WO2021106727A1 - Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary batteries - Google Patents

Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary batteries Download PDF

Info

Publication number
WO2021106727A1
WO2021106727A1 PCT/JP2020/043101 JP2020043101W WO2021106727A1 WO 2021106727 A1 WO2021106727 A1 WO 2021106727A1 JP 2020043101 W JP2020043101 W JP 2020043101W WO 2021106727 A1 WO2021106727 A1 WO 2021106727A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode mixture
mixture layer
electrode active
Prior art date
Application number
PCT/JP2020/043101
Other languages
French (fr)
Japanese (ja)
Inventor
文一 水越
敬光 田下
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2021561351A priority Critical patent/JPWO2021106727A1/ja
Priority to CN202080081304.9A priority patent/CN114730854A/en
Priority to US17/778,998 priority patent/US20220416245A1/en
Publication of WO2021106727A1 publication Critical patent/WO2021106727A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a method for manufacturing a negative electrode for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a negative electrode for a non-aqueous electrolyte secondary battery.
  • the negative electrode constituting the non-aqueous electrolyte secondary battery generally has a negative electrode current collector and a negative electrode mixture layer formed on both sides of the negative electrode current collector.
  • the negative electrode mixture layer contains a negative electrode active material and a binder, and the structure of the negative electrode mixture layer is formed by binding the particles of the negative electrode active material to each other and the negative electrode active material and the negative electrode current collector. It is maintained.
  • Patent Documents 1 and 2 disclose a method of adhering a binder to the surface of a negative electrode active material by dry-mixing the negative electrode active material with a binder and then producing a slurry.
  • Patent Document 1 describes that the binding force between the negative electrode active materials and between the negative electrode active material layer and the negative electrode current collector can be increased, so that the cycle characteristics are improved. It is stated that the charging / discharging efficiency is improved by the binder holding the electrolytic solution.
  • an object of the present disclosure is to provide a negative electrode for a non-aqueous electrolyte secondary battery capable of suppressing a decrease in high-rate charge / discharge cycle characteristics.
  • the negative electrode for a non-aqueous electrolyte secondary battery which is one aspect of the present disclosure, is provided on the surfaces of the negative electrode current collector, the first negative electrode mixture layer provided on the surface of the negative electrode current collector, and the first negative electrode mixture layer.
  • a second negative electrode mixture layer provided is provided.
  • the first negative electrode mixture layer contains a first negative electrode active material and a first water-soluble polymer material
  • the second negative electrode mixture layer contains a second negative electrode active material and a second water-soluble polymer material.
  • the ratio of the amount (S1) of the first water-soluble polymer material present on the surface of the first negative electrode active material to the amount (V1) of the first water-soluble polymer material present in the interparticle voids of the first negative electrode active material is the amount of the second water-soluble polymer material present on the surface of the second negative electrode active material with respect to the amount of the second water-soluble polymer material (V2) present in the interparticle voids of the second negative electrode active material. It is characterized in that it is larger than the ratio (S2 / V2) of (S2).
  • the non-aqueous electrolyte secondary battery according to one aspect of the present disclosure is characterized by comprising the negative electrode for the non-aqueous electrolyte secondary battery, the positive electrode, and the non-aqueous electrolyte.
  • a first negative electrode mixture slurry prepared by kneading a first negative electrode active material and a first water-soluble polymer material is collected as a negative electrode.
  • Shearing when the first negative electrode mixture slurry is kneaded including a second negative electrode mixture layer forming step of applying the agent slurry to the surface of the first negative electrode mixture layer to form a second negative electrode mixture layer.
  • the force is larger than the shearing force when the second negative electrode mixture slurry is kneaded.
  • non-aqueous electrolyte secondary battery capable of suppressing a decrease in high-rate charge / discharge cycle characteristics.
  • FIG. 1 is a vertical sectional view of a cylindrical secondary battery which is an example of the embodiment.
  • FIG. 2 is a cross-sectional view of a negative electrode which is an example of the embodiment.
  • FIG. 3A is a schematic view showing an example of a cross section of the first negative electrode mixture layer, and
  • FIG. 3B is a schematic view showing an example of a second negative electrode mixture layer.
  • a method of adhering a binder to the surface of a negative electrode active material by dry-mixing the negative electrode active material with a binder and then producing a slurry. Since a water-soluble polymer material such as a binder can retain an electrolytic solution, the water-soluble polymer material adheres to the surface of the negative electrode active material, so that a carbon material or the like having poor affinity with the electrolytic solution, etc.
  • the electrolytic solution can be brought into contact with the surface of the negative electrode active material of.
  • the high rate charge / discharge cycle characteristics may be deteriorated in the negative electrode mixture layer containing the negative electrode active material in which the water-soluble polymer material is adhered to the surface. It is considered that this is because the permeability of the electrolytic solution on the surface of the negative electrode is lowered, so that the distribution of the electrolytic solution in the negative electrode becomes non-uniform during charging and discharging. Therefore, as a result of diligent studies by the present inventors, a water-soluble polymer material is used as the negative electrode active material so that the negative electrode mixture layer is made into two layers and the layer on the outer surface side in contact with the electrolytic solution has good permeability of the electrolytic solution.
  • a large amount of water-soluble polymer material is present on the surface of the negative electrode active material so that the inner layer in contact with the negative electrode current collector has a large amount of water-soluble polymer material in the interparticle voids of the negative electrode.
  • the exterior body is not limited to the cylindrical type, and may be, for example, a square type. Further, in the following description, when a plurality of embodiments and modifications are included, it is assumed from the beginning that the characteristic portions thereof are appropriately combined and used.
  • FIG. 1 is an axial sectional view of a cylindrical secondary battery 10 which is an example of an embodiment.
  • an electrode body 14 and a non-aqueous electrolyte (not shown) are housed in an exterior body 15.
  • the electrode body 14 has a winding structure in which the positive electrode 11 and the negative electrode 12 are wound via the separator 13.
  • the sealing body 16 side will be referred to as “top” and the bottom side of the exterior body 15 will be referred to as “bottom”.
  • the inside of the secondary battery 10 is sealed by closing the opening end of the exterior body 15 with the sealing body 16.
  • Insulating plates 17 and 18 are provided above and below the electrode body 14, respectively.
  • the positive electrode lead 19 extends upward through the through hole of the insulating plate 17 and is welded to the lower surface of the filter 22 which is the bottom plate of the sealing body 16.
  • the cap 26, which is the top plate of the sealing body 16 electrically connected to the filter 22, serves as the positive electrode terminal.
  • the negative electrode lead 20 extends to the bottom side of the exterior body 15 through the through hole of the insulating plate 18 and is welded to the inner surface of the bottom portion of the exterior body 15.
  • the exterior body 15 serves as a negative electrode terminal.
  • the negative electrode lead 20 passes through the outside of the insulating plate 18 and extends to the bottom side of the exterior body 15 and is welded to the inner surface of the bottom portion of the exterior body 15.
  • the exterior body 15 is, for example, a bottomed cylindrical metal exterior can.
  • a gasket 27 is provided between the exterior body 15 and the sealing body 16 to ensure the internal airtightness of the secondary battery 10.
  • the exterior body 15 has a grooved portion 21 that supports the sealing body 16 and is formed by pressing, for example, a side surface portion from the outside.
  • the grooved portion 21 is preferably formed in an annular shape along the circumferential direction of the exterior body 15, and the sealing body 16 is supported on the upper surface thereof via the gasket 27.
  • the sealing body 16 has a filter 22, a lower valve body 23, an insulating member 24, an upper valve body 25, and a cap 26, which are laminated in order from the electrode body 14 side.
  • Each member constituting the sealing body 16 has, for example, a disk shape or a ring shape, and each member except the insulating member 24 is electrically connected to each other.
  • the lower valve body 23 and the upper valve body 25 are connected to each other at their central portions, and an insulating member 24 is interposed between the peripheral portions thereof.
  • the positive electrode 11, the negative electrode 12, the separator 13, and the non-aqueous electrolyte constituting the secondary battery 10 will be described in detail, and in particular, the negative electrode active material contained in the negative electrode mixture layer 32 constituting the negative electrode 12 will be described in detail.
  • FIG. 2 is a cross-sectional view of the negative electrode 12 which is an example of the embodiment.
  • the negative electrode 12 includes a negative electrode current collector 30, a first negative electrode mixture layer 32a provided on the surface of the negative electrode current collector 30, and a second negative electrode mixture layer provided on the surface of the first negative electrode mixture layer 32a. 32b and the like.
  • the thicknesses of the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b may be the same or different from each other.
  • the negative electrode current collector 30 for example, a metal foil that is stable in the potential range of the negative electrode such as copper, a film in which the metal is arranged on the surface layer, or the like is used.
  • the thickness of the negative electrode current collector 30 is, for example, 5 ⁇ m to 30 ⁇ m.
  • the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b (hereinafter, the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b may be collectively referred to as the negative electrode mixture layer 32) are negative electrode active. Includes substances and water-soluble polymeric materials. Further, the negative electrode mixture layer 32 may contain a binder.
  • binder examples include fluorine-based resin, PAN, polyimide-based resin, acrylic-based resin, polyolefin-based resin, styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), and the like. These may be used alone or in combination of two or more.
  • the negative electrode active material is not particularly limited as long as it can occlude and release lithium ions reversibly, and includes, for example, graphite particles, a Si-based material, a metal alloying with lithium such as tin (Sn), or a metal element such as Sn. Examples include alloys and oxides.
  • the negative electrode active material preferably contains graphite particles. The content of graphite particles in the negative electrode active material can be, for example, 90% by mass to 100% by mass.
  • the graphite particles are not particularly limited, such as natural graphite and artificial graphite, but artificial graphite is preferable.
  • the surface spacing (d 002 ) of the (002) plane of the graphite particles used in the present embodiment by the X-ray wide-angle diffraction method is preferably, for example, 0.3354 nm or more, and more preferably 0.3357 nm or more. Further, it is preferably less than 0.340 nm, and more preferably 0.338 nm or less.
  • the crystallite size (Lc (002)) of the graphite particles used in the present embodiment determined by the X-ray diffraction method is, for example, preferably 5 nm or more, more preferably 10 nm or more, and more preferably 10 nm or more. It is preferably 300 nm or less, and more preferably 200 nm or less.
  • the interplanar spacing (d 002 ) and the crystallite size (Lc (002)) satisfy the above ranges, the battery capacity of the secondary battery 10 tends to be larger than when the above ranges are not satisfied.
  • Graphite particles can be produced, for example, as follows. Coke (precursor), which is a main raw material, is crushed to a predetermined size, aggregated with a flocculant, and then fired at a temperature of 2600 ° C. or higher in a block-shaped pressure-molded state to be graphitized. The graphitized block-shaped molded product is pulverized and sieved to obtain graphite particles having a desired size.
  • the internal porosity of the graphite particles can be adjusted by adjusting the particle size of the pulverized precursor, the particle size of the agglomerated precursor, and the like.
  • the average particle size of the precursor after pulverization is preferably in the range of 12 ⁇ m to 20 ⁇ m.
  • the internal porosity of the graphite particles can be adjusted by the amount of the volatile component added to the block-shaped molded product.
  • the coagulant can be used as a volatile component. Pitch is exemplified as such a flocculant.
  • the graphite particles may be produced, for example, as follows. Coke (precursor), which is the main raw material, is crushed to a predetermined size, and in a state where they are agglomerated with a coagulant such as pitch, they are calcined at a temperature of 2600 ° C. or higher, graphitized, and then sieved. Graphite particles of the desired size can be obtained.
  • the internal porosity of the graphite particles can be adjusted by adjusting the particle size of the pulverized precursor, the particle size of the agglomerated precursor, and the like.
  • the average particle size of the precursor after pulverization is preferably in the range of 12 ⁇ m to 20 ⁇ m.
  • the water-soluble polymer material is preferably a material that acts as a thickener for the slurry.
  • the water-soluble polymeric material may act as a binder.
  • the water-soluble polymer material may be, for example, carboxymethyl cellulose (CMC) or a salt thereof, polyacrylic acid (PAA) or a salt thereof (PAA-Na, PAA-K, etc., or a partially neutralized salt). ), Polyvinyl alcohol (PVA) and the like. These may be used alone or in combination of two or more.
  • FIG. 3A is a schematic view showing an example of a cross section of the first negative electrode mixture layer
  • FIG. 3B is a schematic view showing an example of a second negative electrode mixture layer.
  • the first negative electrode mixture layer 32a contains the first negative electrode active material 34a and the first water-soluble polymer material 36a.
  • the second negative electrode mixture layer 32b contains the second negative electrode active material 34b and the second water-soluble polymer material 36b.
  • (S1 / V1) is the second negative electrode active material 34b present on the surface of the second negative electrode active material 34b with respect to the amount (V2) of the second water-soluble polymer material 36b present in the interparticle voids of the second negative electrode active material 34b. It is larger than the ratio (S2 / V2) of the amount (S2) of the water-soluble polymer material 36b.
  • the first negative electrode mixture layer 32a most of the first water-soluble polymer material 36a is present on the surface of the first negative electrode active material 34a, and in the second negative electrode mixture layer 32b, the second water-soluble polymer material 36b. Most of them are present in the interparticle voids of the second negative electrode active material 34b.
  • the amount of the water-soluble polymer material present in the interparticle voids of the negative electrode active material or on the surface of the negative electrode active material is a two-dimensional value obtained by measuring the cross section of the negative electrode mixture layer 32.
