WO2021106347A1 - Heat-exchanger tube - Google Patents

Heat-exchanger tube Download PDF

Info

Publication number
WO2021106347A1
WO2021106347A1 PCT/JP2020/036509 JP2020036509W WO2021106347A1 WO 2021106347 A1 WO2021106347 A1 WO 2021106347A1 JP 2020036509 W JP2020036509 W JP 2020036509W WO 2021106347 A1 WO2021106347 A1 WO 2021106347A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
inner fin
outer tube
max
tube
Prior art date
Application number
PCT/JP2020/036509
Other languages
French (fr)
Japanese (ja)
Inventor
伸洋 本間
詔悟 山田
勇樹 寺本
外山 猛敏
陽介 内多
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020148188A external-priority patent/JP2021089131A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021106347A1 publication Critical patent/WO2021106347A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal

Definitions

  • This disclosure relates to heat exchanger tubes.
  • Patent Document 1 Conventionally, there is a sheet material described in Patent Document 1 below.
  • the sheet material described in Patent Document 1 is used as a tube through which cooling water flows in a radiator, a heater core, or the like.
  • the tube has a core material made of an aluminum alloy.
  • the outer surface of the core material is covered with a brazing material, and a sacrificial layer is formed on the inner surface of the core material.
  • the sacrificial layer is made of a material that is potentially lower than the core material, specifically, an aluminum alloy containing Zn (zinc) in a predetermined ratio.
  • the potential here indicates "pitting potential".
  • the sacrificial layer is preferentially corroded over the core material, so that the corrosion of the core material is less likely to proceed. As a result, the corrosion resistance of the tube can be improved.
  • the thickness of the core material is increased, even if Zn contained in the sacrificial layer diffuses into the core material, it becomes easier to maintain the potential difference between the core material and the sacrificial layer, thus ensuring corrosion resistance. It is possible. However, if the thickness of the core material is increased, there is a concern that it becomes difficult to reduce the weight of the heat exchanger.
  • the purpose of the present disclosure is to provide a tube of a heat exchanger that can be thinned and can ensure corrosion resistance.
  • the tube of the heat exchanger includes an outer tube through which cooling water flows, and an inner fin provided inside the outer tube.
  • the potential of the lowest part of the inner fin is lower than the potential of the most precious part of the core material of the outer tube.
  • a brazing material layer is provided on at least one of the surface layer of the inner surface of the outer tube and the surface layer of the inner fin.
  • the inner fin since the inner fin is potentially based with respect to the outer tube, the inner fin is more likely to corrode than the outer tube. Therefore, since the inner fin substantially functions as a sacrificial anode material, the corrosion resistance of the outer tube can be ensured. Further, if the inner fin substantially functions as a sacrificial anode material, it is not necessary to form a sacrificial layer at least on the inner surface of the core material of the outer tube. As a result, it is not necessary to increase the thickness of the core material of the outer tube in order to secure the potential difference between the sacrificial layer and the core material, so that the outer tube can be thinned.
  • FIG. 1 is a block diagram showing a schematic configuration of a heat exchanger.
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure taken along the line II-II of FIG.
  • FIG. 3 is a graph showing the relationship between each portion of the outer tube and the inner fin of the first embodiment and the electric potential.
  • FIG. 4 is a chart showing the results of experiments conducted by the inventors.
  • FIG. 5 is a chart showing a configuration example of the outer tube and the inner fin of the second embodiment.
  • FIG. 6 is a chart showing the results of other experiments conducted by the inventors.
  • FIG. 7 is a cross-sectional view showing the cross-sectional structures of the outer tube and the inner fin of the reference example.
  • FIG. 8 is a cross-sectional view showing the cross-sectional structures of the outer tube and the inner fin of the third embodiment.
  • FIG. 9 is a chart showing the results of other experiments conducted by the inventors.
  • FIG. 10 is a chart showing the results of other experiments conducted by the inventors.
  • FIG. 11 is a chart showing the results of other experiments conducted by the inventors.
  • the tube of the heat exchanger 10 of the present embodiment includes a plurality of tubes 20, a plurality of outer fins 30, and tanks 40 and 41.
  • the tube 20 has an outer tube 21 and an inner fin 22.
  • the outer tube 21 is made of a member having a flat tubular shape having a cross-sectional shape orthogonal to the direction indicated by the arrow X.
  • the outer tubes 21 of the plurality of tubes 20 are stacked and arranged at predetermined intervals in the direction indicated by the arrow Z in the drawing.
  • the outer tube 21 is formed so as to extend in the direction indicated by the arrow X in the drawing. Cooling water is flowing inside the outer tube 21. Air flows in the direction indicated by the arrow Y in the gap between the adjacent outer tubes 21 and 21.
  • the inner fin 22 is arranged inside the outer tube 21.
  • the inner fin 22 is a so-called corrugated fin formed by bending a thin metal plate in a wavy shape.
  • the tip of the bent portion of the inner fin 22 is joined to the inner surface 21a of the outer tube 21 by brazing.
  • the inner fin 22 is provided to increase the heat transfer area for the cooling water flowing inside the outer tube 21.
  • the outer fins 30 are arranged in the gap between the adjacent outer tubes 21 and 21.
  • the outer fin 30 is also a corrugated fin like the inner fin 22.
  • the tip of the bent portion of the outer fin 30 is joined to the outer surface of the outer tube 21 by brazing.
  • the outer fins 30 are provided to increase the heat transfer area for the air flowing between the adjacent outer tubes 21 and 21.
  • the tank 40 is connected to one end of each of the plurality of outer tubes 21.
  • the tank 41 is connected to the other end of each of the plurality of outer tubes 21.
  • the tanks 40 and 41 are formed in a tubular shape.
  • the tanks 40 and 41 function as a portion for distributing the cooling water to the outer tubes 21 or as a portion for collecting the cooling water flowing through the outer tubes 21.
  • heat exchanger 10 heat exchange is performed between the cooling water flowing inside the outer tube 21 and the air flowing outside the outer tube 21. This makes it possible for the air to absorb the heat of the cooling water to cool the cooling water, and for the cooling water to absorb the heat of the air to heat the cooling water.
  • the outer tube 21 of the present embodiment has a structure having a sacrificial layer 211 on the outer surface of the core material 210.
  • the core material 210 is made of an aluminum alloy.
  • the sacrificial layer 211 is made of a sacrificial anode material and is formed of an aluminum alloy containing a material that is potentially lower than the core material 210, for example, Zn in a predetermined ratio.
  • the sacrificial layer 211 makes it difficult for the core material 210 to corrode by preferentially corroding the core material 210.
  • the outer surface 21b of the outer tube 21 is susceptible to, for example, salt corrosion.
  • the corrosion resistance of the outer tube 21 on the outer surface side against salt damage corrosion and the like is enhanced.
  • the core material 210 is exposed on the inner surface 21a of the outer tube 21.
  • the inner fin 22 is made of a material that is potentially lower than the core material 210 of the outer tube 21, for example, an aluminum alloy containing Zn in a predetermined ratio. As a result, in an environment where the outer tube 21 is easily corroded by the cooling water, the inner fin 22 is preferentially corroded over the outer tube 21, so that the corrosion resistance on the inner surface 21a side of the outer tube 21 can be improved. it can.
