相及びW相の指令電圧がフィードバック制御値である。 The three-phase conversion unit 115 converts the d-axis and q-axis command voltages into U-phase, V-phase, and W-phase command voltages. Each of the above units 111 to 115 is a feedback control unit that performs feedback control of the fundamental wave current according to the dq conversion theory, and the U-phase, V-phase, and W-phase command voltages are feedback control values.
 そして、操作信号生成部116は、周知の三角波キャリア比較方式を用い、3相の指令電圧に基づいて、第1インバータ101の操作信号を生成する。具体的には、操作信号生成部116は、3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号(デューティ信号)を生成する。 Then, the operation signal generation unit 116 uses a well-known triangular wave carrier comparison method to generate an operation signal of the first inverter 101 based on the three-phase command voltage. Specifically, the operation signal generation unit 116 switches the upper and lower arms in each phase by PWM control based on the magnitude comparison between the signal obtained by standardizing the command voltage of the three phases with the power supply voltage and the carrier signal such as the triangular wave signal. Generates an operation signal (duty signal).
 また、X,Y,Z相側においても同様の構成を有しており、dq変換部122は、相ごとに設けられた電流センサによる電流検出値(3つの相電流)を、界磁方向をd軸とする直交2次元回転座標系の成分であるd軸電流とq軸電流とに変換する。 Further, the X, Y, and Z phases also have the same configuration, and the dq conversion unit 122 sets the current detection value (three phase currents) by the current sensor provided for each phase in the field direction. It is converted into a d-axis current and a q-axis current, which are components of an orthogonal two-dimensional rotating coordinate system having the d-axis.
 d軸電流フィードバック制御部123はd軸の指令電圧を算出し、q軸電流フィードバック制御部124はq軸の指令電圧を算出する。3相変換部125は、d軸及びq軸の指令電圧を、X相、Y相及びZ相の指令電圧に変換する。そして、操作信号生成部126は、3相の指令電圧に基づいて、第2インバータ102の操作信号を生成する。具体的には、操作信号生成部126は、3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号(デューティ信号)を生成する。 The d-axis current feedback control unit 123 calculates the d-axis command voltage, and the q-axis current feedback control unit 124 calculates the q-axis command voltage. The three-phase conversion unit 125 converts the d-axis and q-axis command voltages into X-phase, Y-phase, and Z-phase command voltages. Then, the operation signal generation unit 126 generates an operation signal of the second inverter 102 based on the three-phase command voltage. Specifically, the operation signal generation unit 126 switches the upper and lower arms in each phase by PWM control based on the magnitude comparison between the signal obtained by standardizing the command voltage of the three phases with the power supply voltage and the carrier signal such as the triangular wave signal. Generates an operation signal (duty signal).
 ドライバ117は、操作信号生成部116,126にて生成されたスイッチ操作信号に基づいて、各インバータ101,102における各3相のスイッチSp,Snをオンオフさせる。 The driver 117 turns on / off the switches Sp and Sn of each of the three phases in the inverters 101 and 102 based on the switch operation signals generated by the operation signal generation units 116 and 126.
 続いて、トルクフィードバック制御処理について説明する。この処理は、例えば高回転領域及び高出力領域等、各インバータ101,102の出力電圧が大きくなる運転条件において、主に回転電機10の高出力化や損失低減の目的で用いられる。制御装置110は、回転電機10の運転条件に基づいて、トルクフィードバック制御処理及び電流フィードバック制御処理のいずれか一方の処理を選択して実行する。 Next, the torque feedback control process will be described. This process is mainly used for the purpose of increasing the output of the rotary electric machine 10 and reducing the loss under operating conditions in which the output voltage of each of the inverters 101 and 102 becomes large, such as in a high rotation region and a high output region. The control device 110 selects and executes either the torque feedback control process or the current feedback control process based on the operating conditions of the rotary electric machine 10.
 図21には、U,V,W相に対応するトルクフィードバック制御処理と、X,Y,Z相に対応するトルクフィードバック制御処理とが示されている。なお、図21において、図20と同じ構成については、同じ符号を付して説明を省略する。ここではまず、U,V,W相側の制御処理について説明する。 FIG. 21 shows a torque feedback control process corresponding to the U, V, and W phases and a torque feedback control process corresponding to the X, Y, and Z phases. In FIG. 21, the same configuration as that in FIG. 20 is designated by the same reference numerals and the description thereof will be omitted. Here, first, the control processing on the U, V, and W phases will be described.
 電圧振幅算出部127は、回転電機10に対する力行トルク指令値又は発電トルク指令値と、電気角θを時間微分して得られる電気角速度ωとに基づいて、電圧ベクトルの大きさの指令値である電圧振幅指令を算出する。 The voltage amplitude calculation unit 127 is a command value of the magnitude of the voltage vector based on the power running torque command value or the power generation torque command value for the rotary electric machine 10 and the electric angular velocity ω obtained by time-differentiating the electric angle θ. Calculate the voltage amplitude command.
 トルク推定部128aは、dq変換部112により変換されたd軸電流とq軸電流とに基づいて、U,V,W相に対応するトルク推定値を算出する。なお、トルク推定部128aは、d軸電流、q軸電流及び電圧振幅指令が関係付けられたマップ情報に基づいて、電圧振幅指令を算出すればよい。 The torque estimation unit 128a calculates the torque estimation value corresponding to the U, V, and W phases based on the d-axis current and the q-axis current converted by the dq conversion unit 112. The torque estimation unit 128a may calculate the voltage amplitude command based on the map information associated with the d-axis current, the q-axis current, and the voltage amplitude command.
 トルクフィードバック制御部129aは、力行トルク指令値又は発電トルク指令値にトルク推定値をフィードバック制御するための操作量として、電圧ベクトルの位相の指令値である電圧位相指令を算出する。トルクフィードバック制御部129aでは、力行トルク指令値又は発電トルク指令値に対するトルク推定値の偏差に基づき、PIフィードバック手法を用いて電圧位相指令が算出される。 The torque feedback control unit 129a calculates a voltage phase command, which is a command value of the phase of the voltage vector, as an operation amount for feedback-controlling the torque estimation value to the power running torque command value or the generated torque command value. The torque feedback control unit 129a calculates the voltage phase command using the PI feedback method based on the deviation of the torque estimated value with respect to the power running torque command value or the generated torque command value.
 操作信号生成部130aは、電圧振幅指令、電圧位相指令及び電気角θに基づいて、第1インバータ101の操作信号を生成する。具体的には、操作信号生成部130aは、電圧振幅指令、電圧位相指令及び電気角θに基づいて3相の指令電圧を算出し、算出した3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号を生成する。 The operation signal generation unit 130a generates an operation signal of the first inverter 101 based on the voltage amplitude command, the voltage phase command, and the electric angle θ. Specifically, the operation signal generation unit 130a calculates a three-phase command voltage based on the voltage amplitude command, the voltage phase command, and the electric angle θ, and the calculated three-phase command voltage is standardized by the power supply voltage. And, by PWM control based on the magnitude comparison with the carrier signal such as the triangular wave signal, the switch operation signal of the upper and lower arms in each phase is generated.
 ちなみに、操作信号生成部130aは、電圧振幅指令、電圧位相指令、電気角θ及びスイッチ操作信号が関係付けられたマップ情報であるパルスパターン情報、電圧振幅指令、電圧位相指令並びに電気角θに基づいて、スイッチ操作信号を生成してもよい。 Incidentally, the operation signal generation unit 130a is based on the pulse pattern information, the voltage amplitude command, the voltage phase command, and the electric angle θ, which are map information related to the voltage amplitude command, the voltage phase command, the electric angle θ, and the switch operation signal. The switch operation signal may be generated.
 また、X,Y,Z相側においても同様の構成を有しており、トルク推定部128bは、dq変換部122により変換されたd軸電流とq軸電流とに基づいて、X,Y,Z相に対応するトルク推定値を算出する。 Further, the X, Y, Z phase side also has the same configuration, and the torque estimation unit 128b has the X, Y, X, Y, based on the d-axis current and the q-axis current converted by the dq conversion unit 122. The torque estimate corresponding to the Z phase is calculated.
 トルクフィードバック制御部129bは、力行トルク指令値又は発電トルク指令値にトルク推定値をフィードバック制御するための操作量として、電圧位相指令を算出する。トルクフィードバック制御部129bでは、力行トルク指令値又は発電トルク指令値に対するトルク推定値の偏差に基づき、PIフィードバック手法を用いて電圧位相指令が算出される。 The torque feedback control unit 129b calculates a voltage phase command as an operation amount for feedback-controlling the torque estimation value to the power running torque command value or the power generation torque command value. The torque feedback control unit 129b calculates the voltage phase command using the PI feedback method based on the deviation of the torque estimated value with respect to the power running torque command value or the generated torque command value.
 操作信号生成部130bは、電圧振幅指令、電圧位相指令及び電気角θに基づいて、第2インバータ102の操作信号を生成する。具体的には、操作信号生成部130bは、電圧振幅指令、電圧位相指令及び電気角θに基づいて3相の指令電圧を算出し、算出した3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号を生成する。ドライバ117は、操作信号生成部130a,130bにて生成されたスイッチ操作信号に基づいて、各インバータ101,102における各3相のスイッチSp,Snをオンオフさせる。 The operation signal generation unit 130b generates an operation signal of the second inverter 102 based on the voltage amplitude command, the voltage phase command, and the electric angle θ. Specifically, the operation signal generation unit 130b calculates a three-phase command voltage based on the voltage amplitude command, the voltage phase command, and the electric angle θ, and the calculated three-phase command voltage is standardized by the power supply voltage. And, by PWM control based on the magnitude comparison with the carrier signal such as the triangular wave signal, the switch operation signal of the upper and lower arms in each phase is generated. The driver 117 turns on / off the switches Sp and Sn of each of the three phases in the inverters 101 and 102 based on the switch operation signals generated by the operation signal generation units 130a and 130b.
 ちなみに、操作信号生成部130bは、電圧振幅指令、電圧位相指令、電気角θ及びスイッチ操作信号が関係付けられたマップ情報であるパルスパターン情報、電圧振幅指令、電圧位相指令並びに電気角θに基づいて、スイッチ操作信号を生成してもよい。 Incidentally, the operation signal generation unit 130b is based on the pulse pattern information, the voltage amplitude command, the voltage phase command, and the electric angle θ, which are map information related to the voltage amplitude command, the voltage phase command, the electric angle θ, and the switch operation signal. The switch operation signal may be generated.
 ところで、回転電機10においては、軸電流の発生に伴い軸受21,22の電食が生じることが懸念されている。例えば固定子巻線51の通電がスイッチングにより切り替えられる際に、スイッチングタイミングの微小なずれ(スイッチングの不均衡)により磁束の歪みが生じ、それに起因して、回転軸11を支持する軸受21,22において電食が生じることが懸念される。磁束の歪みは固定子50のインダクタンスに応じて生じ、その磁束の歪みにより生じる軸方向の起電圧によって、軸受21,22内での絶縁破壊が起こり電食が進行する。 By the way, in the rotary electric machine 10, there is a concern that electrolytic corrosion of the bearings 21 and 22 may occur due to the generation of the shaft current. For example, when the energization of the stator winding 51 is switched by switching, magnetic flux distortion occurs due to a slight deviation in switching timing (switching imbalance), which causes bearings 21 and 22 to support the rotating shaft 11. There is a concern that electrolytic corrosion will occur in the bearing. The distortion of the magnetic flux occurs according to the inductance of the stator 50, and the electromotive voltage in the axial direction generated by the distortion of the magnetic flux causes dielectric breakdown in the bearings 21 and 22, and electrolytic corrosion proceeds.
 この点本実施形態では、電食対策として、以下に示す3つの対策を講じている。第1の電食対策は、固定子50のコアレス化に伴いインダクタンスを低減したこと、及び磁石ユニット42の磁石磁束をなだらかにしたことによる電食抑制対策である。第2の電食対策は、回転軸を軸受21,22による片持ち構造としたことによる電食抑制対策である。第3の電食対策は、円環状の固定子巻線51を固定子コア52と共にモールド材によりモールドしたことによる電食抑制対策である。以下には、これら各対策の詳細を個々に説明する。 In this respect, in this embodiment, the following three measures are taken as measures against electrolytic corrosion. The first electrolytic corrosion countermeasure is an electrolytic corrosion suppression countermeasure by reducing the inductance due to the coreless stator 50 and by smoothing the magnetic flux of the magnet of the magnet unit 42. The second electrolytic corrosion countermeasure is an electrolytic corrosion suppression measure by adopting a cantilever structure with bearings 21 and 22 for the rotating shaft. The third electrolytic corrosion countermeasure is an electrolytic corrosion suppression countermeasure by molding the annular stator winding 51 together with the stator core 52 with a molding material. The details of each of these measures will be described below individually.
 まず第1の電食対策では、固定子50において、周方向における各導線群81の間をティースレスとし、各導線群81の間に、ティース(鉄心)の代わりに非磁性材料よりなる封止部材57を設ける構成としている(図10参照)。これにより、固定子50のインダクタンス低減が可能となっている。固定子50におけるインダクタンス低減を図ることで、仮に固定子巻線51の通電時にスイッチングタイミングのずれが生じても、そのスイッチングタイミングのずれに起因する磁束歪みの発生を抑制し、ひいては軸受21,22の電食抑制が可能になっている。なお、d軸のインダクタンスがq軸のインダクタンス以下になっているとよい。 First, as a first measure against electrolytic corrosion, in the stator 50, the spaces between the conductor groups 81 in the circumferential direction are made toothless, and the seals between the conductor groups 81 are made of a non-magnetic material instead of the teeth (iron core). The member 57 is provided (see FIG. 10). This makes it possible to reduce the inductance of the stator 50. By reducing the inductance of the stator 50, even if the switching timing shift occurs when the stator winding 51 is energized, the occurrence of magnetic flux distortion due to the shift timing shift can be suppressed, and eventually the bearings 21 and 22. It is possible to suppress the electrolytic corrosion of. It is preferable that the inductance of the d-axis is equal to or less than the inductance of the q-axis.
 また、磁石91,92において、d軸側においてq軸側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされた構成とした(図9参照)。これにより、d軸での磁石磁束が強化され、各磁極においてq軸からd軸にかけての表面磁束変化(磁束の増減)がなだらかになる。そのため、スイッチング不均衡に起因する急激な電圧変化が抑制され、ひいては電食抑制に寄与できる構成となっている。 Further, the magnets 91 and 92 are oriented so that the direction of the easy-magnetizing axis is parallel to the d-axis on the d-axis side as compared with the q-axis side (see FIG. 9). As a result, the magnetic flux of the magnet on the d-axis is strengthened, and the change in surface magnetic flux (increase / decrease in magnetic flux) from the q-axis to the d-axis at each magnetic pole becomes gentle. Therefore, the sudden voltage change caused by the switching imbalance is suppressed, and the configuration is such that it can contribute to the suppression of electrolytic corrosion.
 第2の電食対策では、回転電機10において、各軸受21,22を、回転子40の軸方向中央に対して軸方向のいずれか一方側に偏って配置している(図2参照)。これにより、複数の軸受が軸方向において回転子を挟んで両側にそれぞれ設けられる構成と比べて、電食の影響を軽減できる。つまり、回転子を複数の軸受により両持ち支持する構成では、高周波磁束の発生に伴い回転子、固定子及び各軸受(すなわち、回転子を挟んで軸方向両側の各軸受)を通る閉回路が形成され、軸電流により軸受の電食が懸念される。これに対し、回転子40を複数の軸受21,22により片持ち支持する構成では上記閉回路が形成されず、軸受の電食が抑制される。 As a second measure against electrolytic corrosion, in the rotary electric machine 10, the bearings 21 and 22 are arranged unevenly on either side in the axial direction with respect to the center in the axial direction of the rotor 40 (see FIG. 2). As a result, the influence of electrolytic corrosion can be reduced as compared with a configuration in which a plurality of bearings are provided on both sides of the rotor in the axial direction. That is, in a configuration in which the rotor is supported by a plurality of bearings, a closed circuit that passes through the rotor, the stator, and each bearing (that is, each bearing on both sides in the axial direction with the rotor in between) is generated as a high frequency magnetic flux is generated. It is formed, and there is a concern about electrolytic corrosion of the bearing due to the axial current. On the other hand, in the configuration in which the rotor 40 is cantilevered by a plurality of bearings 21 and 22, the closed circuit is not formed and the electrolytic corrosion of the bearings is suppressed.
 また、回転電機10は、軸受21,22の片側配置のための構成に絡み、以下の構成を有する。磁石ホルダ41において、回転子40の径方向に張り出す中間部45に、軸方向に延びて固定子50に対する接触を回避する接触回避部が設けられている(図2参照)。この場合、磁石ホルダ41を経由して軸電流の閉回路が形成される場合にあっては、閉回路長を長くしてその回路抵抗を大きくすることが可能となる。これにより、軸受21,22の電食の抑制を図ることができる。 Further, the rotary electric machine 10 has the following configurations in connection with the configuration for arranging the bearings 21 and 22 on one side. In the magnet holder 41, a contact avoiding portion that extends in the axial direction and avoids contact with the stator 50 is provided at an intermediate portion 45 that projects in the radial direction of the rotor 40 (see FIG. 2). In this case, when a closed circuit of the shaft current is formed via the magnet holder 41, the closed circuit length can be lengthened to increase the circuit resistance. Thereby, the electrolytic corrosion of the bearings 21 and 22 can be suppressed.
 回転子40を挟んで軸方向の一方側においてハウジング30に対して軸受ユニット20の保持部材23が固定されるとともに、他方側においてハウジング30及びユニットベース61(固定子ホルダ)が互いに結合されている(図2参照)。本構成によれば、回転軸11の軸方向においてその軸方向の片側に各軸受21,22を偏って配置する構成を好適に実現することができる。また本構成では、ユニットベース61がハウジング30を介して回転軸11に繋がる構成となるため、ユニットベース61を、回転軸11から電気的に離れた位置に配置することができる。なお、ユニットベース61とハウジング30との間に樹脂等の絶縁部材を介在させれば、ユニットベース61と回転軸11とが電気的に一層離れた構成となる。これにより、軸受21,22の電食を適正に抑制することができる。 The holding member 23 of the bearing unit 20 is fixed to the housing 30 on one side in the axial direction with the rotor 40 interposed therebetween, and the housing 30 and the unit base 61 (stator holder) are coupled to each other on the other side. (See FIG. 2). According to this configuration, it is possible to preferably realize a configuration in which the bearings 21 and 22 are unevenly arranged on one side of the rotating shaft 11 in the axial direction. Further, in this configuration, since the unit base 61 is connected to the rotating shaft 11 via the housing 30, the unit base 61 can be arranged at a position electrically separated from the rotating shaft 11. If an insulating member such as resin is interposed between the unit base 61 and the housing 30, the unit base 61 and the rotating shaft 11 are electrically separated from each other. Thereby, the electrolytic corrosion of the bearings 21 and 22 can be appropriately suppressed.
 本実施形態の回転電機10では、各軸受21,22の片側配置等により、軸受21,22に作用する軸電圧が低減されている。また、回転子40と固定子50との間の電位差が低減されている。そのため、軸受21,22において導電性グリースを用いなくても、軸受21,22に作用する電位差の低減が可能になっている。導電性グリースは、一般的にカーボンなどの細かい粒子を含むため音鳴りが生じることが考えられる。この点、本実施形態では、軸受21,22において非導電性グリースを用いる構成としている。そのため、軸受21,22において音鳴りが生じる不都合を抑制できる。例えば電気自動車などの電動車両への適用時には回転電機10の音鳴り対策が必要になると考えられるが、その音鳴り対策を好適に実施することが可能となる。 In the rotary electric machine 10 of the present embodiment, the shaft voltage acting on the bearings 21 and 22 is reduced by arranging the bearings 21 and 22 on one side and the like. Further, the potential difference between the rotor 40 and the stator 50 is reduced. Therefore, it is possible to reduce the potential difference acting on the bearings 21 and 22 without using conductive grease in the bearings 21 and 22. Since the conductive grease generally contains fine particles such as carbon, it is considered that noise is generated. In this respect, in the present embodiment, the bearings 21 and 22 are configured to use non-conductive grease. Therefore, it is possible to suppress the inconvenience of noise in the bearings 21 and 22. For example, when it is applied to an electric vehicle such as an electric vehicle, it is considered that a countermeasure against the noise of the rotary electric machine 10 is required, and it is possible to preferably implement the countermeasure against the noise.
 第3の電食対策では、固定子巻線51を固定子コア52と共にモールド材によりモールドすることで、固定子50での固定子巻線51の位置ずれを抑制する構成としている(図11参照)。特に本実施形態の回転電機10では、固定子巻線51における周方向の各導線群81の間に導線間部材(ティース)を有していないため、固定子巻線51における位置ずれ生じる懸念が考えられるが、固定子巻線51を固定子コア52と共にモールドすることにより、固定子巻線51の導線位置にずれが抑制される。したがって、固定子巻線51の位置ずれによる磁束の歪みや、それに起因する軸受21,22の電食の発生を抑制することができる。 In the third electrolytic corrosion countermeasure, the stator winding 51 is molded together with the stator core 52 with a molding material to suppress the displacement of the stator winding 51 in the stator 50 (see FIG. 11). ). In particular, since the rotary electric machine 10 of the present embodiment does not have a wire-to-lead member (teeth) between the wire groups 81 in the circumferential direction of the stator winding 51, there is a concern that the stator winding 51 may be displaced. Although it is conceivable, by molding the stator winding 51 together with the stator core 52, deviation of the lead wire position of the stator winding 51 is suppressed. Therefore, it is possible to suppress the distortion of the magnetic flux due to the misalignment of the stator winding 51 and the occurrence of electrolytic corrosion of the bearings 21 and 22 due to the distortion.
 なお、固定子コア52を固定するハウジング部材としてのユニットベース61を、炭素繊維強化プラスチック(CFRP)により構成したため、例えばアルミ等により構成する場合に比べて、ユニットベース61への放電が抑制され、ひいては好適な電食対策が可能となっている。 Since the unit base 61 as a housing member for fixing the stator core 52 is made of carbon fiber reinforced plastic (CFRP), the discharge to the unit base 61 is suppressed as compared with the case where it is made of, for example, aluminum. As a result, suitable measures against electrolytic corrosion are possible.
 その他、軸受21,22の電食対策として、外輪25及び内輪26の少なくともいずれかをセラミックス材により構成する、又は、外輪25の外側に絶縁スリーブを設ける等の構成を用いることも可能である。 In addition, as a countermeasure against electrolytic corrosion of the bearings 21 and 22, it is also possible to use a configuration in which at least one of the outer ring 25 and the inner ring 26 is made of a ceramic material, or an insulating sleeve is provided on the outside of the outer ring 25.
 以下に、他の実施形態を第1実施形態との相違点を中心に説明する。 The other embodiments will be described below, focusing on the differences from the first embodiment.
 (第2実施形態)
 本実施形態では、回転子40における磁石ユニット42の極異方構造を変更しており、以下に詳しく説明する。
(Second Embodiment)
In the present embodiment, the polar anisotropic structure of the magnet unit 42 in the rotor 40 is changed, which will be described in detail below.
 図22及び図23に示すように、磁石ユニット42は、ハルバッハ配列と称される磁石配列を用いて構成されている。すなわち、磁石ユニット42は、磁化方向(磁化ベクトルの向き)を径方向とする第1磁石131と、磁化方向(磁化ベクトルの向き)を周方向とする第2磁石132とを有しており、周方向に所定間隔で第1磁石131が配置されるとともに、周方向において隣り合う第1磁石131の間となる位置に第2磁石132が配置されている。第1磁石131及び第2磁石132は、例えばネオジム磁石等の希土類磁石からなる永久磁石である。 As shown in FIGS. 22 and 23, the magnet unit 42 is configured by using a magnet array called a Halbach array. That is, the magnet unit 42 has a first magnet 131 whose radial direction is the magnetization direction (direction of the magnetization vector) and a second magnet 132 whose circumferential direction is the magnetization direction (direction of the magnetization vector). The first magnet 131 is arranged at predetermined intervals in the circumferential direction, and the second magnet 132 is arranged at a position between the adjacent first magnet 131 in the circumferential direction. The first magnet 131 and the second magnet 132 are permanent magnets made of rare earth magnets such as neodymium magnets.
 第1磁石131は、固定子50に対向する側(径方向内側)の極が交互にN極、S極となるように周方向に互いに離間して配置されている。また、第2磁石132は、各第1磁石131の隣において周方向に極性が交互となるように配置されている。これら各磁石131,132を囲うように設けられる円筒部43は、軟磁性材料よりなる軟磁性体コアであるとよく、バックコアとして機能する。なお、この第2実施形態の磁石ユニット42も、d-q座標系において、d軸やq軸に対する磁化容易軸の関係は上記第1実施形態と同じである。 The first magnet 131 is arranged so as to be spaced apart from each other in the circumferential direction so that the poles on the side facing the stator 50 (inside in the radial direction) are alternately N poles and S poles. Further, the second magnet 132 is arranged next to each first magnet 131 so that the polarities alternate in the circumferential direction. The cylindrical portion 43 provided so as to surround each of the magnets 131 and 132 is preferably a soft magnetic core made of a soft magnetic material, and functions as a back core. The magnet unit 42 of the second embodiment also has the same relationship between the d-axis and the easy-magnetization axis with respect to the q-axis in the dq coordinate system as in the first embodiment.
 また、第1磁石131の径方向外側、すなわち磁石ホルダ41の円筒部43の側には、軟磁性材料よりなる磁性体133が配置されている。例えば磁性体133は、電磁鋼板や軟鉄、圧粉鉄心材料により構成されているとよい。この場合、磁性体133の周方向の長さは第1磁石131の周方向の長さ(特に第1磁石131の外周部の周方向の長さ)と同じである。また、第1磁石131と磁性体133とを一体化した状態でのその一体物の径方向の厚さは、第2磁石132の径方向の厚さと同じである。換言すれば、第1磁石131は第2磁石132よりも磁性体133の分だけ径方向の厚さが薄くなっている。各磁石131,132と磁性体133とは、例えば接着剤により相互に固着されている。磁石ユニット42において第1磁石131の径方向外側は、固定子50とは反対側であり、磁性体133は、径方向における第1磁石131の両側のうち、固定子50とは反対側(反固定子側)に設けられている。 Further, a magnetic material 133 made of a soft magnetic material is arranged on the radial side of the first magnet 131, that is, on the side of the cylindrical portion 43 of the magnet holder 41. For example, the magnetic material 133 may be made of an electromagnetic steel plate, soft iron, or a dust core material. In this case, the circumferential length of the magnetic body 133 is the same as the circumferential length of the first magnet 131 (particularly, the circumferential length of the outer peripheral portion of the first magnet 131). Further, the radial thickness of the integrated object in the state where the first magnet 131 and the magnetic body 133 are integrated is the same as the radial thickness of the second magnet 132. In other words, the thickness of the first magnet 131 in the radial direction is thinner than that of the second magnet 132 by the amount of the magnetic body 133. The magnets 131 and 132 and the magnetic material 133 are fixed to each other by, for example, an adhesive. In the magnet unit 42, the radial outside of the first magnet 131 is on the opposite side of the stator 50, and the magnetic body 133 is on the opposite side of the stator 50 from both sides of the first magnet 131 in the radial direction (opposite). It is provided on the stator side).
 磁性体133の外周部には、径方向外側、すなわち磁石ホルダ41の円筒部43の側に突出する凸部としてのキー134が形成されている。また、円筒部43の内周面には、磁性体133のキー134を収容する凹部としてのキー溝135が形成されている。キー134の突出形状とキー溝135の溝形状とは同じであり、各磁性体133に形成されたキー134に対応して、キー134と同数のキー溝135が形成されている。キー134及びキー溝135の係合により、第1磁石131及び第2磁石132と磁石ホルダ41との周方向(回転方向)の位置ずれが抑制されている。なお、キー134及びキー溝135(凸部及び凹部)を、磁石ホルダ41の円筒部43及び磁性体133のいずれに設けるかは任意でよく、上記とは逆に、磁性体133の外周部にキー溝135を設けるとともに、磁石ホルダ41の円筒部43の内周部にキー134を設けることも可能である。 A key 134 is formed on the outer peripheral portion of the magnetic body 133 as a convex portion protruding outward in the radial direction, that is, toward the cylindrical portion 43 of the magnet holder 41. Further, a key groove 135 is formed on the inner peripheral surface of the cylindrical portion 43 as a recess for accommodating the key 134 of the magnetic body 133. The protruding shape of the key 134 and the groove shape of the key groove 135 are the same, and the same number of key grooves 135 as the key 134 are formed corresponding to the key 134 formed on each magnetic material 133. By engaging the key 134 and the key groove 135, the displacement of the first magnet 131 and the second magnet 132 and the magnet holder 41 in the circumferential direction (rotational direction) is suppressed. It is optional whether the key 134 and the key groove 135 (convex portion and concave portion) are provided in the cylindrical portion 43 or the magnetic body 133 of the magnet holder 41, and contrary to the above, on the outer peripheral portion of the magnetic body 133. In addition to providing the key groove 135, it is also possible to provide the key 134 on the inner peripheral portion of the cylindrical portion 43 of the magnet holder 41.
 ここで、磁石ユニット42では、第1磁石131と第2磁石132とを交互に配列することにより、第1磁石131での磁束密度を大きくすることが可能となっている。そのため、磁石ユニット42において、磁束の片面集中を生じさせ、固定子50寄りの側での磁束強化を図ることができる。 Here, in the magnet unit 42, the magnetic flux density in the first magnet 131 can be increased by alternately arranging the first magnet 131 and the second magnet 132. Therefore, in the magnet unit 42, the magnetic flux can be concentrated on one side, and the magnetic flux can be strengthened on the side closer to the stator 50.
 また、第1磁石131の径方向外側、すなわち反固定子側に磁性体133を配置したことにより、第1磁石131の径方向外側での部分的な磁気飽和を抑制でき、ひいては磁気飽和に起因して生じる第1磁石131の減磁を抑制できる。これにより、結果的に磁石ユニット42の磁力を増加させることが可能となっている。本実施形態の磁石ユニット42は、言うなれば、第1磁石131において減磁が生じ易い部分を磁性体133に置き換えた構成となっている。 Further, by arranging the magnetic material 133 on the radial outer side of the first magnet 131, that is, on the anti-fixer side, it is possible to suppress partial magnetic saturation on the radial outer side of the first magnet 131, which is caused by magnetic saturation. The demagnetization of the first magnet 131 caused by the above can be suppressed. As a result, it is possible to increase the magnetic force of the magnet unit 42. The magnet unit 42 of the present embodiment has, so to speak, a configuration in which a portion of the first magnet 131 in which demagnetization is likely to occur is replaced with a magnetic body 133.
 図24(a)、図24(b)は、磁石ユニット42における磁束の流れを具体的に示す図であり、図24(a)は、磁石ユニット42において磁性体133を有していない従来構成を用いた場合を示し、図24(b)は、磁石ユニット42において磁性体133を有している本実施形態の構成を用いた場合を示している。なお、図24(a)、図24(b)では、磁石ホルダ41の円筒部43及び磁石ユニット42を直線状に展開して示しており、図の下側が固定子側、上側が反固定子側となっている。 24 (a) and 24 (b) are views specifically showing the flow of magnetic flux in the magnet unit 42, and FIG. 24 (a) shows a conventional configuration in which the magnet unit 42 does not have a magnetic body 133. 24 (b) shows the case where the configuration of the present embodiment having the magnetic material 133 in the magnet unit 42 is used. In FIGS. 24 (a) and 24 (b), the cylindrical portion 43 of the magnet holder 41 and the magnet unit 42 are shown in a straight line, with the lower side of the drawing being the stator side and the upper side being the anti-stator side. It is on the side.
 図24(a)の構成では、第1磁石131の磁束作用面と第2磁石132の側面とが、それぞれ円筒部43の内周面に接触している。また、第2磁石132の磁束作用面が第1磁石131の側面に接触している。この場合、円筒部43には、第2磁石132の外側経路を通って第1磁石131との接触面に入る磁束F1と、円筒部43と略平行で、かつ第2磁石132の磁束F2を引きつける磁束との合成磁束が生じる。そのため、円筒部43において第1磁石131と第2磁石132との接触面付近において、部分的に磁気飽和が生じることが懸念される。 In the configuration of FIG. 24A, the magnetic flux acting surface of the first magnet 131 and the side surface of the second magnet 132 are in contact with the inner peripheral surface of the cylindrical portion 43, respectively. Further, the magnetic flux acting surface of the second magnet 132 is in contact with the side surface of the first magnet 131. In this case, the cylindrical portion 43 receives a magnetic flux F1 that enters the contact surface with the first magnet 131 through the outer path of the second magnet 132 and a magnetic flux F2 that is substantially parallel to the cylindrical portion 43 and enters the contact surface of the second magnet 132. A combined magnetic flux with the attractive magnetic flux is generated. Therefore, there is a concern that magnetic saturation may partially occur in the vicinity of the contact surface between the first magnet 131 and the second magnet 132 in the cylindrical portion 43.
 これに対し、図24(b)の構成では、第1磁石131の固定子50とは反対側において第1磁石131の磁束作用面と円筒部43の内周面との間に磁性体133が設けられているため、その磁性体133で磁束の通過が許容される。したがって、円筒部43での磁気飽和を抑制でき、減磁に対する耐力が向上する。 On the other hand, in the configuration of FIG. 24B, the magnetic material 133 is formed between the magnetic flux acting surface of the first magnet 131 and the inner peripheral surface of the cylindrical portion 43 on the side opposite to the stator 50 of the first magnet 131. Since it is provided, the magnetic body 133 allows the passage of magnetic flux. Therefore, magnetic saturation in the cylindrical portion 43 can be suppressed, and the proof stress against demagnetization is improved.
 また、図24(b)の構成では、図24(a)とは異なり、磁気飽和を促すF2を消すことができる。これにより、磁気回路全体のパーミアンスを効果的に向上させることができる。このように構成することで、その磁気回路特性を、過酷な高熱条件下でも保つことができる。 Further, in the configuration of FIG. 24 (b), unlike FIG. 24 (a), F2 that promotes magnetic saturation can be erased. As a result, the permeance of the entire magnetic circuit can be effectively improved. With such a configuration, the magnetic circuit characteristics can be maintained even under severe high heat conditions.
 また、従来のSPMロータにおけるラジアル磁石と比べて、磁石内部を通る磁石磁路が長くなる。そのため、磁石パーミアンスが上昇し、磁力を上げ、トルクを増強することができる。さらに、磁束がd軸の中央に集まることにより、正弦波整合率を高くすることができる。特に、PWM制御により、電流波形を正弦波や台形波とする、又は120度通電のスイッチングICを利用すると、より効果的にトルクを増強することができる。 In addition, the magnetic path through the inside of the magnet is longer than that of the radial magnet in the conventional SPM rotor. Therefore, the magnet permeance can be increased, the magnetic force can be increased, and the torque can be increased. Further, the magnetic flux is concentrated in the center of the d-axis, so that the sine wave matching rate can be increased. In particular, if the current waveform is made into a sine wave or a trapezoidal wave by PWM control, or if a switching IC energized at 120 degrees is used, the torque can be increased more effectively.
 なお、固定子コア52が電磁鋼板により構成される場合において、固定子コア52の径方向厚さは、磁石ユニット42の径方向厚さの1/2、又は1/2よりも大きいとよい。例えば、固定子コア52の径方向厚さは、磁石ユニット42において磁極中心に設けられる第1磁石131の径方向厚さの1/2以上であるとよい。また、固定子コア52の径方向厚さは、磁石ユニット42の径方向厚さより小さいとよい。この場合、磁石磁束は約1[T]であり、固定子コア52の飽和磁束密度は2[T]であるため、固定子コア52の径方向厚さを、磁石ユニット42の径方向厚さの1/2以上にすることで、固定子コア52の内周側への磁束漏洩を防ぐことができる。 When the stator core 52 is made of an electromagnetic steel plate, the radial thickness of the stator core 52 is preferably half or more than 1/2 of the radial thickness of the magnet unit 42. For example, the radial thickness of the stator core 52 is preferably ½ or more of the radial thickness of the first magnet 131 provided at the center of the magnetic pole in the magnet unit 42. Further, the radial thickness of the stator core 52 is preferably smaller than the radial thickness of the magnet unit 42. In this case, the magnetic flux of the magnet is about 1 [T], and the saturation magnetic flux density of the stator core 52 is 2 [T]. Therefore, the radial thickness of the stator core 52 is the radial thickness of the magnet unit 42. By setting the value to 1/2 or more of the above, it is possible to prevent magnetic flux leakage to the inner peripheral side of the stator core 52.
 ハルバッハ構造や極異方構造の磁石では、磁路が擬似円弧状になっているため、周方向の磁束を扱う磁石厚みに比例して、その磁束を上昇させることができる。こういった構成においては、固定子コア52に流れる磁束は、周方向の磁束を超えることはないと考えられる。すなわち、磁石の磁束1[T]に対して飽和磁束密度2[T]の鉄系金属を利用した場合、固定子コア52の厚みを磁石厚みの半分以上とすれば、磁気飽和せず好適に小型かつ軽量の回転電機を提供することができる。ここで、磁石磁束に対して固定子50からの反磁界が作用するため、磁石磁束は一般的に0.9[T]以下となる。そのため、固定子コアは磁石の半分の厚みを持てば、その透磁率を好適に高く保つことができる。 In a magnet with a Halbach structure or a very heterogeneous structure, the magnetic path has a pseudo-arc shape, so the magnetic flux can be increased in proportion to the thickness of the magnet that handles the magnetic flux in the circumferential direction. In such a configuration, it is considered that the magnetic flux flowing through the stator core 52 does not exceed the magnetic flux in the circumferential direction. That is, when an iron-based metal having a saturation magnetic flux density of 2 [T] is used with respect to the magnetic flux of the magnet 1 [T], if the thickness of the stator core 52 is set to half or more of the magnet thickness, magnetic saturation is not preferably performed. It is possible to provide a small and lightweight rotary electric machine. Here, since the demagnetic field from the stator 50 acts on the magnet magnetic flux, the magnet magnetic flux is generally 0.9 [T] or less. Therefore, if the stator core has half the thickness of the magnet, its magnetic permeability can be kept suitably high.
 以下に、上述した構成の一部を変更した変形例について説明する。 Below, a modified example in which a part of the above configuration is changed will be described.
 (変形例1)
 上記実施形態では、固定子コア52の外周面を凹凸のない曲面状とし、その外周面に所定間隔で複数の導線群81を並べて配置する構成としたが、これを変更してもよい。例えば、図25に示すように、固定子コア52は、固定子巻線51の径方向両側のうち回転子40とは反対側(図の下側)に設けられた円環状のヨーク141と、そのヨーク141から、周方向に隣り合う直線部83の間に向かって突出するように延びる突起部142とを有している。突起部142は、ヨーク141の径方向外側、すなわち回転子40側に所定間隔で設けられている。固定子巻線51の各導線群81は、突起部142と周方向において係合しており、突起部142を導線群81の位置決め部として用いつつ周方向に並べて配置されている。なお、突起部142が「導線間部材」に相当する。
(Modification example 1)
In the above embodiment, the outer peripheral surface of the stator core 52 has a curved surface without unevenness, and a plurality of conductor groups 81 are arranged side by side at predetermined intervals on the outer peripheral surface, but this may be changed. For example, as shown in FIG. 25, the stator core 52 includes an annular yoke 141 provided on both sides of the stator winding 51 in the radial direction opposite to the rotor 40 (lower side in the drawing). It has a protrusion 142 extending from the yoke 141 so as to project between the straight portions 83 adjacent to each other in the circumferential direction. The protrusions 142 are provided at predetermined intervals on the radial outer side of the yoke 141, that is, on the rotor 40 side. Each conductor group 81 of the stator winding 51 is engaged with the protrusion 142 in the circumferential direction, and is arranged side by side in the circumferential direction while using the protrusion 142 as a positioning portion of the conductor group 81. The protrusion 142 corresponds to the "member between conductors".
 突起部142は、ヨーク141からの径方向の厚さ寸法、言い換えれば、図25に示すように、ヨーク141の径方向において、直線部83のヨーク141に隣接する内側面320から突起部142の頂点までの距離Wが、径方向内外の複数層の直線部83のうち、ヨーク141に径方向に隣接する直線部83の径方向の厚さ寸法の1/2(図のH1)よりも小さい構成となっている。言い換えれば、固定子巻線51(固定子コア52)の径方向における導線群81(伝導部材)の寸法(厚み)T1(導線82の厚みの2倍、言い換えれば、導線群81の固定子コア52に接する面320と、導線群81の回転子40に向いた面330との最短距離)の4分の3の範囲は非磁性部材(封止部材57)が占有していればよい。こうした突起部142の厚さ制限により、周方向に隣り合う導線群81(すなわち直線部83)の間において突起部142がティースとして機能せず、ティースによる磁路形成がなされないようになっている。突起部142は、周方向に並ぶ各導線群81の間ごとに全て設けられていなくてもよく、周方向に隣り合う少なくとも1組の導線群81の間に設けられていればよい。例えば、突起部142は、周方向において各導線群81の間の所定数ごとに等間隔で設けられているとよい。突起部142の形状は、矩形状、円弧状など任意の形状でよい。 The protrusion 142 has a thickness dimension in the radial direction from the yoke 141, in other words, as shown in FIG. 25, from the inner side surface 320 adjacent to the yoke 141 of the straight portion 83 in the radial direction of the yoke 141 to the protrusion 142. The distance W to the apex is smaller than 1/2 (H1 in the figure) of the radial thickness dimension of the linear portion 83 radially adjacent to the yoke 141 among the linear portions 83 of the plurality of layers inside and outside the radial direction. It is composed. In other words, the dimensions (thickness) of the conductor group 81 (conducting member) in the radial direction of the stator winding 51 (stator core 52) T1 (twice the thickness of the conductor 82, in other words, the stator core of the conductor group 81). The non-magnetic member (sealing member 57) may occupy a range of three-quarters of the range (the shortest distance between the surface 320 in contact with the 52 and the surface 330 facing the rotor 40 of the conductor group 81). Due to the thickness limitation of the protrusion 142, the protrusion 142 does not function as a tooth between the conductor groups 81 (that is, the straight portion 83) adjacent to each other in the circumferential direction, and the magnetic path is not formed by the tooth. .. The protrusions 142 may not be all provided between the conductor groups 81 arranged in the circumferential direction, but may be provided between at least one set of conductor groups 81 adjacent to each other in the circumferential direction. For example, the protrusions 142 may be provided at equal intervals in a predetermined number between the conductor groups 81 in the circumferential direction. The shape of the protrusion 142 may be any shape such as a rectangular shape or an arc shape.
 また、固定子コア52の外周面では、直線部83が一層で設けられていてもよい。したがって、広義には、突起部142におけるヨーク141からの径方向の厚さ寸法は、直線部83における径方向の厚さ寸法の1/2よりも小さいものであればよい。 Further, the straight portion 83 may be provided as a single layer on the outer peripheral surface of the stator core 52. Therefore, in a broad sense, the radial thickness dimension of the protrusion 142 from the yoke 141 may be smaller than 1/2 of the radial thickness dimension of the straight portion 83.
 なお、回転軸11の軸心を中心とし、かつヨーク141に径方向に隣接する直線部83の径方向の中心位置を通る仮想円を想定すると、突起部142は、その仮想円の範囲内においてヨーク141から突出する形状、換言すれば仮想円よりも径方向外側(すなわち回転子40側)に突出しない形状をなしているとよい。 Assuming a virtual circle centered on the axis of the rotating shaft 11 and passing through the radial center position of the straight line portion 83 radially adjacent to the yoke 141, the protrusion 142 is within the range of the virtual circle. It is preferable that the shape protrudes from the yoke 141, in other words, the shape does not protrude outward in the radial direction (that is, the rotor 40 side) from the virtual circle.
 上記構成によれば、突起部142は、径方向の厚さ寸法が制限されており、周方向に隣り合う直線部83の間においてティースとして機能するものでないため、各直線部83の間にティースが設けられている場合に比べて、隣り合う各直線部83を近づけることができる。これにより、導体82aの断面積を大きくすることができ、固定子巻線51の通電に伴い生じる発熱を低減することができる。かかる構成では、ティースがないことで磁気飽和の解消が可能となり、固定子巻線51への通電電流を増大させることが可能となる。この場合において、その通電電流の増大に伴い発熱量が増えることに好適に対処することができる。また、固定子巻線51では、ターン部84が、径方向にシフトされ、他のターン部84との干渉を回避する干渉回避部を有することから、異なるターン部84同士を径方向に離して配置することができる。これにより、ターン部84においても放熱性の向上を図ることができる。以上により、固定子50での放熱性能を適正化することが可能になっている。 According to the above configuration, the protrusion 142 has a limited thickness dimension in the radial direction and does not function as a teeth between the straight portions 83 adjacent to each other in the circumferential direction. Therefore, the teeth are formed between the straight portions 83. It is possible to bring the adjacent straight portions 83 closer to each other as compared with the case where is provided. As a result, the cross-sectional area of the conductor 82a can be increased, and the heat generated by the energization of the stator winding 51 can be reduced. In such a configuration, the absence of teeth makes it possible to eliminate magnetic saturation and increase the energizing current to the stator winding 51. In this case, it is possible to preferably cope with the increase in the amount of heat generated as the energizing current increases. Further, in the stator winding 51, since the turn portion 84 is shifted in the radial direction and has an interference avoidance portion for avoiding interference with other turn portions 84, the different turn portions 84 are separated from each other in the radial direction. Can be placed. As a result, heat dissipation can be improved even in the turn portion 84. As described above, it is possible to optimize the heat dissipation performance of the stator 50.
 また、固定子コア52のヨーク141と、回転子40の磁石ユニット42(すなわち各磁石91,92)とが所定距離以上離れていれば、突起部142の径方向の厚さ寸法は、図25のH1に縛られるものではない。具体的には、ヨーク141と磁石ユニット42とが2mm以上離れていれば、突起部142の径方向の厚さ寸法は、図25のH1以上であってもよい。例えば、直線部83の径方向厚み寸法が2mmを越えており、かつ導線群81が径方向内外の2層の導線82により構成されている場合に、ヨーク141に隣接していない直線部83、すなわちヨーク141から数えて2層目の導線82の半分位置までの範囲で、突起部142が設けられていてもよい。この場合、突起部142の径方向厚さ寸法が「H1×3/2」までになっていれば、導線群81における導体断面積を大きくすることで、前記効果を少なからず得ることはできる。 Further, if the yoke 141 of the stator core 52 and the magnet unit 42 of the rotor 40 (that is, the magnets 91 and 92) are separated by a predetermined distance or more, the thickness dimension of the protrusion 142 in the radial direction is shown in FIG. 25. It is not tied to H1. Specifically, if the yoke 141 and the magnet unit 42 are separated by 2 mm or more, the radial thickness dimension of the protrusion 142 may be H1 or more in FIG. 25. For example, when the radial thickness dimension of the straight portion 83 exceeds 2 mm and the conductor group 81 is composed of two layers of conductors 82 inside and outside the radial direction, the straight portion 83 not adjacent to the yoke 141, That is, the protrusion 142 may be provided in the range from the yoke 141 to the half position of the second layer conductor 82. In this case, if the radial thickness dimension of the protrusion 142 is up to "H1 x 3/2", the effect can be obtained not a little by increasing the cross-sectional area of the conductor in the conductor group 81.
 また、固定子コア52は、図26に示す構成であってもよい。なお、図26では、封止部材57を省略しているが、封止部材57が設けられていてもよい。図26では、便宜上、磁石ユニット42及び固定子コア52を直線状に展開して示している。 Further, the stator core 52 may have the configuration shown in FIG. 26. Although the sealing member 57 is omitted in FIG. 26, the sealing member 57 may be provided. In FIG. 26, for convenience, the magnet unit 42 and the stator core 52 are shown in a linearly developed manner.
 図26の構成では、固定子50は、周方向に隣接する導線82(すなわち直線部83)の間に、導線間部材としての突起部142を有している。固定子50は、固定子巻線51が通電されると、磁石ユニット42の磁極の一つ(N極、またはS極)とともに磁気的に機能し、固定子50の周方向に延びる一部分350を有する。この部分350の固定子50の周方向への長さをWnとすると、この長さ範囲Wnに存在する突起部142の合計の幅(すなわち、固定子50の周方向への合計の寸法)をWtとし、突起部142の飽和磁束密度をBs、磁石ユニット42の1極分の周方向の幅寸法をWm、磁石ユニット42の残留磁束密度をBrとする場合、突起部142は、
Wt×Bs≦Wm×Br   …(1)
となる磁性材料により構成されている。
In the configuration of FIG. 26, the stator 50 has a protrusion 142 as a member between the conductors between the conductors 82 (that is, the straight line portion 83) adjacent to each other in the circumferential direction. When the stator winding 51 is energized, the stator 50 magnetically functions together with one of the magnetic poles (N pole or S pole) of the magnet unit 42, and a part 350 extending in the circumferential direction of the stator 50 is formed. Have. Assuming that the circumferential length of the stator 50 of this portion 350 is Wn, the total width of the protrusions 142 existing in this length range Wn (that is, the total dimension of the stator 50 in the circumferential direction) is set. When Wt, the saturation magnetic flux density of the protrusion 142 is Bs, the width dimension of one pole of the magnet unit 42 in the circumferential direction is Wm, and the residual magnetic flux density of the magnet unit 42 is Br, the protrusion 142 is
Wt × Bs ≦ Wm × Br… (1)
It is composed of a magnetic material that serves as.
 なお、範囲Wnは、周方向に隣接する複数の導線群81であって、励磁時期が重複する複数の導線群81を含むように設定される。その際、範囲Wnを設定する際の基準(境界)として、導線群81の間隙56の中心を設定することが好ましい。例えば、図26に例示する構成の場合、周方向においてN極の磁極中心からの距離が最も短いものから順番に、4番目までの導線群81が、当該複数の導線群81に相当する。そして、当該4つの導線群81を含むように範囲Wnが設定される。その際、範囲Wnの端(起点と終点)が間隙56の中心とされている。 The range Wn is set to include a plurality of conductor groups 81 adjacent to each other in the circumferential direction and include a plurality of conductor groups 81 having overlapping excitation timings. At that time, it is preferable to set the center of the gap 56 of the conductor group 81 as a reference (boundary) when setting the range Wn. For example, in the case of the configuration illustrated in FIG. 26, the fourth conductor group 81 corresponds to the plurality of conductor groups 81 in order from the one having the shortest distance from the magnetic pole center of the N pole in the circumferential direction. Then, the range Wn is set so as to include the four conductor groups 81. At that time, the ends (starting point and ending point) of the range Wn are set as the center of the gap 56.
 図26において、範囲Wnの両端には、それぞれ突起部142が半分ずつ含まれていることから、範囲Wnには、合計4つ分の突起部142が含まれている。したがって、突起部142の幅(すなわち、固定子50の周方向における突起部142の寸法、言い換えれば、隣接する導線群81の間隔)をAとすると、範囲Wnに含まれる突起部142の合計の幅は、Wt=1/2A+A+A+A+1/2A=4Aとなる。 In FIG. 26, since half of the protrusions 142 are included at both ends of the range Wn, the range Wn includes a total of four protrusions 142. Therefore, assuming that the width of the protrusion 142 (that is, the dimension of the protrusion 142 in the circumferential direction of the stator 50, that is, the distance between the adjacent conductor groups 81) is A, the total of the protrusions 142 included in the range Wn. The width is Wt = 1 / 2A + A + A + A + 1 / 2A = 4A.
 詳しくは、本実施形態では、固定子巻線51の3相巻線が分布巻であり、その固定子巻線51では、磁石ユニット42の1極に対して、突起部142の数、すなわち各導線群81の間となる間隙56の数が「相数×Q」個となっている。ここでQとは、1相の導線82のうち固定子コア52と接する数である。なお、導線82が回転子40の径方向に積層された導線群81である場合には、1相の導線群81の内周側の導線82の数であるともいえる。この場合、固定子巻線51の3相巻線が各相所定順序で通電されると、1極内において2相分の突起部142が励磁される。したがって、磁石ユニット42の1極分の範囲において固定子巻線51の通電により励磁される突起部142の周方向の合計幅寸法Wtは、突起部142(つまり、間隙56)の周方向の幅寸法をAとすると、「励磁される相数×Q×A=2×2×A」となる。 Specifically, in the present embodiment, the three-phase winding of the stator winding 51 is a distributed winding, and in the stator winding 51, the number of protrusions 142 with respect to one pole of the magnet unit 42, that is, each The number of gaps 56 between the conductor groups 81 is "number of phases x Q". Here, Q is the number of the one-phase conducting wires 82 that are in contact with the stator core 52. When the conductors 82 are the conductors 81 stacked in the radial direction of the rotor 40, it can be said that the number of the conductors 82 is the number of the conductors 82 on the inner peripheral side of the one-phase conductor group 81. In this case, when the three-phase windings of the stator winding 51 are energized in a predetermined order for each phase, the protrusions 142 for two phases are excited in one pole. Therefore, the total width dimension Wt in the circumferential direction of the protrusion 142 excited by the energization of the stator winding 51 in the range of one pole of the magnet unit 42 is the width of the protrusion 142 (that is, the gap 56) in the circumferential direction. Assuming that the dimension is A, "the number of excited phases x Q x A = 2 x 2 x A".
 そして、こうして合計幅寸法Wtが規定された上で、固定子コア52において、突起部142が、上記(1)の関係を満たす磁性材料として構成されている。なお、合計幅寸法Wtは、1極内において比透磁率が1よりも大きくなりえる部分の周方向寸法でもある。また、余裕を考えて、合計幅寸法Wtを、1磁極における突起部142の周方向の幅寸法としてもよい。具体的には、磁石ユニット42の1極に対する突起部142の数が「相数×Q」であることから、1磁極における突起部142の周方向の幅寸法(合計幅寸法Wt)を、「相数×Q×A=3×2×A=6A」としてもよい。 Then, after the total width dimension Wt is defined in this way, in the stator core 52, the protrusion 142 is configured as a magnetic material satisfying the relationship (1) above. The total width dimension Wt is also the circumferential dimension of the portion where the relative magnetic permeability can be larger than 1 in one pole. Further, in consideration of a margin, the total width dimension Wt may be set as the width dimension in the circumferential direction of the protrusion 142 at one magnetic pole. Specifically, since the number of protrusions 142 with respect to one pole of the magnet unit 42 is "number of phases x Q", the width dimension (total width dimension Wt) of the protrusions 142 in one magnetic pole in the circumferential direction is set to ". The number of phases × Q × A = 3 × 2 × A = 6A ”may be used.
 なお、ここでいう分布巻とは、磁極の1極対周期(N極とS極)で、固定子巻線51の一極対があるものである。ここでいう固定子巻線51の一極対は、電流が互いに逆方向に流れ、ターン部84で電気的に接続された2つの直線部83とターン部84からなる。上記条件みたすものであれば、短節巻(Short Pitch Winding)であっても、全節巻(Full Pitch Winding)の分布巻の均等物とみなす。 The distributed winding referred to here is a one-pole pair period (N-pole and S-pole) of the magnetic poles, and has a one-pole pair of the stator winding 51. The one-pole pair of the stator winding 51 referred to here is composed of two straight portions 83 and a turn portion 84 in which currents flow in opposite directions and are electrically connected by the turn portion 84. If the above conditions are met, even if it is a short Pitch Winding, it is regarded as an equivalent of the distribution volume of the Full Pitch Winding.
 次に、集中巻の場合の例を示す。ここでいう集中巻とは、磁極の1極対の幅と、固定子巻線51の一極対の幅とが異なるものである。集中巻の一例としては、1つの磁極対に対して導線群81が3つ、2つの磁極対に対して導線群81が3つ、4つの磁極対に対して導線群81が9つ、5つの磁極対に対して導線群81が9つのような関係であるものが挙げられる。 Next, an example in the case of concentrated winding is shown. The centralized winding here means that the width of the one-pole pair of magnetic poles and the width of the one-pole pair of the stator winding 51 are different. As an example of concentrated winding, there are three conductor groups 81 for one magnetic pole pair, three conductor groups 81 for two magnetic pole pairs, nine conductor groups 81 for four magnetic pole pairs, and five. Examples thereof include a case in which the conductor group 81 has a relationship of nine with respect to one magnetic pole pair.
 ここで、固定子巻線51を集中巻とする場合には、固定子巻線51の3相巻線が所定順序で通電されると、2相分の固定子巻線51が励磁される。その結果、2相分の突起部142が励磁される。したがって、磁石ユニット42の1極分の範囲において固定子巻線51の通電により励磁される突起部142の周方向の幅寸法Wtは、「A×2」となる。そして、こうして幅寸法Wtが規定された上で、突起部142が、上記(1)の関係を満たす磁性材料として構成されている。なお、上記で示した集中巻の場合は、同一相の導線群81に囲まれた領域において、固定子50の周方向にある突起部142の幅の総和をAとする。また、集中巻におけるWmは「磁石ユニット42のエアギャップに対向する面の全周」×「相数」÷「導線群81の分散数」に相当する。 Here, when the stator winding 51 is a centralized winding, when the three-phase windings of the stator winding 51 are energized in a predetermined order, the stator windings 51 for two phases are excited. As a result, the protrusions 142 for the two phases are excited. Therefore, the width dimension Wt in the circumferential direction of the protrusion 142 excited by the energization of the stator winding 51 in the range of one pole of the magnet unit 42 is “A × 2”. Then, after the width dimension Wt is defined in this way, the protrusion 142 is configured as a magnetic material satisfying the relationship (1) above. In the case of the concentrated winding shown above, the total width of the protrusions 142 in the circumferential direction of the stator 50 in the region surrounded by the conductors 81 of the same phase is defined as A. Further, Wm in the concentrated winding corresponds to "the entire circumference of the surface of the magnet unit 42 facing the air gap" x "the number of phases" ÷ "the number of dispersions of the conductor group 81".
 ちなみに、ネオジム磁石やサマリウムコバルト磁石、フェライト磁石といったBH積が20[MGOe(kJ/m^3)]以上の磁石ではBd=1.0強[T]、鉄ではBr=2.0強[T]である。そのため、高出力モータとしては、固定子コア52において、突起部142が、Wt<1/2×Wmの関係を満たす磁性材料であればよい。 By the way, for magnets with a BH product of 20 [MGOe (kJ / m ^ 3)] or more, such as neodymium magnets, samarium-cobalt magnets, and ferrite magnets, Bd = 1.0-strong [T], and for iron, Br = 2.0-strong [T]. ]. Therefore, as the high output motor, in the stator core 52, the protrusion 142 may be a magnetic material satisfying the relationship of Wt <1/2 × Wm.
 また、後述するように導線82が外層被膜182を備える場合には、導線82同士の外層被膜182が接触するように、導線82を固定子コア52の周方向に配置しても良い。この場合は、Wtは、0又は接触する両導線82の外層被膜182の厚さ、と看做すことができる。 Further, when the conductor 82 includes the outer layer coating 182 as described later, the conductor 82 may be arranged in the circumferential direction of the stator core 52 so that the outer layer coatings 182 of the conductors 82 come into contact with each other. In this case, Wt can be regarded as 0 or the thickness of the outer layer coating 182 of both conducting wires 82 in contact with each other.
 図25や図26の構成では、回転子40側の磁石磁束に対して不相応に小さい導線間部材(突起部142)を有する構成となっている。なお、回転子40は、インダクタンスが低くかつ平坦な表面磁石型ロータであり、磁気抵抗的に突極性を有していないものとなっている。かかる構成では、固定子50のインダクタンス低減が可能となっており、固定子巻線51のスイッチングタイミングのずれに起因する磁束歪みの発生が抑制され、ひいては軸受21,22の電食が抑制される。 The configurations shown in FIGS. 25 and 26 have a conductor-to-conductor member (projection 142) that is disproportionately small with respect to the magnetic flux of the magnet on the rotor 40 side. The rotor 40 is a surface magnet type rotor having a low inductance and a flat surface, and has no reluctance in terms of magnetic resistance. In such a configuration, the inductance of the stator 50 can be reduced, the generation of magnetic flux distortion due to the deviation of the switching timing of the stator winding 51 is suppressed, and the electrolytic corrosion of the bearings 21 and 22 is suppressed. ..
 (変形例2)
 上記式(1)の関係を満たす導線間部材を用いる固定子50として、以下の構成を採用することも可能である。図27では、固定子コア52の外周面側(図の上面側)に、導線間部材として歯状部143が設けられている。歯状部143は、ヨーク141から突出するようにして周方向に所定間隔で設けられており、径方向に導線群81と同じ厚み寸法を有している。歯状部143の側面は導線群81の各導線82に接している。ただし、歯状部143と各導線82との間に隙間があってもよい。
(Modification 2)
The following configuration can also be adopted as the stator 50 using the conductor-to-conductor member satisfying the relationship of the above formula (1). In FIG. 27, a tooth-shaped portion 143 is provided as a member between conductors on the outer peripheral surface side (upper surface side in the drawing) of the stator core 52. The dentate portions 143 are provided at predetermined intervals in the circumferential direction so as to protrude from the yoke 141, and have the same thickness dimension as the conductor group 81 in the radial direction. The side surface of the dentate portion 143 is in contact with each of the conductors 82 of the conductor group 81. However, there may be a gap between the tooth-shaped portion 143 and each of the conducting wires 82.
 歯状部143は、周方向における幅寸法に制限が付与されており、磁石量に対して不相応に細い極歯(ステータティース)を備えるものとなっている。かかる構成により、歯状部143は、1.8T以上で磁石磁束により確実に飽和し、パーミアンスの低下によりインダクタンスを下げることができる。 The dentate portion 143 is provided with a limitation on the width dimension in the circumferential direction, and is provided with polar teeth (statoth teeth) that are disproportionately thin with respect to the amount of magnets. With such a configuration, the dentate portion 143 is surely saturated by the magnetic flux of the magnet at 1.8 T or more, and the inductance can be lowered by lowering the permeance.