  • the water-soluble polymer material existing on the surface of the negative electrode active material and the water-soluble material existing in the interparticle voids of the negative electrode active material are performed by the following procedure. By visualizing the polymer material, it is possible to compare S1 / V1 and S2 / V2.
  • ⁇ Measuring method of S1 / V1 and S2 / V2> The cross section of the negative electrode mixture layer is exposed.
  • Examples of the method for exposing the cross section include a method in which a part of the negative electrode is cut out and processed with an ion milling device (for example, IM4000PLUS manufactured by Hitachi High-Tech) to expose the cross section of the negative electrode mixture layer.
  • an ion milling device for example, IM4000PLUS manufactured by Hitachi High-Tech
  • SEM-EDX for example, Flat QUAD manufactured by Bruker
  • the elements derived from the water-soluble polymer material are mapped in the cross section of the exposed negative electrode mixture layer, and the first negative electrode mixture is prepared. Images of each of the layer 32a and the second negative electrode mixture layer 32b are taken.
  • the element derived from the water-soluble polymer material is a characteristic element contained in the water-soluble polymer material.
  • the water-soluble polymer material is a Na salt of CMC
  • the Na element is mapped. Can be done.
  • the measurement conditions for the cross section of the negative electrode mixture layer are as follows, for example. Cross-section magnification: 800 times Electron acceleration voltage: 5 kV Emission current: 10 ⁇ A Probe current: High Condenser lens: 1.0 Capture time: 180 sec (3)
  • S1 / V1 and S2 / V2 may be visually compared from the images obtained from each of the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b. Each image may be binarized using image analysis software (for example, ImageJ manufactured by the National Institutes of Health) to quantify S1 / V1 and S2 / V2 for comparison.
  • image analysis software for example, ImageJ manufactured by the National Institutes of Health
  • the first negative electrode active material 34a and the second negative electrode active material 34b may be the same. Further, the first water-soluble polymer material 36a and the second water-soluble polymer material 36b may be the same. By sharing the materials contained in the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b, the cost can be reduced. Further, even if the materials contained in the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b are shared, the method for producing the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b can be used as described later. By making the difference, the relationship of S1 / V1> S2 / V2 can be satisfied.
  • At least one of the first negative electrode active material 34a and the second negative electrode active material 34b may contain a Si-based material.
  • the Si-based material is a material capable of reversibly occluding and releasing lithium ions, and functions as a negative electrode active material. Examples of the Si-based material include Si, an alloy containing Si, and a silicon oxide such as SiO X (X is 0.8 to 1.6).
  • the Si-based material is a negative electrode material capable of improving the battery capacity as compared with the negative electrode active material.
  • the content of the Si-based material in the first negative electrode active material 34a or the second negative electrode active material 34b is, for example, 0.5% by mass to 10% by mass. It is preferably by mass%, more preferably 3% by mass to 7% by mass.
  • the first negative electrode mixture slurry prepared by kneading the first negative electrode active material 34a and the first water-soluble polymer material 36a is applied to the surface of the negative electrode current collector 30 to apply the first negative electrode.
  • the first negative electrode mixture is prepared by kneading the first negative electrode mixture layer forming step for forming the mixture layer 32a and the second negative electrode active material 34b and the second water-soluble polymer material 36b. It includes a second negative electrode mixture layer forming step of applying to the surface of the agent layer 32a to form the second negative electrode mixture layer 32b.
  • the first negative electrode mixture slurry can be prepared, for example, as follows. (1) The first negative electrode active material 34a and the first water-soluble polymer material 36a are mixed to prepare a first mixture. (2) An appropriate amount of solvent is added to the first mixture and kneaded. The solvent is, for example, water. The amount of the solvent to be added is, for example, 10% by mass to 30% by mass with respect to the total amount of the first negative electrode active material 34a and the first water-soluble polymer material 36a. (3) A binder such as styrene-butadiene copolymer rubber (SBR) is added to the first mixture. Further, the first mixture is stirred to prepare the first negative electrode mixture slurry.
  • SBR styrene-butadiene copolymer rubber
  • the second negative electrode mixture slurry can be prepared, for example, as follows. (1) The second water-soluble polymer material 36b and the solvent are mixed to prepare a second mixture.
  • the solvent is, for example, water.
  • the amount of the solvent is, for example, 40% by mass to 60% by mass with respect to the total amount of the second water-soluble polymer material 36b and the second negative electrode active material 34b to be added next. (2) The second negative electrode active material 34b is added to the second mixture. (3) The second mixture is kneaded. A solvent may be additionally added as appropriate during kneading. (4) Add the binder to the second mixture. Further, the second mixture is stirred to prepare the second negative electrode mixture slurry.
  • the shear force when kneading the first negative electrode mixture slurry is larger than the shear force when kneading the second negative electrode mixture slurry.
  • a large amount of the second water-soluble polymer material 36b is arranged in the interparticle voids of the second negative electrode active material 34b, and in the first negative electrode mixture layer 32a, the first water-soluble polymer material A large amount of 36a is arranged on the surface of the first negative electrode active material 34a.
  • the permeability of the electrolytic solution of the second negative electrode mixture layer on the outer surface side in contact with the electrolytic solution and the adhesion between the first negative electrode mixture layer and the negative electrode current collector 30 are improved, so that the secondary is secondary.
  • the deterioration of the high rate charge / discharge cycle characteristics of the battery 10 is suppressed.
  • at least one of the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b contains a Si-based material having a large expansion and contraction due to charging and discharging the above effect is remarkably exhibited.
  • "kneading” means mixing a mixture containing a negative electrode active material, a water-soluble polymer, and a solvent so as to apply a shearing force.
  • the first negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 30 and dried (first negative electrode mixture layer forming step), and then the second negative electrode mixture slurry is placed on the first negative electrode mixture layer 32a. Is applied to both sides and dried (second negative electrode mixture layer forming step). Further, the negative electrode mixture layer 32 can be formed by rolling the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b with a rolling roller. The second negative electrode mixture slurry can also be applied onto the first negative electrode mixture layer 32a before drying.
  • the positive electrode 11 is composed of a positive electrode current collector such as a metal foil and a positive electrode mixture layer formed on the positive electrode current collector.
  • a positive electrode current collector such as a metal foil and a positive electrode mixture layer formed on the positive electrode current collector.
  • a metal foil such as aluminum that is stable in the potential range of the positive electrode, a film in which the metal is arranged on the surface layer, or the like can be used.
  • the positive electrode mixture layer contains, for example, a positive electrode active material, a binder, a conductive agent, and the like.
  • a positive electrode mixture slurry containing a positive electrode active material, a binder, a conductive agent, etc. is applied onto a positive electrode current collector and dried to form a positive electrode mixture layer, and then the positive electrode mixture layer is applied. It can be produced by rolling.
  • the positive electrode active material examples include lithium transition metal oxides containing transition metal elements such as Co, Mn, and Ni.
  • Lithium transition metal oxides for example, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x Co y Ni 1-y O 2, Li x Co y M 1-y O z, Li x Ni 1- y M y O z, Li x Mn 2 O 4, Li x Mn 2-y M y O 4, LiMPO 4, Li 2 MPO 4 F (M; Na, Mg, Sc, Y, Mn, Fe, Co, Ni , Cu, Zn, Al, Cr, Pb, Sb, B, 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.9, 2.0 ⁇ z ⁇ 2.3).
  • the positive electrode active material Li x NiO 2, Li x Co y Ni 1-y O 2, Li x Ni 1-y M y O z ( M; At least one of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B, 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0. It is preferable to contain a lithium nickel composite oxide such as 9.9, 2.0 ⁇ z ⁇ 2.3).
  • Examples of the conductive agent include carbon-based particles such as carbon black (CB), acetylene black (AB), Ketjen black, and graphite. These may be used alone or in combination of two or more.
  • CB carbon black
  • AB acetylene black
  • Ketjen black Ketjen black
  • graphite graphite
  • binder examples include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, and polyolefin resins. These may be used alone or in combination of two or more.
  • fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, and polyolefin resins. These may be used alone or in combination of two or more.
  • a porous sheet having ion permeability and insulating property is used.
  • the porous sheet include a microporous thin film, a woven fabric, and a non-woven fabric.
  • olefin resins such as polyethylene and polypropylene, cellulose and the like are suitable.
  • the separator 13 may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin. Further, a multilayer separator containing a polyethylene layer and a polypropylene layer may be used, or a separator 13 coated with a material such as an aramid resin or ceramic may be used.
  • the non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous electrolyte is not limited to the liquid electrolyte (electrolyte solution), and may be a solid electrolyte using a gel polymer or the like.
  • the non-aqueous solvent for example, esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and a mixed solvent of two or more of these can be used.
  • the non-aqueous solvent may contain a halogen substituent in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
  • esters examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and methylpropyl carbonate.
  • Ethylpropyl carbonate chain carbonate such as methyl isopropyl carbonate
  • cyclic carboxylic acid ester such as ⁇ -butyrolactone, ⁇ -valerolactone, methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP), ethyl propionate, etc.
  • Chain carboxylic acid ester and the like can be mentioned.
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahexyl, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4.
  • -Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxy toluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxy Chain ethers such as ethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl
  • a fluorinated cyclic carbonate such as fluoroethylene carbonate (FEC), a fluorinated chain carbonate, a fluorinated chain carboxylic acid ester such as methyl fluoropropionate (FMP), or the like. ..
  • the electrolyte salt is preferably a lithium salt.
  • the lithium salt LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiCF 3 CO 2, Li (P (C 2 O 4) F 4), LiPF 6-x (C n F 2n + 1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, lithium chloroborane, lithium lower aliphatic carboxylate, Li 2 B 4 O 7 , borates such as Li (B (C 2 O 4 ) F 2 ), LiN (SO 2 CF 3 ) 2 , LiN (C 1 F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) ⁇ l , M is an integer of 1 or more ⁇ and other imide salts.
  • lithium salt these may be used individually by 1 type, or a plurality of types may be mixed and used. Of these, LiPF 6 is preferably used from the viewpoint of ionic conductivity, electrochemical stability, and the like.
  • concentration of the lithium salt is preferably 0.8 to 1.8 mol per 1 L of the solvent.
  • Example> Aluminum-containing lithium nickel cobalt oxide (LiNi 0.88 Co 0.09 Al 0.03 O 2 ) was used as the positive electrode active material.
  • the positive electrode active material is mixed so as to be 100 parts by mass, graphite as a conductive agent is 1 part by mass, and polyvinylidene fluoride powder as a binder is 0.9 parts by mass, and further, N-methyl-2-pyrrolidone (NMP) is mixed. ) was added in an appropriate amount to prepare a positive electrode mixture slurry.
  • NMP N-methyl-2-pyrrolidone
  • This slurry is applied to both sides of a positive electrode current collector made of aluminum foil (thickness 15 ⁇ m) by the doctor blade method, the coating film is dried, and then the coating film is rolled by a rolling roller to cover both sides of the positive electrode current collector.
  • a positive electrode having a positive electrode mixture layer formed therein was produced.
  • a first negative electrode mixture slurry was prepared. Graphite particles were mixed so as to be 95 parts by mass and SiO was 5 parts by mass, and this was used as a negative electrode active material. 100 parts by mass of the negative electrode active material and 1 part by mass of carboxymethyl cellulose (CMC) were mixed, and 20 parts by mass of water was added to the mixture and kneaded. After further adding 1 part by mass of styrene-butadiene copolymer rubber (SBR) to this mixture, the mixture was stirred to prepare a first negative electrode mixture slurry.
  • CMC carboxymethyl cellulose
  • a second negative electrode mixture slurry was prepared. First, 50 parts by mass of water and 1 part by mass of CMC were mixed, and 100 parts by mass of the negative electrode active material was added to the mixture and kneaded. A second negative electrode mixture slurry was prepared by further adding 1 part by mass of SBR to this mixture and then stirring the mixture. The shearing force when kneading the first negative electrode mixture slurry was larger than the shearing force when kneading the second negative electrode mixture slurry.
  • the first negative electrode mixture slurry was applied to both sides of the negative electrode current collector made of copper foil by the doctor blade method and dried to form the first negative electrode mixture layer. Further, the above-mentioned second negative electrode mixture slurry was applied onto the first negative electrode mixture layer and dried to form a second negative electrode mixture layer. At this time, the coating mass ratio of the first negative electrode mixture slurry and the second negative electrode mixture slurry per unit area was set to 5: 5. The first negative electrode mixture layer and the second negative electrode mixture layer were rolled by a rolling roller to prepare a negative electrode. When the cross section of the negative electrode was observed, it was S1 / V1> S2 / V2.
  • VC vinylene carbonate
  • DMC dimethyl carbonate
  • a positive electrode lead is attached to a positive electrode current collector, a negative electrode lead is attached to a negative electrode current collector, and then a separator made of a polyethylene microporous film is wound between the positive electrode and the negative electrode to form a winding type.
  • the electrode body of was prepared.
  • Insulating plates were arranged above and below the electrode body, the negative electrode lead was welded to the exterior body, the positive electrode lead was welded to the sealing body, and the electrode body was housed in the exterior body.
  • Table 1 summarizes the results of capacity retention rates in various charge / discharge cycles of the non-aqueous electrolyte secondary batteries of Examples and Comparative Examples. The higher the value of the capacity retention rate in the charge / discharge cycle, the more the deterioration of the charge / discharge cycle characteristics was suppressed.
  • the secondary battery of the example had a higher capacity retention rate than the secondary battery of the comparative example in any cycle test, and the high rate charge / discharge cycle characteristic was particularly good as compared with the comparative example. This is because, in the negative electrode mixture layer of the example, the outer surface side layer in contact with the electrolytic solution has improved permeability of the electrolytic solution, and the inner layer in contact with the negative electrode current collector has adhesion to the negative electrode current collector. Is considered to have been improved.