  • the outer tube 21 has a brazing material layer on the inner surface 21a before the brazing step is performed in order to join the inner surface 21a of the outer tube 21 and the inner fin 22 to each other.
  • the brazing filler metal layer is made of, for example, an aluminum alloy containing Si (silicon) in a predetermined ratio.
  • the inventors experimentally determined the corroded state of the outer tube 21 when the potential difference between the core material 210 of the outer tube 21 and the inner fin 22 was changed.
  • the experimental results are as shown in FIG.
  • This experiment was conducted under the following conditions. First, an inner fin having a fin pitch of 3 [mm] was sandwiched between two outer tubes having a plate thickness of 300 [ ⁇ m], and subjected to brazing heat treatment at 600 [° C.] for 3 minutes. The surface of the outer tube opposite to the joint surface was masked with an insulating resin and used as a test sample. A sacrificial layer is formed on the outer surface of the core material of each outer tube, and no sacrificial layer is formed on the inner surface on the opposite side.
  • the corrosion resistance of the outer tube can be similarly ensured. It becomes.
  • the actions and effects shown in the following (1) to (3) can be obtained.
  • the potential of the lowest portion of the inner fin 22 is lower than the potential of the most noble portion of the core material 210 of the outer tube 21.
  • the corrosion resistance of the outer tube 21 can be ensured.
  • the inner fin 22 substantially functions as a sacrificial anode material it is not necessary to provide a sacrificial layer at least on the inner surface 21a of the outer tube 21. As a result, it is not necessary to increase the thickness of the core material 210 of the outer tube 21 in order to secure the potential difference between the sacrificial layer and the core material, so that the outer tube 21 can be thinned.
  • the tube 20 of the first embodiment has a brazing material layer on the inner surface 21a of the outer tube 21, and Zn is added to the core material of the inner fin 22.
  • the tube 20 of the present embodiment has a structure in which the inner fin 22 has a brazing material layer.
  • the outer tube 21 and the inner fin 22 of the present embodiment are configured by any of the patterns P1 to P6 shown in FIG. 5, for example.
  • the patterns P1 to P6 shown in FIG. 5 show the configurations of the outer tube 21 and the inner fin 22 before being joined by brazing.
  • an aluminum alloy is used for the portion described as "core material”
  • an aluminum alloy to which Zn is added is used for the portion described as "core material (Zn)”.
  • an aluminum alloy to which Si is added is used in the portion described as "brazing material layer”
  • Si and Zn are contained in the portion described as "brazing material layer (Zn)". The added aluminum alloy is used.
  • Patterns P1 and P2 show a case where a brazing material layer is formed on the surface layers 22a and 22b of the inner fin 22 shown in FIG. 3 and the core material 210 is exposed on the inner surface 21a of the outer tube 21.
  • the core material 210 of the outer tube 21 is the most precious.
  • the potential of the lowest part of the inner fin 22 is lower than the potential of the part.
  • the Zn of the brazing material layer is added to the inner fin during brazing. Since it diffuses into the core material of 22, the potential of the lowest part of the inner fin 22 is lower than the potential of the most precious part of the core material 210 of the outer tube 21.
  • Patterns P3 and P4 show a case where a brazing material layer is formed on the surface layers 22a and 22b of the inner fin 22, and a brazing material layer is also formed as a surface layer on the inner surface 21a of the outer tube 21.
  • a brazing material layer is also formed as a surface layer on the inner surface 21a of the outer tube 21.
  • Zn is added to both the core material of the inner fin 22 and the brazing material layer constituting the surface layers 22a and 22b as shown in the pattern P3
  • the core material 210 of the outer tube 21 is the most precious.
  • the potential of the lowest part of the inner fin 22 is lower than the potential of the part.
  • the Zn of the brazing material layer is added to the inner fin 22 during brazing. Since it diffuses into the core material of the outer tube 21, the potential of the lowest part of the inner fin 22 is lower than the potential of the most precious part of the core material 210 of the outer tube 21.
  • the pattern P5 shows a case where a brazing material layer is formed on the surface layers 22a and 22b of the inner fin 22 and the core material 210 is exposed on the inner surface 21a of the outer tube 21.
  • the pattern P6 shows a case where the brazing material layer is formed on the surface layers 22a and 22b of the inner fin 22 and the brazing material layer is also formed as the surface layer on the inner surface 21a of the outer tube 21.
  • the potential of the inner fin 22 is higher than the potential of the most precious part of the core material 210 of the outer tube 21. The potential of the lowest part is lower.
  • the inner fin 22 is closer to the inner fin 22 than the outer tube 21. Will preferentially corrode. Therefore, it is possible to obtain the same or similar action and effect as the tube 20 of the first embodiment.
  • the inner fin 22 is formed of a material that is potentially lower than the core material 210 of the outer tube 21, as in the tube 20 of the first embodiment shown in FIG. 3, the inner fin 22 is better than the outer tube 21. Is preferentially corroded, so that the corrosion resistance of the outer tube 21 can be improved.
  • the strength of the inner fin 22 is remarkably increased because the inside of the inner fin 22 is preferentially corroded over the surface layers 22a and 22b of the inner fin 22. It may decrease.
  • the outer tube 21 and the inner fin 22 are put into a furnace and heated. At that time, since the Zn existing in the surface layers 22a and 22b of the inner fin 22 evaporates, the content of Zn in the inner fin 22 is higher than the content of Zn in the surface layers 22a and 22b. easy. This means that the potential at the center of the inner fin 22 in the plate thickness direction is lower than the potential of the surface layers 22a and 22b of the inner fin 22.
  • the inside of the inner fin 22 is more than the surface layers 22a and 22b of the inner fin 22. Will corrode preferentially.
  • the distance that the inner fin 22 functions as the sacrificial anode material with respect to the outer tube 21 becomes longer. Therefore, when the inside of the inner fin 22 is preferentially corroded, as shown in FIG. 7, the inner fin 22 has a hollow structure in which the surface layers 22a and 22b remain while a space is formed inside the inner fin 22.
  • the strength thereof may be significantly reduced. Further, when the inner fin 22 divided into two pieces is damaged due to the decrease in strength, the damaged debris is included in the cooling water and flows. If the debris flows to the water pump that pumps the cooling water, the water pump may malfunction.
  • the potential of the center of the inner fin 22 in the plate thickness direction and the potential of the surface layer are set to the potential of the core material 210 of the outer tube 21.
  • the potential at the center of the inner fin 22 in the plate thickness direction is set to be equal to or higher than the potential of the surface layer of the inner fin 22.
  • the inventors have experimentally determined the corroded form of the inner fin 22.
  • a tube 20 having a structure as shown in FIG. 8 was used.
  • the outer tube 21 has a structure having a sacrificial layer 211 on the outer surface of the core material 210 and a brazing material layer 212 on the inner surface of the core material 210.
  • the inner fin 22 has a structure having a sacrificial layer on the surface layers 22a and 22b.