 ここで、磁石ユニット42において、固定子側における磁束作用面の1極あたりの表面積をSm、磁石ユニット42の残留磁束密度をBrとすると、磁石ユニット側の磁束は、例えば「Sm×Br」となる。また、各歯状部143における回転子側の表面積をSt、導線82の一相あたりの数をmとし、固定子巻線51の通電により1極内において2相分の歯状部143が励磁されるとすると、固定子側の磁束は、例えば「St×m×2×Bs」となる。この場合、
St×m×2×Bs<Sm×Br   …(2)
の関係が成立するように歯状部143の寸法を制限することで、インダクタンスの低減が図られている。
Here, in the magnet unit 42, assuming that the surface area per pole of the magnetic flux acting surface on the stator side is Sm and the residual magnetic flux density of the magnet unit 42 is Br, the magnetic flux on the magnet unit side is, for example, "Sm x Br". Become. Further, the surface area on the rotor side of each dentate portion 143 is St, the number per phase of the conducting wire 82 is m, and the dentate portion 143 for two phases is excited in one pole by energization of the stator winding 51. If so, the magnetic flux on the stator side is, for example, "St × m × 2 × Bs". in this case,
St × m × 2 × Bs <Sm × Br… (2)
By limiting the dimensions of the dentate portion 143 so that the relationship of the above is established, the inductance is reduced.
 なお、磁石ユニット42と歯状部143とで軸方向の寸法が同一である場合、磁石ユニット42の1極分の周方向の幅寸法をWm、歯状部143の周方向の幅寸法をWstとすると、上記式(2)は、式(3)のように置き換えられる。
Wst×m×2×Bs<Wm×Br   …(3)
 より具体的には、例えばBs=2T、Br=1Tであり、m=2であると想定すると、上記式(3)は、「Wst<Wm/8」の関係となる。この場合、歯状部143の幅寸法Wstを、磁石ユニット42の1極分の幅寸法Wmの1/8よりも小さくすることで、インダクタンスの低減が図られている。なお、数mが1であれば、歯状部143の幅寸法Wstを、磁石ユニット42の1極分の幅寸法Wmの1/4よりも小さくするとよい。
When the magnet unit 42 and the tooth-shaped portion 143 have the same axial dimension, the width dimension of one pole of the magnet unit 42 in the circumferential direction is Wm, and the width dimension of the tooth-shaped portion 143 in the circumferential direction is Wst. Then, the above equation (2) is replaced with the equation (3).
Wst x m x 2 x Bs <Wm x Br ... (3)
More specifically, assuming that, for example, Bs = 2T, Br = 1T, and m = 2, the above equation (3) has a relationship of “Wst <Wm / 8”. In this case, the inductance is reduced by making the width dimension Wst of the tooth-shaped portion 143 smaller than 1/8 of the width dimension Wm of one pole of the magnet unit 42. If the number m is 1, the width dimension Wst of the tooth-shaped portion 143 may be smaller than 1/4 of the width dimension Wm of one pole of the magnet unit 42.
 なお、上記式(3)において、「Wst×m×2」は、磁石ユニット42の1極分の範囲において固定子巻線51の通電により励磁される歯状部143の周方向の幅寸法に相当する。 In the above formula (3), "Wst x m x 2" has a width dimension in the circumferential direction of the tooth-shaped portion 143 excited by energization of the stator winding 51 in the range of one pole of the magnet unit 42. Equivalent to.
 図27の構成では、上述した図25,図26の構成と同様に、回転子40側の磁石磁束に対して不相応に小さい導線間部材(歯状部143)を有する構成となっている。かかる構成では、固定子50のインダクタンス低減が可能となっており、固定子巻線51のスイッチングタイミングのずれに起因する磁束歪みの発生が抑制され、ひいては軸受21,22の電食が抑制される。 In the configuration of FIG. 27, similar to the configurations of FIGS. 25 and 26 described above, the interconductor member (dental portion 143) which is disproportionately small with respect to the magnetic flux of the magnet on the rotor 40 side is provided. In such a configuration, the inductance of the stator 50 can be reduced, the generation of magnetic flux distortion due to the deviation of the switching timing of the stator winding 51 is suppressed, and the electrolytic corrosion of the bearings 21 and 22 is suppressed. ..
 (変形例3)
 上記実施形態では、固定子巻線51を覆う封止部材57を、固定子コア52の径方向外側において各導線群81を全て含む範囲、すなわち径方向の厚さ寸法が各導線群81の径方向の厚さ寸法よりも大きくなる範囲で設ける構成としたが、これを変更してもよい。例えば、図28に示すように、封止部材57を、導線82の一部がはみ出すように設ける構成とする。より具体的には、封止部材57を、導線群81において最も径方向外側となる導線82の一部を径方向外側、すなわち固定子50側に露出させた状態で設ける構成とする。この場合、封止部材57の径方向の厚さ寸法は、各導線群81の径方向の厚さ寸法と同じ、又はその厚さ寸法よりも小さいとよい。
(Modification example 3)
In the above embodiment, the sealing member 57 covering the stator winding 51 is provided in a range including all the conductor groups 81 on the radial outside of the stator core 52, that is, the thickness dimension in the radial direction is the diameter of each conductor group 81. The configuration is provided in a range larger than the thickness dimension in the direction, but this may be changed. For example, as shown in FIG. 28, the sealing member 57 is provided so that a part of the conducting wire 82 protrudes. More specifically, the sealing member 57 is provided in a state where a part of the conductor 82 which is the outermost in the radial direction in the conductor group 81 is exposed on the radial outer side, that is, on the stator 50 side. In this case, the radial thickness dimension of the sealing member 57 may be the same as or smaller than the radial thickness dimension of each conductor group 81.
 (変形例4)
 図29に示すように、固定子50において、各導線群81が封止部材57により封止されていない構成としてもよい。つまり、固定子巻線51を覆う封止部材57を用いない構成とする。この場合、周方向に並ぶ各導線群81の間に導線間部材が設けられず空隙となっている。要するに、周方向に並ぶ各導線群81の間に導線間部材が設けられていない構成となっている。なお、空気を非磁性体、又は非磁性体の均等物としてBs=0と看做し、この空隙に空気を配置しても良い。
(Modification example 4)
As shown in FIG. 29, in the stator 50, each conductor group 81 may not be sealed by the sealing member 57. That is, the structure does not use the sealing member 57 that covers the stator winding 51. In this case, no interconductor member is provided between the conductor groups 81 arranged in the circumferential direction, and a gap is formed. In short, the conductors are not provided between the conductor groups 81 arranged in the circumferential direction. In addition, air may be regarded as a non-magnetic material or an equivalent of a non-magnetic material as Bs = 0, and air may be arranged in this void.
 (変形例5)
 固定子50おける導線間部材を非磁性材料により構成する場合に、その非磁性材料として、樹脂以外の材料を用いることも可能である。例えば、オーステナイト系のステンレス鋼であるSUS304を用いる等、金属系の非磁性材料を用いてもよい。
(Modification 5)
When the conductor-to-conductor member in the stator 50 is made of a non-magnetic material, it is possible to use a material other than resin as the non-magnetic material. For example, a metal-based non-magnetic material may be used, such as using SUS304, which is an austenitic stainless steel.
 (変形例6)
 固定子50が固定子コア52を具備していない構成としてもよい。この場合、固定子50は、図12に示す固定子巻線51により構成されることになる。なお、固定子コア52を具備していない固定子50において、固定子巻線51を封止材により封止する構成としてもよい。又は、固定子50が、軟磁性材からなる固定子コア52に代えて、合成樹脂等の非磁性材からなる円環状の巻線保持部を備える構成であってもよい。
(Modification 6)
The stator 50 may be configured not to include the stator core 52. In this case, the stator 50 is composed of the stator winding 51 shown in FIG. In the stator 50 that does not include the stator core 52, the stator winding 51 may be sealed with a sealing material. Alternatively, the stator 50 may be configured to include an annular winding holding portion made of a non-magnetic material such as synthetic resin instead of the stator core 52 made of a soft magnetic material.
 (変形例7)
 上記第1実施形態では、回転子40の磁石ユニット42として周方向に並べた複数の磁石91,92を用いる構成としたが、これを変更し、磁石ユニット42として円環状の永久磁石である環状磁石を用いる構成としてもよい。具体的には、図30に示すように、磁石ホルダ41の円筒部43の径方向内側に、環状磁石95が固定されている。環状磁石95には、周方向に極性が交互となる複数の磁極が設けられており、d軸及びq軸のいずれにおいても一体的に磁石が形成されている。環状磁石95には、各磁極のd軸において配向の向きが径方向となり、各磁極間のq軸において配向の向きが周方向となるような円弧状の磁石磁路が形成されている。
(Modification 7)
In the first embodiment, a plurality of magnets 91 and 92 arranged in the circumferential direction are used as the magnet unit 42 of the rotor 40, but this is changed and the magnet unit 42 is an annular permanent magnet. A magnet may be used. Specifically, as shown in FIG. 30, an annular magnet 95 is fixed inside the cylindrical portion 43 of the magnet holder 41 in the radial direction. The annular magnet 95 is provided with a plurality of magnetic poles having alternating polarities in the circumferential direction, and the magnet is integrally formed on both the d-axis and the q-axis. The annular magnet 95 is formed with an arcuate magnet magnetic path such that the direction of orientation is the radial direction on the d-axis of each magnetic pole and the direction of orientation is the circumferential direction on the q-axis between the magnetic poles.
 なお、環状磁石95では、d軸寄りの部分において磁化容易軸がd軸に平行又はd軸に平行に近い向きとなり、かつq軸寄りの部分において磁化容易軸がq軸に直交又はq軸に直交に近い向きとなる円弧状の磁石磁路が形成されるように配向がなされていればよい。 In the annular magnet 95, the easy-magnetizing axis is parallel to the d-axis or close to parallel to the d-axis in the portion near the d-axis, and the easy-magnetizing axis is orthogonal to the q-axis or is in the q-axis in the portion near the q-axis. It suffices if the orientation is made so that an arcuate magnet magnetic path having a direction close to orthogonal is formed.
 (変形例8)
 本変形例では、制御装置110の制御手法の一部を変更している。本変形例では、主に、第1実施形態で説明した構成に対する相違部分について説明する。
(Modification 8)
In this modification, a part of the control method of the control device 110 is changed. In this modification, the difference from the configuration described in the first embodiment will be mainly described.
 まず、図31を用いて、図20に示した操作信号生成部116,126及び図21に示した操作信号生成部130a,130b内の処理について説明する。なお、各操作信号生成部116,126,130a,130bにおける処理は基本的には同様である。このため、以下では、操作信号生成部116の処理を例にして説明する。 First, using FIG. 31, the processing in the operation signal generation units 116 and 126 shown in FIG. 20 and the operation signal generation units 130a and 130b shown in FIG. 21 will be described. The processing in each operation signal generation unit 116, 126, 130a, 130b is basically the same. Therefore, in the following, the processing of the operation signal generation unit 116 will be described as an example.
 操作信号生成部116は、キャリア生成部116aと、U,V,W相比較器116bU,116bV,116bWとを備えている。本実施形態において、キャリア生成部116aは、キャリア信号SigCとして三角波信号を生成して出力する。 The operation signal generation unit 116 includes a carrier generation unit 116a and U, V, W phase comparators 116bU, 116bV, 116bW. In the present embodiment, the carrier generation unit 116a generates and outputs a triangular wave signal as the carrier signal SigmaC.
 U,V,W相比較器116bU,116bV,116bWには、キャリア生成部116aより生成されたキャリア信号SigCと、3相変換部115により算出されたU,V,W相指令電圧とが入力される。U,V,W相指令電圧は、例えば正弦波状の波形であり、電気角で位相が120°ずつずれている。 The carrier signal Sigma generated by the carrier generation unit 116a and the U, V, W phase command voltage calculated by the three-phase conversion unit 115 are input to the U, V, W phase comparators 116bU, 116bV, 116bW. To. The U, V, and W phase command voltages are, for example, sinusoidal waveforms, and the phases are shifted by 120 ° depending on the electric angle.
 U,V,W相比較器116bU,116bV,116bWは、U,V,W相指令電圧とキャリア信号SigCとの大小比較に基づくPWM(PWM:pulse width modulation)制御により、第1インバータ101におけるU,V,W相の上アーム及び下アームの各スイッチSp,Snの操作信号を生成する。具体的には、操作信号生成部116は、U,V,W相指令電圧を電源電圧で規格化した信号と、キャリア信号との大小比較に基づくPWM制御により、U,V,W相の各スイッチSp,Snの操作信号を生成する。ドライバ117は、操作信号生成部116により生成された操作信号に基づいて、第1インバータ101におけるU,V,W相の各スイッチSp,Snをオンオフさせる。 The U, V, W phase comparators 116bU, 116bV, 116bW are U in the first inverter 101 by PWM (pulse width modulation) control based on the magnitude comparison between the U, V, W phase command voltage and the carrier signal Sigma. , V, W phase upper arm and lower arm switches Sp, Sn operation signals are generated. Specifically, the operation signal generation unit 116 performs each of the U, V, and W phases by PWM control based on the magnitude comparison between the signal obtained by normalizing the U, V, W phase command voltage with the power supply voltage and the carrier signal. Generates operation signals for switches Sp and Sn. The driver 117 turns on / off the U, V, and W phase switches Sp and Sn in the first inverter 101 based on the operation signal generated by the operation signal generation unit 116.
 制御装置110は、キャリア信号SigCのキャリア周波数fc、すなわち各スイッチSp,Snのスイッチング周波数を変更する処理を行う。キャリア周波数fcは、回転電機10の低トルク領域又は高回転領域において高く設定され、回転電機10の高トルク領域において低く設定される。この設定は、各相巻線に流れる電流の制御性の低下を抑制するためになされる。 The control device 110 performs a process of changing the carrier frequency fc of the carrier signal SignC, that is, the switching frequency of each of the switches Sp and Sn. The carrier frequency fc is set high in the low torque region or high rotation region of the rotary electric machine 10 and low in the high torque region of the rotary electric machine 10. This setting is made in order to suppress a decrease in controllability of the current flowing through each phase winding.
 つまり、固定子50のコアレス化に伴い、固定子50におけるインダクタンスの低減を図ることができる。ここで、インダクタンスが低くなると、回転電機10の電気的時定数が小さくなる。その結果、各相巻線に流れる電流のリップルが増加して巻線に流れる電流の制御性が低下し、電流制御が発散する懸念がある。この制御性低下の影響は、巻線に流れる電流(例えば、電流の実効値)が高電流領域に含まれる場合よりも低電流領域に含まれる場合に顕著となり得る。この問題に対処すべく、本変形例において、制御装置110はキャリア周波数fcを変更する。 That is, as the stator 50 becomes coreless, the inductance of the stator 50 can be reduced. Here, when the inductance becomes low, the electrical time constant of the rotary electric machine 10 becomes small. As a result, the ripple of the current flowing through each phase winding increases, the controllability of the current flowing through the winding decreases, and there is a concern that the current control diverges. The effect of this decrease in controllability can be more pronounced when the current flowing through the winding (for example, the effective value of the current) is included in the low current region than in the high current region. In order to deal with this problem, in this modification, the control device 110 changes the carrier frequency fc.
 図32を用いて、キャリア周波数fcを変更する処理について説明する。この処理は、操作信号生成部116の処理として、制御装置110により、例えば所定の制御周期で繰り返し実行される。 The process of changing the carrier frequency fc will be described with reference to FIG. 32. This process is repeatedly executed by the control device 110, for example, at a predetermined control cycle as the process of the operation signal generation unit 116.
 ステップS10では、各相の巻線51aに流れる電流が低電流領域に含まれているか否かを判定する。この処理は、回転電機10の現在のトルクが低トルク領域であることを判定するための処理である。低電流領域に含まれているか否かの判定手法としては、例えば、以下の第1,第2の方法が挙げられる。 In step S10, it is determined whether or not the current flowing through the winding 51a of each phase is included in the low current region. This process is a process for determining that the current torque of the rotary electric machine 10 is in the low torque region. Examples of the method for determining whether or not the product is included in the low current region include the following first and second methods.
 <第1の方法>
 dq変換部112により変換されたd軸電流とq軸電流とに基づいて、回転電機10のトルク推定値を算出する。そして、算出したトルク推定値がトルク閾値未満であると判定した場合、巻線51aに流れる電流が低電流領域に含まれていると判定し、トルク推定値がトルク閾値以上であると判定した場合、高電流領域に含まれていると判定する。ここで、トルク閾値は、例えば、回転電機10の起動トルク(拘束トルクともいう)の1/2に設定されていればよい。
<First method>
The torque estimation value of the rotary electric machine 10 is calculated based on the d-axis current and the q-axis current converted by the dq conversion unit 112. When it is determined that the calculated torque estimated value is less than the torque threshold value, it is determined that the current flowing through the winding 51a is included in the low current region, and it is determined that the torque estimated value is equal to or more than the torque threshold value. , Judged as being included in the high current region. Here, the torque threshold value may be set to, for example, 1/2 of the starting torque (also referred to as restraint torque) of the rotary electric machine 10.
 <第2の方法>
 角度検出器により検出された回転子40の回転角度が速度閾値以上であると判定した場合、巻線51aに流れる電流が低電流領域に含まれている、すなわち高回転領域であると判定する。ここで、速度閾値は、例えば、回転電機10の最大トルクがトルク閾値となる場合の回転速度に設定されていればよい。
<Second method>
When it is determined that the rotation angle of the rotor 40 detected by the angle detector is equal to or greater than the speed threshold value, it is determined that the current flowing through the winding 51a is included in the low current region, that is, in the high rotation region. Here, the speed threshold value may be set to, for example, the rotation speed when the maximum torque of the rotary electric machine 10 becomes the torque threshold value.
 ステップS10において否定判定した場合には、高電流領域であると判定し、ステップS11に進む。ステップS11では、キャリア周波数fcを第1周波数fLに設定する。 If a negative determination is made in step S10, it is determined that the current region is high, and the process proceeds to step S11. In step S11, the carrier frequency fc is set to the first frequency fL.
 ステップS10において肯定判定した場合には、ステップS12に進み、キャリア周波数fcを、第1周波数fLよりも高い第2周波数fHに設定する。 If an affirmative determination is made in step S10, the process proceeds to step S12, and the carrier frequency fc is set to the second frequency fH, which is higher than the first frequency fL.
 以上説明した本変形例によれば、各相巻線に流れる電流が高電流領域に含まれる場合よりも低電流領域に含まれる場合においてキャリア周波数fcが高く設定される。このため、低電流領域において、スイッチSp,Snのスイッチング周波数を高くすることができ、電流リップルの増加を抑制することができる。これにより、電流制御性の低下を抑制することができる。 According to the present modification described above, the carrier frequency fc is set higher when the current flowing through each phase winding is included in the low current region than when it is included in the high current region. Therefore, in the low current region, the switching frequencies of the switches Sp and Sn can be increased, and the increase in current ripple can be suppressed. As a result, it is possible to suppress a decrease in current controllability.
 一方、各相巻線に流れる電流が高電流領域に含まれる場合、低電流領域に含まれる場合よりもキャリア周波数fcが低く設定される。高電流領域においては、低電流領域よりも巻線に流れる電流の振幅が大きいため、インダクタンスが低くなったことに起因する電流リップルの増加が、電流制御性に及ぼす影響が小さい。このため、高電流領域においては、低電流領域よりもキャリア周波数fcを低く設定することができ、各インバータ101,102のスイッチング損失を低減することができる。 On the other hand, when the current flowing through each phase winding is included in the high current region, the carrier frequency fc is set lower than when it is included in the low current region. In the high current region, the amplitude of the current flowing through the winding is larger than in the low current region, so that the increase in current ripple due to the low inductance has a small effect on the current controllability. Therefore, in the high current region, the carrier frequency fc can be set lower than in the low current region, and the switching loss of the inverters 101 and 102 can be reduced.
 本変形例においては、以下に示す形態の実施が可能である。 In this modified example, the following embodiments can be implemented.
 ・キャリア周波数fcが第1周波数fLに設定されている場合において、図32のステップS10において肯定判定されたとき、キャリア周波数fcを、第1周波数fLから第2周波数fHに向かって徐変させてもよい。 When the carrier frequency fc is set to the first frequency fL and a positive determination is made in step S10 of FIG. 32, the carrier frequency fc is gradually changed from the first frequency fL to the second frequency fH. May be good.
 また、キャリア周波数fcが第2周波数fHに設定されている場合において、ステップS10において否定判定されたとき、キャリア周波数fcを、第2周波数fHから第1周波数fLに向かって徐変させてもよい。 Further, when the carrier frequency fc is set to the second frequency fH and a negative determination is made in step S10, the carrier frequency fc may be gradually changed from the second frequency fH to the first frequency fL. ..
 ・PWM制御に代えて、空間ベクトル変調(SVM:space vector modulation)制御によりスイッチの操作信号が生成されてもよい。この場合であっても、上述したスイッチング周波数の変更を適用することができる。 -Instead of PWM control, a switch operation signal may be generated by space vector modulation (SVM) control. Even in this case, the above-mentioned change in switching frequency can be applied.
 (変形例9)
 上記各実施形態では、導線群81を構成する各相2対ずつの導線が、図33(a)に示すように並列接続されていた。図33(a)は、2対の導線である第1,第2導線88a,88bの電気的接続を示す図である。ここで、図33(a)に示す構成に代えて、図33(b)に示すように、第1,第2導線88a,88bが直列接続されていてもよい。
(Modification 9)
In each of the above embodiments, two pairs of conductors of each phase constituting the conductor group 81 are connected in parallel as shown in FIG. 33 (a). FIG. 33A is a diagram showing the electrical connection of the first and second conductors 88a and 88b, which are two pairs of conductors. Here, instead of the configuration shown in FIG. 33 (a), as shown in FIG. 33 (b), the first and second conductors 88a and 88b may be connected in series.
 また、3対以上の多層導線が径方向に積層配置されていてもよい。図34に、4対の導線である第1~第4導線88a~88dが積層配置されている構成を示す。第1~第4導線88a~88dは、固定子コア52に近い方から、第1,第2,第3,第4導線88a,88b,88c,88dの順に径方向に並んで配置されている。 Further, three or more pairs of multi-layer conductors may be laminated in the radial direction. FIG. 34 shows a configuration in which the first to fourth conductors 88a to 88d, which are four pairs of conductors, are laminated and arranged. The first to fourth conductors 88a to 88d are arranged in the radial direction in the order of the first, second, third, and fourth conductors 88a, 88b, 88c, 88d from the side closer to the stator core 52. ..
 ここで、図33(c)に示すように、第3,第4導線88c,88dが並列接続されるとともに、この並列接続体の一端に第1導線88aが接続され、他端に第2導線88bが接続されていてもよい。並列接続にすると、その並列接続された導線の電流密度を低下させることができ、通電時の発熱を抑制できる。そのため、冷却水通路74が形成されたハウジング(ユニットベース61)に筒状の固定子巻線を組み付ける構成において、並列接続されていない第1,第2導線88a,88bがユニットベース61に当接する固定子コア52側に配置され、並列接続された第3,第4導線88c,88dが反固定子コア側に配置されている構成とする。これにより、多層導線構造における各導線88a~88dの冷却性能を均等化することができる。 Here, as shown in FIG. 33 (c), the third and fourth conductors 88c and 88d are connected in parallel, the first conductor 88a is connected to one end of the parallel connection body, and the second conductor is connected to the other end. 88b may be connected. When connected in parallel, the current density of the conductors connected in parallel can be reduced, and heat generation during energization can be suppressed. Therefore, in the configuration in which the tubular stator winding is assembled to the housing (unit base 61) in which the cooling water passage 74 is formed, the first and second conductors 88a and 88b that are not connected in parallel come into contact with the unit base 61. The configuration is such that the third and fourth conductors 88c and 88d arranged in parallel on the stator core 52 side are arranged on the anti-stator core side. Thereby, the cooling performance of each of the conductors 88a to 88d in the multilayer conductor structure can be equalized.
 なお、第1~第4導線88a~88dからなる導線群81の径方向の厚さ寸法は、1磁極内における1相分の周方向の幅寸法よりも小さいものとされていればよい。 The thickness dimension of the conductor group 81 composed of the first to fourth conductors 88a to 88d in the radial direction may be smaller than the width dimension of one phase in one magnetic pole in the circumferential direction.
 (変形例10)
 回転電機10をインナロータ構造(内転構造)としてもよい。この場合、例えばハウジング30内において、径方向外側に固定子50が設けられ、その径方向内側に回転子40が設けられるとよい。また、固定子50及び回転子40の軸方向両端のうちその一方の側又はその両方の側にインバータユニット60が設けられているとよい。図35は、回転子40及び固定子50の横断面図であり、図36は、図35に示す回転子40及び固定子50の一部を拡大して示す図である。
(Modification example 10)
The rotary electric machine 10 may have an inner rotor structure (additional structure). In this case, for example, in the housing 30, it is preferable that the stator 50 is provided on the outer side in the radial direction and the rotor 40 is provided on the inner side in the radial direction. Further, it is preferable that the inverter unit 60 is provided on one side or both sides of both ends of the stator 50 and the rotor 40 in the axial direction. FIG. 35 is a cross-sectional view of the rotor 40 and the stator 50, and FIG. 36 is an enlarged view of a part of the rotor 40 and the stator 50 shown in FIG. 35.
 インナロータ構造を前提とする図35及び図36の構成は、アウタロータ構造を前提とする図8及び図9の構成に対して、回転子40及び固定子50が径方向内外で逆になっていることを除いて、同様の構成となっている。簡単に説明すると、固定子50は、扁平導線構造の固定子巻線51と、ティースを持たない固定子コア52とを有している。固定子巻線51は、固定子コア52の径方向内側に組み付けられている。固定子コア52は、アウタロータ構造の場合と同様に、以下のいずれかの構成を有する。
(A)固定子50において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、1磁極における磁石ユニットの周方向の幅寸法をWm、磁石ユニットの残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いている。
(B)固定子50において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、非磁性材料を用いている。
(C)固定子50において、周方向における各導線部の間に導線間部材を設けていない構成となっている。
The configurations of FIGS. 35 and 36, which are premised on the inner rotor structure, have the rotor 40 and the stator 50 reversed in the radial direction with respect to the configurations of FIGS. 8 and 9 which are premised on the outer rotor structure. Except for, it has the same configuration. Briefly, the stator 50 has a stator winding 51 having a flat conductor structure and a stator core 52 having no teeth. The stator winding 51 is assembled inside the stator core 52 in the radial direction. The stator core 52 has one of the following configurations, as in the case of the outer rotor structure.
(A) In the stator 50, a conductor-to-conductor member is provided between each conductor portion in the circumferential direction, and as the conductor-to-conductor member, the width dimension of the conductor-to-conductor member at one magnetic pole in the circumferential direction is Wt, and the conductor-to-conductor member is saturated. When the magnetic flux density is Bs and the width dimension of the magnet unit at one magnetic pole in the circumferential direction is Wm and the residual magnetic flux density of the magnet unit is Br, a magnetic material having a relationship of Wt × Bs ≦ Wm × Br is used.
(B) In the stator 50, a conductor-to-conductor member is provided between the conductors in the circumferential direction, and a non-magnetic material is used as the conductor-to-conductor member.
(C) The stator 50 has a configuration in which no interconductor member is provided between the conductors in the circumferential direction.
 また、磁石ユニット42の各磁石91,92についても同様である。つまり、磁石ユニット42は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされた磁石91,92を用いて構成されている。各磁石91,92における磁化方向等の詳細は既述のとおりである。磁石ユニット42において環状磁石95(図30参照)を用いることも可能である。 The same applies to the magnets 91 and 92 of the magnet unit 42. That is, the magnet unit 42 is oriented so that the direction of the easy magnetization axis is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, as compared with the q-axis side, which is the magnetic pole boundary. Is configured using. Details such as the magnetization directions of the magnets 91 and 92 are as described above. It is also possible to use an annular magnet 95 (see FIG. 30) in the magnet unit 42.
 図37は、インナロータ型とした場合における回転電機10の縦断面図であり、これは既述の図2に対応する図面である。図2の構成との相違点を簡単に説明する。図37において、ハウジング30の内側には、環状の固定子50が固定され、その固定子50の内側には、所定のエアギャップを挟んで回転子40が回転可能に設けられている。図2と同様に、各軸受21,22は、回転子40の軸方向中央に対して軸方向のいずれか一方側に偏って配置されており、これにより、回転子40が片持ち支持されている。また、回転子40の磁石ホルダ41の内側に、インバータユニット60が設けられている。 FIG. 37 is a vertical cross-sectional view of the rotary electric machine 10 in the case of an inner rotor type, which is a drawing corresponding to FIG. 2 described above. Differences from the configuration of FIG. 2 will be briefly described. In FIG. 37, an annular stator 50 is fixed to the inside of the housing 30, and a rotor 40 is rotatably provided inside the stator 50 with a predetermined air gap interposed therebetween. Similar to FIG. 2, the bearings 21 and 22 are arranged so as to be biased to one side in the axial direction with respect to the axial center of the rotor 40, whereby the rotor 40 is cantilevered and supported. There is. Further, an inverter unit 60 is provided inside the magnet holder 41 of the rotor 40.
 図38には、インナロータ構造の回転電機10として別の構成を示す。図38において、ハウジング30には、軸受21,22により回転軸11が回転可能に支持されており、その回転軸11に対して回転子40が固定されている。図2等に示す構成と同様に、各軸受21,22は、回転子40の軸方向中央に対して軸方向のいずれか一方側に偏って配置されている。回転子40は、磁石ホルダ41と磁石ユニット42とを有している。 FIG. 38 shows another configuration of the rotary electric machine 10 having an inner rotor structure. In FIG. 38, the rotating shaft 11 is rotatably supported by bearings 21 and 22 in the housing 30, and the rotor 40 is fixed to the rotating shaft 11. Similar to the configuration shown in FIG. 2 and the like, the bearings 21 and 22 are arranged so as to be biased to either one side in the axial direction with respect to the center in the axial direction of the rotor 40. The rotor 40 has a magnet holder 41 and a magnet unit 42.
 図38の回転電機10では、図37の回転電機10との相違点として、回転子40の径方向内側にインバータユニット60が設けられていない構成となっている。磁石ホルダ41は、磁石ユニット42の径方向内側となる位置で回転軸11に連結されている。また、固定子50は、固定子巻線51と固定子コア52とを有しており、ハウジング30に対して取り付けられている。 The rotary electric machine 10 of FIG. 38 is different from the rotary electric machine 10 of FIG. 37 in that the inverter unit 60 is not provided inside the rotor 40 in the radial direction. The magnet holder 41 is connected to the rotating shaft 11 at a position inside the magnet unit 42 in the radial direction. Further, the stator 50 has a stator winding 51 and a stator core 52, and is attached to the housing 30.
 (変形例11)
 インナロータ構造の回転電機として別の構成を以下に説明する。図39は、回転電機200の分解斜視図であり、図40は、回転電機200の側面断面図である。なおここでは、図39及び図40の状態を基準に上下方向を示すこととしている。
(Modification 11)
Another configuration as a rotary electric machine having an inner rotor structure will be described below. FIG. 39 is an exploded perspective view of the rotary electric machine 200, and FIG. 40 is a side sectional view of the rotary electric machine 200. Here, the vertical direction is shown with reference to the states of FIGS. 39 and 40.
 図39及び図40に示すように、回転電機200は、環状の固定子コア201及び多相の固定子巻線202を有する固定子203と、固定子コア201の内側に回転自在に配設される回転子204とを備えている。固定子203が電機子に相当し、回転子204が界磁子に相当する。固定子コア201は、多数の珪素鋼板が積層されて構成されており、その固定子コア201に対して固定子巻線202が取り付けられている。図示は省略するが、回転子204は、回転子コアと、磁石ユニットとして複数の永久磁石とを有している。回転子コアには、円周方向に等間隔で複数の磁石挿入孔が設けられている。磁石挿入孔のそれぞれには、隣接する磁極毎に交互に磁化方向が変わるように磁化された永久磁石が装着されている。なお、磁石ユニットの永久磁石は、図23で説明したようなハルバッハ配列又はそれに類する構成を有するものであるとよい。又は、磁石ユニットの永久磁石は、図9や図30で説明したような磁極中心であるd軸と磁極境界であるq軸との間において配向方向(磁化方向)が円弧状に延びている極異方性の特性を備えるものであるとよい。 As shown in FIGS. 39 and 40, the rotary electric machine 200 is rotatably arranged inside the stator core 201 and the stator 203 having an annular stator core 201 and a multi-phase stator winding 202. It is equipped with a rotor 204. The stator 203 corresponds to the armature and the rotor 204 corresponds to the field magnet. The stator core 201 is formed by laminating a large number of silicon steel plates, and a stator winding 202 is attached to the stator core 201. Although not shown, the rotor 204 has a rotor core and a plurality of permanent magnets as magnet units. The rotor core is provided with a plurality of magnet insertion holes at equal intervals in the circumferential direction. Each of the magnet insertion holes is equipped with a permanent magnet magnetized so that the magnetization direction changes alternately for each adjacent magnetic pole. The permanent magnet of the magnet unit may have a Halbach array or a similar configuration as described with reference to FIG. 23. Alternatively, the permanent magnet of the magnet unit has a pole in which the orientation direction (magnetization direction) extends in an arc shape between the d-axis, which is the center of the magnetic pole, and the q-axis, which is the boundary between the magnetic poles, as described with reference to FIGS. 9 and 30. It is preferable that the magnet has anisotropy characteristics.
 ここで、固定子203は、以下のいずれかの構成であるとよい。
(A)固定子203において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、1磁極における磁石ユニットの周方向の幅寸法をWm、磁石ユニットの残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いている。
(B)固定子203において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、非磁性材料を用いている。
(C)固定子203において、周方向における各導線部の間に導線間部材を設けていない構成となっている。
Here, the stator 203 may have any of the following configurations.
(A) In the stator 203, a conductor-to-conductor member is provided between each conductor portion in the circumferential direction, and as the conductor-to-conductor member, the width dimension of the conductor-to-conductor member at one magnetic pole in the circumferential direction is Wt, and the conductor-to-conductor member is saturated. When the magnetic flux density is Bs and the width dimension of the magnet unit at one magnetic pole in the circumferential direction is Wm and the residual magnetic flux density of the magnet unit is Br, a magnetic material having a relationship of Wt × Bs ≦ Wm × Br is used.
(B) In the stator 203, a conductor-to-conductor member is provided between the conductors in the circumferential direction, and a non-magnetic material is used as the conductor-to-conductor member.
(C) The stator 203 has a configuration in which no interconductor member is provided between the conductors in the circumferential direction.
 また、回転子204において、磁石ユニットは、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされた複数の磁石を用いて構成されている。 Further, in the rotor 204, the magnet unit is oriented on the d-axis side, which is the center of the magnetic pole, so that the direction of the easy-magnetizing axis is parallel to the d-axis as compared with the side of the q-axis, which is the magnetic pole boundary. It is configured using a plurality of magnets.
 回転電機200の軸方向の一端側には、環状のインバータケース211が設けられている。インバータケース211は、ケース下面が固定子コア201の上面に接するように配置されている。インバータケース211内には、インバータ回路を構成する複数のパワーモジュール212と、半導体スイッチング素子のスイッチング動作により生じる電圧・電流の脈動(リップル)を抑制する平滑コンデンサ213と、制御部を有する制御基板214と、相電流を検出する電流センサ215と、回転子204の回転数センサであるレゾルバステータ216とが設けられている。パワーモジュール212は、半導体スイッチング素子であるIGBTやダイオードを有している。 An annular inverter case 211 is provided on one end side of the rotary electric machine 200 in the axial direction. The inverter case 211 is arranged so that the lower surface of the case is in contact with the upper surface of the stator core 201. Inside the inverter case 211, a plurality of power modules 212 constituting the inverter circuit, a smoothing capacitor 213 that suppresses voltage / current pulsation (ripple) generated by the switching operation of the semiconductor switching element, and a control board 214 having a control unit are provided. A current sensor 215 that detects the phase current and a resolver stator 216 that is a rotation speed sensor of the rotor 204 are provided. The power module 212 has an IGBT and a diode which are semiconductor switching elements.
 インバータケース211の周縁には、車両に搭載されるバッテリの直流回路と接続されるパワーコネクタ217と、回転電機200側と車両側制御装置との間で各種信号の受け渡しに用いられる信号コネクタ218とが設けられている。インバータケース211はトップカバー219で覆われている。車載バッテリからの直流電力は、パワーコネクタ217を介して入力され、パワーモジュール212のスイッチングにより交流に変換されて各相の固定子巻線202に送られる。 On the periphery of the inverter case 211, there is a power connector 217 connected to the DC circuit of the battery mounted on the vehicle, and a signal connector 218 used for passing various signals between the rotary electric machine 200 side and the vehicle side control device. Is provided. The inverter case 211 is covered with a top cover 219. The DC power from the in-vehicle battery is input via the power connector 217, converted into AC by switching of the power module 212, and sent to the stator winding 202 of each phase.
 固定子コア201の軸方向両側のうちインバータケース211の反対側には、回転子204の回転軸を回転可能に保持する軸受ユニット221と、その軸受ユニット221を収容する環状のリアケース222とが設けられている。軸受ユニット221は、例えば2つ一組の軸受を有しており、回転子204の軸方向中央に対して軸方向のいずれか一方側に偏って配置されている。ただし、軸受ユニット221における複数の軸受を固定子コア201の軸方向両側に分散させて設け、それら各軸受により回転軸を両持ち支持する構成であってもよい。リアケース222が車両のギアケースや変速機などの取付部にボルト締結して固定されることで、回転電機200が車両側に取り付けられるようになっている。 On both sides of the stator core 201 in the axial direction, on the opposite side of the inverter case 211, there are a bearing unit 221 that rotatably holds the rotating shaft of the rotor 204 and an annular rear case 222 that houses the bearing unit 221. It is provided. The bearing unit 221 has, for example, a set of two bearings, and is arranged so as to be biased to either one side in the axial direction with respect to the center in the axial direction of the rotor 204. However, a plurality of bearings in the bearing unit 221 may be provided so as to be dispersed on both sides in the axial direction of the stator core 201, and the rotating shaft may be supported by both bearings. The rotary electric machine 200 can be mounted on the vehicle side by bolting and fixing the rear case 222 to a mounting portion such as a gear case or a transmission of the vehicle.
 インバータケース211内には、冷媒を流すための冷却流路211aが形成されている。冷却流路211aは、インバータケース211の下面から環状に凹設された空間を固定子コア201の上面で閉塞して形成されている。冷却流路211aは、固定子巻線202のコイルエンドを囲むように形成されている。冷却流路211a内には、パワーモジュール212のモジュールケース212aが挿入されている。リアケース222にも、固定子巻線202のコイルエンドを囲むように冷却流路222aが形成されている。冷却流路222aは、リアケース222の上面から環状に凹設された空間を固定子コア201の下面で閉塞して形成されている。 A cooling flow path 211a for flowing a refrigerant is formed in the inverter case 211. The cooling flow path 211a is formed by closing a space recessed in an annular shape from the lower surface of the inverter case 211 with the upper surface of the stator core 201. The cooling flow path 211a is formed so as to surround the coil end of the stator winding 202. The module case 212a of the power module 212 is inserted in the cooling flow path 211a. The rear case 222 is also formed with a cooling flow path 222a so as to surround the coil end of the stator winding 202. The cooling flow path 222a is formed by closing a space recessed in an annular shape from the upper surface of the rear case 222 with the lower surface of the stator core 201.
 (変形例12)
 これまでは、回転界磁形の回転電機にて具体化した構成を説明したが、これを変更し、回転電機子形の回転電機にて具体化することも可能である。図41に、回転電機子形の回転電機230の構成を示す。
(Modification 12)
So far, the configuration embodied in the rotating field type rotating electric machine has been described, but it is also possible to change this and embody it in the rotating armature type rotating electric machine. FIG. 41 shows the configuration of the rotary armature type rotary electric machine 230.
 図41の回転電機230において、ハウジング231a,231bにはそれぞれ軸受232が固定され、その軸受232により回転軸233が回転自在に支持されている。軸受232は、例えば多孔質金属に油を含ませてなる含油軸受である。回転軸233には、電機子としての回転子234が固定されている。回転子234は、回転子コア235とその外周部に固定された多相の回転子巻線236とを有している。回転子234において、回転子コア235はスロットレス構造を有し、回転子巻線236は扁平導線構造を有している。つまり、回転子巻線236は、1相ごとの領域が径方向よりも周方向に長い扁平構造となっている。 In the rotary electric machine 230 of FIG. 41, bearings 232 are fixed to the housings 231a and 231b, respectively, and the rotary shaft 233 is rotatably supported by the bearings 232. The bearing 232 is, for example, an oil-impregnated bearing made by impregnating a porous metal with oil. A rotor 234 as an armature is fixed to the rotating shaft 233. The rotor 234 has a rotor core 235 and a polyphase rotor winding 236 fixed to the outer peripheral portion thereof. In the rotor 234, the rotor core 235 has a slotless structure, and the rotor winding 236 has a flat conductor structure. That is, the rotor winding 236 has a flat structure in which the region for each phase is longer in the circumferential direction than in the radial direction.
 また、回転子234の径方向外側には、界磁子としての固定子237が設けられている。固定子237は、ハウジング231aに固定された固定子コア238と、その固定子コア238の内周側に固定された磁石ユニット239とを有している。磁石ユニット239は、周方向に極性が交互となる複数の磁極を含む構成となっており、既述した磁石ユニット42等と同様に、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされて構成されている。磁石ユニット239は、配向が行われた焼結ネオジム磁石を有しており、その固有保磁力は400[kA/m]以上、かつ残留磁束密度は1.0[T]以上となっている。 Further, a stator 237 as a field magnet is provided on the radial outer side of the rotor 234. The stator 237 has a stator core 238 fixed to the housing 231a and a magnet unit 239 fixed to the inner peripheral side of the stator core 238. The magnet unit 239 has a configuration including a plurality of magnetic poles having alternating polarities in the circumferential direction, and is a magnetic pole boundary on the d-axis side, which is the center of the magnetic poles, like the magnet unit 42 described above. It is configured so that the direction of the easy-to-magnetize axis is parallel to the d-axis as compared with the side of the axis. The magnet unit 239 has an oriented sintered neodymium magnet, the intrinsic coercive force thereof is 400 [kA / m] or more, and the residual magnetic flux density is 1.0 [T] or more.
 本例の回転電機230は、2極3コイルのブラシ付コアレスモータであり、回転子巻線236は3つに分割され、磁石ユニット239は2極である。ブラシ付きモータの極数とコイル数は、2:3、4:10、4:21などその用途に応じて様々である。 The rotary electric machine 230 of this example is a 2-pole 3-coil brushed coreless motor, the rotor winding 236 is divided into three, and the magnet unit 239 has two poles. The number of poles and the number of coils of the brushed motor varies depending on the application, such as 2: 3, 4:10, 4:21.
 回転軸233にはコミュテータ241が固定されており、その径方向外側には複数のブラシ242が配置されている。コミュテータ241は、回転軸233に埋め込まれた導線243を介して回転子巻線236に電気接続されている。これらコミュテータ241、ブラシ242、導線243を通じて、回転子巻線236に対する直流電流の流入及び流出が行われる。コミュテータ241は、回転子巻線236の相数に応じて周方向に適宜分割されて構成されている。なお、ブラシ242は、そのまま電気配線を介して蓄電池などの直流電源に接続されていてもよいし、端子台などを介して直流電源に接続されていてもよい。 A commutator 241 is fixed to the rotating shaft 233, and a plurality of brushes 242 are arranged on the outer side in the radial direction thereof. The commutator 241 is electrically connected to the rotor winding 236 via a conductor 243 embedded in the rotating shaft 233. A direct current flows in and out of the rotor winding 236 through the commutator 241, the brush 242, and the conducting wire 243. The commutator 241 is appropriately divided in the circumferential direction according to the number of phases of the rotor winding 236. The brush 242 may be directly connected to a DC power source such as a storage battery via electrical wiring, or may be connected to a DC power source via a terminal block or the like.
 回転軸233には、軸受232とコミュテータ241との間に、シール材としての樹脂ワッシャ244が設けられている。樹脂ワッシャ244により、含油軸受である軸受232からしみ出た油がコミュテータ241側に流れ出ることが抑制される。 The rotating shaft 233 is provided with a resin washer 244 as a sealing material between the bearing 232 and the commutator 241. The resin washer 244 suppresses the oil seeping out from the bearing 232, which is an oil-impregnated bearing, from flowing out to the commutator 241 side.
 (変形例13)
 回転電機10の固定子巻線51において、各導線82を、内外に複数の絶縁被膜を有する構成としてもよい。例えば、絶縁被膜付きの複数の導線(素線)を1本に束ね、それを外層被膜により覆って導線82を構成するとよい。この場合、素線の絶縁被膜が内側の絶縁被膜を構成し、外層被膜が外側の絶縁被膜を構成する。また特に、導線82における複数の絶縁被膜のうち外側の絶縁被膜の絶縁能力を、内側の絶縁被膜の絶縁能力よりも高めておくとよい。具体的には、外側の絶縁被膜の厚さを、内側の絶縁被膜の厚さよりも厚くする。例えば、外側の絶縁被膜の厚さを100μm、内側の絶縁被膜の厚さを40μmとする。又は、外側の絶縁被膜として、内側の絶縁被膜よりも誘電率の低い材料を用いるとよい。これらは少なくともいずれかが適用されればよい。なお、素線が、複数の導電材の集合体として構成されているとよい。
(Modification 13)
In the stator winding 51 of the rotary electric machine 10, each conducting wire 82 may have a plurality of insulating coatings inside and outside. For example, it is preferable to bundle a plurality of conductors (wires) with an insulating coating into one and cover the conductors with an outer layer coating to form the conductor 82. In this case, the insulating coating of the wire constitutes the inner insulating coating, and the outer layer coating constitutes the outer insulating coating. Further, in particular, it is preferable that the insulating capacity of the outer insulating coating among the plurality of insulating coatings on the conductor 82 is higher than the insulating capacity of the inner insulating coating. Specifically, the thickness of the outer insulating coating is made thicker than the thickness of the inner insulating coating. For example, the thickness of the outer insulating coating is 100 μm, and the thickness of the inner insulating coating is 40 μm. Alternatively, a material having a lower dielectric constant than the inner insulating coating may be used as the outer insulating coating. At least one of these may be applied. It is preferable that the strands are configured as an aggregate of a plurality of conductive materials.
 上記のとおり導線82における最外層の絶縁を強くすることにより、高電圧の車両用システムに用いる場合に好適なものとなる。また、気圧の低い高地などでも、回転電機10の適正な駆動が可能となる。 By strengthening the insulation of the outermost layer of the conductor 82 as described above, it becomes suitable for use in a high-voltage vehicle system. In addition, the rotary electric machine 10 can be properly driven even in highlands where the atmospheric pressure is low.
 (変形例14)
 内外に複数の絶縁被膜を有する導線82において、外側の絶縁被膜と内側の絶縁被膜とで、線膨張率(線膨張係数)及び接着強さの少なくともいずれかが異なる構成としてもよい。本変形例における導線82の構成を図42に示す。
(Modification 14)
In the conducting wire 82 having a plurality of insulating coatings inside and outside, at least one of the linear expansion coefficient (linear expansion coefficient) and the adhesive strength may be different between the outer insulating coating and the inner insulating coating. The configuration of the conducting wire 82 in this modified example is shown in FIG. 42.
 図42において、導線82は、複数(図では4本)の素線181と、その複数の素線181を囲む例えば樹脂製の外層被膜182(外側絶縁被膜)と、外層被膜182内において各素線181の周りに充填された中間層183(中間絶縁被膜)とを有している。素線181は、銅材よりなる導電部181aと、絶縁材料よりなる導体被膜181b(内側絶縁被膜)とを有している。固定子巻線として見れば、外層被膜182により相間が絶縁される。なお、素線181が、複数の導電材の集合体として構成されているとよい。 In FIG. 42, the conductor 82 includes a plurality of (four in the figure) strands 181 and, for example, a resin outer layer coating 182 (outer insulating coating) surrounding the plurality of strands 181 and each of the conductors in the outer layer coating 182. It has an intermediate layer 183 (intermediate insulating film) filled around the wire 181. The wire 181 has a conductive portion 181a made of a copper material and a conductor coating 181b (inner insulating coating) made of an insulating material. When viewed as a stator winding, the outer layer coating 182 insulates the phases. It is preferable that the strand 181 is configured as an aggregate of a plurality of conductive materials.
 中間層183は、素線181の導体被膜181bよりも高い線膨張率を有し、かつ外層被膜182よりも低い線膨張率を有している。つまり、導線82では、外側ほど線膨張率が高くなっている。一般的に、外層被膜182では導体被膜181bよりも線膨張係数が高いが、それらの間にその中間の線膨張率を有する中間層183を設けることにより、その中間層183がクッション材として機能し、外層側及び内層側での同時割れを防ぐことができる。 The intermediate layer 183 has a higher coefficient of linear expansion than the conductor coating 181b of the wire 181 and a lower coefficient of linear expansion than the outer layer coating 182. That is, in the conductor 82, the coefficient of linear expansion is higher toward the outside. Generally, the outer layer coating 182 has a higher coefficient of linear expansion than the conductor coating 181b, but by providing an intermediate layer 183 having an intermediate linear expansion coefficient between them, the intermediate layer 183 functions as a cushioning material. , Simultaneous cracking on the outer layer side and the inner layer side can be prevented.
 また、導線82では、素線181において導電部181aと導体被膜181bとが接着されるとともに、導体被膜181bと中間層183、中間層183と外層被膜182がそれぞれ接着されており、それら各接着部分では、導線82の外側ほど、接着強さが弱くなっている。つまり、導電部181a及び導体被膜181bの接着強さは、導体被膜181b及び中間層183の接着強さ、中間層183及び外層被膜182の接着強さよりも弱くなっている。また、導体被膜181b及び中間層183の接着強さと、中間層183及び外層被膜182の接着強さとを比較すると、後者の方(外側の方)が弱いか、又は同等であるとよい。なお、各被膜同士の接着強さの大きさは、例えば2層の被膜を引き剥がす際に要する引っ張り強さ等により把握可能である。上記のごとく導線82の接着強さが設定されていることで、発熱又は冷却による内外温度差が生じても、内層側及び外層側で共に割れが生じること(共割れ)を抑制することができる。 Further, in the conducting wire 82, the conductive portion 181a and the conductor coating 181b are adhered to each other in the wire 181 and the conductor coating 181b and the intermediate layer 183, and the intermediate layer 183 and the outer layer coating 182 are adhered to each other. Then, the adhesive strength becomes weaker toward the outside of the conductor 82. That is, the adhesive strength of the conductive portion 181a and the conductor coating 181b is weaker than the adhesive strength of the conductor coating 181b and the intermediate layer 183 and the adhesive strength of the intermediate layer 183 and the outer layer coating 182. Further, comparing the adhesive strength of the conductor coating 181b and the intermediate layer 183 with the adhesive strength of the intermediate layer 183 and the outer layer coating 182, it is preferable that the latter (outer side) is weaker or equivalent. The magnitude of the adhesive strength between the coatings can be grasped from, for example, the tensile strength required when peeling off the two layers of coatings. By setting the adhesive strength of the conducting wire 82 as described above, it is possible to suppress cracking (co-cracking) on both the inner layer side and the outer layer side even if an internal / external temperature difference occurs due to heat generation or cooling. ..
 ここで、回転電機の発熱、温度変化は、主に素線181の導電部181aから発熱される銅損と、鉄心内から発せられる鉄損として生じるが、それら2種類の損失は、導線82内の導電部181a、又は導線82の外部より伝わるものであり、中間層183に発熱源があるわけではない。この場合、中間層183が両方に対してクッションとなり得る接着力を持つことで、その同時割れを防ぐことができる。したがって、車両用途など、高耐圧又は温度変化の大きい分野での使用に際しても、好適なる使用が可能となる。 Here, the heat generation and temperature change of the rotary electric machine mainly occur as copper loss generated from the conductive portion 181a of the wire 181 and iron loss generated from the inside of the iron core, and these two types of losses occur in the conducting wire 82. It is transmitted from the outside of the conductive portion 181a or the conducting wire 82 of the above, and the intermediate layer 183 does not have a heat generating source. In this case, the intermediate layer 183 has an adhesive force that can serve as a cushion for both of them, so that simultaneous cracking can be prevented. Therefore, suitable use is possible even when used in fields with high withstand voltage or large temperature changes such as vehicle applications.
 以下に補足する。素線181は、例えばエナメル線であってもよく、かかる場合にはPA、PI、PAI等の樹脂被膜層(導体被膜181b)を有する。また、素線181より外側の外層被膜182は、同様のPA、PI、PAI等よりなり、かつ厚みが厚いものであることが望ましい。これにより、線膨張率差による被膜の破壊が抑えられる。なお、外層被膜182としては、PA、PI、PAI等の前記材料を厚くして対応するものとは別に、PPS、PEEK、フッ素、ポリカーボネート、シリコン、エポキシ、ポリエチレンナフタレート、LCPといった、誘電率がPI、PAIよりも小さいものを使うことも回転機の導体密度を高めるためには望ましい。これらの樹脂であれば、導体被膜181b同等のPI,PAI被膜よりも薄いか、導体被膜181bと同等の厚みであっても、その絶縁能力を高くすることができ、これにより導電部の占有率を高めることが可能となる。一般的には、上記樹脂は、誘電率がエナメル線の絶縁被膜より良好な絶縁を有している。当然、成形状態や、混ぜ物によって、その誘電率を悪くする例も存在する。中でも、PPS、PEEKは、その線膨張係数がエナメル被膜より一般的には大きいが、他樹脂よりも小さいため、第2層の外層被膜として適するのである。 Supplement to the following. The strand 181 may be, for example, an enamel wire, and in such a case, it has a resin coating layer (conductor coating 181b) such as PA, PI, and PAI. Further, it is desirable that the outer layer coating 182 outside the wire 181 is made of the same PA, PI, PAI, etc., and has a large thickness. As a result, the destruction of the coating film due to the difference in linear expansion coefficient is suppressed. The outer layer coating 182 has a dielectric constant such as PPS, PEEK, fluorine, polycarbonate, silicon, epoxy, polyethylene naphthalate, and LCP, in addition to those made by thickening the above materials such as PA, PI, and PAI. It is also desirable to use one smaller than PI and PAI in order to increase the conductor density of the rotating machine. With these resins, even if they are thinner than the PI and PAI coatings equivalent to the conductor coating 181b or the thickness equivalent to the conductor coating 181b, their dielectric strength can be increased, thereby occupying the conductive portion. Can be increased. In general, the resin has better insulation than the insulating coating of enamel wire in terms of dielectric constant. Naturally, there are cases where the dielectric constant is deteriorated depending on the molding state and the mixture. Among them, PPS and PEEK are suitable as the outer layer coating of the second layer because their linear expansion coefficient is generally larger than that of the enamel coating but smaller than that of other resins.
 また、素線181の外側における2種類の被膜(中間絶縁被膜、外側絶縁被膜)と素線181のエナメル被膜との接着強さは、素線181における銅線とエナメル被膜との間の接着強さよりも弱いことが望ましい。これにより、エナメル被膜と前記2種類の被膜とが一度に破壊される現象が抑制される。 Further, the adhesive strength between the two types of coatings (intermediate insulating coating and outer insulating coating) on the outside of the strand 181 and the enamel coating on the strand 181 is the adhesive strength between the copper wire and the enamel coating on the strand 181. It is desirable to be weaker than that. As a result, the phenomenon that the enamel coating and the two types of coatings are destroyed at once is suppressed.
 固定子に水冷構造、液冷構造、空冷構造が付加されている場合には、基本的に、外層被膜182から先に熱応力や衝撃応力が掛かると考えられる。しかし、素線181の絶縁層と、前記2種類の被膜とが違う樹脂の場合でも、その被膜を接着しない部位を設けることにより、前記熱応力や衝撃応力を低減することができる。すなわち、素線(エナメル線)と空隙を設け、フッ素、ポリカーボネート、シリコン、エポキシ、ポリエチレンナフタレート、LCPを配置することで前記絶縁構造がなされる。この場合、エポキシなどからなる低誘電率で、かつ低線膨張係数からなる接着材を用いて、外層被膜と内層被膜とを接着することが望ましい。こうすることで、機械的強度だけでなく、導電部の振動による揺れなどによる摩擦による被膜破壊、または線膨張係数差による外層被膜の破壊を抑えることができる。 When a water-cooled structure, a liquid-cooled structure, or an air-cooled structure is added to the stator, it is considered that thermal stress or impact stress is basically applied to the outer layer coating 182 first. However, even in the case of a resin in which the insulating layer of the wire 181 and the two types of coatings are different, the thermal stress and impact stress can be reduced by providing a portion where the coatings are not adhered. That is, the insulating structure is formed by providing a wire (enamel wire) and a gap and arranging fluorine, polycarbonate, silicon, epoxy, polyethylene naphthalate, and LCP. In this case, it is desirable to bond the outer layer coating and the inner layer coating using an adhesive material having a low dielectric constant made of epoxy or the like and having a low coefficient of linear expansion. By doing so, it is possible to suppress not only the mechanical strength but also the destruction of the coating film due to friction caused by the vibration of the conductive portion or the destruction of the outer layer coating film due to the difference in the coefficient of linear expansion.
 上記構成の導線82に対しての、機械的強度、固定等を担う、一般的には固定子巻線周りの最終工程となる最外層固定としては、エポキシ、PPS、PEEK、LCPなどの成形性が良く、誘電率、線膨張係数といった性質がエナメル被膜と近い性質をもった樹脂が好ましい。 Formability of epoxy, PPS, PEEK, LCP, etc. is used as the outermost layer fixing, which is generally the final step around the stator winding, which is responsible for mechanical strength, fixing, etc. to the lead wire 82 having the above configuration. It is preferable to use a resin having properties such as dielectric constant and coefficient of linear expansion similar to those of an enamel film.
 一般的には、ウレタン、シリコンによる樹脂ポッティングが通例なされるが、前記樹脂においてはその線膨張係数がその他の樹脂と比べて倍近い差があり、樹脂をせん断し得る熱応力を発生する。そのため、厳しい絶縁規定が国際的に用いられる60V以上の用途には不適である。この点、エポキシ、PPS、PEEK、LCPなどにより射出成型等により容易に作られる最終絶縁工程によれば、上述の各要件を達成することが可能である。 Generally, resin potting with urethane or silicon is usually performed, but the linear expansion coefficient of the resin is almost double that of other resins, and thermal stress that can shear the resin is generated. Therefore, strict insulation regulations are not suitable for applications of 60 V or higher, which are used internationally. In this regard, according to the final insulation step easily made by injection molding or the like using epoxy, PPS, PEEK, LCP or the like, each of the above requirements can be achieved.
 上記以外の変形例を以下に列記する。 Modification examples other than the above are listed below.
 ・磁石ユニット42のうち径方向において電機子側の面と、回転子の軸心との径方向における距離DMが50mm以上とされていてもよい。具体的には、例えば、図4に示す磁石ユニット42(具体的には、第1,第2磁石91,92)のうち径方向内側の面と、回転子40の軸心との径方向における距離DMが50mm以上とされていてもよい。 The distance DM between the surface of the magnet unit 42 on the armature side in the radial direction and the axial center of the rotor in the radial direction may be 50 mm or more. Specifically, for example, in the radial direction of the inner surface of the magnet unit 42 (specifically, the first and second magnets 91 and 92) shown in FIG. 4 in the radial direction and the axial center of the rotor 40. The distance DM may be 50 mm or more.
 スロットレス構造の回転電機としては、その出力が数十Wから数百W級の模型用などに使用される小規模なものが知られている。そして、一般的には10kWを超すような工業用の大型の回転電機でスロットレス構造が採用された事例を本願開示者は把握していない。その理由について本願開示者は検討した。 As a rotary electric machine having a slotless structure, a small-scale one whose output is used for a model of several tens of watts to several hundreds of watts is known. And, the present disclosure person does not understand the case where the slotless structure is adopted in a large industrial rotary electric machine which generally exceeds 10 kW. The discloser of the present application examined the reason.
 近年主流の回転電機は、次の4種類に大別される。それら回転電機とは、ブラシ付きモータ、カゴ型誘導モータ、永久磁石式同期モータ及びリラクタンスモータである。 The mainstream rotary electric machines in recent years are roughly classified into the following four types. These rotary electric machines are a brushed motor, a basket type induction motor, a permanent magnet type synchronous motor, and a reluctance motor.
 ブラシ付きモータには、ブラシを介して励磁電流が供給される。このため、大型機のブラシ付きモータの場合、ブラシが大型化したり、メンテナンスが煩雑になったりしたりする。これにより、半導体技術の目覚ましい発達に伴い、誘導モータ等のブラシレスモータに置換されてきた経緯がある。一方、小型モータの世界では、低い慣性及び経済性の利点から、コアレスモータも多数世の中に供給されている。 Excitation current is supplied to the brushed motor via the brush. For this reason, in the case of a motor with a brush of a large machine, the brush becomes large and maintenance becomes complicated. As a result, with the remarkable development of semiconductor technology, it has been replaced by brushless motors such as induction motors. On the other hand, in the world of small motors, coreless motors are also supplied to the world because of their low inertia and economic advantages.
 カゴ型誘導モータでは、1次側の固定子巻線で発生させる磁界を2次側の回転子の鉄心で受けてカゴ型導体に集中的に誘導電流を流して反作用磁界を形成することにより、トルクを発生させる原理である。このため、機器の小型高効率の観点からすれば、固定子側及び回転子側ともに鉄心をなくすことは必ずしも得策であるとは言えない。 In a squirrel-cage induction motor, the magnetic field generated by the stator winding on the primary side is received by the iron core of the rotor on the secondary side, and an induced current is intensively passed through the squirrel-cage conductor to form a reaction magnetic field. This is the principle of generating torque. Therefore, from the viewpoint of small size and high efficiency of the device, it is not always a good idea to eliminate the iron core on both the stator side and the rotor side.
 リラクタンスモータは、当に鉄心のリラクタンス変化を活用するモータであり、原理的に鉄心をなくすことは望ましくない。 The reluctance motor is a motor that utilizes the reluctance change of the iron core, and it is not desirable to eliminate the iron core in principle.
 永久磁石式同期モータでは、近年IPM(つまり埋め込み磁石型回転子)が主流であり、特に大型機においては、特殊事情がない限りIPMである場合が多い。 In recent years, IPM (that is, embedded magnet type rotor) has become the mainstream of permanent magnet synchronous motors, and in large machines in particular, IPM is often used unless there are special circumstances.
