WO2021106786A1 - Sodium dispersion, and sodium dispersion storage method - Google Patents

Sodium dispersion, and sodium dispersion storage method Download PDF

Info

Publication number
WO2021106786A1
WO2021106786A1 PCT/JP2020/043401 JP2020043401W WO2021106786A1 WO 2021106786 A1 WO2021106786 A1 WO 2021106786A1 JP 2020043401 W JP2020043401 W JP 2020043401W WO 2021106786 A1 WO2021106786 A1 WO 2021106786A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
sodium
pour point
container
dispersed
Prior art date
Application number
PCT/JP2020/043401
Other languages
French (fr)
Japanese (ja)
Inventor
村上吉明
片山裕美子
坪内源
Original Assignee
株式会社神鋼環境ソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神鋼環境ソリューション filed Critical 株式会社神鋼環境ソリューション
Publication of WO2021106786A1 publication Critical patent/WO2021106786A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof

Definitions

  • the present invention relates to a sodium dispersion in which sodium is dispersed in a dispersion solvent, and a storage method thereof.
  • the dispersion in which sodium is dispersed in a dispersion solvent has physical characteristics different from those of solid sodium, and is expected to be applied to various technical fields such as organic synthesis of functional materials such as medical pesticides and electronic materials.
  • Patent Document 1 describes a dispersion in which sodium is dispersed in a dispersion solvent and a method for producing the same.
  • a mineral oil containing an aromatic component in an amount of 3% by weight or more and 20% by weight or less as the dispersion solvent, the sodium particles can be regenerated. It is described that the sodium particles can be dispersed in a fine state by suppressing aggregation.
  • the alkali metal fine particles as the dispersoid may settle and the quality expected as the dispersion may not be sufficiently maintained.
  • the dispersion in which the alkali metal is dispersed in the dispersion solvent and the stirrer are placed in a container substituted with nitrogen.
  • a method of stirring using a magnetic stirrer can be mentioned.
  • the precipitation and aggregation of the alkali metal fine particles cannot be effectively suppressed even by stirring at room temperature for 10 minutes / day, and the granulation of the alkali metal is confirmed after 3 months.
  • the present invention provides a technique capable of maintaining and storing the quality of a dispersion in which sodium is dispersed in a dispersion solvent for a long period of time without requiring mechanical power such as stirring or shaking.
  • the purpose is to provide.
  • the sodium dispersion according to the present invention is a dispersion in which sodium is dispersed in a dispersion solvent, and is characterized in that the pour point measured according to the method of ISO 3016: 2019 is ⁇ 35 ° C. or higher and ⁇ 10 ° C. or lower. ..
  • the other sodium dispersion according to the present invention is a dispersion in which sodium is dispersed in a dispersion solvent, and has a flow point Td (° C.) of the dispersion measured according to the method of ISO 3016: 2019, ISO 3016: 2019.
  • Td Ts-a ⁇ d equation (1) -35 ⁇ Td ⁇ -10 Equation (2)
  • the method for storing the sodium dispersion according to the present invention is a dispersion in which sodium is dispersed in a dispersion solvent, and the flow point measured according to the method of ISO 3016: 2019 is ⁇ 35 ° C. or higher and ⁇ 10 ° C. or lower.
  • the sodium dispersion is placed in a container, and the container is stored in a reefer container or a freezer container.
  • Another storage method for the sodium dispersion according to the present invention is a dispersion in which sodium is dispersed in a dispersion solvent, and the flow point Td (° C.) of the dispersion measured according to the method of ISO 3016: 2019.
  • a sodium dispersion having a content d (% by mass) satisfying the following formulas (1) and (2) is placed in a container, and the container is stored in a reefer container or a freezer warehouse having a set temperature Tc (° C.). It is characterized by that.
  • Td Ts-a ⁇ d equation (1)
  • the dispersion since the pour point of the dispersion in which sodium is dispersed in the dispersion solvent is high, the dispersion can be solidified by being stored at a low temperature, and the dispersed state of sodium can be maintained for a long period of time. As a result, the dispersion can be stored in its quality for a long period of time without requiring mechanical power such as stirring or shaking.
  • the sodium dispersion according to the present invention preferably has a kinematic viscosity of 10 to 50 mm 2 / s measured according to the method of ISO 3104: 1994 at 20 ° C.
  • the sodium dispersion according to the present invention preferably has a density of 0.85 to 1.0 g / cm 3 measured using a glass hydrometer.
  • the density of the dispersion is close to the density of sodium, so that sodium precipitation can be prevented more effectively.
  • the sodium dispersion according to the present invention has a weight ratio of naphthen carbon content to total carbon content of 20 to 50% in a ring analysis according to ASTM D3238-17a relating to the supernatant obtained by centrifuging the dispersion.
  • the weight ratio of the paraffin carbon content to the total carbon content is preferably 40% or more.
  • the container is a syringe.
  • the melted dispersion can be used immediately, so it is excellent in usability.
  • the dispersion according to the present embodiment is a dispersion in which sodium is dispersed in a dispersion solvent, and more specifically, a dispersion in which sodium fine particles or sodium droplets are dispersed in a dispersion solvent that does not dissolve sodium.
  • the sodium may be a simple substance of metallic sodium or a mixture containing metallic sodium.
  • the dispersion according to this embodiment has a pour point of ⁇ 35 ° C. or higher and ⁇ 10 ° C. or lower.
  • the pour point is a value measured according to the method of ISO 3016: 2019.
  • the pour point of the dispersion according to the present embodiment is preferably ⁇ 30 to ⁇ 10 ° C., more preferably ⁇ 25 to ⁇ 10 ° C.
  • the dispersion according to the present embodiment is stored for a long period of time or transported over a long distance, for example, it is conceivable to put a container containing the dispersion in a reefer container. Since the lower limit of the operating temperature of the reefer container is typically about -40 ° C, when the pour point of the dispersion is -35 ° C or higher, the dispersion is solidified using a general reefer container. Can be stored at.
  • the dispersion according to the present embodiment is used for a chemical reaction such as organic synthesis
  • a carbon steel reaction tank typified by SS400 is often used. Since carbon steel has the property that its impact resistance decreases at a low temperature of -10 ° C or lower, the lower limit temperature of its use is set to about -15 ° C in a general reaction tank, and it is carried out in the reaction tank. The temperature of the reaction is set higher than the lower limit temperature of use. Therefore, when the pour point of the dispersion is ⁇ 10 ° C. or lower, the dispersion is in a molten state at a general reaction temperature, and this can be supplied to the reaction vessel as a liquid.
  • the dispersion according to this embodiment preferably has a kinematic viscosity at 20 ° C. of 10 to 50 mm 2 / s.
  • the kinematic viscosity is a value measured according to the method of ISO 3104: 1994.
  • the kinematic viscosity of the dispersion according to this embodiment is preferably 10 to 50 mm 2 / s, more preferably 10 to 30 mm 2 / s.
  • the dispersion according to this embodiment preferably has a density of 0.85 to 1.0 g / cm 3 .
  • the density is a value measured using a glass hydrometer. When the density is in the above range, it is close to the density of sodium (0.97 g / cm 3 ), so that the state in which sodium is dispersed is easily maintained.
  • the density of the dispersion according to the present embodiment is preferably 0.85 to 1.0 g / cm 3 , and more preferably 0.85 to 0.97 g / cm 3 .
  • the dispersion according to the present embodiment has a weight ratio of naphthen (saturated hydrocarbon having a cyclic structure) carbon content of 20 to 50% with respect to the total carbon content in the ring analysis of the centrifuged supernatant, and the total carbon content.
  • the weight ratio of the amount of carbon (saturated hydrocarbon having a linear structure) to paraffin (saturated hydrocarbon having a linear structure) is preferably 40% or more.
  • the dispersion is centrifuged at 3000 rpm for 30 minutes, and the ring analysis is performed according to ASTM D3238-17a.
  • the weight ratio of the amount of naphthenic carbon in the dispersion according to the present embodiment is preferably 20 to 50%, more preferably 20 to 40%, still more preferably 25 to 40%, and particularly preferably 29 to 29. It is 40%.
  • the weight ratio of the amount of naphthenic carbon is in the above range, the fluidity of the dispersion becomes high when the temperature of the dispersion is higher than the pour point, so that it is easy to handle when introducing the dispersion into the reaction vessel.
  • the weight ratio of the paraffin carbon content of the dispersion according to the present embodiment is preferably 40% by mass or more, more preferably 45 to 75%, and further preferably 50 to 70%.
  • the dispersion contains paraffin
  • the solidification of the dispersion is mainly caused by the crystallization of paraffin. Therefore, when the dispersion contains a large amount of paraffin, the dispersion tends to solidify, that is, the pour point of the dispersion rises.
  • the weight ratio of the amount of paraffin carbon is in the above range, the pour point of the dispersion can be easily adjusted to ⁇ 35 ° C. or higher and ⁇ 10 ° C. or lower.
  • the weight ratio of the aroma (aromatic hydrocarbon) carbon content of the dispersion according to the present embodiment is preferably 0 to 10%, more preferably 0 to 7%. If the weight ratio of the aroma carbon content exceeds 10%, aromatic hydrocarbons may react with metallic sodium to cause an unfavorable side reaction. Moreover, since aromatic hydrocarbons are relatively expensive, a large content thereof can increase the production cost of the dispersion.
  • the dispersion according to the present invention is not limited to its constituent components as long as the pour point is ⁇ 35 ° C. or higher and ⁇ 10 ° C. or lower.
  • the average particle size of the sodium fine particles or sodium droplets dispersed in the dispersion according to the present embodiment is preferably less than 100 ⁇ m, more preferably less than 50 ⁇ m, still more preferably less than 30 ⁇ m, and particularly preferably 10 ⁇ m. Is less than.