Abstract

The purpose of the present disclosure is to provide a negative electrode for nonaqueous electrolyte secondary batteries, said negative electrode being capable of suppressing a decrease in the high-rate charge/discharge cycle characteristics. A negative electrode for nonaqueous electrolyte secondary batteries according to one embodiment of the present disclosure is provided with: a negative electrode collector; a first negative electrode mixture layer that is arranged on the surface of the negative electrode collector; and a second negative electrode mixture layer that is arranged on the surface of the first negative electrode mixture layer. The first negative electrode mixture layer contains a first negative electrode active material and a first water-soluble polymer material; and the second negative electrode mixture layer contains a second negative electrode active material and a second water-soluble polymer material. The ratio of the amount (S1) of the first water-soluble polymer material present on the surface of the first negative electrode active material to the amount (V1) of the first water-soluble polymer material present in voids among particles of the first negative electrode active material, namely S1/V1 is larger than the ratio of the amount (S2) of the second water-soluble polymer material present on the surface of the second negative electrode active material to the amount (V2) of the second water-soluble polymer material present in voids among particles of the second negative electrode active material, namely S2/V2.

Description

非水電解質二次電池用負極、非水電解質二次電池、及び非水電解質二次電池用負極の製造方法Method for manufacturing negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and negative electrode for non-aqueous electrolyte secondary battery
 本開示は、非水電解質二次電池用負極、非水電解質二次電池、及び非水電解質二次電池用負極の製造方法に関する。 The present disclosure relates to a method for manufacturing a negative electrode for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a negative electrode for a non-aqueous electrolyte secondary battery.
 非水電解質二次電池を構成する負極は、一般的に負極集電体と、当該負極集電体の両面に形成された負極合剤層とを有する。負極合剤層は、負極活物質及び結着剤を含み、結着剤が負極活物質の粒子同士、及び負極活物質と負極集電体とを結着することで負極合剤層の構造が維持されている。 The negative electrode constituting the non-aqueous electrolyte secondary battery generally has a negative electrode current collector and a negative electrode mixture layer formed on both sides of the negative electrode current collector. The negative electrode mixture layer contains a negative electrode active material and a binder, and the structure of the negative electrode mixture layer is formed by binding the particles of the negative electrode active material to each other and the negative electrode active material and the negative electrode current collector. It is maintained.
 特許文献1,2には、負極活物質を結着剤と乾式混合してからスラリーを作製することで、負極活物質の表面に結着剤を付着させる方法が開示されている。これにより、特許文献1には、負極活物質同士や負極活物質層と負極集電体との間の結着力を大きくすることができるのでサイクル特性が向上すると記載され、特許文献2には、結着剤が電解液を保持することで充放電効率が向上すると記載されている。 Patent Documents 1 and 2 disclose a method of adhering a binder to the surface of a negative electrode active material by dry-mixing the negative electrode active material with a binder and then producing a slurry. As a result, Patent Document 1 describes that the binding force between the negative electrode active materials and between the negative electrode active material layer and the negative electrode current collector can be increased, so that the cycle characteristics are improved. It is stated that the charging / discharging efficiency is improved by the binder holding the electrolytic solution.
特開2002-42787号公報JP-A-2002-42787 特開2005-166446号公報Japanese Unexamined Patent Publication No. 2005-166446
 ところで、電気自動車(EV)等の電源として非水電解質二次電池が用いられる場合には、ハイレートで充放電が行われるケースが多いため、高レート充放電サイクル特性の低下を抑制することが求められる。しかし、表面に結着剤を多く付着した負極活物質を含む負極合剤層においては、電解液の浸透性が良くないため、高レート充放電サイクル特性が低下することがある。 By the way, when a non-aqueous electrolyte secondary battery is used as a power source for an electric vehicle (EV) or the like, charging / discharging is often performed at a high rate. Be done. However, in the negative electrode mixture layer containing the negative electrode active material in which a large amount of the binder is adhered to the surface, the permeability of the electrolytic solution is not good, so that the high rate charge / discharge cycle characteristics may be deteriorated.
 そこで、本開示の目的は、高レート充放電サイクル特性の低下を抑制できる非水電解質二次電池用負極を提供することにある。 Therefore, an object of the present disclosure is to provide a negative electrode for a non-aqueous electrolyte secondary battery capable of suppressing a decrease in high-rate charge / discharge cycle characteristics.
 本開示の一態様である非水電解質二次電池用負極は、負極集電体と、負極集電体の表面に設けられた第1負極合剤層と、第1負極合剤層の表面に設けられた第2負極合剤層と、を備える。第1負極合剤層は、第1負極活物質及び第1水溶性高分子材料を含み、第2負極合剤層は、第2負極活物質及び第2水溶性高分子材料を含む。第1負極活物質の粒子間空隙に存在する第1水溶性高分子材料の量(V1)に対する第1負極活物質の表面に存在する第1水溶性高分子材料の量(S1)の割合(S1/V1)は、第2負極活物質の粒子間空隙に存在する第2水溶性高分子材料の量(V2)に対する第2負極活物質の表面に存在する第2水溶性高分子材料の量(S2)の割合(S2/V2)よりも大きいことを特徴とする。 The negative electrode for a non-aqueous electrolyte secondary battery, which is one aspect of the present disclosure, is provided on the surfaces of the negative electrode current collector, the first negative electrode mixture layer provided on the surface of the negative electrode current collector, and the first negative electrode mixture layer. A second negative electrode mixture layer provided is provided. The first negative electrode mixture layer contains a first negative electrode active material and a first water-soluble polymer material, and the second negative electrode mixture layer contains a second negative electrode active material and a second water-soluble polymer material. The ratio of the amount (S1) of the first water-soluble polymer material present on the surface of the first negative electrode active material to the amount (V1) of the first water-soluble polymer material present in the interparticle voids of the first negative electrode active material ( S1 / V1) is the amount of the second water-soluble polymer material present on the surface of the second negative electrode active material with respect to the amount of the second water-soluble polymer material (V2) present in the interparticle voids of the second negative electrode active material. It is characterized in that it is larger than the ratio (S2 / V2) of (S2).
 本開示の一態様である非水電解質二次電池は、上記非水電解質二次電池用負極と、正極と、非水電解質と、を備えることを特徴とする。 The non-aqueous electrolyte secondary battery according to one aspect of the present disclosure is characterized by comprising the negative electrode for the non-aqueous electrolyte secondary battery, the positive electrode, and the non-aqueous electrolyte.
 本開示の一態様である非水電解質二次電池用負極の製造方法は、第1負極活物質及び第1水溶性高分子材料を混錬して調製した第1負極合剤スラリーを負極集電体の表面に塗布して第1負極合剤層を形成する第1負極合剤層形成ステップと、第2負極活物質及び第2水溶性高分子材料を混錬して調製した第2負極合剤スラリーを第1負極合剤層の表面に塗布して第2負極合剤層を形成する第2負極合剤層形成ステップと、を含み、第1負極合剤スラリーを混錬する際のせん断力は、第2負極合剤スラリーを混錬する際のせん断力よりも大きいことを特徴とする。 In the method for manufacturing a negative electrode for a non-aqueous electrolyte secondary battery, which is one aspect of the present disclosure, a first negative electrode mixture slurry prepared by kneading a first negative electrode active material and a first water-soluble polymer material is collected as a negative electrode. The first negative electrode mixture layer forming step of applying to the surface of the body to form the first negative electrode mixture layer, and the second negative electrode combination prepared by kneading the second negative electrode active material and the second water-soluble polymer material. Shearing when the first negative electrode mixture slurry is kneaded, including a second negative electrode mixture layer forming step of applying the agent slurry to the surface of the first negative electrode mixture layer to form a second negative electrode mixture layer. The force is larger than the shearing force when the second negative electrode mixture slurry is kneaded.
 本開示の一態様によれば、高レート充放電サイクル特性の低下を抑制することができる非水電解質二次電池を提供することが可能となる。 According to one aspect of the present disclosure, it is possible to provide a non-aqueous electrolyte secondary battery capable of suppressing a decrease in high-rate charge / discharge cycle characteristics.
図1は、実施形態の一例である円筒型の二次電池の縦方向断面図である。FIG. 1 is a vertical sectional view of a cylindrical secondary battery which is an example of the embodiment. 図2は、実施形態の一例である負極の断面図である。FIG. 2 is a cross-sectional view of a negative electrode which is an example of the embodiment. 図3(A)は、第1負極合剤層の断面の一例を示す模式図であり、図3(B)は、第2負極合剤層の一例を示す模式図である。FIG. 3A is a schematic view showing an example of a cross section of the first negative electrode mixture layer, and FIG. 3B is a schematic view showing an example of a second negative electrode mixture layer.
 上記のように、負極活物質を結着剤と乾式混合してからスラリーを作製することで、負極活物質の表面に結着剤を付着させる方法が知られている。結着剤等の水溶性高分子材料は電解液を保持することができるため、水溶性高分子材料が負極活物質の表面に付着することで、電解液との親和性が良くない炭素材料等の負極活物質の表面に電解液を接触させることができる。しかし、本発明者らの検討により、水溶性高分子材料を表面に付着した負極活物質を含む負極合剤層においては、高レート充放電サイクル特性が低下する場合があることが判明した。これは、負極表面の電解液の浸透性が低下したことにより、充放電中に負極中の電解液の分布が不均一化したことが原因と考えられる。そこで、本発明者らが鋭意検討した結果、負極合剤層を2層として、電解液に接する外表面側の層は電解液の浸透性が良くなるように水溶性高分子材料を負極活物質の粒子間空隙に多く存在させつつ、負極集電体と接する内部側の層は結着性が良くなるように水溶性高分子材料を負極活物質の表面に多く存在させた非水電解質二次電池用負極を想到するに至った。本負極によれば、高レート充放電サイクル特性の低下を抑制することができる非水電解質二次電池を提供することができる。 As described above, there is known a method of adhering a binder to the surface of a negative electrode active material by dry-mixing the negative electrode active material with a binder and then producing a slurry. Since a water-soluble polymer material such as a binder can retain an electrolytic solution, the water-soluble polymer material adheres to the surface of the negative electrode active material, so that a carbon material or the like having poor affinity with the electrolytic solution, etc. The electrolytic solution can be brought into contact with the surface of the negative electrode active material of. However, according to the studies by the present inventors, it has been found that the high rate charge / discharge cycle characteristics may be deteriorated in the negative electrode mixture layer containing the negative electrode active material in which the water-soluble polymer material is adhered to the surface. It is considered that this is because the permeability of the electrolytic solution on the surface of the negative electrode is lowered, so that the distribution of the electrolytic solution in the negative electrode becomes non-uniform during charging and discharging. Therefore, as a result of diligent studies by the present inventors, a water-soluble polymer material is used as the negative electrode active material so that the negative electrode mixture layer is made into two layers and the layer on the outer surface side in contact with the electrolytic solution has good permeability of the electrolytic solution. A large amount of water-soluble polymer material is present on the surface of the negative electrode active material so that the inner layer in contact with the negative electrode current collector has a large amount of water-soluble polymer material in the interparticle voids of the negative electrode. I came up with the idea of a negative electrode for batteries. According to this negative electrode, it is possible to provide a non-aqueous electrolyte secondary battery capable of suppressing a decrease in high-rate charge / discharge cycle characteristics.
 以下では、図面を参照しながら、本開示に係る円筒型の二次電池の実施形態の一例について詳細に説明する。以下の説明において、具体的な形状、材料、数値、方向等は、本発明の理解を容易にするための例示であって、円筒型の二次電池の仕様に合わせて適宜変更することができる。また、外装体は円筒型に限定されず、例えば角型等であってもよい。また、以下の説明において、複数の実施形態、変形例が含まれる場合、それらの特徴部分を適宜に組み合わせて用いることは当初から想定されている。 Hereinafter, an example of an embodiment of the cylindrical secondary battery according to the present disclosure will be described in detail with reference to the drawings. In the following description, the specific shape, material, numerical value, direction, etc. are examples for facilitating the understanding of the present invention, and can be appropriately changed according to the specifications of the cylindrical secondary battery. .. Further, the exterior body is not limited to the cylindrical type, and may be, for example, a square type. Further, in the following description, when a plurality of embodiments and modifications are included, it is assumed from the beginning that the characteristic portions thereof are appropriately combined and used.
 図1は、実施形態の一例である円筒型の二次電池10の軸方向断面図である。図1に示す二次電池10は、電極体14及び非水電解質(図示せず)が外装体15に収容されている。電極体14は、正極11及び負極12がセパレータ13を介して巻回されてなる巻回型の構造を有する。なお、以下では、説明の便宜上、封口体16側を「上」、外装体15の底部側を「下」として説明する。 FIG. 1 is an axial sectional view of a cylindrical secondary battery 10 which is an example of an embodiment. In the secondary battery 10 shown in FIG. 1, an electrode body 14 and a non-aqueous electrolyte (not shown) are housed in an exterior body 15. The electrode body 14 has a winding structure in which the positive electrode 11 and the negative electrode 12 are wound via the separator 13. In the following, for convenience of explanation, the sealing body 16 side will be referred to as “top” and the bottom side of the exterior body 15 will be referred to as “bottom”.
 外装体15の開口端部が封口体16で塞がれることで、二次電池10の内部は、密閉される。電極体14の上下には、絶縁板17,18がそれぞれ設けられる。正極リード19は絶縁板17の貫通孔を通って上方に延び、封口体16の底板であるフィルタ22の下面に溶接される。二次電池10では、フィルタ22と電気的に接続された封口体16の天板であるキャップ26が正極端子となる。他方、負極リード20は絶縁板18の貫通孔を通って、外装体15の底部側に延び、外装体15の底部内面に溶接される。二次電池10では、外装体15が負極端子となる。なお、負極リード20が終端部に設置されている場合は、負極リード20は絶縁板18の外側を通って、外装体15の底部側に延び、外装体15の底部内面に溶接される。 The inside of the secondary battery 10 is sealed by closing the opening end of the exterior body 15 with the sealing body 16. Insulating plates 17 and 18 are provided above and below the electrode body 14, respectively. The positive electrode lead 19 extends upward through the through hole of the insulating plate 17 and is welded to the lower surface of the filter 22 which is the bottom plate of the sealing body 16. In the secondary battery 10, the cap 26, which is the top plate of the sealing body 16 electrically connected to the filter 22, serves as the positive electrode terminal. On the other hand, the negative electrode lead 20 extends to the bottom side of the exterior body 15 through the through hole of the insulating plate 18 and is welded to the inner surface of the bottom portion of the exterior body 15. In the secondary battery 10, the exterior body 15 serves as a negative electrode terminal. When the negative electrode lead 20 is installed at the terminal portion, the negative electrode lead 20 passes through the outside of the insulating plate 18 and extends to the bottom side of the exterior body 15 and is welded to the inner surface of the bottom portion of the exterior body 15.