 IPMは、磁石トルク及びリラクタンストルクを併せ持つ特性を有しており、インバータ制御により、それらトルクの割合が適時調整されながら運転される。このため、IPMは小型で制御性に優れるモータである。 IPM has the characteristic of having both magnet torque and reluctance torque, and is operated while the ratio of those torques is adjusted in a timely manner by inverter control. Therefore, the IPM is a small motor with excellent controllability.
 本願開示者の分析により、磁石トルク及びリラクタンストルクを発生する回転子表面のトルクを、磁石ユニットのうち径方向において電機子側の面と、回転子の軸心との径方向における距離DM、すなわち、一般的なインナロータの固定子鉄心の半径を横軸にとって描くと図43に示すものとなる。 According to the analysis of the discloser of the present application, the torque on the surface of the rotor that generates the magnet torque and the relaxation torque is determined by the distance DM in the radial direction between the surface of the magnet unit on the armature side in the radial direction and the axial center of the rotor, that is, The radius of the stator core of a general inner rotor is drawn with the horizontal axis as shown in FIG. 43.
 磁石トルクは、下式(eq1)に示すように、永久磁石の発生する磁界強度によりそのポテンシャルが決定されるのに対し、リラクタンストルクは、下式(eq2)に示すように、インダクタンス、特にq軸インダクタンスの大きさがそのポテンシャルを決定する。 The potential of the magnet torque is determined by the magnetic field strength generated by the permanent magnet as shown in the following equation (eq1), whereas the reluctance torque is determined by the inductance, especially q, as shown in the following equation (eq2). The magnitude of the shaft inductance determines its potential.
 磁石トルク=k・Ψ・Iq            ・・・・・・・(eq1)
 リラクタンストルク=k・(Lq-Ld)・Iq・Id ・・・・・(eq2)
 ここで、永久磁石の磁界強度と巻線のインダクタンスの大きさとをDMで比較してみた。永久磁石の発する磁界強度、すなわち磁束量Ψは、固定子と対向する面の永久磁石の総面積に比例する。円筒型の回転子であれば円筒の表面積になる。厳密には、N極とS極とが存在するので、円筒表面の半分の専有面積に比例する。円筒の表面積は、円筒の半径と、円筒長さとに比例する。つまり、円筒長さが一定であれば、円筒の半径に比例する。
Magnet torque = k ・ Ψ ・ Iq ・ ・ ・ ・ ・ ・ ・ (eq1)
Reluctance torque = k ・ (Lq-Ld) ・ Iq ・ Id ・ ・ ・ ・ ・ (eq2)
Here, the magnetic field strength of the permanent magnet and the magnitude of the inductance of the winding are compared by DM. The magnetic field strength generated by the permanent magnet, that is, the amount of magnetic flux Ψ, is proportional to the total area of the permanent magnet on the surface facing the stator. If it is a cylindrical rotor, it will be the surface area of the cylinder. Strictly speaking, since there are N pole and S pole, it is proportional to the occupied area of half of the cylindrical surface. The surface area of a cylinder is proportional to the radius of the cylinder and the length of the cylinder. That is, if the cylinder length is constant, it is proportional to the radius of the cylinder.
 一方、巻線のインダクタンスLqは、鉄心形状に依存はするものの感度は低く、むしろ固定子巻線の巻数の2乗に比例するため、巻数の依存性が高い。なお、μを磁気回路の透磁率、Nを巻数、Sを磁気回路の断面積、δを磁気回路の有効長さとする場合、インダクタンスL=μ・N^2×S/δである。巻線の巻数は、巻線スペースの大きさに依存するため、円筒型モータであれば、固定子の巻線スペース、すなわちスロット面積に依存することになる。図44に示すように、スロット面積は、スロットの形状が略四角形であるため、周方向の長さ寸法a及び径方向の長さ寸法bとの積a×bに比例する。 On the other hand, the inductance Lq of the winding depends on the shape of the iron core, but its sensitivity is low, and rather it is proportional to the square of the number of turns of the stator winding, so the dependence on the number of turns is high. When μ is the magnetic permeability of the magnetic circuit, N is the number of turns, S is the cross-sectional area of the magnetic circuit, and δ is the effective length of the magnetic circuit, the inductance L = μ · N ^ 2 × S / δ. Since the number of turns of the winding depends on the size of the winding space, in the case of a cylindrical motor, it depends on the winding space of the stator, that is, the slot area. As shown in FIG. 44, since the slot shape is substantially quadrangular, the slot area is proportional to the product a × b of the circumferential length dimension a and the radial length dimension b.
 スロットの周方向の長さ寸法は、円筒の直径が大きいほど大きくなるため、円筒の直径に比例する。スロットの径方向の長さ寸法は、当に円筒の直径に比例する。つまり、スロット面積は、円筒の直径の2乗に比例する。また、上式(eq2)からも分かる通り、リラクタンストルクは、固定子電流の2乗に比例するため、いかに大電流を流せるかで回転電機の性能が決まり、その性能は固定子のスロット面積に依存する。以上より、円筒の長さが一定なら、リラクタンストルクは円筒の直径の2乗に比例する。このことを踏まえ、磁石トルク及びリラクタンストルクとDMとの関係性をプロットした図が図43である。 The length dimension in the circumferential direction of the slot increases as the diameter of the cylinder increases, so it is proportional to the diameter of the cylinder. The radial length dimension of the slot is exactly proportional to the diameter of the cylinder. That is, the slot area is proportional to the square of the diameter of the cylinder. Also, as can be seen from the above equation (eq2), the reluctance torque is proportional to the square of the stator current, so the performance of the rotating electric machine is determined by how large the current can flow, and that performance depends on the slot area of the stator. Dependent. From the above, if the length of the cylinder is constant, the reluctance torque is proportional to the square of the diameter of the cylinder. Based on this, FIG. 43 is a diagram plotting the relationship between the magnet torque and the reluctance torque and DM.
 図43に示すように、磁石トルクはDMに対して直線的に増加し、リラクタンストルクはDMに対して2次関数的に増加する。DMが比較的小さい場合は磁石トルクが支配的であり、固定子鉄心半径が大きくなるに連れてリラクタンストルクが支配的であることがわかる。本願開示者は、図43における磁石トルク及びリラクタンストルクの交点が、所定の条件下において、おおよそ固定子鉄心半径=50mmの近傍であるとの結論に至った。つまり、固定子鉄心半径が50mmを十分に超えるような10kW級のモータでは、リラクタンストルクを活用することが現在の主流であるため鉄心を無くすことは困難であり、このことが大型機の分野においてスロットレス構造が採用されない理由の1つであると推定される。 As shown in FIG. 43, the magnet torque increases linearly with respect to DM, and the reluctance torque increases quadratically with respect to DM. It can be seen that the magnet torque is dominant when the DM is relatively small, and the reluctance torque is dominant as the stator core radius increases. The discloser of the present application has concluded that the intersection of the magnet torque and the reluctance torque in FIG. 43 is approximately in the vicinity of the stator core radius = 50 mm under predetermined conditions. In other words, it is difficult to eliminate the iron core in a 10 kW class motor whose stator core radius sufficiently exceeds 50 mm because it is the current mainstream to utilize reluctance torque, and this is the field of large machines. It is presumed to be one of the reasons why the slotless structure is not adopted.
 固定子に鉄心が使用される回転電機の場合、鉄心の磁気飽和が常に課題となる。特にラジアルギャップ型の回転電機では、回転軸の縦断面形状は1磁極当たり扇型となり、機器内周側程磁路幅が狭くなりスロットを形成するティース部分の内周側寸法が回転電機の性能限界を決める。いかに高性能な永久磁石を使おうとも、この部分で磁気飽和が発生すると、永久磁石の性能を十分にひきだすことができない。この部分で磁気飽和を発生させないためには、内周径を大きく設計することになり結果的に機器の大型化に至ってしまうのである。 In the case of a rotary electric machine in which an iron core is used for the stator, magnetic saturation of the iron core is always an issue. In particular, in a radial gap type rotary electric machine, the vertical cross-sectional shape of the rotating shaft is a fan shape per magnetic pole, and the magnetic path width becomes narrower toward the inner peripheral side of the device, and the inner peripheral side dimension of the teeth part forming the slot is the performance of the rotary electric machine. Set limits. No matter how high-performance permanent magnets are used, if magnetic saturation occurs in this part, the performance of the permanent magnets cannot be fully brought out. In order not to generate magnetic saturation in this part, the inner circumference must be designed to be large, resulting in an increase in the size of the equipment.
 例えば、分布巻の回転電機では、3相巻線であれば、1磁極あたり3つ乃至6つのティースで分担して磁束を流すのだが、周方向前方のティースに磁束が集中しがちであるため、3つ乃至6つのティースに均等に磁束が流れるわけではない。この場合、一部(例えば1つ又は2つ)のティースに集中的に磁束が流れながら、回転子の回転に伴って磁気飽和するティースも周方向に移動してゆく。これがスロットリップルを生む要因にもなる。 For example, in a distributed winding rotary electric machine, in the case of a three-phase winding, the magnetic flux is shared by three to six teeth per magnetic pole, but the magnetic flux tends to concentrate on the teeth in the circumferential direction. The magnetic flux does not flow evenly over the three to six teeth. In this case, while the magnetic flux flows intensively through some (for example, one or two) teeth, the teeth that are magnetically saturated with the rotation of the rotor also move in the circumferential direction. This also causes slot ripple.
 以上から、DMが50mm以上となるスロットレス構造の回転電機において、磁気飽和を解消するために、ティースを廃止したい。しかし、ティースが廃止されると、回転子及び固定子における磁気回路の磁気抵抗が増加し、回転電機のトルクが低下してしまう。磁気抵抗増加の理由としては、例えば、回転子と固定子との間のエアギャップが大きくなることがある。このため、上述したDMが50mm以上となるスロットレス構造の回転電機において、トルクを増強することについて改善の余地がある。したがって、上述したDMが50mm以上となるスロットレス構造の回転電機に、上述したトルクを増強できる構成を適用するメリットが大きい。 From the above, we would like to abolish teeth in order to eliminate magnetic saturation in slotless rotating electric machines with DM of 50 mm or more. However, when the teeth are abolished, the magnetic resistance of the magnetic circuit in the rotor and the stator increases, and the torque of the rotating electric machine decreases. The reason for the increase in magnetic resistance is, for example, that the air gap between the rotor and the stator becomes large. Therefore, in the above-mentioned rotary electric machine having a slotless structure in which the DM is 50 mm or more, there is room for improvement in increasing the torque. Therefore, there is a great merit of applying the above-mentioned configuration capable of increasing torque to the rotary electric machine having a slotless structure in which the DM is 50 mm or more.
 なお、アウタロータ構造の回転電機に限らず、インナロータ構造の回転電機についても、磁石ユニットのうち径方向において電機子側の面と、回転子の軸心との径方向における距離DMが50mm以上とされていてもよい。 Not only the rotary electric machine having an outer rotor structure but also the rotary electric machine having an inner rotor structure has a distance DM of 50 mm or more in the radial direction between the surface of the magnet unit on the armature side and the axial center of the rotor. You may be.
 ・回転電機10の固定子巻線51において、導線82の直線部83を径方向に単層で設ける構成としてもよい。また、径方向内外に複数層で直線部83を配置する場合に、その層数は任意でよく、3層、4層、5層、6層等で設けてもよい。 -In the stator winding 51 of the rotary electric machine 10, the straight portion 83 of the conducting wire 82 may be provided in a single layer in the radial direction. Further, when the linear portion 83 is arranged in a plurality of layers inside and outside the radial direction, the number of layers may be arbitrary, and may be provided in three layers, four layers, five layers, six layers and the like.
 ・例えば図2の構成では、回転軸11を、軸方向で回転電機10の一端側及び他端側の両方に突出するように設けたが、これを変更し、一端側にのみ突出する構成としてもよい。この場合、回転軸11は、軸受ユニット20により片持ち支持される部分を端部とし、その軸方向外側に延びるように設けられるとよい。本構成では、インバータユニット60の内部に回転軸11が突出しない構成となるため、インバータユニット60の内部空間、詳しくは筒状部71の内部空間をより広く用いることができることとなる。 -For example, in the configuration of FIG. 2, the rotating shaft 11 is provided so as to project to both one end side and the other end side of the rotary electric machine 10 in the axial direction. May be good. In this case, the rotating shaft 11 may be provided so as to extend outward in the axial direction, with a portion that is cantilevered by the bearing unit 20 as an end portion. In this configuration, since the rotating shaft 11 does not protrude inside the inverter unit 60, the internal space of the inverter unit 60, specifically the internal space of the tubular portion 71, can be used more widely.
 ・上記構成の回転電機10では、軸受21,22において非導電性グリースを用いる構成としたが、これを変更し、軸受21,22において導電性グリースを用いる構成としてもよい。例えば、金属粒子やカーボン粒子等が含まれた導電性グリースを用いる構成とする。 -In the rotary electric machine 10 having the above configuration, the bearings 21 and 22 are configured to use non-conductive grease, but this may be changed to a configuration in which the bearings 21 and 22 use conductive grease. For example, a conductive grease containing metal particles, carbon particles, or the like is used.
 ・回転軸11を回転自在に支持する構成として、回転子40の軸方向一端側及び他端側の2カ所に軸受を設ける構成としてもよい。この場合、図1の構成で言えば、インバータユニット60を挟んで一端側及び他端側の2カ所に軸受が設けられるとよい。 -As a configuration for rotatably supporting the rotating shaft 11, bearings may be provided at two locations, one end side and the other end side in the axial direction of the rotor 40. In this case, in the configuration of FIG. 1, it is preferable that bearings are provided at two locations on one end side and the other end side of the inverter unit 60.
 ・上記構成の回転電機10では、回転子40において磁石ホルダ41の中間部45が内側肩部49aと感情の外側肩部49bを有する構成としたが、これらの肩部49a,49bを無くし、平坦な面を有する構成としてもよい。 In the rotary electric machine 10 having the above configuration, in the rotor 40, the intermediate portion 45 of the magnet holder 41 has an inner shoulder portion 49a and an emotional outer shoulder portion 49b. However, these shoulder portions 49a and 49b are eliminated and the rotor portion is flat. It may be configured to have various surfaces.
 ・上記構成の回転電機10では、固定子巻線51の導線82において導体82aを複数の素線86の集合体として構成したが、これを変更し、導線82として断面矩形状の角形導線を用いる構成としてもよい。また、導線82として断面円形状又は断面楕円状の丸形導線を用いる構成としてもよい。 In the rotary electric machine 10 having the above configuration, the conductor 82a is configured as an aggregate of a plurality of strands 86 in the conductor 82 of the stator winding 51, but this is changed and a square conductor having a rectangular cross section is used as the conductor 82. It may be configured. Further, as the conducting wire 82, a round conducting wire having a circular cross section or an elliptical cross section may be used.
 ・上記構成の回転電機10では、固定子50の径方向内側にインバータユニット60を設ける構成としたが、これに代えて、固定子50の径方向内側にインバータユニット60を設けない構成としてもよい。この場合、固定子50の径方向内側となる内部領域を空間としておくことが可能である。また、その内部領域に、インバータユニット60とは異なる部品を配することが可能である。 -In the rotary electric machine 10 having the above configuration, the inverter unit 60 is provided inside the stator 50 in the radial direction, but instead of this, the inverter unit 60 may not be provided inside the stator 50 in the radial direction. .. In this case, it is possible to set an internal region inside the stator 50 in the radial direction as a space. Further, it is possible to arrange parts different from the inverter unit 60 in the internal region.
 ・上記構成の回転電機10において、ハウジング30を具備しない構成としてもよい。この場合、例えばホイールや他の車両部品の一部において、回転子40、固定子50等が保持される構成であってもよい。 -The rotary electric machine 10 having the above configuration may not include the housing 30. In this case, for example, the rotor 40, the stator 50, and the like may be held in a part of the wheel or other vehicle parts.
 (車両用インホイールモータとしての実施形態)
 次に、回転電機を、車両の車輪に一体にインホイールモータとして設けた実施形態について説明する。図45は、インホイールモータ構造の車輪400及びその周辺構造を示す斜視図であり、図46は、車輪400及びその周辺構造の縦断面図であり、図47は、車輪400の分解斜視図である。これら各図は、いずれも車輪400を車両内側から見た斜視図である。なお、車両においては、本実施形態のインホイールモータ構造を種々の形態で適用することが可能であり、例えば車両前後にそれぞれ2つの車輪を有する車両では、車両前側の2輪、車両後側の2輪、又は車両前後の4輪に本実施形態のインホイールモータ構造を適用することが可能である。ただし、車両前後の少なくとも一方が1輪である車両への適用も可能である。なお、インホイールモータは、車両用駆動ユニットとしての適用例である。
(Embodiment as an in-wheel motor for a vehicle)
Next, an embodiment in which the rotary electric machine is provided integrally with the wheels of the vehicle as an in-wheel motor will be described. 45 is a perspective view showing the wheel 400 having an in-wheel motor structure and its peripheral structure, FIG. 46 is a vertical sectional view of the wheel 400 and its peripheral structure, and FIG. 47 is an exploded perspective view of the wheel 400. is there. Each of these figures is a perspective view of the wheel 400 as viewed from the inside of the vehicle. In the vehicle, the in-wheel motor structure of the present embodiment can be applied in various forms. For example, in a vehicle having two wheels in front of and behind the vehicle, two wheels on the front side of the vehicle and two wheels on the rear side of the vehicle. It is possible to apply the in-wheel motor structure of the present embodiment to two wheels or four wheels in front of and behind the vehicle. However, it can also be applied to a vehicle in which at least one of the front and rear of the vehicle is one wheel. The in-wheel motor is an application example as a vehicle drive unit.
 図45~図47に示すように、車輪400は、例えば周知の空気入りタイヤであるタイヤ401と、タイヤ401の内周側に固定されたホイール402と、ホイール402の内周側に固定された回転電機500とを備えている。回転電機500は、固定子(ステータ)を含む部分である固定部と、回転子(ロータ)を含む部分である回転部とを有し、固定部が車体側に固定されるとともに、回転部がホイール402に固定されており、回転部の回転によりタイヤ401及びホイール402が回転する。なお、回転電機500において固定部及び回転部を含む詳細な構成は後述する。 As shown in FIGS. 45 to 47, the wheel 400 is fixed to, for example, the tire 401, which is a well-known pneumatic tire, the wheel 402 fixed to the inner peripheral side of the tire 401, and the inner peripheral side of the wheel 402. It is equipped with a rotary electric machine 500. The rotary electric machine 500 has a fixed portion which is a portion including a stator (stator) and a rotating portion which is a portion including a rotor (rotor), and the fixed portion is fixed to the vehicle body side and the rotating portion is formed. It is fixed to the wheel 402, and the tire 401 and the wheel 402 rotate due to the rotation of the rotating portion. The detailed configuration of the rotary electric machine 500 including the fixed portion and the rotating portion will be described later.
 また、車輪400には、周辺装置として、不図示の車体に対して車輪400を保持するサスペンション装置と、車輪400の向きを可変とするステアリング装置と、車輪400の制動を行うブレーキ装置とが取り付けられている。 Further, as peripheral devices, a suspension device for holding the wheels 400 with respect to a vehicle body (not shown), a steering device for changing the direction of the wheels 400, and a braking device for braking the wheels 400 are attached to the wheels 400. Has been done.
 サスペンション装置は、独立懸架式サスペンションであり、例えばトレーリングアーム式、ストラット式、ウィッシュボーン式、マルチリンク式など任意の形式の適用が可能である。本実施形態では、サスペンション装置として、車体中央側に延びる向きでロアアーム411が設けられるとともに、上下方向に延びる向きでサスペンションアーム412及びスプリング413が設けられている。サスペンションアーム412は、例えばショックアブソーバとして構成されているとよい。ただしその詳細な図示は省略する。ロアアーム411及びサスペンションアーム412はそれぞれ、車体側に接続されるとともに、回転電機500の固定部に固定された円板状のベースプレート405に接続されている。図46に示すように、回転電機500側(ベースプレート405側)には、ロアアーム411及びサスペンションアーム412が支持軸414,415により互いに同軸の状態で支持されている。 The suspension device is an independent suspension type suspension, and any type such as trailing arm type, strut type, wishbone type, and multi-link type can be applied. In the present embodiment, as the suspension device, the lower arm 411 is provided so as to extend toward the center of the vehicle body, and the suspension arm 412 and the spring 413 are provided so as to extend in the vertical direction. The suspension arm 412 may be configured as, for example, a shock absorber. However, the detailed illustration is omitted. The lower arm 411 and the suspension arm 412 are each connected to the vehicle body side and to a disk-shaped base plate 405 fixed to a fixed portion of the rotary electric machine 500. As shown in FIG. 46, the lower arm 411 and the suspension arm 412 are supported on the rotary electric machine 500 side (base plate 405 side) by the support shafts 414 and 415 in a coaxial state with each other.
 また、ステアリング装置としては、例えばラック&ピニオン式構造、ボール&ナット式構造の適用や、油圧式パワーステアリングシステム、電動式パワーステアリングシステムの適用が可能である。本実施形態では、ステアリング装置として、ラック装置421とタイロッド422とが設けられており、ラック装置421がタイロッド422を介して回転電機500側のベースプレート405に接続されている。この場合、不図示のステアリングシャフトの回転に伴いラック装置421が作動すると、タイロッド422が車両左右方向に移動する。これにより、車輪400が、ロアアーム411及びサスペンションアーム412の支持軸414,415を中心として回転し、車輪方向が変更される。 Further, as the steering device, for example, a rack & pinion type structure, a ball & nut type structure, a hydraulic power steering system, and an electric power steering system can be applied. In the present embodiment, a rack device 421 and a tie rod 422 are provided as steering devices, and the rack device 421 is connected to the base plate 405 on the rotary electric machine 500 side via the tie rod 422. In this case, when the rack device 421 operates with the rotation of the steering shaft (not shown), the tie rod 422 moves in the left-right direction of the vehicle. As a result, the wheel 400 rotates around the support shafts 414 and 415 of the lower arm 411 and the suspension arm 412, and the wheel direction is changed.
 ブレーキ装置としては、ディスクブレーキやドラムブレーキの適用が好適である。本実施形態では、ブレーキ装置として、回転電機500の回転軸501に固定されたディスクロータ431と、回転電機500側のベースプレート405に固定されたブレーキキャリパ432とが設けられている。ブレーキキャリパ432ではブレーキパッドが油圧等により作動されるようになっており、ブレーキパッドがディスクロータ431に押し付けられることにより、摩擦による制動力を生じさせて車輪400の回転が停止される。 As a braking device, it is preferable to apply a disc brake or a drum brake. In the present embodiment, as the brake device, a disc rotor 431 fixed to the rotary shaft 501 of the rotary electric machine 500 and a brake caliper 432 fixed to the base plate 405 on the rotary electric machine 500 side are provided. In the brake caliper 432, the brake pads are operated by flood control or the like, and when the brake pads are pressed against the disc rotor 431, a braking force due to friction is generated and the rotation of the wheels 400 is stopped.
 また、車輪400には、回転電機500から延びる電気配線H1や冷却用配管H2を収容する収容ダクト440が取り付けられている。収容ダクト440は、回転電機500の固定部側の端部から回転電機500の端面に沿って延び、かつサスペンションアーム412を避けるように設けられ、その状態でサスペンションアーム412に固定されている。これにより、サスペンションアーム412における収容ダクト440の接続部位は、ベースプレート405との位置関係が固定されたものとなる。そのため、電気配線H1や冷却用配管H2において車両の振動などに起因して生じるストレスを抑制できるようになっている。なお、電気配線H1は、不図示の車載電源部や車載ECUに接続され、冷却用配管H2は、不図示のラジエータに接続される。 Further, the wheel 400 is attached with an accommodation duct 440 that accommodates the electric wiring H1 extending from the rotary electric machine 500 and the cooling pipe H2. The accommodating duct 440 extends from the end of the rotary electric machine 500 on the fixed portion side along the end surface of the rotary electric machine 500 and is provided so as to avoid the suspension arm 412, and is fixed to the suspension arm 412 in that state. As a result, the connection portion of the accommodation duct 440 in the suspension arm 412 has a fixed positional relationship with the base plate 405. Therefore, it is possible to suppress the stress caused by the vibration of the vehicle in the electric wiring H1 and the cooling pipe H2. The electrical wiring H1 is connected to an in-vehicle power supply unit and an in-vehicle ECU (not shown), and the cooling pipe H2 is connected to a radiator (not shown).
 次に、インホイールモータとして用いられる回転電機500の構成を詳細に説明する。本実施形態では、回転電機500をインホイールモータに適用した事例を示している。回転電機500は、従来技術のように減速機を擁した車両駆動ユニットのモータと比べて、優れた動作効率、出力を備える。すなわち、回転電機500を従来技術に比べて、コストダウンにより実用的な価格を実現できるような用途に採用すれば、車両駆動ユニット以外の用途のモータとしても使ってもよい。そのような場合であっても、インホイールモータに適用した場合と同様に、優れた性能を発揮する。なお、動作効率とは、車両の燃費を導出する走行モードでの試験時の際に使われる指標を指す。 Next, the configuration of the rotary electric machine 500 used as an in-wheel motor will be described in detail. In this embodiment, an example in which the rotary electric machine 500 is applied to an in-wheel motor is shown. The rotary electric machine 500 has excellent operating efficiency and output as compared with the motor of a vehicle drive unit having a speed reducer as in the prior art. That is, if the rotary electric machine 500 is adopted in an application in which a practical price can be realized by reducing the cost as compared with the conventional technology, it may be used as a motor for applications other than the vehicle drive unit. Even in such a case, the excellent performance is exhibited as in the case of applying it to an in-wheel motor. The operating efficiency refers to an index used during a test in a driving mode that derives the fuel efficiency of the vehicle.
 回転電機500の概要を図48~図51に示す。図48は、回転電機500を回転軸501の突出側(車両内側)から見た側面図であり、図49は、回転電機500の縦断面図(図48の49-49線断面図)であり、図50は、回転電機500の横断面図(図49の50-50線断面図)であり、図51は、回転電機500の構成要素を分解した分解断面図である。以下の記載では、回転軸501が、図51においては車体の外側方向に延びる方向を軸方向とし、回転軸501から放射状に延びる方向を径方向とし、図48においては回転軸501の中央、言い換えれば回転部分の回転中心、を通る断面49を作るために引いた中心線上の、回転部分の回転中心以外の任意の点より、円周状に延びる2つの方向をいずれも周方向としている。言い換えると、周方向は、断面49上の任意の点を起点とした時計回りの方向、又は反時計回りの方向のいずれの方向であってもよい。また、車両搭載状態からすれば、図49において右側が車両外側であり、左側が車両内側である。言い換えると、同車両搭載状態からすれば、後述する回転子510は、回転子カバー670よりも車体の外側方向に配置される。 The outline of the rotary electric machine 500 is shown in FIGS. 48 to 51. FIG. 48 is a side view of the rotary electric machine 500 as viewed from the protruding side (inside the vehicle) of the rotary shaft 501, and FIG. 49 is a vertical sectional view of the rotary electric machine 500 (cross-sectional view taken along lines 49-49 of FIG. 48). 50 is a cross-sectional view of the rotary electric machine 500 (a cross-sectional view taken along the line 50-50 of FIG. 49), and FIG. 51 is an exploded cross-sectional view of the components of the rotary electric machine 500. In the following description, in FIG. 51, the direction in which the rotating shaft 501 extends outward of the vehicle body is the axial direction, the direction extending radially from the rotating shaft 501 is the radial direction, and in FIG. 48, the center of the rotating shaft 501, in other words. For example, the circumferential direction is defined as two directions extending in a circumferential shape from an arbitrary point other than the rotation center of the rotating portion on the center line drawn to form a cross section 49 passing through the rotation center of the rotating portion. In other words, the circumferential direction may be either a clockwise direction starting from an arbitrary point on the cross section 49 or a counterclockwise direction. Further, from the vehicle-mounted state, the right side is the outside of the vehicle and the left side is the inside of the vehicle in FIG. 49. In other words, from the vehicle-mounted state, the rotor 510, which will be described later, is arranged in the outer direction of the vehicle body with respect to the rotor cover 670.
 本実施形態に係る回転電機500は、アウタロータ式の表面磁石型回転電機である。回転電機500は、大別して、回転子510と、固定子520と、インバータユニット530と、軸受560と、回転子カバー670とを備えている。これら各部材は、いずれも回転子510に一体に設けられた回転軸501に対して同軸に配置され、所定順序で軸方向に組み付けられることで回転電機500が構成されている。 The rotary electric machine 500 according to the present embodiment is an outer rotor type surface magnet type rotary electric machine. The rotary electric machine 500 is roughly classified into a rotor 510, a stator 520, an inverter unit 530, a bearing 560, and a rotor cover 670. Each of these members is arranged coaxially with respect to the rotating shaft 501 integrally provided on the rotor 510, and is assembled in the axial direction in a predetermined order to form the rotating electric machine 500.
 回転電機500において、回転子510及び固定子520はそれぞれ円筒状をなしており、エアギャップを挟んで互いに対向配置されている。回転子510が回転軸501と共に一体回転することにより、固定子520の径方向外側にて回転子510が回転する。回転子510が「界磁子」に相当し、固定子520が「電機子」に相当する。 In the rotary electric machine 500, the rotor 510 and the stator 520 each have a cylindrical shape, and are arranged so as to face each other with an air gap in between. As the rotor 510 rotates integrally with the rotation shaft 501, the rotor 510 rotates on the radial outer side of the stator 520. The rotor 510 corresponds to the "field magnet" and the stator 520 corresponds to the "armature".
 回転子510は、略円筒状の回転子キャリア511と、その回転子キャリア511に固定された環状の磁石ユニット512とを有している。回転子キャリア511に回転軸501が固定されている。 The rotor 510 has a substantially cylindrical rotor carrier 511 and an annular magnet unit 512 fixed to the rotor carrier 511. The rotation shaft 501 is fixed to the rotor carrier 511.
 回転子キャリア511は、円筒部513を有している。円筒部513の内周面には磁石ユニット512が固定されている。つまり、磁石ユニット512は、回転子キャリア511の円筒部513に径方向外側から包囲された状態で設けられている。また、円筒部513は、その軸方向に対向する第1端と第2端とを有している。第1端は、車体の外側の方向に位置し、第2端は、ベースプレート405が存在する方向に位置する。回転子キャリア511において、円筒部513の第1端には端板514が連続して設けられている。すなわち円筒部513と端板514とは一体の構造である。円筒部513の第2端は開放されている。回転子キャリア511は、例えば機械強度が充分な冷間圧延鋼板(SPCCやSPCCより板厚が厚いSPHC)、鍛造用鋼、炭素繊維強化プラスチック(CFRP)などにより形成されている。 The rotor carrier 511 has a cylindrical portion 513. A magnet unit 512 is fixed to the inner peripheral surface of the cylindrical portion 513. That is, the magnet unit 512 is provided in a state of being surrounded by the cylindrical portion 513 of the rotor carrier 511 from the outside in the radial direction. Further, the cylindrical portion 513 has a first end and a second end facing each other in the axial direction thereof. The first end is located in the direction outside the vehicle body, and the second end is located in the direction in which the base plate 405 is present. In the rotor carrier 511, an end plate 514 is continuously provided at the first end of the cylindrical portion 513. That is, the cylindrical portion 513 and the end plate 514 have an integral structure. The second end of the cylindrical portion 513 is open. The rotor carrier 511 is formed of, for example, a cold-rolled steel plate having sufficient mechanical strength (SPCC or SPHC thicker than SPCC), forging steel, carbon fiber reinforced plastic (CFRP), or the like.
 回転軸501の軸長は、回転子キャリア511の軸方向の寸法よりも長い。言い換えると、回転軸501は、回転子キャリア511の開放端側(車両内側方向)に突出しており、その突出側の端部に、上述のブレーキ装置等が取り付けられるようになっている。 The axial length of the rotating shaft 501 is longer than the axial dimension of the rotor carrier 511. In other words, the rotating shaft 501 projects toward the open end side (inward direction of the vehicle) of the rotor carrier 511, and the above-mentioned brake device or the like is attached to the protruding end side.
 回転子キャリア511の端板514にはその中央部に貫通孔514aが形成されている。回転軸501は、端板514の貫通孔514aに挿通された状態で、回転子キャリア511に固定されている。回転軸501は、回転子キャリア511が固定される部分に、軸方向に交差(直交)する向きに延びるフランジ502を有しており、そのフランジと端板514の車両外側の面とが面接合されている状態で、回転子キャリア511に対して回転軸501が固定されている。なお、車輪400においては、回転軸501のフランジ502から車両外側方向に立設されたボルト等の締結具を用いてホイール402が固定されるようになっている。 A through hole 514a is formed in the central portion of the end plate 514 of the rotor carrier 511. The rotary shaft 501 is fixed to the rotor carrier 511 in a state of being inserted into the through hole 514a of the end plate 514. The rotating shaft 501 has a flange 502 extending in a direction intersecting (orthogonal) in the axial direction at a portion where the rotor carrier 511 is fixed, and the flange and the outer surface of the end plate 514 are surface-joined. In this state, the rotation shaft 501 is fixed to the rotor carrier 511. In the wheel 400, the wheel 402 is fixed by using a fastener such as a bolt erected from the flange 502 of the rotating shaft 501 toward the outside of the vehicle.
 また、磁石ユニット512は、回転子510の周方向に沿って極性が交互に変わるように配置された複数の永久磁石により構成されている。これにより、磁石ユニット512は、周方向に複数の磁極を有する。永久磁石は、例えば接着により回転子キャリア511に固定されている。磁石ユニット512は、第1実施形態の図8,図9において磁石ユニット42として説明した構成を有しており、永久磁石として、固有保磁力が400[kA/m]以上であり、かつ残留磁束密度Brが1.0[T]以上である焼結ネオジム磁石を用いて構成されている。 Further, the magnet unit 512 is composed of a plurality of permanent magnets arranged so that the polarities alternate along the circumferential direction of the rotor 510. As a result, the magnet unit 512 has a plurality of magnetic poles in the circumferential direction. The permanent magnet is fixed to the rotor carrier 511 by, for example, adhesion. The magnet unit 512 has the configuration described as the magnet unit 42 in FIGS. 8 and 9 of the first embodiment, and as a permanent magnet, has an intrinsic coercive force of 400 [kA / m] or more and a residual magnetic flux. It is constructed by using a sintered neodymium magnet having a density Br of 1.0 [T] or more.
 磁石ユニット512は、図9等の磁石ユニット42と同様に、それぞれ極異方性磁石でありかつ極性が互いに異なる第1磁石91及び第2磁石92を有している。図8及び図9で説明したように、各磁石91,92ではそれぞれ、d軸側(d軸寄りの部分)とq軸側(q軸寄りの部分)とで磁化容易軸の向きが相違しており、d軸側では磁化容易軸の向きがd軸に平行な方向に近い向きとなり、q軸側では磁化容易軸の向きがq軸に直交する方向に近い向きとなっている。そして、この磁化容易軸の向きに応じた配向により円弧状の磁石磁路が形成されている。なお、各磁石91,92において、d軸側では磁化容易軸をd軸に平行な向きとし、q軸側では磁化容易軸をq軸に直交する向きとしてもよい。要するに、磁石ユニット512は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされて構成されている。 Similar to the magnet unit 42 shown in FIG. 9, the magnet unit 512 has a first magnet 91 and a second magnet 92, which are polar anisotropic magnets and have different polarities. As described with reference to FIGS. 8 and 9, the directions of the easy magnetization axes of the magnets 91 and 92 differ between the d-axis side (the portion closer to the d-axis) and the q-axis side (the portion closer to the q-axis), respectively. On the d-axis side, the direction of the easy-magnetization axis is close to the direction parallel to the d-axis, and on the q-axis side, the direction of the easy-magnetization axis is close to the direction orthogonal to the q-axis. Then, an arcuate magnet magnetic path is formed by the orientation according to the direction of the easily magnetized axis. In each of the magnets 91 and 92, the easy magnetization axis may be oriented parallel to the d-axis on the d-axis side, and the easy-magnetization axis may be oriented orthogonal to the q-axis on the q-axis side. In short, the magnet unit 512 is configured so that the direction of the easy magnetization axis is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, as compared with the q-axis side, which is the magnetic pole boundary. ..
 各磁石91,92によれば、d軸での磁石磁束が強化され、かつq軸付近での磁束変化が抑えられる。これにより、各磁極においてq軸からd軸にかけての表面磁束変化がなだらかになる磁石91,92を好適に実現できるものとなっている。磁石ユニット512として、図22及び図23に示す磁石ユニット42の構成や、図30に示す磁石ユニット42の構成を用いることも可能である。 According to the magnets 91 and 92, the magnetic flux on the d-axis is strengthened and the change in magnetic flux near the q-axis is suppressed. As a result, magnets 91 and 92 in which the change in surface magnetic flux from the q-axis to the d-axis at each magnetic pole is gentle can be preferably realized. As the magnet unit 512, the configuration of the magnet unit 42 shown in FIGS. 22 and 23 and the configuration of the magnet unit 42 shown in FIG. 30 can also be used.
 なお、磁石ユニット512は、回転子キャリア511の円筒部513の側、すなわち外周面側に、複数の電磁鋼板が軸方向に積層されて構成された回転子コア(バックヨーク)を有していてもよい。つまり、回転子キャリア511の円筒部513の径方向内側に回転子コアを設けるとともに、その回転子コアの径方向内側に永久磁石(磁石91,92)を設ける構成とすることも可能である。 The magnet unit 512 has a rotor core (back yoke) formed by laminating a plurality of electromagnetic steel sheets in the axial direction on the side of the cylindrical portion 513 of the rotor carrier 511, that is, on the outer peripheral surface side. May be good. That is, it is also possible to provide the rotor core on the radial inside of the cylindrical portion 513 of the rotor carrier 511 and to provide the permanent magnets (magnets 91, 92) on the radial inside of the rotor core.
 図47に示すように、回転子キャリア511の円筒部513には、周方向の所定間隔にて、軸方向に延びる向きで凹部513aが形成されている。この凹部513aは例えばプレス加工により形成されており、図52に示すように、円筒部513の内周面側には、凹部513aの裏側となる位置に凸部513bが形成されている。一方、磁石ユニット512の外周面側には、円筒部513の凸部513bに合わせて凹部512aが形成されており、その凹部512a内に円筒部513の凸部513bが入り込むことで、磁石ユニット512の周方向の位置ずれが抑制されるようになっている。つまり、回転子キャリア511側の凸部513bは、磁石ユニット512の回り止め部として機能する。なお、凸部513bの形成方法は、プレス加工以外であってもよく任意である。 As shown in FIG. 47, the cylindrical portion 513 of the rotor carrier 511 is formed with recesses 513a in a direction extending in the axial direction at predetermined intervals in the circumferential direction. The concave portion 513a is formed by, for example, press working, and as shown in FIG. 52, a convex portion 513b is formed on the inner peripheral surface side of the cylindrical portion 513 at a position on the back side of the concave portion 513a. On the other hand, on the outer peripheral surface side of the magnet unit 512, a concave portion 512a is formed in accordance with the convex portion 513b of the cylindrical portion 513, and the convex portion 513b of the cylindrical portion 513 enters the concave portion 512a, whereby the magnet unit 512 The displacement in the circumferential direction of the magnet is suppressed. That is, the convex portion 513b on the rotor carrier 511 side functions as a detent portion of the magnet unit 512. The method of forming the convex portion 513b may be any method other than press working.
 図52には、磁石ユニット512における磁石磁路の方向が矢印により示されている。磁石磁路は、磁極境界であるq軸を跨ぐようにして円弧状に延び、かつ磁極中心であるd軸では、d軸に平行又は平行に近い向きとなっている。磁石ユニット512には、その内周面側に、q軸に相当する位置ごとに凹部512bが形成されている。この場合、磁石ユニット512では、固定子520に近い側(図の下側)と遠い側(図の上側)とで磁石磁路の長さが異なり、固定子520に近い側の方が磁石磁路長が短くなっており、その磁石磁路長が最短となる位置に凹部512bが形成されている。つまり、磁石ユニット512では磁石磁路長が短い場所において十分な磁石磁束を生じさせることが困難になることを考慮して、その磁石磁束の弱い場所で磁石を削除するようにしている。 In FIG. 52, the direction of the magnetic path of the magnet in the magnet unit 512 is indicated by an arrow. The magnet magnetic path extends in an arc shape so as to straddle the q-axis which is the magnetic pole boundary, and the d-axis which is the center of the magnetic pole is in a direction parallel to or close to parallel to the d-axis. The magnet unit 512 is formed with recesses 512b at positions corresponding to the q-axis on the inner peripheral surface side thereof. In this case, in the magnet unit 512, the length of the magnet magnetic path differs between the side closer to the stator 520 (lower side in the figure) and the side farther from the stator 520 (upper side in the figure), and the side closer to the stator 520 is magnetized. The path length is shortened, and the recess 512b is formed at a position where the magnetic path length is the shortest. That is, in consideration of the fact that it is difficult for the magnet unit 512 to generate a sufficient magnet magnetic flux in a place where the magnet magnetic path length is short, the magnet is deleted in a place where the magnet magnetic flux is weak.
 ここで、磁石の実効磁束密度Bdは、磁石内部を通る磁気回路の長さが長いほど高くなる。また、パーミアンス係数Pcと磁石の実効磁束密度Bdとは、そのうち一方が高くなると他方が高くなる関係にある。上記図52の構成によれば、磁石の実効磁束密度Bdの高さの指標となるパーミアンス係数Pcの低下を抑制しつつ、磁石量の削減を図ることができる。なお、B-H座標において、磁石の形状に応じたパーミアンス直線と減磁曲線との交点が動作点であり、その動作点の磁束密度が磁石の実効磁束密度Bdである。本実施形態の回転電機500では、固定子520の鉄量を少なくした構成としており、かかる構成においてq軸を跨いだ磁気回路を設定する手法は極めて有効である。 Here, the effective magnetic flux density Bd of the magnet increases as the length of the magnetic circuit passing through the inside of the magnet becomes longer. Further, the permeance coefficient Pc and the effective magnetic flux density Bd of the magnet are in a relationship that the higher one is, the higher the other is. According to the configuration of FIG. 52, the amount of magnets can be reduced while suppressing a decrease in the permeance coefficient Pc, which is an index of the height of the effective magnetic flux density Bd of the magnet. In the BH coordinates, the intersection of the permeance straight line and the demagnetization curve according to the shape of the magnet is the operating point, and the magnetic flux density at the operating point is the effective magnetic flux density Bd of the magnet. The rotary electric machine 500 of the present embodiment has a configuration in which the amount of iron in the stator 520 is reduced, and in such a configuration, a method of setting a magnetic circuit straddling the q-axis is extremely effective.
 また、磁石ユニット512の凹部512bは、軸方向に延びる空気通路として用いることができる。そのため、空冷性能を高めることも可能となる。 Further, the recess 512b of the magnet unit 512 can be used as an air passage extending in the axial direction. Therefore, it is possible to improve the air cooling performance.
 次に、固定子520の構成を説明する。固定子520は、固定子巻線521と固定子コア522とを有している。図53は、固定子巻線521と固定子コア522とを分解して示す斜視図である。 Next, the configuration of the stator 520 will be described. The stator 520 has a stator winding 521 and a stator core 522. FIG. 53 is a perspective view showing the stator winding 521 and the stator core 522 in an exploded manner.
 固定子巻線521は、略筒状(環状)に巻回形成された複数の相巻線よりなり、その固定子巻線521の径方向内側にベース部材としての固定子コア522が組み付けられている。本実施形態では、U相、V相及びW相の相巻線を用いることで、固定子巻線521が3相の相巻線として構成されている。各相巻線は、径方向に内外2層の導線523により構成されている。固定子520は、既述の固定子50と同様に、スロットレス構造と固定子巻線521の扁平導線構造とを有することを特徴としており、図8~図16に示された固定子50と同様又は類似の構成を有している。 The stator winding 521 is composed of a plurality of phase windings formed by winding in a substantially tubular shape (annular shape), and a stator core 522 as a base member is assembled inside the stator winding 521 in the radial direction. There is. In the present embodiment, the stator winding 521 is configured as a three-phase phase winding by using U-phase, V-phase, and W-phase phase windings. Each phase winding is composed of two inner and outer layers of conducting wires 523 in the radial direction. The stator 520 is characterized by having a slotless structure and a flat conductor structure of the stator winding 521, similarly to the stator 50 described above, with the stator 50 shown in FIGS. 8 to 16. It has a similar or similar configuration.
 固定子コア522の構成について説明する。固定子コア522は、既述の固定子コア52と同様に、軸方向に複数の電磁鋼板が積層され、かつ径方向に所定の厚さを有する円筒状をなしており、固定子コア522において回転子510側となる径方向外側に固定子巻線521が組み付けられている。固定子コア522の外周面は凹凸のない曲面状をなしており、固定子巻線521が組み付けられた状態では、固定子コア522の外周面に、固定子巻線521を構成する導線523が周方向に並べて配置されている。固定子コア522はバックコアとして機能する。 The configuration of the stator core 522 will be described. Similar to the stator core 52 described above, the stator core 522 has a cylindrical shape in which a plurality of electromagnetic steel sheets are laminated in the axial direction and has a predetermined thickness in the radial direction. The stator winding 521 is assembled on the outer side in the radial direction on the rotor 510 side. The outer peripheral surface of the stator core 522 has a curved shape without unevenness, and when the stator winding 521 is assembled, the conductor 523 constituting the stator winding 521 is attached to the outer peripheral surface of the stator core 522. They are arranged side by side in the circumferential direction. The stator core 522 functions as a back core.
 固定子520は、以下の(A)~(C)のいずれかを用いたものであるとよい。
(A)固定子520において、周方向における各導線523の間に導線間部材を設け、かつその導線間部材として、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、1磁極における磁石ユニット512の周方向の幅寸法をWm、磁石ユニット512の残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いている。
(B)固定子520において、周方向における各導線523の間に導線間部材を設け、かつその導線間部材として、非磁性材料を用いている。
(C)固定子520において、周方向における各導線523の間に導線間部材を設けていない構成となっている。
The stator 520 may use any of the following (A) to (C).
(A) In the stator 520, a conductor-to-conductor member is provided between each conductor 523 in the circumferential direction, and as the conductor-to-conductor member, the width dimension of the conductor-to-conductor member in one magnetic pole in the circumferential direction is Wt, and the conductor-to-conductor member is saturated. When the magnetic flux density is Bs, the width dimension of the magnet unit 512 at one magnetic pole in the circumferential direction is Wm, and the residual magnetic flux density of the magnet unit 512 is Br, a magnetic material having a relationship of Wt × Bs ≦ Wm × Br is used. There is.
(B) In the stator 520, a conductor-to-conductor member is provided between each conductor 523 in the circumferential direction, and a non-magnetic material is used as the conductor-to-conductor member.
(C) The stator 520 has a configuration in which no interconductor member is provided between the conductors 523 in the circumferential direction.
 こうした固定子520の構成によれば、固定子巻線としての各導線部の間に磁気経路を確立するためのティース(鉄心)が設けられる一般的なティース構造の回転電機に比べて、インダクタンスが低減される。具体的には、インダクタンスを1/10以下にすることが可能となっている。この場合、インダクタンスの低下に伴いインピーダンスが低下することから、回転電機500において入力電力に対する出力電力を大きくし、ひいてはトルク増加に貢献できるものとなっている。また、インピーダンス成分の電圧を利用してトルク出力を行う(言い換えればリラクタンストルクを利用する)埋込み磁石型回転子を用いた回転電機に比べて、大出力の回転電機を提供することが可能となっている。 According to such a configuration of the stator 520, the inductance is higher than that of a rotating electric machine having a general teeth structure in which a tooth (iron core) for establishing a magnetic path is provided between each conducting portion as a stator winding. It will be reduced. Specifically, the inductance can be reduced to 1/10 or less. In this case, since the impedance decreases as the inductance decreases, the output power with respect to the input power of the rotary electric machine 500 can be increased, which in turn can contribute to the increase in torque. In addition, it is possible to provide a rotary electric machine with a higher output than a rotary electric machine using an embedded magnet type rotor that outputs torque using the voltage of the impedance component (in other words, uses reluctance torque). ing.
 本実施形態では、固定子巻線521が、固定子コア522と共に樹脂等からなるモールド材(絶縁部材)により一体にモールドされており、周方向に並ぶ各導線523の間には、モールド材が介在する構成となっている。かかる構成からすると、本実施形態の固定子520は、上記(A)~(C)のうち(B)の構成に相当する。また、周方向に隣り合う各導線523は、周方向の端面同士が互いに当接するか、又は微小な間隔を隔てて近接配置されており、この構成から言えば上記(C)の構成であってもよい。なお、上記(A)の構成を採用する場合には、軸方向における導線523の向きに合わせて、すなわち例えばスキュー構造の固定子巻線521であればスキュー角度に合わせて、固定子コア522の外周面に突部が設けられているとよい。 In the present embodiment, the stator winding 521 is integrally molded together with the stator core 522 by a molding material (insulating member) made of resin or the like, and the molding material is formed between the conducting wires 523 arranged in the circumferential direction. It has an intervening configuration. Based on such a configuration, the stator 520 of the present embodiment corresponds to the configuration of (B) among the above (A) to (C). Further, the conductor wires 523 adjacent to each other in the circumferential direction are in contact with each other in the circumferential direction, or are arranged close to each other at a minute interval. May be good. When the configuration (A) is adopted, the stator core 522 is aligned with the direction of the conducting wire 523 in the axial direction, that is, according to the skew angle of the stator winding 521 having a skew structure, for example. It is preferable that a protrusion is provided on the outer peripheral surface.
 次に、固定子巻線521の構成を、図54を用いて説明する。図54は、固定子巻線521を平面状に展開して示す正面図であり、図54(a)には径方向において外層に位置する各導線523を示し、図54(b)には径方向において内層に位置する各導線523を示す。 Next, the configuration of the stator winding 521 will be described with reference to FIG. 54. FIG. 54 is a front view showing the stator winding 521 developed in a plane, FIG. 54 (a) shows each conducting wire 523 located in the outer layer in the radial direction, and FIG. 54 (b) shows the diameter. Each conductor 523 located in the inner layer in the direction is shown.
 固定子巻線521は、分布巻きにより円環状に巻回形成されている。固定子巻線521では、径方向内外2層に導線材が巻回され、かつ内層側及び外層側の各導線523にて互いに異なる方向へのスキューが施されている(図54(a)、図54(b)参照)。各導線523は、それぞれ相互に絶縁されている。導線523は、複数の素線86の集合体として構成されているとよい(図13参照)。また、同相でかつ通電方向を同じとする導線523が、周方向に例えば2本ずつ並べて設けられている。固定子巻線521では、径方向に2層かつ周方向に2本(すなわち計4本)の各導線523により同相の1つの導線部が構成され、その導線部が1磁極内で1つずつ設けられている。 The stator winding 521 is wound in an annular shape by distributed winding. In the stator winding 521, the conductor material is wound around the inner and outer two layers in the radial direction, and the conductors 523 on the inner layer side and the outer layer side are skewed in different directions (FIG. 54 (a), FIG. See FIG. 54 (b)). Each conductor 523 is isolated from each other. The conductor 523 may be configured as an aggregate of a plurality of strands 86 (see FIG. 13). Further, for example, two conducting wires 523 having the same phase and the same energizing direction are provided side by side in the circumferential direction. In the stator winding 521, one conductor portion having the same phase is formed by each conductor 523 having two layers in the radial direction and two conductors in the circumferential direction (that is, a total of four conductors), and the conductor portions are one by one in one magnetic pole. It is provided.
 導線部では、その径方向の厚さ寸法を、1磁極内における1相分の周方向の幅寸法よりも小さいものとし、これにより固定子巻線521を扁平導線構造とすることが望ましい。具体的には,例えば、固定子巻線521において、径方向に2層かつ周方向に4本(すなわち計8本)の各導線523により同相の1つの導線部を構成するとよい。又は、図50に示す固定子巻線521の導線断面において、周方向の幅寸法が径方向の厚さ寸法よりも大きくなっているとよい。固定子巻線521として、図12に示す固定子巻線51を用いることも可能である。ただしこの場合には、回転子キャリア511内に固定子巻線のコイルエンドを収容するスペースを確保する必要がある。 It is desirable that the thickness dimension of the conductor portion in the radial direction be smaller than the width dimension in the circumferential direction of one phase in one magnetic pole, whereby the stator winding 521 has a flat conductor structure. Specifically, for example, in the stator winding 521, one conductor portion having two layers in the radial direction and four conductors 523 in the circumferential direction (that is, a total of eight conductors) may form one conductor portion having the same phase. Alternatively, in the conductor cross section of the stator winding 521 shown in FIG. 50, the width dimension in the circumferential direction may be larger than the thickness dimension in the radial direction. As the stator winding 521, the stator winding 51 shown in FIG. 12 can also be used. However, in this case, it is necessary to secure a space in the rotor carrier 511 for accommodating the coil end of the stator winding.
 固定子巻線521では、固定子コア522に対して径方向内外に重なるコイルサイド525において所定角度で傾斜させて導線523が周方向に並べて配置されるとともに、固定子コア522よりも軸方向外側となる両側のコイルエンド526において軸方向内側への反転(折り返し)が行われて連続結線がなされている。図54(a)には、コイルサイド525となる範囲とコイルエンド526となる範囲とがそれぞれ示されている。内層側の導線523と外層側の導線523とはコイルエンド526にて互いに接続されており、これにより、コイルエンド526で導線523が軸方向に反転される都度(折り返される都度)、導線523が内層側と外層側とで交互に切り替わるようになっている。要するに、固定子巻線521では、周方向に連続する各導線523において、電流の向きが反転するのに合わせて内外層の切り替えが行われる構成となっている。 In the stator winding 521, the conductor wires 523 are arranged side by side in the circumferential direction at a coil side 525 that overlaps the stator core 522 in the radial direction at a predetermined angle, and are axially outside the stator core 522. The coil ends 526 on both sides are inverted (folded back) inward in the axial direction to form a continuous connection. FIG. 54A shows a range of the coil side 525 and a range of the coil end 526, respectively. The conductor 523 on the inner layer side and the conductor 523 on the outer layer side are connected to each other at the coil end 526, so that the conductor 523 is rotated at the coil end 526 each time the conductor 523 is inverted in the axial direction (each time it is folded back). The inner layer side and the outer layer side are switched alternately. In short, the stator winding 521 has a configuration in which the inner and outer layers are switched in accordance with the reversal of the direction of the current in each of the conducting wires 523 that are continuous in the circumferential direction.
 また、固定子巻線521では、軸方向の両端となる端部領域と、その端部領域に挟まれた中央領域とでスキュー角度が異なる2種類のスキューが施されている。すなわち、図55に示すように、導線523において、中央領域のスキュー角度θs1と端部領域のスキュー角度θs2とが異なっており、スキュー角度θs1がスキュー角度θs2よりも小さくなる構成となっている。軸方向において、端部領域は、コイルサイド525を含む範囲で定められている。スキュー角度θs1,スキュー角度θs2は、軸方向に対して各導線523が傾斜している傾斜角度である。中央領域のスキュー角度θs1は、固定子巻線521の通電により生じる磁束の高調波成分を削減するのに適正な角度範囲で定められているとよい。 Further, in the stator winding 521, two types of skews are applied in which the skew angles are different between the end region which is both ends in the axial direction and the central region sandwiched between the end regions. That is, as shown in FIG. 55, in the conducting wire 523, the skew angle θs1 in the central region and the skew angle θs2 in the end region are different, and the skew angle θs1 is smaller than the skew angle θs2. In the axial direction, the end region is defined to include the coil side 525. The skew angle θs1 and the skew angle θs2 are inclination angles at which each conducting wire 523 is inclined with respect to the axial direction. The skew angle θs1 in the central region may be set in an angle range appropriate for reducing the harmonic component of the magnetic flux generated by the energization of the stator winding 521.
 固定子巻線521における各導線523のスキュー角度を中央領域と端部領域とで相違させ、中央領域のスキュー角度θs1を端部領域のスキュー角度θs2よりも小さくすることで、コイルエンド526の縮小を図りつつも、固定子巻線521の巻線係数を大きくすることができる。言い換えれば、所望の巻線係数を確保しつつも、コイルエンド526の長さ、すなわち固定子コア522から軸方向にはみ出た部分の導線長を短くすることができる。これにより、回転電機500の小型化を図りつつ、トルク向上を実現することができる。 The coil end 526 is reduced by making the skew angle of each conductor 523 in the stator winding 521 different between the central region and the end region and making the skew angle θs1 in the central region smaller than the skew angle θs2 in the end region. However, the winding coefficient of the stator winding 521 can be increased. In other words, the length of the coil end 526, that is, the conductor length of the portion protruding in the axial direction from the stator core 522 can be shortened while ensuring a desired winding coefficient. As a result, it is possible to improve the torque while reducing the size of the rotary electric machine 500.
 ここで、中央領域のスキュー角度θs1としての適正範囲を説明する。固定子巻線521において1磁極内に導線523がX本配置されている場合には、固定子巻線521の通電によりX次の高調波成分が生じることが考えられる。相数をS、対数をmとする場合、X=2×S×mである。本願開示者は、X次の高調波成分が、X-1次の高調波成分とX+1次の高調波成分との合成波を構成する成分であるため、X-1次の高調波成分又はX+1次の高調波成分の少なくともいずれかを低減することにより、X次の高調波成分を低減できることに着目した。この着目を踏まえ、本願開示者は、電気角で「360°/(X+1)~360°/(X-1)」の角度範囲内にスキュー角度θs1を設定することにより、X次の高調波成分を低減できることを見出した。 Here, an appropriate range as the skew angle θs1 in the central region will be described. When X conductor wires 523 are arranged in one magnetic pole in the stator winding 521, it is conceivable that the Xth harmonic component is generated by energization of the stator winding 521. When the number of phases is S and the logarithm is m, X = 2 × S × m. According to the disclosure of the present application, since the Xth-order harmonic component is a component that constitutes a composite wave of the X-1st-order harmonic component and the X + 1st-order harmonic component, the X-1st-order harmonic component or the X + 1 It was noted that the Xth harmonic component can be reduced by reducing at least one of the following harmonic components. Based on this focus, the discloser of the present application sets the skew angle θs1 within the angle range of “360 ° / (X + 1) to 360 ° / (X-1)” in terms of the electric angle, thereby setting the X-th order harmonic component. It was found that can be reduced.
 例えばS=3、m=2である場合、X=12次の高調波成分を低減すべく、「360°/13~360°/11」の角度範囲内にスキュー角度θs1を設定する。つまり、スキュー角度θs1は、27.7°~32.7°の範囲内の角度で設定されるとよい。 For example, when S = 3 and m = 2, the skew angle θs1 is set within the angle range of “360 ° / 13 to 360 ° / 11” in order to reduce the harmonic component of the X = 12th order. That is, the skew angle θs1 is preferably set at an angle within the range of 27.7 ° to 32.7 °.
 中央領域のスキュー角度θs1が上記のように設定されることにより、その中央領域において、NS交互の磁石磁束を積極的に鎖交させることができ、固定子巻線521の巻線係数を高くすることができる。 By setting the skew angle θs1 in the central region as described above, the magnet magnetic fluxes alternating with NS can be positively interlocked in the central region, and the winding coefficient of the stator winding 521 is increased. be able to.
 端部領域のスキュー角度θs2は、上述した中央領域のスキュー角度θs1よりも大きい角度である。この場合、スキュー角度θs2の角度範囲は、「θs1<θs2<90°」である。 The skew angle θs2 in the end region is larger than the skew angle θs1 in the central region described above. In this case, the angle range of the skew angle θs2 is “θs1 <θs2 <90 °”.
 また、固定子巻線521において、内層側の導線523と外層側の導線523とは、各導線523の端部どうしの溶接や接着により繋げられているか、又は折り曲げにより繋げられているとよい。固定子巻線521では、軸方向両側の各コイルエンド526のうち一方側(すなわち軸方向一端側)にて各相巻線の端部が電力変換器(インバータ)にバスバー等を介して電気的に接続される構成となっている。そのためここでは、バスバー接続側のコイルエンド526とその反対側のコイルエンド526とを区別しつつ、コイルエンド526において各導線同士が繋げられている構成を説明する。 Further, in the stator winding 521, the conductor 523 on the inner layer side and the conductor 523 on the outer layer side may be connected by welding or adhesion between the ends of the conductors 523, or may be connected by bending. In the stator winding 521, the end of each phase winding is electrically connected to a power converter (inverter) via a bus bar or the like on one side (that is, one end side in the axial direction) of each coil end 526 on both sides in the axial direction. It is configured to be connected to. Therefore, here, the configuration in which the conductors are connected to each other at the coil end 526 will be described while distinguishing between the coil end 526 on the bus bar connection side and the coil end 526 on the opposite side.
 第1の構成としては、バスバー接続側のコイルエンド526において各導線523を溶接にて繋げるとともに、その反対側のコイルエンド526において各導線523を溶接以外の手段にて繋げる構成とする。溶接以外の手段とは、例えば導線材の折り曲げによる繋ぎが考えられる。バスバー接続側のコイルエンド526では、各相巻線の端部にバスバーが溶接にて接続されることが想定される。そのため、それと同じコイルエンド526において各導線523を溶接にて繋げる構成とすることで、各溶接部を一連の工程で行わせることができ、作業効率の向上を図ることができる。 The first configuration is such that each conductor 523 is connected by welding at the coil end 526 on the bus bar connection side, and each conductor 523 is connected by means other than welding at the coil end 526 on the opposite side. As a means other than welding, for example, a connection by bending a conducting wire material can be considered. At the coil end 526 on the bus bar connection side, it is assumed that the bus bar is connected by welding to the end of each phase winding. Therefore, by connecting each conducting wire 523 by welding at the same coil end 526, each welded portion can be performed in a series of steps, and work efficiency can be improved.