  • the structures of the outer tube 21 and the inner fin 22 shown in FIG. 8 show the respective structures before brazing.
  • the inventors have found that the potential Vt max of the most precious part of the core material 210 of the outer tube 21, the potential Vf cent of the center C of the inner fin 22 in the plate thickness direction, and the inner fin 22.
  • the corrosion form of the inner fin 22 when the potential Vf surf of the surface layers 22a and 22b was changed was determined by an experiment.
  • an outer tube 21 having a plate thickness Ha of "200 [ ⁇ m]” and an inner fin 22 having a plate thickness Hb of "100 [ ⁇ m]" were used.
  • Each plate thickness Ha and Hb is the plate thickness before brazing.
  • the outer tube 21 and the inner fin 22 are brazed, they are brazed via the brazing material layer 212 of the outer tube 21, so that the thickness of the brazing material layer 212 is slightly reduced. Specifically, the thickness of the brazing material layer 212 is about "20 [ ⁇ m]” before brazing, but decreases to about "10 [ ⁇ m]” after brazing.
  • FIG. 9 shows the experimental results when a 1000-series aluminum alloy (pure Al-based) was used as the core material 210 of the outer tube 21.
  • the corrosion resistance of the outer tube 21 and the corrosion morphology of the inner fin 22 were investigated while changing the potential difference “Vt max ⁇ Vf min ” and the potential difference “Vf cent ⁇ Vf surf”.
  • Vf cent- Vf surf is the difference between the potential Vf cent at the center C of the inner fin 22 in the plate thickness direction and the potential Vf surf of the surface layers 22a and 22b of the inner fin 22.
  • the potential difference "Vf cent- Vf surf " was varied in the range of "-20 [mV]", “0 [mV]”, and "20 [mV]".
  • the potential difference “Vt max ⁇ Vf min ” is the difference between the potential Vt max of the most noble portion of the core material 210 of the outer tube 21 and the potential Vf min of the lowest portion of the inner fin 22. For example, if the potential Vf cent of the center C in the plate thickness direction of the inner fin 22 is lower than the potential Vf surf of the surface layers 22a and 22b of the inner fin 22, the potential Vf min is the potential Vf cent . Further, if the potential Vf surf of the surface layers 22a and 22b of the inner fin 22 is lower than the potential Vf cent of the center C in the plate thickness direction of the inner fin 22, the potential Vf min is the potential Vf surf .
  • Vt max- Vf min The potential difference "Vt max- Vf min " is "50 [mV]", "80 [mV]", “100 [mV]”, “150 [mV]”, “200 [mV]”, “250 [mV]”. , "270 [mV]”, and "300 [mV]".
  • FIG. 10 shows the experimental results when a 3000 series aluminum alloy (Al—Mn type) is used instead of the 1000 series aluminum alloy (pure Al type) as the core material 210 of the outer tube 21.
  • Al—Mn type 3000 series aluminum alloy
  • pure Al type 1000 series aluminum alloy
  • FIG. 11 shows the experimental results when a 6000 series aluminum alloy (Al—Mg—Si system) is used instead of the 1000 series aluminum alloy (pure Al system) as the core material 210 of the outer tube 21. ..
  • the potential difference "Vt max- Vf min " must satisfy "Vt max- Vf min ⁇ 100 [mV]", but regarding "inner fin corrosion form", , The same experimental results as those shown in FIG. 9 were obtained.
  • the potential Vf cent of the center C in the plate thickness direction of the inner fin 22 and the surface layer 22a of the inner fin 22 may satisfy the following equation f8.
  • Vf cent- Vf surf ⁇ 20 [mV] (f10) According to the tube 20 of the heat exchanger 10 of the present embodiment described above, the actions and effects shown in the following (4) to (7) can be obtained.
  • (4) make the potential Vf cent of the center C of the inner fin 22 in the plate thickness direction and the potential Vf surf of the surface layers 22a and 22b of the inner fin 22 lower than the potential Vt max of the most precious part of the core material 210 of the outer tube 21. ..
  • the potential Vf cent at the center C of the inner fin 22 in the plate thickness direction and the potential Vf surf of the surface layers 22a and 22b of the inner fin 22 satisfy the above equation f8. That is, the potential Vf cent is set to the potential Vf surf or higher.
  • the corrosion resistance of the outer tube 21 can be ensured, and the hollow corrosion of the inner fin 22 can be suppressed.
  • the potential Vf cent at the center C of the inner fin 22 in the plate thickness direction and the potential Vf surf of the surface layers 22a and 22b of the inner fin 22 satisfy the above formula f4 or f5. According to this configuration, the corrosion resistance of the outer tube 21 can be further improved.
  • the potential Vf cent at the center C of the inner fin 22 in the plate thickness direction and the potential Vf surf of the surface layers 22a and 22b of the inner fin 22 satisfy the above formula f10. According to this configuration, it is possible to more preferably suppress the corrosion of the inner fin 22.
  • the potential Vf max of the most noble portion of the inner fin 22 and the potential Vt of the core material 210 of the outer tube 21 satisfy the above formula f9. According to this configuration, it is possible to more preferably suppress the corrosion of the inner fin 22.
  • the above embodiment can also be implemented in the following embodiments.
  • the sacrificial layer 211 may not be provided on the outer surface of the outer tube 21.
  • the outer surface is sacrificed.
  • the outer tube without the layer as shown in FIG. 6, the outer tube having a plate thickness of 200 [ ⁇ m] does not undergo corrosion penetration.
  • the corrosion depth of the outer tube is 100 [ ⁇ m] or less. Therefore, the plate thickness Ht of the outer tube 21 can be set within the range of the following equation f4, considering that the plate thickness that can tolerate a corrosion depth of 100 [ ⁇ m] is 120 [ ⁇ m]. ..
  • the thickness of each of the outer tube 21 and the inner fin 22 may be changed.
  • the plate thickness of the inner fin 22 is not limited to "100 [ ⁇ m]” and can be set in the range of "80 [ ⁇ m]” to "200 [ ⁇ m]”.
  • the present disclosure is not limited to the above specific examples. Specific examples described above with appropriate design changes by those skilled in the art are also included in the scope of the present disclosure as long as they have the features of the present disclosure.
  • Each element included in each of the above-mentioned specific examples, and their arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. The combinations of the elements included in each of the above-mentioned specific examples can be appropriately changed as long as there is no technical contradiction.

Abstract

This heat-exchanger tube comprises: an outer tube (21) inside of which cooling water flows; and an inner fin (22) that is provided inside of the outer tube. The potential of the lowest section of the inner fin is lower than the potential of the highest section of a core material (210) of the outer tube. The surface layer of the inner surface of the outer tube and/or the surface layer of the inner fin has a brazing material layer.

Description

熱交換器のチューブHeat exchanger tube 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年11月27日に出願された日本国特許出願2019-214461号と、2020年9月3日に出願された日本国特許出願2020-148188号と、に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2019-214461 filed on November 27, 2019 and Japanese Patent Application No. 2020-148188 filed on September 3, 2020. , Claiming the benefit of that priority, the entire contents of that patent application are incorporated herein by reference.