 外装体15は、例えば有底の円筒形状の金属製外装缶である。外装体15と封口体16の間にはガスケット27が設けられ、二次電池10の内部の密閉性が確保されている。外装体15は、例えば側面部を外側からプレスして形成された、封口体16を支持する溝入部21を有する。溝入部21は、外装体15の周方向に沿って環状に形成されることが好ましく、その上面でガスケット27を介して封口体16を支持する。 The exterior body 15 is, for example, a bottomed cylindrical metal exterior can. A gasket 27 is provided between the exterior body 15 and the sealing body 16 to ensure the internal airtightness of the secondary battery 10. The exterior body 15 has a grooved portion 21 that supports the sealing body 16 and is formed by pressing, for example, a side surface portion from the outside. The grooved portion 21 is preferably formed in an annular shape along the circumferential direction of the exterior body 15, and the sealing body 16 is supported on the upper surface thereof via the gasket 27.
 封口体16は、電極体14側から順に積層された、フィルタ22、下弁体23、絶縁部材24、上弁体25、及びキャップ26を有する。封口体16を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材24を除く各部材は互いに電気的に接続されている。下弁体23と上弁体25とは各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材24が介在している。異常発熱で電池の内圧が上昇すると、例えば、下弁体23が破断し、これにより上弁体25がキャップ26側に膨れて下弁体23から離れることにより両者の電気的接続が遮断される。さらに内圧が上昇すると、上弁体25が破断し、キャップ26の開口部26aからガスが排出される。 The sealing body 16 has a filter 22, a lower valve body 23, an insulating member 24, an upper valve body 25, and a cap 26, which are laminated in order from the electrode body 14 side. Each member constituting the sealing body 16 has, for example, a disk shape or a ring shape, and each member except the insulating member 24 is electrically connected to each other. The lower valve body 23 and the upper valve body 25 are connected to each other at their central portions, and an insulating member 24 is interposed between the peripheral portions thereof. When the internal pressure of the battery rises due to abnormal heat generation, for example, the lower valve body 23 breaks, which causes the upper valve body 25 to swell toward the cap 26 side and separate from the lower valve body 23, thereby cutting off the electrical connection between the two. .. When the internal pressure further rises, the upper valve body 25 breaks and gas is discharged from the opening 26a of the cap 26.
 以下、二次電池10を構成する正極11、負極12、セパレータ13及び非水電解質について、特に負極12を構成する負極合剤層32に含まれる負極活物質について詳説する。 Hereinafter, the positive electrode 11, the negative electrode 12, the separator 13, and the non-aqueous electrolyte constituting the secondary battery 10 will be described in detail, and in particular, the negative electrode active material contained in the negative electrode mixture layer 32 constituting the negative electrode 12 will be described in detail.
 [負極]
 図2は、実施形態の一例である負極12の断面図である。負極12は、負極集電体30と、負極集電体30の表面に設けられた第1負極合剤層32aと、第1負極合剤層32aの表面に設けられた第2負極合剤層32bと、を備える。第1負極合剤層32aと第2負極合剤層32bの厚みは、同じであっても相互に異なっていてもよい。
[Negative electrode]
FIG. 2 is a cross-sectional view of the negative electrode 12 which is an example of the embodiment. The negative electrode 12 includes a negative electrode current collector 30, a first negative electrode mixture layer 32a provided on the surface of the negative electrode current collector 30, and a second negative electrode mixture layer provided on the surface of the first negative electrode mixture layer 32a. 32b and the like. The thicknesses of the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b may be the same or different from each other.
 負極集電体30は、例えば、銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等が用いられる。負極集電体30の厚みは、例えば5μm~30μmである。第1負極合剤層32a及び第2負極合剤層32b(以下、第1負極合剤層32a及び第2負極合剤層32bを合わせて負極合剤層32という場合がある)は、負極活物質及び水溶性高分子材料を含む。また、負極合剤層32は、結着剤を含んでもよい。結着剤としては、例えば、フッ素系樹脂、PAN、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂、スチレン-ブタジエンゴム(SBR)、ニトリル-ブタジエンゴム(NBR)等が挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 As the negative electrode current collector 30, for example, a metal foil that is stable in the potential range of the negative electrode such as copper, a film in which the metal is arranged on the surface layer, or the like is used. The thickness of the negative electrode current collector 30 is, for example, 5 μm to 30 μm. The first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b (hereinafter, the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b may be collectively referred to as the negative electrode mixture layer 32) are negative electrode active. Includes substances and water-soluble polymeric materials. Further, the negative electrode mixture layer 32 may contain a binder. Examples of the binder include fluorine-based resin, PAN, polyimide-based resin, acrylic-based resin, polyolefin-based resin, styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), and the like. These may be used alone or in combination of two or more.
 負極活物質は、リチウムイオンを可逆的に吸蔵、放出できれば特に限定されず、例えば、黒鉛粒子、Si系材料、錫(Sn)等のリチウムと合金化する金属、又はSn等の金属元素を含む合金や酸化物等が挙げられる。負極活物質は、黒鉛粒子を含むことが好ましい。負極活物質における黒鉛粒子の含有量は、例えば、90質量%~100質量%とすることができる。 The negative electrode active material is not particularly limited as long as it can occlude and release lithium ions reversibly, and includes, for example, graphite particles, a Si-based material, a metal alloying with lithium such as tin (Sn), or a metal element such as Sn. Examples include alloys and oxides. The negative electrode active material preferably contains graphite particles. The content of graphite particles in the negative electrode active material can be, for example, 90% by mass to 100% by mass.
 黒鉛粒子は、天然黒鉛、人造黒鉛等、特に制限されるものではないが、人造黒鉛が好ましい。本実施形態に用いられる黒鉛粒子のX線広角回折法による(002)面の面間隔(d002)は、例えば、0.3354nm以上であることが好ましく、0.3357nm以上であることがより好ましく、また、0.340nm未満であることが好ましく、0.338nm以下であることがより好ましい。また、本実施形態に用いられる黒鉛粒子のX線回折法で求めた結晶子サイズ(Lc(002))は、例えば、5nm以上であることが好ましく、10nm以上であることがより好ましく、また、300nm以下であることが好ましく、200nm以下であることがより好ましい。面間隔(d002)及び結晶子サイズ(Lc(002))が上記範囲を満たす場合、上記範囲を満たさない場合と比べて、二次電池10の電池容量が大きくなる傾向がある。 The graphite particles are not particularly limited, such as natural graphite and artificial graphite, but artificial graphite is preferable. The surface spacing (d 002 ) of the (002) plane of the graphite particles used in the present embodiment by the X-ray wide-angle diffraction method is preferably, for example, 0.3354 nm or more, and more preferably 0.3357 nm or more. Further, it is preferably less than 0.340 nm, and more preferably 0.338 nm or less. The crystallite size (Lc (002)) of the graphite particles used in the present embodiment determined by the X-ray diffraction method is, for example, preferably 5 nm or more, more preferably 10 nm or more, and more preferably 10 nm or more. It is preferably 300 nm or less, and more preferably 200 nm or less. When the interplanar spacing (d 002 ) and the crystallite size (Lc (002)) satisfy the above ranges, the battery capacity of the secondary battery 10 tends to be larger than when the above ranges are not satisfied.
 黒鉛粒子は、例えば、以下のようにして作製することができる。主原料となるコークス(前駆体)を所定サイズに粉砕し、それらを凝集剤で凝集した後、さらにブロック状に加圧成形した状態で、2600℃以上の温度で焼成し、黒鉛化させる。黒鉛化後のブロック状の成形体を粉砕し、篩い分けることで、所望のサイズの黒鉛粒子を得る。ここで、粉砕後の前駆体の粒径や凝集させた状態の前駆体の粒径等によって、黒鉛粒子の内部空隙率を調整することができる。例えば、粉砕後の前駆体の平均粒径(体積換算のメジアン径D50、以下同じ)は、12μm~20μmの範囲であることが好ましい。また、ブロック状の成形体に添加される揮発成分の量によって、黒鉛粒子の内部空隙率を調整することもできる。コークス(前駆体)に添加される凝集剤の一部が焼成時に揮発する場合、凝集剤を揮発成分として用いることができる。そのような凝集剤としてピッチが例示される。 Graphite particles can be produced, for example, as follows. Coke (precursor), which is a main raw material, is crushed to a predetermined size, aggregated with a flocculant, and then fired at a temperature of 2600 ° C. or higher in a block-shaped pressure-molded state to be graphitized. The graphitized block-shaped molded product is pulverized and sieved to obtain graphite particles having a desired size. Here, the internal porosity of the graphite particles can be adjusted by adjusting the particle size of the pulverized precursor, the particle size of the agglomerated precursor, and the like. For example, the average particle size of the precursor after pulverization (median diameter D50 in terms of volume, the same applies hereinafter) is preferably in the range of 12 μm to 20 μm. Further, the internal porosity of the graphite particles can be adjusted by the amount of the volatile component added to the block-shaped molded product. When a part of the coagulant added to the coke (precursor) volatilizes during firing, the coagulant can be used as a volatile component. Pitch is exemplified as such a flocculant.
 また、黒鉛粒子は、例えば、以下のようにして作製してもよい。主原料となるコークス(前駆体)を所定サイズに粉砕し、それらをピッチ等の凝集剤で凝集させた状態で、2600℃以上の温度で焼成し、黒鉛化させた後、篩い分けることで、所望のサイズの黒鉛粒子を得ることができる。ここで、粉砕後の前駆体の粒径や凝集させた状態の前駆体の粒径等によって、黒鉛粒子の内部空隙率を調整することができる。例えば、粉砕後の前駆体の平均粒径は、12μm~20μmの範囲であることが好ましい。 Further, the graphite particles may be produced, for example, as follows. Coke (precursor), which is the main raw material, is crushed to a predetermined size, and in a state where they are agglomerated with a coagulant such as pitch, they are calcined at a temperature of 2600 ° C. or higher, graphitized, and then sieved. Graphite particles of the desired size can be obtained. Here, the internal porosity of the graphite particles can be adjusted by adjusting the particle size of the pulverized precursor, the particle size of the agglomerated precursor, and the like. For example, the average particle size of the precursor after pulverization is preferably in the range of 12 μm to 20 μm.
 水溶性高分子材料は、スラリーの増粘剤として作用する材料であることが好ましい。水溶性高分子材料は結着剤として作用してもよい。水溶性高分子材料としては、例えば、カルボキシメチルセルロース(CMC)又はその塩、ポリアクリル酸(PAA)又はその塩(PAA-Na、PAA-K等、また部分中和型の塩であってもよい)、ポリビニルアルコール(PVA)等が挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 The water-soluble polymer material is preferably a material that acts as a thickener for the slurry. The water-soluble polymeric material may act as a binder. The water-soluble polymer material may be, for example, carboxymethyl cellulose (CMC) or a salt thereof, polyacrylic acid (PAA) or a salt thereof (PAA-Na, PAA-K, etc., or a partially neutralized salt). ), Polyvinyl alcohol (PVA) and the like. These may be used alone or in combination of two or more.
 次に、図3を参照しつつ、負極合剤層32中の負極活物質及び水溶性高分子材料について説明する。図3(A)は、第1負極合剤層の断面の一例を示す模式図であり、図3(B)は、第2負極合剤層の一例を示す模式図である。図3(A)に示すように、第1負極合剤層32aは、第1負極活物質34a及び第1水溶性高分子材料36aを含む。また、図3(B)に示すように、第2負極合剤層32bは、第2負極活物質34b及び第2水溶性高分子材料36bを含む。第1負極活物質34aの粒子間空隙に存在する第1水溶性高分子材料36aの量(V1)に対する第1負極活物質34aの表面に存在する第1水溶性高分子材料36aの量(S1)の割合(S1/V1)は、第2負極活物質34bの粒子間空隙に存在する第2水溶性高分子材料36bの量(V2)に対する第2負極活物質34bの表面に存在する第2水溶性高分子材料36bの量(S2)の割合(S2/V2)よりも大きい。すなわち、第1負極合剤層32aでは第1水溶性高分子材料36aの多くは第1負極活物質34aの表面に存在し、第2負極合剤層32bでは第2水溶性高分子材料36bの多くは第2負極活物質34bの粒子間空隙に存在する。本構成により、負極集電体30と負極合剤層32との結着力を高めつつ、負極合剤層32の電解液の浸透性を改善できるので、電池の高レート充放電サイクル特性の低下を抑制することができる。また併せて、低レート充電サイクル特性の低下も抑制することができる。ここで、負極活物質の粒子間空隙又は負極活物質の表面に存在する水溶性高分子材料の量とは、負極合剤層32の断面を測定して求めた2次元値である。第1負極合剤層32a及び第2負極合剤層32bの各々について、以下の手順で、負極活物質の表面に存在する水溶性高分子材料及び負極活物質の粒子間空隙に存在する水溶性高分子材料を可視化することで、S1/V1とS2/V2との比較をすることができる。 Next, the negative electrode active material and the water-soluble polymer material in the negative electrode mixture layer 32 will be described with reference to FIG. FIG. 3A is a schematic view showing an example of a cross section of the first negative electrode mixture layer, and FIG. 3B is a schematic view showing an example of a second negative electrode mixture layer. As shown in FIG. 3A, the first negative electrode mixture layer 32a contains the first negative electrode active material 34a and the first water-soluble polymer material 36a. Further, as shown in FIG. 3B, the second negative electrode mixture layer 32b contains the second negative electrode active material 34b and the second water-soluble polymer material 36b. The amount of the first water-soluble polymer material 36a (S1) present on the surface of the first negative electrode active material 34a with respect to the amount (V1) of the first water-soluble polymer material 36a existing in the interparticle voids of the first negative electrode active material 34a. ) (S1 / V1) is the second negative electrode active material 34b present on the surface of the second negative electrode active material 34b with respect to the amount (V2) of the second water-soluble polymer material 36b present in the interparticle voids of the second negative electrode active material 34b. It is larger than the ratio (S2 / V2) of the amount (S2) of the water-soluble polymer material 36b. That is, in the first negative electrode mixture layer 32a, most of the first water-soluble polymer material 36a is present on the surface of the first negative electrode active material 34a, and in the second negative electrode mixture layer 32b, the second water-soluble polymer material 36b. Most of them are present in the interparticle voids of the second negative electrode active material 34b. With this configuration, it is possible to improve the permeability of the electrolytic solution of the negative electrode mixture layer 32 while increasing the binding force between the negative electrode current collector 30 and the negative electrode mixture layer 32, so that the high rate charge / discharge cycle characteristics of the battery can be deteriorated. It can be suppressed. At the same time, it is possible to suppress a decrease in low-rate charge cycle characteristics. Here, the amount of the water-soluble polymer material present in the interparticle voids of the negative electrode active material or on the surface of the negative electrode active material is a two-dimensional value obtained by measuring the cross section of the negative electrode mixture layer 32. For each of the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b, the water-soluble polymer material existing on the surface of the negative electrode active material and the water-soluble material existing in the interparticle voids of the negative electrode active material are performed by the following procedure. By visualizing the polymer material, it is possible to compare S1 / V1 and S2 / V2.
 <S1/V1及びS2/V2の測定方法>
 (1)負極合剤層の断面を露出させる。断面を露出させる方法としては、例えば、負極の一部を切り取り、イオンミリング装置(例えば、日立ハイテク社製、IM4000PLUS)で加工し、負極合剤層の断面を露出させる方法が挙げられる。
 (2)SEM-EDX(例えば、Bruker社製、Flat QUAD)を用いて、上記露出させた負極合剤層の断面において、水溶性高分子材料由来の元素についてマッピングを行い、第1負極合剤層32a及び第2負極合剤層32bのそれぞれについてその画像を撮影する。ここで、水溶性高分子材料由来の元素とは、水溶性高分子材料に含まれる特徴的な元素であり、例えば、水溶性高分子材料がCMCのNa塩であればNa元素をマッピングすることができる。負極合剤層の断面の測定条件は、例えば、以下の通りである。