 第2の構成としては、バスバー接続側のコイルエンド526において各導線523を溶接以外の手段にて繋げるとともに、その反対側のコイルエンド526において各導線523を溶接にて繋げる構成とする。この場合、仮にバスバー接続側のコイルエンド526において各導線523を溶接にて繋げる構成であると、その溶接部とバスバーとの接触を避けるべく、バスバーとコイルエンド526との間の離間距離を十分に取る必要が生じるが、本構成とすることで、バスバーとコイルエンド526との間の離間距離を小さくすることができる。これにより、軸方向における固定子巻線521の長さ又はバスバーに関する規制を緩めることができる。 The second configuration is such that each conductor 523 is connected by means other than welding at the coil end 526 on the bus bar connection side, and each conductor 523 is connected by welding at the coil end 526 on the opposite side. In this case, if each conductor 523 is connected by welding at the coil end 526 on the bus bar connection side, the separation distance between the bus bar and the coil end 526 is sufficient to avoid contact between the welded portion and the bus bar. However, with this configuration, the separation distance between the bus bar and the coil end 526 can be reduced. Thereby, the regulation regarding the length of the stator winding 521 in the axial direction or the bus bar can be relaxed.
 第3の構成としては、軸方向両側のコイルエンド526において各導線523を溶接にて繋げる構成とする。この場合、溶接前に用意する導線材はいずれも短い線長のものでよく、曲げ工程の削減による作業効率の向上を図ることができる。 The third configuration is such that each conductor 523 is connected by welding at the coil ends 526 on both sides in the axial direction. In this case, all of the conductors prepared before welding may have a short wire length, and the work efficiency can be improved by reducing the bending process.
 第4の構成としては、軸方向両側のコイルエンド526において各導線523を溶接以外の手段にて繋げる構成とする。この場合、固定子巻線521において溶接が行われる部位を極力減らすことができ、溶接工程での絶縁剥離が生じることの懸念を低減できる。 As the fourth configuration, each conductor 523 is connected at the coil ends 526 on both sides in the axial direction by means other than welding. In this case, the portion of the stator winding 521 to be welded can be reduced as much as possible, and the concern that insulation peeling may occur in the welding process can be reduced.
 また、円環状の固定子巻線521を製作する工程において、平面状に整列された帯状巻線を製作し、その後にその帯状巻線を環状に成形するとよい。この場合、平面状の帯状巻線となっている状態で、必要に応じてコイルエンド526での導線同士の溶接を行うとよい。平面状の帯状巻線を環状に成形する際には、固定子コア522と同径の円柱治具を用いてその円柱治具に巻き付けるようにして帯状巻線を環状に成形するとよい。又は、帯状巻線を固定子コア522に直接巻き付けるようにしてよい。 Further, in the process of manufacturing the annular stator winding 521, it is preferable to manufacture the strip-shaped windings arranged in a plane shape, and then to form the strip-shaped windings in an annular shape. In this case, it is preferable to weld the conductors at the coil end 526 in a state where the winding is a flat strip. When forming a flat band-shaped winding in an annular shape, it is preferable to use a cylindrical jig having the same diameter as the stator core 522 and wind the strip-shaped winding around the cylindrical jig to form the band-shaped winding in an annular shape. Alternatively, the strip winding may be wound directly around the stator core 522.
 なお、固定子巻線521の構成を以下のように変更することも可能である。 It is also possible to change the configuration of the stator winding 521 as follows.
 例えば、図54(a),(b)に示す固定子巻線521において、中央領域及び端部領域のスキュー角度を同一とする構成であってもよい。 For example, in the stator winding 521 shown in FIGS. 54 (a) and 54 (b), the skew angles of the central region and the end region may be the same.
 また、図54(a),(b)に示す固定子巻線521において、周方向に隣り合う同相の導線523の端部同士を、軸方向に直交する向きに延びる渡り線部により接続する構成であってもよい。 Further, in the stator windings 521 shown in FIGS. 54 (a) and 54 (b), the ends of the in-phase conducting wires 523 adjacent to each other in the circumferential direction are connected by a crossover portion extending in a direction orthogonal to the axial direction. It may be.
 固定子巻線521の層数は、2×n層(nは自然数)であればよく、固定子巻線521を、2層以外に4層、6層等にすることも可能である。 The number of layers of the stator winding 521 may be 2 × n layers (n is a natural number), and the stator winding 521 can be made into 4 layers, 6 layers, or the like in addition to the 2 layers.
 次に、電力変換ユニットであるインバータユニット530について説明する。ここでは、インバータユニット530の分解断面図である図56及び図57を併せ用いて、インバータユニット530の構成を説明する。なお、図57では、図56に示す各部材を2つのサブアセンブリとして示している。 Next, the inverter unit 530, which is a power conversion unit, will be described. Here, the configuration of the inverter unit 530 will be described with reference to FIGS. 56 and 57, which are exploded sectional views of the inverter unit 530. In FIG. 57, each member shown in FIG. 56 is shown as two subassemblies.
 インバータユニット530は、インバータハウジング531と、そのインバータハウジング531に組み付けられる複数の電気モジュール532と、それら各電気モジュール532を電気的に接続するバスバーモジュール533とを有している。 The inverter unit 530 has an inverter housing 531, a plurality of electric modules 532 assembled to the inverter housing 531 and a bus bar module 533 for electrically connecting each of the electric modules 532.
 インバータハウジング531は、円筒状をなす外壁部材541と、外周径が外壁部材541よりも小径の円筒状をなし、外壁部材541の径方向内側に配置される内壁部材542と、内壁部材542の軸方向一端側に固定されるボス形成部材543とを有している。これら各部材541~543は、導電性材料により構成されているとよく、例えば炭素繊維強化プラスチック(CFRP)により構成されている。インバータハウジング531は、外壁部材541と内壁部材542とが径方向内外に重ねて組み合わされ、かつ内壁部材542の軸方向一端側にボス形成部材543が組み付けられることで構成されている。その組み付け状態が図57に示す状態である。 The inverter housing 531 has a cylindrical outer wall member 541, an inner wall member 542 having an outer peripheral diameter smaller than that of the outer wall member 541 and arranged inside the outer wall member 541 in the radial direction, and a shaft of the inner wall member 542. It has a boss forming member 543 fixed to one end side in the direction. Each of these members 541 to 543 is preferably made of a conductive material, for example, made of carbon fiber reinforced plastic (CFRP). The inverter housing 531 is configured such that the outer wall member 541 and the inner wall member 542 are overlapped and combined in the radial direction inside and outside, and the boss forming member 543 is assembled on one end side in the axial direction of the inner wall member 542. The assembled state is the state shown in FIG. 57.
 インバータハウジング531の外壁部材541の径方向外側には固定子コア522が固定される。これにより、固定子520とインバータユニット530とが一体化されるようになっている。 The stator core 522 is fixed to the radial outside of the outer wall member 541 of the inverter housing 531. As a result, the stator 520 and the inverter unit 530 are integrated.
 図56に示すように、外壁部材541には、その内周面に複数の凹部541a,541b,541cが形成されるとともに、内壁部材542には、その外周面に複数の凹部542a,542b,542cが形成されている。そして、外壁部材541及び内壁部材542が互いに組み付けられることにより、これら両者の間には3つの中空部544a,544b,544cが形成されている(図57参照)。このうち、中央の中空部544bは、冷媒としての冷却水を流通させる冷却水通路545として用いられる。また、中空部544b(冷却水通路545)を挟んで両側の中空部544a,544cにはシール材546が収容されている。このシール材546により、中空部544b(冷却水通路545)が密閉化されている。冷却水通路545については後で詳しく説明する。 As shown in FIG. 56, the outer wall member 541 is formed with a plurality of recesses 541a, 541b, 541c on the inner peripheral surface thereof, and the inner wall member 542 is formed with a plurality of recesses 542a, 542b, 542c on the outer peripheral surface thereof. Is formed. Then, by assembling the outer wall member 541 and the inner wall member 542 to each other, three hollow portions 544a, 544b, and 544c are formed between them (see FIG. 57). Of these, the central hollow portion 544b is used as a cooling water passage 545 for circulating cooling water as a refrigerant. Further, the sealing material 546 is housed in the hollow portions 544a and 544c on both sides of the hollow portion 544b (cooling water passage 545). The hollow portion 544b (cooling water passage 545) is sealed by the sealing material 546. The cooling water passage 545 will be described in detail later.
 また、ボス形成部材543には、円板リング状の端板547と、その端板547からハウジング内部に向けて突出するボス部548とが設けられている。ボス部548は、中空筒状に設けられている。例えば図51に示すように、ボス形成部材543は、軸方向における内壁部材542の第1端とそれに対向する回転軸501の突出側(すなわち車両内側)の第2端とのうち、第2端に固定されている。なお、図45~図47に示す車輪400においては、インバータハウジング531(より詳しくはボス形成部材543の端板547)にベースプレート405が固定されるようになっている。 Further, the boss forming member 543 is provided with a disk ring-shaped end plate 547 and a boss portion 548 protruding from the end plate 547 toward the inside of the housing. The boss portion 548 is provided in a hollow tubular shape. For example, as shown in FIG. 51, the boss forming member 543 is the second end of the first end of the inner wall member 542 in the axial direction and the second end on the protruding side (that is, inside the vehicle) of the rotating shaft 501 facing the first end. It is fixed to. In the wheels 400 shown in FIGS. 45 to 47, the base plate 405 is fixed to the inverter housing 531 (more specifically, the end plate 547 of the boss forming member 543).
 インバータハウジング531は、軸心を中心として径方向に二重の周壁を有する構成となっており、その二重の周壁のうち外側の周壁が外壁部材541及び内壁部材542により形成され、内側の周壁がボス部548により形成されている。なお、以下の説明では、外壁部材541及び内壁部材542により形成された外側の周壁を「外側周壁WA1」、ボス部548により形成された内側の周壁を「内側周壁WA2」とも言う。 The inverter housing 531 has a configuration having a double peripheral wall in the radial direction about the axis, and the outer peripheral wall of the double peripheral wall is formed by the outer wall member 541 and the inner wall member 542, and the inner peripheral wall is formed. Is formed by the boss portion 548. In the following description, the outer peripheral wall formed by the outer wall member 541 and the inner wall member 542 is also referred to as "outer peripheral wall WA1", and the inner peripheral wall formed by the boss portion 548 is also referred to as "inner peripheral wall WA2".
 インバータハウジング531には、外側周壁WA1と内側周壁WA2との間に環状空間が形成されており、その環状空間内に、周方向に並べて複数の電気モジュール532が配置されている。電気モジュール532は、接着やビス締め等により内壁部材542の内周面に固定されている。本実施形態では、インバータハウジング531が「ハウジング部材」に相当し、電気モジュール532が「電気部品」に相当する。 In the inverter housing 531, an annular space is formed between the outer peripheral wall WA1 and the inner peripheral wall WA2, and a plurality of electric modules 532 are arranged side by side in the circumferential direction in the annular space. The electric module 532 is fixed to the inner peripheral surface of the inner wall member 542 by adhesion, screw tightening, or the like. In this embodiment, the inverter housing 531 corresponds to the "housing member" and the electric module 532 corresponds to the "electric component".
 内側周壁WA2(ボス部548)の内側には軸受560が収容されており、その軸受560により回転軸501が回転自在に支持されている。軸受560は、車輪中心部において車輪400を回転可能に支えるハブベアリングである。軸受560は、回転子510や固定子520、インバータユニット530に対して軸方向に重複する位置に設けられている。本実施形態の回転電機500では、回転子510において配向に伴い磁石ユニット512の薄型化が可能であること、固定子520においてスロットレス構造や扁平導線構造が採用されていることにより、磁気回路部の径方向の厚み寸法を縮小して、磁気回路部よりも径方向内側の中空空間を拡張することが可能となっている。これにより、径方向に積層された状態での磁気回路部やインバータユニット530、軸受560の配置が可能となっている。ボス部548は、その内側に軸受560を保持する軸受保持部となっている。 A bearing 560 is housed inside the inner peripheral wall WA2 (boss portion 548), and the rotating shaft 501 is rotatably supported by the bearing 560. The bearing 560 is a hub bearing that rotatably supports the wheel 400 at the center of the wheel. The bearing 560 is provided at a position where the rotor 510, the stator 520, and the inverter unit 530 overlap in the axial direction. In the rotary electric machine 500 of the present embodiment, the magnet unit 512 can be made thinner in accordance with the orientation of the rotor 510, and the stator 520 adopts a slotless structure or a flat lead wire structure. It is possible to expand the hollow space inside the magnetic circuit portion in the radial direction by reducing the thickness dimension in the radial direction of the magnet. This makes it possible to arrange the magnetic circuit unit, the inverter unit 530, and the bearing 560 in a state of being stacked in the radial direction. The boss portion 548 is a bearing holding portion that holds the bearing 560 inside the boss portion 548.
 軸受560は、例えばラジアル玉軸受であり、筒状をなす内輪561と、その内輪561よりも大径の筒状をなし内輪561の径方向外側に配置された外輪562と、それら内輪561及び外輪562の間に配置された複数の玉563とを有している。軸受560は、外輪562がボス形成部材543に組み付けられることでインバータハウジング531に固定されるとともに、内輪561が回転軸501に固定されている。これら内輪561、外輪562及び玉563は、いずれも炭素鋼等の金属材料よりなる。 The bearing 560 is, for example, a radial ball bearing, and has a tubular inner ring 561, an outer ring 562 having a diameter larger than that of the inner ring 561 and arranged radially outside the inner ring 561, and the inner ring 561 and the outer ring. It has a plurality of balls 563 arranged between 562. The bearing 560 is fixed to the inverter housing 531 by assembling the outer ring 562 to the boss forming member 543, and the inner ring 561 is fixed to the rotating shaft 501. The inner ring 561, the outer ring 562, and the ball 563 are all made of a metal material such as carbon steel.
 また、軸受560の内輪561は、回転軸501を収容する筒部561aと、その筒部561aの軸方向一端部から、軸方向に交差(直交)する向きに延びるフランジ561bとを有している。フランジ561bは、回転子キャリア511の端板514に内側から当接する部位であり、回転軸501に軸受560が組み付けられた状態では、回転軸501のフランジ502と内輪561のフランジ561bとにより挟まれた状態で、回転子キャリア511が保持されるようになっている。この場合、回転軸501のフランジ502及び内輪561のフランジ561bは、軸方向に対する交差の角度が互いに同じであり(本実施形態ではいずれも直角であり)、これら各フランジ502,561bの間に挟まれた状態で、回転子キャリア511が保持されている。 Further, the inner ring 561 of the bearing 560 has a tubular portion 561a for accommodating the rotating shaft 501 and a flange 561b extending in an axially intersecting (orthogonal) direction from one end in the axial direction of the tubular portion 561a. .. The flange 561b is a portion that comes into contact with the end plate 514 of the rotor carrier 511 from the inside, and is sandwiched between the flange 502 of the rotating shaft 501 and the flange 561b of the inner ring 561 when the bearing 560 is assembled to the rotating shaft 501. In this state, the rotor carrier 511 is held. In this case, the flange 502 of the rotating shaft 501 and the flange 561b of the inner ring 561 have the same angle of intersection with respect to the axial direction (both are right angles in the present embodiment), and are sandwiched between the flanges 502 and 561b. The rotor carrier 511 is held in this state.
 軸受560の内輪561により回転子キャリア511を内側から支える構成によれば、回転軸501に対する回転子キャリア511の角度を適正角度に保持でき、ひいては回転軸501に対する磁石ユニット512の平行度を良好に保つことができる。これにより、回転子キャリア511を径方向に拡張した構成にあっても、振動等に対する耐性を高めることができる。 According to the configuration in which the rotor carrier 511 is supported from the inside by the inner ring 561 of the bearing 560, the angle of the rotor carrier 511 with respect to the rotating shaft 501 can be maintained at an appropriate angle, and the parallelism of the magnet unit 512 with respect to the rotating shaft 501 is improved. Can be kept. As a result, resistance to vibration and the like can be increased even in a configuration in which the rotor carrier 511 is expanded in the radial direction.
 次に、インバータハウジング531内に収容される電気モジュール532について説明する。 Next, the electric module 532 housed in the inverter housing 531 will be described.
 複数の電気モジュール532は、電力変換器を構成する半導体スイッチング素子や平滑用コンデンサといった電気部品を、複数に分割して個々にモジュール化したものであり、その電気モジュール532には、パワー素子である半導体スイッチング素子を有するスイッチモジュール532Aと、平滑用コンデンサを有するコンデンサモジュール532Bとが含まれている。 The plurality of electric modules 532 are obtained by dividing electric components such as semiconductor switching elements and smoothing capacitors constituting a power converter into a plurality of individual modules, and the electric module 532 is a power element. A switch module 532A having a semiconductor switching element and a capacitor module 532B having a smoothing capacitor are included.
 図49及び図50に示すように、内壁部材542の内周面には、電気モジュール532を取り付けるための平坦面を有する複数のスペーサ549が固定され、そのスペーサ549に電気モジュール532が取り付けられている。つまり、内壁部材542の内周面が曲面であるのに対し、電気モジュール532の取付面が平坦面であることから、スペーサ549により内壁部材542の内周面側に平坦面を形成し、その平坦面に電気モジュール532を固定する構成としている。 As shown in FIGS. 49 and 50, a plurality of spacers 549 having a flat surface for attaching the electric module 532 are fixed to the inner peripheral surface of the inner wall member 542, and the electric module 532 is attached to the spacer 549. There is. That is, since the inner peripheral surface of the inner wall member 542 is a curved surface, the mounting surface of the electric module 532 is a flat surface, so that the spacer 549 forms a flat surface on the inner peripheral surface side of the inner wall member 542. The electric module 532 is fixed to a flat surface.
 なお、内壁部材542と電気モジュール532との間にスペーサ549を介在させる構成は必須ではなく、内壁部材542の内周面を平坦面にする、又は電気モジュール532の取付面を曲面することにより内壁部材542に対して電気モジュール532を直接取り付けることも可能である。また、内壁部材542の内周面に対して非接触の状態で、電気モジュール532をインバータハウジング531に固定することも可能である。例えば、ボス形成部材543の端板547に対して電気モジュール532を固定する。スイッチモジュール532Aを内壁部材542の内周面に接触状態で固定するとともに、コンデンサモジュール532Bを内壁部材542の内周面に非接触状態で固定することも可能である。 It should be noted that the configuration in which the spacer 549 is interposed between the inner wall member 542 and the electric module 532 is not essential, and the inner wall is made by flattening the inner peripheral surface of the inner wall member 542 or by making the mounting surface of the electric module 532 curved. It is also possible to attach the electric module 532 directly to the member 542. It is also possible to fix the electric module 532 to the inverter housing 531 in a state of non-contact with the inner peripheral surface of the inner wall member 542. For example, the electric module 532 is fixed to the end plate 547 of the boss forming member 543. It is also possible to fix the switch module 532A to the inner peripheral surface of the inner wall member 542 in a contact state, and to fix the capacitor module 532B to the inner peripheral surface of the inner wall member 542 in a non-contact state.
 なお、内壁部材542の内周面にスペーサ549が設けられる場合、外側周壁WA1及びスペーサ549が「筒状部」に相当する。また、スペーサ549が用いられない場合、外側周壁WA1が「筒状部」に相当する。 When the spacer 549 is provided on the inner peripheral surface of the inner wall member 542, the outer peripheral wall WA1 and the spacer 549 correspond to the "cylindrical portion". When the spacer 549 is not used, the outer peripheral wall WA1 corresponds to the "cylindrical portion".
 上述したとおりインバータハウジング531の外側周壁WA1には、冷媒としての冷却水を流通させる冷却水通路545が形成されており、その冷却水通路545を流れる冷却水により各電気モジュール532が冷却されるようになっている。なお、冷媒として、冷却水に代えて冷却用オイルを用いることも可能である。冷却水通路545は、外側周壁WA1に沿って環状に設けられており、冷却水通路545内を流れる冷却水は、各電気モジュール532を経由しながら上流側から下流側に流通する。本実施形態では、冷却水通路545が、径方向内外に各電気モジュール532に重なり、かつこれら各電気モジュール532を囲むように環状に設けられている。 As described above, the outer peripheral wall WA1 of the inverter housing 531 is formed with a cooling water passage 545 through which cooling water as a refrigerant flows, so that each electric module 532 is cooled by the cooling water flowing through the cooling water passage 545. It has become. It is also possible to use cooling oil as the refrigerant instead of the cooling water. The cooling water passage 545 is provided in an annular shape along the outer peripheral wall WA1, and the cooling water flowing in the cooling water passage 545 flows from the upstream side to the downstream side via each electric module 532. In the present embodiment, the cooling water passage 545 is provided in an annular shape so as to overlap each of the electric modules 532 in the radial direction and to surround each of the electric modules 532.
 内壁部材542には、冷却水通路545に冷却水を流入させる入口通路571と、冷却水通路545から冷却水を流出させる出口通路572とが設けられている。上述したように内壁部材542の内周面には複数の電気モジュール532が固定されており、かかる構成において、周方向に隣り合う電気モジュール間の間隔が1カ所だけ他よりも拡張され、その拡張された部分に、内壁部材542の一部が径方向内側に突出されて突出部573が形成されている。そして、その突出部573に、径方向に沿って横並びの状態で入口通路571及び出口通路572が設けられている。 The inner wall member 542 is provided with an inlet passage 571 for flowing cooling water into the cooling water passage 545 and an outlet passage 572 for discharging cooling water from the cooling water passage 545. As described above, a plurality of electric modules 532 are fixed to the inner peripheral surface of the inner wall member 542, and in such a configuration, the distance between the electric modules adjacent to each other in the circumferential direction is expanded by only one place, and the expansion thereof. A part of the inner wall member 542 is projected inward in the radial direction to form a protruding portion 573. The protruding portion 573 is provided with an inlet passage 571 and an outlet passage 572 in a state of being arranged side by side along the radial direction.
 インバータハウジング531での各電気モジュール532の配置の状態を図58に示す。なお、図58は、図50と同一の縦断面図である。 FIG. 58 shows the arrangement state of each electric module 532 in the inverter housing 531. Note that FIG. 58 is the same vertical cross-sectional view as that of FIG. 50.
 図58に示すように、各電気モジュール532は、周方向における電気モジュール同士の間隔を、第1間隔INT1又は第2間隔INT2として周方向に並べて配置されている。第2間隔INT2は、第1間隔INT1よりも広い間隔である。各間隔INT1,INT2は、例えば周方向に隣り合う2つ電気モジュール532の中心位置同士の間の距離である。この場合、突出部573を挟まずに周方向に隣り合う電気モジュール同士の間隔は第1間隔INT1となり、突出部573を挟んで周方向に隣り合う電気モジュール同士の間隔は第2間隔INT2となっている。つまり、周方向に隣り合う電気モジュール同士の間隔が一部で拡げられており、その拡げられた間隔(第2間隔INT2)の例えば中央となる部分に突出部573が設けられている。 As shown in FIG. 58, the electric modules 532 are arranged side by side in the circumferential direction with the distance between the electric modules in the circumferential direction as the first interval INT1 or the second interval INT2. The second interval INT2 is a wider interval than the first interval INT1. Each interval INT1 and INT2 is, for example, the distance between the center positions of two electric modules 532 adjacent to each other in the circumferential direction. In this case, the distance between the electric modules adjacent to each other in the circumferential direction without sandwiching the protrusion 573 is the first interval INT1, and the distance between the electric modules adjacent to each other in the circumferential direction across the protrusion 573 is the second interval INT2. ing. That is, the distance between the electric modules adjacent to each other in the circumferential direction is partially expanded, and the protruding portion 573 is provided at, for example, the central portion of the expanded distance (second interval INT2).
 各間隔INT1,INT2は、回転軸501を中心とする同一円上において、周方向に隣り合う2つ電気モジュール532の中心位置同士の間の円弧の距離であってもよい。又は、周方向における電気モジュール同士の間隔は、回転軸501を中心とする角度間隔θi1,θi2で定義されていてもよい(θi1<θi2)。 Each interval INT1 and INT2 may be the distance of an arc between the center positions of two electric modules 532 adjacent to each other in the circumferential direction on the same circle centered on the rotation axis 501. Alternatively, the distance between the electric modules in the circumferential direction may be defined by the angular distances θi1 and θi2 centered on the rotation axis 501 (θi1 <θi2).
 なお、図58に示す構成では、第1間隔INT1で並ぶ各電気モジュール532が周方向に互いに離間する状態(非接触の状態)で配置されているが、この構成に代えて、それら各電気モジュール532が周方向に互いに接触する状態で配置されていてもよい。 In the configuration shown in FIG. 58, the electric modules 532 arranged at the first interval INT1 are arranged in a state of being separated from each other in the circumferential direction (non-contact state), but instead of this configuration, the electric modules are arranged. The 532s may be arranged so as to be in contact with each other in the circumferential direction.
 図48に示すように、ボス形成部材543の端板547には、入口通路571及び出口通路572の通路端部が形成された水路ポート574が設けられている。入口通路571及び出口通路572には、冷却水を循環させる循環経路575が接続されるようになっている。循環経路575は冷却水配管よりなる。循環経路575にはポンプ576と放熱装置577とが設けられ、ポンプ576の駆動に伴い冷却水通路545と循環経路575とを通じて冷却水が循環する。ポンプ576は電動ポンプである。放熱装置577は、例えば冷却水の熱を大気放出するラジエータである。 As shown in FIG. 48, the end plate 547 of the boss forming member 543 is provided with a water channel port 574 in which the passage ends of the inlet passage 571 and the outlet passage 57 2 are formed. A circulation path 575 for circulating cooling water is connected to the inlet passage 571 and the outlet passage 572. The circulation path 575 comprises a cooling water pipe. A pump 576 and a heat radiating device 575 are provided in the circulation path 575, and the cooling water circulates through the cooling water passage 545 and the circulation path 575 as the pump 576 is driven. Pump 576 is an electric pump. The heat radiating device 577 is, for example, a radiator that releases the heat of the cooling water to the atmosphere.
 図50に示すように、外側周壁WA1の外側には固定子520が配置され、内側には電気モジュール532が配置されていることから、外側周壁WA1に対しては、その外側から固定子520の熱が伝わるとともに、内側から電気モジュール532の熱が伝わることになる。この場合、冷却水通路545を流れる冷却水により固定子520と電気モジュール532とを同時に冷やすことが可能となっており、回転電機500における発熱部品の熱を効率良く放出することができる。 As shown in FIG. 50, since the stator 520 is arranged on the outside of the outer peripheral wall WA1 and the electric module 532 is arranged on the inner side, the stator 520 is arranged from the outside of the outer peripheral wall WA1. As the heat is transferred, the heat of the electric module 532 is transferred from the inside. In this case, the stator 520 and the electric module 532 can be cooled at the same time by the cooling water flowing through the cooling water passage 545, and the heat of the heat generating parts in the rotary electric machine 500 can be efficiently released.
 ここで、電力変換器の電気的構成を図59を用いて説明する。 Here, the electrical configuration of the power converter will be described with reference to FIG. 59.
 図59に示すように、固定子巻線521はU相巻線、V相巻線及びW相巻線よりなり、その固定子巻線521にインバータ600が接続されている。インバータ600は、相数と同じ数の上下アームを有するフルブリッジ回路により構成されており、相ごとに上アームスイッチ601及び下アームスイッチ602からなる直列接続体が設けられている。これら各スイッチ601,602は駆動回路603によりそれぞれオンオフされ、そのオンオフにより各相の巻線が通電される。各スイッチ601,602は、例えばMOSFETやIGBT等の半導体スイッチング素子により構成されている。また、各相の上下アームには、スイッチ601,602の直列接続体に並列に、スイッチング時に要する電荷を各スイッチ601,602に供給する電荷供給用のコンデンサ604が接続されている。 As shown in FIG. 59, the stator winding 521 is composed of a U-phase winding, a V-phase winding, and a W-phase winding, and an inverter 600 is connected to the stator winding 521. The inverter 600 is composed of a full bridge circuit having the same number of upper and lower arms as the number of phases, and a series connection body including an upper arm switch 601 and a lower arm switch 602 is provided for each phase. Each of these switches 601, 602 is turned on and off by the drive circuit 603, and the windings of each phase are energized by the on / off. Each switch 601, 602 is composed of a semiconductor switching element such as a MOSFET or an IGBT. Further, the upper and lower arms of each phase are connected in parallel with the series connection body of the switches 601, 602 to a charge supply capacitor 604 for supplying the charges required for switching to the switches 601, 602.
 制御装置607は、CPUや各種メモリからなるマイコンを備えており、回転電機500における各種の検出情報や、力行駆動及び発電の要求に基づいて、各スイッチ601,602のオンオフにより通電制御を実施する。制御装置607は、例えば所定のスイッチング周波数(キャリア周波数)でのPWM制御や、矩形波制御により各スイッチ601,602のオンオフ制御を実施する。制御装置607は、回転電機500に内蔵された内蔵制御装置であってもよいし、回転電機500の外部に設けられた外部制御装置であってもよい。 The control device 607 includes a microcomputer composed of a CPU and various memories, and performs energization control by turning on / off the switches 601 and 602 based on various detection information in the rotary electric machine 500 and requests for power running and power generation. .. The control device 607 performs on / off control of each switch 601 and 602 by, for example, PWM control at a predetermined switching frequency (carrier frequency) and rectangular wave control. The control device 607 may be a built-in control device built in the rotary electric machine 500, or an external control device provided outside the rotary electric machine 500.
 ちなみに、本実施形態の回転電機500では、固定子520のインダクタンス低減が図られていることから電気的時定数が小さくなっており、その電気的時定数が小さい状況下では、スイッチング周波数(キャリア周波数)を高くし、かつスイッチング速度を速くすることが望ましい。この点において、各相のスイッチ601,602の直列接続体に並列に電荷供給用のコンデンサ604が接続されていることで配線インダクタンスが低くなり、スイッチング速度を速くした構成であっても適正なサージ対策が可能となる。 By the way, in the rotary electric machine 500 of the present embodiment, the electric time constant is small because the inductance of the stator 520 is reduced, and in a situation where the electric time constant is small, the switching frequency (carrier frequency). ) Is increased and the switching speed is increased. In this respect, since the charge supply capacitor 604 is connected in parallel to the series connection of the switches 601, 602 of each phase, the wiring inductance becomes low, and an appropriate surge even in a configuration in which the switching speed is increased. Countermeasures are possible.
 インバータ600の高電位側端子は直流電源605の正極端子に接続され、低電位側端子は直流電源605の負極端子(グランド)に接続されている。また、インバータ600の高電位側端子及び低電位側端子には、直流電源605に並列に平滑用のコンデンサ606が接続されている。 The high potential side terminal of the inverter 600 is connected to the positive electrode terminal of the DC power supply 605, and the low potential side terminal is connected to the negative electrode terminal (ground) of the DC power supply 605. Further, a smoothing capacitor 606 is connected in parallel with the DC power supply 605 to the high potential side terminal and the low potential side terminal of the inverter 600.
 スイッチモジュール532Aは、発熱部品として各スイッチ601,602(半導体スイッチング素子)や、駆動回路603(具体的には駆動回路603を構成する電気素子)、電荷供給用のコンデンサ604を有している。また、コンデンサモジュール532Bは、発熱部品として平滑用のコンデンサ606を有している。スイッチモジュール532Aの具体的な構成例を図60に示す。 The switch module 532A has each switch 601, 602 (semiconductor switching element), a drive circuit 603 (specifically, an electric element constituting the drive circuit 603), and a capacitor 604 for electric charge supply as heat generating parts. Further, the capacitor module 532B has a smoothing capacitor 606 as a heat generating component. A specific configuration example of the switch module 532A is shown in FIG.
 図60に示すように、スイッチモジュール532Aは、収容ケースとしてのモジュールケース611を有するとともに、そのモジュールケース611内に収容された1相分のスイッチ601,602と、駆動回路603と、電荷供給用のコンデンサ604とを有している。なお、駆動回路603は、専用IC又は回路基板として構成されてスイッチモジュール532Aに設けられている。 As shown in FIG. 60, the switch module 532A has a module case 611 as a storage case, and one phase of switches 601, 602 housed in the module case 611, a drive circuit 603, and a charge supply. It has a capacitor 604 and. The drive circuit 603 is configured as a dedicated IC or a circuit board and is provided in the switch module 532A.
 モジュールケース611は、例えば樹脂等の絶縁材料よりなり、その側面がインバータユニット530の内壁部材542の内周面に当接した状態で、外側周壁WA1に固定されている。モジュールケース611内には樹脂等のモールド材が充填されている。モジュールケース611内において、スイッチ601,602と駆動回路603、スイッチ601,602とコンデンサ604は、それぞれ配線612により電気的に接続されている。なお詳しくは、スイッチモジュール532Aは、スペーサ549を介して外側周壁WA1に取り付けられるが、スペーサ549の図示を省略している。 The module case 611 is made of an insulating material such as resin, and is fixed to the outer peripheral wall WA1 with its side surface in contact with the inner peripheral surface of the inner wall member 542 of the inverter unit 530. The module case 611 is filled with a molding material such as resin. In the module case 611, the switches 601, 602 and the drive circuit 603, and the switches 601, 602 and the capacitor 604 are electrically connected by wiring 612, respectively. More specifically, the switch module 532A is attached to the outer peripheral wall WA1 via the spacer 549, but the spacer 549 is not shown.
 スイッチモジュール532Aが外側周壁WA1に固定された状態では、スイッチモジュール532Aにおいて外側周壁WA1に近い側、すなわち冷却水通路545に近い側ほど冷却性が高いため、その冷却性に応じてスイッチ601,602、駆動回路603及びコンデンサ604の配列の順序が定められている。具体的には、発熱量を比べると、大きいものからスイッチ601,602、コンデンサ604、駆動回路603の順序となるため、その発熱量の大きさ順序に合わせて、外側周壁WA1に近い側からスイッチ601,602、コンデンサ604、駆動回路603の順序でこれらが配置されている。なお、スイッチモジュール532Aの接触面は、内壁部材542の内周面における接触可能面より小さいとよい。 When the switch module 532A is fixed to the outer peripheral wall WA1, the side of the switch module 532A closer to the outer peripheral wall WA1, that is, the side closer to the cooling water passage 545 has higher cooling performance. , The order of arrangement of the drive circuit 603 and the capacitor 604 is defined. Specifically, when comparing the calorific value, the order is from the largest to the switches 601, 602, the capacitor 604, and the drive circuit 603. Therefore, the switches are switched from the side closer to the outer peripheral wall WA1 according to the order of the calorific value. These are arranged in the order of 601, 602, the capacitor 604, and the drive circuit 603. The contact surface of the switch module 532A is preferably smaller than the contactable surface on the inner peripheral surface of the inner wall member 542.
 なお、コンデンサモジュール532Bについては詳細な図示を省略するが、コンデンサモジュール532Bでは、スイッチモジュール532Aと同じ形状及び大きさのモジュールケース内に、コンデンサ606が収容されて構成されている。コンデンサモジュール532Bは、スイッチモジュール532Aと同様に、モジュールケース611の側面がインバータハウジング531の内壁部材542の内周面に当接した状態で、外側周壁WA1に固定されている。 Although detailed illustration of the capacitor module 532B is omitted, the capacitor module 532B is configured such that the capacitor 606 is housed in a module case having the same shape and size as the switch module 532A. Similar to the switch module 532A, the capacitor module 532B is fixed to the outer peripheral wall WA1 in a state where the side surface of the module case 611 is in contact with the inner peripheral surface of the inner wall member 542 of the inverter housing 531.
 スイッチモジュール532A及びコンデンサモジュール532Bは、インバータハウジング531の外側周壁WA1の径方向内側において必ずしも同心円上に並んでいなくてもよい。例えばスイッチモジュール532Aがコンデンサモジュール532Bよりも径方向内側に配置される構成、又はその逆となるように配置される構成であってもよい。 The switch module 532A and the capacitor module 532B do not necessarily have to be arranged concentrically on the radial inside of the outer peripheral wall WA1 of the inverter housing 531. For example, the switch module 532A may be arranged radially inside the capacitor module 532B, or vice versa.
 回転電機500の駆動時には、スイッチモジュール532A及びコンデンサモジュール532Bと冷却水通路545との間で、外側周壁WA1の内壁部材542を介して熱交換が行われる。これにより、スイッチモジュール532A及びコンデンサモジュール532Bにおける冷却が行われる。 When the rotary electric machine 500 is driven, heat exchange is performed between the switch module 532A and the condenser module 532B and the cooling water passage 545 via the inner wall member 542 of the outer peripheral wall WA1. As a result, the switch module 532A and the capacitor module 532B are cooled.
 各電気モジュール532は、その内部に冷却水を引き込み、モジュール内部にて冷却水による冷却を行わせる構成であってもよい。ここでは、スイッチモジュール532Aの水冷構造を、図61(a),(b)を用いて説明する。図61(a)は、外側周壁WA1を横切る方向で、スイッチモジュール532Aの断面構造を示す縦断面図であり、図61(b)は、図61(a)の61B-61B線断面図である。 Each electric module 532 may have a configuration in which cooling water is drawn into the module and the cooling water is used to cool the inside of the module. Here, the water cooling structure of the switch module 532A will be described with reference to FIGS. 61 (a) and 61 (b). FIG. 61 (a) is a vertical sectional view showing a cross-sectional structure of the switch module 532A in a direction crossing the outer peripheral wall WA1, and FIG. 61 (b) is a sectional view taken along line 61B-61B of FIG. 61 (a). ..
 図61(a),(b)に示すように、スイッチモジュール532Aは、図60と同様にモジュールケース611と、1相分のスイッチ601,602と、駆動回路603と、コンデンサ604とを有することに加え、一対の配管部621,622及び冷却器623からなる冷却装置を有している。冷却装置において、一対の配管部621,622は、外側周壁WA1の冷却水通路545から冷却器623へ冷却水を流入させる流入側の配管部621と、冷却器623から冷却水通路545へ冷却水を流出させる流出側の配管部622とからなる。冷却器623は、冷却対象物に応じて設けられ、冷却装置では1段又は複数段の冷却器623が用いられる。図61(a),(b)の構成では、冷却水通路545から離れる方向、すなわちインバータユニット530の径方向に、互いに離間した状態で2段の冷却器623が設けられており、一対の配管部621,622を介してそれら各冷却器623に対して冷却水が供給される。冷却器623は、例えば内部が空洞になっている。ただし、冷却器623の内部にインナフィンが設けられていてもよい。 As shown in FIGS. 61 (a) and 61 (b), the switch module 532A has a module case 611, one- phase switches 601, 602, a drive circuit 603, and a capacitor 604, as in FIG. 60. In addition, it has a cooling device including a pair of piping portions 621 and 622 and a cooler 623. In the cooling device, the pair of piping portions 621 and 622 are the piping portion 621 on the inflow side for flowing the cooling water from the cooling water passage 545 of the outer peripheral wall WA1 to the cooler 623, and the cooling water from the cooler 623 to the cooling water passage 545. It is composed of a piping portion 622 on the outflow side that allows the outflow. The cooler 623 is provided according to the object to be cooled, and a one-stage or a plurality of stages of the cooler 623 is used in the cooling device. In the configurations of FIGS. 61 (a) and 61 (b), two-stage coolers 623 are provided in a direction away from the cooling water passage 545, that is, in the radial direction of the inverter unit 530, in a state of being separated from each other, and a pair of pipes. Cooling water is supplied to each of the coolers 623 via the sections 621 and 622. The cooler 623 has, for example, a hollow inside. However, an inner fin may be provided inside the cooler 623.
 2段の冷却器623を備える構成では、(1)1段目の冷却器623の外側周壁WA1側、(2)1段目及び2段目の冷却器623の間、(3)2段目の冷却器623の反外側周壁側が、それぞれ冷却対象の電気部品を配置する場所であり、これら各場所は、冷却性能の高いものから順から(2)、(1)、(3)となっている。つまり、2つの冷却器623に挟まれた場所が最も冷却性能が高く、いずれか1つの冷却器623に隣接する場所では、外側周壁WA1(冷却水通路545)に近い方が冷却性能が高くなっている。これを加味し、図61(a),(b)に示す構成では、スイッチ601,602が、(2)1段目及び2段目の冷却器623の間に配置され、コンデンサ604が、(1)1段目の冷却器623の外側周壁WA1側に配置され、駆動回路603が、(3)2段目の冷却器623の反外側周壁側に配置されている。なお、図示しないが、駆動回路603とコンデンサ604とが逆の配置であってもよい。 In the configuration including the two-stage cooler 623, (1) the outer peripheral wall WA1 side of the first-stage cooler 623, (2) between the first-stage and second-stage coolers 623, and (3) the second stage. The opposite outer peripheral wall side of the cooler 623 is a place where the electric parts to be cooled are arranged, and each of these places is (2), (1), (3) in order from the one having the highest cooling performance. There is. That is, the place sandwiched between the two coolers 623 has the highest cooling performance, and in the place adjacent to any one of the coolers 623, the place closer to the outer peripheral wall WA1 (cooling water passage 545) has higher cooling performance. ing. Taking this into consideration, in the configurations shown in FIGS. 61 (a) and 61 (b), the switches 601, 602 are arranged between (2) the first-stage and second-stage coolers 623, and the condenser 604 is (2). 1) The drive circuit 603 is arranged on the outer peripheral wall WA1 side of the first-stage cooler 623, and the drive circuit 603 is arranged on the anti-outer peripheral wall side of the second-stage cooler 623. Although not shown, the drive circuit 603 and the capacitor 604 may be arranged in reverse.
 いずれの場合であってもモジュールケース611内において、スイッチ601,602と駆動回路603、スイッチ601,602とコンデンサ604は、それぞれ配線612により電気的に接続されている。また、スイッチ601,602が駆動回路603とコンデンサ604との間に位置するため、スイッチ601,602から駆動回路603に向かって延びる配線612と、スイッチ601,602からコンデンサ604に向かって延びる配線612は互いに逆方向に延びる関係である。 In any case, in the module case 611, the switches 601, 602 and the drive circuit 603, and the switches 601, 602 and the capacitor 604 are electrically connected by wiring 612, respectively. Further, since the switches 601, 602 are located between the drive circuit 603 and the capacitor 604, the wiring 612 extending from the switches 601, 602 toward the drive circuit 603 and the wiring 612 extending from the switches 601, 602 toward the capacitor 604 Is a relationship that extends in opposite directions.
 図61(b)に示すように、一対の配管部621,622は、周方向、すなわち冷却水通路545の上流側及び下流側に並べて配置されており、上流側に位置する流入側の配管部621から冷却器623に冷却水が流入され、その後、下流側に位置する流出側の配管部622から冷却水が流出される。なお、冷却装置への冷却水の流入を促すべく、冷却水通路545には、周方向に見て、流入側の配管部621と流出側の配管部621との間となる位置に、冷却水の流れを規制する規制部624が設けられているとよい。規制部624は、冷却水通路545を遮断する遮断部、又は冷却水通路545の通路面積を小さくする絞り部であるとよい。 As shown in FIG. 61B, the pair of piping portions 621 and 622 are arranged side by side in the circumferential direction, that is, on the upstream side and the downstream side of the cooling water passage 545, and the piping portions on the inflow side located on the upstream side. Cooling water flows into the cooler 623 from 621, and then the cooling water flows out from the outflow side piping portion 622 located on the downstream side. In order to promote the inflow of the cooling water into the cooling device, the cooling water is provided in the cooling water passage 545 at a position between the inflow side piping portion 621 and the outflow side piping portion 621 when viewed in the circumferential direction. It is preferable that a regulation unit 624 is provided to regulate the flow of the water. The regulating portion 624 may be a blocking portion that shuts off the cooling water passage 545 or a throttle portion that reduces the passage area of the cooling water passage 545.
 図62には、スイッチモジュール532Aの別の冷却構造を示す。図62(a)は、外側周壁WA1を横切る方向で、スイッチモジュール532Aの断面構造を示す縦断面図であり、図62(b)は、図62(a)の62B-62B線断面図である。 FIG. 62 shows another cooling structure of the switch module 532A. 62 (a) is a vertical sectional view showing a cross-sectional structure of the switch module 532A in a direction crossing the outer peripheral wall WA1, and FIG. 62 (b) is a sectional view taken along line 62B-62B of FIG. 62 (a). ..
 図62(a),(b)の構成では、上述した図61(a),(b)の構成との相違点として、冷却装置における一対の配管部621,622の配置が異なっており、一対の配管部621,622が軸方向に並べて配置されている。また、図62(c)に示すように、冷却水通路545は、流入側の配管部621に連通される通路部分と、流出側の配管部622に連通される通路部分とが軸方向に分離して設けられ、それら各通路部分が各配管部621,622及び各冷却器623を通じて連通されている。 The configurations of FIGS. 62 (a) and 62 (b) differ from the configurations of FIGS. 61 (a) and 61 (b) described above in that the pair of piping portions 621 and 622 in the cooling device are arranged differently. The piping portions 621 and 622 of the above are arranged side by side in the axial direction. Further, as shown in FIG. 62 (c), in the cooling water passage 545, the passage portion communicating with the inflow side piping portion 621 and the passage portion communicating with the outflow side piping portion 622 are separated in the axial direction. Each of these passage portions communicates with each other through each piping portion 621, 622 and each cooler 623.
 その他に、スイッチモジュール532Aとして、次の構成を用いることも可能である。 In addition, the following configuration can be used as the switch module 532A.
 図63(a)に示す構成では、図61(a)の構成と比べて、冷却器623が2段から1段に変更されている。この場合、モジュールケース611内において冷却性能の最も高い場所が図61(a)とは異なっており、冷却器623の径方向両側(図の左右方向両側)のうち外側周壁WA1側の場所が最も冷却性能が高く、次いで、冷却器623の反外側周壁側の場所、冷却器623から離れた場所の順に冷却性能が低くなっている。これを加味し、図63(a)に示す構成では、スイッチ601,602が、冷却器623の径方向両側(図の左右方向両側)のうち外側周壁WA1側の場所に配置され、コンデンサ604が、冷却器623の反外側周壁側の場所に配置され、駆動回路603が、冷却器623から離れた場所に配置されている。 In the configuration shown in FIG. 63 (a), the cooler 623 is changed from two stages to one stage as compared with the configuration shown in FIG. 61 (a). In this case, the location with the highest cooling performance in the module case 611 is different from that in FIG. 61 (a), and the location on the outer peripheral wall WA1 side of the radial sides of the cooler 623 (both sides in the left-right direction in the figure) is the highest. The cooling performance is high, and then the cooling performance is lowered in the order of the place on the opposite outer peripheral wall side of the cooler 623 and the place away from the cooler 623. Taking this into consideration, in the configuration shown in FIG. 63 (a), the switches 601, 602 are arranged on the outer peripheral wall WA1 side of the radial sides of the cooler 623 (both sides in the left-right direction in the figure), and the condenser 604 is installed. , The drive circuit 603 is arranged at a place on the opposite outer peripheral wall side of the cooler 623, and is arranged at a place away from the cooler 623.
 また、スイッチモジュール532Aにおいて、モジュールケース611内に1相分のスイッチ601,602と、駆動回路603と、コンデンサ604とを収容する構成を変更することも可能である。例えば、モジュールケース611内に1相分のスイッチ601,602と、駆動回路603及びコンデンサ604のいずれ一方とを収容する構成としてもよい。 Further, in the switch module 532A, it is possible to change the configuration in which the switches 601, 602 for one phase, the drive circuit 603, and the capacitor 604 are housed in the module case 611. For example, the module case 611 may accommodate one of the switches 601, 602 for one phase, the drive circuit 603, and the capacitor 604.
 図63(b)では、モジュールケース611内に、一対の配管部621,622と2段の冷却器623とを設けるとともに、スイッチ601,602を、1段目及び2段目の冷却器623の間に配置し、コンデンサ604又は駆動回路603を、1段目の冷却器623の外側周壁WA1側に配置する構成としている。また、スイッチ601,602と駆動回路603とを一体化して半導体モジュールとし、その半導体モジュールとコンデンサ604とを、モジュールケース611内に収容する構成とすることも可能である。 In FIG. 63 (b), a pair of piping portions 621 and 622 and a two-stage cooler 623 are provided in the module case 611, and switches 601, 602 are installed in the first-stage and second-stage coolers 623. The capacitor 604 or the drive circuit 603 is arranged between them, and is arranged on the outer peripheral wall WA1 side of the first stage cooler 623. Further, it is also possible to integrate the switches 601, 602 and the drive circuit 603 into a semiconductor module, and to accommodate the semiconductor module and the capacitor 604 in the module case 611.
 なお、図63(b)では、スイッチモジュール532Aにおいて、スイッチ601,602を挟んで両側に配置される冷却器623のうち少なくとも一方の冷却器623においてスイッチ601,602とは逆側にコンデンサが配置されているとよい。すなわち、1段目の冷却器623の外側周壁WA1側と、2段目の冷却器623の反周壁側とのうち一方にのみコンデンサ604を配置する構成、又は両方にコンデンサ604を配置する構成が可能である。 In FIG. 63 (b), in the switch module 532A, the condenser is arranged on the opposite side of the switches 601, 602 in at least one of the coolers 623 arranged on both sides of the switches 601, 602. It should be done. That is, there is a configuration in which the condenser 604 is arranged only on one of the outer peripheral wall WA1 side of the first-stage cooler 623 and the opposite peripheral wall side of the second-stage cooler 623, or a configuration in which the condenser 604 is arranged on both sides. It is possible.
 本実施形態では、スイッチモジュール532Aとコンデンサモジュール532Bとのうちスイッチモジュール532Aのみについて、冷却水通路545からモジュール内部に冷却水を引き込む構成としている。ただし、その構成を変更し、両方のモジュール532A,532Bに、冷却水通路545から冷却水を引き込む構成としてもよい。 In this embodiment, of the switch module 532A and the condenser module 532B, only the switch module 532A is configured to draw cooling water from the cooling water passage 545 into the module. However, the configuration may be changed so that cooling water is drawn into both modules 532A and 532B from the cooling water passage 545.
 また、各電気モジュール532の外面に冷却水を直接当てる状態にして、各電気モジュール532を冷却する構成とすることも可能である。例えば、図64に示すように、外側周壁WA1に電気モジュール532を埋め込むことで、電気モジュール532の外面に冷却水を当てる構成とする。この場合、電気モジュール532の一部を冷却水通路545内に浸漬させる構成や、冷却水通路545を図58等の構成よりも径方向に拡張して電気モジュール532の全てを冷却水通路545内に浸漬させる構成が考えられる。冷却水通路545内に電気モジュール532を浸漬させる場合、浸漬されるモジュールケース611(モジュールケース611の浸漬部分)にフィンを設けると、冷却性能を更に向上させることができる。 It is also possible to cool each electric module 532 by directly applying cooling water to the outer surface of each electric module 532. For example, as shown in FIG. 64, by embedding the electric module 532 in the outer peripheral wall WA1, the cooling water is applied to the outer surface of the electric module 532. In this case, a part of the electric module 532 is immersed in the cooling water passage 545, or the cooling water passage 545 is expanded in the radial direction from the configuration shown in FIG. It is conceivable to immerse it in. When the electric module 532 is immersed in the cooling water passage 545, the cooling performance can be further improved by providing fins in the module case 611 (the immersed portion of the module case 611) to be immersed.
 また、電気モジュール532には、スイッチモジュール532Aとコンデンサモジュール532Bとが含まれ、それら両者を比べた場合に発熱量に差異がある。この点を考慮して、インバータハウジング531における各電気モジュール532の配置を工夫することも可能である。 Further, the electric module 532 includes a switch module 532A and a capacitor module 532B, and there is a difference in the amount of heat generated when both of them are compared. In consideration of this point, it is possible to devise the arrangement of each electric module 532 in the inverter housing 531.
 例えば、図65に示すように、複数個のスイッチモジュール532Aを、分散させず周方向に並べ、かつ冷却水通路545の上流側、すなわち入口通路571に近い側に配置する。この場合、入口通路571から流入した冷却水は、先ずは3つのスイッチモジュール532Aの冷却に用いられ、その後に各コンデンサモジュール532Bの冷却に用いられる。なお、図65では、先の図62(a),(b)のように一対の配管部621,622が軸方向に並べて配置されているが、これに限らず、先の図61(a),(b)のように一対の配管部621,622が周方向に並べて配置されていてもよい。 For example, as shown in FIG. 65, a plurality of switch modules 532A are arranged in the circumferential direction without being dispersed, and arranged on the upstream side of the cooling water passage 545, that is, on the side close to the inlet passage 571. In this case, the cooling water flowing in from the inlet passage 571 is first used for cooling the three switch modules 532A, and then used for cooling each capacitor module 532B. In FIG. 65, the pair of piping portions 621 and 622 are arranged side by side in the axial direction as shown in FIGS. 62 (a) and 62 (b), but the present invention is not limited to this, and FIG. 61 (a) above is not limited to this. , (B), a pair of piping portions 621 and 622 may be arranged side by side in the circumferential direction.
 次に、各電気モジュール532及びバスバーモジュール533における電気的な接続に関する構成を説明する。図66は、図49の66-66線断面図であり、図67は、図49の67-67線断面図である。図68は、バスバーモジュール533を単体で示す斜視図である。ここではこれら各図を併せ用いて、各電気モジュール532及びバスバーモジュール533の電気接続に関する構成を説明する。 Next, the configuration related to the electrical connection in each electric module 532 and the bus bar module 533 will be described. FIG. 66 is a cross-sectional view taken along the line 66-66 of FIG. 49, and FIG. 67 is a cross-sectional view taken along the line 67-67 of FIG. FIG. 68 is a perspective view showing the bus bar module 533 as a single unit. Here, the configuration related to the electrical connection of each electric module 532 and the bus bar module 533 will be described with reference to each of these figures.
 図66に示すように、インバータハウジング531には、内壁部材542に設けられた突出部573(すなわち、冷却水通路545に通じる入口通路571及び出口通路572が設けられた突出部573)の周方向に隣となる位置に、3つのスイッチモジュール532Aが周方向に並べて配置されるとともに、さらにその隣に、6つのコンデンサモジュール532Bが周方向に並べて配置されている。その概要として、インバータハウジング531では、外側周壁WA1の内側が周方向に10個(すなわち、モジュール数+1)の領域に等分に分けられ、そのうち9つの領域にそれぞれ電気モジュール532が1つずつ配置されるとともに、残り1つの領域に突出部573が設けられている。3つのスイッチモジュール532Aは、U相用モジュール、V相用モジュール、W相用モジュールである。 As shown in FIG. 66, the inverter housing 531 is provided with a protruding portion 573 provided on the inner wall member 542 (that is, a protruding portion 573 provided with an inlet passage 571 and an outlet passage 57 2 leading to the cooling water passage 545) in the circumferential direction. Three switch modules 532A are arranged side by side in the circumferential direction at positions adjacent to the above, and six capacitor modules 532B are arranged side by side in the circumferential direction next to the three switch modules 532A. As an outline, in the inverter housing 531, the inside of the outer peripheral wall WA1 is equally divided into 10 regions (that is, the number of modules + 1) in the circumferential direction, and one electric module 532 is arranged in each of the nine regions. At the same time, a protrusion 573 is provided in the remaining one area. The three switch modules 532A are a U-phase module, a V-phase module, and a W-phase module.
 図66や前述の図56、図57等に示すように、各電気モジュール532(スイッチモジュール532A及びコンデンサモジュール532B)は、モジュールケース611から延びる複数のモジュール端子615を有している。モジュール端子615は、各電気モジュール532における電気的な入出力を行わせるモジュール入出力端子である。モジュール端子615は、軸方向に延びる向きで設けられており、より具体的には、モジュールケース611から回転子キャリア511の奥側(車両外側)に向けて延びるように設けられている(図51参照)。 As shown in FIG. 66 and the above-mentioned FIGS. 56 and 57, each electric module 532 (switch module 532A and capacitor module 532B) has a plurality of module terminals 615 extending from the module case 611. The module terminal 615 is a module input / output terminal for performing electrical input / output in each electric module 532. The module terminal 615 is provided so as to extend in the axial direction, and more specifically, the module terminal 615 is provided so as to extend from the module case 611 toward the back side (outside the vehicle) of the rotor carrier 511 (FIG. 51). reference).
 各電気モジュール532のモジュール端子615は、それぞれバスバーモジュール533に接続されている。モジュール端子615の数は、スイッチモジュール532Aとコンデンサモジュール532Bとで異なっており、スイッチモジュール532Aには4つのモジュール端子615が設けられ、コンデンサモジュール532Bには2つのモジュール端子615が設けられている。 The module terminals 615 of each electric module 532 are connected to the bus bar module 533, respectively. The number of module terminals 615 differs between the switch module 532A and the capacitor module 532B. The switch module 532A is provided with four module terminals 615, and the capacitor module 532B is provided with two module terminals 615.
 また、図68に示すように、バスバーモジュール533は、円環状をなす環状部631と、その環状部631から延び、電源装置やECU(電子制御装置)等の外部装置との接続を可能とする3本の外部接続端子632と、固定子巻線521における各相の巻線端部に接続される巻線接続端子633とを有している。バスバーモジュール533が「端子モジュール」に相当する。 Further, as shown in FIG. 68, the bus bar module 533 extends from the annular portion 631 forming an annular shape and the annular portion 631 to enable connection with an external device such as a power supply device or an ECU (electronic control device). It has three external connection terminals 632 and a winding connection terminal 633 connected to the winding end of each phase in the stator winding 521. The bus bar module 533 corresponds to the "terminal module".
 環状部631は、インバータハウジング531において外側周壁WA1の径方向内側であり、かつ各電気モジュール532の軸方向片側となる位置に配置されている。環状部631は、例えば樹脂等の絶縁部材により成形された円環状の本体部と、その内部に埋設された複数のバスバーとを有する。その複数のバスバーは、各電気モジュール532のモジュール端子615や、各外部接続端子632、固定子巻線521の各相巻線に接続されている。その詳細は後述する。 The annular portion 631 is arranged in the inverter housing 531 at a position on the inner side in the radial direction of the outer peripheral wall WA1 and on one side in the axial direction of each electric module 532. The annular portion 631 has an annular main body formed of, for example, an insulating member such as a resin, and a plurality of bus bars embedded therein. The plurality of bus bars are connected to the module terminal 615 of each electric module 532, each external connection terminal 632, and each phase winding of the stator winding 521. The details will be described later.
 外部接続端子632は、電源装置に接続される高電位側の電力端子632A及び低電位側の電力端子632Bと、外部ECUに接続される1本の信号端子632Cとからなる。これら各外部接続端子632(632A~632C)は、周方向に一列に並び、かつ環状部631の径方向内側において軸方向に延びるように設けられている。図51に示すように、バスバーモジュール533が各電気モジュール532と共にインバータハウジング531に組み付けられた状態では、外部接続端子632の一端がボス形成部材543の端板547から突出するように構成されている。具体的には、図56、図57に示すように、ボス形成部材543の端板547には挿通孔547aが設けられており、その挿通孔547aに円筒状のグロメット635が取り付けられるとともに、グロメット635を挿通させた状態で外部接続端子632が設けられている。グロメット635は、密閉コネクタとしても機能する。 The external connection terminal 632 includes a high potential side power terminal 632A and a low potential side power terminal 632B connected to the power supply device, and one signal terminal 632C connected to the external ECU. Each of these external connection terminals 632 (632A to 632C) is provided so as to be arranged in a line in the circumferential direction and to extend in the radial direction inside the annular portion 631 in the radial direction. As shown in FIG. 51, when the bus bar module 533 is assembled to the inverter housing 531 together with each electric module 532, one end of the external connection terminal 632 is configured to protrude from the end plate 547 of the boss forming member 543. .. Specifically, as shown in FIGS. 56 and 57, the end plate 547 of the boss forming member 543 is provided with an insertion hole 547a, and a cylindrical grommet 635 is attached to the insertion hole 547a, and the grommet is attached. The external connection terminal 632 is provided with the 635 inserted. The grommet 635 also functions as a sealed connector.
 巻線接続端子633は、固定子巻線521の各相の巻線端部に接続される端子であり、環状部631から径方向外側に延びるように設けられている。巻線接続端子633は、固定子巻線521におけるU相巻線の端部に接続される巻線接続端子633U、V相巻線の端部に接続される巻線接続端子633V、W相巻線の端部にそれぞれ接続に接続される巻線接続端子633Wを有する。これらの各巻線接続端子633、各相巻線に流れる電流(U相電流、V相電流、W相電流)を検出する電流センサ634が設けられているとよい(図70参照)。 The winding connection terminal 633 is a terminal connected to the winding end of each phase of the stator winding 521, and is provided so as to extend radially outward from the annular portion 631. The winding connection terminal 633 is a winding connection terminal 633U connected to the end of the U-phase winding in the stator winding 521, a winding connection terminal 633V connected to the end of the V-phase winding, and a W-phase winding. Each end of the wire has a winding connection terminal 633W connected to the connection. It is preferable that each of these winding connection terminals 633 and a current sensor 634 for detecting the current (U-phase current, V-phase current, W-phase current) flowing through each phase winding are provided (see FIG. 70).
 なお、電流センサ634は、電気モジュール532の外部であって、各巻線接続端子633の周辺に配置されてもよいし、電気モジュール532の内部に配置されてもよい。 The current sensor 634 may be arranged outside the electric module 532 and around each winding connection terminal 633, or may be arranged inside the electric module 532.
 ここで、各電気モジュール532とバスバーモジュール533との接続を、図69及び図70を用いてより具体的に説明する。図69は、各電気モジュール532を平面状に展開して示すとともに、それら各電気モジュール532とバスバーモジュール533との電気的な接続状態を模式的に示す図である。図70は、各電気モジュール532を円環状に配置した状態での各電気モジュール532とバスバーモジュール533との接続を模式的に示す図である。なお、図69には、電力伝送用の経路を実線で示し、信号伝送系の経路を一点鎖線で示している。図70には、電力伝送用の経路のみを示している。 Here, the connection between each electric module 532 and the bus bar module 533 will be described more specifically with reference to FIGS. 69 and 70. FIG. 69 is a diagram showing each electric module 532 developed in a plane and schematically showing an electrical connection state between each electric module 532 and a bus bar module 533. FIG. 70 is a diagram schematically showing the connection between each electric module 532 and the bus bar module 533 in a state where each electric module 532 is arranged in an annular shape. In FIG. 69, the path for power transmission is shown by a solid line, and the path of the signal transmission system is shown by a chain double-dashed line. FIG. 70 shows only the path for power transmission.