 本開示は、熱交換器のチューブに関する。 This disclosure relates to heat exchanger tubes.
 従来、下記の特許文献1に記載のシート材がある。特許文献1に記載のシート材は、ラジエータやヒータコア等において冷却水が流れるチューブとして用いられる。チューブは、アルミニウム合金からなる心材を有している。心材の外面にはろう材が被覆され、心材の内面には犠牲層が形成されている。犠牲層は、心材よりも電位的に卑な素材、具体的にはZn(亜鉛)を所定の割合で含有するアルミニウム合金からなる。なお、ここでの電位は「孔食電位」を示す。このような構成によれば、冷却水によりチューブが腐食し易い環境下では、心材よりも犠牲層が優先的に腐食することにより、心材の腐食が進行し難くなる。結果として、チューブの耐腐食性を向上させることができる。 Conventionally, there is a sheet material described in Patent Document 1 below. The sheet material described in Patent Document 1 is used as a tube through which cooling water flows in a radiator, a heater core, or the like. The tube has a core material made of an aluminum alloy. The outer surface of the core material is covered with a brazing material, and a sacrificial layer is formed on the inner surface of the core material. The sacrificial layer is made of a material that is potentially lower than the core material, specifically, an aluminum alloy containing Zn (zinc) in a predetermined ratio. The potential here indicates "pitting potential". According to such a configuration, in an environment where the tube is easily corroded by the cooling water, the sacrificial layer is preferentially corroded over the core material, so that the corrosion of the core material is less likely to proceed. As a result, the corrosion resistance of the tube can be improved.
特許第5339560号公報Japanese Patent No. 5339560
 特許文献1に記載されるようなチューブでは、ろう付け時に加熱した際に、犠牲層に含まれているZnが心材に拡散する。心材にZnが拡散すると、心材の電位が低下するため、心材と犠牲層との間の電位差が小さくなる。これは、犠牲層が機能し難くなることを意味するため、心材が腐食する懸念が高まる。特に、チューブの板厚が薄い場合には、チューブの心材の内部までZnが拡散し易いため、心材と犠牲層との間の電位差が非常に小さくなることにより、心材が顕著に腐食するおそれがある。一方、心材の板厚を厚くすれば、仮に犠牲層に含まれているZnが心材に拡散したとしても、心材と犠牲層との間の電位差を維持し易くなるため、耐腐食性を確保することが可能である。しかしながら、心材の板厚を厚くすると、熱交換器の軽量化が困難になるという懸念がある。 In a tube as described in Patent Document 1, when heated at the time of brazing, Zn contained in the sacrificial layer diffuses into the core material. When Zn diffuses into the core material, the potential of the core material decreases, so that the potential difference between the core material and the sacrificial layer becomes small. This means that the sacrificial layer becomes difficult to function, which raises the concern that the core material will corrode. In particular, when the plate thickness of the tube is thin, Zn easily diffuses into the core material of the tube, so that the potential difference between the core material and the sacrificial layer becomes very small, and the core material may be significantly corroded. is there. On the other hand, if the thickness of the core material is increased, even if Zn contained in the sacrificial layer diffuses into the core material, it becomes easier to maintain the potential difference between the core material and the sacrificial layer, thus ensuring corrosion resistance. It is possible. However, if the thickness of the core material is increased, there is a concern that it becomes difficult to reduce the weight of the heat exchanger.
 本開示の目的は、薄肉化が可能でありながら、耐腐食性を確保することができる熱交換器のチューブを提供することにある。 The purpose of the present disclosure is to provide a tube of a heat exchanger that can be thinned and can ensure corrosion resistance.
 本開示の一態様による熱交換器のチューブは、内部に冷却水が流れるアウターチューブと、アウターチューブの内部に設けられるインナーフィンと、を備える。インナーフィンの最も卑な部位の電位が、アウターチューブの心材の最も貴な部位の電位よりも低い。アウターチューブの内面の表層、及びインナーフィンの表層の少なくとも一方にろう材層を有する。 The tube of the heat exchanger according to one aspect of the present disclosure includes an outer tube through which cooling water flows, and an inner fin provided inside the outer tube. The potential of the lowest part of the inner fin is lower than the potential of the most precious part of the core material of the outer tube. A brazing material layer is provided on at least one of the surface layer of the inner surface of the outer tube and the surface layer of the inner fin.
 この構成によれば、アウターチューブに対してインナーフィンが電位的に卑であるため、アウターチューブよりもインナーフィンの方が腐食し易くなる。よって、インナーフィンが実質的に犠牲陽極材として機能するようになるため、アウターチューブの耐腐食性を確保することができる。また、インナーフィンが実質的に犠牲陽極材として機能するのであれば、少なくともアウターチューブの心材の内面に犠牲層を形成する必要がなくなる。その結果、犠牲層と心材との間の電位差を確保するためにアウターチューブの心材の板厚を厚くする必要がなくなるため、アウターチューブを薄肉化することが可能となる。 According to this configuration, since the inner fin is potentially based with respect to the outer tube, the inner fin is more likely to corrode than the outer tube. Therefore, since the inner fin substantially functions as a sacrificial anode material, the corrosion resistance of the outer tube can be ensured. Further, if the inner fin substantially functions as a sacrificial anode material, it is not necessary to form a sacrificial layer at least on the inner surface of the core material of the outer tube. As a result, it is not necessary to increase the thickness of the core material of the outer tube in order to secure the potential difference between the sacrificial layer and the core material, so that the outer tube can be thinned.
図1は、熱交換器の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a heat exchanger. 図2は、図1のII-II線に沿った断面構造を示す断面図である。FIG. 2 is a cross-sectional view showing a cross-sectional structure taken along the line II-II of FIG. 図3は、第1実施形態のアウターチューブ及びインナーフィンのそれぞれの部位と電位との関係を示すグラフである。FIG. 3 is a graph showing the relationship between each portion of the outer tube and the inner fin of the first embodiment and the electric potential. 図4は、発明者らにより行われた実験結果を示す図表である。FIG. 4 is a chart showing the results of experiments conducted by the inventors. 図5は、第2実施形態のアウターチューブ及びインナーフィンの構成例を示す図表である。FIG. 5 is a chart showing a configuration example of the outer tube and the inner fin of the second embodiment. 図6は、発明者らにより行われた他の実験結果を示す図表である。FIG. 6 is a chart showing the results of other experiments conducted by the inventors. 図7は、参考例のアウターチューブ及びインナーフィンのそれぞれの断面構造を示す断面図である。FIG. 7 is a cross-sectional view showing the cross-sectional structures of the outer tube and the inner fin of the reference example. 図8は、第3実施形態のアウターチューブ及びインナーフィンのそれぞれの断面構造を示す断面図である。FIG. 8 is a cross-sectional view showing the cross-sectional structures of the outer tube and the inner fin of the third embodiment. 図9は、発明者らにより行われた他の実験結果を示す図表である。FIG. 9 is a chart showing the results of other experiments conducted by the inventors. 図10は、発明者らにより行われた他の実験結果を示す図表である。FIG. 10 is a chart showing the results of other experiments conducted by the inventors. 図11は、発明者らにより行われた他の実験結果を示す図表である。FIG. 11 is a chart showing the results of other experiments conducted by the inventors.