  • the average particle size referred to here is the average of the diameters of spheres having a projected area equivalent to the projected area obtained by image analysis of an image obtained by observing the dispersion according to the present embodiment with a microscope. The value.
  • the sodium content in the dispersion according to the present embodiment is not particularly limited, but is preferably 15 to 30% by mass, more preferably 20 to 25% by mass or less.
  • the sodium content is increased, the amount of sodium supplied by the addition of the sodium dispersion having a unit mass increases, but the pour point decreases as the sodium content increases. Therefore, the pour point of the dispersion according to the present invention. May deviate from the range of.
  • the sodium content is 30% by mass or less, there is an advantage that the dispersion can be easily stored as compared with the case where the sodium content exceeds 30% by mass, particularly in Japan.
  • Dispersions with a sodium content of more than 30% by weight may be classified as Dangerous Goods Class 3 under the Fire Service Act, in which case they are stored separately from other Dangerous Goods Class 4 and other dangerous goods. This is because it is necessary to provide.
  • the dispersion solvent in the dispersion according to the present embodiment is known in the art as long as sodium fine particles or sodium droplets can be dispersed and the pour point in the state where sodium is dispersed is ⁇ 35 ° C. or higher and ⁇ 10 ° C. or lower. Can be used.
  • solvents include mineral oils (normal paraffin solvents, etc.), aromatic solvents (toluene, xylene, etc.), heterocyclic solvent (tetrahydrofuran, tetrahydrothiophene, etc.), and mixtures of these solvents. ..
  • the concentration of the dispersion solvent in the dispersion decreases, so that the pour point of the dispersion decreases.
  • the pour point decreases by 0.05 to 0.5 ° C.
  • the rate of change of the pour point per 1% by mass of the sodium content is a unique value determined by the type of the dispersion solvent, and a plurality of dispersions having different sodium contents are prepared for the dispersion solvent for which the rate of change is desired to be determined. It can be determined by measuring the pour point of each of the plurality of dispersions and plotting the relationship between the sodium content and the pour point.
  • an appropriate range of the sodium content d can be determined more specifically using the storage temperature.
  • the assumed storage temperature such as the set temperature of the reefer container
  • Tc the assumed storage temperature
  • the following formula (3) must be satisfied in order to store the dispersion in a solidified state.
  • an appropriate range of the sodium content d can be obtained.
  • the dispersion according to this embodiment is a liquid at room temperature, it is necessary to store it in a container.
  • a container that does not react with either sodium or a dispersion solvent and can be used at the storage temperature described later can be selected.
  • a material such as glass, plastic, or stainless steel can be used.
  • a shape of the container a bottle, a test tube, an ampoule, a syringe, a drum can, or the like can be selected.
  • the container containing the dispersion is stored at a low temperature.
  • the storage temperature is determined in view of the pour point of the dispersion.
  • the storage temperature is more preferably a temperature 3 ° C. or higher lower than the pour point of the dispersion, and further preferably 5 ° C. or higher lower.
  • a method using a reefer container is exemplified. Since the inside of the reefer container is maintained at a low temperature (for example, about ⁇ 25 ° C.), storing the container containing the dispersion in the reefer container can preferably prevent sodium from settling during storage.
  • the above reefer container can be transported by land, sea, or air.
  • Conventional sodium dispersions may aggregate sodium particles during transport and may not be suitable for long-distance transport.
  • the dispersion according to the present embodiment since the dispersion can be solidified during transportation and sodium aggregation can be prevented, the quality can be maintained even when the dispersion is transported over a long distance.
  • the dispersion is introduced into the reaction system using the dispersion.
  • the dispersion is introduced into a container (flask or the like) for performing the organic synthesis.
  • the dispersion stored at a low temperature and solidified may be used after being allowed to stand at room temperature or heated by any means to be melted, or may be used in the solidified state.
  • the dispersion may be diluted with a solvent before use.
  • the specific introduction method (amount, timing, speed, etc.) of the dispersion is appropriately selected according to the purpose of use (type of chemical reaction, etc.) of the dispersion.
  • the melted dispersion can be immediately introduced into the reaction system, so that it is excellent in usability.
  • THF tetrahydrofuran
  • hexane a reaction solvent
  • reagent The following reagents were used as raw materials for the dispersions of Examples and Comparative Examples.
  • Sodium Made by Kanto Chemical Purity> 99.0%
  • Dispersed oil 1 Pour point -20.0 ° C., a kinematic viscosity (0 °C, 20 °C, 40 °C, 100 °C) 85.40mm 2 /s,29.13mm 2 /s,13.28mm 2 / s, 3.
  • Dispersed oil 2 Pour point -15.0 ° C., a kinematic viscosity (0 °C, 20 °C, 40 °C, 100 °C) 44.23mm 2 /s,17.03mm 2 /s,8.43mm 2 / s, 2.
  • Dispersed oil 3 Pour point -27.5 ° C., a kinematic viscosity (0 °C, 20 °C, 40 °C, 100 °C) 45.54mm 2 /s,17.18mm 2 /s,8.41mm 2 / s, 2.
  • Dispersed oil 4 Pour point -27.1 ° C., a kinematic viscosity (40 °C, 100 °C) 8.690mm 2 /s,2.276mm 2 / s, viscosity index 57, density (15 °C) 0.8682g / cm 3 , Pour point 154 ° C, ring analysis (naphthen carbon content 45.4% CN, paraffin carbon content 45.6% CP, aroma carbon content 9.0% CA) Dispersed oil 5: Pour point -27.5 ° C., a kinematic viscosity (40 °C, 100 °C) 8.868mm 2
  • Ring analysis was performed according to ASTM D3238-17a to determine the weight ratio of naphthen carbon to total carbon and the weight ratio of paraffin carbon to total carbon. Since the measurement sample is a dispersion containing sodium, centrifugation was performed at 3000 rpm for 30 minutes as a pretreatment, and ring analysis was performed on the supernatant after centrifugation.
  • ⁇ Average particle size The dispersion was placed on a slide glass and observed under a microscope to obtain an observed image. Image analysis was performed on the obtained observation image, and the sphere equivalent diameter of each particle was calculated based on the projected area of each sodium particle.
  • Example 1 Sodium (250 g) and dispersion oil 1 (750 g) were heated to 110 ° C. and dispersed by a mixer to obtain a dispersion of Example 1 (sodium content 25.0% by mass).
  • the physical characteristics of the dispersion of Example 1 were as follows. Pour point of sodium dispersion -22.0 ° C Dynamic viscosity (0 ° C) 70 mm 2 / s Dynamic viscosity (20 ° C) 30 mm 2 / s Density (15 ° C) 0.851 g / cm 3 Naphthenic carbon content 29.1% CN Paraffin carbon content 66.3% CP Aroma carbon content 4.6% CA
  • Example 2 A dispersion of Example 2 (sodium content 25.0% by mass) was obtained in the same manner as in Example 1 except that the dispersion oil 2 was used instead of the dispersion oil 1.
  • the physical characteristics of the dispersion of Example 2 were as follows. Pour point of sodium dispersion -20.0 ° C Dynamic viscosity (0 ° C) 130 mm 2 / s Dynamic viscosity (20 ° C) 40 mm 2 / s Density (20 ° C) 0.863 g / cm 3 Naphthenic carbon content 39.7% CN Paraffin carbon content 54.4% CP Aroma carbon content 6.0% CA
  • Example 3 The dispersion of Example 3 was obtained in the same manner as in Example 1 except that the dispersion oil 3 was used instead of the dispersion oil 1.
  • the physical characteristics of the dispersion of Example 3 were as follows. Pour point of sodium dispersion -30.0 °C Dynamic viscosity (0 ° C) 70 mm 2 / s Dynamic viscosity (25 ° C) 29 mm 2 / s Density (20 ° C) 0.866 g / cm 3 Naphthenic carbon content 41.5% CN Paraffin carbon content 52.3% CP Aroma carbon content 6.1% CA
  • Example 4 A dispersion of Example 4 (sodium content 12.5% by mass) was obtained in the same manner as in Example 2 except that the sodium content was set to 12.5% by mass in Example 2.
  • the physical characteristics of the dispersion of Example 4 were as follows. Pour point of sodium dispersion-17.1 ° C Naphthenic carbon content 39.7% CN Paraffin carbon content 54.4% CP Aroma carbon content 6.0% CA
  • Example 5 The dispersion of Example 5 (sodium content 25.0% by mass) was obtained in the same manner as in Example 4 except that the dispersion oil 4 was used instead of the dispersion oil 1.
  • the physical characteristics of the dispersion of Example 5 were as follows. Pour point of sodium dispersion-29.6 ° C or less Naphthenic acid carbon content 45.5% CN Paraffin carbon content 45.5% CP Aroma carbon content 9.0% CA
  • Comparative Example A dispersion (sodium content 25.0% by mass) of Comparative Example was obtained by the same method as in Example 1 except that the dispersion oil 5 was used instead of the dispersion oil 1.
  • the physical characteristics of the dispersion in the comparative example were as follows. Pour point of dispersion oil 5-27.5 ° C Pour point of sodium dispersion -35 ° C or less Density (20 ° C) 0.866 g / cm 3 Naphthenic carbon content 41.4% CN Paraffin carbon content 52.5% CP Aroma carbon content 6.0% CA
  • each of the dispersions of Examples 1 to 3 returned to a uniform dispersion by a simple operation of returning to room temperature even after being stored at a low temperature for a long period of time (3 months).
  • the dispersion of the comparative example showed sedimentation when returned to room temperature after long-term low-temperature storage, and a shaking operation was required to use it as a uniform dispersion again.
  • the dispersions of Examples 1 to 3 can be put into a usable state by a simple operation of returning to room temperature without requiring mechanical operation such as shaking after storage at low temperature, and thus the quality is long-term. Not only can it hold, but it is also easy to handle.
  • the present invention can be used in various technical fields such as organic synthesis of functional materials such as medical pesticides and electronic materials.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Colloid Chemistry (AREA)