 バスバーモジュール533は、電力伝送用のバスバーとして、第1バスバー641と第2バスバー642と第3バスバー643とを有している。このうち第1バスバー641が高電位側の電力端子632Aに接続され、第2バスバー642が低電位側の電力端子632Bに接続されている。また、3つの第3バスバー643が、U相の巻線接続端子633U、V相の巻線接続端子633V、W相の巻線接続端子633Wにそれぞれ接続されている。 The bus bar module 533 has a first bus bar 641, a second bus bar 642, and a third bus bar 643 as bus bars for power transmission. Of these, the first bus bar 641 is connected to the power terminal 632A on the high potential side, and the second bus bar 642 is connected to the power terminal 632B on the low potential side. Further, three third bus bars 643 are connected to the U-phase winding connection terminal 633U, the V-phase winding connection terminal 633V, and the W-phase winding connection terminal 633W, respectively.
 また、巻線接続端子633や第3バスバー643は、回転電機10の動作により発熱しやすい部位である。このため、巻線接続端子633と第3バスバー643との間に図示しない端子台を介在させるとともに、この端子台を、冷却水通路545を有するインバータハウジング531に当接させてもよい。又は、巻線接続端子633や第3バスバー643をクランク状に曲げることで、巻線接続端子633や第3バスバー643を冷却水通路545を有するインバータハウジング531に当接させてもよい。 Further, the winding connection terminal 633 and the third bus bar 643 are parts that easily generate heat due to the operation of the rotary electric machine 10. Therefore, a terminal block (not shown) may be interposed between the winding connection terminal 633 and the third bus bar 643, and the terminal block may be brought into contact with the inverter housing 531 having the cooling water passage 545. Alternatively, the winding connection terminal 633 or the third bus bar 643 may be bent into a crank shape to bring the winding connection terminal 633 or the third bus bar 643 into contact with the inverter housing 531 having the cooling water passage 545.
 このような構成であれば、巻線接続端子633や第3バスバー643で発生した熱を冷却水通路545内の冷却水に放熱することができる。 With such a configuration, the heat generated at the winding connection terminal 633 and the third bus bar 643 can be dissipated to the cooling water in the cooling water passage 545.
 なお、図70では、第1バスバー641及び第2バスバー642を、円環形状をなすバスバーとして示すが、これら各バスバー641,642は必ずしも円環形状で繋がっていなくてもよく、周方向の一部が途切れた略C字状をなしていてもよい。また、各巻線接続端子633U,633V,633Wは、各相に対応するスイッチモジュール532Aに個々に接続されればよいため、バスバーモジュール533を介することなく、直接的に各スイッチモジュール532A(実際にはモジュール端子615)に接続される構成であってもよい。 In FIG. 70, the first bus bar 641 and the second bus bar 642 are shown as bus bars having a ring shape, but each of these bus bars 641 and 642 does not necessarily have to be connected in a ring shape and is one in the circumferential direction. It may have a substantially C-shape with a broken portion. Further, since each winding connection terminal 633U, 633V, 633W may be individually connected to the switch module 532A corresponding to each phase, each switch module 532A (actually, actually) does not go through the bus bar module 533. It may be configured to be connected to the module terminal 615).
 一方、各スイッチモジュール532Aは、正極側端子、負極側端子、巻線用端子及び信号用端子からなる4つのモジュール端子615を有している。このうち正極側端子は第1バスバー641に接続され、負極側端子は第2バスバー642に接続され、巻線用端子は第3バスバー643に接続されている。 On the other hand, each switch module 532A has four module terminals 615 including a positive electrode side terminal, a negative electrode side terminal, a winding terminal, and a signal terminal. Of these, the positive electrode side terminal is connected to the first bus bar 641, the negative electrode side terminal is connected to the second bus bar 642, and the winding terminal is connected to the third bus bar 643.
 また、バスバーモジュール533は、信号伝送系のバスバーとして第4バスバー644を有している。各スイッチモジュール532Aの信号用端子が第4バスバー644に接続されるとともに、その第4バスバー644が信号端子632Cに接続されている。 Further, the bus bar module 533 has a fourth bus bar 644 as a bus bar of the signal transmission system. The signal terminal of each switch module 532A is connected to the fourth bus bar 644, and the fourth bus bar 644 is connected to the signal terminal 632C.
 本実施形態では、各スイッチモジュール532Aに対する制御信号を信号端子632Cを介して外部ECUから入力する構成としている。つまり、各スイッチモジュール532A内の各スイッチ601,602は、信号端子632Cを介して入力される制御信号によりオンオフする。そのため、各スイッチモジュール532Aが、途中で回転電機内蔵の制御装置を経由することなく信号端子632Cに対して接続される構成となっている。ただし、この構成を変更し、回転電機に制御装置を内蔵させ、その制御装置からの制御信号が各スイッチモジュール532Aに入力される構成とすることも可能である。かかる構成を図71に示す。 In this embodiment, the control signal for each switch module 532A is input from the external ECU via the signal terminal 632C. That is, each of the switches 601, 602 in each switch module 532A is turned on and off by a control signal input via the signal terminal 632C. Therefore, each switch module 532A is connected to the signal terminal 632C without going through a control device built in the rotary electric machine on the way. However, it is also possible to change this configuration so that the rotary electric machine has a built-in control device and the control signal from the control device is input to each switch module 532A. Such a configuration is shown in FIG.
 図71の構成では、制御装置652が実装された制御基板651を有し、その制御装置652が各スイッチモジュール532Aに接続されている。また、制御装置652には信号端子632Cが接続されている。この場合、制御装置652は、例えば上位制御装置である外部ECUから力行又は発電に関する指令信号を入力し、その指令信号に基づいて各スイッチモジュール532Aのスイッチ601,602を適宜オンオフさせる。 In the configuration of FIG. 71, the control board 651 on which the control device 652 is mounted is provided, and the control device 652 is connected to each switch module 532A. Further, a signal terminal 632C is connected to the control device 652. In this case, the control device 652 inputs a command signal related to power running or power generation from, for example, an external ECU which is a higher-level control device, and appropriately turns on / off the switches 601, 602 of each switch module 532A based on the command signal.
 インバータユニット530においては、バスバーモジュール533よりも車両外側(回転子キャリア511の奥側)に制御基板651が配置されるとよい。又は、各電気モジュール532とボス形成部材543の端板547との間に制御基板651が配置されるとよい。制御基板651は、各電気モジュール532に対して少なくとも一部が軸方向に重複するように配置されるとよい。 In the inverter unit 530, it is preferable that the control board 651 is arranged on the outside of the vehicle (inside the rotor carrier 511) of the bus bar module 533. Alternatively, the control board 651 may be arranged between each electric module 532 and the end plate 547 of the boss forming member 543. The control board 651 may be arranged so that at least a part thereof overlaps with each electric module 532 in the axial direction.
 また、各コンデンサモジュール532Bは、正極側端子及び負極側端子からなる2つのモジュール端子615を有しており、正極側端子は第1バスバー641に接続され、負極側端子は第2バスバー642に接続されている。 Further, each capacitor module 532B has two module terminals 615 composed of a positive electrode side terminal and a negative electrode side terminal, the positive electrode side terminal is connected to the first bus bar 641, and the negative electrode side terminal is connected to the second bus bar 642. Has been done.
 図49及び図50に示すように、インバータハウジング531内には、周方向に各電気モジュール532と並ぶ位置に、冷却水の入口通路571及び出口通路572を有する突出部573が設けられるとともに、その突出部573に対して径方向に隣り合うようにして外部接続端子632が設けられている。換言すれば、突出部573と外部接続端子632とが、周方向に同じ角度位置に設けられている。本実施形態では、突出部573の径方向内側の位置に外部接続端子632が設けられている。また、インバータハウジング531の車両内側から見れば、ボス形成部材543の端板547に、径方向に並べて水路ポート574と外部接続端子632とが設けられている(図48参照)。 As shown in FIGS. 49 and 50, a projecting portion 573 having an inlet passage 571 and an outlet passage 572 for cooling water is provided in the inverter housing 531 at a position aligned with each electric module 532 in the circumferential direction. The external connection terminal 632 is provided so as to be adjacent to the protruding portion 573 in the radial direction. In other words, the protrusion 573 and the external connection terminal 632 are provided at the same angular position in the circumferential direction. In the present embodiment, the external connection terminal 632 is provided at a position inside the protruding portion 573 in the radial direction. Further, when viewed from the inside of the vehicle of the inverter housing 531, the end plate 547 of the boss forming member 543 is provided with the water channel port 574 and the external connection terminal 632 arranged in the radial direction (see FIG. 48).
 この場合、複数の電気モジュール532と共に突出部573及び外部接続端子632を周方向に並べて配置したことにより、インバータユニット530としての小型化、ひいては回転電機500としての小型化が可能となっている。 In this case, by arranging the protrusion 573 and the external connection terminal 632 side by side in the circumferential direction together with the plurality of electric modules 532, the inverter unit 530 can be downsized, and the rotary electric machine 500 can be downsized.
 車輪400の構造を示す図45及び図47で見ると、水路ポート574に冷却用配管H2が接続されるとともに、外部接続端子632に電気配線H1が接続され、その状態で、電気配線H1及び冷却用配管H2が収容ダクト440に収容されている。 Looking at FIGS. 45 and 47 showing the structure of the wheel 400, the cooling pipe H2 is connected to the water channel port 574, and the electric wiring H1 is connected to the external connection terminal 632. The pipe H2 is housed in the storage duct 440.
 なお、上記構成では、インバータハウジング531内において外部接続端子632の隣に、3つのスイッチモジュール532Aを周方向に並べて配置するととともに、さらにその隣に、6つのコンデンサモジュール532Bを周方向に並べて配置する構成としたが、これを変更してもよい。例えば、外部接続端子632から最も離れた位置、すなわち回転軸501を挟んで反対側となる位置に、3つのスイッチモジュール532Aを並べて配置する構成としてもよい。また、各スイッチモジュール532Aの両隣にコンデンサモジュール532Bが配置されるように、各スイッチモジュール532Aを分散配置することも可能である。 In the above configuration, the three switch modules 532A are arranged side by side in the circumferential direction next to the external connection terminal 632 in the inverter housing 531, and the six capacitor modules 532B are arranged side by side in the circumferential direction next to the three switch modules 532A. Although it is configured, this may be changed. For example, the three switch modules 532A may be arranged side by side at a position farthest from the external connection terminal 632, that is, a position opposite to the rotation shaft 501. It is also possible to disperse each switch module 532A so that the capacitor modules 532B are arranged on both sides of each switch module 532A.
 外部接続端子632から最も離れた位置、すなわち回転軸501を挟んで反対側となる位置に各スイッチモジュール532Aを配置する構成とすれば、外部接続端子632と各スイッチモジュール532Aとの間における相互インダクタンスに起因する誤動作等を抑制できる。 If each switch module 532A is arranged at the position farthest from the external connection terminal 632, that is, on the opposite side of the rotating shaft 501, the mutual inductance between the external connection terminal 632 and each switch module 532A. It is possible to suppress malfunctions caused by the above.
 次に、回転角度センサとして設けられるレゾルバ660に関する構成を説明する。 Next, the configuration of the resolver 660 provided as the rotation angle sensor will be described.
 図49~図51に示すように、インバータハウジング531には、回転電機500の電気角θを検出するレゾルバ660が設けられている。レゾルバ660は、電磁誘導式センサであり、回転軸501に固定されたレゾルバロータ661と、そのレゾルバロータ661の径方向外側に対向配置されたレゾルバステータ662とを備えている。レゾルバロータ661は、円板リング状をなしており、回転軸501を挿通させた状態で、回転軸501に同軸で設けられている。レゾルバステータ662は、円環状をなすステータコア663と、ステータコア663に形成された複数のティースに巻回されたステータコイル664とを備えている。ステータコイル664には、1相の励磁コイルと2相の出力コイルとが含まれている。 As shown in FIGS. 49 to 51, the inverter housing 531 is provided with a resolver 660 for detecting the electric angle θ of the rotary electric machine 500. The resolver 660 is an electromagnetic induction type sensor, and includes a resolver rotor 661 fixed to a rotating shaft 501 and a resolver stator 662 arranged so as to face each other on the radial outer side of the resolver rotor 661. The resolver rotor 661 has a disk ring shape, and is provided coaxially with the rotating shaft 501 in a state where the rotating shaft 501 is inserted. The resolver stator 662 includes an annular stator core 663 and a stator coil 664 wound around a plurality of teeth formed on the stator core 663. The stator coil 664 includes a one-phase excitation coil and a two-phase output coil.
 ステータコイル664の励磁コイルは、正弦波状の励磁信号によって励磁され、励磁信号によって励磁コイルに生じた磁束は、一対の出力コイルを鎖交する。この際、励磁コイルと一対の出力コイルとの相対的な配置関係がレゾルバロータ661の回転角(すなわち回転軸501の回転角)に応じて周期的に変化するため、一対の出力コイルを鎖交する磁束数は周期的に変化する。本実施形態では、一対の出力コイルのそれぞれに生じる電圧の位相が互いにπ/2だけずれるように一対の出力コイルと励磁コイルとが配置されている。これにより、一対の出力コイルそれぞれの出力電圧は、励磁信号を変調波sinθ、cosθのそれぞれによって変調した被変調波となる。より具体的には、励磁信号を「sinΩt」とすると、被変調波はそれぞれ「sinθ×sinΩt」,「cosθ×sinΩt」となる。 The exciting coil of the stator coil 664 is excited by a sinusoidal exciting signal, and the magnetic flux generated in the exciting coil by the exciting signal interlinks the pair of output coils. At this time, since the relative arrangement relationship between the exciting coil and the pair of output coils changes periodically according to the rotation angle of the resolver rotor 661 (that is, the rotation angle of the rotation shaft 501), the pair of output coils are interlocked. The number of magnetic fluxes to be applied changes periodically. In the present embodiment, the pair of output coils and the exciting coil are arranged so that the phases of the voltages generated in the pair of output coils are shifted by π / 2 from each other. As a result, the output voltage of each of the pair of output coils becomes a modulated wave in which the excitation signal is modulated by the modulated waves sinθ and cosθ, respectively. More specifically, when the excitation signal is "sinΩt", the modulated waves are "sinθ × sinΩt" and "cosθ × sinΩt", respectively.
 レゾルバ660はレゾルバデジタルコンバータを有している。レゾルバデジタルコンバータは、生成された被変調波及び励磁信号に基づく検波によって電気角θを算出する。例えばレゾルバ660は信号端子632Cに接続されており、レゾルバデジタルコンバータの算出結果は、信号端子632Cを介して外部装置に出力される。また、回転電機500に制御装置が内蔵されている場合には、その制御装置にレゾルバデジタルコンバータの算出結果が入力される。 The resolver 660 has a resolver digital converter. The resolver digital converter calculates the electric angle θ by detecting the generated modulated wave and the excitation signal. For example, the resolver 660 is connected to the signal terminal 632C, and the calculation result of the resolver digital converter is output to an external device via the signal terminal 632C. When the rotary electric machine 500 has a built-in control device, the calculation result of the resolver digital converter is input to the control device.
 ここで、インバータハウジング531におけるレゾルバ660の組み付け構造について説明する。 Here, the assembly structure of the resolver 660 in the inverter housing 531 will be described.
 図49及び図51に示すように、インバータハウジング531を構成するボス形成部材543のボス部548は中空筒状をなしており、そのボス部548の内周側には、軸方向に直交する向きに延びる突出部548aが形成されている。そして、この突出部548aに軸方向に当接した状態で、ネジ等によりレゾルバステータ662が固定されている。ボス部548内には、突出部548aを挟んで軸方向の一方側に軸受560が設けられるとともに、他方側にレゾルバ660が同軸で設けられている。 As shown in FIGS. 49 and 51, the boss portion 548 of the boss forming member 543 constituting the inverter housing 531 has a hollow tubular shape, and the inner peripheral side of the boss portion 548 is oriented orthogonal to the axial direction. A protrusion 548a extending to the surface is formed. Then, the resolver stator 662 is fixed by a screw or the like in a state of being in contact with the protruding portion 548a in the axial direction. In the boss portion 548, a bearing 560 is provided on one side in the axial direction with the protrusion 548a interposed therebetween, and a resolver 660 is coaxially provided on the other side.
 また、ボス部548の中空部には、軸方向においてレゾルバ660の一方の側に突出部548aが設けられるとともに、他方の側に、レゾルバ660の収容空間を閉鎖する円板リング状のハウジングカバー666が取り付けられている。ハウジングカバー666は、炭素繊維強化プラスチック(CFRP)等の導電性材料により構成されている。ハウジングカバー666の中央部には、回転軸501を挿通させる孔666aが形成されている。孔666a内には、回転軸501の外周面との間の空隙を封鎖するシール材667が設けられている。シール材667により、レゾルバ収容空間が密閉されている。シール材667は、例えば樹脂材料よりなる摺動シールであるとよい。 Further, in the hollow portion of the boss portion 548, a protruding portion 548a is provided on one side of the resolver 660 in the axial direction, and a disk ring-shaped housing cover 666 that closes the accommodating space of the resolver 660 is provided on the other side. Is installed. The housing cover 666 is made of a conductive material such as carbon fiber reinforced plastic (CFRP). A hole 666a through which the rotary shaft 501 is inserted is formed in the central portion of the housing cover 666. Inside the hole 666a, a sealing material 667 is provided to seal the gap between the rotating shaft 501 and the outer peripheral surface. The resolver accommodating space is sealed by the sealing material 667. The sealing material 667 may be, for example, a sliding seal made of a resin material.
 レゾルバ660が収容される空間は、ボス形成部材543において円環状をなすボス部548に囲まれ、かつ軸方向が軸受560とハウジングカバー666とにより挟まれた空間であり、レゾルバ660の周囲は導電材料により囲まれている。これにより、レゾルバ660に対する電磁ノイズの影響を抑制できるようになっている。 The space in which the resolver 660 is housed is a space surrounded by an annular boss portion 548 in the boss forming member 543 and sandwiched between the bearing 560 and the housing cover 666 in the axial direction, and the circumference of the resolver 660 is conductive. Surrounded by material. This makes it possible to suppress the influence of electromagnetic noise on the resolver 660.
 また、上述したとおりインバータハウジング531は、二重となる外側周壁WA1と内側周壁WA2とを有しており(図57参照)、その二重となる周壁の外側(外側周壁WA1の外側)には固定子520が配置され、二重の周壁の間(WA1,WA2の間)には電気モジュール532が配置され、二重の周壁の内側(内側周壁WA2の内側)にはレゾルバ660が配置されている。インバータハウジング531は導電性部材であるため、固定子520とレゾルバ660とは、導電性の隔壁(本実施形態では特に二重の導電性隔壁)を隔てて配置されるようになっており、固定子520側(磁気回路側)とレゾルバ660とについて相互の磁気干渉の発生を好適に抑制できるものとなっている。 Further, as described above, the inverter housing 531 has a double outer peripheral wall WA1 and an inner peripheral wall WA2 (see FIG. 57), and is located outside the double peripheral wall (outside the outer peripheral wall WA1). The stator 520 is arranged, the electric module 532 is arranged between the double peripheral walls (between WA1 and WA2), and the resolver 660 is arranged inside the double peripheral wall (inside the inner peripheral wall WA2). There is. Since the inverter housing 531 is a conductive member, the stator 520 and the resolver 660 are arranged so as to be separated from each other by a conductive partition wall (particularly a double conductive partition wall in the present embodiment) and are fixed. The occurrence of mutual magnetic interference between the child 520 side (magnetic circuit side) and the resolver 660 can be suitably suppressed.
 次に、回転子キャリア511の開放端部の側に設けられる回転子カバー670について説明する。 Next, the rotor cover 670 provided on the open end side of the rotor carrier 511 will be described.
 図49及び図51に示すように、回転子キャリア511は軸方向の一方側が開放されており、その開放端部に、略円板リング状の回転子カバー670が取り付けられている。回転子カバー670は、溶接や接着、ビス止め等の任意の接合手法により回転子キャリア511に対して固定されているとよい。回転子カバー670が、磁石ユニット512の軸方向への移動を抑制できるように回転子キャリア511の内周よりも小さめに寸法設定されている部位を持つとなおよい。回転子カバー670は、その外径寸法が、回転子キャリア511の外径寸法に一致し、内径寸法が、インバータハウジング531の外径寸法よりも僅かに大きい寸法となっている。なお、インバータハウジング531の外径寸法と固定子520の内径寸法とは同じである。 As shown in FIGS. 49 and 51, one side of the rotor carrier 511 in the axial direction is open, and a substantially disk ring-shaped rotor cover 670 is attached to the open end. The rotor cover 670 may be fixed to the rotor carrier 511 by any joining method such as welding, bonding, or screwing. It is more preferable that the rotor cover 670 has a portion whose dimensions are set smaller than the inner circumference of the rotor carrier 511 so that the movement of the magnet unit 512 in the axial direction can be suppressed. The outer diameter of the rotor cover 670 matches the outer diameter of the rotor carrier 511, and the inner diameter of the rotor cover 670 is slightly larger than the outer diameter of the inverter housing 531. The outer diameter of the inverter housing 531 and the inner diameter of the stator 520 are the same.
 上述したとおりインバータハウジング531の径方向外側には固定子520が固定されており、それら固定子520及びインバータハウジング531が互いに接合されている接合部分では、固定子520に対してインバータハウジング531が軸方向に突出している。そして、インバータハウジング531の突出部分を囲むように回転子カバー670が取り付けられている。この場合、回転子カバー670の内周側の端面とインバータハウジング531の外周面との間には、それらの間の隙間を封鎖するシール材671が設けられている。シール材671により、磁石ユニット512及び固定子520の収容空間が密閉されている。シール材671は、例えば樹脂材料よりなる摺動シールであるとよい。 As described above, the stator 520 is fixed on the radial outer side of the inverter housing 531. At the joint where the stator 520 and the inverter housing 531 are joined to each other, the inverter housing 531 is shafted with respect to the stator 520. It protrudes in the direction. A rotor cover 670 is attached so as to surround the protruding portion of the inverter housing 531. In this case, a sealing material 671 for sealing the gap between the end surface of the rotor cover 670 on the inner peripheral side and the outer peripheral surface of the inverter housing 531 is provided. The accommodating space of the magnet unit 512 and the stator 520 is sealed by the sealing material 671. The sealing material 671 may be, for example, a sliding seal made of a resin material.
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。 According to the present embodiment described in detail above, the following excellent effects can be obtained.
 回転電機500において、磁石ユニット512及び固定子巻線521よりなる磁気回路部の径方向内側に、インバータハウジング531の外側周壁WA1を配置し、その外側周壁WA1に冷却水通路545を形成した。また、外側周壁WA1の径方向内側に、その外側周壁WA1に沿って周方向に複数の電気モジュール532を配置する構成とした。これにより、回転電機500の径方向に積層されるようにして磁気回路部、冷却水通路545、電力変換器を配置でき、軸方向における寸法の縮小化を図りつつ、効率の良い部品配置が可能となる。また、電力変換器を構成する複数の電気モジュール532について効率良く冷却を行わせることができる。その結果、回転電機500において、高効率かつ小型化が実現可能となる。 In the rotary electric machine 500, the outer peripheral wall WA1 of the inverter housing 531 was arranged inside the magnetic circuit portion including the magnet unit 512 and the stator winding 521 in the radial direction, and the cooling water passage 545 was formed on the outer peripheral wall WA1. Further, a plurality of electric modules 532 are arranged in the radial direction of the outer peripheral wall WA1 along the outer peripheral wall WA1 in the circumferential direction. As a result, the magnetic circuit unit, the cooling water passage 545, and the power converter can be arranged so as to be stacked in the radial direction of the rotary electric machine 500, and efficient component arrangement is possible while reducing the dimensions in the axial direction. It becomes. Further, the plurality of electric modules 532 constituting the power converter can be efficiently cooled. As a result, the rotary electric machine 500 can be realized with high efficiency and miniaturization.
 半導体スイッチング素子やコンデンサ等の発熱部品を有する電気モジュール532(スイッチモジュール532A、コンデンサモジュール532B)を、外側周壁WA1の内周面に接した状態で設ける構成とした。これにより、各電気モジュール532における熱が外側周壁WA1に伝達され、その外側周壁WA1での熱交換により電気モジュール532が好適に冷却される。 An electric module 532 (switch module 532A, capacitor module 532B) having heat generating parts such as a semiconductor switching element and a capacitor is provided in a state of being in contact with the inner peripheral surface of the outer peripheral wall WA1. As a result, the heat in each electric module 532 is transferred to the outer peripheral wall WA1, and the electric module 532 is suitably cooled by the heat exchange in the outer peripheral wall WA1.
 スイッチモジュール532Aにおいて、スイッチ601,602を挟んで両側に冷却器623をそれぞれ配置するとともに、スイッチ601,602の両側の冷却器623のうち少なくとも一方の冷却器においてスイッチ601,602とは逆側にコンデンサ604を配置する構成とした。これにより、スイッチ601,602に対する冷却性能を高めることができるとともに、コンデンサ604の冷却性能も高めることができる。 In the switch module 532A, coolers 623 are arranged on both sides of the switches 601, 602, respectively, and at least one of the coolers 623 on both sides of the switches 601, 602 is on the opposite side of the switches 601,602. The configuration is such that the capacitor 604 is arranged. As a result, the cooling performance of the switches 601, 602 can be improved, and the cooling performance of the capacitor 604 can also be improved.
 スイッチモジュール532Aにおいて、スイッチ601,602を挟んで両側に冷却器623をそれぞれ配置するとともに、スイッチ601,602の両側の冷却器623のうち一方の冷却器においてスイッチ601,602とは逆側に駆動回路603を配置し、他方の冷却器623においてスイッチ601,602とは逆側にコンデンサ604を配置する構成とした。これにより、スイッチ601,602に対する冷却性能を高めることができるとともに、駆動回路603とコンデンサ604についても冷却性能も高めることができる。 In the switch module 532A, coolers 623 are arranged on both sides of the switches 601, 602, respectively, and one of the coolers 623 on both sides of the switches 601, 602 is driven to the opposite side of the switches 601,602. The circuit 603 is arranged, and the capacitor 604 is arranged on the opposite side of the switches 601, 602 in the other cooler 623. As a result, the cooling performance of the switches 601, 602 can be improved, and the cooling performance of the drive circuit 603 and the capacitor 604 can also be improved.
 例えばスイッチモジュール532Aにおいて、冷却水通路545からモジュール内部に冷却水を流入させ、その冷却水により半導体スイッチング素子等を冷却する構成とした。この場合、スイッチモジュール532Aは、外側周壁WA1での冷却水による熱交換に加えて、モジュール内部での冷却水による熱交換により冷却される。これにより、スイッチモジュール532Aの冷却効果を高めることができる。 For example, in the switch module 532A, cooling water is made to flow into the module from the cooling water passage 545, and the semiconductor switching element or the like is cooled by the cooling water. In this case, the switch module 532A is cooled by heat exchange by the cooling water inside the module in addition to heat exchange by the cooling water on the outer peripheral wall WA1. Thereby, the cooling effect of the switch module 532A can be enhanced.
 冷却水通路545に対して外部の循環経路575から冷却水を流入させる冷却システムにおいて、スイッチモジュール532Aを冷却水通路545の入口通路571に近い上流側に配置するとともに、コンデンサモジュール532Bをスイッチモジュール532Aよりも下流側に配置する構成とした。この場合、冷却水通路545を流れる冷却水が上流側ほど低温であることを想定すれば、スイッチモジュール532Aを優先的に冷却する構成を実現することが可能になる。 In the cooling system in which the cooling water flows into the cooling water passage 545 from the external circulation path 575, the switch module 532A is arranged on the upstream side near the inlet passage 571 of the cooling water passage 545, and the condenser module 532B is placed on the switch module 532A. It is configured to be placed on the downstream side of the. In this case, assuming that the cooling water flowing through the cooling water passage 545 is lower in temperature toward the upstream side, it is possible to realize a configuration in which the switch module 532A is preferentially cooled.
 周方向に隣り合う電気モジュール同士の間隔を一部で拡げ、その拡げた間隔(第2間隔INT2)となる部分に、入口通路571及び出口通路572を有する突出部573を設ける構成とした。これにより、外側周壁WA1の径方向内側となる部分に、冷却水通路545の入口通路571及び出口通路572を好適に形成することができる。つまり、冷却性能を高めるには冷媒の流通量を確保する必要があり、そのためには入口通路571及び出口通路572の開口面積を大きくすることが考えられる。この点、上記のとおり電気モジュール同士の間隔を一部で拡げて突出部573を設けることにより、所望とする大きさの入口通路571及び出口通路572を好適に形成することができる。 The distance between the electric modules adjacent to each other in the circumferential direction was partially widened, and a protruding portion 573 having an inlet passage 571 and an outlet passage 57 2 was provided in the portion where the distance was widened (second interval INT2). As a result, the inlet passage 571 and the outlet passage 572 of the cooling water passage 545 can be suitably formed in the portion on the outer peripheral wall WA1 in the radial direction. That is, in order to improve the cooling performance, it is necessary to secure the flow amount of the refrigerant, and for that purpose, it is conceivable to increase the opening areas of the inlet passage 571 and the outlet passage 572. In this regard, as described above, by partially widening the distance between the electric modules and providing the protruding portion 573, the inlet passage 571 and the outlet passage 572 having a desired size can be suitably formed.
 バスバーモジュール533の外部接続端子632を、外側周壁WA1の径方向内側において突出部573に径方向に並ぶ位置に配置するようにした。つまり、外部接続端子632を、周方向に隣り合う電気モジュール同士の間隔が拡げられた部分(第2間隔INT2に相当する部分)に突出部573と共に配置するようにした。これにより、各電気モジュール532との干渉を避けつつ、外部接続端子632を好適に配置することができる。 The external connection terminal 632 of the bus bar module 533 is arranged at a position radially aligned with the protrusion 573 on the radial inside of the outer peripheral wall WA1. That is, the external connection terminal 632 is arranged together with the protrusion 573 in the portion where the distance between the electric modules adjacent to each other in the circumferential direction is widened (the part corresponding to the second distance INT2). As a result, the external connection terminal 632 can be preferably arranged while avoiding interference with each electric module 532.
 アウタロータ式の回転電機500において、外側周壁WA1の径方向外側に固定子520を固定し、かつ径方向内側に複数の電気モジュール532を配置する構成とした。これにより、外側周壁WA1に対して、その径方向外側から固定子520の熱が伝わるとともに、径方向内側から電気モジュール532の熱が伝わることになる。この場合、固定子520と電気モジュール532とを,冷却水通路545を流れる冷却水により同時に冷やすことが可能となり、回転電機500における発熱部材の熱を効率良く放出することができる。 In the outer rotor type rotary electric machine 500, the stator 520 is fixed on the radial outside of the outer peripheral wall WA1, and a plurality of electric modules 532 are arranged on the radial inside. As a result, the heat of the stator 520 is transferred to the outer peripheral wall WA1 from the radial outer side, and the heat of the electric module 532 is transferred from the radial inner side. In this case, the stator 520 and the electric module 532 can be cooled at the same time by the cooling water flowing through the cooling water passage 545, and the heat of the heat generating member in the rotary electric machine 500 can be efficiently released.
 外側周壁WA1を挟んで径方向内側の電気モジュール532と径方向外側の固定子巻線521とを、バスバーモジュール533の巻線接続端子633により電気的に接続する構成とした。またこの場合、巻線接続端子633を、冷却水通路545に対して軸方向に離れた位置に設ける構成とした。これにより、外側周壁WA1において環状に冷却水通路545が形成される構成、すなわち外側周壁WA1の内外が冷却水通路545により分断されている構成であっても、電気モジュール532と固定子巻線521とを好適に接続することができる。 The electric module 532 on the inner side in the radial direction and the stator winding 521 on the outer side in the radial direction are electrically connected by the winding connection terminal 633 of the bus bar module 533 with the outer peripheral wall WA1 interposed therebetween. Further, in this case, the winding connection terminal 633 is provided at a position axially separated from the cooling water passage 545. As a result, even if the cooling water passage 545 is formed in an annular shape on the outer peripheral wall WA1, that is, the inside and outside of the outer peripheral wall WA1 are separated by the cooling water passage 545, the electric module 532 and the stator winding 521 Can be suitably connected to.
 本実施形態の回転電機500では、固定子520において周方向に並ぶ各導線523の間のティース(鉄心)を小さくする又は無くすことで、それら各導線523の間で生じる磁気飽和に起因するトルク制限を抑制するとともに、導線523を扁平薄型にすることでトルク低下を抑制するものとしている。この場合、仮に回転電機500の外径寸法が同じであっても、固定子520の薄型化により磁気回路部の径方向内側の領域を拡張することが可能となり、その内側領域を用いて、冷却水通路545を有する外側周壁WA1や、外側周壁WA1の径方向内側に設けられた複数の電気モジュール532を好適に配置することができる。 In the rotary electric machine 500 of the present embodiment, by reducing or eliminating the teeth (iron cores) between the conductors 523 arranged in the circumferential direction in the stator 520, the torque is limited due to the magnetic saturation generated between the conductors 523. The torque drop is suppressed by making the conductor 523 flat and thin. In this case, even if the outer diameter of the rotary electric machine 500 is the same, the area inside the magnetic circuit portion in the radial direction can be expanded by reducing the thickness of the stator 520, and the inner area is used for cooling. An outer peripheral wall WA1 having a water passage 545 and a plurality of electric modules 532 provided radially inside the outer peripheral wall WA1 can be preferably arranged.
 本実施形態の回転電機500では、磁石ユニット512において磁石磁束がd軸側に集まることでd軸での磁石磁束が強化され、それに伴うトルク増強が可能となっている。この場合、磁石ユニット512において径方向の厚さ寸法の縮小化(薄型化)が可能になることに伴い、磁気回路部の径方向内側の領域を拡張することが可能となり、その内側領域を用いて、冷却水通路545を有する外側周壁WA1や、外側周壁WA1の径方向内側に設けられた複数の電気モジュール532を好適に配置することができる。 In the rotary electric machine 500 of the present embodiment, the magnetic flux on the d-axis is strengthened by collecting the magnetic flux on the d-axis side in the magnet unit 512, and the torque can be increased accordingly. In this case, as the thickness dimension in the radial direction can be reduced (thinned) in the magnet unit 512, the area inside the magnetic circuit portion in the radial direction can be expanded, and the inner area is used. Therefore, the outer peripheral wall WA1 having the cooling water passage 545 and a plurality of electric modules 532 provided on the inner side in the radial direction of the outer peripheral wall WA1 can be preferably arranged.
 また、磁気回路部、外側周壁WA1、複数の電気モジュール532だけでなく、軸受560やレゾルバ660についても同様に、径方向に好適に配置することができる。 Further, not only the magnetic circuit unit, the outer peripheral wall WA1, and the plurality of electric modules 532, but also the bearing 560 and the resolver 660 can be preferably arranged in the radial direction.
 回転電機500をインホイールモータとして用いた車輪400は、インバータハウジング531に固定されたベースプレート405と、サスペンション装置等の装着機構とを介して車体に装着される。ここで、回転電機500では小型化が実現されていることから、車体への組み付けを想定しても省スペース化が可能となる。そのため、車両においてバッテリ等の電源装置の設置領域を拡大したり、車室スペースを拡張したりする上で有利な構成を実現できる。 The wheel 400 using the rotary electric machine 500 as an in-wheel motor is mounted on the vehicle body via a base plate 405 fixed to the inverter housing 531 and a mounting mechanism such as a suspension device. Here, since the rotary electric machine 500 has been miniaturized, it is possible to save space even if it is assumed to be assembled to the vehicle body. Therefore, it is possible to realize an advantageous configuration in expanding the installation area of the power supply device such as a battery in the vehicle and expanding the vehicle interior space.
 以下に、インホイールモータに関する変形例を説明する。 Below, a modified example of the in-wheel motor will be described.
 (インホイールモータにおける変形例1)
 回転電機500では、インバータユニット530の外側周壁WA1の径方向内側に、電気モジュール532及びバスバーモジュール533が配置されるとともに、外側周壁WA1を隔てて径方向の内側及び外側に、電気モジュール532及びバスバーモジュール533と、固定子520とがそれぞれ配置されている。かかる構成において、電気モジュール532に対するバスバーモジュール533の位置は任意に設定可能である。また、外側周壁WA1を径方向に横切って固定子巻線521の各相巻線とバスバーモジュール533とを接続する場合において、その接続に用いられる巻線接続線(例えば巻線接続端子633)を案内する位置は任意に設定可能である。
(Modification example 1 in an in-wheel motor)
In the rotary electric machine 500, the electric module 532 and the bus bar module 533 are arranged radially inside the outer peripheral wall WA1 of the inverter unit 530, and the electric module 532 and the bus bar are arranged radially inside and outside across the outer peripheral wall WA1. The module 533 and the stator 520 are arranged respectively. In such a configuration, the position of the bus bar module 533 with respect to the electric module 532 can be arbitrarily set. Further, when connecting each phase winding of the stator winding 521 and the bus bar module 533 across the outer peripheral wall WA1 in the radial direction, the winding connection line (for example, winding connection terminal 633) used for the connection is connected. The guide position can be set arbitrarily.
 すなわち、電気モジュール532に対するバスバーモジュール533の位置としては、(α1)バスバーモジュール533を、軸方向において電気モジュール532よりも車両外側、すなわち回転子キャリア511側の奥側とする構成と、
(α2)バスバーモジュール533を、軸方向において電気モジュール532よりも車両内側、すなわち回転子キャリア511側の手前側とする構成と、
が考えられる。
That is, the position of the bus bar module 533 with respect to the electric module 532 is such that the (α1) bus bar module 533 is located outside the vehicle in the axial direction, that is, behind the rotor carrier 511 side.
(Α2) The bus bar module 533 is located inside the vehicle in the axial direction from the electric module 532, that is, on the front side of the rotor carrier 511 side.
Can be considered.
 また、巻線接続線を案内する位置としては、
(β1)巻線接続線を、軸方向において車両外側、すなわち回転子キャリア511側の奥側で案内する構成と、
(β2)巻線接続線を、軸方向において車両内側、すなわち回転子キャリア511側の手前側で案内する構成と、
が考えられる。
Also, as a position to guide the winding connection line,
(Β1) A configuration in which the winding connection wire is guided in the axial direction on the outside of the vehicle, that is, on the back side of the rotor carrier 511.
(Β2) A configuration in which the winding connection wire is guided inside the vehicle in the axial direction, that is, on the front side of the rotor carrier 511 side.
Can be considered.
 以下には、電気モジュール532、バスバーモジュール533及び巻線接続線の配置に関する4つの構成例を、図72(a)~(d)を用いて説明する。図72(a)~(d)は、回転電機500の構成を簡略化して示す縦断面図であり、同図には、既に説明した構成に同じ符号が付されている。巻線接続線637は、固定子巻線521の各相巻線とバスバーモジュール533とを接続する電気配線であり、例えば既述の巻線接続端子633がこれに相当する。 Hereinafter, four configuration examples relating to the arrangement of the electric module 532, the bus bar module 533, and the winding connection line will be described with reference to FIGS. 72 (a) to 72 (d). 72 (a) to 72 (d) are vertical cross-sectional views showing the configuration of the rotary electric machine 500 in a simplified manner, and the same reference numerals are given to the configurations already described in the drawings. The winding connection line 637 is an electric wiring that connects each phase winding of the stator winding 521 and the bus bar module 533, and for example, the winding connection terminal 633 described above corresponds to this.
 図72(a)の構成では、電気モジュール532に対するバスバーモジュール533の位置として上記(α1)を採用するとともに、巻線接続線637を案内する位置として上記(β1)を採用している。つまり、電気モジュール532及びバスバーモジュール533、固定子巻線521及びバスバーモジュール533がいずれも車両外側(回転子キャリア511の奥側)で接続される構成となっている。なおこれは、図49に示す構成に相当する。 In the configuration of FIG. 72 (a), the above (α1) is adopted as the position of the bus bar module 533 with respect to the electric module 532, and the above (β1) is adopted as the position for guiding the winding connection line 637. That is, the electric module 532, the bus bar module 533, the stator winding 521, and the bus bar module 533 are all connected on the outside of the vehicle (the back side of the rotor carrier 511). This corresponds to the configuration shown in FIG. 49.
 本構成によれば、外側周壁WA1において、巻線接続線637との干渉を懸念することなく冷却水通路545を設けることができる。また、固定子巻線521とバスバーモジュール533とを接続する巻線接続線637を簡易に実現できる。 According to this configuration, the cooling water passage 545 can be provided on the outer peripheral wall WA1 without fear of interference with the winding connection line 637. Further, the winding connection line 637 that connects the stator winding 521 and the bus bar module 533 can be easily realized.
 図72(b)の構成では、電気モジュール532に対するバスバーモジュール533の位置として上記(α1)を採用するとともに、巻線接続線637を案内する位置として上記(β2)を採用している。つまり、電気モジュール532とバスバーモジュール533とが車両外側(回転子キャリア511の奥側)で接続されるとともに、固定子巻線521とバスバーモジュール533とが車両内側(回転子キャリア511の手前側)で接続される構成となっている。 In the configuration of FIG. 72 (b), the above (α1) is adopted as the position of the bus bar module 533 with respect to the electric module 532, and the above (β2) is adopted as the position for guiding the winding connection line 637. That is, the electric module 532 and the bus bar module 533 are connected on the outside of the vehicle (the back side of the rotor carrier 511), and the stator winding 521 and the bus bar module 533 are connected on the inside of the vehicle (the front side of the rotor carrier 511). It is configured to be connected with.
 本構成によれば、外側周壁WA1において、巻線接続線637との干渉を懸念することなく冷却水通路545を設けることができる。 According to this configuration, the cooling water passage 545 can be provided on the outer peripheral wall WA1 without fear of interference with the winding connection line 637.
 図72(c)の構成では、電気モジュール532に対するバスバーモジュール533の位置として上記(α2)を採用するとともに、巻線接続線637を案内する位置として上記(β1)を採用している。つまり、電気モジュール532とバスバーモジュール533とが車両内側(回転子キャリア511の手前側)で接続されるとともに、固定子巻線521とバスバーモジュール533とが車両外側(回転子キャリア511の奥側)で接続される構成となっている。 In the configuration of FIG. 72 (c), the above (α2) is adopted as the position of the bus bar module 533 with respect to the electric module 532, and the above (β1) is adopted as the position for guiding the winding connection line 637. That is, the electric module 532 and the bus bar module 533 are connected inside the vehicle (front side of the rotor carrier 511), and the stator winding 521 and the bus bar module 533 are connected outside the vehicle (back side of the rotor carrier 511). It is configured to be connected with.
 図72(d)の構成では、電気モジュール532に対するバスバーモジュール533の位置として上記(α2)を採用するとともに、巻線接続線637を案内する位置として上記(β2)を採用している。つまり、電気モジュール532及びバスバーモジュール533、固定子巻線521及びバスバーモジュール533がいずれも車両内側(回転子キャリア511の手前側)で接続される構成となっている。 In the configuration of FIG. 72 (d), the above (α2) is adopted as the position of the bus bar module 533 with respect to the electric module 532, and the above (β2) is adopted as the position for guiding the winding connection line 637. That is, the electric module 532, the bus bar module 533, the stator winding 521, and the bus bar module 533 are all connected inside the vehicle (on the front side of the rotor carrier 511).
 図72(c)、図72(d)の構成によれば、バスバーモジュール533が車両内側(回転子キャリア511の手前側)に配置されることで、仮にファンモータなどの電気部品を追加しようとする場合に、その配線が容易となることが考えられる。また、軸受よりも車両内側に配置されるレゾルバ660に対してバスバーモジュール533を近づけることが可能になり、レゾルバ660に対する配線が容易になることも考えられる。 According to the configurations of FIGS. 72 (c) and 72 (d), the bus bar module 533 is arranged inside the vehicle (on the front side of the rotor carrier 511) to temporarily add an electric component such as a fan motor. In that case, it is considered that the wiring becomes easy. Further, it is possible that the bus bar module 533 can be brought closer to the resolver 660 arranged inside the vehicle than the bearing, and it is considered that the wiring to the resolver 660 becomes easier.
 (インホイールモータにおける変形例2)
 以下に、レゾルバロータ661の取付構造の変形例を説明する。すなわち、回転軸501、回転子キャリア511及び軸受560の内輪561は一体的に回転する回転体であり、その回転体に対するレゾルバロータ661の取付構造の変形例について以下に説明する。
(Modification example 2 in an in-wheel motor)
A modified example of the mounting structure of the resolver rotor 661 will be described below. That is, the rotating shaft 501, the rotor carrier 511, and the inner ring 561 of the bearing 560 are rotating bodies that rotate integrally, and a modified example of the mounting structure of the resolver rotor 661 with respect to the rotating body will be described below.
 図73(a)~(c)は、上記回転体に対するレゾルバロータ661の取付構造例を示す構成図である。いずれの構成においても、レゾルバ660は、回転子キャリア511及びインバータハウジング531等により囲まれ、外部からの被水や被泥等から防護された密閉空間に設けられている。図73(a)~(c)のうち図73(a)では、軸受560を、図49と同じ構成としている。また、図73(b)、図73(c)では、軸受560を、図49とは異なる構成とし、かつ回転子キャリア511の端板514から離れた位置に配置している。これら各図には、レゾルバロータ661の取付場所としてそれぞれ2カ所を例示している。なお、レゾルバステータ662については図示されていないが、例えばボス形成部材543のボス部548をレゾルバロータ661の外周側又はその付近まで延ばし、そのボス部548にレゾルバステータ662が固定されていればよい。 FIGS. 73 (a) to 73 (c) are block diagrams showing an example of a mounting structure of the resolver rotor 661 to the rotating body. In either configuration, the resolver 660 is provided in a closed space surrounded by a rotor carrier 511, an inverter housing 531 and the like, and protected from external water and mud. Of FIGS. 73 (a) to 73 (c), in FIG. 73 (a), the bearing 560 has the same configuration as that in FIG. 49. Further, in FIGS. 73 (b) and 73 (c), the bearing 560 has a configuration different from that of FIG. 49, and is arranged at a position away from the end plate 514 of the rotor carrier 511. In each of these figures, two locations are illustrated as mounting locations for the resolver rotor 661. Although the resolver stator 662 is not shown, for example, the boss portion 548 of the boss forming member 543 may be extended to the outer peripheral side of the resolver rotor 661 or its vicinity, and the resolver stator 662 may be fixed to the boss portion 548. ..
 図73(a)の構成では、軸受560の内輪561にレゾルバロータ661が取り付けられている。具体的には、レゾルバロータ661が、内輪561のフランジ561bの軸方向端面に設けられているか、又は内輪561の筒部561aの軸方向端面に設けられている。 In the configuration of FIG. 73A, the resolver rotor 661 is attached to the inner ring 561 of the bearing 560. Specifically, the resolver rotor 661 is provided on the axial end face of the flange 561b of the inner ring 561, or is provided on the axial end face of the tubular portion 561a of the inner ring 561.
 図73(b)の構成では、回転子キャリア511にレゾルバロータ661が取り付けられている。具体的には、レゾルバロータ661が、回転子キャリア511において端板514の内面に設けられている。又は、回転子キャリア511が、端板514の内周縁部から回転軸501に沿って延びる筒部515を有する構成において、レゾルバロータ661が、回転子キャリア511の筒部515の外周面に設けられている。後者の場合、レゾルバロータ661は、回転子キャリア511の端板514と軸受560との間に配置されている。 In the configuration of FIG. 73 (b), the resolver rotor 661 is attached to the rotor carrier 511. Specifically, the resolver rotor 661 is provided on the inner surface of the end plate 514 in the rotor carrier 511. Alternatively, in a configuration in which the rotor carrier 511 has a tubular portion 515 extending from the inner peripheral edge portion of the end plate 514 along the rotation shaft 501, the resolver rotor 661 is provided on the outer peripheral surface of the tubular portion 515 of the rotor carrier 511. ing. In the latter case, the resolver rotor 661 is arranged between the end plate 514 of the rotor carrier 511 and the bearing 560.
 図73(c)の構成では、回転軸501にレゾルバロータ661が取り付けられている。具体的には、レゾルバロータ661が、回転軸501において回転子キャリア511の端板514と軸受560との間に設けられているか、又は回転軸501において軸受560を挟んで回転子キャリア511の反対側に配置されている。 In the configuration of FIG. 73 (c), the resolver rotor 661 is attached to the rotating shaft 501. Specifically, the resolver rotor 661 is provided between the end plate 514 of the rotor carrier 511 and the bearing 560 on the rotating shaft 501, or is opposite to the rotor carrier 511 with the bearing 560 sandwiched on the rotating shaft 501. It is located on the side.
 (インホイールモータにおける変形例3)
 以下に、インバータハウジング531及び回転子カバー670の変形例を図74を用いて説明する。図74(a)、図74(b)は、回転電機500の構成を簡略化して示す縦断面図であり、同図には、既に説明した構成に同じ符号が付されている。なお、図74(a)に示す構成は、実質的に図49等で説明した構成に相当し、図74(b)に示す構成は、図74(a)の構成の一部を変更した構成に相当する。
(Modification example 3 in an in-wheel motor)
A modification of the inverter housing 531 and the rotor cover 670 will be described below with reference to FIG. 74. 74 (a) and 74 (b) are vertical cross-sectional views showing a simplified configuration of the rotary electric machine 500, in which the same reference numerals are given to the configurations already described. The configuration shown in FIG. 74 (a) substantially corresponds to the configuration described in FIG. 49 and the like, and the configuration shown in FIG. 74 (b) is a configuration in which a part of the configuration of FIG. 74 (a) is modified. Corresponds to.
 図74(a)に示す構成では、回転子キャリア511の開放端部に固定された回転子カバー670が、インバータハウジング531の外側周壁WA1を囲むように設けられている。つまり、回転子カバー670の内径側の端面が外側周壁WA1の外周面に対向しており、それら両者の間にシール材671が設けられている。また、インバータハウジング531のボス部548の中空部にはハウジングカバー666が取り付けられ、そのハウジングカバー666と回転軸501との間にシール材667が設けられている。バスバーモジュール533を構成する外部接続端子632は、インバータハウジング531を貫通して車両内側(図の下側)に延びている。 In the configuration shown in FIG. 74A, a rotor cover 670 fixed to the open end of the rotor carrier 511 is provided so as to surround the outer peripheral wall WA1 of the inverter housing 531. That is, the end surface on the inner diameter side of the rotor cover 670 faces the outer peripheral surface of the outer peripheral wall WA1, and a sealing material 671 is provided between them. A housing cover 666 is attached to the hollow portion of the boss portion 548 of the inverter housing 531, and a sealing material 667 is provided between the housing cover 666 and the rotating shaft 501. The external connection terminal 632 constituting the bus bar module 533 penetrates the inverter housing 531 and extends to the inside of the vehicle (lower side in the figure).
 また、インバータハウジング531には、冷却水通路545に連通する入口通路571及び出口通路572が形成されるとともに、それら入口通路571及び出口通路572の通路端部を含む水路ポート574が形成されている。 Further, the inverter housing 531 is formed with an inlet passage 571 and an outlet passage 57 2 communicating with the cooling water passage 545, and a water channel port 574 including the passage ends of the inlet passage 571 and the outlet passage 572. ..
 これに対して、図74(b)に示す構成では、インバータハウジング531(詳しくはボス形成部材543)に、回転軸501の突出側(車両内側)に延びる環状の凸部681が形成されており、回転子カバー670が、インバータハウジング531の凸部681を囲むように設けられている。つまり、回転子カバー670の内径側の端面が凸部681の外周面に対向しており、それら両者の間にシール材671が設けられている。また、バスバーモジュール533を構成する外部接続端子632は、インバータハウジング531のボス部548を貫通してボス部548の中空領域に延びるとともに、ハウジングカバー666を貫通して車両内側(図の下側)に延びている。 On the other hand, in the configuration shown in FIG. 74 (b), the inverter housing 531 (specifically, the boss forming member 543) is formed with an annular convex portion 681 extending toward the protruding side (inside the vehicle) of the rotating shaft 501. , The rotor cover 670 is provided so as to surround the convex portion 681 of the inverter housing 531. That is, the end surface on the inner diameter side of the rotor cover 670 faces the outer peripheral surface of the convex portion 681, and the sealing material 671 is provided between them. Further, the external connection terminal 632 constituting the bus bar module 533 penetrates the boss portion 548 of the inverter housing 531 and extends into the hollow region of the boss portion 548, and also penetrates the housing cover 666 and penetrates the inside of the vehicle (lower side of the figure). Extends to.
 また、インバータハウジング531には、冷却水通路545に連通する入口通路571及び出口通路572が形成されており、それら入口通路571及び出口通路572は、ボス部548の中空領域に延び、かつ中継配管682を介してハウジングカバー666よりも車両内側(図の下側)に延びている。本構成では、ハウジングカバー666から車両内側に延びる配管部分が水路ポート574となっている。 Further, the inverter housing 531 is formed with an inlet passage 571 and an outlet passage 572 communicating with the cooling water passage 545, and the inlet passage 571 and the outlet passage 572 extend into the hollow region of the boss portion 548 and are a relay pipe. It extends to the inside of the vehicle (lower side of the figure) from the housing cover 666 via 682. In this configuration, the piping portion extending from the housing cover 666 to the inside of the vehicle is the water channel port 574.
 図74(a)、図74(b)の各構成によれば、回転子キャリア511及び回転子カバー670の内部空間の密閉性を保持しつつ、これら回転子キャリア511及び回転子カバー670をインバータハウジング531に対して好適に回転させることができる。 According to the configurations of FIGS. 74 (a) and 74 (b), the rotor carrier 511 and the rotor cover 670 are integrated with the rotor carrier 511 and the rotor cover 670 while maintaining the airtightness of the internal space of the rotor carrier 511 and the rotor cover 670. It can be suitably rotated with respect to the housing 531.
 また特に、図74(b)の構成によれば、図74(a)の構成に比べて、回転子カバー670の内径が小さくなっている。そのため、電気モジュール532よりも車両内側となる位置に、インバータハウジング531と回転子カバー670とが軸方向に二重に設けられるようになり、電気モジュール532にて懸念される電磁ノイズによる不都合を抑制することができる。また、回転子カバー670の内径を小さくすることによりシール材671の摺動径が小さくなり、回転摺動部分における機械的ロスを抑制することができる。 In particular, according to the configuration of FIG. 74 (b), the inner diameter of the rotor cover 670 is smaller than that of the configuration of FIG. 74 (a). Therefore, the inverter housing 531 and the rotor cover 670 are provided twice in the axial direction at a position inside the vehicle from the electric module 532, and the inconvenience caused by electromagnetic noise, which is a concern in the electric module 532, is suppressed. can do. Further, by reducing the inner diameter of the rotor cover 670, the sliding diameter of the sealing material 671 can be reduced, and mechanical loss in the rotating sliding portion can be suppressed.
 (インホイールモータにおける変形例4)
 以下に、固定子巻線521の変形例を説明する。図75に、固定子巻線521に関する変形例を示す。
(Modification example 4 in an in-wheel motor)
A modified example of the stator winding 521 will be described below. FIG. 75 shows a modified example of the stator winding 521.
 図75に示すように、固定子巻線521は、横断面が矩形状をなす導線材を用い、その導線材の長辺が周方向に延びる向きにして波巻により巻回されている。この場合、固定子巻線521においてコイルサイドとなる各相の導線523は、相ごとに所定ピッチ間隔で配置されるとともに、コイルエンドで互いに接続されている。コイルサイドにおいて周方向に隣り合う各導線523は、周方向の端面同士が互いに当接するか、又は微小な間隔を隔てて近接配置されている。 As shown in FIG. 75, the stator winding 521 uses a conducting wire having a rectangular cross section, and is wound by a wave winding with the long side of the conducting wire extending in the circumferential direction. In this case, the lead wires 523 of each phase on the coil side of the stator winding 521 are arranged at predetermined pitch intervals for each phase and are connected to each other at the coil ends. The conductive wires 523 adjacent to each other in the circumferential direction on the coil side are in contact with each other at the end faces in the circumferential direction, or are arranged close to each other at a minute interval.
 また、固定子巻線521では、コイルエンドにおいて相ごとに導線材が径方向に折り曲げられている。より詳しくは、固定子巻線521(導線材)は、軸方向において相ごとに異なる位置にて径方向内側に折り曲げられており、これにより、U相、V相及びW相の各相巻線における互いの干渉が回避されている。図示の構成では、各相巻線で導線材の厚み分だけ異ならせて、相ごとに導線材が径方向内側に直角に折り曲げられている。周方向に並ぶ各導線523において軸方向の両端間の長さ寸法は各導線523で同じであるとよい。 Further, in the stator winding 521, the conducting wire material is bent in the radial direction for each phase at the coil end. More specifically, the stator winding 521 (conductor) is bent inward in the radial direction at different positions for each phase in the axial direction, whereby the U-phase, V-phase, and W-phase windings are formed. Interference with each other is avoided. In the illustrated configuration, the conductors are bent at right angles inward in the radial direction for each phase, with each phase winding being different by the thickness of the conductor. In each of the conductors 523 arranged in the circumferential direction, the length dimension between both ends in the axial direction may be the same for each of the conductors 523.
 なお、固定子巻線521に固定子コア522を組み付けて固定子520を製作する際には、固定子巻線521において円環状の一部を非接続として切り離しておき(すなわち、固定子巻線521を略C字状にしておき)、固定子巻線521の内周側に固定子コア522を組み付けた後に、切り離し部分を互いに接続させて固定子巻線521を円環状にするとよい。 When the stator core 522 is assembled to the stator winding 521 to manufacture the stator 520, a part of the annular shape of the stator winding 521 is disconnected as a non-connection (that is, the stator winding). 521 may be substantially C-shaped), and after assembling the stator core 522 on the inner peripheral side of the stator winding 521, the disconnecting portions may be connected to each other to form the stator winding 521 in an annular shape.
 上記以外に、固定子コア522を周方向にて複数(例えば3つ以上)に分割しておき、円環状に形成された固定子巻線521の内周側に、複数に分割されたコア片を組み付けるようにすることも可能である。 In addition to the above, the stator core 522 is divided into a plurality of parts (for example, three or more) in the circumferential direction, and the core pieces divided into a plurality of pieces are formed on the inner peripheral side of the stator winding 521 formed in an annular shape. It is also possible to assemble.
 (他の変形例)
 ・例えば図50に示すように、回転電機500では、冷却水通路545の入口通路571と出口通路572とが一カ所にまとめて設けられているが、この構成を変更し、入口通路571と出口通路572とが周方向に異なる位置にそれぞれ設けられていてもよい。例えば、入口通路571と出口通路572とを周方向に180度異なる位置に設ける構成や、入口通路571及び出口通路572の少なくともいずれかを複数設ける構成であってもよい。
(Other variants)
-For example, as shown in FIG. 50, in the rotary electric machine 500, the inlet passage 571 and the outlet passage 572 of the cooling water passage 545 are provided together in one place. However, this configuration has been changed to change the configuration so that the inlet passage 571 and the outlet are provided. The passages 572 may be provided at different positions in the circumferential direction. For example, the inlet passage 571 and the exit passage 57 2 may be provided at positions different from each other by 180 degrees in the circumferential direction, or at least one of the inlet passage 571 and the exit passage 572 may be provided in a plurality of positions.
 ・上記実施形態の車輪400では、回転電機500の軸方向の片側に回転軸501を突出させる構成としたが、これを変更し、軸方向の両方に回転軸501を突出させる構成としてもよい。これにより、例えば車両前後の少なくとも一方が1輪となる車両において好適な構成を実現できる。 -The wheel 400 of the above embodiment has a configuration in which the rotary shaft 501 protrudes on one side in the axial direction of the rotary electric machine 500, but this may be changed to a configuration in which the rotary shaft 501 protrudes in both axial directions. Thereby, for example, a suitable configuration can be realized in a vehicle in which at least one of the front and rear of the vehicle is one wheel.
 ・車輪400に用いられる回転電機500として、インナロータ式の回転電機を用いることも可能である。 -It is also possible to use an inner rotor type rotary electric machine as the rotary electric machine 500 used for the wheel 400.
 (変形例15)
 次に、本変形例における回転電機700について説明する。回転電機700は、車両の駆動用ユニットとして用いられる。回転電機700の概要を図76~図78に示す。図76は、回転電機700の全体を示す斜視図であり、図77は、回転電機700の縦断面図であり、図78は、回転電機700の構成要素を分解した分解断面図である。
(Modification 15)
Next, the rotary electric machine 700 in this modification will be described. The rotary electric machine 700 is used as a vehicle driving unit. The outline of the rotary electric machine 700 is shown in FIGS. 76 to 78. FIG. 76 is a perspective view showing the entire rotary electric machine 700, FIG. 77 is a vertical sectional view of the rotary electric machine 700, and FIG. 78 is an exploded sectional view of components of the rotary electric machine 700.
 回転電機700は、アウタロータ式の表面磁石型回転電機である。回転電機700は、大別して、回転子710、固定子730、インナユニット770及びバスバーモジュール810を有する回転電機本体と、その回転電機本体を囲むように設けられるハウジング831及びカバー832とを備えている。これら各部材はいずれも、回転子710に一体に設けられた回転軸701に対して同軸に配置されており、所定順序で軸方向に組み付けられることで回転電機700が構成されている。回転子710は、インナユニット770の径方向内側に設けられた一対の軸受791,792に片持ち支持され、その状態で回転可能となっている。回転軸701には、車両の車軸や車輪等に固定される連結軸705が一体に設けられている。 The rotary electric machine 700 is an outer rotor type surface magnet type rotary electric machine. The rotary electric machine 700 is roughly classified into a rotary electric machine main body having a rotor 710, a stator 730, an inner unit 770 and a bus bar module 810, and a housing 831 and a cover 832 provided so as to surround the rotary electric machine main body. .. Each of these members is arranged coaxially with respect to the rotating shaft 701 integrally provided on the rotor 710, and is assembled in the axial direction in a predetermined order to form the rotating electric machine 700. The rotor 710 is cantilevered by a pair of bearings 791 and 792 provided inside the inner unit 770 in the radial direction, and can rotate in that state. The rotating shaft 701 is integrally provided with a connecting shaft 705 fixed to the axle, wheels, or the like of the vehicle.
 回転電機700において、回転子710及び固定子730はそれぞれ円筒状をなしており、エアギャップを挟んで径方向に対向配置されている。回転子710が回転軸701と共に一体回転することにより、固定子730の径方向外側にて回転子710が回転する。回転子710が「界磁子」に相当し、固定子730が「電機子」に相当する。 In the rotary electric machine 700, the rotor 710 and the stator 730 each have a cylindrical shape, and are arranged so as to face each other in the radial direction with an air gap in between. As the rotor 710 rotates integrally with the rotation shaft 701, the rotor 710 rotates on the radial outer side of the stator 730. The rotor 710 corresponds to the "field magnet" and the stator 730 corresponds to the "armature".