 以下、熱交換器のチューブの一実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 <第1実施形態>
 はじめに、第1実施形態のチューブが用いられる熱交換器の概要について説明する。図1に示されるように、本実施形態の熱交換器10は、複数のチューブ20と、複数のアウターフィン30と、タンク40,41とを備えている。
Hereinafter, an embodiment of the tube of the heat exchanger will be described with reference to the drawings. In order to facilitate understanding of the description, the same components are designated by the same reference numerals as possible in each drawing, and duplicate description is omitted.
<First Embodiment>
First, an outline of the heat exchanger in which the tube of the first embodiment is used will be described. As shown in FIG. 1, the heat exchanger 10 of the present embodiment includes a plurality of tubes 20, a plurality of outer fins 30, and tanks 40 and 41.
 図2に示されるように、チューブ20は、アウターチューブ21と、インナーフィン22とを有している。
 アウターチューブ21は、矢印Xで示される方向に直交する断面形状が偏平筒状に形成された部材からなる。図1に示されるように、複数のチューブ20のそれぞれのアウターチューブ21は、図中に矢印Zで示される方向に所定の間隔をあけて積層して配置されている。アウターチューブ21は、図中に矢印Xで示される方向に延びるように形成されている。アウターチューブ21の内部には冷却水が流れている。隣り合うアウターチューブ21,21の間の隙間には、矢印Yで示される方向に空気が流れている。
As shown in FIG. 2, the tube 20 has an outer tube 21 and an inner fin 22.
The outer tube 21 is made of a member having a flat tubular shape having a cross-sectional shape orthogonal to the direction indicated by the arrow X. As shown in FIG. 1, the outer tubes 21 of the plurality of tubes 20 are stacked and arranged at predetermined intervals in the direction indicated by the arrow Z in the drawing. The outer tube 21 is formed so as to extend in the direction indicated by the arrow X in the drawing. Cooling water is flowing inside the outer tube 21. Air flows in the direction indicated by the arrow Y in the gap between the adjacent outer tubes 21 and 21.
 図2に示されるように、インナーフィン22は、アウターチューブ21の内部に配置されている。インナーフィン22は、薄い金属板を波状に折り曲げることにより形成される、いわゆるコルゲートフィンである。インナーフィン22の折り曲げ部分の先端部は、アウターチューブ21の内面21aにろう付けにより接合されている。インナーフィン22は、アウターチューブ21の内部を流れる冷却水に対する伝熱面積を増加させるために設けられている。 As shown in FIG. 2, the inner fin 22 is arranged inside the outer tube 21. The inner fin 22 is a so-called corrugated fin formed by bending a thin metal plate in a wavy shape. The tip of the bent portion of the inner fin 22 is joined to the inner surface 21a of the outer tube 21 by brazing. The inner fin 22 is provided to increase the heat transfer area for the cooling water flowing inside the outer tube 21.
 図1に示されるように、アウターフィン30は、隣り合うアウターチューブ21,21の間の隙間に配置されている。アウターフィン30もインナーフィン22と同様にコルゲートフィンである。アウターフィン30の折り曲げ部分の先端部は、アウターチューブ21の外面にろう付けにより接合されている。アウターフィン30は、隣り合うアウターチューブ21,21の間を流れる空気に対する伝熱面積を増加させるために設けられている。 As shown in FIG. 1, the outer fins 30 are arranged in the gap between the adjacent outer tubes 21 and 21. The outer fin 30 is also a corrugated fin like the inner fin 22. The tip of the bent portion of the outer fin 30 is joined to the outer surface of the outer tube 21 by brazing. The outer fins 30 are provided to increase the heat transfer area for the air flowing between the adjacent outer tubes 21 and 21.
 タンク40は、複数のアウターチューブ21のそれぞれの一端部に接続されている。タンク41は、複数のアウターチューブ21のそれぞれの他端部に接続されている。タンク40,41は筒状に形成されている。タンク40,41は、各アウターチューブ21に冷却水を分配する部分として、あるいは各アウターチューブ21を流れた冷却水を集合させる部分として機能する。 The tank 40 is connected to one end of each of the plurality of outer tubes 21. The tank 41 is connected to the other end of each of the plurality of outer tubes 21. The tanks 40 and 41 are formed in a tubular shape. The tanks 40 and 41 function as a portion for distributing the cooling water to the outer tubes 21 or as a portion for collecting the cooling water flowing through the outer tubes 21.
 熱交換器10では、アウターチューブ21の内部を流れる冷却水と、アウターチューブ21の外部を流れる空気との間で熱交換が行われる。これにより、空気が冷却水の熱を吸収することにより冷却水を冷却したり、冷却水が空気の熱を吸収することにより冷却水を加熱したりすることが可能となっている。 In the heat exchanger 10, heat exchange is performed between the cooling water flowing inside the outer tube 21 and the air flowing outside the outer tube 21. This makes it possible for the air to absorb the heat of the cooling water to cool the cooling water, and for the cooling water to absorb the heat of the air to heat the cooling water.
 次に、アウターチューブ21及びインナーフィン22の材質について詳しく説明する。
 図3に示されるように、本実施形態のアウターチューブ21は、心材210の外面に犠牲層211を有する構造からなる。心材210は、アルミニウム合金により形成されている。犠牲層211は、犠牲陽極材からなり、心材210よりも電位的に卑の素材、例えばZnを所定の割合で含むアルミニウム合金により形成されている。犠牲層211は、心材210よりも優先的に腐食することにより心材210を腐食し難くしている。アウターチューブ21の外面21bは例えば塩害腐食等の影響を受け易い。心材210の外面に犠牲層211が設けられることにより、塩害腐食等に対するアウターチューブ21の外面側の耐腐食性が高められている。アウターチューブ21の内面21aには、心材210が露出している。
Next, the materials of the outer tube 21 and the inner fin 22 will be described in detail.
As shown in FIG. 3, the outer tube 21 of the present embodiment has a structure having a sacrificial layer 211 on the outer surface of the core material 210. The core material 210 is made of an aluminum alloy. The sacrificial layer 211 is made of a sacrificial anode material and is formed of an aluminum alloy containing a material that is potentially lower than the core material 210, for example, Zn in a predetermined ratio. The sacrificial layer 211 makes it difficult for the core material 210 to corrode by preferentially corroding the core material 210. The outer surface 21b of the outer tube 21 is susceptible to, for example, salt corrosion. By providing the sacrificial layer 211 on the outer surface of the core material 210, the corrosion resistance of the outer tube 21 on the outer surface side against salt damage corrosion and the like is enhanced. The core material 210 is exposed on the inner surface 21a of the outer tube 21.