  断面の拡大倍率:800倍
  電子の加速電圧:5kV
  エミッション電流:10μA
  プローブ電流:High
  コンデンサレンズ:1.0
  取り込み時間:180sec
 (3)第1負極合剤層32a及び第2負極合剤層32bの各々から得られた画像から、可能であれば目視によりS1/V1とS2/V2との比較を行ってもよいし、各々の画像に対して画像解析ソフト(例えば、アメリカ国立衛生研究所製、ImageJ)を用いて二値化処理を行ってS1/V1及びS2/V2を数値化して比較を行ってもよい。
<Measuring method of S1 / V1 and S2 / V2>
(1) The cross section of the negative electrode mixture layer is exposed. Examples of the method for exposing the cross section include a method in which a part of the negative electrode is cut out and processed with an ion milling device (for example, IM4000PLUS manufactured by Hitachi High-Tech) to expose the cross section of the negative electrode mixture layer.
(2) Using SEM-EDX (for example, Flat QUAD manufactured by Bruker), the elements derived from the water-soluble polymer material are mapped in the cross section of the exposed negative electrode mixture layer, and the first negative electrode mixture is prepared. Images of each of the layer 32a and the second negative electrode mixture layer 32b are taken. Here, the element derived from the water-soluble polymer material is a characteristic element contained in the water-soluble polymer material. For example, if the water-soluble polymer material is a Na salt of CMC, the Na element is mapped. Can be done. The measurement conditions for the cross section of the negative electrode mixture layer are as follows, for example.
Cross-section magnification: 800 times Electron acceleration voltage: 5 kV
Emission current: 10 μA
Probe current: High
Condenser lens: 1.0
Capture time: 180 sec
(3) If possible, S1 / V1 and S2 / V2 may be visually compared from the images obtained from each of the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b. Each image may be binarized using image analysis software (for example, ImageJ manufactured by the National Institutes of Health) to quantify S1 / V1 and S2 / V2 for comparison.
 第1負極活物質34aと第2負極活物質34bとは、同じであってもよい。また、第1水溶性高分子材料36aと第2水溶性高分子材料36bとは、同じであってもよい。第1負極合剤層32a及び第2負極合剤層32bに含まれる材料を共通化することで、コストを削減できる。また、第1負極合剤層32a及び第2負極合剤層32bに含まれる材料を共通化しても、後述するように第1負極合剤層32aと第2負極合剤層32bの製造方法を相違させることで、S1/V1>S2/V2の関係を満たすようにすることができる。 The first negative electrode active material 34a and the second negative electrode active material 34b may be the same. Further, the first water-soluble polymer material 36a and the second water-soluble polymer material 36b may be the same. By sharing the materials contained in the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b, the cost can be reduced. Further, even if the materials contained in the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b are shared, the method for producing the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b can be used as described later. By making the difference, the relationship of S1 / V1> S2 / V2 can be satisfied.
 第1負極活物質34a及び第2負極活物質34bの少なくともいずれか一方は、Si系材料を含んでもよい。Si系材料は、リチウムイオンを可逆的に吸蔵、放出できる材料であり、負極活物質として機能する。Si系材料としては、例えば、Si、Siを含む合金、SiO(Xは0.8~1.6)等のケイ素酸化物等が挙げられる。Si系材料は、負極活物質より電池容量を向上させることが可能な負極材料である。電池容量の向上、高レート充放電サイクル特性の低下抑制等の点から、第1負極活物質34a又は第2負極活物質34bにおけるSi系材料の含有量は、例えば、0.5質量%~10質量%であることが好ましく、3質量%~7質量%であることがより好ましい。 At least one of the first negative electrode active material 34a and the second negative electrode active material 34b may contain a Si-based material. The Si-based material is a material capable of reversibly occluding and releasing lithium ions, and functions as a negative electrode active material. Examples of the Si-based material include Si, an alloy containing Si, and a silicon oxide such as SiO X (X is 0.8 to 1.6). The Si-based material is a negative electrode material capable of improving the battery capacity as compared with the negative electrode active material. From the viewpoint of improving the battery capacity and suppressing the deterioration of the high rate charge / discharge cycle characteristics, the content of the Si-based material in the first negative electrode active material 34a or the second negative electrode active material 34b is, for example, 0.5% by mass to 10% by mass. It is preferably by mass%, more preferably 3% by mass to 7% by mass.
 次に、負極12の製造方法について説明する。負極12の製造方法は、第1負極活物質34a及び第1水溶性高分子材料36aを混錬して調製した第1負極合剤スラリーを負極集電体30の表面に塗布して第1負極合剤層32aを形成する第1負極合剤層形成ステップと、第2負極活物質34b及び第2水溶性高分子材料36bを混錬して調製した第2負極合剤スラリーを第1負極合剤層32aの表面に塗布して第2負極合剤層32bを形成する第2負極合剤層形成ステップと、を含む。 Next, a method for manufacturing the negative electrode 12 will be described. In the method of manufacturing the negative electrode 12, the first negative electrode mixture slurry prepared by kneading the first negative electrode active material 34a and the first water-soluble polymer material 36a is applied to the surface of the negative electrode current collector 30 to apply the first negative electrode. The first negative electrode mixture is prepared by kneading the first negative electrode mixture layer forming step for forming the mixture layer 32a and the second negative electrode active material 34b and the second water-soluble polymer material 36b. It includes a second negative electrode mixture layer forming step of applying to the surface of the agent layer 32a to form the second negative electrode mixture layer 32b.
 第1負極合剤スラリーは、例えば、以下のようにして調製することができる。
 (1)第1負極活物質34aと、第1水溶性高分子材料36aとを混合して第1混合物を作製する。
 (2)第1混合物に、溶媒を適量投入し、混錬する。溶媒は、例えば、水である。また、投入する溶媒の量は、第1負極活物質34a及び第1水溶性高分子材料36aの総量に対して、例えば、10質量%~30質量%である。
 (3)第1混合物にスチレン-ブタジエン共重合体ゴム(SBR)等の結着剤を投入する。さらに、第1混合物を撹拌し、第1負極合剤スラリーを調整する。
The first negative electrode mixture slurry can be prepared, for example, as follows.
(1) The first negative electrode active material 34a and the first water-soluble polymer material 36a are mixed to prepare a first mixture.
(2) An appropriate amount of solvent is added to the first mixture and kneaded. The solvent is, for example, water. The amount of the solvent to be added is, for example, 10% by mass to 30% by mass with respect to the total amount of the first negative electrode active material 34a and the first water-soluble polymer material 36a.
(3) A binder such as styrene-butadiene copolymer rubber (SBR) is added to the first mixture. Further, the first mixture is stirred to prepare the first negative electrode mixture slurry.
 第2負極合剤スラリーは、例えば、以下のようにして調製することができる。
 (1)第2水溶性高分子材料36bと溶媒とを混合して、第2混合物を作製する。溶媒は、例えば、水である。また、溶媒の量は、第2水溶性高分子材料36b及び次に投入する第2負極活物質34bの総量に対して、例えば、40質量%~60質量%である。
 (2)第2混合物に第2負極活物質34bを投入する。
 (3)第2混合物を混錬する。混錬中に適宜溶媒を追加投入してもよい。
 (4)第2混合物に結着剤を投入する。さらに、第2混合物を撹拌し、第2負極合剤スラリーを調整する。
The second negative electrode mixture slurry can be prepared, for example, as follows.
(1) The second water-soluble polymer material 36b and the solvent are mixed to prepare a second mixture. The solvent is, for example, water. The amount of the solvent is, for example, 40% by mass to 60% by mass with respect to the total amount of the second water-soluble polymer material 36b and the second negative electrode active material 34b to be added next.
(2) The second negative electrode active material 34b is added to the second mixture.
(3) The second mixture is kneaded. A solvent may be additionally added as appropriate during kneading.
(4) Add the binder to the second mixture. Further, the second mixture is stirred to prepare the second negative electrode mixture slurry.
 第1負極合剤スラリーを混錬する際のせん断力は、第2負極合剤スラリーを混錬する際のせん断力よりも大きい。これにより、第2負極合剤層32bでは第2水溶性高分子材料36bが第2負極活物質34bの粒子間空隙に多く配置され、第1負極合剤層32aでは第1水溶性高分子材料36aが第1負極活物質34aの表面に多く配置される。本構成によれば、電解液に接する外表面側の第2負極合剤層の電解液の浸透性と第1負極合剤層と負極集電体30の密着性が改善されるため、二次電池10の高レート充放電サイクル特性の低下が抑制される。第1負極合剤層32a及び第2負極合剤層32bの少なくとも一方に充放電に伴う膨張収縮の大きいSi系材料が含まれる場合、上記の効果は顕著に発揮される。なお、本開示において、「混錬」とは、負極活物質、水溶性高分子、及び溶媒を含む混合物をせん断力を加えるように混ぜることをいう。 The shear force when kneading the first negative electrode mixture slurry is larger than the shear force when kneading the second negative electrode mixture slurry. As a result, in the second negative electrode mixture layer 32b, a large amount of the second water-soluble polymer material 36b is arranged in the interparticle voids of the second negative electrode active material 34b, and in the first negative electrode mixture layer 32a, the first water-soluble polymer material A large amount of 36a is arranged on the surface of the first negative electrode active material 34a. According to this configuration, the permeability of the electrolytic solution of the second negative electrode mixture layer on the outer surface side in contact with the electrolytic solution and the adhesion between the first negative electrode mixture layer and the negative electrode current collector 30 are improved, so that the secondary is secondary. The deterioration of the high rate charge / discharge cycle characteristics of the battery 10 is suppressed. When at least one of the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b contains a Si-based material having a large expansion and contraction due to charging and discharging, the above effect is remarkably exhibited. In the present disclosure, "kneading" means mixing a mixture containing a negative electrode active material, a water-soluble polymer, and a solvent so as to apply a shearing force.
 その後、負極集電体30の両面に、第1負極合剤スラリーを塗布、乾燥した後(第1負極合剤層形成ステップ)、第1負極合剤層32a上に、第2負極合剤スラリーを両面に塗布、乾燥する(第2負極合剤層形成ステップ)。さらに、圧延ローラにより第1負極合剤層32a及び第2負極合剤層32bを圧延することで負極合剤層32を形成することができる。第2負極合剤スラリーは、乾燥前の第1負極合剤層32a上に塗布することもできる。 Then, the first negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 30 and dried (first negative electrode mixture layer forming step), and then the second negative electrode mixture slurry is placed on the first negative electrode mixture layer 32a. Is applied to both sides and dried (second negative electrode mixture layer forming step). Further, the negative electrode mixture layer 32 can be formed by rolling the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b with a rolling roller. The second negative electrode mixture slurry can also be applied onto the first negative electrode mixture layer 32a before drying.
 [正極]
 正極11は、例えば金属箔等の正極集電体と、正極集電体上に形成された正極合剤層とで構成される。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合剤層は、例えば、正極活物質、結着剤、導電剤等を含む。
[Positive electrode]
The positive electrode 11 is composed of a positive electrode current collector such as a metal foil and a positive electrode mixture layer formed on the positive electrode current collector. As the positive electrode current collector, a metal foil such as aluminum that is stable in the potential range of the positive electrode, a film in which the metal is arranged on the surface layer, or the like can be used. The positive electrode mixture layer contains, for example, a positive electrode active material, a binder, a conductive agent, and the like.
 正極11は、例えば、正極活物質、結着剤、導電剤等を含む正極合剤スラリーを正極集電体上に塗布、乾燥して正極合剤層を形成した後、この正極合剤層を圧延することにより作製できる。 For the positive electrode 11, for example, a positive electrode mixture slurry containing a positive electrode active material, a binder, a conductive agent, etc. is applied onto a positive electrode current collector and dried to form a positive electrode mixture layer, and then the positive electrode mixture layer is applied. It can be produced by rolling.
 正極活物質としては、Co、Mn、Ni等の遷移金属元素を含有するリチウム遷移金属酸化物が例示できる。リチウム遷移金属酸化物は、例えばLiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-y、LiNi1-y、LiMn、LiMn2-y、LiMPO、LiMPOF(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)である。これらは、1種単独で用いてもよいし、複数種を混合して用いてもよい。非水電解質二次電池の高容量化を図ることができる点で、正極活物質は、LiNiO、LiCoNi1-y、LiNi1-y(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)等のリチウムニッケル複合酸化物を含むことが好ましい。 Examples of the positive electrode active material include lithium transition metal oxides containing transition metal elements such as Co, Mn, and Ni. Lithium transition metal oxides, for example, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x Co y Ni 1-y O 2, Li x Co y M 1-y O z, Li x Ni 1- y M y O z, Li x Mn 2 O 4, Li x Mn 2-y M y O 4, LiMPO 4, Li 2 MPO 4 F (M; Na, Mg, Sc, Y, Mn, Fe, Co, Ni , Cu, Zn, Al, Cr, Pb, Sb, B, 0 <x ≦ 1.2, 0 <y ≦ 0.9, 2.0 ≦ z ≦ 2.3). These may be used alone or in admixture of a plurality of types. In that it can increase the capacity of the nonaqueous electrolyte secondary battery, the positive electrode active material, Li x NiO 2, Li x Co y Ni 1-y O 2, Li x Ni 1-y M y O z ( M; At least one of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B, 0 <x≤1.2, 0 <y≤0. It is preferable to contain a lithium nickel composite oxide such as 9.9, 2.0 ≦ z ≦ 2.3).
 導電剤は、例えば、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、黒鉛等のカーボン系粒子などが挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the conductive agent include carbon-based particles such as carbon black (CB), acetylene black (AB), Ketjen black, and graphite. These may be used alone or in combination of two or more.
 結着剤は、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂などが挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the binder include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, and polyolefin resins. These may be used alone or in combination of two or more.
 [セパレータ]
 セパレータ13には、例えば、イオン透過性及び絶縁性を有する多孔性シート等が用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロースなどが好適である。セパレータ13は、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、セパレータ13の表面にアラミド系樹脂、セラミック等の材料が塗布されたものを用いてもよい。
[Separator]
For the separator 13, for example, a porous sheet having ion permeability and insulating property is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a non-woven fabric. As the material of the separator, olefin resins such as polyethylene and polypropylene, cellulose and the like are suitable. The separator 13 may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin. Further, a multilayer separator containing a polyethylene layer and a polypropylene layer may be used, or a separator 13 coated with a material such as an aramid resin or ceramic may be used.
[非水電解質]
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、液体電解質(電解液)に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。
[Non-aqueous electrolyte]