 図79に示すように、回転子710は、略円筒状の回転子キャリア711と、その回転子キャリア711に固定された環状の磁石ユニット712とを有している。回転子キャリア711は、端板部713と、その端板部713の外周部から軸方向に延びる筒部714とを有している。端板部713には貫通孔713aが形成されており、その貫通孔713aに挿通された状態で、ボルト等の締結具715により端板部713に回転軸701が固定されている。回転軸701は、回転子キャリア711が固定される部分に、軸方向に交差(直交)する向きに延びるフランジ702を有しており、そのフランジ702と端板部713とが面接合されている状態で、回転軸701に対して回転子キャリア711が固定されている。 As shown in FIG. 79, the rotor 710 has a substantially cylindrical rotor carrier 711 and an annular magnet unit 712 fixed to the rotor carrier 711. The rotor carrier 711 has an end plate portion 713 and a tubular portion 714 extending in the axial direction from the outer peripheral portion of the end plate portion 713. A through hole 713a is formed in the end plate portion 713, and the rotating shaft 701 is fixed to the end plate portion 713 by a fastener 715 such as a bolt in a state of being inserted into the through hole 713a. The rotating shaft 701 has a flange 702 extending in a direction intersecting (orthogonal) in the axial direction at a portion where the rotor carrier 711 is fixed, and the flange 702 and the end plate portion 713 are surface-joined. In this state, the rotor carrier 711 is fixed to the rotating shaft 701.
 磁石ユニット712は、円筒状の磁石ホルダ721と、その磁石ホルダ721の内周面に固定された磁石722と、磁石722の軸方向両側において回転子キャリア711とは逆側に固定されたエンドプレート723とを有している。磁石ホルダ721は、軸方向において磁石722と同じ長さ寸法を有している。磁石722は、磁石ホルダ721に径方向外側から包囲された状態で設けられている。また、磁石ホルダ721及び磁石722は、軸方向両端のうち一端側が回転子キャリア711に当接した状態で固定され、他端側がエンドプレート723に当接した状態で固定されている。 The magnet unit 712 includes a cylindrical magnet holder 721, a magnet 722 fixed to the inner peripheral surface of the magnet holder 721, and an end plate fixed on both sides of the magnet 722 in the axial direction opposite to the rotor carrier 711. It has 723 and. The magnet holder 721 has the same length dimension as the magnet 722 in the axial direction. The magnet 722 is provided in the magnet holder 721 in a state of being surrounded from the outside in the radial direction. Further, the magnet holder 721 and the magnet 722 are fixed in a state where one end side of both ends in the axial direction is in contact with the rotor carrier 711, and the other end side is fixed in a state of being in contact with the end plate 723.
 回転子キャリア711、磁石ホルダ721及びエンドプレート723はいずれも非磁性体であるアルミニウム又は非磁性ステンレス(例えばSUS304)により構成されている。これら各部材は、アルミニウム等の軽金属により構成されることが望ましいが、これに代えて、合成樹脂により構成されることも可能である。これら各部材は、接着又は溶接により接合されているとよい。 The rotor carrier 711, the magnet holder 721, and the end plate 723 are all made of non-magnetic aluminum or non-magnetic stainless steel (for example, SUS304). Each of these members is preferably made of a light metal such as aluminum, but can be made of a synthetic resin instead. Each of these members may be joined by adhesion or welding.
 図80は、磁石ユニット712の断面構造を示す部分断面図である。図80には、磁石722の磁化容易軸を矢印にて示している。 FIG. 80 is a partial cross-sectional view showing the cross-sectional structure of the magnet unit 712. In FIG. 80, the easy magnetization axis of the magnet 722 is indicated by an arrow.
 磁石ユニット712において、磁石722は、回転子710の周方向に沿って極性が交互に変わるように並べて設けられている。これにより、磁石722は、周方向に複数の磁極を有する。磁石722は、極異方性の永久磁石であり、固有保磁力が400[kA/m]以上であり、かつ残留磁束密度Brが1.0[T]以上である焼結ネオジム磁石を用いて構成されている。 In the magnet unit 712, the magnets 722 are arranged side by side so that the polarities alternate along the circumferential direction of the rotor 710. As a result, the magnet 722 has a plurality of magnetic poles in the circumferential direction. The magnet 722 is a polar anisotropy permanent magnet, and uses a sintered neodymium magnet having an intrinsic coercive force of 400 [kA / m] or more and a residual magnetic flux density Br of 1.0 [T] or more. It is configured.
 磁石722は、周方向に隣り合う2磁極において各磁極の中心であるd軸間を1磁石として設けられている。つまり、磁石722は、1磁極分を1磁石とし、その周方向の中心がq軸となっている。磁石722において径方向内側の周面が、磁束の授受が行われる磁束授受面724である。磁石722では、d軸側(d軸寄りの部分)とq軸側(q軸寄りの部分)とで磁化容易軸の向きが相違しており、d軸側では磁化容易軸の向きがd軸に平行する向きとなり、q軸側では磁化容易軸の向きがq軸に直交する向きとなっている。この場合、磁化容易軸の向きに沿って円弧状の磁石磁路が形成されている。要するに、磁石722は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされて構成されている。 The magnet 722 is provided as one magnet between the d-axis, which is the center of each magnetic pole, in two magnetic poles adjacent to each other in the circumferential direction. That is, the magnet 722 has one magnetic pole as one magnet, and the center in the circumferential direction thereof is the q-axis. The peripheral surface on the inner side of the magnet 722 in the radial direction is the magnetic flux transfer surface 724 on which magnetic flux is transferred. In the magnet 722, the direction of the easy magnetization axis is different between the d-axis side (the part closer to the d-axis) and the q-axis side (the part closer to the q-axis), and the direction of the easy magnetization axis is the d-axis on the d-axis side. On the q-axis side, the direction of the easy magnetization axis is orthogonal to the q-axis. In this case, an arcuate magnet magnetic path is formed along the direction of the easy magnetization axis. In short, the magnet 722 is oriented so that the direction of the easy magnetization axis is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, as compared with the q-axis side, which is the magnetic pole boundary.
 周方向に並べられた各磁石722によれば、d軸での磁石磁束が強化され、かつq軸付近での磁束変化が抑えられる。これにより、各磁極においてq軸からd軸にかけての表面磁束変化がなだらかになる磁石722を好適に実現できるものとなっている。磁石722は、周方向の中心をq軸とする構成に代えて、周方向の中心をd軸とする構成であってもよい。また、磁石722として、磁極数と同じ数の磁石を用いる構成に代えて、円環状に繋がった磁石を用いる構成としてもよい。 According to each magnet 722 arranged in the circumferential direction, the magnet magnetic flux on the d-axis is strengthened and the change in magnetic flux near the q-axis is suppressed. As a result, it is possible to preferably realize a magnet 722 in which the change in surface magnetic flux from the q-axis to the d-axis is gentle at each magnetic pole. The magnet 722 may have a configuration in which the center in the circumferential direction is the d-axis instead of the configuration in which the center in the circumferential direction is the q-axis. Further, the magnet 722 may be configured to use magnets connected in an annular shape instead of using the same number of magnets as the number of magnetic poles.
 磁石722は以下の構成であることが望ましい。磁石722において、d-q軸間の磁束授受面724の円弧長さは、磁石722の径方向の厚みよりも長くなっている。また、図81に示すように、磁石722においてq軸と磁束授受面724との交点を中心点CPとし、かつ磁石722の径方向の厚み寸法を半径とする円を、磁石722の磁化容易軸を定める配向円Xとする場合に、磁石722が配向円Xの四半円分を包括する構成となっている。つまり、磁石722では、q軸を横切るように円弧状の磁化容易軸が設けられており、その磁化容易軸のうち、径方向において磁束授受面724とは反対側の周面とq軸との交点を通る磁化容易軸、すなわち配向円Xを通る磁化容易軸により最も強い磁石磁束が生じる。この場合、磁石722が配向円Xの四半円分を包括する構成であることにより、d軸を通る磁石磁路の長さを、配向円Xで規定される長さとして確保した上で磁石磁束を生じさせることが可能となっている。 It is desirable that the magnet 722 has the following configuration. In the magnet 722, the arc length of the magnetic flux transfer surface 724 between the dq axes is longer than the radial thickness of the magnet 722. Further, as shown in FIG. 81, in the magnet 722, a circle whose center point CP is the intersection of the q-axis and the magnetic flux transfer surface 724 and whose radius is the radial thickness dimension of the magnet 722 is the easily magnetized axis of the magnet 722. The magnet 722 is configured to include a quarter circle of the orientation circle X when the orientation circle X is used. That is, the magnet 722 is provided with an arc-shaped easy-to-magnetize axis that crosses the q-axis, and among the easy-to-magnetize axes, the peripheral surface on the side opposite to the magnetic flux transfer surface 724 in the radial direction and the q-axis. The strongest magnet magnetic flux is generated by the easily magnetized axis passing through the intersection, that is, the easily magnetized axis passing through the alignment circle X. In this case, since the magnet 722 includes the quarter circle of the orientation circle X, the length of the magnet magnetic path passing through the d-axis is secured as the length defined by the orientation circle X, and then the magnet magnetic flux. It is possible to generate.
 ここで、磁石722においてd-q軸間の磁束授受面724の円弧長さが磁石722の径方向の厚みよりも長くなっていると、磁石722よりも径方向外側、すなわち反固定子側への磁束漏れの懸念が生じる。しかしながら、本例の構成では、磁石ホルダ721を非磁性体にて構成していることにより、磁束漏れの影響を軽減できるものとなっている。 Here, if the arc length of the magnetic flux transfer surface 724 between the d and q axes of the magnet 722 is longer than the radial thickness of the magnet 722, the magnet 722 is radially outside, that is, toward the anti-stator side. There is a concern about magnetic flux leakage. However, in the configuration of this example, since the magnet holder 721 is made of a non-magnetic material, the influence of magnetic flux leakage can be reduced.
 また、磁石722には、径方向外側の外周面に、d軸を含む所定範囲で凹部725が形成されているとともに、径方向内側の内周面に、q軸を含む所定範囲で凹部726が形成されている。この場合、磁石722の磁化容易軸の向きによれば、磁石722の外周面においてd軸付近で磁石磁路が短くなるとともに、磁石722の内周面においてq軸付近で磁石磁路が短くなる。そこで、磁石722において磁石磁路長が短い場所で十分な磁石磁束を生じさせることが困難になることを考慮して、その磁石磁束の弱い場所で磁石が削除されている。 Further, the magnet 722 is formed with a recess 725 in a predetermined range including the d-axis on the outer peripheral surface in the radial direction, and a recess 726 is formed in a predetermined range including the q-axis on the inner peripheral surface in the radial direction. It is formed. In this case, according to the orientation of the easy-to-magnetize axis of the magnet 722, the magnetic path is shortened near the d-axis on the outer peripheral surface of the magnet 722, and the magnetic path is shortened near the q-axis on the inner peripheral surface of the magnet 722. .. Therefore, in consideration of the fact that it becomes difficult to generate a sufficient magnet magnetic flux in the place where the magnet magnetic path length is short in the magnet 722, the magnet is deleted in the place where the magnet magnetic flux is weak.
 磁石ホルダ721は、周方向に並ぶ各磁石722の径方向外側に設けられている。また、周方向における各磁石722の間と各磁石722の径方向内側とを含む範囲で磁石ホルダ721が設けられていてもよい。つまり、磁石722を囲むようにして磁石ホルダ721が設けられていてもよい。磁石ホルダ721において各磁石722の径方向外側の部分と径方向内側の部分とを有している場合、径方向外側の部分が径方向内側の部分よりも高強度であるとよい。 The magnet holder 721 is provided on the outer side in the radial direction of each magnet 722 arranged in the circumferential direction. Further, the magnet holder 721 may be provided in a range including between each magnet 722 in the circumferential direction and the inside in the radial direction of each magnet 722. That is, the magnet holder 721 may be provided so as to surround the magnet 722. When the magnet holder 721 has a radial outer portion and a radial inner portion of each magnet 722, it is preferable that the radial outer portion has a higher strength than the radial inner portion.
 磁石ホルダ721は、磁石722の凹部725内に入り込む凸部727を有している。この場合、磁石722の凹部725と磁石ホルダ721の凸部727との係合により、磁石722の周方向の位置ずれが抑制されるようになっている。つまり、磁石ホルダ721の凸部727は、磁石722の回り止め部として機能する。また、磁石ホルダ721が、磁石722よりも径方向内側(固定子730側)となる部分を有している場合には、当該部分に、磁石722の凹部726内に入り込む凸部が設けられていてもよい。 The magnet holder 721 has a convex portion 727 that penetrates into the concave portion 725 of the magnet 722. In this case, the displacement of the magnet 722 in the circumferential direction is suppressed by the engagement between the concave portion 725 of the magnet 722 and the convex portion 727 of the magnet holder 721. That is, the convex portion 727 of the magnet holder 721 functions as a detent portion of the magnet 722. Further, when the magnet holder 721 has a portion that is radially inside (the stator 730 side) of the magnet 722, the portion is provided with a convex portion that enters the recess 726 of the magnet 722. You may.
 次に、固定子730の構成を説明する。 Next, the configuration of the stator 730 will be described.
 固定子730は、固定子巻線731と固定子コア732とを有している。図82は、固定子730の構成を示す斜視図であり、図83は、固定子巻線731と固定子コア732とを分解して示す斜視図であり、図84は、各相の相巻線のうちU相巻線に相当する構成のみを示す斜視図であり、図85は、固定子730の縦断面図である。 The stator 730 has a stator winding 731 and a stator core 732. FIG. 82 is a perspective view showing the configuration of the stator 730, FIG. 83 is a perspective view showing the stator winding 731 and the stator core 732 in an exploded manner, and FIG. 84 is a phase winding of each phase. It is a perspective view which shows only the structure corresponding to the U-phase winding among lines, and FIG. 85 is a vertical sectional view of the stator 730.
 固定子コア732は、磁性体である電磁鋼板からなる複数のコアシート732aを用いその複数のコアシート732aが軸方向に積層されたコアシート積層体として構成されており、径方向に所定の厚さを有する円筒状をなしている。固定子コア732において回転子710側となる径方向外側には固定子巻線731が組み付けられている。固定子コア732の外周面は凹凸のない曲面状をなしている。固定子コア732は、スロットレス構造を有しており、バックヨークとして機能する。固定子コア732は、例えば円環板状に打ち抜き形成された複数枚のコアシート732aが軸方向に積層されて構成されている。ただし、固定子コア732としてヘリカルコア構造を有するものを用いてもよい。ヘリカルコア構造の固定子コア732では、帯状のコアシートが用いられ、このコアシートが環状に巻回形成されるとともに軸方向に積層されることで、全体として円筒状の固定子コア732が構成されている。 The stator core 732 is configured as a core sheet laminate in which a plurality of core sheets 732a made of an electromagnetic steel plate which is a magnetic material are used and the plurality of core sheets 732a are laminated in the axial direction, and has a predetermined thickness in the radial direction. It has a cylindrical shape with a diameter. A stator winding 731 is assembled on the radial outer side of the stator core 732 on the rotor 710 side. The outer peripheral surface of the stator core 732 has a curved surface without unevenness. The stator core 732 has a slotless structure and functions as a back yoke. The stator core 732 is configured by, for example, a plurality of core sheets 732a punched out in an annular plate shape and laminated in the axial direction. However, a stator core 732 having a helical core structure may be used. A band-shaped core sheet is used in the stator core 732 having a helical core structure, and the core sheet is wound in an annular shape and laminated in the axial direction to form a cylindrical stator core 732 as a whole. Has been done.
 固定子コア732において、軸方向両側の端面にはエンドリング733が固定されている。エンドリング733は、固定子コア732に固定子巻線731を組み付けた状態で、その固定子巻線731を周方向の所定位置に保持する機能を有する位置決め部材である。固定子コア732及びエンドリング733がベース部材736である。 In the stator core 732, end rings 733 are fixed to the end faces on both sides in the axial direction. The end ring 733 is a positioning member having a function of holding the stator winding 731 at a predetermined position in the circumferential direction in a state where the stator winding 731 is assembled to the stator core 732. The stator core 732 and the end ring 733 are the base member 736.
 エンドリング733の外周面には、固定子コア732及びエンドリング733と同心となる同心円上の接線に対して傾斜する向きで係合面734が形成されている。係合面734は、エンドリング733の外周面を複数に等分して設けられている。本例では、固定子巻線731において周方向に並ぶコイルサイドの導線部(後述するコイルモジュール740の直線部744)と同数の係合面734が周方向に設けられている。また、本例では、当該接線に対する傾斜の向きが、周方向に隣り合う各係合面734で互いに逆向きとなっていることにより、エンドリング733の外周面にテーパ状の係合部が形成されている。この場合、テーパ状の凸部の間に凹部735が形成されている。 An engaging surface 734 is formed on the outer peripheral surface of the end ring 733 in a direction inclined with respect to a tangent line on a concentric circle concentric with the stator core 732 and the end ring 733. The engaging surface 734 is provided by dividing the outer peripheral surface of the end ring 733 into a plurality of equal parts. In this example, in the stator winding 731, the same number of engaging surfaces 734 as the coil side conducting wire portions (straight line portion 744 of the coil module 740 described later) arranged in the circumferential direction are provided in the circumferential direction. Further, in this example, the direction of inclination with respect to the tangent line is opposite to each other on the engaging surfaces 734 adjacent to each other in the circumferential direction, so that a tapered engaging portion is formed on the outer peripheral surface of the end ring 733. Has been done. In this case, a recess 735 is formed between the tapered protrusions.
 軸方向両側の各エンドリング733では、軸方向一端側及び他端側で周方向における凹凸の位置が一致している。つまり、軸方向一端側のエンドリング733及び軸方向他端側のエンドリング733は、係合面734による凸頂部の位置が周方向で一致するようにして固定子コア732に対して固定されている。 In each end ring 733 on both sides in the axial direction, the positions of the unevenness in the circumferential direction are the same on one end side and the other end side in the axial direction. That is, the end ring 733 on the one end side in the axial direction and the end ring 733 on the other end side in the axial direction are fixed to the stator core 732 so that the positions of the convex tops of the engaging surface 734 coincide with each other in the circumferential direction. There is.
 エンドリング733の内径は固定子コア732の内径と同じである。また、エンドリング733の外径は、最大径となる部分で固定子コア732の外径と同じであり、最小径となる部分で固定子コア732の外径よりも小さくなっている。 The inner diameter of the end ring 733 is the same as the inner diameter of the stator core 732. Further, the outer diameter of the end ring 733 is the same as the outer diameter of the stator core 732 at the portion where the maximum diameter is reached, and is smaller than the outer diameter of the stator core 732 at the portion where the minimum diameter is reached.
 エンドリング733は、例えばアルミニウムや銅等の非磁性材料により形成されている。エンドリング733は、固定子コア732に対して溶接により固定されている。これ以外に、エンドリング733が、ピン差しやキー圧入、ボルト締結により機械的に固定されていてもよい。こうした機械的な固定により、固定子コア732に対するエンドリング733の周方向の位置ずれが抑制されるものとなっている。 The end ring 733 is made of a non-magnetic material such as aluminum or copper. The end ring 733 is fixed to the stator core 732 by welding. Alternatively, the end ring 733 may be mechanically fixed by pin insertion, key press fitting, or bolt fastening. By such mechanical fixing, the displacement of the end ring 733 with respect to the stator core 732 in the circumferential direction is suppressed.
 図85に示すように、固定子730は、軸方向において、回転子710における磁石722に径方向に対向するコイルサイドCSに相当する部分と、そのコイルサイドCSの軸方向外側であるコイルエンドCE1,CE2に相当する部分とを有している。この場合、固定子コア732は、軸方向においてコイルサイドCSに対応する範囲で設けられ、エンドリング733は、軸方向一端側のコイルエンドCE1及び他端側のコイルエンドCE2にそれぞれ設けられている。コイルエンドCE1が第1コイルエンドに相当し、コイルエンドCE2が第2コイルエンドに相当する。なお、エンドリング733が固定子巻線731と係合した状態の構成については後述する。 As shown in FIG. 85, the stator 730 has a portion corresponding to the coil side CS that faces the magnet 722 in the rotor 710 in the axial direction in the axial direction, and a coil end CE1 that is outside the coil side CS in the axial direction. , It has a part corresponding to CE2. In this case, the stator core 732 is provided in the axial direction in a range corresponding to the coil side CS, and the end ring 733 is provided in the coil end CE1 on one end side in the axial direction and the coil end CE2 on the other end side, respectively. .. The coil end CE1 corresponds to the first coil end, and the coil end CE2 corresponds to the second coil end. The configuration in which the end ring 733 is engaged with the stator winding 731 will be described later.
 固定子巻線731は、複数の相巻線を有し、各相の相巻線が周方向に所定順序で配置されることで円筒状(環状)に形成されている。固定子巻線731の径方向内側に固定子コア732が組み付けられている。本例では、U相、V相及びW相の相巻線を用いることで、固定子巻線731が3相の相巻線を有する構成となっている。 The stator winding 731 has a plurality of phase windings, and the phase windings of each phase are arranged in a predetermined order in the circumferential direction to form a cylindrical shape (annular shape). A stator core 732 is assembled inside the stator winding 731 in the radial direction. In this example, by using U-phase, V-phase, and W-phase phase windings, the stator winding 731 has a configuration having three-phase phase windings.
 固定子巻線731において各相の相巻線は各々複数の部分巻線741を有しており(図86参照)、その部分巻線741が個別にコイルモジュール740として設けられている。つまり、コイルモジュール740は、各相の相巻線における部分巻線741が一体に設けられたものとなっている。各相のコイルモジュール740が周方向に所定順序で並べて配置されることで、固定子巻線731のコイルサイドにおいて各相の導線部が所定順序に並べて配置されるものとなっている。図82には、コイルサイドにおけるU相、V相及びW相の導線部の並び順が示されている。また、図84には、3相の相巻線のうちU相巻線を構成するコイルモジュール740のみが抽出されて示されている。本例では、磁極数を24としているが、その数は任意である。 In the stator winding 731, each phase winding of each phase has a plurality of partial windings 741 (see FIG. 86), and the partial windings 741 are individually provided as coil modules 740. That is, the coil module 740 is integrally provided with partial windings 741 in the phase windings of each phase. By arranging the coil modules 740 of each phase in a predetermined order in the circumferential direction, the conductor portions of each phase are arranged in a predetermined order on the coil side of the stator winding 731. FIG. 82 shows the arrangement order of the U-phase, V-phase, and W-phase conductors on the coil side. Further, in FIG. 84, only the coil module 740 constituting the U-phase winding is extracted and shown from the three-phase windings. In this example, the number of magnetic poles is 24, but the number is arbitrary.
 固定子巻線731では、相ごとに各コイルモジュール740の部分巻線741が並列又は直列に接続されることにより、各相の相巻線が構成されている。図86は、3相の各相巻線における部分巻線741の接続状態を示す回路図である。図86では、各相の相巻線における部分巻線741がそれぞれ並列に接続された状態が示されている。 In the stator winding 731, the phase windings of each phase are configured by connecting the partial windings 741 of each coil module 740 in parallel or in series for each phase. FIG. 86 is a circuit diagram showing a connection state of the partial winding 741 in each of the three-phase windings. FIG. 86 shows a state in which the partial windings 741 in the phase windings of each phase are connected in parallel.
 図85に示すように、コイルモジュール740は固定子コア732の径方向外側に組み付けられている。固定子巻線731は、コイルサイドCSに相当する部分と、コイルエンドCE1,CE2に相当する部分とを有している。この場合、コイルモジュール740は、その軸方向両端部分が固定子コア732よりも軸方向外側(すなわちコイルエンド側)に突出した状態で組み付けられている。 As shown in FIG. 85, the coil module 740 is assembled on the radial outer side of the stator core 732. The stator winding 731 has a portion corresponding to the coil side CS and a portion corresponding to the coil ends CE1 and CE2. In this case, the coil module 740 is assembled in a state in which both ends in the axial direction are projected outward in the axial direction (that is, the coil end side) from the stator core 732.
 コイルモジュール740は、軸方向両端のうち一方が径方向に折れ曲がることで略L字状に形成されており、その折れ曲がりにより、周方向に隣り合うコイルモジュール740の干渉が抑制されるものとなっている。本例では、コイルモジュール740として、軸方向一端側の部分が径方向外側に向くように配置されるコイルモジュール740Aと、軸方向一端側の部分が径方向内側に向くように配置されるコイルモジュール740Bとを用いる構成としている。つまり、固定子巻線731は、2種類のコイルモジュール740A,740Bを用いて構成されている。これらコイルモジュール740A,740Bは、軸方向の向きを互いに逆向きにして固定子コア732に組み付けられている。 The coil module 740 is formed in a substantially L shape by bending one of both ends in the axial direction in the radial direction, and the bending suppresses interference between adjacent coil modules 740 in the circumferential direction. There is. In this example, as the coil module 740, the coil module 740A is arranged so that the portion on the one end side in the axial direction faces outward in the axial direction, and the coil module 740A is arranged so that the portion on one end side in the axial direction faces inward in the radial direction. It is configured to use 740B. That is, the stator winding 731 is configured by using two types of coil modules 740A and 740B. These coil modules 740A and 740B are assembled to the stator core 732 with their axial directions opposite to each other.
 図82に示すように、固定子コア732に対して複数のコイルモジュール740が組み付けられた状態において、そのコイルモジュール740の径方向外側には軸方向の2箇所に拘束リング760が取り付けられている。拘束リング760は、各コイルモジュール740(固定子巻線731)を径方向に拘束する拘束部材である。拘束リング760は、例えば金属製の環状リングである。両端を自由端とするCリング又は多重リングを拘束リング760として用い、その拘束リング760の端部どうしを溶接や接着等により連結する構成であってもよい。この場合、拘束リング760は、弾性を有し、自然状態で固定子巻線731よりも小径となっているものであるとよい。 As shown in FIG. 82, in a state where a plurality of coil modules 740 are assembled to the stator core 732, restraint rings 760 are attached at two positions in the axial direction on the radial outer side of the coil module 740. .. The restraint ring 760 is a restraint member that restrains each coil module 740 (stator winding 731) in the radial direction. The restraint ring 760 is, for example, a metal annular ring. A C ring or multiple rings having both ends as free ends may be used as the restraint ring 760, and the ends of the restraint ring 760 may be connected to each other by welding, adhesion, or the like. In this case, the restraint ring 760 is preferably elastic and has a diameter smaller than that of the stator winding 731 in a natural state.
 糸、紐、ワイヤ等の線状部材を拘束部材として用い、その拘束部材を、固定子巻線731の外周側に螺旋状に巻き付ける構成であってもよい。この場合、例えばワニスを染み込ませた紐を用い、ワニスにより紐固定の強化を図る構成としてもよい。 A linear member such as a thread, a string, or a wire may be used as a restraining member, and the restraining member may be spirally wound around the outer peripheral side of the stator winding 731. In this case, for example, a string impregnated with varnish may be used to strengthen the string fixing with the varnish.
 次に、コイルモジュール740の構成を詳しく説明する。 Next, the configuration of the coil module 740 will be described in detail.
 ここではまず、コイルモジュール740Aとコイルモジュール740Bとのうちコイルモジュール740Aについて説明する。なお、コイルモジュール740は、部分巻線741と巻線ホルダ742とを有するサブアセンブリである。以下の説明では、コイルモジュール740Aの部分巻線741を「部分巻線741A」、巻線ホルダ742を「巻線ホルダ742A」とも称し、コイルモジュール740Bの部分巻線741を「部分巻線741B」、巻線ホルダ742を「巻線ホルダ742B」とも称する。部分巻線741Aが第1部分巻線に相当し、部分巻線741Bが第2部分巻線に相当する。 Here, first, the coil module 740A among the coil module 740A and the coil module 740B will be described. The coil module 740 is a subassembly having a partial winding 741 and a winding holder 742. In the following description, the partial winding 741 of the coil module 740A is also referred to as "partial winding 741A", the winding holder 742 is also referred to as "winding holder 742A", and the partial winding 741 of the coil module 740B is referred to as "partial winding 741B". , The winding holder 742 is also referred to as "winding holder 742B". The partial winding 741A corresponds to the first partial winding, and the partial winding 741B corresponds to the second partial winding.
 図87(a)は、コイルモジュール740Aの斜視図であり、図87(b)は、コイルモジュール740Aにおける部分巻線741Aのみを示す斜視図であり、図87(c)は、コイルモジュール740Aにおける巻線ホルダ742Aのみを示す斜視図であり、図87(d)は、コイルモジュール740Aの側面図である。また、図88(a),(b)は、コイルモジュール740Aの横断面を示す断面図であり、図88(a)は、図87(d)の88A-88A線断面図、図88(b)は、図87(d)の88B-88B線断面図である。なお、図87(d)では、コイルモジュール740Aの左側が固定子コア732側であり、図88(a),(b)では、コイルモジュール740Aの下側が固定子コア732側である。 87 (a) is a perspective view of the coil module 740A, FIG. 87 (b) is a perspective view showing only the partial winding 741A in the coil module 740A, and FIG. 87 (c) is a perspective view of the coil module 740A. It is a perspective view which shows only the winding holder 742A, and FIG. 87 (d) is a side view of the coil module 740A. 88 (a) and 88 (b) are cross-sectional views showing a cross section of the coil module 740A, and FIG. 88 (a) is a cross-sectional view taken along the line 88A-88A of FIG. 87 (d), FIG. 88 (b). ) Is a sectional view taken along line 88B-88B of FIG. 87 (d). In FIG. 87 (d), the left side of the coil module 740A is the stator core 732 side, and in FIGS. 88 (a) and 88 (b), the lower side of the coil module 740A is the stator core 732 side.
 コイルモジュール740Aは、導線743を多重巻にして構成された部分巻線741Aと、その部分巻線741Aに一体に設けられた絶縁性の巻線ホルダ742Aとを有している。巻線ホルダ742Aは、部分巻線741Aを周囲から絶縁するために設けられており、特に部分巻線741Aと固定子コア732との間を絶縁すべく設けられている。コイルモジュール740Aは、軸方向が長手となる長尺環状に形成されている。コイルモジュール740Aは、軸方向に互いに平行に延びる一対の直線部744を有するとともに、軸方向両側の一端側に、軸方向に対して直交する向きに延びる曲がり部745を有している。これにより、コイルモジュール740Aは、全体として略L字状に形成された構成となっている。 The coil module 740A has a partial winding 741A formed by multiple winding of the conducting wire 743, and an insulating winding holder 742A integrally provided with the partial winding 741A. The winding holder 742A is provided to insulate the partial winding 741A from the surroundings, and in particular, is provided to insulate between the partial winding 741A and the stator core 732. The coil module 740A is formed in an elongated annular shape having a longitudinal direction in the axial direction. The coil module 740A has a pair of straight portions 744 extending parallel to each other in the axial direction, and has bent portions 745 extending in a direction orthogonal to the axial direction at one ends on both sides in the axial direction. As a result, the coil module 740A has a structure formed in a substantially L shape as a whole.
 部分巻線741Aは、互いに平行でかつ直線状に設けられる一対の中間導線部746と、一対の中間導線部746を軸方向一端側で接続する第1渡り部747と、一対の中間導線部746を軸方向他端側で接続する第2渡り部748を有しており、これら一対の中間導線部746、第1渡り部747及び第2渡り部748により環状に形成されている。一対の中間導線部746は、所定のコイルピッチ分を離して設けられており、周方向において一対の中間導線部746の間に、他相の部分巻線741の中間導線部746が配置可能となっている。本例では、一対の中間導線部746は2コイルピッチ分を離して設けられ、一対の中間導線部746の間に、他2相の部分巻線741における中間導線部746が1つずつ配置される構成となっている。 The partial winding 741A includes a pair of intermediate conductors 746 provided in parallel and linearly with each other, a first crossover 747 that connects the pair of intermediate conductors 746 on one end side in the axial direction, and a pair of intermediate conductors 746. Has a second crossover 748 that connects the two on the other end side in the axial direction, and is formed in an annular shape by the pair of intermediate conductors 746, the first crossover 747, and the second crossover 748. The pair of intermediate conductors 746 are provided so as to be separated by a predetermined coil pitch, and the intermediate conductors 746 of the partial winding 741 of the other phase can be arranged between the pair of intermediate conductors 746 in the circumferential direction. It has become. In this example, the pair of intermediate conductors 746 are provided so as to be separated by two coil pitches, and the intermediate conductors 746 of the other two-phase partial windings 741 are arranged one by one between the pair of intermediate conductors 746. It has a structure of
 第1渡り部747及び第2渡り部748は、それぞれコイルエンドCE1,CE2(図85参照)に相当する部分として設けられている。すなわち、これら各渡り部747,748は、コイルエンドCE1,CE2において、周方向に異なる2位置の同相の中間導線部746どうしを接続するコイルエンド導線部として設けられている。部分巻線741Aでは、第1渡り部747は、コイルモジュール740Aにおける曲がり部745に対応する部分であり、中間導線部746に対して直交する向き、すなわち軸方向に対して直交する向きに折れ曲がるようにして設けられている。これに対して、第2渡り部748は、それよりも軸方向内側の中間導線部746と同じ向き、すなわち軸方向に直線状に延びるように設けられている。これにより、部分巻線741Aは、全体として略L字状に形成された構成となっている。なお、図87(d)には、コイルサイドCSとコイルエンドCE1,CE2との境界部BDを破線にて示している。 The first crossover portion 747 and the second crossover portion 748 are provided as portions corresponding to the coil ends CE1 and CE2 (see FIG. 85), respectively. That is, these crossover portions 747 and 748 are provided as coil end conductor portions that connect the intermediate conductor portions 746 of the same phase at two positions different in the circumferential direction in the coil ends CE1 and CE2. In the partial winding 741A, the first crossover portion 747 is a portion corresponding to the bent portion 745 in the coil module 740A, and is bent in a direction orthogonal to the intermediate conductor portion 746, that is, in a direction orthogonal to the axial direction. It is provided as. On the other hand, the second crossover portion 748 is provided so as to extend in the same direction as the intermediate conductor portion 746 on the inner side in the axial direction, that is, linearly in the axial direction. As a result, the partial winding 741A has a structure formed in a substantially L shape as a whole. In FIG. 87 (d), the boundary portion BD between the coil side CS and the coil ends CE1 and CE2 is shown by a broken line.
 部分巻線741Aでは、第1渡り部747(部分巻線741AにおいてコイルエンドCE1側の第1渡り部747)に、径方向外側に曲がっている外曲がり部Y1が設けられている。部分巻線741Aは、コイルエンドCE1側に外曲がり部Y1が設けられ、かつコイルエンドCE2側では径方向に曲げられていない構成となっている。 In the partial winding 741A, an outer bending portion Y1 that is bent outward in the radial direction is provided at the first crossing portion 747 (the first crossing portion 747 on the coil end CE1 side in the partial winding 741A). The partial winding 741A has a configuration in which an outer bent portion Y1 is provided on the coil end CE1 side and is not bent in the radial direction on the coil end CE2 side.
 図88(a)に示すように、部分巻線741Aは、横断面が四角形になるように導線743が多重に巻回されて形成されている。図88(a)は、中間導線部746でのコイルモジュール740Aの横断面を示しており、その中間導線部746において周方向及び径方向に並ぶように導線743が多重に巻回されている。部分巻線741Aは、その横断面において、外径側における周方向長さと内径側における周方向長さとが同じである。なお、渡り部747,748において部分巻線741Aが周方向に沿う向きとなる部分では、導線743が軸方向及び径方向に並ぶように多重に巻回されている。本例では、導線743を同心巻により巻回することで部分巻線741Aが構成されている。ただし、導線743の巻き方は任意であり、同心巻に代えて、アルファ巻により導線743が多重に巻回されていてもよい。 As shown in FIG. 88 (a), the partial winding 741A is formed by winding the conducting wires 743 in multiple directions so that the cross section has a quadrangular shape. FIG. 88A shows a cross section of the coil module 740A at the intermediate conducting wire portion 746, and the conducting wires 743 are multiplely wound around the intermediate conducting wire portion 746 so as to be aligned in the circumferential direction and the radial direction. In the cross section of the partial winding 741A, the circumferential length on the outer diameter side and the circumferential length on the inner diameter side are the same. In the crossover portions 747 and 748 where the partial windings 741A are oriented along the circumferential direction, the conducting wires 743 are wound in multiple directions so as to be aligned in the axial direction and the radial direction. In this example, the partial winding 741A is formed by winding the conducting wire 743 by concentric winding. However, the winding method of the conductor 743 is arbitrary, and instead of the concentric winding, the conductor 743 may be wound multiple times by the alpha winding.
 部分巻線741Aの横断面において、外径側における周方向長さが内径側における周方向長さよりも大きい略台形状をしていてもよい。これにより、外径側と内径側とで円周長さが異なることを考慮しつつ、周方向に並ぶ中間導線部746どうしの離間距離を均等にすることが可能となる。 The cross section of the partial winding 741A may have a substantially trapezoidal shape in which the circumferential length on the outer diameter side is larger than the circumferential length on the inner diameter side. As a result, it is possible to equalize the separation distance between the intermediate conducting wire portions 746 arranged in the circumferential direction while considering that the circumferential length differs between the outer diameter side and the inner diameter side.
 図87(a)に示すように、部分巻線741Aでは、第1渡り部747の側から、詳しくは曲がり部745の先端から、導線743の端部が軸方向に引き出されており、その端部が巻線端部743a,743bとなっている。巻線端部743a,743bは、それぞれ導線743の巻き始め及び巻き終わりである。このうち巻線端部743aが電流入出力端子に接続され、巻線端部743bが中性点に接続されるようになっている。 As shown in FIG. 87 (a), in the partial winding 741A, the end of the conducting wire 743 is axially pulled out from the side of the first crossover 747, specifically from the tip of the bent portion 745, and the end thereof. The portions are winding end portions 743a and 743b. The winding end portions 743a and 743b are the winding start and winding end of the conducting wire 743, respectively. Of these, the winding end 743a is connected to the current input / output terminal, and the winding end 743b is connected to the neutral point.
 部分巻線741Aでは、径方向外側ほど高い電位が印加される構成であるとよい。つまり、部分巻線741Aにおいて、径方向外側と径方向内側とを比べると、径方向外側ほど一対の中間導線部746の間の距離が長くなるため、その点を考慮して、径方向外側ほど高い電位が印加される構成であることが望ましい。図99には、部分巻線741Aにおける導線743の巻回順序を示している。なお、図99では、同一の部分巻線741Aにおける中間導線部746を実線で示し、異なる部分巻線741B(すなわち異相の部分巻線741B)における中間導線部746を破線で示している。 The partial winding 741A is preferably configured so that a higher potential is applied toward the outer side in the radial direction. That is, in the partial winding 741A, when the radial outer side and the radial inner side are compared, the distance between the pair of intermediate lead wire portions 746 becomes longer as the radial outer side increases. It is desirable that the configuration is such that a high potential is applied. FIG. 99 shows the winding order of the conductor 743 in the partial winding 741A. In FIG. 99, the intermediate conductor portion 746 in the same partial winding 741A is shown by a solid line, and the intermediate conductor portion 746 in a different partial winding 741B (that is, the different phase partial winding 741B) is shown by a broken line.
 部分巻線741Aでは、径方向外側から径方向内側に移行するようにして導線743が巻回されており、径方向外側の巻き始めが巻線端部743aとなっている。また、径方向内側の巻き終わりが巻線端部743bとなっている。この場合、巻線端部743aが電流入出力端子に接続され、巻線端部743bが中性点に接続されることで、径方向外側ほど高い電位が印加されるようになっている。なお、導線743の巻回順序自体は、径方向外側及び径方向内側において巻き始めと巻き終わりとが逆であってもよい。 In the partial winding 741A, the conducting wire 743 is wound so as to shift from the outer side in the radial direction to the inner side in the radial direction, and the winding start on the outer side in the radial direction is the winding end portion 743a. Further, the winding end on the inner side in the radial direction is the winding end portion 743b. In this case, the winding end portion 743a is connected to the current input / output terminal, and the winding end portion 743b is connected to the neutral point, so that a higher potential is applied toward the outer side in the radial direction. The winding order itself of the conducting wire 743 may be such that the winding start and the winding end are reversed on the radial outer side and the radial inner side.
 また、図99では、周方向に隣り合う異相どうしの各中間導線部746の離間距離が、径方向外側と径方向内側とで異なっている。この場合、径方向外側での離間距離をK1、径方向内側の離間距離をK2とすると、K1>K2となっている。つまり、径方向外側になるほど、周方向に隣り合う異相どうしの各中間導線部746の離間距離が大きくなっている。これにより、周方向に隣り合う中間導線部746どうしの離間距離に関して、電位差に応じた適切な離間距離がそれぞれ確保されるようになっている。 Further, in FIG. 99, the separation distance between the intermediate conducting wire portions 746 of the different phases adjacent to each other in the circumferential direction is different between the radial outer side and the radial inner side. In this case, assuming that the separation distance on the outer side in the radial direction is K1 and the separation distance on the inner side in the radial direction is K2, K1> K2. That is, the farther outward in the radial direction, the larger the separation distance between the intermediate conducting wire portions 746 of the different phases adjacent to each other in the circumferential direction. As a result, with respect to the separation distance between the intermediate conductor portions 746 adjacent to each other in the circumferential direction, an appropriate separation distance according to the potential difference is secured.
 巻線ホルダ742Aは、ボビン状をなし、合成樹脂等の絶縁材料により構成されている。巻線ホルダ742Aは、部分巻線741Aと同様に、全体として略L字状に形成された構成となっており、部分巻線741Aの中間導線部746に沿って設けられる部分と各渡り部747,748に沿って設けられる部分とを有している。 The winding holder 742A has a bobbin shape and is made of an insulating material such as synthetic resin. Like the partial winding 741A, the winding holder 742A has a structure formed in a substantially L shape as a whole, and a portion provided along the intermediate conductor portion 746 of the partial winding 741A and each crossover portion 747. , 748.
 図88(a)に示すように、巻線ホルダ742Aは、部分巻線741Aの横断面において、部分巻線741Aを三方から囲むように設けられており、固定子コア732側となる第1壁部751と、反固定子コア側となる第2壁部752と、それら第1壁部751及び第2壁部752を繋ぐ第3壁部753とを有している。第1壁部751がバックヨーク側絶縁壁に相当し、第2壁部752が反バックヨーク側絶縁壁に相当し、第3壁部753が周方向絶縁壁に相当する。第3壁部753は、周方向に並ぶ一対の直線部744において周方向内側に設けられている。第3壁部753は、固定子コア732の円中心に向かって延びる向きで設けられている。 As shown in FIG. 88 (a), the winding holder 742A is provided so as to surround the partial winding 741A from three sides in the cross section of the partial winding 741A, and is a first wall on the stator core 732 side. It has a portion 751, a second wall portion 752 on the anti-stator core side, and a third wall portion 753 connecting the first wall portion 751 and the second wall portion 752. The first wall portion 751 corresponds to the back yoke side insulating wall, the second wall portion 752 corresponds to the anti-back yoke side insulating wall, and the third wall portion 753 corresponds to the circumferential insulating wall. The third wall portion 753 is provided on the inner side in the circumferential direction in a pair of straight line portions 744 arranged in the circumferential direction. The third wall portion 753 is provided so as to extend toward the center of the circle of the stator core 732.
 巻線ホルダ742Aは、第1~第3壁部751~753により形成された収容部754を有しており、その収容部754に収容された状態で部分巻線741Aが設けられている。この場合、部分巻線741Aは、固定子コア732側、反固定子コア側及び周方向片側の三方において各壁部751~753による絶縁がなされている。つまり、第1壁部751により、中間導線部746において固定子コア732との絶縁が図られている。第2壁部752により、中間導線部746が回転子710側(エアギャップ側)に露出しないように被覆されている。第3壁部753により周方向における中間導線部746どうしの絶縁が図られている。 The winding holder 742A has an accommodating portion 754 formed by the first to third wall portions 751 to 753, and the partial winding 741A is provided in a state of being accommodating in the accommodating portion 754. In this case, the partial winding 741A is insulated by the wall portions 751 to 753 on the stator core 732 side, the anti-stator core side, and one side in the circumferential direction. That is, the first wall portion 751 insulates the intermediate conductor portion 746 from the stator core 732. The second wall portion 752 covers the intermediate conductor portion 746 so as not to be exposed to the rotor 710 side (air gap side). The third wall portion 753 insulates the intermediate conductor portions 746 from each other in the circumferential direction.
 巻線ホルダ742Aにおいて、第1壁部751の壁厚さ方向(径方向)の厚さ寸法をT11、第2壁部752の壁厚さ方向(径方向)の厚さ寸法をT12、第3壁部753の壁厚さ方向(周方向)の厚さ寸法をT13とする場合、第2壁部752の厚さ寸法T12が第1壁部751の厚さ寸法T11よりも小さいことが望ましい(T11>T12)。つまり、第2壁部752は磁石722側(エアギャップ側)の絶縁壁であり、その絶縁壁が薄いことにより磁石722と部分巻線741との距離、詳しくは磁気回路上の距離を縮めることができ、性能向上を期待できる。また、磁石722と部分巻線741との距離が同じものどうしで比べると、第2壁部752の厚さ寸法T12を小さくした分、コイルモジュール740(ホルダ表面)と磁石722との間のエアギャップ(空隙の間隔)を大きくすることができ、回転子710の回転時における接触を抑制できる。なお、図100には、図88(a)の構成に比べて第1壁部751の厚さ寸法T11を厚くし、かつ第2壁部752の厚さ寸法T12を薄くすることでT11>T12とした構成が示されている。 In the winding holder 742A, the thickness dimension of the first wall portion 751 in the wall thickness direction (radial direction) is T11, and the thickness dimension of the second wall portion 752 in the wall thickness direction (radial direction) is T12, the third. When the thickness dimension of the wall portion 753 in the wall thickness direction (circumferential direction) is T13, it is desirable that the thickness dimension T12 of the second wall portion 752 is smaller than the thickness dimension T11 of the first wall portion 751 ( T11> T12). That is, the second wall portion 752 is an insulating wall on the magnet 722 side (air gap side), and the thin insulating wall reduces the distance between the magnet 722 and the partial winding 741, specifically, the distance on the magnetic circuit. Can be expected, and performance improvement can be expected. Further, when the distance between the magnet 722 and the partial winding 741 is the same, the air between the coil module 740 (holder surface) and the magnet 722 is increased by the amount that the thickness dimension T12 of the second wall portion 752 is reduced. The gap (interval between gaps) can be increased, and the contact of the rotor 710 during rotation can be suppressed. In addition, in FIG. 100, T11> T12 by making the thickness dimension T11 of the first wall portion 751 thicker and thinning the thickness dimension T12 of the second wall portion 752 as compared with the configuration of FIG. 88 (a). The configuration is shown.
 また、第1壁部751の厚さ寸法T11が第2壁部752の厚さ寸法T12よりも大きいことで、固定子コア732との間の絶縁距離が確保され、その絶縁性能を高めることができる。ただし、T11=T12であってもよい。 Further, since the thickness dimension T11 of the first wall portion 751 is larger than the thickness dimension T12 of the second wall portion 752, the insulation distance between the first wall portion 751 and the stator core 732 can be secured, and the insulation performance thereof can be improved. it can. However, T11 = T12 may be used.
 第3壁部753の厚さ寸法T13については、例えば第1壁部751の厚さ寸法T11と同じであるとよい。ただし、T13>T11であるか、又はT13<T11であってもよい。 The thickness dimension T13 of the third wall portion 753 may be the same as, for example, the thickness dimension T11 of the first wall portion 751. However, T13> T11 or T13 <T11 may be satisfied.
 図100に示すように、第3壁部753において、径方向内側と径方向外側との各位置で厚さ寸法T13を異ならせ、径方向外側の方が、厚さ寸法T13が大きくなるように構成してもよい。つまり、第3壁部753を、径方向外側ほど幅広のテーパ状断面とする。この場合、第3壁部753の厚さ寸法T13を、径方向内側よりも径方向外側の方が大きくなるようにしたことにより、径方向内側と径方向外側とで円周長さが異なることを加味しつつ、周方向に並ぶ各中間導線部746を適正に配置することができる。つまり、第3壁部753の厚さ寸法T13を径方向で均一にしておくと、部分巻線741Aの横断面を四角形状にする場合において、周方向に隣り合う2つの中間導線部746が、第3壁部753の側では寄りすぎてしまい、その反対側では離れすぎてしまう。そのため、周方向において回転磁束が不均等になることが懸念される。これに対して本例の構成では、周方向において回転磁束の均等化が可能となる。また、周方向における絶縁性能の均一化も可能となる。さらに、径方向外側(外周側)において中間導線部746と第3壁部753との間に余剰な隙間が形成されることが抑制されるため、中間導線部746(部分巻線741A)の位置決めや固定を行う上でも好適である。 As shown in FIG. 100, in the third wall portion 753, the thickness dimension T13 is made different at each position of the radial inner side and the radial outer side so that the thickness dimension T13 is larger on the radial outer side. It may be configured. That is, the third wall portion 753 has a tapered cross section that is wider toward the outer side in the radial direction. In this case, the thickness dimension T13 of the third wall portion 753 is set to be larger on the radial outer side than on the radial inner side, so that the circumferential length differs between the radial inner side and the radial outer side. It is possible to appropriately arrange each intermediate lead wire portion 746 arranged in the circumferential direction while taking into consideration the above. That is, if the thickness dimension T13 of the third wall portion 753 is made uniform in the radial direction, when the cross section of the partial winding 741A is made into a quadrangular shape, the two intermediate conductor portions 746 adjacent to each other in the circumferential direction are formed. The side of the third wall portion 753 is too close, and the opposite side is too far away. Therefore, there is a concern that the rotating magnetic flux becomes uneven in the circumferential direction. On the other hand, in the configuration of this example, the rotational magnetic flux can be equalized in the circumferential direction. In addition, it is possible to make the insulation performance uniform in the circumferential direction. Further, since it is suppressed that an excess gap is formed between the intermediate conductor portion 746 and the third wall portion 753 on the outer side (outer peripheral side) in the radial direction, the intermediate conductor portion 746 (partial winding 741A) is positioned. It is also suitable for fixing and fixing.
 コイルモジュール740Aの曲がり部745との関係で言えば、一対の直線部744において、第1壁部751は、曲がり部745とは反対側の壁部(軸方向内側の壁部)であり、第2壁部752は、曲がり部745側の壁部(軸方向外側の壁部)である。 Speaking in relation to the bent portion 745 of the coil module 740A, in the pair of straight portions 744, the first wall portion 751 is the wall portion (the wall portion on the inner side in the axial direction) opposite to the bent portion 745, and is the first wall portion. The two wall portion 752 is a wall portion (a wall portion on the outer side in the axial direction) on the bent portion 745 side.
 部分巻線741Aは、収容部754において三方の各壁部751~753に当接又は近接した状態で設けられ、かつ周方向において第3壁部753とは逆側で、第1壁部751及び第2壁部752の端部よりも内側となる領域に配置されている。つまり、巻線ホルダ742Aにおいて、第1壁部751及び第2壁部752における中間導線部746の周方向両側のうち一方の側には第3壁部753が設けられ、他方の側には、中間導線部746よりも周方向にはみ出したはみ出し部751a,752aが設けられている。このはみ出し部751a,752aは、部分巻線741Aに対して周方向に余剰となる余剰部分である。これにより、収容部754内には、周方向の片側に、部分巻線741Aが収容されていない空き領域SZが設けられている。この場合、空き領域SZにより、収容部754内の部分巻線741Aが巻線ホルダ742よりも外側にはみ出ることが抑制されるものとなっている。 The partial winding 741A is provided in the accommodating portion 754 in a state of being in contact with or close to each of the wall portions 751 to 753 on three sides, and is opposite to the third wall portion 753 in the circumferential direction, and the first wall portion 751 and It is arranged in an area inside the end of the second wall portion 752. That is, in the winding holder 742A, the third wall portion 753 is provided on one side of both sides of the intermediate conductor portion 746 in the first wall portion 751 and the second wall portion 752 in the circumferential direction, and the other side is provided with the third wall portion 753. Protruding portions 751a and 752a protruding in the circumferential direction from the intermediate conductor portion 746 are provided. The protruding portions 751a and 752a are surplus portions that are surplus in the circumferential direction with respect to the partial winding 741A. As a result, an empty area SZ in which the partial winding 741A is not accommodated is provided on one side in the circumferential direction in the accommodating portion 754. In this case, the free area SZ prevents the partial winding 741A in the accommodating portion 754 from protruding outside the winding holder 742.
 要するに、第1壁部751及び第2壁部752は、部分巻線741Aの中間導線部746の周方向両側に、その中間導線部746よりも周方向に延びる延長部を有しており、その周方向両側の延長部のうち一方の側に、第1壁部751及び第2壁部752から径方向に延びる第3壁部753が設けられている。また、周方向両側の延長部のうち一方の側に、はみ出し部751a,752aが設けられている。 In short, the first wall portion 751 and the second wall portion 752 have extension portions extending in the circumferential direction from the intermediate conductor portion 746 on both sides of the intermediate conductor portion 746 of the partial winding 741A in the circumferential direction. A third wall portion 753 extending in the radial direction from the first wall portion 751 and the second wall portion 752 is provided on one side of the extension portions on both sides in the circumferential direction. Further, protruding portions 751a and 752a are provided on one side of the extension portions on both sides in the circumferential direction.
 収容部754内には、絶縁材料として樹脂材料が充填されており、その樹脂材料によりモールドされた状態で部分巻線741Aが収容されている。これにより、収容部754において中間導線部746を挟んで第3壁部753の逆側には樹脂層755が形成されている。この場合、部分巻線741Aの導線743間の隙間にも樹脂材料が入り込むことで、部分巻線741Aにおいて、多重に巻回された導線743の近接するものどうしが、モールド樹脂を接合材として互いに接合されている。本構成では、部分巻線741Aにおいて多重に巻回された導線743の近接するものどうしが接合材により互いに接合されていることにより、部分巻線741Aにおける導線743どうしを所望の近接状態で維持できる。つまり、部分巻線741Aにおける多重巻の状態を所望の状態で維持することができる。樹脂層755は、第3壁部753と同様に、径方向内側と径方向外側との各位置で厚さ寸法(周方向寸法)を異ならせ、径方向外側の方が、周方向寸法が大きくなるように構成されているとよい(図100参照)。つまり、周方向に隣り合う異相どうしの各中間導線部746の離間距離が、径方向外側と径方向内側とで異なっている構成であるとよい。これにより、径方向内側と径方向外側とで円周長さが異なることを加味しつつ、周方向に並ぶ各中間導線部746を適正に配置することができる。なお、図100において、第3壁部753及び樹脂層755が周方向の絶縁部に相当する。 A resin material is filled in the accommodating portion 754 as an insulating material, and the partial winding 741A is accommodated in a state of being molded by the resin material. As a result, the resin layer 755 is formed on the opposite side of the third wall portion 753 with the intermediate conductor portion 746 sandwiched in the accommodating portion 754. In this case, the resin material also enters the gap between the conductors 743 of the partial winding 741A, so that in the partial winding 741A, the multiplely wound conductors 743 are close to each other using the mold resin as a bonding material. It is joined. In this configuration, the conductors 743 in the partial winding 741A can be maintained in a desired proximity state because the adjacent conductors 743 that are wound multiple times in the partial winding 741A are joined to each other by a joining material. .. That is, the state of multiple windings in the partial winding 741A can be maintained in a desired state. Similar to the third wall portion 753, the resin layer 755 has different thickness dimensions (circumferential dimensions) at each position of the radial inner side and the radial outer side, and the radial outer side has a larger circumferential dimension. It is preferable that the configuration is as follows (see FIG. 100). That is, it is preferable that the distance between the intermediate conductors 746 of the different phases adjacent to each other in the circumferential direction is different between the outer side in the radial direction and the inner side in the radial direction. As a result, it is possible to appropriately arrange the intermediate conductor portions 746 that are lined up in the circumferential direction, taking into consideration that the circumferential length is different between the inner side in the radial direction and the outer side in the radial direction. In FIG. 100, the third wall portion 753 and the resin layer 755 correspond to the insulating portion in the circumferential direction.
 樹脂モールドに代えて、収容部754内においてワニスを含む接着剤が含浸されることで部分巻線741Aが固められていてもよい。また、樹脂モールドとワニスの含浸との両方が行われていてもよい。また、導線743が、絶縁被膜により導体が覆われた被覆導線である場合に、その絶縁被膜の自己溶着により導線743どうしを互いに固着(接合)させる構成としてもよい。ただし、収容部754内に樹脂材料等が充填されていない構成、すなわち空き領域SZが空間領域として設けられている構成であってもよい。 Instead of the resin mold, the partial winding 741A may be hardened by impregnating the housing portion 754 with an adhesive containing varnish. Further, both the resin mold and the impregnation of the varnish may be performed. Further, when the conducting wire 743 is a coated conducting wire whose conductor is covered with an insulating coating, the conducting wires 743 may be fixed (bonded) to each other by self-welding of the insulating coating. However, the accommodating portion 754 may not be filled with a resin material or the like, that is, an empty area SZ may be provided as a space area.
 コイルモジュール740Aは、筒状の固定子コア732に対して径方向外側から組み付けられるものであり、固定子コア732側である第1壁部751は、固定子コア732の外周面と同じ曲率で円弧面に形成されている。これにより、固定子コア732に対するコイルモジュール740Aの密着性が高められている。反固定子コア側である第2壁部752については、直線状、円弧状のいずれにすることも任意であるが、本例では、第1壁部751と同心の円弧状に形成されている。 The coil module 740A is assembled to the tubular stator core 732 from the outside in the radial direction, and the first wall portion 751 on the stator core 732 side has the same curvature as the outer peripheral surface of the stator core 732. It is formed on an arcuate surface. As a result, the adhesion of the coil module 740A to the stator core 732 is enhanced. The second wall portion 752 on the anti-stator core side may be linear or arcuate, but in this example, it is formed in an arc shape concentric with the first wall portion 751. ..
 また、コイルモジュール740Aは、曲がり部745を径方向外側にして固定子コア732に組み付けられるものであり、第2壁部752の側(すなわち第1壁部751の反対側)に曲がり部745を有している。またこの場合、一対の直線部744において2つの第2壁部752を含む周方向距離は、2つの第1壁部751を含む周方向距離よりも長くなっており、その長い方の周方向距離と同じ寸法で、径方向外側となる曲がり部745が設けられている。 Further, the coil module 740A is assembled to the stator core 732 with the bent portion 745 radially outward, and the bent portion 745 is provided on the side of the second wall portion 752 (that is, the opposite side of the first wall portion 751). Have. Further, in this case, the circumferential distance including the two second wall portions 752 in the pair of straight portions 744 is longer than the circumferential distance including the two first wall portions 751, and the longer circumferential distance thereof. A bent portion 745 having the same dimensions as the above and which is outward in the radial direction is provided.
 また、図87(d)に示すように、コイルモジュール740Aの一対の直線部744において、コイルサイドCSとコイルエンドCE1,CE2との境界部BD付近には、曲がり部745とは逆側、すなわち径方向内側(固定子コア732側)に突出する突出部756が上下2箇所に設けられている。巻線ホルダ742Aでは、第1渡り部747側のコイルエンドCE1であって、かつ境界部BDの軸方向外側となる位置に突出部756が設けられるとともに、第2渡り部748側のコイルエンドCE2であって、かつ境界部BDの軸方向外側となる位置に突出部756が設けられている。 Further, as shown in FIG. 87 (d), in the pair of straight portions 744 of the coil module 740A, in the vicinity of the boundary portion BD between the coil side CS and the coil ends CE1 and CE2, the side opposite to the bent portion 745, that is, Protruding portions 756 projecting inward in the radial direction (on the stator core 732 side) are provided at two upper and lower positions. In the winding holder 742A, the coil end CE1 on the first crossover 747 side and the protruding portion 756 are provided at a position outside the boundary portion BD in the axial direction, and the coil end CE2 on the second crossover 748 side. Moreover, the protruding portion 756 is provided at a position outside the boundary portion BD in the axial direction.
 換言すれば、コイルモジュール740Aにおいて、第1壁部751は、固定子コア732の軸方向端面よりも軸方向外側に延びる部分(ヨーク外部分)を有しており、その部分に、固定子コア732との周方向の対向面よりも固定子コア732側に突出する突出部756が一体成形されている。突出部756は、例えば樹脂材料の射出成形により第1壁部751と同時に成形される。 In other words, in the coil module 740A, the first wall portion 751 has a portion (yoke outer portion) extending axially outward from the axial end face of the stator core 732, and the stator core is in that portion. A protruding portion 756 projecting toward the stator core 732 side from the surface facing the 732 in the circumferential direction is integrally molded. The protrusion 756 is formed at the same time as the first wall portion 751 by, for example, injection molding of a resin material.
 コイルモジュール740Aの横断面で見ると、図88(b)に示すように、固定子コア732側である第1壁部751から突出するようにして突出部756が設けられている。突出部756は、第1壁部751の周方向一端から周方向他端までの範囲で片側に傾斜する傾斜面756aを有する構成となっている。本例では、左右一対の直線部744において第1壁部751の内側端部(周方向内側)が高くなるようにして突出部756が形成されている。ただし、図88(b)に示す構成とは異なり、左右一対の直線部744において第1壁部751の外側端部(周方向外側)が高くなるようにして突出部756が形成されていてもよい。 Looking at the cross section of the coil module 740A, as shown in FIG. 88 (b), the protruding portion 756 is provided so as to protrude from the first wall portion 751 on the stator core 732 side. The protruding portion 756 is configured to have an inclined surface 756a that is inclined to one side in the range from one end in the circumferential direction to the other end in the circumferential direction of the first wall portion 751. In this example, the protruding portion 756 is formed so that the inner end portion (inside in the circumferential direction) of the first wall portion 751 becomes higher in the pair of left and right straight portions 744. However, unlike the configuration shown in FIG. 88 (b), even if the protruding portion 756 is formed so that the outer end portion (outside in the circumferential direction) of the first wall portion 751 is raised in the pair of left and right straight portions 744. Good.