 インナーフィン22は、アウターチューブ21の心材210よりも電位的に卑の素材、例えばZnを所定の割合で含むアルミニウム合金からなる。これにより、冷却水によりアウターチューブ21が腐食し易い環境下では、アウターチューブ21よりもインナーフィン22の方が優先的に腐食するため、アウターチューブ21の内面21a側の耐腐食性を高めることができる。 The inner fin 22 is made of a material that is potentially lower than the core material 210 of the outer tube 21, for example, an aluminum alloy containing Zn in a predetermined ratio. As a result, in an environment where the outer tube 21 is easily corroded by the cooling water, the inner fin 22 is preferentially corroded over the outer tube 21, so that the corrosion resistance on the inner surface 21a side of the outer tube 21 can be improved. it can.
 なお、アウターチューブ21の内面21aとインナーフィン22とを互いに接合するために、ろう付け工程が行われる前の時点で、アウターチューブ21は、その内面21aにろう材層を有する。ろう材層は、例えばSi(シリコン)を所定の割合で含むアルミニウム合金からなる。 The outer tube 21 has a brazing material layer on the inner surface 21a before the brazing step is performed in order to join the inner surface 21a of the outer tube 21 and the inner fin 22 to each other. The brazing filler metal layer is made of, for example, an aluminum alloy containing Si (silicon) in a predetermined ratio.
 発明者らは、アウターチューブ21の心材210とインナーフィン22との間の電位差を変化させた際のアウターチューブ21の腐食状態を実験により求めた。その実験結果は図4に示される通りである。なお、この実験は以下の条件で行われた。
 まず、板厚が300[μm]の2枚のアウターチューブの間に、フィンピッチが3[mm]のインナーフィンを挟み込み、600[℃]で3分間ろう付け熱処理に供した。これをアウターチューブの接合面とは反対側の面を絶縁樹脂によりマスキングしたものを試験サンプルとした。なお、各アウターチューブの心材の外面には犠牲層が形成され、その反対側の内面には犠牲層が形成されていない。この試験サンプルをサイクル腐食試験に3ヶ月供した。サイクル浸漬試験は、Clを500[ppm]、SO 2-を100[ppm]、Cu2+を10[ppm]を含有する88[℃]の高温水中で8時間浸漬し、次いで室温で16時間浸漬する工程を1サイクルとする試験である。サイクル腐食試験を行った後、濃硝酸への浸漬によって腐食生成物を除去し、チューブ平坦部に腐食貫通が生じていなかったものを耐腐食性で合格とし、腐食貫通が生じていたものを耐腐食性で不合格と判定した。また、腐食貫通が生じていないものの中で、腐食深さが100[μm]以下のものを耐腐食性が良好なものと判定した。図4では、耐腐食性が合格のものに丸の印が記載され、耐腐食性が不合格のものにバツの印が記載され、耐腐食性が良好なものに二重丸の印が記載されている。なお、アウターチューブの心材としては、1000番台のアルミニウム合金(純Al系)、3000番台のアルミニウム合金(Al-Mn系)、及び6000番台のアルミニウム合金(Al-Mg-Si系)を用いた。また、孔食電位は、試験溶液として5%NaCl水溶液(pH=3、酢酸酸性)を用い、試験温度25[℃]にて測定を行った。
The inventors experimentally determined the corroded state of the outer tube 21 when the potential difference between the core material 210 of the outer tube 21 and the inner fin 22 was changed. The experimental results are as shown in FIG. This experiment was conducted under the following conditions.
First, an inner fin having a fin pitch of 3 [mm] was sandwiched between two outer tubes having a plate thickness of 300 [μm], and subjected to brazing heat treatment at 600 [° C.] for 3 minutes. The surface of the outer tube opposite to the joint surface was masked with an insulating resin and used as a test sample. A sacrificial layer is formed on the outer surface of the core material of each outer tube, and no sacrificial layer is formed on the inner surface on the opposite side. This test sample was subjected to a cycle corrosion test for 3 months. Cycle immersion test, Cl - and 500 [ppm], SO 4 2- to 100 [ppm], the Cu 2+ was immersed for 8 hours in hot water at 88 [° C.] containing 10 [ppm], then 16 at room temperature This is a test in which the step of immersing for hours is one cycle. After performing a cycle corrosion test, corrosion products are removed by immersion in concentrated nitric acid, those with no corrosion penetration on the flat part of the tube are passed as corrosion resistance, and those with corrosion penetration are resistant. It was judged to be unacceptable due to corrosiveness. Further, among those having no corrosion penetration, those having a corrosion depth of 100 [μm] or less were judged to have good corrosion resistance. In FIG. 4, those having a good corrosion resistance are marked with a circle, those having a poor corrosion resistance are marked with a cross, and those having a good corrosion resistance are marked with a double circle. Has been done. As the core material of the outer tube, an aluminum alloy in the 1000s (pure Al type), an aluminum alloy in the 3000s (Al—Mn type), and an aluminum alloy in the 6000s (Al—Mg—Si type) were used. The pitting potential was measured at a test temperature of 25 [° C.] using a 5% NaCl aqueous solution (pH = 3, acetic acid acidity) as a test solution.
 図4の実験結果から明らかなように、1000番台のアルミニウム合金及び3000番台のアルミニウム合金がアウターチューブの心材として用いられている場合には、アウターチューブの心材の最も貴な部位の電位を「Vtmax」とし、インナーフィンの最も卑な部位の電位を「Vfmin」とするとき、電位Vtmax,Vfminが次式f1を満たす場合には、アウターチューブの耐腐食性を確保することができる。 As is clear from the experimental results of FIG. 4, when the 1000 series aluminum alloy and the 3000 series aluminum alloy are used as the core material of the outer tube, the potential of the most precious part of the core material of the outer tube is set to "Vt". When the potential of the lowest part of the inner fin is "Vf min " and the potentials Vt max and Vf min satisfy the following equation f1, the corrosion resistance of the outer tube can be ensured. ..
 Vtmax-Vfmin≧80[mV] (f1)
 特に、電位Vtmax,Vfminが次式f2を満たす場合には、アウターチューブの耐腐食性を更に高めることが可能となる。
 Vtmax-Vfmin≧100[mV] (f2)
 また、6000番台のアルミニウム合金がアウターチューブの心材として用いられている場合には、電位Vtmax,Vfminが上記の式f2を満たせば、同様にアウターチューブの耐腐食性を確保することが可能となる。
Vt max −Vf min ≧ 80 [mV] (f1)
In particular, when the potentials Vt max and Vf min satisfy the following equation f2, the corrosion resistance of the outer tube can be further improved.
Vt max −Vf min ≧ 100 [mV] (f2)
Further, when an aluminum alloy in the 6000 series is used as the core material of the outer tube, if the potentials Vt max and Vf min satisfy the above formula f2, the corrosion resistance of the outer tube can be similarly ensured. It becomes.
 以上説明した本実施形態の熱交換器10のチューブ20によれば、以下の(1)~(3)に示される作用及び効果を得ることができる。
 (1)インナーフィン22の最も卑な部位の電位が、アウターチューブ21の心材210の最も貴な部位の電位よりも低くなっている。この構成によれば、インナーフィン22が実質的に犠牲陽極材として機能するようになるため、アウターチューブ21の耐腐食性を確保することができる。また、インナーフィン22が実質的に犠牲陽極材として機能するのであれば、少なくともアウターチューブ21の内面21aに犠牲層を設ける必要がなくなる。その結果、犠牲層と心材との間の電位差を確保するためにアウターチューブ21の心材210の板厚を厚くする必要がなくなるため、アウターチューブ21を薄肉化することができる。
According to the tube 20 of the heat exchanger 10 of the present embodiment described above, the actions and effects shown in the following (1) to (3) can be obtained.