The non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent. The non-aqueous electrolyte is not limited to the liquid electrolyte (electrolyte solution), and may be a solid electrolyte using a gel polymer or the like. As the non-aqueous solvent, for example, esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and a mixed solvent of two or more of these can be used. The non-aqueous solvent may contain a halogen substituent in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン、γ-バレロラクトン等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル等の鎖状カルボン酸エステルなどが挙げられる。 Examples of the above esters include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and methylpropyl carbonate. , Ethylpropyl carbonate, chain carbonate such as methyl isopropyl carbonate, cyclic carboxylic acid ester such as γ-butyrolactone, γ-valerolactone, methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP), ethyl propionate, etc. Chain carboxylic acid ester and the like can be mentioned.
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテル類などが挙げられる。 Examples of the above ethers include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahexyl, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4. -Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxy toluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxy Chain ethers such as ethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, 1,1-dimethoxymethane, 1,1-diethoxyethane, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, etc. Kind and so on.
 上記ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステル等を用いることが好ましい。 As the halogen substituent, it is preferable to use a fluorinated cyclic carbonate such as fluoroethylene carbonate (FEC), a fluorinated chain carbonate, a fluorinated chain carboxylic acid ester such as methyl fluoropropionate (FMP), or the like. ..
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiAlCl、LiSCN、LiCFSO、LiCFCO、Li(P(C)F)、LiPF6-x(C2n+1(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)F)等のホウ酸塩類、LiN(SOCF、LiN(C2l+1SO)(C2m+1SO){l,mは1以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPFを用いることが好ましい。リチウム塩の濃度は、溶媒1L当り0.8~1.8molとすることが好ましい。 The electrolyte salt is preferably a lithium salt. Examples of the lithium salt, LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiCF 3 CO 2, Li (P (C 2 O 4) F 4), LiPF 6-x (C n F 2n + 1 ) x (1 <x <6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, lithium chloroborane, lithium lower aliphatic carboxylate, Li 2 B 4 O 7 , borates such as Li (B (C 2 O 4 ) F 2 ), LiN (SO 2 CF 3 ) 2 , LiN (C 1 F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) {l , M is an integer of 1 or more} and other imide salts. As the lithium salt, these may be used individually by 1 type, or a plurality of types may be mixed and used. Of these, LiPF 6 is preferably used from the viewpoint of ionic conductivity, electrochemical stability, and the like. The concentration of the lithium salt is preferably 0.8 to 1.8 mol per 1 L of the solvent.
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。 Hereinafter, the present disclosure will be further described with reference to Examples, but the present disclosure is not limited to these Examples.
 <実施例>
 [正極の作製]
 正極活物質として、アルミニウム含有ニッケルコバルト酸リチウム(LiNi0.88Co0.09Al0.03)を用いた。上記正極活物質が100質量部、導電剤としての黒鉛が1質量部、結着剤としてのポリフッ化ビニリデン粉末が0.9質量部となるよう混合し、さらにN-メチル-2-ピロリドン(NMP)を適量加えて、正極合剤スラリーを調製した。このスラリーをアルミニウム箔(厚さ15μm)からなる正極集電体の両面にドクターブレード法により塗布し、塗膜を乾燥した後、圧延ローラにより塗膜を圧延して、正極集電体の両面に正極合剤層が形成された正極を作製した。
<Example>
[Preparation of positive electrode]
Aluminum-containing lithium nickel cobalt oxide (LiNi 0.88 Co 0.09 Al 0.03 O 2 ) was used as the positive electrode active material. The positive electrode active material is mixed so as to be 100 parts by mass, graphite as a conductive agent is 1 part by mass, and polyvinylidene fluoride powder as a binder is 0.9 parts by mass, and further, N-methyl-2-pyrrolidone (NMP) is mixed. ) Was added in an appropriate amount to prepare a positive electrode mixture slurry. This slurry is applied to both sides of a positive electrode current collector made of aluminum foil (thickness 15 μm) by the doctor blade method, the coating film is dried, and then the coating film is rolled by a rolling roller to cover both sides of the positive electrode current collector. A positive electrode having a positive electrode mixture layer formed therein was produced.
 [負極の作製]
 まず、第1負極合剤スラリーを調製した。黒鉛粒子が95質量部、SiOが5質量部となるように混合し、これを負極活物質とした。100質量部の負極活物質と1質量部のカルボキシメチルセルロース(CMC)とを混合し、その混合物に20質量部の水を加えて混錬した。この混合物にさらに1質量部のスチレン-ブタジエン共重合体ゴム(SBR)を加えた後に撹拌して、第1負極合剤スラリーを調製した。
[Preparation of negative electrode]
First, a first negative electrode mixture slurry was prepared. Graphite particles were mixed so as to be 95 parts by mass and SiO was 5 parts by mass, and this was used as a negative electrode active material. 100 parts by mass of the negative electrode active material and 1 part by mass of carboxymethyl cellulose (CMC) were mixed, and 20 parts by mass of water was added to the mixture and kneaded. After further adding 1 part by mass of styrene-butadiene copolymer rubber (SBR) to this mixture, the mixture was stirred to prepare a first negative electrode mixture slurry.
 次に、第2負極合剤スラリーを調製した。まず、50質量部の水と1質量部のCMCとを混合し、その混合物に100質量部の負極活物質を投入して混錬した。この混合物にさらに1質量部のSBRを加えた後に撹拌して、第2負極合剤スラリーを調製した。第1負極合剤スラリーを混錬する際のせん断力は、第2負極合剤スラリーを混錬する際のせん断力よりも大きかった。 Next, a second negative electrode mixture slurry was prepared. First, 50 parts by mass of water and 1 part by mass of CMC were mixed, and 100 parts by mass of the negative electrode active material was added to the mixture and kneaded. A second negative electrode mixture slurry was prepared by further adding 1 part by mass of SBR to this mixture and then stirring the mixture. The shearing force when kneading the first negative electrode mixture slurry was larger than the shearing force when kneading the second negative electrode mixture slurry.
 第1負極合剤スラリーを銅箔からなる負極集電体の両面にドクターブレード法により塗布し、乾燥させて第1負極合剤層を形成した。さらに、第1負極合剤層上に、上記の第2負極合剤スラリーを塗布し、乾燥して第2負極合剤層を形成した。このとき、第1負極合剤スラリーと第2負極合剤スラリーの単位面積あたりの塗布質量比は5:5とした。圧延ローラにより第1負極合剤層及び第2負極合剤層を圧延して、負極を作製した。負極の断面を観察したところ、S1/V1>S2/V2であった。 The first negative electrode mixture slurry was applied to both sides of the negative electrode current collector made of copper foil by the doctor blade method and dried to form the first negative electrode mixture layer. Further, the above-mentioned second negative electrode mixture slurry was applied onto the first negative electrode mixture layer and dried to form a second negative electrode mixture layer. At this time, the coating mass ratio of the first negative electrode mixture slurry and the second negative electrode mixture slurry per unit area was set to 5: 5. The first negative electrode mixture layer and the second negative electrode mixture layer were rolled by a rolling roller to prepare a negative electrode. When the cross section of the negative electrode was observed, it was S1 / V1> S2 / V2.
 [非水電解質の作製] 
 エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)とを体積比で1:3となるように混合した100質量部の非水溶媒に、5質量部のビニレンカーボネート(VC)を添加し、LiPFを1.5mol/Lの濃度で溶解し、これを非水電解質とした。
[Preparation of non-aqueous electrolyte]
5 parts by mass of vinylene carbonate (VC) was added to 100 parts by mass of a non-aqueous solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed so as to have a volume ratio of 1: 3, and LiPF 6 Was dissolved at a concentration of 1.5 mol / L, and this was used as a non-aqueous electrolyte.
 [非水電解質二次電池の作製]
(1)正極集電体に正極リードを取り付け、負極集電体に負極リードを取り付けた後、正極と負極との間に、ポリエチレン製微多孔膜からなるセパレータを介して巻回し、巻回型の電極体を作製した。
(2)電極体の上下に絶縁板をそれぞれ配置し、負極リードを外装体に溶接し、正極リードを封口体に溶接して、電極体を外装体内に収容した。
(3)外装体内に非水電解質を減圧方式により注入した後、外装体の開口端部をガスケットを介して封口体で封止し、これを非水電解質二次電池とした。
[Manufacturing of non-aqueous electrolyte secondary battery]
(1) A positive electrode lead is attached to a positive electrode current collector, a negative electrode lead is attached to a negative electrode current collector, and then a separator made of a polyethylene microporous film is wound between the positive electrode and the negative electrode to form a winding type. The electrode body of was prepared.
(2) Insulating plates were arranged above and below the electrode body, the negative electrode lead was welded to the exterior body, the positive electrode lead was welded to the sealing body, and the electrode body was housed in the exterior body.
(3) After injecting the non-aqueous electrolyte into the exterior body by a decompression method, the open end of the exterior body was sealed with a sealing body via a gasket, and this was used as a non-aqueous electrolyte secondary battery.
 <比較例1>
 第1負極合剤スラリーを用いて第2負極合剤層を形成したこと以外は実施例と同様にした。
<Comparative example 1>
The same procedure as in the Examples was carried out except that the second negative electrode mixture layer was formed using the first negative electrode mixture slurry.
 <比較例2>
 第2負極合剤スラリーを用いて第1負極合剤層を形成したこと以外は実施例と同様にした。
<Comparative example 2>
The same procedure as in the Examples was carried out except that the first negative electrode mixture layer was formed using the second negative electrode mixture slurry.
 <比較例3>
 第2負極合剤スラリーを用いて第1負極合剤層を形成し、第1負極合剤スラリーを用いて第2負極合剤層を形成したこと以外は実施例と同様にした。
<Comparative example 3>
The same procedure as in the Examples was carried out except that the first negative electrode mixture layer was formed using the second negative electrode mixture slurry and the second negative electrode mixture layer was formed using the first negative electrode mixture slurry.
 [高レートサイクルにおける容量維持率の測定]
 環境温度25℃の下、各実施例及び各比較例の非水電解質二次電池を、1C(4600mA)で、4.2Vまで定電流充電した後、4.2Vで、1/50Cまで定電圧充電した。その後、0.5Cで、2.5Vまで定電流放電した。この充放電を1サイクルとして、100サイクル行った。以下の式により、各実施例及び各比較例の非水電解質二次電池の高レートサイクルにおける容量維持率を求めた。
 容量維持率=(100サイクル目の放電容量/1サイクル目の放電容量)×100
[Measurement of capacity retention rate in high rate cycle]
Under an environmental temperature of 25 ° C., the non-aqueous electrolyte secondary batteries of each example and each comparative example were charged at 1 C (4600 mA) with a constant current up to 4.2 V, and then at 4.2 V with a constant voltage up to 1/50 C. Charged. Then, at 0.5C, a constant current was discharged to 2.5V. This charging / discharging was regarded as one cycle, and 100 cycles were performed. The capacity retention rate of the non-aqueous electrolyte secondary battery of each Example and each Comparative Example in the high rate cycle was determined by the following formula.
Capacity retention rate = (Discharge capacity in the 100th cycle / Discharge capacity in the 1st cycle) x 100
 [初期低レートサイクルにおける容量維持率の測定]
 環境温度25℃の下、各実施例及び各比較例の非水電解質二次電池を、0.3C(1380mA)で、4.2Vまで定電流充電した後、4.2Vで、1/50Cまで定電圧充電した。その後、0.5Cで、2.5Vまで定電流放電した。この充放電を1サイクルとして、50サイクル行った。以下の式により、各実施例及び各比較例の非水電解質二次電池の高レート充放電サイクルにおける容量維持率を求めた。
 容量維持率=(50サイクル目の放電容量/1サイクル目の放電容量)×100
[Measurement of capacity retention rate in initial low rate cycle]
Under an environmental temperature of 25 ° C., the non-aqueous electrolyte secondary batteries of each example and each comparative example were charged at 0.3 C (1380 mA) at a constant current to 4.2 V, and then charged at 4.2 V to 1/50 C. It was charged at a constant voltage. Then, at 0.5C, a constant current was discharged to 2.5V. This charge / discharge was regarded as one cycle, and 50 cycles were performed. The capacity retention rate in the high-rate charge / discharge cycle of the non-aqueous electrolyte secondary battery of each Example and each Comparative Example was determined by the following formula.
Capacity retention rate = (Discharge capacity in the 50th cycle / Discharge capacity in the 1st cycle) x 100
 [低レート充放電サイクルにおける容量維持率の測定]
 環境温度25℃の下、各実施例及び各比較例の非水電解質二次電池を、0.3C(1380mA)で、4.2Vまで定電流充電した後、4.2Vで、1/50Cまで定電圧充電した。その後、0.5Cで、2.5Vまで定電流放電した。この充放電を1サイクルとして、500サイクル行った。以下の式により、各実施例及び各比較例の非水電解質二次電池の高レート充放電サイクルにおける容量維持率を求めた。
 容量維持率=(500サイクル目の放電容量/1サイクル目の放電容量)×100
[Measurement of capacity retention rate in low-rate charge / discharge cycle]
Under an environmental temperature of 25 ° C., the non-aqueous electrolyte secondary batteries of each example and each comparative example were charged at 0.3 C (1380 mA) at a constant current to 4.2 V, and then charged at 4.2 V to 1/50 C. It was charged at a constant voltage. Then, at 0.5C, a constant current was discharged to 2.5V. This charge / discharge was regarded as one cycle, and 500 cycles were performed. The capacity retention rate in the high-rate charge / discharge cycle of the non-aqueous electrolyte secondary battery of each Example and each Comparative Example was determined by the following formula.
Capacity retention rate = (Discharge capacity in the 500th cycle / Discharge capacity in the 1st cycle) x 100
 表1に、実施例及び比較例の非水電解質二次電池の各種充放電サイクルにおける容量維持率の結果をまとめた。なお、充放電サイクルにおける容量維持率の値が高いほど、充放電サイクル特性の低下が抑制されたことを示している。 Table 1 summarizes the results of capacity retention rates in various charge / discharge cycles of the non-aqueous electrolyte secondary batteries of Examples and Comparative Examples. The higher the value of the capacity retention rate in the charge / discharge cycle, the more the deterioration of the charge / discharge cycle characteristics was suppressed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例の二次電池は、いずれのサイクル試験においても比較例の二次電池に比べて容量維持率が高く、特に高レート充放電サイクル特性が比較例に比べて良かった。これは、実施例の負極合剤層において、電解液に接する外表面側の層は電解液の浸透性が改善され、負極集電体と接する内部側の層は負極集電体との密着性が改善されたためと考えられる。 The secondary battery of the example had a higher capacity retention rate than the secondary battery of the comparative example in any cycle test, and the high rate charge / discharge cycle characteristic was particularly good as compared with the comparative example. This is because, in the negative electrode mixture layer of the example, the outer surface side layer in contact with the electrolytic solution has improved permeability of the electrolytic solution, and the inner layer in contact with the negative electrode current collector has adhesion to the negative electrode current collector. Is considered to have been improved.
 10 二次電池、11 正極、12 負極、13 セパレータ、14 電極体、15 外装体、16 封口体、17,18 絶縁板、19 正極リード、20 負極リード、21 溝入部、22 フィルタ、23 下弁体、24 絶縁部材、25 上弁体、26 キャップ、26a 開口部、27 ガスケット、30 負極集電体、32 負極合剤層、32a 第1負極合剤層、32b 第2負極合剤層、34a 第1負極活物質、34b 第2負極活物質、36a 第1水溶性高分子材料、36b 第2水溶性高分子材料 10 secondary battery, 11 positive electrode, 12 negative electrode, 13 separator, 14 electrode body, 15 exterior body, 16 sealing body, 17, 18 insulating plate, 19 positive electrode lead, 20 negative electrode lead, 21 grooved part, 22 filter, 23 lower valve Body, 24 insulating member, 25 upper valve body, 26 cap, 26a opening, 27 gasket, 30 negative electrode current collector, 32 negative electrode mixture layer, 32a first negative electrode mixture layer, 32b second negative electrode mixture layer, 34a 1st negative electrode active material, 34b 2nd negative electrode active material, 36a 1st water-soluble polymer material, 36b 2nd water-soluble polymer material