Abstract

A sodium dispersion according to the present invention is a dispersion comprising sodium dispersed in a dispersion medium, and is characterized by having a pour point of -35℃ to -10℃ inclusive as measured in accordance with the method prescribed in ISO 3016:2019.

Description

ナトリウム分散体およびナトリウム分散体の保管方法Sodium dispersion and storage method of sodium dispersion
 本発明は、分散溶媒中にナトリウムが分散したナトリウム分散体、およびその保管方法に関する。 The present invention relates to a sodium dispersion in which sodium is dispersed in a dispersion solvent, and a storage method thereof.
 ナトリウムを分散溶媒に分散させた分散体は、固体のナトリウムとは異なる物性を有し、医農薬や電子材料などの機能性材料の有機合成などの各種技術分野への応用が期待される。 The dispersion in which sodium is dispersed in a dispersion solvent has physical characteristics different from those of solid sodium, and is expected to be applied to various technical fields such as organic synthesis of functional materials such as medical pesticides and electronic materials.
 ナトリウムを分散溶媒に分散させた分散体は、分散溶媒として、ノルマルパラフィン系溶媒などの鉱物油、あるいは、トルエンやキシレンなどの芳香族系溶媒を用いることが一般的である(たとえば、特開2009-102678号公報(特許文献1)を参照のこと)。特許文献1には、ナトリウムを分散溶媒に分散させた分散体およびその製造方法に関して、分散溶媒として芳香族成分を3重量%以上20重量%以下で含有する鉱物油を用いることでナトリウム粒子の再凝集を抑制し微細な状態でナトリウム粒子が分散させうることが記載されている。しかしながら、アルカリ金属を分散溶媒に分散させた分散体を長期間保管すると、分散質であるアルカリ金属微粒子が沈降し、分散体として期待される品質を十分に保持できないおそれがある。このような分散体を長期間保管する場合には、工業規模では専用の設備により撹拌や振とうなどの機械的動力を利用して分散質の沈降および凝集を抑制することが一般的である。 As the dispersion in which sodium is dispersed in a dispersion solvent, a mineral oil such as a normal paraffin solvent or an aromatic solvent such as toluene or xylene is generally used as the dispersion solvent (for example, Japanese Patent Application Laid-Open No. 2009). -102678 (see Patent Document 1). Patent Document 1 describes a dispersion in which sodium is dispersed in a dispersion solvent and a method for producing the same. By using a mineral oil containing an aromatic component in an amount of 3% by weight or more and 20% by weight or less as the dispersion solvent, the sodium particles can be regenerated. It is described that the sodium particles can be dispersed in a fine state by suppressing aggregation. However, if the dispersion in which the alkali metal is dispersed in the dispersion solvent is stored for a long period of time, the alkali metal fine particles as the dispersoid may settle and the quality expected as the dispersion may not be sufficiently maintained. When such a dispersion is stored for a long period of time, it is common on an industrial scale to suppress sedimentation and aggregation of the dispersoid by using mechanical power such as stirring and shaking with a dedicated facility.
特開2009-102678号公報Japanese Unexamined Patent Publication No. 2009-102678
 ナトリウムを分散溶媒に分散させた分散体を試薬として流通させる場合には、その品質を長期間一定に保持しておく必要があり、特に分散質であるアルカリ金属微粒子の沈降および凝集を抑制することが重要となる。上述したように分散質の沈降および凝集を抑制するためには、ナトリウムを分散溶媒に分散させた分散体に常時に撹拌および振とうなどの機械的動力を付与することが提案されるが、撹拌および振とうなどのための専用の設備が必要となり、容易ではない。そこで、アルカリ金属を分散溶媒に分散させた分散体を簡便な設備で長期間保管する方法として、たとえば、窒素で置換した容器にアルカリ金属を分散溶媒に分散させた分散体と撹拌子を入れ、マグネティックスターラーを用いて撹拌する方法が挙げられる。しかしながら、室温下で10分間/日の撹拌によってもアルカリ金属微粒子の沈降および凝集を効果的に抑制することはできず、3か月経過時点でアルカリ金属の造粒が確認されるようになる。 When a dispersion in which sodium is dispersed in a dispersion solvent is circulated as a reagent, it is necessary to keep the quality constant for a long period of time, and particularly to suppress precipitation and aggregation of alkali metal fine particles which are dispersoids. Is important. As described above, in order to suppress the sedimentation and aggregation of the dispersoid, it is proposed to constantly apply mechanical power such as stirring and shaking to the dispersion in which sodium is dispersed in the dispersion solvent. It is not easy because it requires dedicated equipment for shaking and shaking. Therefore, as a method of storing the dispersion in which the alkali metal is dispersed in the dispersion solvent for a long period of time in a simple facility, for example, the dispersion in which the alkali metal is dispersed in the dispersion solvent and the stirrer are placed in a container substituted with nitrogen. A method of stirring using a magnetic stirrer can be mentioned. However, the precipitation and aggregation of the alkali metal fine particles cannot be effectively suppressed even by stirring at room temperature for 10 minutes / day, and the granulation of the alkali metal is confirmed after 3 months.
 本発明は、上記従来技術の問題点に鑑み、ナトリウムを分散溶媒に分散させた分散体を、撹拌や振とうなどの機械的動力を要することなく、長期間その品質を保持し保管できる技術を提供することを目的とする。 In view of the above-mentioned problems of the prior art, the present invention provides a technique capable of maintaining and storing the quality of a dispersion in which sodium is dispersed in a dispersion solvent for a long period of time without requiring mechanical power such as stirring or shaking. The purpose is to provide.
 本発明に係るナトリウム分散体は、分散溶媒中にナトリウムが分散した分散体であって、ISO 3016:2019の方法に従って測定した流動点が-35℃以上-10℃以下であることを特徴とする。 The sodium dispersion according to the present invention is a dispersion in which sodium is dispersed in a dispersion solvent, and is characterized in that the pour point measured according to the method of ISO 3016: 2019 is −35 ° C. or higher and −10 ° C. or lower. ..
 本発明に係る他のナトリウム分散体は、分散溶媒中にナトリウムが分散した分散体であって、ISO 3016:2019の方法に従って測定した前記分散体の流動点Td(℃)、ISO 3016:2019の方法に従って測定した前記分散溶媒の流動点Ts(℃)、前記分散溶媒の種類により決定される定数a(ただし、0.05≦a≦0.5)、および、前記ナトリウムの含有量d(質量%)が、下記式(1)および式(2)を満たすことを特徴とする。
  Td=Ts-a・d     式(1)
  -35≦Td≦-10    式(2)
The other sodium dispersion according to the present invention is a dispersion in which sodium is dispersed in a dispersion solvent, and has a flow point Td (° C.) of the dispersion measured according to the method of ISO 3016: 2019, ISO 3016: 2019. The flow point Ts (° C.) of the dispersion solvent measured according to the method, the constant a (where 0.05 ≦ a ≦ 0.5) determined by the type of the dispersion solvent, and the sodium content d (mass). %) Satisfies the following equations (1) and (2).
Td = Ts-a · d equation (1)
-35 ≤ Td ≤ -10 Equation (2)
 また、本発明に係るナトリウム分散体の保管方法は、分散溶媒中にナトリウムが分散した分散体であって、ISO 3016:2019の方法に従って測定した流動点が-35℃以上-10℃以下であるナトリウム分散体を容器に入れ、前記容器をリーファーコンテナまたは冷凍倉庫に入れて保管することを特徴とする。 The method for storing the sodium dispersion according to the present invention is a dispersion in which sodium is dispersed in a dispersion solvent, and the flow point measured according to the method of ISO 3016: 2019 is −35 ° C. or higher and −10 ° C. or lower. The sodium dispersion is placed in a container, and the container is stored in a reefer container or a freezer container.
 また、本発明に係るナトリウム分散体の他の保管方法は、分散溶媒中にナトリウムが分散した分散体であって、ISO 3016:2019の方法に従って測定した前記分散体の流動点Td(℃)、ISO 3016:2019の方法に従って測定した前記分散溶媒の流動点Ts(℃)、前記分散溶媒の種類により決定される定数a(ただし、0.05≦a≦0.5)、および、前記ナトリウムの含有量d(質量%)が、下記式(1)および式(2)を満たすナトリウム分散体を容器に入れ、前記容器を、設定温度Tc(℃)のリーファーコンテナまたは冷凍倉庫に入れて保管することを特徴とする。
  Td=Ts-a・d     式(1)
  Tc≦Td         式(3)
Another storage method for the sodium dispersion according to the present invention is a dispersion in which sodium is dispersed in a dispersion solvent, and the flow point Td (° C.) of the dispersion measured according to the method of ISO 3016: 2019. The flow point Ts (° C.) of the dispersion solvent measured according to the method of ISO 3016: 2019, the constant a (where 0.05 ≦ a ≦ 0.5) determined by the type of the dispersion solvent, and the sodium. A sodium dispersion having a content d (% by mass) satisfying the following formulas (1) and (2) is placed in a container, and the container is stored in a reefer container or a freezer warehouse having a set temperature Tc (° C.). It is characterized by that.
Td = Ts-a · d equation (1)
Tc ≤ Td equation (3)
 これらの構成によれば、ナトリウムを分散溶媒に分散させた分散体の流動点が高いため、分散体を低温保管することで凝固し、ナトリウムの分散状態を長期間維持できる。その結果、分散体を、撹拌や振とうなどの機械的動力を要することなく、長期間その品質を保持し保管できる。 According to these configurations, since the pour point of the dispersion in which sodium is dispersed in the dispersion solvent is high, the dispersion can be solidified by being stored at a low temperature, and the dispersed state of sodium can be maintained for a long period of time. As a result, the dispersion can be stored in its quality for a long period of time without requiring mechanical power such as stirring or shaking.
 以下、本発明の好適な態様について説明する。ただし、以下に記載する好適な態様例によって、本発明の範囲が限定されるわけではない。 Hereinafter, preferred embodiments of the present invention will be described. However, the scope of the present invention is not limited by the preferred embodiments described below.
 本発明に係るナトリウム分散体は、一態様として、20℃においてISO 3104:1994の方法に従って測定した動粘度が10~50mm/sであることが好ましい。 As one aspect, the sodium dispersion according to the present invention preferably has a kinematic viscosity of 10 to 50 mm 2 / s measured according to the method of ISO 3104: 1994 at 20 ° C.