 次に、コイルモジュール740Bについて説明する。 Next, the coil module 740B will be described.
 コイルモジュール740Bは、曲がり部745の延びる径方向の向きがコイルモジュール740Aとは異なっており、それによる構成の違いがあるものの、基本構成はコイルモジュール740Aと同じであるため、ここでは、コイルモジュール740Aとの相違点を中心に説明する。 In the coil module 740B, the direction in which the bent portion 745 extends in the radial direction is different from that of the coil module 740A, and although there is a difference in the configuration due to this, the basic configuration is the same as that of the coil module 740A. The differences from the 740A will be mainly described.
 図89(a)は、コイルモジュール740Bの斜視図であり、図89(b)は、コイルモジュール740Bの側面図である。また、図90(a),(b)は、コイルモジュール740Bの横断面を示す断面図であり、図90(a)は、図89(b)の90A-90A線断面図、図90(b)は、図89(b)の90B-90B線断面図である。なお、図89(b)では、コイルモジュール740Bの左側が固定子コア732側であり、図90(a),(b)では、コイルモジュール740Bの下側が固定子コア732側である。 FIG. 89A is a perspective view of the coil module 740B, and FIG. 89B is a side view of the coil module 740B. 90 (a) and 90 (b) are cross-sectional views showing a cross section of the coil module 740B, and FIG. 90 (a) is a cross-sectional view taken along the line 90A-90A of FIG. 89 (b) and FIG. 90 (b). ) Is a cross-sectional view taken along the line 90B-90B of FIG. 89 (b). In FIG. 89 (b), the left side of the coil module 740B is the stator core 732 side, and in FIGS. 90 (a) and 90 (b), the lower side of the coil module 740B is the stator core 732 side.
 コイルモジュール740Bは、導線743を多重巻にして構成された部分巻線741Bと、その部分巻線741Bに一体に設けられた絶縁性の巻線ホルダ742Bとを有している。また、コイルモジュール740Bは、軸方向に互いに平行に延びる一対の直線部744を有するとともに、軸方向両側の一端側に、軸方向に対して直交する向きに延びる曲がり部745を有し、全体として略L字状に形成された構成となっている。 The coil module 740B has a partial winding 741B formed by multiple winding of the conducting wire 743, and an insulating winding holder 742B integrally provided with the partial winding 741B. Further, the coil module 740B has a pair of straight portions 744 extending parallel to each other in the axial direction, and has bent portions 745 extending in a direction orthogonal to the axial direction on one end side on both sides in the axial direction as a whole. It has a structure formed in a substantially L shape.
 部分巻線741Bの構成は、基本的に部分巻線741Aと同じである。すなわち、部分巻線741Bは、部分巻線741Aと同様に、互いに平行でかつ直線状に設けられる一対の中間導線部746と、一対の中間導線部746を軸方向一端側で接続する第1渡り部747と、一対の中間導線部746を軸方向他端側で接続する第2渡り部748を有しており、これら一対の中間導線部746、第1渡り部747及び第2渡り部748により環状に形成されている。 The configuration of the partial winding 741B is basically the same as that of the partial winding 741A. That is, the partial winding 741B is the same as the partial winding 741A, and has a first crossover that connects a pair of intermediate conductors 746 provided in parallel and linearly with each other and a pair of intermediate conductors 746 on one end side in the axial direction. It has a second crossing portion 748 that connects the portion 747 and the pair of intermediate conductor portions 746 on the other end side in the axial direction, and the pair of intermediate conductor portions 746, the first crossing portion 747, and the second crossing portion 748. It is formed in a ring shape.
 ただし、コイルモジュール740Aとコイルモジュール740Bとでは、固定子コア732に組み付けられた状態での曲がり部745の延びる向きが異なり、かつ軸方向の向きが互いに逆向きとなっている。これにより、コイルモジュール740A,740Bでは構成の相違が生じている。 However, the coil module 740A and the coil module 740B have different extending directions of the bent portion 745 when assembled to the stator core 732, and the axial directions are opposite to each other. As a result, the coil modules 740A and 740B have different configurations.
 部分巻線741Bでは、第1渡り部747(部分巻線741BにおいてコイルエンドCE2側の第1渡り部747)に、径方向内側に曲がっている内曲がり部Y2が設けられている。部分巻線741Bは、コイルエンドCE2側に内曲がり部Y2が設けられ、かつコイルエンドCE1側では径方向に曲げられていない構成となっている。 In the partial winding 741B, the first crossover 747 (the first crossover 747 on the coil end CE2 side in the partial winding 741B) is provided with an inwardly bent portion Y2 that is bent inward in the radial direction. The partial winding 741B has an inwardly bent portion Y2 provided on the coil end CE2 side and is not bent in the radial direction on the coil end CE1 side.
 部分巻線741Bでは、第2渡り部748の側から、詳しくは曲がり部745とは逆側の先端から巻線端部743a,743bが引き出されている。これにより、コイルモジュール740A,740Bが固定子コア732に組み付けられた状態において、軸方向の同じ側(コイルエンドCE1側)に巻線端部743a,743bが引き出されるようになっている。 In the partial winding 741B, the winding end portions 743a and 743b are pulled out from the side of the second crossover portion 748, specifically from the tip opposite to the bending portion 745. As a result, when the coil modules 740A and 740B are assembled to the stator core 732, the winding end portions 743a and 743b are pulled out on the same side in the axial direction (coil end CE1 side).
 また、図90(a)に示すように、巻線ホルダ742Bは、巻線ホルダ742Aの構成と同様に、固定子コア732側となる第1壁部751と、反固定子コア側となる第2壁部752と、それら第1壁部751及び第2壁部752を繋ぐ第3壁部753とを有している。また、巻線ホルダ742Bでは、巻線ホルダ742Aの構成とは異なり、一対の直線部744において、第1壁部751が曲がり部745側の壁部(軸方向内側の壁部)となり、第2壁部752が曲がり部745とは反対側の壁部(軸方向外側の壁部)となっている。 Further, as shown in FIG. 90A, the winding holder 742B has a first wall portion 751 on the stator core 732 side and a first wall portion 751 on the anti-stator core side, similarly to the configuration of the winding holder 742A. It has two wall portions 752 and a third wall portion 753 connecting the first wall portion 751 and the second wall portion 752. Further, in the winding holder 742B, unlike the configuration of the winding holder 742A, in the pair of straight portions 744, the first wall portion 751 becomes the wall portion on the bent portion 745 side (the wall portion on the inner side in the axial direction), and the second wall portion 751 becomes a wall portion on the inner side in the axial direction. The wall portion 752 is a wall portion (a wall portion on the outer side in the axial direction) on the opposite side of the bent portion 745.
 コイルモジュール740Bは、曲がり部745を径方向内側にして固定子コア732に組み付けられるものであり、第1壁部751の側に曲がり部745を有している。この場合、一対の直線部744において2つの第1壁部751を含む周方向距離は、2つの第2壁部752を含む周方向距離よりも短くなっており、その短い方の周方向距離と同じ寸法で、径方向内側となる曲がり部745が設けられている。 The coil module 740B is assembled to the stator core 732 with the bent portion 745 inside in the radial direction, and has the bent portion 745 on the side of the first wall portion 751. In this case, the circumferential distance including the two first wall portions 751 in the pair of straight portions 744 is shorter than the circumferential distance including the two second wall portions 752, and the shorter circumferential distance and the circumferential distance. A bent portion 745 having the same dimensions and being inward in the radial direction is provided.
 また、図89(b)に示すように、コイルモジュール740Bの一対の直線部744において、コイルサイドCSとコイルエンドCE1,CE2との境界部BD付近には、曲がり部745側、すなわち径方向内側(固定子コア732側)に突出する突出部756が上下2箇所に設けられている。巻線ホルダ742では、突出部756が、第1渡り部747側のコイルエンドCE2であって、かつ境界部BDの軸方向外側となる位置に設けられるとともに、第2渡り部748側のコイルエンドCE1であって、かつ境界部BDの軸方向外側となる位置に設けられている。突出部756の構成も、巻線ホルダ742Aと同様である(図90(b)参照)。 Further, as shown in FIG. 89B, in the pair of straight portions 744 of the coil module 740B, the bent portion 745 side, that is, the inside in the radial direction is located near the boundary portion BD between the coil side CS and the coil ends CE1 and CE2. Protruding portions 756 protruding toward (the stator core 732 side) are provided at two upper and lower positions. In the winding holder 742, the protruding portion 756 is provided at the coil end CE2 on the first crossover portion 747 side and at a position outside the boundary portion BD in the axial direction, and the coil end on the second crossover portion 748 side. It is CE1 and is provided at a position outside the boundary portion BD in the axial direction. The configuration of the protrusion 756 is also the same as that of the winding holder 742A (see FIG. 90B).
 コイルモジュール740の製造方法を説明する。ここではコイルモジュール740Aの製造方法を説明するが、コイルモジュール740Bについても同様である。まず、部分巻線741Aを空芯巻コイルとして作製する。具体的には、治具を用いて導線743を多重に巻回させ、空芯巻コイルとして、図87(b)に示す形状の部分巻線741Aを作製する。そして、部分巻線741Aの作製後、部分巻線741Aに対して巻線ホルダ742Aを組み付ける。このとき、巻線ホルダ742Aは、複数に分割された状態で個々に部分巻線741Aに対して組み付けられるとよい。巻線ホルダ742Aは、径方向又は軸方向に2つ又は3つに分割可能になっているとよい。 The manufacturing method of the coil module 740 will be described. Here, the method of manufacturing the coil module 740A will be described, but the same applies to the coil module 740B. First, the partial winding 741A is manufactured as an air-core winding coil. Specifically, the conducting wire 743 is wound in multiple directions using a jig to produce a partial winding 741A having the shape shown in FIG. 87 (b) as an air-core winding coil. Then, after the partial winding 741A is manufactured, the winding holder 742A is assembled to the partial winding 741A. At this time, the winding holder 742A may be individually assembled to the partial winding 741A in a state of being divided into a plurality of parts. It is preferable that the winding holder 742A can be divided into two or three in the radial direction or the axial direction.
 なお、巻線ホルダ742Aに対して導線743を多重に巻回することで、コイルモジュール740Aを作製することも可能である。巻線ホルダ742Aにおいて、部分巻線741Aを収容する収容部754の内周面に、導線743を案内する突起又は溝を設けてもよい。部分巻線741Aがほどけないように外側の導線743で縛る構成であってもよい。 It is also possible to manufacture the coil module 740A by winding the lead wire 743 multiple times around the winding holder 742A. In the winding holder 742A, a protrusion or a groove for guiding the conducting wire 743 may be provided on the inner peripheral surface of the accommodating portion 754 accommodating the partial winding 741A. It may be configured to be tied with the outer conductor 743 so that the partial winding 741A is not unwound.
 そして、部分巻線741Aを一体化した巻線ホルダ742Aにおいて、収容部754内に樹脂を充填する。これにより、収容部754内に樹脂層755が形成される。 Then, in the winding holder 742A in which the partial winding 741A is integrated, the accommodating portion 754 is filled with resin. As a result, the resin layer 755 is formed in the accommodating portion 754.
 次に、固定子コア732に対してコイルモジュール740A,740Bを組み付けた状態について説明する。 Next, the state in which the coil modules 740A and 740B are assembled to the stator core 732 will be described.
 図91は、固定子730の縦断面を示す断面図であり、図92は、固定子730の横断面を示す断面図であり、図93は、固定子コア732及びエンドリング733とコイルモジュール740Aとを互いに分離して示す断面図である。なお、図92は、図91の92-92線断面図である。 91 is a cross-sectional view showing a vertical cross section of the stator 730, FIG. 92 is a cross-sectional view showing a cross section of the stator 730, and FIG. 93 is a stator core 732 and an end ring 733 and a coil module 740A. It is sectional drawing which shows and separated from each other. Note that FIG. 92 is a cross-sectional view taken along the line 92-92 of FIG. 91.
 図91に示すように、コイルモジュール740A,740Bは、それぞれの曲がり部745が軸方向に互いに逆となり、かつ曲がりの向きが径方向に互いに逆となるようにして、固定子コア732に組み付けられている。この場合、各コイルモジュール740A,740Bにおける曲がり部745の位置及び向きにより、周方向に隣り合うコイルモジュール740A,740Bどうしの干渉が回避されるようになっている。部分巻線741A,741Bで言えば、部分巻線741Aに外曲がり部Y1が設けられるとともに、部分巻線741Bに内曲がり部Y2が設けられていることにより、周方向に隣り合う部分巻線741A,741Bどうしの干渉が回避されるようになっている。外曲がり部Y1及び内曲がり部Y2が干渉回避部に相当する。 As shown in FIG. 91, the coil modules 740A and 740B are assembled to the stator core 732 so that the bending portions 745 are opposite to each other in the axial direction and the bending directions are opposite to each other in the radial direction. ing. In this case, interference between the coil modules 740A and 740B adjacent to each other in the circumferential direction is avoided depending on the position and orientation of the bent portion 745 in each coil module 740A and 740B. Speaking of the partial windings 741A and 741B, the partial winding 741A is provided with the outer bending portion Y1 and the partial winding 741B is provided with the inner bending portion Y2, so that the partial windings 741A are adjacent to each other in the circumferential direction. , 741B are designed to avoid interference with each other. The outer bent portion Y1 and the inner bent portion Y2 correspond to the interference avoiding portion.
 図85を併せ用いて補足すると、コイルエンドCE1側では、コイルモジュール740A(部分巻線741Aの第1渡り部747)の軸方向外側に、コイルモジュール740B(部分巻線741Bの第2渡り部748)が位置する。また、コイルエンドCE2側では、コイルモジュール740B(部分巻線741Bの第1渡り部747)の軸方向外側に、コイルモジュール740A(部分巻線741Aの第2渡り部748)が位置するようにしつつ、各部分巻線741A,741Bが周方向に並べて配置されている。これにより、各部分巻線741A,741Bが、互いの干渉を回避しつつ周方向に適正に配置され、体格の小型化が可能となっている。 Supplementing with reference to FIG. 85, on the coil end CE1 side, the coil module 740B (the second crossover portion 748 of the partial winding 741B) is located outside the coil module 740A (the first crossover portion 747 of the partial winding 741A) in the axial direction. ) Is located. Further, on the coil end CE2 side, the coil module 740A (second crossing portion 748 of the partial winding 741A) is located outside the coil module 740B (first crossing portion 747 of the partial winding 741B) in the axial direction. , The partial windings 741A and 741B are arranged side by side in the circumferential direction. As a result, the partial windings 741A and 741B are appropriately arranged in the circumferential direction while avoiding mutual interference, and the physique can be reduced.
 また、図91に示すように、固定子コア732の軸方向両端にはエンドリング733が設けられており、そのエンドリング733に対して上下2箇所の突出部756がそれぞれ係合した状態で、固定子コア732にコイルモジュール740A,740Bが組み付けられている。ここで、コイルモジュール740A,740Bの突出部756は、固定子コア732の軸方向端面(図の上側端面、下側端面)に軸方向に重なる状態で突出している。これにより、固定子コア732は、各コイルモジュール740A,740Bにおける一対の突出部756により軸方向に挟まれた状態(すなわち軸方向に押圧された状態)となっている。この場合、固定子コア732は複数のコアシート732aが軸方向に積層されて構成されており、そのコアシート732aの積層方向で、一対の突出部756により固定子コア732が挟まれた状態となっている。これにより、コアシート732aどうしの間の隙間が拡がってしまい、固定子コア732の軸長寸法が意図せず大きくなるといった不都合が抑制されるようになっている。一対の突出部756は、固定子コア732の軸方向端面を軸方向外側から軸方向に押圧する押圧部として機能する。 Further, as shown in FIG. 91, end rings 733 are provided at both ends in the axial direction of the stator core 732, and the end rings 733 are engaged with the upper and lower protruding portions 756, respectively. Coil modules 740A and 740B are assembled to the stator core 732. Here, the protruding portions 756 of the coil modules 740A and 740B project in a state of overlapping in the axial direction with the axial end faces (upper end face and lower end face in the figure) of the stator core 732. As a result, the stator core 732 is in a state of being sandwiched in the axial direction by a pair of protruding portions 756 in the coil modules 740A and 740B (that is, in a state of being pressed in the axial direction). In this case, the stator core 732 is configured by laminating a plurality of core sheets 732a in the axial direction, and the stator core 732 is sandwiched by a pair of protrusions 756 in the laminating direction of the core sheets 732a. It has become. As a result, the gap between the core sheets 732a is widened, and the inconvenience that the axial length of the stator core 732 is unintentionally increased is suppressed. The pair of projecting portions 756 function as pressing portions that press the axial end faces of the stator core 732 in the axial direction from the outside in the axial direction.
 なお、固定子コア732には、径方向内側(すなわち径方向内外のうちコイルモジュール740A,740Bとは逆側)に、突出部756とは別に、複数のコアシート732aの積層状態を保持するための積層保持構造が設けられているとよい。図91では、太破線で示すQ位置に積層保持構造が設けられている。積層保持構造としては、コアシート732aの溶接による接合、コアシート732aのカシメによる接合、接着剤(ワニスを含む)による接合、固定子コア732の径方向内側に圧入により組み付けられる外筒部材772(筒状部材)の摩擦力による積層保持などが考えられる。径方向内側に積層保持構造が設けられることにより、固定子コア732の軸長寸法の縮小化をより一層適正に実現できる。 In addition, in order to hold the laminated state of a plurality of core sheets 732a on the stator core 732 in the radial direction (that is, on the side opposite to the coil modules 740A and 740B in the radial direction) apart from the protruding portion 756. It is preferable that the laminated holding structure of the above is provided. In FIG. 91, the laminated holding structure is provided at the Q position indicated by the thick broken line. As the laminated holding structure, the core sheet 732a is joined by welding, the core sheet 732a is joined by caulking, the adhesive (including varnish) is used, and the outer cylinder member 772 (which is press-fitted inside the stator core 732 in the radial direction) is assembled. Stacking and holding due to the frictional force of the tubular member) can be considered. By providing the laminated holding structure on the inner side in the radial direction, it is possible to more appropriately reduce the axial length of the stator core 732.
 コイルモジュール740A,740Bの外周側には拘束リング760が取り付けられている。この拘束リング760の拘束により、突出部756がエンドリング733に係合する向きにコイルモジュール740A,740Bが押圧された状態となっている。特に、エンドリング733及び突出部756の係合部分に対して軸方向に重複する位置に拘束リング760が設けられていることで、エンドリング733及び突出部756の係合状態がより確実に保持されるものとなっている。 A restraint ring 760 is attached to the outer peripheral side of the coil modules 740A and 740B. Due to the restraint of the restraint ring 760, the coil modules 740A and 740B are pressed in the direction in which the protrusion 756 engages with the end ring 733. In particular, since the restraint ring 760 is provided at a position where the end ring 733 and the protruding portion 756 overlap in the axial direction with respect to the engaging portion, the engaged state of the end ring 733 and the protruding portion 756 can be more reliably maintained. It is supposed to be done.
 拘束リング760は、コイルモジュール740A,740Bの径方向外側、すなわち回転子710の磁石722との対向面側に設けられている。そのため、回転子710側との干渉を避けるには、拘束リング760は径方向の厚さが極力薄くなっていることが望ましい。また、軸方向においてコイルサイドCSとなる領域には設けず、コイルエンドCE1,CE2となる領域に設ける構成としてもよい。この場合、コイルエンドCE1,CE2となる範囲であり、かつコイルモジュール740A,740Bの径方向外側となる位置に拘束リング760が設けられるとよい。ただし、拘束リング760が設けられる位置及び拘束リング760の数は任意である。 The restraint ring 760 is provided on the radial outside of the coil modules 740A and 740B, that is, on the side of the rotor 710 facing the magnet 722. Therefore, in order to avoid interference with the rotor 710 side, it is desirable that the restraint ring 760 is as thin as possible in the radial direction. Further, the coil side CS may not be provided in the axial direction, but may be provided in the coil end CE1 and CE2 regions. In this case, it is preferable that the restraint ring 760 is provided at a position within the range of the coil ends CE1 and CE2 and at a position outside the coil modules 740A and 740B in the radial direction. However, the position where the restraint ring 760 is provided and the number of restraint rings 760 are arbitrary.
 拘束リング760は、巻線ホルダ742の第2壁部752の外側に取り付けられている。つまり、拘束リング760は、巻線ホルダ742には接触するが、部分巻線741には接触しない構成となっている。これにより、例えば固定強度を高めるべく金属製の拘束リング760を用いた構成にあっても、部分巻線741の絶縁性の低下を抑制できるものとなっている。 The restraint ring 760 is attached to the outside of the second wall portion 752 of the winding holder 742. That is, the restraint ring 760 is configured to contact the winding holder 742 but not the partial winding 741. As a result, for example, even in a configuration in which a metal restraint ring 760 is used to increase the fixing strength, it is possible to suppress a decrease in the insulating property of the partial winding 741.
 また、図92及び図93に示すように、エンドリング733の係合面734には、突出部756の傾斜面756aが当接している。なお、エンドリング733の係合面734が第1係合部に相当し、コイルモジュール740A,740Bの突出部756が第2係合部に相当する。また、傾斜面756aが被係合面に相当する。この場合、エンドリング733には、傾斜方向が互い違いとなるようにして複数の係合面734が周方向に連続して設けられており、周方向に隣り合う2つの係合面734により凹部735が形成されている(図93参照)。そして、この凹部735に、2つのコイルモジュール740A,740Bの1つずつの突出部756が入り込むようになっている。1つの凹部735に入り込む2つの突出部756は、それぞれ突出部756の頂部が凹部735の底に到達している。これにより、各コイルモジュール740A,740Bにおける第3壁部753どうしが周方向に当接した状態となっている。また、周方向に隣り合う2つの係合面734により形成された頂部では、各コイルモジュール740A,740Bの第1壁部751どうし及び第2壁部752どうしがそれぞれ周方向に当接又は近接した状態となっている。 Further, as shown in FIGS. 92 and 93, the inclined surface 756a of the protruding portion 756 is in contact with the engaging surface 734 of the end ring 733. The engaging surface 734 of the end ring 733 corresponds to the first engaging portion, and the protruding portions 756 of the coil modules 740A and 740B correspond to the second engaging portion. Further, the inclined surface 756a corresponds to the engaged surface. In this case, the end ring 733 is provided with a plurality of engaging surfaces 734 continuously in the circumferential direction so that the inclination directions are staggered, and the recess 735 is provided by the two engaging surfaces 734 adjacent to each other in the circumferential direction. Is formed (see FIG. 93). Then, one protrusion 756 of each of the two coil modules 740A and 740B is inserted into the recess 735. In each of the two protrusions 756 that enter one recess 735, the top of the protrusion 756 reaches the bottom of the recess 735. As a result, the third wall portions 753 of the coil modules 740A and 740B are in contact with each other in the circumferential direction. Further, at the top formed by two engaging surfaces 734 adjacent to each other in the circumferential direction, the first wall portions 751 and the second wall portions 752 of the coil modules 740A and 740B are in contact with each other or close to each other in the circumferential direction. It is in a state.
 上記構成では、2つのコイルモジュール740A,740Bの各突出部756は、凹部735を形成する2つの係合面734により周方向に互いに近づく方向に案内される。これにより、周方向に隣り合う2つの部分巻線741についてがたつきを抑制し、ひいては振動や電磁力による固定子巻線731の位置ずれを好適に抑制できる。また、中間導線部746どうしの隙間を縮小化することが可能となるため、占積率の向上を期待できる。 In the above configuration, the protruding portions 756 of the two coil modules 740A and 740B are guided in the circumferential direction toward each other by the two engaging surfaces 734 forming the recess 735. As a result, rattling of the two partial windings 741 adjacent to each other in the circumferential direction can be suppressed, and the displacement of the stator winding 731 due to vibration or electromagnetic force can be suitably suppressed. Further, since the gap between the intermediate conductors 746 can be reduced, an improvement in the space factor can be expected.
 また、各コイルモジュール740A,740Bは、周方向に離れた2箇所の第1壁部751にそれぞれ突出部756を有し、その2箇所の突出部756は、エンドリング733において傾斜の向きが互いに逆となる2つの係合面734にそれぞれ当接している。この場合、各コイルモジュール740A,740Bにおいて、各々2つの突出部756がエンドリング733の係合面734側に係合することで、各コイルモジュール740A,740Bの周方向の位置ずれを一層生じにくくすることができる。 Further, each of the coil modules 740A and 740B has protrusions 756 on two first wall portions 751 separated from each other in the circumferential direction, and the two protrusions 756 are inclined at the end ring 733 with respect to each other. It is in contact with two opposite engaging surfaces 734, respectively. In this case, in each of the coil modules 740A and 740B, the two protrusions 756 engage with the engaging surface 734 side of the end ring 733, so that the misalignment of the coil modules 740A and 740B in the circumferential direction is less likely to occur. can do.
 また、コイルモジュール740A,740Bの径方向外側に拘束リング760が取り付けられた構成では、エンドリング733の係合面734に対して、突出部756の傾斜面756aが押圧状態で当接することになる。これにより、固定子コア732に対してコイルモジュール740A,740Bをより強固に固定できる。 Further, in the configuration in which the restraint ring 760 is attached to the radial outer side of the coil modules 740A and 740B, the inclined surface 756a of the protruding portion 756 comes into contact with the engaging surface 734 of the end ring 733 in a pressed state. .. As a result, the coil modules 740A and 740B can be more firmly fixed to the stator core 732.
 各コイルモジュール740A,740Bが周方向に並べて配置された状態では、各コイルモジュール740A,740Bの直線部744において、収容部754に収容された部分巻線741が周方向に互いに所定間隔ずつ離れた位置に配置されている。より詳しくは、周方向に隣り合う各部分巻線741は、巻線ホルダ742の第3壁部753により互いに隔離されているか、又は巻線ホルダ742の収容部754内の空き領域SZにより互いに隔離されている。これにより、周方向に隣り合う異相の部分巻線741どうしの絶縁性が確保されている。 In a state where the coil modules 740A and 740B are arranged side by side in the circumferential direction, in the straight portion 744 of each coil module 740A and 740B, the partial windings 741 housed in the accommodating portion 754 are separated from each other by a predetermined interval in the circumferential direction. It is placed in position. More specifically, the peripherally adjacent partial windings 741 are isolated from each other by the third wall portion 753 of the winding holder 742, or by the free space SZ in the accommodating portion 754 of the winding holder 742. Has been done. As a result, the insulation between the partial windings 741 having different phases adjacent to each other in the circumferential direction is ensured.
 周方向に隣り合う異相の部分巻線741の間には、2つの第3壁部753が介在している。この場合、第3壁部753を2枚重ねとすることで、固定子巻線731での絶縁性が一層高められている。又は、周方向に隣り合う異相の部分巻線741の間には、2つの空き領域SZが介在している。この場合、収容部754内の空き領域SZが周方向に連続していること、さらに言えばそれら空き領域SZが樹脂モールドされていることで、固定子巻線731での絶縁性が一層高められている。つまり、図示の構成では、周方向に隣り合う中間導線部746どうしの間に、異なる巻線ホルダ742の第3壁部753が周方向に連続して設けられるか、異なる巻線ホルダ742のはみ出し部751a,752aが周方向に連続して設けられている。 Two third wall portions 753 are interposed between the partial windings 741 of different phases adjacent to each other in the circumferential direction. In this case, by stacking two third wall portions 753, the insulating property of the stator winding 731 is further enhanced. Alternatively, two free areas SZ are interposed between the partial windings 741 of different phases adjacent to each other in the circumferential direction. In this case, the free areas SZ in the accommodating portion 754 are continuous in the circumferential direction, and moreover, the free areas SZ are resin-molded, so that the insulation property of the stator winding 731 is further enhanced. ing. That is, in the illustrated configuration, the third wall portion 753 of the different winding holder 742 is continuously provided in the circumferential direction between the intermediate conductor portions 746 adjacent to each other in the circumferential direction, or the different winding holder 742 protrudes. The portions 751a and 752a are continuously provided in the circumferential direction.
 第3壁部753の厚さ寸法T13(図88(a)参照)に関して、第3壁部753の2枚分の厚さ寸法T13(すなわち、2×T13)が第1壁部751の厚さ寸法T11よりも大きいとよい。すなわち、2×T13>T11であるとよい。この場合、周方向に並ぶ中間導線部746どうしの間において、固定子コア732と中間導線部746との間よりも大きい電位差が生じても、適切な相間絶縁が実施となっている。 Regarding the thickness dimension T13 of the third wall portion 753 (see FIG. 88 (a)), the thickness dimension T13 (that is, 2 × T13) of two pieces of the third wall portion 753 is the thickness of the first wall portion 751. It should be larger than the dimension T11. That is, it is preferable that 2 × T13> T11. In this case, even if a larger potential difference occurs between the intermediate conductors 746s arranged in the circumferential direction than between the stator core 732 and the intermediate conductors 746, appropriate interphase insulation is performed.
 各コイルモジュール740A,740Bにおける径方向及び周方向の絶縁構造について補足する。コイルモジュール740A,740Bにおいて、第1壁部751及び第2壁部752は、部分巻線741A,741Bの中間導線部746の周方向両側のうち一方側に第3壁部753を有するとともに、他方側にはみ出し部751a,752aを有している。また、第1壁部751及び第2壁部752において、第3壁部753が接続される部分及びはみ出し部751a,752aは、それぞれ中間導線部746よりも周方向に延びる延長部に相当し、周方向に隣り合う中間導線部746どうしの間において、異なるコイルモジュール740A,740Bの延長部が周方向に対向して設けられている。この場合、周方向に隣り合う中間導線部746は、各コイルモジュール740A,740Bにおける第1壁部751の延長部により互いに離間されることで、相互の絶縁性が確保される。これにより、中間導線部746において径方向の固定子コア732との絶縁に加え、周方向の相間絶縁も好適に実現できる。 Supplementary information on the radial and circumferential insulation structures of each coil module 740A and 740B. In the coil modules 740A and 740B, the first wall portion 751 and the second wall portion 752 have the third wall portion 753 on one of the circumferential directions of the intermediate conductor portions 746 of the partial windings 741A and 741B, and the other. The protruding portions 751a and 752a are provided on the side. Further, in the first wall portion 751 and the second wall portion 752, the portion to which the third wall portion 753 is connected and the protruding portions 751a and 752a correspond to extension portions extending in the circumferential direction from the intermediate conductor portion 746, respectively. Extensions of different coil modules 740A and 740B are provided so as to face each other in the circumferential direction between the intermediate conductors 746 that are adjacent to each other in the circumferential direction. In this case, the intermediate conductor portions 746 adjacent to each other in the circumferential direction are separated from each other by the extension portion of the first wall portion 751 in the coil modules 740A and 740B, so that mutual insulation is ensured. As a result, in addition to the insulation of the intermediate conductor portion 746 with the stator core 732 in the radial direction, interphase insulation in the circumferential direction can be suitably realized.
 本例では特に、周方向に並ぶ各中間導線部746の周方向一方側において、異なるコイルモジュール740A,740Bの第3壁部753が周方向に互いに対向させた状態で設けられるとともに、周方向に並ぶ各中間導線部746の周方向他方側において、第3壁部753が無くはみ出し部751a,752aによる離間がなされている。この場合、径方向に並ぶ固定子コア732と中間導線部746との間には、1つの第1壁部751が設けられる一方、周方向に並ぶ中間導線部746の間には、2つの第3壁部753が設けられているため、周方向に並ぶ中間導線部746どうしの間に、固定子コア732と中間導線部746との間よりも大きい電位差が生じることを考慮しつつ適切な相間絶縁を実施できる。 In this example, in particular, the third wall portions 753 of the different coil modules 740A and 740B are provided in a state of facing each other in the circumferential direction on one side in the circumferential direction of each of the intermediate conductor portions 746 arranged in the circumferential direction, and in the circumferential direction. On the other side in the circumferential direction of each of the intermediate conducting wire portions 746 that are lined up, the third wall portion 753 is absent and separated by the protruding portions 751a and 752a. In this case, one first wall portion 751 is provided between the stator cores 732 arranged in the radial direction and the intermediate conductor portion 746, while the two first wall portions 746 are provided between the intermediate conductor portions 746 arranged in the circumferential direction. Since the three wall portions 753 are provided, an appropriate phase spacing is taken into consideration that a larger potential difference is generated between the intermediate conductor portions 746 arranged in the circumferential direction than between the stator core 732 and the intermediate conductor portion 746. Insulation can be performed.
 なお、固定子コア732に対してコイルモジュール740A,740Bを組み付けた状態において、コイルモジュール740A,740Bの突出部756とエンドリング733とはワニス等の接着剤により互いに固定されているとよい。また、コイルモジュール740A,740Bの突出部756とエンドリング733との間に合成樹脂やワニスを充填することで、がたつきを抑制するようにしてもよい。 In the state where the coil modules 740A and 740B are assembled to the stator core 732, the protruding portions 756 and the end ring 733 of the coil modules 740A and 740B may be fixed to each other by an adhesive such as varnish. Further, rattling may be suppressed by filling a synthetic resin or varnish between the protruding portion 756 of the coil modules 740A and 740B and the end ring 733.
 複数の部分巻線741A,741Bは、多重巻された状態の導体断面積と多重巻の巻回数が同じであるとよい。この場合、各相の相巻線において、並列回路を構成する各部分巻線741A,741Bの鎖交磁束を均一化することができる。これにより、各部分巻線741A,741Bにおける相互の電位差を無くすことができ、並列回路内での循環電流の発生を抑制できる。また、循環電流の発生に伴うモータ効率の低下や熱定格性能の低下を抑制できる。 It is preferable that the plurality of partial windings 741A and 741B have the same conductor cross-sectional area in the state of multiple winding and the number of multiple windings. In this case, in the phase winding of each phase, the interlinkage magnetic flux of each of the partial windings 741A and 741B constituting the parallel circuit can be made uniform. As a result, the mutual potential difference between the partial windings 741A and 741B can be eliminated, and the generation of circulating current in the parallel circuit can be suppressed. In addition, it is possible to suppress a decrease in motor efficiency and a decrease in thermal rating performance due to the generation of circulating current.
 また、複数の部分巻線741A,741Bは、渡り部747,748を含めて同一の形状であるため、コイルエンドCE1,CE2での漏れ磁束まで含めて鎖交磁束を均一化することができる。これにより、やはり各部分巻線741A,741Bでの電位差を無くし、並列回路内の循環電流を抑制できる。 Further, since the plurality of partial windings 741A and 741B have the same shape including the crossovers 747 and 748, the interlinkage magnetic flux can be made uniform including the leakage flux at the coil ends CE1 and CE2. As a result, the potential difference between the partial windings 741A and 741B can be eliminated, and the circulating current in the parallel circuit can be suppressed.
 固定子730は、以下の(A)~(C)のいずれかを用いたものであるとよい。
(A)固定子730において、周方向における各導線部(中間導線部746)の間に導線間部材を設け、かつその導線間部材として、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、1磁極における磁石722の周方向の幅寸法をWm、磁石722の残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いている。
(B)固定子730において、周方向における各導線部(中間導線部746)の間に導線間部材を設け、かつその導線間部材として、非磁性材料を用いている。
(C)固定子730において、周方向における各導線部(中間導線部746)の間に導線間部材を設けていない構成となっている。
The stator 730 may use any of the following (A) to (C).
(A) In the stator 730, a conductor-to-conductor member is provided between each conductor portion (intermediate conductor portion 746) in the circumferential direction, and as the conductor-to-conductor member, the width dimension of the conductor-to-conductor member at one magnetic pole in the circumferential direction is Wt. When the saturation magnetic flux density of the conductor-to-conductor member is Bs, the width dimension of the magnet 722 at one magnetic pole in the circumferential direction is Wm, and the residual magnetic flux density of the magnet 722 is Br, the magnetic relationship is Wt × Bs ≦ Wm × Br. The material is used.
(B) In the stator 730, a conductor-to-conductor member is provided between each conductor portion (intermediate conductor portion 746) in the circumferential direction, and a non-magnetic material is used as the conductor-to-conductor member.
(C) The stator 730 has a configuration in which no interconductor member is provided between each conductor portion (intermediate conductor portion 746) in the circumferential direction.
 次に、インナユニット770について説明する。 Next, the inner unit 770 will be described.
 図94及び図95は、インナユニット770の縦断面図である。なお、図95には、インナユニット770に、回転軸701を支持する軸受791,792を組み付けた状態を示している。便宜上、以下の説明では、軸受791を第1軸受791、軸受792を第2軸受792とも称する。第1軸受791は、回転軸701の軸方向において基端側、すなわち連結軸705側に設けられた軸受であり、第2軸受792は、回転軸701の先端側に設けられた軸受である。 94 and 95 are vertical cross-sectional views of the inner unit 770. Note that FIG. 95 shows a state in which bearings 791 and 792 that support the rotating shaft 701 are assembled to the inner unit 770. For convenience, in the following description, the bearing 791 will also be referred to as a first bearing 791, and the bearing 792 will also be referred to as a second bearing 792. The first bearing 791 is a bearing provided on the base end side in the axial direction of the rotating shaft 701, that is, on the connecting shaft 705 side, and the second bearing 792 is a bearing provided on the tip end side of the rotating shaft 701.
 インナユニット770は、インナハウジング771を有している。インナハウジング771は、円筒状をなす外筒部材772と、外周径が外筒部材772よりも小径の円筒状をなし、外筒部材772の径方向内側に配置される内筒部材773と、これら外筒部材772及び内筒部材773の軸方向一端側に固定される略円板状の端板774とを有している。これら各部材772~774は、導電性材料により構成されているとよく、例えば炭素繊維強化プラスチック(CFRP)により構成されている。外筒部材772と端板774とは同一の外形寸法を有しており、これら外筒部材772及び端板774により形成された空間内に内筒部材773が設けられている。内筒部材773は、ボルト等の締結具775により外筒部材772及び端板774に対してそれぞれ固定されている。 The inner unit 770 has an inner housing 771. The inner housing 771 has a cylindrical outer cylinder member 772, and an inner cylinder member 773 having an outer peripheral diameter smaller than that of the outer cylinder member 772 and arranged inside the outer cylinder member 772 in the radial direction. It has a substantially disk-shaped end plate 774 fixed to one end side in the axial direction of the outer cylinder member 772 and the inner cylinder member 773. Each of these members 772 to 774 is preferably made of a conductive material, for example, made of carbon fiber reinforced plastic (CFRP). The outer cylinder member 772 and the end plate 774 have the same external dimensions, and the inner cylinder member 773 is provided in the space formed by the outer cylinder member 772 and the end plate 774. The inner cylinder member 773 is fixed to the outer cylinder member 772 and the end plate 774 by fasteners 775 such as bolts, respectively.
 インナハウジング771の外筒部材772の径方向外側には固定子コア732が固定される。これにより、固定子730とインナユニット770とが一体化されるようになっている。 The stator core 732 is fixed to the radial outer side of the outer cylinder member 772 of the inner housing 771. As a result, the stator 730 and the inner unit 770 are integrated.
 外筒部材772及び内筒部材773の間には、冷却水等の冷媒を流通させる冷媒通路777が形成されている。冷媒通路777は、インナハウジング771の周方向に環状に設けられている。図示は省略するが、冷媒通路777には冷媒配管が接続されており、その冷媒配管から流入する冷媒が冷媒通路777内で熱交換した後、再び冷媒配管に流出するようになっている。 A refrigerant passage 777 for circulating a refrigerant such as cooling water is formed between the outer cylinder member 772 and the inner cylinder member 773. The refrigerant passage 777 is provided in an annular shape in the circumferential direction of the inner housing 771. Although not shown, a refrigerant pipe is connected to the refrigerant passage 777, and the refrigerant flowing from the refrigerant pipe exchanges heat in the refrigerant passage 777 and then flows out to the refrigerant pipe again.
 内筒部材773の径方向内側には環状空間が形成されており、その環状空間に、例えば電力変換器としてのインバータを構成する電気部品が配置されるとよい。電気部品は、例えば半導体スイッチング素子やコンデンサをパッケージ化した電気モジュールである。内筒部材773に当接した状態で電気モジュールを配置することにより、冷媒通路777を流れる冷媒により電気モジュールが冷却されるようになっている。 An annular space is formed inside the inner cylinder member 773 in the radial direction, and it is preferable that, for example, an electric component constituting an inverter as a power converter is arranged in the annular space. The electric component is, for example, an electric module in which a semiconductor switching element or a capacitor is packaged. By arranging the electric module in contact with the inner cylinder member 773, the electric module is cooled by the refrigerant flowing through the refrigerant passage 777.
 外筒部材772は、内筒部材773よりも径方向内側に円筒状のボス部780を有している。ボス部780は、中空筒状に設けられており、その中空部に回転軸701が挿通されるようになっている。ボス部780は、軸受791,792を保持する軸受保持部となっており、その中空部に軸受791,792が固定されている(図95参照)。軸受791,792は、例えば、筒状の内輪と、内輪の径方向外側に配置された筒状の外輪と、それら内輪及び外輪の間に配置された複数の玉とを有するラジアル玉軸受であり、外輪がボス部780に固定されることで、インナユニット770に組み付けられている。 The outer cylinder member 772 has a cylindrical boss portion 780 radially inside the inner cylinder member 773. The boss portion 780 is provided in a hollow tubular shape, and the rotating shaft 701 is inserted into the hollow portion. The boss portion 780 is a bearing holding portion that holds the bearings 791 and 792, and the bearings 791 and 792 are fixed to the hollow portion thereof (see FIG. 95). The bearings 791 and 792 are, for example, radial ball bearings having a tubular inner ring, a tubular outer ring arranged radially outside the inner ring, and a plurality of balls arranged between the inner ring and the outer ring. , The outer ring is fixed to the boss portion 780 and is assembled to the inner unit 770.
 ボス部780の中空部には、第1軸受791を固定する第1固定部781と、第2軸受792を固定する第2固定部782とが設けられている。第1軸受791及び第2軸受792は、回転子710の振動や遠心荷重を考慮して、回転軸701における支持位置に応じて体格が異なっており、回転軸701の基端側を支持する第1軸受791の方が大きいサイズの軸受、すなわち支持荷重の大きい軸受となっている。そのため、第1固定部781は、第2固定部782に比べて大径に形成されている。 The hollow portion of the boss portion 780 is provided with a first fixing portion 781 for fixing the first bearing 791 and a second fixing portion 782 for fixing the second bearing 792. The first bearing 791 and the second bearing 792 have different physiques depending on the support position on the rotary shaft 701 in consideration of the vibration and the centrifugal load of the rotor 710, and support the proximal end side of the rotary shaft 701. 1 Bearing 791 is a bearing having a larger size, that is, a bearing having a larger bearing load. Therefore, the first fixed portion 781 is formed to have a larger diameter than the second fixed portion 782.
 また、第1軸受791と第2軸受792とを比べると、第1軸受791は、第2軸受792に比べて径方向の内部隙間、すなわちラジアル隙間が大きいものとなっている。なお、ラジアル隙間は、軸受の内輪と外輪と玉との軸方向の遊び量である。ここで、第1軸受791は、第2軸受792に比べて回転子710の振動や遠心荷重を受けやすい軸受であり、その第1軸受791のラジアル隙間を大きくすることにより、荷重吸収の効果が高められる。これにより、回転軸701の基端部側においてボス部780に作用する荷重が低減され、回転軸701の先端側における振れが抑制されるようになっている。 Comparing the first bearing 791 and the second bearing 792, the first bearing 791 has a larger radial internal gap, that is, a radial gap than the second bearing 792. The radial gap is the amount of play in the axial direction between the inner ring, the outer ring, and the ball of the bearing. Here, the first bearing 791 is a bearing that is more susceptible to vibration and centrifugal load of the rotor 710 than the second bearing 792, and by increasing the radial gap of the first bearing 791, the effect of load absorption can be obtained. Can be enhanced. As a result, the load acting on the boss portion 780 on the base end side of the rotating shaft 701 is reduced, and the runout on the tip end side of the rotating shaft 701 is suppressed.
 第1固定部781は、ボス部780において軸方向に平行な平行面781aと、軸方向に直交する直交面781bとにより形成されており、これら各面に当接した状態で第1軸受791が固定されている。また、第2固定部782は、ボス部780において軸方向に平行な平行面782aと、軸方向に直交する直交面782bとにより形成されており、これら各面に当接した状態で第2軸受792が固定されている。 The first fixed portion 781 is formed by a parallel surface 781a parallel to the axial direction and an orthogonal surface 781b orthogonal to the axial direction in the boss portion 780, and the first bearing 791 is in contact with each of these surfaces. It is fixed. Further, the second fixed portion 782 is formed by a parallel surface 782a parallel to the axial direction and an orthogonal surface 782b orthogonal to the axial direction in the boss portion 780, and the second bearing is in contact with each of these surfaces. 792 is fixed.
 また、ボス部780の中空部には、第1固定部781と第2固定部782とのうち第2固定部782の側に、回転センサとしてのレゾルバ800を固定する第3固定部783が設けられている。第3固定部783は、第2固定部782を段差状に拡径させることで形成されている。 Further, in the hollow portion of the boss portion 780, a third fixing portion 783 for fixing the resolver 800 as a rotation sensor is provided on the side of the second fixing portion 782 of the first fixing portion 781 and the second fixing portion 782. Has been done. The third fixed portion 783 is formed by expanding the diameter of the second fixed portion 782 in a stepped shape.
 図77に示すように、レゾルバ800は、回転軸701に固定されるレゾルバロータ801と、そのレゾルバロータ801の径方向外側に対向配置されたレゾルバステータ802とを備えている。レゾルバロータ801は、円板リング状をなしており、回転軸701を挿通させた状態で、回転軸701に同軸に設けられている。レゾルバステータ802は、不図示のステータコアとステータコイルとを有し、ボス部780の第3固定部783に固定されている。 As shown in FIG. 77, the resolver 800 includes a resolver rotor 801 fixed to a rotating shaft 701 and a resolver stator 802 arranged so as to face each other on the radial outer side of the resolver rotor 801. The resolver rotor 801 has a disk ring shape, and is provided coaxially with the rotating shaft 701 in a state where the rotating shaft 701 is inserted. The resolver stator 802 has a stator core and a stator coil (not shown), and is fixed to a third fixing portion 783 of the boss portion 780.
 図94に示すように、ボス部780の中空部には、軸方向において第1固定部781と第2固定部782との間となる位置に、これら各固定部781,782よりも小径の縮径部784,785が設けられている。縮径部784は第1固定部781よりも径の小さい孔であり、縮径部785は第2固定部782よりも径の小さい孔である。また、レゾルバ800を固定する第3固定部783は、第2固定部782よりも軸方向外側となる位置、換言すれば回転軸701の先端側となる位置に、第2固定部782よりも拡径された部位として設けられている。第2固定部782と第3固定部783とは、軸方向に隣り合う位置に設けられている。 As shown in FIG. 94, the hollow portion of the boss portion 780 has a diameter smaller than that of each of the fixed portions 781 and 782 at a position between the first fixed portion 781 and the second fixed portion 782 in the axial direction. Diameter portions 784 and 785 are provided. The reduced diameter portion 784 is a hole having a smaller diameter than the first fixed portion 781, and the reduced diameter portion 785 is a hole having a smaller diameter than the second fixed portion 782. Further, the third fixing portion 783 for fixing the resolver 800 is wider than the second fixing portion 782 at a position outside the second fixing portion 782 in the axial direction, in other words, at a position at the tip end side of the rotating shaft 701. It is provided as a diameterd part. The second fixed portion 782 and the third fixed portion 783 are provided at positions adjacent to each other in the axial direction.
 この場合、外筒部材772において中ぐり加工等により孔加工を行う際に、第2固定部782と第3固定部783とを同一方向から同軸で連続加工することが可能となる。そのため、第2固定部782に固定される第2軸受792と第3固定部783に固定されるレゾルバステータ802との同軸度が高められ、ひいてはレゾルバロータ801とレゾルバステータ802との同軸度が高められることとなる。この場合、レゾルバロータ801に対するレゾルバステータ802の振れが低減され、ひいてはレゾルバ800における角度検出誤差が低減される。 In this case, when the outer cylinder member 772 is bored by boring or the like, the second fixing portion 782 and the third fixing portion 783 can be continuously machined coaxially from the same direction. Therefore, the coaxiality between the second bearing 792 fixed to the second fixed portion 782 and the resolver stator 802 fixed to the third fixed portion 783 is increased, and the coaxiality between the resolver rotor 801 and the resolver stator 802 is increased. Will be. In this case, the runout of the resolver stator 802 with respect to the resolver rotor 801 is reduced, and the angle detection error in the resolver 800 is reduced.
 次に、バスバーモジュール810について説明する。バスバーモジュール810は、固定子巻線731において各コイルモジュール740の部分巻線741に電気的に接続され、各相の部分巻線741の一端を相ごとに並列接続するとともに、それら各部分巻線741の他端を中性点で接続する巻線接続部材である。図96は、バスバーモジュール810の斜視図であり、図97は、バスバーモジュール810の縦断面の一部を示す断面図である。 Next, the bus bar module 810 will be described. The bus bar module 810 is electrically connected to the partial winding 741 of each coil module 740 in the stator winding 731, and one end of the partial winding 741 of each phase is connected in parallel for each phase, and each of these partial windings is connected in parallel. It is a winding connecting member that connects the other end of 741 at a neutral point. FIG. 96 is a perspective view of the bus bar module 810, and FIG. 97 is a cross-sectional view showing a part of a vertical cross section of the bus bar module 810.
 バスバーモジュール810は、円環状をなす環状部811と、その環状部811から延びる複数の接続端子812と、相巻線ごとに設けられる3つの入出力端子813と、各相の電流センサに接続される電流検出端子814とを有している。 The bus bar module 810 is connected to an annular portion 811 forming an annular shape, a plurality of connection terminals 812 extending from the annular portion 811, three input / output terminals 813 provided for each phase winding, and a current sensor for each phase. It has a current detection terminal 814.
 図97に示すように、環状部811は、例えば樹脂等の絶縁部材により円環状に形成されており、その内部に埋設された状態で複数のバスバー821~824が設けられている。各バスバー821~824は、U相用のバスバー821と、V相用のバスバー822と、W相用のバスバー823と、中性点用のバスバー824とからなり、板面を対向させるようにして軸方向に並べて配置されている。そして、各バスバー821~824に、それぞれ環状部811から径方向外側に突出させるようにして接続端子812が接続されている。図96に示すように、各接続端子812は、環状部811の周方向に並び、かつ径方向外側において軸方向に延びるように設けられている。 As shown in FIG. 97, the annular portion 811 is formed in an annular shape by, for example, an insulating member such as a resin, and a plurality of bus bars 821 to 824 are provided in a state of being embedded therein. Each bus bar 821 to 824 is composed of a U-phase bus bar 821, a V-phase bus bar 822, a W-phase bus bar 823, and a neutral point bus bar 824 so that the plate surfaces face each other. They are arranged side by side in the axial direction. Then, the connection terminals 812 are connected to the bus bars 821 to 824 so as to project radially outward from the annular portion 811. As shown in FIG. 96, the connection terminals 812 are provided so as to be arranged in the circumferential direction of the annular portion 811 and to extend in the axial direction on the outer side in the radial direction.
 図98には、各バスバー821~824に対する接続端子812の接続位置を略図として示している。図98において、左右方向が環状部811の周方向に相当する。また、図98において、UはU相巻線に接続される接続端子812を示し、VはV相巻線に接続される接続端子812を示し、WはW相巻線に接続される接続端子812を示し、NEは中性点に接続される接続端子812を示す。 FIG. 98 shows the connection positions of the connection terminals 812 for each bus bar 821 to 824 as a schematic diagram. In FIG. 98, the left-right direction corresponds to the circumferential direction of the annular portion 811. Further, in FIG. 98, U indicates a connection terminal 812 connected to the U-phase winding, V indicates a connection terminal 812 connected to the V-phase winding, and W indicates a connection terminal connected to the W-phase winding. 812 is indicated, NE indicates a connection terminal 812 connected to the neutral point.
 図98に示すように、中性点に接続される接続端子812(NE)は周方向に1つ置きに配置され、その間に、U相巻線に接続される接続端子812(U)、V相巻線に接続される接続端子812(V)、W相巻線に接続される接続端子812(W)が1つずつ配置されている。これらの接続端子812は、コイルモジュール740における各部分巻線741の巻線端部743a,743bと同数で設けられており、接続端子812と巻線端部743a,743bとが1つずつ接続されるようになっている。なお、接続端子812と巻線端部743a,743bとの少なくともいずれかが、必要に応じて径方向に折り曲げられるか又は湾曲されて互いに接触され、その接触状態で、溶接や接着等による接合が行われるとよい。 As shown in FIG. 98, the connection terminals 812 (NE) connected to the neutral point are arranged every other in the circumferential direction, and the connection terminals 812 (U), V connected to the U-phase winding are in between. A connection terminal 812 (V) connected to the phase winding and a connection terminal 812 (W) connected to the W phase winding are arranged one by one. These connection terminals 812 are provided in the same number as the winding ends 743a and 743b of each partial winding 741 in the coil module 740, and the connection terminals 812 and the winding ends 743a and 743b are connected one by one. It has become so. It should be noted that at least one of the connection terminal 812 and the winding end portions 743a and 743b is bent or curved in the radial direction and is brought into contact with each other as necessary, and in the contact state, joining by welding, adhesion or the like is performed. It should be done.
 また、環状部811は、内周側に複数の被固定部815を有しており、その被固定部815にボルト等の締結具が組み付けられることで、インナハウジング771の端板774にバスバーモジュール810が固定されるようになっている。 Further, the annular portion 811 has a plurality of fixed portions 815 on the inner peripheral side, and by assembling fasteners such as bolts to the fixed portion 815, the bus bar module is attached to the end plate 774 of the inner housing 771. The 810 is fixed.
 入出力端子813は、U相用の入出力端子813U、V相用の入出力端子813V及びW相用の入出力端子813Wであり、これらは、環状部811内において相ごとにバスバー821~823にそれぞれ接続されている。これらの各入出力端子813を通じて、固定子巻線731の各相の相巻線に対して、不図示のインバータから電力の入出力が行われるようになっている。 The input / output terminals 813 are input / output terminals 813U for U phase, input / output terminals 813V for V phase, and input / output terminals 813W for W phase, and these are bus bars 821 to 823 for each phase in the annular portion 811. Are each connected to. Through each of these input / output terminals 813, power is input / output from an inverter (not shown) to the phase windings of each phase of the stator winding 731.
 また、環状部811には、相ごとに電流センサ816が設けられており、電流検出端子814を通じて、電流センサ816の検出結果が不図示の制御装置に対して出力されるようになっている。 Further, the annular portion 811 is provided with a current sensor 816 for each phase, and the detection result of the current sensor 816 is output to a control device (not shown) through the current detection terminal 814.
 上記構成の回転電機700では、固定子730において、周方向に所定間隔で配置される導線部(中間導線部746)の間に導線間部材(いわゆるティース)が設けられていないか、又は導線間部材が設けられていても磁気的に脆弱な構成となっている。そのため、回転子710にて生じる磁石磁束が固定子巻線731の導線部に直接鎖交し、銅渦損の増加に伴うモータ効率の低下や熱定格性能の低下が懸念される。特に、上記のとおり配向による磁束密度の強化が図られている構成においては、銅渦損の影響がより顕著に生じることが懸念される。 In the rotary electric machine 700 having the above configuration, in the stator 730, no interconductor member (so-called teeth) is provided between the conductors (intermediate conductors 746) arranged at predetermined intervals in the circumferential direction, or between the conductors. Even if the members are provided, the configuration is magnetically fragile. Therefore, the magnetic flux generated by the rotor 710 is directly interlocked with the conducting wire portion of the stator winding 731, and there is a concern that the motor efficiency and the thermal rating performance may be lowered due to the increase in copper eddy loss. In particular, in the configuration in which the magnetic flux density is strengthened by orientation as described above, there is a concern that the effect of copper vortex loss will be more remarkable.
 この点、上記構成では、固定子巻線731において、部分巻線741を、周方向に離して設けられた同相の導線部間で導線743を多重に巻回して構成した。また、各相の相巻線を、複数の部分巻線741どうしを並列接続することで構成した。これにより、固定子巻線731において導線1本あたりの断面積の細分化が可能となり、銅渦損の発生を抑制でき、ひいては、モータ効率の向上や熱定格性能の向上を図ることができる。 In this respect, in the above configuration, in the stator winding 731, the partial winding 741 is configured by winding the conducting wire 743 multiple times between the conducting wires having the same phase provided apart from each other in the circumferential direction. Further, the phase windings of each phase are configured by connecting a plurality of partial windings 741 in parallel. As a result, the cross-sectional area of the stator winding 731 can be subdivided, the occurrence of copper vortex loss can be suppressed, and the motor efficiency and the thermal rating performance can be improved.
 また、磁極の極数をP、1相当たりの部分巻線741Aの数及び部分巻線741Bの数を各々N個とした場合に、極数Pが4×Nであり、相巻線では、相ごとにN個の部分巻線741AとN個の部分巻線741Bとが全て並列接続されている。本例において具体的には、1相当たりの部分巻線741A,741Bの数(N)は、それぞれ6であり、極数Pは24である。例えば図84には、3相のうち1相のコイルモジュール740が示されており、部分巻線741Aを備えるコイルモジュール740Aとして6個のコイルモジュール740Aと、部分巻線741Bを備えるコイルモジュール740Bとして6個のコイルモジュール740Bとが示されている。各相巻線では、相ごとに6個の部分巻線741Aと6個の部分巻線741Bとが全て並列接続されている。 Further, when the number of poles of the magnetic poles is P and the number of partial windings 741A and the number of partial windings 741B per phase are N, the number of poles P is 4 × N. N partial windings 741A and N partial windings 741B are all connected in parallel for each phase. Specifically, in this example, the number (N) of the partial windings 741A and 741B per phase is 6, and the number of poles P is 24, respectively. For example, FIG. 84 shows a coil module 740 of one of the three phases, as a coil module 740A having a partial winding 741A, as a coil module 740A having six coil modules 740A, and as a coil module 740B having a partial winding 741B. Six coil modules 740B are shown. In each phase winding, six partial windings 741A and six partial windings 741B are all connected in parallel for each phase.
 図86で言えば、U、V、Wの各相の相巻線において、部分巻線741の並列数がいずれも12となっている。この場合、相ごとに全ての部分巻線741A,741Bを並列接続することにより、固定子巻線731での各導線の断面積の最小化が可能となり、銅渦損のより一層の低減を図ることができる。 In FIG. 86, in the phase windings of each of the U, V, and W phases, the number of parallel windings 741 is 12 in each case. In this case, by connecting all the partial windings 741A and 741B in parallel for each phase, it is possible to minimize the cross-sectional area of each conducting wire in the stator winding 731, and further reduce the copper vortex loss. be able to.
 (変形例16)
 次に、本変形例における回転電機900について説明する。回転電機900は、例えば車両の駆動用ユニットとして用いられる。本例の回転電機900では、変形例15で説明した回転電機700と同様に、固定子の固定子巻線として複数の部分巻線(コイルモジュール)を用いた構成としている。また、本例の回転電機900では、変形例15の回転電機700との主な相違点として、インナロータ式とした構成、固定子コアをティース付き構造とした構成を有している。以下にその詳細を説明する。図101は、インナロータ式の回転電機900の縦断面図であり、図102は、回転電機900の横縦断面図であり、図103は、図102に示す構成の一部を拡大して示す横断面図である。
(Modification 16)
Next, the rotary electric machine 900 in this modification will be described. The rotary electric machine 900 is used, for example, as a vehicle driving unit. Similar to the rotary electric machine 700 described in the modified example 15, the rotary electric machine 900 of this example has a configuration in which a plurality of partial windings (coil modules) are used as the stator windings of the stator. Further, the rotary electric machine 900 of this example has an inner rotor type configuration and a stator core structure with teeth as the main differences from the rotary electric machine 700 of the modified example 15. The details will be described below. FIG. 101 is a vertical cross-sectional view of the inner rotor type rotary electric machine 900, FIG. 102 is a horizontal vertical cross-sectional view of the rotary electric machine 900, and FIG. 103 is a cross section showing a part of the configuration shown in FIG. 102 in an enlarged manner. It is a top view.
 回転電機900は、回転軸901と一体回転可能に設けられた回転子910と、その回転子910の径方向外側に設けられた固定子920とを有している。径方向において回転子910と固定子920との間にはエアギャップが形成されている。なお、回転軸901は、既述の構成と同様、不図示の軸受により回転可能に支持されている。回転子910が「界磁子」に相当し、固定子920が「電機子」に相当する。 The rotary electric machine 900 has a rotor 910 provided so as to be rotatable integrally with the rotary shaft 901, and a stator 920 provided on the radial outer side of the rotor 910. An air gap is formed between the rotor 910 and the stator 920 in the radial direction. The rotary shaft 901 is rotatably supported by bearings (not shown) as in the above-described configuration. The rotor 910 corresponds to the "field magnet" and the stator 920 corresponds to the "armature".
 回転子910は、中空筒状に形成された回転子キャリア911と、その回転子キャリア911の径方向外側に固定された環状の磁石ユニット912とを有している。回転子キャリア911は回転軸901に固定されており、磁石保持部材としての機能を有する。磁石ユニット912は、回転子910の周方向に極性が交互となる複数の磁極を有している。磁石ユニット912が「磁石部」に相当する。 The rotor 910 has a rotor carrier 911 formed in a hollow tubular shape and an annular magnet unit 912 fixed to the outside in the radial direction of the rotor carrier 911. The rotor carrier 911 is fixed to the rotating shaft 901 and has a function as a magnet holding member. The magnet unit 912 has a plurality of magnetic poles having alternating polarities in the circumferential direction of the rotor 910. The magnet unit 912 corresponds to the "magnet portion".
 図103に示すように、磁石ユニット912は、周方向に並べて配置された複数の磁石913(永久磁石)を有しており、それら各磁石913により、周方向に極性が交互となる複数の磁極が形成されている。磁石913は、固有保磁力が400[kA/m]以上であり、かつ残留磁束密度Brが1.0[T]以上である焼結ネオジム磁石である。 As shown in FIG. 103, the magnet unit 912 has a plurality of magnets 913 (permanent magnets) arranged side by side in the circumferential direction, and a plurality of magnetic poles having polarities alternating in the circumferential direction due to each of the magnets 913. Is formed. The magnet 913 is a sintered neodymium magnet having an intrinsic coercive force of 400 [kA / m] or more and a residual magnetic flux density Br of 1.0 [T] or more.