Claims (4)

  1.  負極集電体と、前記負極集電体の表面に設けられた第1負極合剤層と、前記第1負極合剤層の表面に設けられた第2負極合剤層と、を備え、
     前記第1負極合剤層は、第1負極活物質及び第1水溶性高分子材料を含み、
     前記第2負極合剤層は、第2負極活物質及び第2水溶性高分子材料を含み、
     前記第1負極活物質の粒子間空隙に存在する前記第1水溶性高分子材料の量(V1)に対する前記第1負極活物質の表面に存在する前記第1水溶性高分子材料の量(S1)の割合(S1/V1)は、前記第2負極活物質の粒子間空隙に存在する前記第2水溶性高分子材料の量(V2)に対する前記第2負極活物質の表面に存在する前記第2水溶性高分子材料の量(S2)の割合(S2/V2)よりも大きい、非水電解質二次電池用負極。
    A negative electrode current collector, a first negative electrode mixture layer provided on the surface of the negative electrode current collector, and a second negative electrode mixture layer provided on the surface of the first negative electrode mixture layer are provided.
    The first negative electrode mixture layer contains a first negative electrode active material and a first water-soluble polymer material.
    The second negative electrode mixture layer contains a second negative electrode active material and a second water-soluble polymer material.
    The amount of the first water-soluble polymer material (S1) present on the surface of the first negative electrode active material with respect to the amount (V1) of the first water-soluble polymer material present in the interparticle voids of the first negative electrode active material. ) Is the ratio (S1 / V1) of the second negative electrode active material present on the surface of the second negative electrode active material with respect to the amount (V2) of the second water-soluble polymer material present in the interparticle voids of the second negative electrode active material. 2 A negative electrode for a non-aqueous electrolyte secondary battery, which is larger than the ratio (S2 / V2) of the amount of the water-soluble polymer material (S2).
  2.  前記第1負極活物質及び前記第2負極活物質の少なくともいずれか一方は、Si系材料を含み、前記Si系材料の含有量は、前記Si系材料を含む前記第1負極活物質又は前記第2負極活物質の質量に対して、0.5質量%~10質量%である、請求項1に記載の非水電解質二次電池用負極。 At least one of the first negative electrode active material and the second negative electrode active material contains a Si-based material, and the content of the Si-based material is the first negative electrode active material containing the Si-based material or the first negative electrode active material. 2. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, which is 0.5% by mass to 10% by mass with respect to the mass of the negative electrode active material.
  3.  請求項1又は2に記載の非水電解質二次電池用負極と、
     正極と、
     非水電解質と、を備える、非水電解質二次電池。
    The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1 or 2.
    With the positive electrode
    A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte.
  4.  第1負極活物質及び第1水溶性高分子材料を混錬して調製した第1負極合剤スラリーを負極集電体の表面に塗布して第1負極合剤層を形成する第1負極合剤層形成ステップと、
     第2負極活物質及び第2水溶性高分子材料を混錬して調製した第2負極合剤スラリーを前記第1負極合剤層の表面に塗布して第2負極合剤層を形成する第2負極合剤層形成ステップと、を含み、
     前記第1負極合剤スラリーを混錬する際のせん断力は、前記第2負極合剤スラリーを混錬する際のせん断力よりも大きい、非水電解質二次電池用負極の製造方法。
    A first negative electrode mixture formed by applying a first negative electrode mixture slurry prepared by kneading a first negative electrode active material and a first water-soluble polymer material to the surface of a negative electrode current collector to form a first negative electrode mixture layer. The agent layer formation step and
    A second negative electrode mixture slurry prepared by kneading a second negative electrode active material and a second water-soluble polymer material is applied to the surface of the first negative electrode mixture layer to form a second negative electrode mixture layer. 2 Including the negative electrode mixture layer forming step and
    A method for producing a negative electrode for a non-aqueous electrolyte secondary battery, wherein the shearing force when kneading the first negative electrode mixture slurry is larger than the shearing force when kneading the second negative electrode mixture slurry.
PCT/JP2020/043101 2019-11-29 2020-11-19 Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary batteries WO2021106727A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021561351A JPWO2021106727A1 (en) 2019-11-29 2020-11-19
CN202080081304.9A CN114730854A (en) 2019-11-29 2020-11-19 Negative electrode for nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary battery
US17/778,998 US20220416245A1 (en) 2019-11-29 2020-11-19 Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-217518 2019-11-29
JP2019217518 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021106727A1 true WO2021106727A1 (en) 2021-06-03