(1) The potential of the lowest portion of the inner fin 22 is lower than the potential of the most noble portion of the core material 210 of the outer tube 21. According to this configuration, since the inner fin 22 substantially functions as a sacrificial anode material, the corrosion resistance of the outer tube 21 can be ensured. Further, if the inner fin 22 substantially functions as a sacrificial anode material, it is not necessary to provide a sacrificial layer at least on the inner surface 21a of the outer tube 21. As a result, it is not necessary to increase the thickness of the core material 210 of the outer tube 21 in order to secure the potential difference between the sacrificial layer and the core material, so that the outer tube 21 can be thinned.
 (2)インナーフィン22の最も卑な部位の電位Vfmin、及びアウターチューブ21の心材210の最も貴な部位の電位Vtmaxが上記の式f1又は式f2を満たしている。この構成によれば、より適切にアウターチューブ21の耐腐食性を確保することができる。
 (3)図4に示される発明者らの実験結果によれば、インナーフィンの最も卑な部位の電位Vfmin、及びアウターチューブの心材の最も貴な部位の電位Vtmaxが上記の式f2を満たす場合には、外面に犠牲層が設けられるアウターチューブの場合、300[μm]の板厚を有するアウターチューブには腐食貫通が生じない。また、そのアウターチューブの腐食深さは100[μm]以下となっている。よって、アウターチューブ21の板厚Htは、100[μm]の腐食深さを許容できる板厚が120[μm]であることを考慮すると、次式f3の範囲で設定することが可能である。
(2) The potential Vf min of the lowest portion of the inner fin 22 and the potential Vt max of the most noble portion of the core material 210 of the outer tube 21 satisfy the above formula f1 or formula f2. According to this configuration, the corrosion resistance of the outer tube 21 can be ensured more appropriately.
(3) According to the experimental results of the inventors shown in FIG. 4, the potential Vf min of the most base part of the inner fin and the potential Vt max of the most precious part of the core material of the outer tube have the above formula f2. When satisfied, in the case of an outer tube provided with a sacrificial layer on the outer surface, corrosion penetration does not occur in the outer tube having a plate thickness of 300 [μm]. Further, the corrosion depth of the outer tube is 100 [μm] or less. Therefore, the plate thickness Ht of the outer tube 21 can be set within the range of the following equation f3, considering that the plate thickness that can tolerate a corrosion depth of 100 [μm] is 120 [μm].
 120[μm]≦Ht≦300[μm] (f3)
 <第2実施形態>
 次に、熱交換器10のチューブ20の第2実施形態について説明する。
120 [μm] ≤ Ht ≤ 300 [μm] (f3)
<Second Embodiment>
Next, a second embodiment of the tube 20 of the heat exchanger 10 will be described.
 第1実施形態のチューブ20は、アウターチューブ21の内面21aにろう材層を有し、インナーフィン22の心材にZnを添加した構成であった。これに対し、本実施形態のチューブ20は、インナーフィン22にろう材層を有する構成である。
 具体的には、本実施形態のアウターチューブ21及びインナーフィン22は、例えば図5に示されるパターンP1~P6のいずれかで構成されている。なお、図5に示されるパターンP1~P6は、ろう付けにより接合される前のアウターチューブ21及びインナーフィン22の構成を示す。図5において、「心材」と記載されている部分にはアルミニウム合金が用いられており、「心材(Zn)」と記載されている部分には、Znが添加されたアルミニウム合金が用いられている。また、「ろう材層」と記載されている部分には、Siが添加されたアルミニウム合金が用いられており、「ろう材層(Zn)」と記載されている部分には、Si及びZnが添加されたアルミニウム合金が用いられている。
The tube 20 of the first embodiment has a brazing material layer on the inner surface 21a of the outer tube 21, and Zn is added to the core material of the inner fin 22. On the other hand, the tube 20 of the present embodiment has a structure in which the inner fin 22 has a brazing material layer.
Specifically, the outer tube 21 and the inner fin 22 of the present embodiment are configured by any of the patterns P1 to P6 shown in FIG. 5, for example. The patterns P1 to P6 shown in FIG. 5 show the configurations of the outer tube 21 and the inner fin 22 before being joined by brazing. In FIG. 5, an aluminum alloy is used for the portion described as "core material", and an aluminum alloy to which Zn is added is used for the portion described as "core material (Zn)". .. Further, an aluminum alloy to which Si is added is used in the portion described as "brazing material layer", and Si and Zn are contained in the portion described as "brazing material layer (Zn)". The added aluminum alloy is used.
 パターンP1及びP2は、図3に示されるインナーフィン22の表層22a,22bにろう材層が形成され、且つアウターチューブ21の内面21aに心材210が露出している場合を示す。このような場合、パターンP1に示されるようにインナーフィン22の心材及びその表層22a,22bを構成するろう材層の両方にZnが添加されていれば、アウターチューブ21の心材210の最も貴な部位の電位よりもインナーフィン22の最も卑な部位の電位の方が低くなる。あるいは、パターンP2に示されるように、インナーフィン22の表層22a,22bを構成するろう材層にのみZnが添加されている場合であっても、ろう付け中にろう材層のZnがインナーフィン22の心材に拡散するため、アウターチューブ21の心材210の最も貴な部位の電位よりもインナーフィン22の最も卑な部位の電位の方が低くなる。 Patterns P1 and P2 show a case where a brazing material layer is formed on the surface layers 22a and 22b of the inner fin 22 shown in FIG. 3 and the core material 210 is exposed on the inner surface 21a of the outer tube 21. In such a case, if Zn is added to both the core material of the inner fin 22 and the brazing material layer constituting the surface layers 22a and 22b as shown in the pattern P1, the core material 210 of the outer tube 21 is the most precious. The potential of the lowest part of the inner fin 22 is lower than the potential of the part. Alternatively, as shown in pattern P2, even when Zn is added only to the brazing material layers constituting the surface layers 22a and 22b of the inner fin 22, the Zn of the brazing material layer is added to the inner fin during brazing. Since it diffuses into the core material of 22, the potential of the lowest part of the inner fin 22 is lower than the potential of the most precious part of the core material 210 of the outer tube 21.