 この構成によれば、分散体の動粘度がこの範囲であれば、ナトリウムの沈降をより効果的に防止しうる。 According to this configuration, if the kinematic viscosity of the dispersion is within this range, sodium precipitation can be prevented more effectively.
 本発明に係るナトリウム分散体は、一態様として、ガラス式比重計を用いて測定した密度が0.85~1.0g/cmであることが好ましい。 As one aspect, the sodium dispersion according to the present invention preferably has a density of 0.85 to 1.0 g / cm 3 measured using a glass hydrometer.
 この構成によれば、分散体の密度がナトリウムの密度と近いため、ナトリウムの沈降をより効果的に防止しうる。 According to this configuration, the density of the dispersion is close to the density of sodium, so that sodium precipitation can be prevented more effectively.
 本発明に係るナトリウム分散体は、一態様として、前記分散体を遠心分離した上澄み液に係るASTM D3238-17aに従った環分析において、全炭素量に対するナフテン炭素量の重量割合が20~50%であり、全炭素量に対するパラフィン炭素量の重量割合が40%以上であることが好ましい。 As one embodiment, the sodium dispersion according to the present invention has a weight ratio of naphthen carbon content to total carbon content of 20 to 50% in a ring analysis according to ASTM D3238-17a relating to the supernatant obtained by centrifuging the dispersion. The weight ratio of the paraffin carbon content to the total carbon content is preferably 40% or more.
 この構成によれば、分散体の組成がこの範囲であれば、ナトリウムの沈降をより効果的に防止しうる。 According to this configuration, if the composition of the dispersion is in this range, the precipitation of sodium can be prevented more effectively.
 本発明に係る保管方法は、一態様として、前記容器がシリンジであることが好ましい。 As one aspect of the storage method according to the present invention, it is preferable that the container is a syringe.
 この構成によれば、融解させた分散体をすぐに使用できるので、使用性に優れる。 According to this configuration, the melted dispersion can be used immediately, so it is excellent in usability.
 本発明のさらなる特徴と利点は、以下の例示的かつ非限定的な実施形態の説明によってより明確になるであろう。 Further features and advantages of the present invention will be clarified by the following illustration of exemplary and non-limiting embodiments.
 本発明に係る分散体の実施形態について説明する。本実施形態に係る分散体は、分散溶媒中にナトリウムが分散した分散体であり、より詳細には、ナトリウムを溶解しない分散溶媒中に、ナトリウム微粒子またはナトリウム液滴が分散した分散体である。ここで、ナトリウムとは、金属ナトリウム単体であってもよいし、金属ナトリウムを含む混合物であってもよい。 An embodiment of the dispersion according to the present invention will be described. The dispersion according to the present embodiment is a dispersion in which sodium is dispersed in a dispersion solvent, and more specifically, a dispersion in which sodium fine particles or sodium droplets are dispersed in a dispersion solvent that does not dissolve sodium. Here, the sodium may be a simple substance of metallic sodium or a mixture containing metallic sodium.
〔分散体の諸物性〕
 本実施形態に係る分散体は、流動点が-35℃以上-10℃以下である。ここで、流動点は、ISO 3016:2019の方法に従って測定した値である。本実施形態に係る分散体を流動点以下の温度で保管すると、分散体を凝固させた状態で保管できる。これによって、分散体の保管中にナトリウムが沈降することを防ぎうる。本実施形態に係る分散体の流動点は、好ましくは-30~-10℃であり、より好ましくは-25~-10℃である。
[Physical characteristics of dispersion]
The dispersion according to this embodiment has a pour point of −35 ° C. or higher and −10 ° C. or lower. Here, the pour point is a value measured according to the method of ISO 3016: 2019. When the dispersion according to the present embodiment is stored at a temperature below the pour point, the dispersion can be stored in a solidified state. This can prevent sodium from settling during storage of the dispersion. The pour point of the dispersion according to the present embodiment is preferably −30 to −10 ° C., more preferably −25 to −10 ° C.
 本実施形態に係る分散体を長期保管または長距離輸送する場合、たとえば、分散体を入れた容器をリーファーコンテナに入れることが考えられる。リーファーコンテナの運転温度の下限は典型的には-40℃程度であるので、分散体の流動点が-35℃以上であると、一般的なリーファーコンテナを用いて、分散体を凝固させた状態で保管できる。 When the dispersion according to the present embodiment is stored for a long period of time or transported over a long distance, for example, it is conceivable to put a container containing the dispersion in a reefer container. Since the lower limit of the operating temperature of the reefer container is typically about -40 ° C, when the pour point of the dispersion is -35 ° C or higher, the dispersion is solidified using a general reefer container. Can be stored at.
 一方、本実施形態に係る分散体を有機合成などの化学反応に用いる場合、多くの場合、SS400に代表される炭素鋼製の反応槽が用いられる。炭素鋼は、-10℃以下の低温において耐衝撃性が低下する性質を有するため、一般的な反応槽はその使用下限温度が-15℃程度に設定されており、当該反応槽中において実施される反応の温度は、当該使用下限温度より高く設定されている。そのため、分散体の流動点が-10℃以下であると、一般的な反応温度において、分散体は融解した状態であり、これを反応槽に液体として供給できる。 On the other hand, when the dispersion according to the present embodiment is used for a chemical reaction such as organic synthesis, a carbon steel reaction tank typified by SS400 is often used. Since carbon steel has the property that its impact resistance decreases at a low temperature of -10 ° C or lower, the lower limit temperature of its use is set to about -15 ° C in a general reaction tank, and it is carried out in the reaction tank. The temperature of the reaction is set higher than the lower limit temperature of use. Therefore, when the pour point of the dispersion is −10 ° C. or lower, the dispersion is in a molten state at a general reaction temperature, and this can be supplied to the reaction vessel as a liquid.
 本実施形態に係る分散体は、20℃における動粘度が10~50mm/sであることが好ましい。ここで、動粘度は、ISO 3104:1994の方法に従って測定した値である。動粘度が上記の範囲にあると、ナトリウムの沈降をより効果的に防止しうる。本実施形態に係る分散体の動粘度は、好ましくは10~50mm/sであり、より好ましくは10~30mm/sである。 The dispersion according to this embodiment preferably has a kinematic viscosity at 20 ° C. of 10 to 50 mm 2 / s. Here, the kinematic viscosity is a value measured according to the method of ISO 3104: 1994. When the kinematic viscosity is in the above range, sodium precipitation can be prevented more effectively. The kinematic viscosity of the dispersion according to this embodiment is preferably 10 to 50 mm 2 / s, more preferably 10 to 30 mm 2 / s.
 本実施形態に係る分散体は、密度が0.85~1.0g/cmであることが好ましい。ここで、密度は、ガラス式比重計を用いて測定した値である。密度が上記の範囲にあると、ナトリウムの密度(0.97g/cm)と近いため、ナトリウムが分散した状態が保たれやすい。本実施形態に係る分散体の密度は、好ましくは0.85~1.0g/cmであり、より好ましくは0.85~0.97g/cmである。 The dispersion according to this embodiment preferably has a density of 0.85 to 1.0 g / cm 3 . Here, the density is a value measured using a glass hydrometer. When the density is in the above range, it is close to the density of sodium (0.97 g / cm 3 ), so that the state in which sodium is dispersed is easily maintained. The density of the dispersion according to the present embodiment is preferably 0.85 to 1.0 g / cm 3 , and more preferably 0.85 to 0.97 g / cm 3 .
 本実施形態に係る分散体は、遠心分離した上澄み液に係る環分析において、全炭素量に対するナフテン(環状構造を持つ飽和炭化水素)炭素量の重量割合が20~50%であり、全炭素量に対するパラフィン(直鎖構造を持つ飽和炭化水素)炭素量の重量割合が40%以上であることが好ましい。ここで、分散体の遠心分離は、3000rpm、30分間の条件で行い、環分析はASTM D3238-17aに従って実施する。 The dispersion according to the present embodiment has a weight ratio of naphthen (saturated hydrocarbon having a cyclic structure) carbon content of 20 to 50% with respect to the total carbon content in the ring analysis of the centrifuged supernatant, and the total carbon content. The weight ratio of the amount of carbon (saturated hydrocarbon having a linear structure) to paraffin (saturated hydrocarbon having a linear structure) is preferably 40% or more. Here, the dispersion is centrifuged at 3000 rpm for 30 minutes, and the ring analysis is performed according to ASTM D3238-17a.
 本実施形態に係る分散体のナフテン炭素量の重量割合は、好ましくは20~50%であり、より好ましくは20~40%であり、さらに好ましくは25~40%であり、特に好ましくは29~40%である。ナフテン炭素量の重量割合が上記の範囲であると、分散体の温度が流動点より高い場合における分散体の流動性が高くなるため、分散体を反応槽に導入する場合などに取り扱いやすい。 The weight ratio of the amount of naphthenic carbon in the dispersion according to the present embodiment is preferably 20 to 50%, more preferably 20 to 40%, still more preferably 25 to 40%, and particularly preferably 29 to 29. It is 40%. When the weight ratio of the amount of naphthenic carbon is in the above range, the fluidity of the dispersion becomes high when the temperature of the dispersion is higher than the pour point, so that it is easy to handle when introducing the dispersion into the reaction vessel.
 本実施形態に係る分散体のパラフィン炭素量の重量割合は、好ましくは40質量%以上であり、より好ましくは45~75%であり、さらに好ましくは50~70%である。分散体がパラフィンを含む場合、分散体の凝固は主としてパラフィンの結晶化により引き起こされる。そのため、分散体がパラフィンを多く含む場合、分散体が凝固しやすくなり、すなわち分散体の流動点が上昇する。パラフィン炭素量の重量割合が上記の範囲であると、分散体の流動点を-35℃以上-10℃以下に調整しやすい。 The weight ratio of the paraffin carbon content of the dispersion according to the present embodiment is preferably 40% by mass or more, more preferably 45 to 75%, and further preferably 50 to 70%. When the dispersion contains paraffin, the solidification of the dispersion is mainly caused by the crystallization of paraffin. Therefore, when the dispersion contains a large amount of paraffin, the dispersion tends to solidify, that is, the pour point of the dispersion rises. When the weight ratio of the amount of paraffin carbon is in the above range, the pour point of the dispersion can be easily adjusted to −35 ° C. or higher and −10 ° C. or lower.