Family

ID=76128682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043101 WO2021106727A1 (en) 2019-11-29 2020-11-19 Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary batteries

Country Status (4)

Country Link
US (1) US20220416245A1 (en)
JP (1) JPWO2021106727A1 (en)
CN (1) CN114730854A (en)
WO (1) WO2021106727A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125955A (en) * 1997-07-07 1999-01-29 Fuji Photo Film Co Ltd Electrode sheet and non-aqueous electrolyte secondary battery using the same
JP2013058362A (en) * 2011-09-07 2013-03-28 Toyota Motor Corp Method for manufacturing electrode for secondary battery
JP2015153658A (en) * 2014-02-17 2015-08-24 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery, and negative electrode for the same
WO2019167613A1 (en) * 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
JP2019179724A (en) * 2018-03-30 2019-10-17 三洋電機株式会社 Secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125955A (en) * 1997-07-07 1999-01-29 Fuji Photo Film Co Ltd Electrode sheet and non-aqueous electrolyte secondary battery using the same
JP2013058362A (en) * 2011-09-07 2013-03-28 Toyota Motor Corp Method for manufacturing electrode for secondary battery
JP2015153658A (en) * 2014-02-17 2015-08-24 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery, and negative electrode for the same
WO2019167613A1 (en) * 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
JP2019179724A (en) * 2018-03-30 2019-10-17 三洋電機株式会社 Secondary battery

Also Published As

Publication number Publication date
CN114730854A (en) 2022-07-08
US20220416245A1 (en) 2022-12-29
JPWO2021106727A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP7319265B2 (en) Non-aqueous electrolyte secondary battery
WO2021132114A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US20220131131A1 (en) Non-aqueous electrolyte secondary battery
US11005090B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP7336736B2 (en) Non-aqueous electrolyte secondary battery
WO2021117480A1 (en) Non-aqueous electrolyte secondary battery
JP7358228B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
WO2021106730A1 (en) Non-aqueous electrolyte secondary battery
WO2021111931A1 (en) Nonaqueous electrolyte secondary battery
JP7233013B2 (en) Non-aqueous electrolyte secondary battery
WO2022070818A1 (en) Negative electrode for secondary batteries, and secondary battery
JP7358229B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
JP7361340B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
JP7361339B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
WO2021106727A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary batteries
WO2021117615A1 (en) Nonaqueous electrolyte secondary battery
WO2021117748A1 (en) Nonaqueous electrolyte secondary battery
WO2021261358A1 (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2024004836A1 (en) Non-aqueous electrolyte secondary battery
WO2022158375A1 (en) Non-aqueous electrolyte secondary battery
WO2021111930A1 (en) Non-aqueous electrolyte secondary cell
WO2021111932A1 (en) Nonaqueous electrolyte secondary battery
WO2023157746A1 (en) Non-aqueous electrolyte secondary battery
WO2023171564A1 (en) Nonaqueous electrolytic solution secondary battery
WO2023203952A1 (en) Positive electrode active material and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561351

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893495

Country of ref document: EP

Kind code of ref document: A1