 各磁石913は、径方向両面のうち固定子920側(図の上側)が磁束作用面913aとなっており、その磁束作用面913aにおいて、磁極中心であるd軸付近の領域に集中的に磁束を生じさせるものとなっている。具体的には、各磁石913は、それぞれ極異方性磁石であり、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされて構成されている。つまり、d軸側(d軸寄りの部分)とq軸側(q軸寄りの部分)とで磁化容易軸の向きが相違し、d軸側では磁化容易軸の向きがd軸に平行な方向に近い向きとなり、q軸側では磁化容易軸の向きがq軸に直交する方向に近い向きとなっている。そして、この磁化容易軸の向きに応じた配向により円弧状の磁石磁路が形成されている。なお、各磁石913において、d軸側では磁化容易軸をd軸に平行な向きとし、q軸側では磁化容易軸をq軸に直交する向きとしてもよい。 In each magnet 913, the stator 920 side (upper side in the figure) of both sides in the radial direction is the magnetic flux acting surface 913a, and the magnetic flux is concentrated in the region near the d-axis which is the center of the magnetic pole on the magnetic flux acting surface 913a. Is to occur. Specifically, each magnet 913 is a polar anisotropy magnet, and the direction of the easy magnetization axis is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, as compared with the side of the q-axis, which is the magnetic pole boundary. It is configured so that it is oriented so as to be. That is, the direction of the easy-to-magnetize axis is different between the d-axis side (the part closer to the d-axis) and the q-axis side (the part closer to the q-axis), and the direction of the easy-to-magnetize axis is parallel to the d-axis on the d-axis side. On the q-axis side, the direction of the easy-to-magnetize axis is close to the direction orthogonal to the q-axis. Then, an arcuate magnet magnetic path is formed by the orientation according to the direction of the easily magnetized axis. In each magnet 913, the easy magnetization axis may be oriented parallel to the d-axis on the d-axis side, and the easy-magnetization axis may be oriented orthogonal to the q-axis on the q-axis side.
 磁石913は、径方向両側の磁束作用面の間において磁化容易軸の向きがd軸に対して斜めであり、周方向において固定子920側でd軸に近づき、かつ反固定子側でd軸から離れる向きとなるように直線的な配向がなされているものであってもよい。この構成であっても、磁石913の固定子920側の磁束作用面913aにおいて、d軸付近の領域に集中的に磁束を生じさせることができる。 In the magnet 913, the direction of the easy-magnetizing axis is oblique to the d-axis between the magnetic flux acting surfaces on both sides in the radial direction, the stator 920 side approaches the d-axis in the circumferential direction, and the d-axis is on the anti-stator side. It may be linearly oriented so as to be oriented away from. Even with this configuration, magnetic flux can be intensively generated in the region near the d-axis on the magnetic flux acting surface 913a on the stator 920 side of the magnet 913.
 なお、磁石913の構成を上記以外に変更することも可能であり、磁石913として、磁化方向が径方向となるラジアル異方性の永久磁石や、磁化方向が平行なパラレル異方性の永久磁石を用いることも可能である。また、回転子910は、表面磁石型の回転子構造である以外に、埋込磁石型の回転子構造であってもよい。 The configuration of the magnet 913 can be changed to other than the above. As the magnet 913, a radial anisotropy permanent magnet whose magnetization direction is the radial direction and a parallel anisotropy permanent magnet whose magnetization direction is parallel can be changed. It is also possible to use. Further, the rotor 910 may have an embedded magnet type rotor structure in addition to the surface magnet type rotor structure.
 また、固定子920は、多相の固定子巻線921と、その固定子巻線921に一体に設けられた固定子コア922とを有している。固定子コア922は、電磁鋼板からなる複数のコアシートが軸方向に積層されたコアシート積層体として構成されている。また、固定子コア922は、円筒状のヨーク923と、ヨーク923の径方向内側において周方向に所定間隔で設けられた複数のティース924とを有し、各ティース924どうしの間に、径方向に延びるスロット925が形成されている。スロット925は、径方向が長手となる略矩形状に形成され、それぞれが径方向内側に開口している。 Further, the stator 920 has a multi-phase stator winding 921 and a stator core 922 integrally provided with the stator winding 921. The stator core 922 is configured as a core sheet laminate in which a plurality of core sheets made of electrical steel sheets are laminated in the axial direction. Further, the stator core 922 has a cylindrical yoke 923 and a plurality of teeth 924 provided at predetermined intervals in the circumferential direction inside the yoke 923 in the radial direction, and is provided between the teeth 924 in the radial direction. A slot 925 extending into is formed. The slots 925 are formed in a substantially rectangular shape having a longitudinal direction in the radial direction, and each slot 925 opens inward in the radial direction.
 固定子巻線921は、複数の相巻線を有し、各相の相巻線が周方向に所定順序で配置されている。本例では、U相、V相及びW相の相巻線を用いることで、固定子巻線921が3相の相巻線を有する構成となっている。 The stator winding 921 has a plurality of phase windings, and the phase windings of each phase are arranged in a predetermined order in the circumferential direction. In this example, by using U-phase, V-phase, and W-phase phase windings, the stator winding 921 has a configuration having three-phase phase windings.
 図101に示すように、固定子920は、軸方向において、回転子910における磁石ユニット912に径方向に対向するコイルサイドCSに相当する部分と、そのコイルサイドCSの軸方向外側であるコイルエンドCEに相当する部分とを有している。この場合、固定子コア922は、軸方向においてコイルサイドCSに相当する範囲で設けられている。なお、コイルエンドCEは、固定子コア922の軸方向端面よりも軸方向外側の部分である。 As shown in FIG. 101, the stator 920 has a portion corresponding to a coil side CS that faces the magnet unit 912 in the rotor 910 in the axial direction in the axial direction, and a coil end that is outside the coil side CS in the axial direction. It has a part corresponding to CE. In this case, the stator core 922 is provided in a range corresponding to the coil side CS in the axial direction. The coil end CE is a portion axially outside of the axial end face of the stator core 922.
 固定子巻線921において各相の相巻線は、コイルエンド形状の異なる2種類の部分巻線931を有している。部分巻線931は、導線材を多重に巻回してなる環状コイルであり、図104(a)は、一方の部分巻線931である第1部分巻線931Aの構成を示す斜視図、図104(b)は、他方の部分巻線931である第2部分巻線931Bの構成を示す斜視図である。また、図105は、各部分巻線931A,931Bを横に並べて対比して示す側面図である。これら各図に示すように、各部分巻線931A,931Bは、軸方向長さが互いに異なり、かつ軸方向両側の端部形状が互いに異なるものとなっている。第1部分巻線931Aは、側面視において略C字状をなし、第2部分巻線931Bは、側面視において略I字状をなしている。 In the stator winding 921, the phase winding of each phase has two types of partial windings 931 having different coil end shapes. The partial winding 931 is an annular coil formed by winding a conducting wire material in multiple directions, and FIG. 104 (a) is a perspective view showing the configuration of a first partial winding 931A which is one partial winding 931, FIG. 104. (B) is a perspective view which shows the structure of the 2nd partial winding 931B which is the other partial winding 931. Further, FIG. 105 is a side view showing the partial windings 931A and 931B side by side for comparison. As shown in each of these figures, the partial windings 931A and 931B have different axial lengths and different end shapes on both sides in the axial direction. The first partial winding 931A has a substantially C shape in the side view, and the second partial winding 931B has a substantially I shape in the side view.
 図104(a)に示すように、第1部分巻線931Aは、互いに平行でかつ直線状に設けられる一対の中間導線部932と、一対の中間導線部932を軸方向両端でそれぞれ接続する一対の渡り部933とを有しており、これら一対の中間導線部932と一対の渡り部933とにより環状に形成されている。各中間導線部932は、コイルサイドCSにおいて周方向に並ぶコイルサイド導線部として設けられている。また、各渡り部933は、コイルエンドCEにおいて、周方向に異なる2位置の同相の中間導線部932どうしを接続するコイルエンド導線部として設けられている。固定子コア922への部分巻線931の組み付け時には、各中間導線部932がそれぞれスロット925に収容される。 As shown in FIG. 104 (a), the first partial winding 931A is a pair of intermediate conductors 932 provided parallel to each other and linearly connected to each other and a pair of intermediate conductors 932 connected at both ends in the axial direction. It has a crossover portion 933, and is formed in an annular shape by the pair of intermediate conductor portions 932 and the pair of crossover portions 933. Each intermediate conductor portion 932 is provided as a coil side conductor portion arranged in the circumferential direction in the coil side CS. Further, each crossover portion 933 is provided as a coil end lead wire portion for connecting the intermediate lead wire portions 932 having two positions different in the circumferential direction in the coil end CE. When assembling the partial winding 931 to the stator core 922, each intermediate lead portion 932 is housed in the slot 925.
 一対の渡り部933は、軸方向両側でそれぞれ同じ形状となっており、いずれもコイルエンドCEに相当する部分として設けられている(図105参照)。各渡り部933は、中間導線部932に対して直交する向き、すなわち軸方向に直交する方向に折れ曲がるようにして設けられている。 The pair of crossovers 933 have the same shape on both sides in the axial direction, and both are provided as portions corresponding to the coil end CE (see FIG. 105). Each crossover 933 is provided so as to bend in a direction orthogonal to the intermediate conductor 932, that is, in a direction orthogonal to the axial direction.
 なお、第1部分巻線931Aと、第2部分巻線931Bとでは、渡り部933の形状が異なっており、その区別を明確にすべく、第1部分巻線931Aの渡り部933を「第1渡り部933A」、第2部分巻線931Bの渡り部933を「第2渡り部933B」とも記載する。 The shape of the crossover 933 is different between the first partial winding 931A and the second partial winding 931B, and in order to clarify the distinction, the crossover 933 of the first partial winding 931A is referred to as "the first". 1 Crossover 933A ”and the crossover 933 of the second partial winding 931B are also referred to as“ second crossover 933B ”.
 図106は、図104(a)における106-106線断面図である。図106に示すように、一対の中間導線部932は、所定のスロットピッチ分を離して設けられており、本例では、周方向における互いの中心間距離Dが3スロットピッチに相当する距離、すなわち相数のスロットピッチに相当する距離となっている。図106には、一対の中間導線部932の間となるスロット位置を仮想線で示している。一対の中間導線部932間の各スロット925には、他相の部分巻線931の中間導線部932が収容される。この場合、部分巻線931は、固定子コア922における3つのティース924を跨ぐように配置されるものとなっている。部分巻線931は、全節集中巻コイルであり、1極対において相ごとに1つずつ設けられている。 FIG. 106 is a cross-sectional view taken along the line 106-106 in FIG. 104 (a). As shown in FIG. 106, the pair of intermediate lead wire portions 932 are provided so as to be separated by a predetermined slot pitch. In this example, the distance D between the centers in the circumferential direction corresponds to a three-slot pitch. That is, the distance corresponds to the slot pitch of the number of phases. In FIG. 106, the slot positions between the pair of intermediate conductors 932 are shown by virtual lines. Each slot 925 between the pair of intermediate conductors 932 accommodates the intermediate conductor 932 of the other phase partial winding 931. In this case, the partial winding 931 is arranged so as to straddle the three teeth 924 in the stator core 922. The partial winding 931 is a centralized winding coil for all nodes, and is provided one for each phase in a one-pole pair.
 また、第1部分巻線931Aは、導線集合部分の横断面が四角形になるように導線材CRが多重に巻回されて形成されている。図106に示す中間導線部932では、導体断面が矩形状をなす平角線からなる導線材CRを周方向及び径方向に並ぶように多重に巻回することで、断面矩形状の導線集合体が構成されている。つまり、第1部分巻線931Aは、角線を多重に巻回されることで構成されており、角線の集合体である導線集合部の横断面が四角形形状をなしている。一対の中間導線部932は、その横断面形状が、径方向(図の上下方向)が長手側となる長方形状をなしており、その長手方向において各中間導線部932の中心線L1,L2は互いに平行になっている。なお、第1渡り部933Aの先端部では、径方向への折れ曲がりにより、導線材CRが軸方向及び径方向に並ぶように多重に巻回される構成となっている。本例では、導線材CRを同心巻により巻回することで第1部分巻線931Aが構成されている。ただし、導線材CRの巻き方は任意であり、同心巻に代えて、アルファ巻により導線材CRが多重に巻回されていてもよい。 Further, the first partial winding 931A is formed by winding the conducting wire material CR multiple times so that the cross section of the conducting wire gathering portion becomes a quadrangle. In the intermediate conductor portion 932 shown in FIG. 106, a conductor assembly having a rectangular cross section is formed by winding a conductor CR composed of flat wires having a rectangular cross section in a plurality of directions so as to be arranged in the circumferential direction and the radial direction. It is configured. That is, the first partial winding 931A is configured by winding the square wires multiple times, and the cross section of the conducting wire collecting portion, which is an aggregate of the square wires, has a quadrangular shape. The pair of intermediate conductors 932 has a rectangular shape whose cross-sectional shape is the longitudinal side in the radial direction (vertical direction in the figure), and the center lines L1 and L2 of the intermediate conductors 932 are in the longitudinal direction. They are parallel to each other. The tip of the first crossover 933A is configured to be multiplely wound so that the conductor CRs are aligned in the axial direction and the radial direction due to the bending in the radial direction. In this example, the first partial winding 931A is configured by winding the conductor CR by concentric winding. However, the method of winding the conductor CR is arbitrary, and instead of concentric winding, the conductor CR may be wound multiple times by alpha winding.
 また、図104(b)に示すように、第2部分巻線931Bは、互いに平行でかつ直線状に設けられる一対の中間導線部932と、一対の中間導線部932を軸方向両端でそれぞれ接続する一対の第2渡り部933Bとを有しており、これら一対の中間導線部932と一対の第2渡り部933Bとにより環状に形成されている。第2部分巻線931Bにおいて一対の中間導線部932は、第1部分巻線931Aの中間導線部932と構成が同じである。これに対して、一対の第2渡り部933Bは、第1部分巻線931Aの第1渡り部933Aとは構成が異なっている。第2部分巻線931Bの第2渡り部933Bは、径方向に折り曲げられることなく、中間導線部932から直線状に軸方向に延びるようにして設けられている。第1部分巻線931Aと第2部分巻線931Bとはコイルエンド形状が異なる以外は同一構成を有しており、図105には、部分巻線931A,931Bの違いが対比して明示されている。 Further, as shown in FIG. 104 (b), the second partial winding 931B connects a pair of intermediate conductor portions 932 provided in parallel and linearly with each other and a pair of intermediate conductor portions 932 at both ends in the axial direction. It has a pair of second crossover portions 933B, and is formed in an annular shape by the pair of intermediate conductor portions 932 and the pair of second crossover portions 933B. The pair of intermediate conductors 932 in the second partial winding 931B has the same configuration as the intermediate conductor 932 of the first partial winding 931A. On the other hand, the pair of second crossover portions 933B has a different configuration from the first crossover portion 933A of the first partial winding 931A. The second crossover portion 933B of the second partial winding 931B is provided so as to extend linearly in the axial direction from the intermediate conductor portion 932 without being bent in the radial direction. The first partial winding 931A and the second partial winding 931B have the same configuration except that the coil end shape is different, and in FIG. 105, the differences between the partial windings 931A and 931B are clearly shown in comparison. There is.
 各部分巻線931A,931Bは、その一部又は全てが合成樹脂等の絶縁材料により被覆されて構成されていてもよい。又は、各部分巻線931A,931Bは、例えば図87に示すような絶縁性の巻線ホルダに一体化されたものであってもよい。 Each partial winding 931A, 931B may be configured by covering a part or all of the partial windings with an insulating material such as synthetic resin. Alternatively, the partial windings 931A and 931B may be integrated with an insulating winding holder as shown in FIG. 87, for example.
 各部分巻線931A,931Bは、固定子コア922のスロット925に各中間導線部932が収容されることで、固定子コア922に対して組み付けられる。各部分巻線931A,931Bは、2種類のコイルエンド形状を有していることから、周方向に隣り合う部分巻線931どうしの干渉が抑制されるものとなっている。具体的には、上述したとおり、第1部分巻線931Aの第1渡り部933Aは、中間導線部932に対して直交する向き(径方向)に折れ曲がるようにして設けられているのに対し、第2部分巻線931Bの第2渡り部933Bは、径方向に折り曲げられることなく中間導線部932から直線状に軸方向に延びるようにして設けられている。この場合、各部分巻線931A,931Bは、周方向に一部が互いに重複した状態で固定子コア922に組み付けられるが、各渡り部933A,933Bが軸方向に互いに離間していることで、渡り部933A,933Bどうしの互いの干渉が回避されるようになっている。 The partial windings 931A and 931B are assembled to the stator core 922 by accommodating each intermediate conductor portion 932 in the slot 925 of the stator core 922. Since each of the partial windings 931A and 931B has two types of coil end shapes, interference between the partial windings 931 adjacent to each other in the circumferential direction is suppressed. Specifically, as described above, the first crossing portion 933A of the first partial winding 931A is provided so as to be bent in a direction (diameter direction) orthogonal to the intermediate conductor portion 932. The second crossing portion 933B of the second partial winding 931B is provided so as to extend linearly in the axial direction from the intermediate conductor portion 932 without being bent in the radial direction. In this case, the partial windings 931A and 931B are assembled to the stator core 922 in a state where the partial windings 931A and 931B partially overlap each other in the circumferential direction, but the crossover portions 933A and 933B are separated from each other in the axial direction. Interference between the crossovers 933A and 933B is avoided.
 ところで、各部分巻線931A,931Bはそれぞれ渡り部933を有しているため、固定子コア922に対して各部分巻線931A,931Bを組み付ける際には、それら各部分巻線931A,931Bが、軸方向でなく径方向内側からスロット925内に挿入される。また、各部分巻線931A,931Bはそれぞれ一対の中間導線部932を有しており、それら各中間導線部932が、スロット925内に無駄なデッドスペースを生じさせることなく収容されることが望ましい。以下には、固定子コア922に対する各部分巻線931A,931Bの組み付けに関する構成を説明する。図107は、固定子コア922に対して任意の部分巻線931Xを組み付ける構成を示す概略図である。 By the way, since each of the partial windings 931A and 931B has a crossover portion 933, when the partial windings 931A and 931B are assembled to the stator core 922, the partial windings 931A and 931B are used. , Is inserted into the slot 925 from the inside in the radial direction instead of the axial direction. Further, each of the partial windings 931A and 931B has a pair of intermediate conductor portions 932, and it is desirable that each of the intermediate conductor portions 932 is accommodated in the slot 925 without causing a wasteful dead space. .. The configuration for assembling the partial windings 931A and 931B to the stator core 922 will be described below. FIG. 107 is a schematic view showing a configuration in which an arbitrary partial winding 931X is assembled to the stator core 922.
 図107において、固定子コア922には、周方向に所定間隔で複数のスロット925が形成されており、そのうち2つのスロット925A,925Bが、部分巻線931Xの組み付け位置となるスロットである。これら各スロット925A,925Bは、部分巻線931Xの一対の中間導線部932を収容するスロット対SPに相当するものであり、以下の記載ではスロット925Aを「第1スロット925A」、スロット925Bを「第2スロット925B」とする。スロット対SPは、部分巻線931ごとにそれぞれ2つの他のスロット925を跨ぐようにして設けられている。 In FIG. 107, a plurality of slots 925 are formed in the stator core 922 at predetermined intervals in the circumferential direction, and two of the slots 925A and 925B are slots where the partial winding 931X is assembled. Each of these slots 925A and 925B corresponds to a slot pair SP accommodating a pair of intermediate lead portions 932 of the partial winding 931X. In the following description, the slot 925A is referred to as "first slot 925A" and the slot 925B is referred to as "first slot 925A". Second slot 925B ". The slot-to-SP is provided so as to straddle two other slots 925 for each partial winding 931.
 ここで、第1スロット925A及び第2スロット925Bにおいて、周方向に互いに内側となるスロット壁を内側壁941、周方向に互いに外側となるスロット壁を外側壁942とする。この場合、各スロット925A,925Bは、内側壁941どうしが平行となり、かつ外側壁942どうしが平行となるように設けられている。そして、一対の中間導線部932が、各スロット925A,925Bにおいて内側壁941及び外側壁942に近接対向した状態で収容されている。各スロット925におけるヨーク923側の周方向幅をW1、反ヨーク側の周方向幅をW2とすると、W1=W2となっている。 Here, in the first slot 925A and the second slot 925B, the slot walls that are inside each other in the circumferential direction are referred to as an inner side wall 941, and the slot walls that are outside each other in the circumferential direction are referred to as an outer wall 942. In this case, the slots 925A and 925B are provided so that the inner side walls 941 are parallel to each other and the outer walls 942 are parallel to each other. A pair of intermediate conductors 932 are housed in the slots 925A and 925B in a state of being close to each other with the inner side wall 941 and the outer wall 942. Assuming that the circumferential width of the yoke 923 side in each slot 925 is W1 and the circumferential width of the anti-yoke side is W2, W1 = W2.
 また、各スロット925A,925Bにおいて内側壁941及び外側壁942は互いに平行であり、一対の中間導線部932の周方向の側面は互いに平行である。つまり、各スロット925A,925Bが、周方向の幅が均一な平行スロットとして設けられている。また、部分巻線931Xの各中間導線部932が、周方向の幅が均一な平行導線として設けられている。 Further, in the slots 925A and 925B, the inner side wall 941 and the outer wall 942 are parallel to each other, and the side surfaces of the pair of intermediate conductors 932 in the circumferential direction are parallel to each other. That is, the slots 925A and 925B are provided as parallel slots having a uniform width in the circumferential direction. Further, each intermediate conductor portion 932 of the partial winding 931X is provided as a parallel conductor having a uniform width in the circumferential direction.
 さらに、スロット対SPにおける第1スロット925Aから第2スロット925Bまでの範囲の周方向中心位置と固定子中心点CPとを通る直線を第1中心線L11、第1スロット925A及び第2スロット925Bにおいて各々の周方向中心位置を通りかつ第1中心線L1に平行な直線を第2中心線L12とする。この場合、各スロット925A,925Bの第2中心線L12は互いに平行であり、かつ各スロット925A,925Bは、第2中心線L12に対して周方向に線対称で設けられている。 Further, a straight line passing through the circumferential center position in the range from the first slot 925A to the second slot 925B and the stator center point CP in the slot vs. SP is drawn at the first center line L11, the first slot 925A and the second slot 925B. The straight line passing through each circumferential center position and parallel to the first center line L1 is defined as the second center line L12. In this case, the second center lines L12 of the slots 925A and 925B are parallel to each other, and the slots 925A and 925B are provided line-symmetrically in the circumferential direction with respect to the second center line L12.
 図107において、第1スロット925Aは、スロット対SPを構成する左右2つスロット925のうち左側スロットであり、その隣の別のスロット925は、別のスロット対SPの右側スロットとなる(具体的なスロットの並びは図108参照)。そのため、スロット間の各ティース924は、2つの内側壁941の間となるティース924(第1ティース924A)と、2つの外側壁942の間となるティース924(第2ティース924B)とが交互に並ぶこととなる。この場合、各スロット925A,925Bが第2中心線L12に対して周方向に線対称で設けられていることにより、周方向に並ぶ各ティース924の大きさの均等化が可能となっている。 In FIG. 107, the first slot 925A is the left slot of the two left and right slots 925 constituting the slot vs. SP, and another slot 925 next to the first slot 925A is the right slot of the other slot vs. SP (specifically). See FIG. 108 for the arrangement of the various slots. Therefore, in each of the teeth 924 between the slots, the teeth 924 (first teeth 924A) between the two inner side walls 941 and the teeth 924 (second teeth 924B) between the two outer walls 942 alternate. It will be lined up. In this case, since the slots 925A and 925B are provided line-symmetrically in the circumferential direction with respect to the second center line L12, the sizes of the teeth 924 arranged in the circumferential direction can be equalized.
 上記構成の固定子コア922では、周方向に並ぶ各ティース924の形態が均一でなくなる。つまり、固定子コア922は、ヨーク923側の基端部の周方向幅W11が反ヨーク側の先端部の周方向幅W12よりも小さい第1ティース924Aと、基端部の周方向幅W11が先端部の周方向幅W12よりも大きい第2ティース924Bとを含み、それら各ティース924A,924Bが周方向に交互に並ぶ構成となっている。本例では特に、第1ティース924Aにおける基端部の周方向幅W11と、第2ティース924Bにおける先端部の周方向幅W12とが同一になっている。これにより、各ティース924A,924Bの磁気特性を等しくするようにしている。 In the stator core 922 having the above configuration, the shapes of the teeth 924 arranged in the circumferential direction are not uniform. That is, the stator core 922 has a first tooth 924A in which the circumferential width W11 of the base end portion on the yoke 923 side is smaller than the circumferential width W12 of the tip end portion on the anti-yoke side, and the circumferential width W11 of the base end portion. The second teeth 924B, which is larger than the circumferential width W12 of the tip portion, is included, and the teeth 924A and 924B are arranged alternately in the circumferential direction. In this example, in particular, the circumferential width W11 of the base end portion in the first teeth 924A and the circumferential width W12 of the tip end portion in the second teeth 924B are the same. As a result, the magnetic characteristics of the teeth 924A and 924B are made equal.
 図108は、固定子コア922の各スロット925に対する部分巻線931A,931Bの組み付けを説明するための概略図である。なお、図108では、説明の補助のため、各スロット925に1番~8番の符号を付している。 FIG. 108 is a schematic view for explaining the assembly of the partial windings 931A and 931B to each slot 925 of the stator core 922. In FIG. 108, reference numerals 1 to 8 are attached to each slot 925 for the sake of assistance in explanation.
 図108では、1番-4番スロット、3番-6番スロット、5番-8番スロットがそれぞれスロット対SP1,SP2,SP3となっており、これらの各スロット対SP1~SP3にそれぞれ部分巻線931A,931Bが組み付けられる。この場合、第1部分巻線931A及び第2部分巻線931Bのうち、渡り部933がヨーク923側に屈曲形成されている第1部分巻線931Aが先にスロット対SP2に組み付けられ、その後に第2部分巻線931Bがスロット対SP1,SP3に組み付けられる。このとき、上述したように、スロット対SPの各スロット925A,925Bは、内側壁941どうしが平行、かつ外側壁942どうしが平行となるように設けられ、さらにヨーク923側の周方向幅W1と反ヨーク側の周方向幅W2とが同じであるため、各部分巻線931A,931Bの径方向のスライドにより各スロット925A,925Bへの組み付けが好適に行われるものとなっている。 In FIG. 108, the 1st-4th slots, the 3rd-6th slots, and the 5th-8th slots are slot pairs SP1, SP2, SP3, respectively, and each of these slots pairs SP1 to SP3 is partially wound. Lines 931A and 931B are assembled. In this case, of the first partial winding 931A and the second partial winding 931B, the first partial winding 931A in which the crossing portion 933 is bent toward the yoke 923 side is first assembled to the slot vs. SP2, and then. The second partial winding 931B is assembled to the slot pairs SP1 and SP3. At this time, as described above, the slots 925A and 925B of the slot vs. SP are provided so that the inner side walls 941 are parallel to each other and the outer walls 942 are parallel to each other, and further, the width W1 in the circumferential direction on the yoke 923 side is provided. Since the width W2 in the circumferential direction on the anti-yoke side is the same, the partial windings 931A and 931B are preferably assembled into the slots 925A and 925B by sliding in the radial direction.
 第1部分巻線931Aは、第1部分巻線931Aどうしが周方向に互いに重複しないようにして並べて配置され、第2部分巻線931Bは、第2部分巻線931Bどうしが周方向に互いに重複しないようにして並べて配置される。そして、第1部分巻線931A及び第2部分巻線931Bが周方向に互いに重複するものとなっている。 The first partial windings 931A are arranged side by side so that the first partial windings 931A do not overlap each other in the circumferential direction, and the second partial windings 931B have the second partial windings 931B overlapping each other in the circumferential direction. They are arranged side by side so as not to. The first partial winding 931A and the second partial winding 931B overlap each other in the circumferential direction.
 本例の回転電機900によれば、以下に示す優れた効果が得られる。 According to the rotary electric machine 900 of this example, the following excellent effects can be obtained.
 固定子コア922において、部分巻線931の一対の中間導線部932が収容されるスロット対SPに対して、径方向からの部分巻線931の組み付けを可能にした。具体的には、スロット対SPの第1スロット925A及び第2スロット925Bにおいて、これら各スロット925A,925Bの内側壁941どうし、外側壁942どうしをそれぞれ平行とするとともに、各スロット925のヨーク923側の周方向幅W1と反ヨーク側の周方向幅W2とを同じにした。この場合、内側壁941どうしが反ヨーク側で互いに遠ざかるように設けられている構成や、外側壁942どうしが反ヨーク側で互いに近づくように設けられている構成、各スロット925におけるヨーク923側の周方向幅W1が反ヨーク側の周方向幅W2よりも大きい構成(W1>W2の構成)とは異なり、一対の中間導線部932を、ティース先端側の角部との干渉を生じさせることなく、さらにスロット925内に無駄なデッドスペースを生じさせることなく、一対の中間導線部932を各スロット925A,925Bに収容することが可能になっている。つまり、各スロット925において内側壁941及び外側壁942に近接対向した状態で一対の中間導線部932を収容することが可能になっている。 In the stator core 922, the partial winding 931 can be assembled from the radial direction to the slot pair SP in which the pair of intermediate conductors 932 of the partial winding 931 are accommodated. Specifically, in the first slot 925A and the second slot 925B of the slot vs. SP, the inner side walls 941 and the outer wall 942 of each of the slots 925A and 925B are parallel to each other, and the yoke 923 side of each slot 925. The circumferential width W1 of the above and the circumferential width W2 on the anti-yoke side are made the same. In this case, the inner side walls 941 are provided so as to be separated from each other on the anti-yoke side, the outer walls 942 are provided so as to be close to each other on the anti-yoke side, and the yoke 923 side in each slot 925 is provided. Unlike the configuration in which the circumferential width W1 is larger than the circumferential width W2 on the anti-yoke side (W1> W2 configuration), the pair of intermediate conductors 932 do not interfere with the corners on the tip side of the teeth. Further, the pair of intermediate conductors 932 can be accommodated in the slots 925A and 925B without creating a wasteful dead space in the slot 925. That is, it is possible to accommodate the pair of intermediate conductors 932 in each slot 925 in a state of being close to the inner side wall 941 and the outer wall 942.
 また、各部分巻線931は2以上のティース924を跨ぐように配置されるものであり、周方向に隣り合いかつ一部が重複した状態で並ぶ各部分巻線931においてコイルエンド部分での干渉が懸念されるが、それら各部分巻線931において渡り部933が軸方向に互いに離間しているため、部分巻線931どうしの干渉を招くことなく各部分巻線931を配置できる。その結果、固定子コア922に対して固定子巻線921を好適に組み付けることができる固定子920の実現が可能になっている。 Further, each partial winding 931 is arranged so as to straddle two or more teeth 924, and interference at the coil end portion in each partial winding 931 arranged adjacent to each other in the circumferential direction and partially overlapping. However, since the crossing portions 933 of the partial windings 931 are separated from each other in the axial direction, the partial windings 931 can be arranged without causing interference between the partial windings 931. As a result, it is possible to realize a stator 920 in which the stator winding 921 can be suitably assembled to the stator core 922.
 上記構成によれば、スロット925内の導体占積率を向上することができ、回転電機900の損失低減・発熱量の抑制を実現できる。 According to the above configuration, the conductor space factor in the slot 925 can be improved, and the loss of the rotary electric machine 900 can be reduced and the amount of heat generated can be suppressed.
 スロット対SPにおける第1中心線L11と、第1スロット925A及び第2スロット925Bの各々の第2中心線L12とが互いに平行になるように構成したため、スロット対SPに対する部分巻線931の組み付けを好適に実現できる。つまり、部分巻線931を第1中心線L11に沿って平行にスライドさせることで、部分巻線931を好適に組み付けることができる。また、第1スロット925A及び第2スロット925Bを、第1中心線L11に平行な第2中心線L12に対して周方向に線対称で設けることで、固定子コア922において周方向に並ぶ各ティース924の大きさの均等化を図る上で有利な構成となっている。 Since the first center line L11 in the slot vs. SP and the second center line L12 of each of the first slot 925A and the second slot 925B are configured to be parallel to each other, the partial winding 931 is assembled to the slot vs. SP. It can be preferably realized. That is, the partial winding 931 can be suitably assembled by sliding the partial winding 931 in parallel along the first center line L11. Further, by providing the first slot 925A and the second slot 925B in line symmetry in the circumferential direction with respect to the second center line L12 parallel to the first center line L11, each teeth arranged in the circumferential direction in the stator core 922. It has an advantageous configuration for equalizing the size of the 924.
 各スロット925を、周方向の幅が均一な平行スロットとして設けるとともに、部分巻線931の各中間導線部932を、周方向の幅が均一な平行導線として設けたため、固定子巻線921の占積率の向上を図ることができる。 Since each slot 925 is provided as a parallel slot having a uniform width in the circumferential direction and each intermediate conductor portion 932 of the partial winding 931 is provided as a parallel conductor having a uniform width in the circumferential direction, the stator winding 921 is occupied. The product ratio can be improved.
 また、各スロット925を平行スロットとした構成では、スロット925間のティース924の形状や大きさを合わせ込むことが可能となり、各ティース924での鉄量の均等化を図る上で有利な構成となっている。 Further, in the configuration in which each slot 925 is a parallel slot, it is possible to match the shape and size of the teeth 924 between the slots 925, which is an advantageous configuration for equalizing the amount of iron in each tooth 924. It has become.
 部分巻線931を、導体断面が四角形形状をなす角線を多重に巻回してなる構成とし、角線の集合体である導線集合部の横断面を四角形形状をなすものとした。この場合、固定子巻線921における一層の占積率向上を図ることができる。 The partial winding 931 has a configuration in which square wires having a quadrangular cross section of the conductor are wound in multiple directions, and the cross section of the conductor assembly portion, which is an aggregate of the square wires, has a quadrangular shape. In this case, the space factor of the stator winding 921 can be further improved.
 上記のとおり固定子コア922の各スロット925に対して部分巻線931(詳しくは部分巻線931の一対の中間導線部932)を径方向から組み付け可能にする構成では、周方向に並ぶ各ティース924の形態が均一でなくなり、「基端部の周方向幅W11<先端部の周方向幅W12」となる第1ティース924Aと、「基端部の周方向幅W11>先端部の周方向幅W12」となる第2ティース924Bとが含まれることとなる。かかる構成において、第1ティースに924Aおける基端部の周方向幅W11と、第2ティース924Bにおける先端部の周方向幅W12とを同一にしたため、各スロット925の周方向の最小幅を一様に合わせることができる。これにより、固定子コア922において局所的に磁気飽和が生じることを抑制でき、局所的な磁気飽和に起因する性能低下を抑制することができる。 As described above, in the configuration in which the partial winding 931 (specifically, the pair of intermediate lead portions 932 of the partial winding 931) can be assembled to each slot 925 of the stator core 922 from the radial direction, the teeth arranged in the circumferential direction The first teeth 924A in which the form of the 924 becomes non-uniform and "the circumferential width W11 of the base end <the circumferential width W12 of the tip portion" and "the circumferential width W11 of the base end portion> the circumferential width of the tip portion". The second teeth 924B which becomes "W12" will be included. In such a configuration, since the circumferential width W11 of the base end portion in the first teeth 924A and the circumferential width W12 of the tip end portion in the second teeth 924B are made the same, the minimum width in the circumferential direction of each slot 925 is uniform. Can be adjusted to. As a result, it is possible to suppress the occurrence of local magnetic saturation in the stator core 922, and it is possible to suppress the deterioration of performance due to the local magnetic saturation.
 第1部分巻線931Aの第1渡り部933Aを径方向外側に折り曲げるとともに、第2部分巻線931Bの第2渡り部933Bを、第1部分巻線931Aの第1渡り部933Aに対して軸方向に離間する位置に設ける構成とした。これにより、これら各部分巻線931A,931Bにおいて渡り部933A,933Bどうしの干渉を好適に回避でき、組み付け性に優れる構成を実現できる。 The first crossover 933A of the first partial winding 931A is bent radially outward, and the second crossover 933B of the second partial winding 931B is shafted with respect to the first crossover 933A of the first partial winding 931A. It is configured to be provided at a position separated in the direction. As a result, interference between the crossover portions 933A and 933B can be suitably avoided in each of these partial windings 931A and 931B, and a configuration excellent in assembling property can be realized.
 1極対において相ごとに1つずつの割合で部分巻線931を設け、固定子コア922で言えば、周方向において1相1極あたり1個の割合でスロット925が設けられるシングルスロット仕様とした。この場合、2種類の部分巻線931を用いれば、部分巻線931どうしの干渉の回避が可能となり、製造の観点からしても有利な構成を実現することができる。 A single slot specification in which a partial winding 931 is provided for each phase in a pair of poles, and a slot 925 is provided for one pole per phase in the circumferential direction in terms of the stator core 922. did. In this case, if two types of partial windings 931 are used, interference between the partial windings 931 can be avoided, and an advantageous configuration can be realized from the viewpoint of manufacturing.
 以下に、変形例16に関する別例を説明する。 An alternative example relating to the modified example 16 will be described below.
 ・図109に示すように、スロット対SPの各スロット925A,925Bにおいて、内側壁941どうしが反ヨーク側で互いに近づくように設けられるとともに、外側壁942どうしが反ヨーク側で互いに遠ざかるように設けられていてもよい。また、図109に示す各スロット925A,925Bにおいて、内側壁941どうし及び外側壁942どうしのいずれかが平行となるように設けられていてもよい。図109の構成では、各スロット925においてヨーク923側の周方向幅W1、反ヨーク側の周方向幅W2は、W1<W2となっている。 As shown in FIG. 109, in the slots 925A and 925B of the slot vs. SP, the inner side walls 941 are provided so as to approach each other on the anti-yoke side, and the outer walls 942 are provided so as to be separated from each other on the anti-yoke side. It may have been. Further, in the slots 925A and 925B shown in FIG. 109, either the inner side wall 941 or the outer wall 942 may be provided so as to be parallel to each other. In the configuration of FIG. 109, in each slot 925, the circumferential width W1 on the yoke 923 side and the circumferential width W2 on the anti-yoke side are W1 <W2.
 ・図110に示すように、スロット915のヨーク923側の奥側壁943を、固定子コア922の反ヨーク側の内周面SAと同心の円CLに沿う向きで設ける構成としてもよい。ここで、各スロット925において奥行き方向の中心線(第2中心線L12)がスロット対SPの中心線(第1中心線L11)に平行となる構成では、スロット中心線(第2中心線L12)がコア内周面SAの法線方向とは異なる向きになるが、上記のとおりスロット915の奥側壁943を円CLに沿う向きで設けることで、スロット925の径方向寸法(奥行き寸法)を周方向に同一にすることができる。各スロット925は、横断面形状が略平行四辺形となっている。また、部分巻線931において中間導線部932の横断面は、スロット形状に合わせて略平行四辺形状となっている。 As shown in FIG. 110, the back side wall 943 on the yoke 923 side of the slot 915 may be provided in a direction along the circular CL concentric with the inner peripheral surface SA on the anti-yoke side of the stator core 922. Here, in the configuration in which the center line in the depth direction (second center line L12) is parallel to the center line of the slot vs. SP (first center line L11) in each slot 925, the slot center line (second center line L12) Is in a direction different from the normal direction of the core inner peripheral surface SA, but as described above, by providing the inner side wall 943 of the slot 915 in the direction along the circular CL, the radial dimension (depth dimension) of the slot 925 can be rotated. Can be the same in direction. Each slot 925 has a substantially parallelogram in cross-sectional shape. Further, in the partial winding 931 the cross section of the intermediate conductor portion 932 has a substantially parallel four-sided shape according to the slot shape.
 上記構成によれば、スロット925の径方向寸法(奥行き寸法)が周方向に同一になることで、スロット925内において余剰スペースを生じさせることなく好適に部分巻線931を配置することができる。つまり、スロット925の径方向寸法が周方向に同一である構成では、スロット925の径方向寸法が周方向に異なる構成(例えば図107の構成)に比べて、スロット925内において径方向外側又は径方向内側の余剰スペースを生じにくくすることができ、部分巻線931の組み付けを一層好適なものとすることができる。 According to the above configuration, since the radial dimension (depth dimension) of the slot 925 is the same in the circumferential direction, the partial winding 931 can be suitably arranged in the slot 925 without creating an excess space. That is, in the configuration in which the radial dimensions of the slots 925 are the same in the circumferential direction, the radial outer diameter or the diameter in the slot 925 is different from that in the configuration in which the radial dimensions of the slots 925 are different in the circumferential direction (for example, the configuration of FIG. 107). It is possible to make it difficult to generate excess space inside in the direction, and it is possible to make the assembly of the partial winding 931 more suitable.
 ・図111(a)の構成では、固定子コア922においてティース924の先端に、スロット925の開口部を狭めるように周方向に延びる鍔部951が設けられている。鍔部951は、ティース先端の塑性変形部952が塑性変形された状態で設けられている。又は、図111(b)に示すように、固定子コア922のティース先端に鍔形成部材953が固定されることで鍔部951が形成される構成であってもよい。 In the configuration of FIG. 111A, a flange portion 951 extending in the circumferential direction is provided at the tip of the teeth 924 in the stator core 922 so as to narrow the opening of the slot 925. The collar portion 951 is provided in a state in which the plastically deformed portion 952 at the tip of the tooth is plastically deformed. Alternatively, as shown in FIG. 111B, the flange portion 951 may be formed by fixing the flange forming member 953 to the tip of the teeth of the stator core 922.
 上記構成によれば、ティース先端に設けられた鍔部951により、部分巻線931の脱落等を抑制できるものとなっている。また、鍔部951は、ティース先端の塑性変形部952が塑性変形された状態、又はティース先端に鍔形成部材953が固定された状態で形成されており、固定子コア922に対して部分巻線931が径方向から組み付けられることに何ら支障を及ぼすことなく所望の鍔構造を設けることができる。 According to the above configuration, the flange portion 951 provided at the tip of the tooth can prevent the partial winding 931 from falling off. Further, the collar portion 951 is formed in a state where the plastically deformed portion 952 at the tip of the tooth is plastically deformed or a flange forming member 953 is fixed to the tip of the tooth, and is partially wound with respect to the stator core 922. A desired collar structure can be provided without causing any trouble in assembling the 931 from the radial direction.
 ・図107で説明した構成では、「基端部の周方向幅W11<先端部の周方向幅W12」となる第1ティース924Aと、「基端部の周方向幅W11>先端部の周方向幅W12」となる第2ティース924Bにおいて、第1ティース924Aの周方向幅W11と第2ティース924Bの周方向幅W12とを同一にしたが、これを変更してもよい。例えば、全てのティース924において先端部の周方向幅W12を同一にする構成、又は全てのティース924において基端部の周方向幅W11を同一にする構成としてもよい。 In the configuration described with reference to FIG. 107, the first teeth 924A having "the circumferential width W11 of the base end portion <the circumferential width W12 of the tip portion" and "the circumferential width W11 of the base end portion> the circumferential direction of the tip portion". In the second teeth 924B having the width W12, the circumferential width W11 of the first teeth 924A and the circumferential width W12 of the second teeth 924B are made the same, but this may be changed. For example, all the teeth 924 may have the same circumferential width W12 at the tip, or all the teeth 924 may have the same circumferential width W11 at the base end.
 ・固定子巻線921において各部分巻線931の互いの干渉を抑制する構成として、以下に示す構成を用いることが可能である。 -In the stator winding 921, the configuration shown below can be used as a configuration for suppressing mutual interference between the partial windings 931.
 図112(a)に示す構成では、第1部分巻線931Aにおいて、図示上側の渡り部が軸方向に延びるよう設けられ、図示下側の渡り部が径方向コア側に屈曲されて設けられている。また、第2部分巻線931Bにおいて、上側渡り部が径方向反コア側に屈曲されて設けられ、下側渡り部が軸方向に延びるよう設けられている。この場合、各部分巻線931A,931Bが固定子コア922に組み付けられた状態では、各渡り部が軸方向に互いに離間し、渡り部どうしの互いの干渉が回避されるようになっている。 In the configuration shown in FIG. 112A, in the first partial winding 931A, the upper crossover portion shown in the drawing is provided so as to extend in the axial direction, and the lower crossover portion shown in the drawing is provided so as to be bent toward the radial core side. There is. Further, in the second partial winding 931B, the upper crossover portion is provided so as to be bent toward the radial opposite core side, and the lower crossover portion is provided so as to extend in the axial direction. In this case, when the partial windings 931A and 931B are assembled to the stator core 922, the crossovers are separated from each other in the axial direction so that the crossovers do not interfere with each other.
 図112(b)に示す構成では、第1部分巻線931A及び第2部分巻線931Bにおいて、上側渡り部が径方向反コア側に屈曲されて設けられ、下側渡り部が径方向コア側に屈曲されて設けられている。この場合、各部分巻線931A,931Bは軸方向に互いにオフセットされた状態で固定子コア922に組み付けられ、その状態では、各渡り部が軸方向に互いに離間し、渡り部どうしの互いの干渉が回避されるようになっている。 In the configuration shown in FIG. 112B, in the first partial winding 931A and the second partial winding 931B, the upper crossover portion is provided so as to be bent toward the radial opposite core side, and the lower crossover portion is provided on the radial core side. It is bent and provided. In this case, the partial windings 931A and 931B are assembled to the stator core 922 in a state of being offset from each other in the axial direction, and in that state, the crossovers are separated from each other in the axial direction, and the crossovers interfere with each other. Is designed to be avoided.
 図112(c)に示す構成では、第1部分巻線931Aにおいて、上側渡り部及び下側渡り部が径方向コア側に屈曲されて設けられている。また、第2部分巻線931Bにおいて、上側渡り部及び下側渡り部が径方向反コア側に屈曲されて設けられている。この場合、各部分巻線931A,931Bが固定子コア922に組み付けられた状態では、各渡り部が径方向に互いに離間し、渡り部どうしの互いの干渉が回避されるようになっている。 In the configuration shown in FIG. 112 (c), in the first partial winding 931A, the upper crossover portion and the lower crossover portion are provided so as to be bent toward the radial core side. Further, in the second partial winding 931B, the upper crossover portion and the lower crossover portion are provided so as to be bent toward the opposite core side in the radial direction. In this case, when the partial windings 931A and 931B are assembled to the stator core 922, the crossovers are separated from each other in the radial direction so that the crossovers do not interfere with each other.
 ・シングルスロット仕様の固定子920ではコギングトルクが課題となる。この点、回転子910が、軸方向において、磁石ユニット912における磁極位置を周方向に異ならせたスキュー構造を有しているとよい。これにより、占積率を向上しつつコギングトルクを抑制した回転電機900を実現できる。回転子910について具体的なスキュー構造を図113(a),(b)に示す。図113(a),(b)は、回転子910の正面図であり、同図には磁石ユニット912の磁石913を1極分のみ示している。 ・ Cogging torque becomes an issue with the stator 920 with single slot specifications. In this respect, it is preferable that the rotor 910 has a skew structure in which the magnetic pole positions of the magnet unit 912 are different in the circumferential direction in the axial direction. As a result, it is possible to realize a rotary electric machine 900 in which the cogging torque is suppressed while improving the space factor. Specific skew structures for the rotor 910 are shown in FIGS. 113 (a) and 113 (b). FIGS. 113 (a) and 113 (b) are front views of the rotor 910, and the figure shows only one pole of the magnet 913 of the magnet unit 912.
 図113(a)に示す回転子910は、斜めスキュー構造を有しており、軸方向において周方向位置を斜めに変化させるようにして磁石913が設けられている。また、図113(b)に示す回転子910は、段スキュー構造を有しており、軸方向において周方向位置を段差状に変化させるようにして磁石913が設けられている。 The rotor 910 shown in FIG. 113A has an oblique skew structure, and a magnet 913 is provided so as to obliquely change the circumferential position in the axial direction. Further, the rotor 910 shown in FIG. 113B has a step skew structure, and a magnet 913 is provided so as to change the circumferential position in the axial direction in a stepped manner.
 ・回転電機900はアウタロータ式の回転電機であってもよい。アウタロータ式とする場合、固定子920において、円筒状のヨーク923の径方向外側に複数のティース924が設けられており、各ティース間のスロット925には径方向外側から各部分巻線931が組み付けられる。 -The rotary electric machine 900 may be an outer rotor type rotary electric machine. In the case of the outer rotor type, in the stator 920, a plurality of teeth 924 are provided on the radial outside of the cylindrical yoke 923, and each partial winding 931 is assembled from the radial outside to the slot 925 between the teeth. Be done.
 (変形例15~16における他の別例)
 ・回転電機700,900において固定子巻線は2相の相巻線(U相巻線及びV相巻線)を有する構成であってもよい。この場合、例えば回転電機900の部分巻線931では、一対の中間導線部932が、周方向における互いの中心間距離で2スロットピッチに相当する距離を離して設けられ、一対の中間導線部932の間に、他1相の部分巻線931における中間導線部932が1つ配置される構成となっていればよい。
(Other alternative examples in the modified examples 15 to 16)
-In the rotary electric machines 700 and 900, the stator winding may have a configuration having two-phase phase windings (U-phase winding and V-phase winding). In this case, for example, in the partial winding 931 of the rotary electric machine 900, a pair of intermediate conductors 932 are provided at a distance corresponding to a two-slot pitch in the distance between the centers in the circumferential direction, and the pair of intermediate conductors 932 are provided. It suffices that one intermediate conducting wire portion 932 in the other one-phase partial winding 931 is arranged between the two.
 ・回転電機700、900として、界磁子を回転子とする回転界磁形の回転電機に代えて、電機子を回転子とする回転電機子形の回転電機を採用することも可能である。 -As the rotating electric machines 700 and 900, it is also possible to adopt a rotating armature type rotating electric machine having an armature as a rotor instead of a rotating field type rotating electric machine using a field magnet as a rotor.
 この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。 The disclosure in this specification is not limited to the illustrated embodiments. The disclosure includes exemplary embodiments and modifications by those skilled in the art based on them. For example, disclosure is not limited to the parts and / or element combinations shown in the embodiments. Disclosure can be carried out in various combinations. The disclosure can have additional parts that can be added to the embodiments. Disclosures include those in which the parts and / or elements of the embodiment are omitted. Disclosures include the replacement or combination of parts and / or elements between one embodiment and another. The technical scope disclosed is not limited to the description of the embodiments. Some technical scopes disclosed are indicated by the claims description and should be understood to include all modifications within the meaning and scope equivalent to the claims statement.

Claims (10)

  1.  周方向に極性が交互となる複数の磁極を含む磁石部(912)を有する界磁子(910)と、
     相あたり複数の部分巻線(931)からなる相巻線を有する多相の電機子巻線(921)と、前記電機子巻線に一体に設けられる電機子コア(922)とを備える電機子(920)と、
    を備える回転電機(900)であって、
     前記電機子コアは、円筒状のヨーク(923)と、該ヨークの径方向内側又は径方向外側において周方向に所定間隔で設けられた複数のティース(924)とを有し、前記各ティースどうしの間に、径方向に延びるスロット(925)が形成されており、
     前記部分巻線は、周方向に所定間隔を離して設けられる一対の中間導線部(932)と、軸方向一端側及び他端側に設けられ前記一対の中間導線部を環状に接続する渡り部(933)とを有し、前記スロットに前記中間導線部が収容され、かつ2以上の前記ティースを跨ぐように配置されるものであり、
     前記電機子コアにおいて2つ一組のスロットである第1スロット(925A)及び第2スロット(925B)が前記一対の中間導線部がそれぞれ収容されるスロット対(SP)であり、
     前記第1スロット及び前記第2スロットは、周方向に互いに内側となる内側壁(941)どうしが平行又は反ヨーク側で互いに近づき、かつ周方向に互いに外側となる外側壁(942)どうしが平行又は反ヨーク側で互いに遠ざかるように設けられ、それら各スロットにおける前記ヨーク側の周方向幅(W1)が、反ヨーク側の周方向幅(W2)以下の大きさとなっており、
     前記一対の中間導線部が、前記内側壁及び前記外側壁に近接対向した状態で前記第1スロット及び前記第2スロットに収容されており、
     周方向に隣り合いかつ一部が重複した状態で並べて配置された前記各部分巻線において前記渡り部が軸方向又は径方向に互いに離間している回転電機。
    A field magnet (910) having a magnet portion (912) including a plurality of magnetic poles having alternating polarities in the circumferential direction, and a field magnet (910).
    An armature including a multi-phase armature winding (921) having a phase winding composed of a plurality of partial windings (931) per phase, and an armature core (922) integrally provided with the armature winding. (920) and
    It is a rotary electric machine (900) equipped with
    The armature core has a cylindrical yoke (923) and a plurality of teeth (924) provided at predetermined intervals in the circumferential direction on the radial inner side or the radial outer side of the yoke, and each of the teeth is provided with each other. A slot (925) extending in the radial direction is formed between the two.
    The partial winding has a pair of intermediate conductors (932) provided at predetermined intervals in the circumferential direction and a crossover portion provided on one end side and the other end side in the axial direction to connect the pair of intermediate conductors in an annular shape. (933), the intermediate conducting wire portion is accommodated in the slot, and is arranged so as to straddle two or more of the teeth.
    The first slot (925A) and the second slot (925B), which are a set of two slots in the armature core, are a slot pair (SP) in which the pair of intermediate conductors are housed, respectively.
    In the first slot and the second slot, the inner side walls (941) that are inside each other in the circumferential direction are parallel to each other or approach each other on the anti-yoke side, and the outer walls (942) that are outward to each other in the circumferential direction are parallel to each other. Alternatively, they are provided so as to be separated from each other on the anti-yoke side, and the circumferential width (W1) on the yoke side in each of these slots is smaller than the circumferential width (W2) on the anti-yoke side.
    The pair of intermediate conductors are housed in the first slot and the second slot in a state of being close to the inner side wall and the outer wall.
    A rotary electric machine in which the crossovers are separated from each other in the axial direction or the radial direction in the partial windings arranged side by side in a state of being adjacent to each other in the circumferential direction and partially overlapping.
  2.  前記スロット対における前記第1スロットから前記第2スロットまでの範囲の周方向中心位置と電機子中心点とを通る直線を第1中心線(L11)、前記第1スロット及び前記第2スロットにおいて各々の周方向中心位置を通りかつ前記第1中心線に平行な直線を第2中心線(L12)とする場合に、前記第1スロット及び前記第2スロットにおいて前記第2中心線は互いに平行であり、かつ前記第1スロット及び前記第2スロットは、前記第2中心線に対して周方向に線対称で設けられている請求項1に記載の回転電機。 A straight line passing through the circumferential center position and the armature center point in the range from the first slot to the second slot in the slot pair is drawn at the first center line (L11), the first slot and the second slot, respectively. When the straight line passing through the center position in the circumferential direction and parallel to the first center line is defined as the second center line (L12), the second center lines are parallel to each other in the first slot and the second slot. The rotary electric machine according to claim 1, wherein the first slot and the second slot are provided line-symmetrically in the circumferential direction with respect to the second center line.
  3.  前記第1スロット及び前記第2スロットの各々において前記内側壁及び前記外側壁は互いに平行であり、前記一対の中間導線部の周方向の側面は互いに平行である請求項2に記載の回転電機。 The rotary electric machine according to claim 2, wherein in each of the first slot and the second slot, the inner side wall and the outer wall are parallel to each other, and the circumferential side surfaces of the pair of intermediate conducting wires are parallel to each other.
  4.  前記部分巻線は、導体断面が四角形形状をなす角線を多重に巻回されることで構成されており、前記角線の集合体である導線集合部の横断面が四角形形状をなしている請求項3に記載の回転電機。 The partial winding is formed by winding a plurality of square wires having a quadrangular cross section of a conductor, and the cross section of a conductor collecting portion, which is an aggregate of the square wires, has a quadrangular shape. The rotary electric machine according to claim 3.
  5.  前記電機子コアにおいて周方向に並ぶ前記各ティースは、前記ヨーク側の基端部の周方向幅(W11)が反ヨーク側の先端部の周方向幅(W12)よりも小さい第1ティース(924A)と、前記基端部の周方向幅が前記先端部の周方向幅よりも大きい第2ティース(924B)とを含み、
     前記第1ティースにおける前記基端部の周方向幅と、前記第2ティースにおける前記先端部の周方向幅とが同一である請求項2~4のいずれか1項に記載の回転電機。
    Each of the teeth arranged in the circumferential direction in the armature core has a first tooth (924A) in which the circumferential width (W11) of the base end portion on the yoke side is smaller than the circumferential width (W12) of the tip end portion on the anti-yoke side. ) And the second tooth (924B) in which the circumferential width of the base end portion is larger than the circumferential width of the tip end portion.
    The rotary electric machine according to any one of claims 2 to 4, wherein the circumferential width of the base end portion in the first tooth and the circumferential width of the tip end portion in the second tooth are the same.
  6.  前記スロットの前記ヨーク側の奥側壁(943)が、前記電機子コアの反ヨーク側の内周面と同心の円(CL)に沿う向きで設けられている請求項2~5のいずれか1項に記載の回転電機。 Any one of claims 2 to 5 in which the inner wall surface (943) on the yoke side of the slot is provided so as to be oriented along a circle (CL) concentric with the inner peripheral surface on the anti-yoke side of the armature core. The rotary armature described in the section.
  7.  周方向に隣り合いかつ一部が重複した状態で並べて配置される前記各部分巻線として第1部分巻線(931A)及び第2部分巻線(931B)を用い、
     前記第1部分巻線では、前記渡り部が径方向内側又は径方向外側に折り曲げられ、
     前記第2部分巻線では、前記渡り部が、前記第1部分巻線の渡り部に対して軸方向又は径方向に離間する位置に設けられている請求項1~6のいずれか1項に記載の回転電機。
    The first partial winding (931A) and the second partial winding (931B) are used as the partial windings arranged side by side in the circumferential direction so as to be adjacent to each other and partially overlapped.
    In the first partial winding, the crossover is bent radially inward or radially outward.
    In any one of claims 1 to 6, in the second partial winding, the crossover is provided at a position separated in the axial direction or the radial direction from the crossover of the first partial winding. The rotating electric machine described.
  8.  前記ティースの先端に、前記スロットの開口部を狭めるように周方向に延びる鍔部(951)を有しており、
     前記鍔部は、ティース先端の塑性変形部(952)が塑性変形された状態、又はティース先端に鍔形成部材(953)が固定された状態で形成されている請求項1~7のいずれか1項に記載の回転電機。
    The tip of the tooth has a flange portion (951) extending in the circumferential direction so as to narrow the opening of the slot.
    The collar portion is any one of claims 1 to 7 in which the plastically deformed portion (952) at the tip of the tooth is plastically deformed, or the collar forming member (953) is fixed to the tip of the tooth. The rotary electric machine described in the section.
  9.  前記部分巻線は、1極対において相ごとに1つずつ設けられている請求項1~8のいずれか1項に記載の回転電機。 The rotary electric machine according to any one of claims 1 to 8, wherein the partial winding is provided one by one for each phase in one pole pair.
  10.  前記界磁子は、軸方向において、前記磁石部における磁極位置を周方向に異ならせたスキュー構造を有している請求項9に記載の回転電機。 The rotary electric machine according to claim 9, wherein the field magnet has a skew structure in which the magnetic pole positions in the magnet portion are different in the circumferential direction in the axial direction.
PCT/JP2020/044052 2019-11-27 2020-11-26 Rotary electrical machine WO2021107026A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080082250.8A CN114762220A (en) 2019-11-27 2020-11-26 Rotating electrical machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-214098 2019-11-27
JP2019214098A JP7434839B2 (en) 2019-11-27 2019-11-27 rotating electric machine

Publications (1)

Publication Number Publication Date
WO2021107026A1 true WO2021107026A1 (en) 2021-06-03

Family

ID=76085887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044052 WO2021107026A1 (en) 2019-11-27 2020-11-26 Rotary electrical machine

Country Status (3)

Country Link
JP (1) JP7434839B2 (en)
CN (1) CN114762220A (en)
WO (1) WO2021107026A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506549A (en) * 2006-10-04 2010-02-25 コンバーチーム リミテッド Stator for rotating electrical machine
JP2019122249A (en) * 2017-12-28 2019-07-22 株式会社デンソー Rotary electric machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506549A (en) * 2006-10-04 2010-02-25 コンバーチーム リミテッド Stator for rotating electrical machine
JP2019122249A (en) * 2017-12-28 2019-07-22 株式会社デンソー Rotary electric machine

Also Published As

Publication number Publication date
JP2021087281A (en) 2021-06-03
CN114762220A (en) 2022-07-15
JP7434839B2 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
WO2021039736A1 (en) Rotating electric machine
WO2020189442A1 (en) Rotary electric machine and method for manufacturing rotor
WO2021010452A1 (en) Rotary electric machine
WO2021176668A1 (en) Rotary electrical machine
JP2020137371A (en) Armature and rotary electric machine
JP2020141551A (en) Rotary electric machine
WO2021049500A1 (en) Rotating electric machine
JP2020137376A (en) Armature
WO2020203271A1 (en) Dynamo-electric machine
WO2021049502A1 (en) Vehicle wheel driving device
WO2021049427A1 (en) Rotary electric machine
JP2020137375A (en) Rotary electric machine
WO2020213650A1 (en) Rotating electric machine
WO2020213651A1 (en) Rotating electric machine
WO2020203273A1 (en) Dynamo-electric machine and method for manufacturing dynamo-electric machine
WO2021090843A1 (en) Rotary electrical machine
JP2020137372A (en) Rotating electric machine
WO2021090844A1 (en) Dynamo-electric machine
WO2021054405A1 (en) Armature and method for manufacturing same
WO2021010450A1 (en) Rotary motor
WO2020251050A1 (en) Armature
WO2020203310A1 (en) Dynamo-electric machine
JP2020137370A (en) Armature and rotary electric machine
JP2020137373A (en) Armature and rotary electric machine
WO2021033756A1 (en) Armature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892473

Country of ref document: EP

Kind code of ref document: A1