 本実施形態に係る分散体のアロマ(芳香族炭化水素)炭素量の重量割合は、好ましくは0~10%であり、より好ましくは0~7%である。アロマ炭素量の重量割合が10%を超えると、芳香族炭化水素が金属ナトリウムと反応して好ましくない副反応が生じる場合がある。また、芳香族炭化水素は比較的高価であるので、その含有量が多いと、分散体の製造コストが上昇しうる。 The weight ratio of the aroma (aromatic hydrocarbon) carbon content of the dispersion according to the present embodiment is preferably 0 to 10%, more preferably 0 to 7%. If the weight ratio of the aroma carbon content exceeds 10%, aromatic hydrocarbons may react with metallic sodium to cause an unfavorable side reaction. Moreover, since aromatic hydrocarbons are relatively expensive, a large content thereof can increase the production cost of the dispersion.
〔分散体の構成成分〕
 以下では、上記の諸物性を与える分散体の構成成分の好ましい実施形態について説明する。ただし、本発明に係る分散体は、流動点が-35℃以上-10℃以下である限りにおいて、その構成成分について限定されない。
[Constituents of dispersion]
Hereinafter, preferred embodiments of the constituent components of the dispersion giving the above-mentioned physical properties will be described. However, the dispersion according to the present invention is not limited to its constituent components as long as the pour point is −35 ° C. or higher and −10 ° C. or lower.
 本実施形態に係る分散体中に分散するナトリウム微粒子またはナトリウム液滴の平均粒子径は、好ましくは100μm未満であり、より好ましくは50μm未満であり、さらに好ましくは30μm未満であり、特に好ましくは10μm未満である。なお、ここでいう平均粒子径とは、本実施形態に係る分散体を顕微鏡により観察した画像を画像解析し、当該画像解析において得られた投影面積と同等の投影面積を有する球の直径の平均値である。 The average particle size of the sodium fine particles or sodium droplets dispersed in the dispersion according to the present embodiment is preferably less than 100 μm, more preferably less than 50 μm, still more preferably less than 30 μm, and particularly preferably 10 μm. Is less than. The average particle size referred to here is the average of the diameters of spheres having a projected area equivalent to the projected area obtained by image analysis of an image obtained by observing the dispersion according to the present embodiment with a microscope. The value.
 本実施形態に係る分散体におけるナトリウム含有量は特に制限されないが、好ましくは15~30質量%であり、より好ましくは20~25質量%以下である。ナトリウム含有量を高くすると、単位質量のナトリウム分散体の添加によって供給されるナトリウム量は多くなるが、ナトリウム含有量の増加に伴って流動点が低下するため、本発明に係る分散体の流動点の範囲を逸脱する場合がある。また、ナトリウム含有量が30質量%以下であると、特に日本においては、ナトリウム含有量が30質量%を超える場合に比べて、分散体の保管が容易になる利点がある。ナトリウム含有量が30質量%を超える分散体は、消防法上の危険物第三類に分類される場合があり、その場合は、危険物第四類などの他の危険物と別個の保管場所を設ける必要があるためである。 The sodium content in the dispersion according to the present embodiment is not particularly limited, but is preferably 15 to 30% by mass, more preferably 20 to 25% by mass or less. When the sodium content is increased, the amount of sodium supplied by the addition of the sodium dispersion having a unit mass increases, but the pour point decreases as the sodium content increases. Therefore, the pour point of the dispersion according to the present invention. May deviate from the range of. Further, when the sodium content is 30% by mass or less, there is an advantage that the dispersion can be easily stored as compared with the case where the sodium content exceeds 30% by mass, particularly in Japan. Dispersions with a sodium content of more than 30% by weight may be classified as Dangerous Goods Class 3 under the Fire Service Act, in which case they are stored separately from other Dangerous Goods Class 4 and other dangerous goods. This is because it is necessary to provide.
 本実施形態に係る分散体における分散溶媒としては、ナトリウム微粒子またはナトリウム液滴が分散でき、ナトリウムが分散した状態における流動点が-35℃以上-10℃以下である限りにおいて、当技術分野において公知の溶媒を用いることができる。かかる溶媒の例としては、鉱物油(ノルマルパラフィン系溶媒など)、芳香族系溶媒(トルエン、キシレンなど)、複素環化合物溶媒(テトラヒドロフラン、テトラヒドロチオフェンなど)、およびこれらの溶媒の混合物、が挙げられる。 The dispersion solvent in the dispersion according to the present embodiment is known in the art as long as sodium fine particles or sodium droplets can be dispersed and the pour point in the state where sodium is dispersed is −35 ° C. or higher and −10 ° C. or lower. Can be used. Examples of such solvents include mineral oils (normal paraffin solvents, etc.), aromatic solvents (toluene, xylene, etc.), heterocyclic solvent (tetrahydrofuran, tetrahydrothiophene, etc.), and mixtures of these solvents. ..
 分散体中のナトリウム含有量が上昇すると、分散体中における分散溶媒の濃度が低下するため、分散体の流動点が低下する。具体的には、ナトリウム含有量が1質量%上昇すると、流動点は0.05~0.5℃低下する。なお、ナトリウム含有量1質量%あたりの流動点の変化率は、分散溶媒の種類により決定される固有の値であり、変化率を決定したい分散溶媒についてナトリウム含有量が異なる複数の分散体を調製して当該複数の分散体のそれぞれの流動点を測定し、ナトリウム含有量と流動点との関係をプロットすることにより決定できる。 When the sodium content in the dispersion increases, the concentration of the dispersion solvent in the dispersion decreases, so that the pour point of the dispersion decreases. Specifically, when the sodium content increases by 1% by mass, the pour point decreases by 0.05 to 0.5 ° C. The rate of change of the pour point per 1% by mass of the sodium content is a unique value determined by the type of the dispersion solvent, and a plurality of dispersions having different sodium contents are prepared for the dispersion solvent for which the rate of change is desired to be determined. It can be determined by measuring the pour point of each of the plurality of dispersions and plotting the relationship between the sodium content and the pour point.
 上記の関係を用いて、分散溶媒の種類に応じて、適切なナトリウム含有量を決定できる。分散体の流動点Td(℃)は、分散溶媒の流動点Ts(℃)、分散溶媒の種類により決定される定数a、およびナトリウム含有量d(質量%)を用いて下記の式(1)で表される。
  Td=Ts-a・d     式(1)
 また、本実施形態に係る分散体の流動点Td(℃)は、-35℃以上-15℃未満であるから、下記の式(2)が成立する。
  -35≦Td≦-10    式(2)
 ここで、分散溶媒の種類を決定すると、分散体の流動点Td(℃)および定数aが決定されるので、これらの値を式(1)および式(2)に代入することで、ナトリウム含有量dの適切な範囲が求められる。
Using the above relationship, an appropriate sodium content can be determined depending on the type of dispersion solvent. The pour point Td (° C.) of the dispersion is the following formula (1) using the pour point Ts (° C.) of the dispersion solvent, the constant a determined by the type of the dispersion solvent, and the sodium content d (mass%). It is represented by.
Td = Ts-a · d equation (1)
Further, since the pour point Td (° C.) of the dispersion according to the present embodiment is −35 ° C. or higher and lower than −15 ° C., the following formula (2) is established.
-35 ≤ Td ≤ -10 Equation (2)
Here, when the type of the dispersion solvent is determined, the pour point Td (° C.) and the constant a of the dispersion are determined. Therefore, by substituting these values into the formulas (1) and (2), the sodium content is contained. An appropriate range of the quantity d is required.
 また、具体的な保管温度が既知の場合は、当該保管温度を用いてナトリウム含有量dの適切な範囲をより具体的に決定しうる。たとえば、想定される保管温度(リーファーコンテナの設定温度など)がTc(℃)である場合、分散体を凝固させた状態で保管するためには、下記の式(3)を満たす必要がある。
  Tc≦Td         式(3)
 ここで、分散体の流動点Td(℃)および定数aを式(1)および式(3)に代入することで、ナトリウム含有量dの適切な範囲が求められる。
Further, when a specific storage temperature is known, an appropriate range of the sodium content d can be determined more specifically using the storage temperature. For example, when the assumed storage temperature (such as the set temperature of the reefer container) is Tc (° C.), the following formula (3) must be satisfied in order to store the dispersion in a solidified state.
Tc ≤ Td equation (3)
Here, by substituting the pour point Td (° C.) and the constant a of the dispersion into the formulas (1) and (3), an appropriate range of the sodium content d can be obtained.
〔分散体の保管方法および使用方法〕
 次に、本実施形態に係る分散体の保管方法および使用方法について説明する。
[How to store and use the dispersion]
Next, a storage method and a usage method of the dispersion according to the present embodiment will be described.
 本実施形態に係る分散体は、室温において液体であるので、容器に入れて保管する必要がある。ここで容器は、ナトリウムおよび分散溶媒のいずれとも反応せず、かつ、後述する保管温度において使用可能である容器を選択できる。容器の材料としては、ガラス、プラスチック、ステンレスなどの材料を用いうる。容器の形状としては、瓶、試験管、アンプル、シリンジ、ドラム缶などを選択できる。 Since the dispersion according to this embodiment is a liquid at room temperature, it is necessary to store it in a container. Here, as the container, a container that does not react with either sodium or a dispersion solvent and can be used at the storage temperature described later can be selected. As the material of the container, a material such as glass, plastic, or stainless steel can be used. As the shape of the container, a bottle, a test tube, an ampoule, a syringe, a drum can, or the like can be selected.
 本実施形態に係る保管方法では、分散体を入れた容器を低温で保管する。ここで、保管温度は、分散体の流動点に鑑みて決定される。保管温度が分散体の流動点より低い温度であると、保管中に分散体が凝固しナトリウムの沈降が防止されるため好ましい。保管温度は、より好ましくは分散体の流動点より3℃以上低い温度であり、さらに好ましくは5℃以上低い温度である。そのような保管方法としては、たとえばリーファーコンテナを用いる方法が例示される。リーファーコンテナの内部は低温(たとえば約-25℃)に維持されているため、分散体を入れた容器をリーファーコンテナに入れて保管すると、保管中にナトリウムが沈降することが好適に防止されうる。 In the storage method according to this embodiment, the container containing the dispersion is stored at a low temperature. Here, the storage temperature is determined in view of the pour point of the dispersion. When the storage temperature is lower than the pour point of the dispersion, the dispersion solidifies during storage and sodium is prevented from settling, which is preferable. The storage temperature is more preferably a temperature 3 ° C. or higher lower than the pour point of the dispersion, and further preferably 5 ° C. or higher lower. As such a storage method, for example, a method using a reefer container is exemplified. Since the inside of the reefer container is maintained at a low temperature (for example, about −25 ° C.), storing the container containing the dispersion in the reefer container can preferably prevent sodium from settling during storage.
 なお、上記のリーファーコンテナを陸路、海路、または空路により運搬しうる。従来のナトリウム分散体は、輸送中にナトリウム粒子が凝集するおそれがあり、長距離の輸送に適さない場合があった。しかし、本実施形態に係る分散体では、輸送中に分散体が凝固し、ナトリウムの凝集が防止されうるため、長距離の輸送を行っても品質を維持しうる。 The above reefer container can be transported by land, sea, or air. Conventional sodium dispersions may aggregate sodium particles during transport and may not be suitable for long-distance transport. However, in the dispersion according to the present embodiment, since the dispersion can be solidified during transportation and sodium aggregation can be prevented, the quality can be maintained even when the dispersion is transported over a long distance.
 本実施形態に係る分散体を使用するときは、分散体を使用する反応系に当該分散体を導入する。たとえば本実施形態に係る分散体を有機合成に用いる場合は、当該有機合成を行う容器(フラスコなど)に分散体を導入する。このとき、低温で保管され凝固していた分散体を、室温に静置または任意の手段により加熱して融解させてから用いてもよいし、凝固した状態のまま用いてもよい。また、分散体を溶媒で希釈してから用いてもよい。分散体の具体的な導入方法(量、時期、速度など)は、分散体の使用目的(化学反応の種類など)に応じて適宜選択される。なお、容器としてシリンジを用いた場合、融解した分散体をすぐに反応系に導入できるので、使用性に優れる。 When the dispersion according to the present embodiment is used, the dispersion is introduced into the reaction system using the dispersion. For example, when the dispersion according to the present embodiment is used for organic synthesis, the dispersion is introduced into a container (flask or the like) for performing the organic synthesis. At this time, the dispersion stored at a low temperature and solidified may be used after being allowed to stand at room temperature or heated by any means to be melted, or may be used in the solidified state. Alternatively, the dispersion may be diluted with a solvent before use. The specific introduction method (amount, timing, speed, etc.) of the dispersion is appropriately selected according to the purpose of use (type of chemical reaction, etc.) of the dispersion. When a syringe is used as the container, the melted dispersion can be immediately introduced into the reaction system, so that it is excellent in usability.
 低温(流動点以下)で分散体を使用するときは、テトラヒドロフラン(THF)やヘキサンなどの反応溶媒を添加するとよい。これにより、分散体が液状となって、取り扱いが容易となる。重量割合でTHF:分散体=1以上:1の割合でTHFが含まれれば、-35℃の低温下で液状の分散体とすることができる。 When using the dispersion at a low temperature (below the pour point), it is advisable to add a reaction solvent such as tetrahydrofuran (THF) or hexane. As a result, the dispersion becomes liquid and easy to handle. If THF is contained in a ratio of THF: dispersion = 1 or more: 1 by weight, it can be made into a liquid dispersion at a low temperature of −35 ° C.
 その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の範囲はそれらによって限定されることはないと理解されるべきである。当業者であれば、本発明の趣旨を逸脱しない範囲で、適宜改変が可能であることを容易に理解できるであろう。したがって、本発明の趣旨を逸脱しない範囲で改変された別の実施形態も、当然、本発明の範囲に含まれる。 It should be understood that with respect to other configurations, the embodiments disclosed herein are exemplary in all respects and the scope of the invention is not limited thereto. Those skilled in the art will be able to easily understand that modifications can be made as appropriate without departing from the spirit of the present invention. Therefore, another embodiment modified without departing from the spirit of the present invention is naturally included in the scope of the present invention.
 以下では、本発明に係る分散体の実施例を示す。ただし、本発明に係る分散体は、以下の実施例に限定されない。 Hereinafter, examples of the dispersion according to the present invention will be shown. However, the dispersion according to the present invention is not limited to the following examples.
〔試薬〕
 実施例および比較例の各例の分散体の原料として、以下の試薬を用いた。
 ナトリウム:関東化学製 純度>99.0%
 分散油1:流動点-20.0℃、動粘度(0℃,20℃,40℃,100℃)85.40mm/s,29.13mm/s,13.28mm/s,3.15mm/s、粘度指数97、密度(15℃)0.8545g/cm、引火点196℃、酸価0.01KOH/g、環分析(ナフテン炭素量27.8%CN、パラフィン炭素量66.4%CP、アロマ炭素量5.8%CA)
 分散油2:流動点-15.0℃、動粘度(0℃,20℃,40℃,100℃)44.23mm/s,17.03mm/s,8.43mm/s,2.32mm/s、粘度指数81、密度(15℃)0.8665g/cm、引火点160℃、酸価0.01KOH/g、環分析(ナフテン炭素量37.2%CN、パラフィン炭素量55.1%CP、アロマ炭素量7.7%CA)
 分散油3:流動点-27.5℃、動粘度(0℃,20℃,40℃,100℃)45.54mm/s,17.18mm/s,8.41mm/s,2.27mm/s、粘度指69、密度(15℃)0.8700g/cm、引火点170℃、酸価0.01KOH/g、環分析(ナフテン炭素量40.3%CN、パラフィン炭素量52.3%CP、アロマ炭素量7.4%CA)
 分散油4:流動点-27.1℃、動粘度(40℃,100℃)8.690mm/s,2.276mm/s、粘度指数57、密度(15℃)0.8682g/cm、引火点154℃、環分析(ナフテン炭素量45.4%CN、パラフィン炭素量45.6%CP、アロマ炭素量9.0%CA)
 分散油5:流動点-27.5℃、動粘度(40℃,100℃)8.868mm/s,2.326mm/s、粘度指数63、密度(15℃)0.8689g/cm、引火点162℃、環分析(ナフテン炭素量40.2%CN、パラフィン炭素量53.9%CP、アロマ炭素量5.9%CA)
〔reagent〕
The following reagents were used as raw materials for the dispersions of Examples and Comparative Examples.
Sodium: Made by Kanto Chemical Purity> 99.0%
Dispersed oil 1: Pour point -20.0 ° C., a kinematic viscosity (0 ℃, 20 ℃, 40 ℃, 100 ℃) 85.40mm 2 /s,29.13mm 2 /s,13.28mm 2 / s, 3. 15 mm 2 / s, viscosity index 97, density (15 ° C) 0.8545 g / cm 3 , pour point 196 ° C, acid value 0.01 KOH / g, ring analysis (naphthenic carbon content 27.8% CN, paraffin carbon content 66) .4% CP, aroma carbon content 5.8% CA)
Dispersed oil 2: Pour point -15.0 ° C., a kinematic viscosity (0 ℃, 20 ℃, 40 ℃, 100 ℃) 44.23mm 2 /s,17.03mm 2 /s,8.43mm 2 / s, 2. 32 mm 2 / s, viscosity index 81, density (15 ° C) 0.8665 g / cm 3 , flammability 160 ° C, acid value 0.01 KOH / g, ring analysis (naphthenic carbon content 37.2% CN, paraffin carbon content 55) .1% CP, aroma carbon content 7.7% CA)
Dispersed oil 3: Pour point -27.5 ° C., a kinematic viscosity (0 ℃, 20 ℃, 40 ℃, 100 ℃) 45.54mm 2 /s,17.18mm 2 /s,8.41mm 2 / s, 2. 27 mm 2 / s, viscosity finger 69, density (15 ° C) 0.8700 g / cm 3 , ignition point 170 ° C, acid value 0.01 KOH / g, ring analysis (naphthenic carbon content 40.3% CN, paraffin carbon content 52) .3% CP, aroma carbon content 7.4% CA)
Dispersed oil 4: Pour point -27.1 ° C., a kinematic viscosity (40 ℃, 100 ℃) 8.690mm 2 /s,2.276mm 2 / s, viscosity index 57, density (15 ℃) 0.8682g / cm 3 , Pour point 154 ° C, ring analysis (naphthen carbon content 45.4% CN, paraffin carbon content 45.6% CP, aroma carbon content 9.0% CA)
Dispersed oil 5: Pour point -27.5 ° C., a kinematic viscosity (40 ℃, 100 ℃) 8.868mm 2 /s,2.326mm 2 / s, viscosity index 63, density (15 ℃) 0.8689g / cm 3 , Pour point 162 ° C, ring analysis (naphthen carbon content 40.2% CN, paraffin carbon content 53.9% CP, aroma carbon content 5.9% CA)
〔測定方法〕
 実施例および比較例の各例の分散体における諸物性を、以下の方法に従って測定した。
〔Measuring method〕
The physical characteristics of the dispersions of Examples and Comparative Examples were measured according to the following methods.
《流動点》
 ISO 3016:2019の方法に従って測定した。
《Pour point》
Measured according to the method of ISO 3016: 2019.
《動粘度》
 B型粘度計を用いて測定した。なお、測定温度は20℃とした。
《Dynamic viscosity》
It was measured using a B-type viscometer. The measurement temperature was 20 ° C.
《密度》
 ガラス式比重計を用いて測定した。なお、測定温度は15℃とした。
"density"
It was measured using a glass hydrometer. The measurement temperature was 15 ° C.
《環分析》
 ASTM D3238-17aに従って環分析を行い、全炭素量に対するナフテン炭素量の重量割合および全炭素量に対するパラフィン炭素量の重量割合を求めた。なお、測定試料がナトリウムを含む分散体であるため、前処理として3000rpm、30分間の条件で遠心分離を行い、遠心分離後の上澄み液について環分析を行った。
《Ring analysis》
Ring analysis was performed according to ASTM D3238-17a to determine the weight ratio of naphthen carbon to total carbon and the weight ratio of paraffin carbon to total carbon. Since the measurement sample is a dispersion containing sodium, centrifugation was performed at 3000 rpm for 30 minutes as a pretreatment, and ring analysis was performed on the supernatant after centrifugation.
《平均粒子径》
 分散体をスライドガラスに載せて顕微鏡観察を行い、観察画像を得た。得られた観察画像について画像解析を行い、各ナトリウム粒子の投影面積に基づいて各粒子の球相当径を算出した。
《Average particle size》
The dispersion was placed on a slide glass and observed under a microscope to obtain an observed image. Image analysis was performed on the obtained observation image, and the sphere equivalent diameter of each particle was calculated based on the projected area of each sodium particle.
〔実施例1〕
 ナトリウム(250g)と分散油1(750g)とを110℃まで加熱し、ミキサーによって分散させて実施例1の分散体(ナトリウム含有量25.0質量%)を得た。実施例1の分散体の物性は以下の通りだった。
  ナトリウム分散体の流動点  -22.0℃
  動粘度(0℃)       70mm/s
  動粘度(20℃)      30mm/s
  密度(15℃)       0.851g/cm
  ナフテン炭素量       29.1%CN
  パラフィン炭素量      66.3%CP
  アロマ炭素量        4.6%CA
[Example 1]
Sodium (250 g) and dispersion oil 1 (750 g) were heated to 110 ° C. and dispersed by a mixer to obtain a dispersion of Example 1 (sodium content 25.0% by mass). The physical characteristics of the dispersion of Example 1 were as follows.
Pour point of sodium dispersion -22.0 ° C
Dynamic viscosity (0 ° C) 70 mm 2 / s
Dynamic viscosity (20 ° C) 30 mm 2 / s
Density (15 ° C) 0.851 g / cm 3
Naphthenic carbon content 29.1% CN
Paraffin carbon content 66.3% CP
Aroma carbon content 4.6% CA
〔実施例2〕
 分散油1に替えて分散油2を用いたほかは実施例1と同様の方法にて、実施例2の分散体(ナトリウム含有量25.0質量%)を得た。実施例2の分散体の物性は以下の通りだった。
  ナトリウム分散体の流動点  -20.0℃
  動粘度(0℃)       130mm/s
  動粘度(20℃)      40mm/s
  密度(20℃)       0.863g/cm
  ナフテン炭素量       39.7%CN
  パラフィン炭素量      54.4%CP
  アロマ炭素量        6.0%CA
[Example 2]
A dispersion of Example 2 (sodium content 25.0% by mass) was obtained in the same manner as in Example 1 except that the dispersion oil 2 was used instead of the dispersion oil 1. The physical characteristics of the dispersion of Example 2 were as follows.
Pour point of sodium dispersion -20.0 ° C
Dynamic viscosity (0 ° C) 130 mm 2 / s
Dynamic viscosity (20 ° C) 40 mm 2 / s
Density (20 ° C) 0.863 g / cm 3
Naphthenic carbon content 39.7% CN
Paraffin carbon content 54.4% CP
Aroma carbon content 6.0% CA
〔実施例3〕
 分散油1に替えて分散油3を用いたほかは実施例1と同様の方法にて、実施例3の分散体を得た。実施例3の分散体(ナトリウム含有量25.0質量%)の物性は以下の通りだった。
  ナトリウム分散体の流動点  -30.0℃
  動粘度(0℃)       70mm/s
  動粘度(25℃)      29mm/s
  密度(20℃)       0.866g/cm
  ナフテン炭素量       41.5%CN
  パラフィン炭素量      52.3%CP
  アロマ炭素量        6.1%CA
[Example 3]
The dispersion of Example 3 was obtained in the same manner as in Example 1 except that the dispersion oil 3 was used instead of the dispersion oil 1. The physical characteristics of the dispersion of Example 3 (sodium content 25.0% by mass) were as follows.
Pour point of sodium dispersion -30.0 ℃
Dynamic viscosity (0 ° C) 70 mm 2 / s
Dynamic viscosity (25 ° C) 29 mm 2 / s
Density (20 ° C) 0.866 g / cm 3
Naphthenic carbon content 41.5% CN
Paraffin carbon content 52.3% CP
Aroma carbon content 6.1% CA
〔実施例4〕
 実施例2においてナトリウム含有量を12.5質量%としたほかは実施例2と同様の方法にて、実施例4の分散体(ナトリウム含有量12.5質量%)を得た。実施例4の分散体の物性は以下の通りだった。
  ナトリウム分散体の流動点  -17.1℃
  ナフテン炭素量       39.7%CN
  パラフィン炭素量      54.4%CP
  アロマ炭素量        6.0%CA
[Example 4]
A dispersion of Example 4 (sodium content 12.5% by mass) was obtained in the same manner as in Example 2 except that the sodium content was set to 12.5% by mass in Example 2. The physical characteristics of the dispersion of Example 4 were as follows.
Pour point of sodium dispersion-17.1 ° C
Naphthenic carbon content 39.7% CN
Paraffin carbon content 54.4% CP
Aroma carbon content 6.0% CA
〔実施例5〕
 分散油1に替えて分散油4を用いたほかは実施例4と同様の方法にて、実施例5の分散体(ナトリウム含有量25.0質量%)を得た。実施例5の分散体の物性は以下の通りだった。
  ナトリウム分散体の流動点  -29.6℃以下
  ナフテン炭素量       45.5%CN
  パラフィン炭素量      45.5%CP
  アロマ炭素量        9.0%CA
[Example 5]
The dispersion of Example 5 (sodium content 25.0% by mass) was obtained in the same manner as in Example 4 except that the dispersion oil 4 was used instead of the dispersion oil 1. The physical characteristics of the dispersion of Example 5 were as follows.
Pour point of sodium dispersion-29.6 ° C or less Naphthenic acid carbon content 45.5% CN
Paraffin carbon content 45.5% CP
Aroma carbon content 9.0% CA
〔比較例〕
 分散油1に替えて分散油5を用いたほかは実施例1と同様の方法にて、比較例の分散体(ナトリウム含有量25.0質量%)を得た。比較例の分散体の物性は以下の通りだった。
  分散油5の流動点      -27.5℃
  ナトリウム分散体の流動点  -35℃以下
  密度(20℃)       0.866g/cm
  ナフテン炭素量       41.4%CN
  パラフィン炭素量      52.5%CP
  アロマ炭素量        6.0%CA
[Comparative example]
A dispersion (sodium content 25.0% by mass) of Comparative Example was obtained by the same method as in Example 1 except that the dispersion oil 5 was used instead of the dispersion oil 1. The physical characteristics of the dispersion in the comparative example were as follows.
Pour point of dispersion oil 5-27.5 ° C
Pour point of sodium dispersion -35 ° C or less Density (20 ° C) 0.866 g / cm 3
Naphthenic carbon content 41.4% CN
Paraffin carbon content 52.5% CP
Aroma carbon content 6.0% CA
〔定数aの決定例〕
 分散油2について、ナトリウムを分散させていない状態における流動点が-15.0℃であり、12.5質量%のナトリウムが分散している試料(実施例4)の流動点が-17.1℃であり、25.0質量%のナトリウムが分散している試料(実施例2)の流動点が-20.0℃であった。これらの三つの試料に係る流動点の測定結果に基づいて、ナトリウム含有量d(質量%)と流動点Td(℃)とをプロットすると、dとTdとの関係について以下の近似式(4)が得られた。
  Td=-15.0-0.19d     式(4)
 式(4)より、分散油2についてa=-0.19と決定された。
[Example of determining constant a]
Regarding the dispersed oil 2, the pour point of the sample in which sodium is not dispersed is -15.0 ° C., and the pour point of the sample in which 12.5% by mass of sodium is dispersed (Example 4) is -17.1. The pour point of the sample (Example 2) in which 25.0% by mass of sodium was dispersed was -20.0 ° C. When the sodium content d (mass%) and the pour point Td (° C.) are plotted based on the measurement results of the pour points of these three samples, the following approximate formula (4) shows the relationship between d and Td. was gotten.
Td = -15.0-0.19d equation (4)
From the formula (4), it was determined that a = −0.19 for the dispersed oil 2.
〔短期保管試験〕
 実施例1~5および比較例の各分散体を、ガラスバイアルに封入して-25℃および-35℃で1時間保管した。このとき、保管中の各分散体の外観を観察した(観察1)。その後、各分散体を室温に戻し、再び各分散体の外観を観察した(観察2)。
[Short-term storage test]
The dispersions of Examples 1 to 5 and Comparative Examples were sealed in glass vials and stored at −25 ° C. and −35 ° C. for 1 hour. At this time, the appearance of each dispersion during storage was observed (observation 1). Then, each dispersion was returned to room temperature, and the appearance of each dispersion was observed again (observation 2).
《観察1》
 -25℃での保管を開始した1時間後に各分散体の外観を観察すると、実施例1および2、4の各分散体は凝固していた。一方、実施例3および5と比較例の各分散体は液状だった。-35℃での保管を開始した後1時間後に各分散体の外観を観察すると、実施例1~5の各分散体は凝固していた。一方、比較例の分散体は、液状だった。
<< Observation 1 >>
When the appearance of each dispersion was observed 1 hour after the start of storage at -25 ° C, each of the dispersions of Examples 1, 2 and 4 was solidified. On the other hand, each of the dispersions of Examples 3 and 5 and Comparative Example was liquid. When the appearance of each dispersion was observed 1 hour after the start of storage at −35 ° C., each of the dispersions of Examples 1 to 5 was solidified. On the other hand, the dispersion of the comparative example was liquid.
《観察2》
 各分散体を室温に戻した後は、すべての分散体が液状だった。このとき、実施例1~5および比較例の各分散体の外観はいずれも均一であった。
<< Observation 2 >>
After returning each dispersion to room temperature, all dispersions were liquid. At this time, the appearances of the dispersions of Examples 1 to 5 and Comparative Examples were all uniform.
〔長期保管試験〕
 実施例1~3および比較例の各分散体を、ガラスバイアルに封入して-20℃で3か月間保管した。その後、各分散体を室温に戻し、各分散体の外観を観察した。
[Long-term storage test]
Each of the dispersions of Examples 1 to 3 and Comparative Example was sealed in a glass vial and stored at −20 ° C. for 3 months. Then, each dispersion was returned to room temperature, and the appearance of each dispersion was observed.
 各分散体を室温に戻した後は、すべての分散体が液状だった。実施例1~3の各分散体の外観は、いずれも均一であった。一方、比較例の分散体では、ナトリウムの微粒子が沈降していた。比較例の分散体は、ガラスバイアルを手で振とうすると、均一な外観になった。 After returning each dispersion to room temperature, all the dispersions were liquid. The appearance of each of the dispersions of Examples 1 to 3 was uniform. On the other hand, in the dispersion of the comparative example, fine particles of sodium were precipitated. The dispersion of the comparative example had a uniform appearance when the glass vial was shaken by hand.
《まとめ》
 以上のように、実施例1~5の各分散体は、-35℃で保管すると凝固し、これを室温に戻すと均一な分散体に戻った。一方、比較例の分散体は、-35℃で保管しても凝固しなかった。実施例1~5の各分散体では、保管温度において凝固したため、ナトリウム粒子が分散油中を移動せず経時による沈降が生じなかったと考えられる。
<< Summary >>
As described above, each of the dispersions of Examples 1 to 5 solidified when stored at −35 ° C., and returned to a uniform dispersion when the temperature was returned to room temperature. On the other hand, the dispersion of Comparative Example did not solidify even when stored at −35 ° C. In each of the dispersions of Examples 1 to 5, it is considered that the sodium particles did not move in the dispersed oil and did not settle with time because they solidified at the storage temperature.
 また、実施例1~3の各分散体は、低温で長期間(3か月間)保管した後でも、室温に戻すだけの簡単な操作により、均一な分散体に戻った。一方、比較例の分散体は、長期間の低温保管の後に室温に戻すと沈降が見られ、再び均一な分散体として使用するためには振とう操作を要した。このように、実施例1~3の分散体は、低温保管後に、振とうなどの機械的操作を要することなく、室温に戻すだけの簡単な操作により使用可能な状態にできることから、長期間品質を保持できるだけでなく、取り扱いも容易である。 Further, each of the dispersions of Examples 1 to 3 returned to a uniform dispersion by a simple operation of returning to room temperature even after being stored at a low temperature for a long period of time (3 months). On the other hand, the dispersion of the comparative example showed sedimentation when returned to room temperature after long-term low-temperature storage, and a shaking operation was required to use it as a uniform dispersion again. As described above, the dispersions of Examples 1 to 3 can be put into a usable state by a simple operation of returning to room temperature without requiring mechanical operation such as shaking after storage at low temperature, and thus the quality is long-term. Not only can it hold, but it is also easy to handle.
 本発明は、たとえば医農薬や電子材料などの機能性材料の有機合成などの各種技術分野に利用することができる。
 
The present invention can be used in various technical fields such as organic synthesis of functional materials such as medical pesticides and electronic materials.

Claims (8)

  1.  分散溶媒中にナトリウムが分散した分散体であって、ISO 3016:2019の方法に従って測定した流動点が-35℃以上-10℃以下であるナトリウム分散体。 A sodium dispersion in which sodium is dispersed in a dispersion solvent, and the pour point measured according to the method of ISO 3016: 2019 is −35 ° C. or higher and −10 ° C. or lower.
  2.  分散溶媒中にナトリウムが分散した分散体であって、
     ISO 3016:2019の方法に従って測定した前記分散体の流動点Td(℃)、
     ISO 3016:2019の方法に従って測定した前記分散溶媒の流動点Ts(℃)、
     前記分散溶媒の種類により決定される定数a(ただし、0.05≦a≦0.5)、および、
     前記ナトリウムの含有量d(質量%)が、下記式(1)および式(2)を満たすナトリウム分散体。
      Td=Ts-a・d     式(1)
      -35≦Td≦-10    式(2)
    A dispersion in which sodium is dispersed in a dispersion solvent.
    Pour point Td (° C.) of the dispersion measured according to the method of ISO 3016: 2019,
    Pour point Ts (° C.) of the dispersion solvent measured according to the method of ISO 3016: 2019,
    A constant a (where 0.05 ≦ a ≦ 0.5) determined by the type of the dispersion solvent, and
    A sodium dispersion in which the sodium content d (mass%) satisfies the following formulas (1) and (2).
    Td = Ts-a · d equation (1)
    -35 ≤ Td ≤ -10 Equation (2)
  3.  20℃においてISO 3104:1994の方法に従って測定した動粘度が10~50mm/sである請求項1または2に記載のナトリウム分散体。 The sodium dispersion according to claim 1 or 2, wherein the kinematic viscosity measured according to the method of ISO 3104: 1994 at 20 ° C. is 10 to 50 mm 2 / s.
  4.  ガラス式比重計を用いて測定した密度が0.85~1.0g/cmである請求項1~3のいずれか一項に記載のナトリウム分散体。 The sodium dispersion according to any one of claims 1 to 3, wherein the density measured using a glass hydrometer is 0.85 to 1.0 g / cm 3.
  5.  前記分散体を遠心分離した上澄み液に係るASTM D3238-17aに従った環分析において、
     全炭素量に対するナフテン炭素量の重量割合が20~50%であり、
     全炭素量に対するパラフィン炭素量の重量割合が40%以上である請求項1~4のいずれか一項に記載のナトリウム分散体。
    In the ring analysis according to ASTM D3238-17a relating to the supernatant obtained by centrifuging the dispersion.
    The weight ratio of naphthenic carbon content to total carbon content is 20 to 50%.
    The sodium dispersion according to any one of claims 1 to 4, wherein the weight ratio of the amount of paraffin carbon to the total amount of carbon is 40% or more.
  6.  分散溶媒中にナトリウムが分散した分散体であって、ISO 3016:2019の方法に従って測定した流動点が-35℃以上-10℃以下であるナトリウム分散体を容器に入れ、前記容器をリーファーコンテナまたは冷凍倉庫に入れて保管するナトリウム分散体の保管方法。 A dispersion in which sodium is dispersed in a dispersion solvent and having a flow point of −35 ° C. or higher and −10 ° C. or lower measured according to the method of ISO 3016: 2019 is placed in a container, and the container is placed in a reefer container or a reefer container. A storage method for sodium dispersions that are stored in a freezer.
  7.  分散溶媒中にナトリウムが分散した分散体であって、
     ISO 3016:2019の方法に従って測定した前記分散体の流動点Td(℃)、
     ISO 3016:2019の方法に従って測定した前記分散溶媒の流動点Ts(℃)、
     前記分散溶媒の種類により決定される定数a(ただし、0.05≦a≦0.5)、および、
     前記ナトリウムの含有量d(質量%)が、下記式(1)および式(3)を満たすナトリウム分散体を容器に入れ、前記容器を、設定温度Tc(℃)のリーファーコンテナまたは冷凍倉庫に入れて保管するナトリウム分散体の保管方法。
      Td=Ts-a・d     式(1)
      Tc≦Td         式(3)
    A dispersion in which sodium is dispersed in a dispersion solvent.
    Pour point Td (° C.) of the dispersion measured according to the method of ISO 3016: 2019,
    Pour point Ts (° C.) of the dispersion solvent measured according to the method of ISO 3016: 2019,
    A constant a (where 0.05 ≦ a ≦ 0.5) determined by the type of the dispersion solvent, and
    A sodium dispersion having a sodium content d (% by mass) satisfying the following formulas (1) and (3) is placed in a container, and the container is placed in a reefer container or a freezer at a set temperature Tc (° C.). How to store the sodium dispersion.
    Td = Ts-a · d equation (1)
    Tc ≤ Td equation (3)
  8.  前記容器がシリンジである請求項6または7に記載のナトリウム分散体の保管方法。
     
     
    The method for storing a sodium dispersion according to claim 6 or 7, wherein the container is a syringe.

PCT/JP2020/043401 2019-11-25 2020-11-20 Sodium dispersion, and sodium dispersion storage method WO2021106786A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019212318A JP6831437B1 (en) 2019-11-25 2019-11-25 Sodium dispersion and storage method of sodium dispersion
JP2019-212318 2019-11-25

Publications (1)

Publication Number Publication Date
WO2021106786A1 true WO2021106786A1 (en) 2021-06-03

Family

ID=74562389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043401 WO2021106786A1 (en) 2019-11-25 2020-11-20 Sodium dispersion, and sodium dispersion storage method

Country Status (2)

Country Link
JP (1) JP6831437B1 (en)
WO (1) WO2021106786A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209006A (en) * 1996-01-31 1997-08-12 Nippon Soda Co Ltd Production of dispersion of alkali metal
JP2003268417A (en) * 2001-12-06 2003-09-25 Shinko Pantec Co Ltd Apparatus and method for manufacturing alkali metal dispersing body
JP2006218398A (en) * 2005-02-10 2006-08-24 Nippon Soda Co Ltd Production method of alkaline-metal dispersed body
JP2007197787A (en) * 2006-01-27 2007-08-09 Kobelco Eco-Solutions Co Ltd Sodium-dispersed body production equipment
JP2007224360A (en) * 2006-02-23 2007-09-06 Kobelco Eco-Solutions Co Ltd Sodium dispersion production apparatus, sodium dispersion production method and sodium dispersion produced by the sodium dispersion production method
JP2007254870A (en) * 2006-03-24 2007-10-04 Kobelco Eco-Solutions Co Ltd Method for cleaning facility using sodium, and method for producing sodium dispersion in facility cleaned with the method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209006A (en) * 1996-01-31 1997-08-12 Nippon Soda Co Ltd Production of dispersion of alkali metal
JP2003268417A (en) * 2001-12-06 2003-09-25 Shinko Pantec Co Ltd Apparatus and method for manufacturing alkali metal dispersing body
JP2006218398A (en) * 2005-02-10 2006-08-24 Nippon Soda Co Ltd Production method of alkaline-metal dispersed body
JP2007197787A (en) * 2006-01-27 2007-08-09 Kobelco Eco-Solutions Co Ltd Sodium-dispersed body production equipment
JP2007224360A (en) * 2006-02-23 2007-09-06 Kobelco Eco-Solutions Co Ltd Sodium dispersion production apparatus, sodium dispersion production method and sodium dispersion produced by the sodium dispersion production method
JP2007254870A (en) * 2006-03-24 2007-10-04 Kobelco Eco-Solutions Co Ltd Method for cleaning facility using sodium, and method for producing sodium dispersion in facility cleaned with the method

Also Published As

Publication number Publication date
JP2021085044A (en) 2021-06-03
JP6831437B1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
US10141568B2 (en) Stabilized lithium metal powder for Li-ion application, composition and process
Veksler et al. Experimental evidence of three coexisting immiscible fluids in synthetic granitic pegmatite
US4736683A (en) Dry ammonium nitrate blasting agents
Sato Viscosity measurement of subliquidus magmas: 1707 basalt of Fuji volcano
US4758354A (en) Separation process
McBirney et al. Rheological properties of magmas
Song et al. Investigation of macroscopic interfacial dynamics between clathrate hydrates and surfactant solutions
George et al. Flow of molten slag through coke channels
JP6831437B1 (en) Sodium dispersion and storage method of sodium dispersion
CN113396199B (en) Phase Change Material (PCM) with solid-to-solid transition
JPS58187492A (en) Lubricant
Yang et al. Poly (aminopropyl/methyl) silsesquioxane microspheres improve the flowability of model waxy oils associated with asphaltenes
Zhou et al. Microstructure of Ti3SiC2 prepared by the in-situ hot pressing/solid-liquid reaction process
CA1059562A (en) Transporting heavy fuel oil as a slurry
JP6983186B2 (en) Storage method of dispersion in which alkali metal is dispersed in a dispersion solvent
Prasad et al. Synthesis and magneto mechanical properties of MR grease
Kök et al. Thermal characteristics of crude oils treated with rheology modifiers
US4306881A (en) Carbon slurry fuels
Kaide et al. Synthesis of Organogelators: Pyromellitamides (PMDA-R) and Their Rheological Properties during Commercial Scale-Up
GB2181150A (en) Very fluid overbased lubricant and fuel additives
US3484426A (en) Suspensoid composition
JP6059728B2 (en) Bitumen-containing desulfurization agent
Cukierman et al. Viscous flow and crystallization behavior of selected lunar compositions
US2536362A (en) Treatment of molten metals
JPH03281593A (en) Water-containing cold-accumulation material and cold-accumulation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891689

Country of ref document: EP

Kind code of ref document: A1