 パターンP3及びP4は、インナーフィン22の表層22a,22bにろう材層が形成され、且つアウターチューブ21の内面21aにも表層としてろう材層が形成されている場合を示す。このような場合、パターンP3に示されるようにインナーフィン22の心材及びその表層22a,22bを構成するろう材層の両方にZnが添加されていれば、アウターチューブ21の心材210の最も貴な部位の電位よりもインナーフィン22の最も卑な部位の電位の方が低くなる。あるいは、パターンP4に示されるようにインナーフィン22の表層22a,22bを構成するろう材層にのみZnが添加されている場合であっても、ろう付け中にろう材層のZnがインナーフィン22の心材に拡散するため、アウターチューブ21の心材210の最も貴な部位の電位よりもインナーフィン22の最も卑な部位の電位の方が低くなる。 Patterns P3 and P4 show a case where a brazing material layer is formed on the surface layers 22a and 22b of the inner fin 22, and a brazing material layer is also formed as a surface layer on the inner surface 21a of the outer tube 21. In such a case, if Zn is added to both the core material of the inner fin 22 and the brazing material layer constituting the surface layers 22a and 22b as shown in the pattern P3, the core material 210 of the outer tube 21 is the most precious. The potential of the lowest part of the inner fin 22 is lower than the potential of the part. Alternatively, even when Zn is added only to the brazing material layers constituting the surface layers 22a and 22b of the inner fin 22 as shown in the pattern P4, the Zn of the brazing material layer is added to the inner fin 22 during brazing. Since it diffuses into the core material of the outer tube 21, the potential of the lowest part of the inner fin 22 is lower than the potential of the most precious part of the core material 210 of the outer tube 21.
 パターンP5は、インナーフィン22の表層22a,22bにろう材層が形成され、且つアウターチューブ21の内面21aに心材210が露出している場合を示す。また、パターンP6は、インナーフィン22の表層22a,22bにろう材層が形成され、且つアウターチューブ21の内面21aにも表層としてろう材層が形成されている場合を示す。このような場合には、パターンP5及びP6に示されるように、インナーフィン22の心材にZnが添加されていれば、アウターチューブ21の心材210の最も貴な部位の電位よりもインナーフィン22の最も卑な部位の電位の方が低くなる。 The pattern P5 shows a case where a brazing material layer is formed on the surface layers 22a and 22b of the inner fin 22 and the core material 210 is exposed on the inner surface 21a of the outer tube 21. Further, the pattern P6 shows a case where the brazing material layer is formed on the surface layers 22a and 22b of the inner fin 22 and the brazing material layer is also formed as the surface layer on the inner surface 21a of the outer tube 21. In such a case, as shown in patterns P5 and P6, if Zn is added to the core material of the inner fin 22, the potential of the inner fin 22 is higher than the potential of the most precious part of the core material 210 of the outer tube 21. The potential of the lowest part is lower.
 パターンP1~P6を用いてアウターチューブ21の心材210の最も貴な部位の電位よりもインナーフィン22の最も卑な部位の電位の方を低くすることにより、アウターチューブ21よりもインナーフィン22の方が優先的に腐食するようになる。したがって、第1実施形態のチューブ20と同一又は類似の作用及び効果を得ることが可能である。 By using patterns P1 to P6 to lower the potential of the lowest part of the inner fin 22 than the potential of the most precious part of the core material 210 of the outer tube 21, the inner fin 22 is closer to the inner fin 22 than the outer tube 21. Will preferentially corrode. Therefore, it is possible to obtain the same or similar action and effect as the tube 20 of the first embodiment.
 <第3実施形態>
 次に、熱交換器10のチューブ20の第3実施形態について説明する。以下、第1実施形態のチューブ20との相違点を中心に説明する。
 図3に示される第1実施形態のチューブ20のように、インナーフィン22を、アウターチューブ21の心材210よりも電位的に卑の素材により形成すれば、アウターチューブ21よりもインナーフィン22の方が優先的に腐食するため、アウターチューブ21の耐腐食性を高めることができる。しかしながら、この第1実施形態のインナーフィン22をそのまま用いた場合、インナーフィン22の表層22a,22bよりもインナーフィン22の内部の方が優先的に腐食することにより、インナーフィン22の強度が著しく低下するおそれがある。
<Third Embodiment>
Next, a third embodiment of the tube 20 of the heat exchanger 10 will be described. Hereinafter, the differences from the tube 20 of the first embodiment will be mainly described.
If the inner fin 22 is formed of a material that is potentially lower than the core material 210 of the outer tube 21, as in the tube 20 of the first embodiment shown in FIG. 3, the inner fin 22 is better than the outer tube 21. Is preferentially corroded, so that the corrosion resistance of the outer tube 21 can be improved. However, when the inner fin 22 of the first embodiment is used as it is, the strength of the inner fin 22 is remarkably increased because the inside of the inner fin 22 is preferentially corroded over the surface layers 22a and 22b of the inner fin 22. It may decrease.
 具体的には、チューブ20の製造工程では、アウターチューブ21とインナーフィン22とをろう付けにより接合させるために、それらが炉に投入されて加熱される。その際、インナーフィン22の表層22a,22bに存在するZnが蒸発するため、インナーフィン22では、その表層22a,22bにおけるZnの含有率よりも、その内部のZnの含有率の方が高くなり易い。これは、インナーフィン22の表層22a,22bの電位よりも、その板厚方向の中心の電位の方が低くなることを意味する。そのため、インナーフィン22の表層22a,22bの腐食が例えば穴状に進行して、その腐食がインナーフィン22の内部に到達した場合、インナーフィン22の表層22a,22bよりも、インナーフィン22の内部の方が優先的に腐食してしまう。アウターチューブ21の内部が冷却水で満たされている場合、アウターチューブ21に対してインナーフィン22が犠牲陽極材として機能する距離が長くなる。そのため、インナーフィン22の内部が優先的に腐食すると、図7に示されるように、インナーフィン22は、その表層22a,22bが残る一方、その内部に空間が形成される中抜け構造に至る。すなわち、インナーフィン22が実質的に2枚に分かれることとなるため、その強度が著しく低下するおそれがある。また、強度の低下により、2枚に分かれたインナーフィン22が破損した場合には、その破損した残骸が冷却水に含まれて流れることとなる。その残骸が、仮に冷却水を圧送するウォーターポンプまで流れるようなことがあると、ウォーターポンプに異常が生じるおそれがある。 Specifically, in the manufacturing process of the tube 20, in order to join the outer tube 21 and the inner fin 22 by brazing, they are put into a furnace and heated. At that time, since the Zn existing in the surface layers 22a and 22b of the inner fin 22 evaporates, the content of Zn in the inner fin 22 is higher than the content of Zn in the surface layers 22a and 22b. easy. This means that the potential at the center of the inner fin 22 in the plate thickness direction is lower than the potential of the surface layers 22a and 22b of the inner fin 22. Therefore, when the corrosion of the surface layers 22a and 22b of the inner fin 22 progresses in a hole shape, for example, and the corrosion reaches the inside of the inner fin 22, the inside of the inner fin 22 is more than the surface layers 22a and 22b of the inner fin 22. Will corrode preferentially. When the inside of the outer tube 21 is filled with cooling water, the distance that the inner fin 22 functions as the sacrificial anode material with respect to the outer tube 21 becomes longer. Therefore, when the inside of the inner fin 22 is preferentially corroded, as shown in FIG. 7, the inner fin 22 has a hollow structure in which the surface layers 22a and 22b remain while a space is formed inside the inner fin 22. That is, since the inner fin 22 is substantially divided into two, the strength thereof may be significantly reduced. Further, when the inner fin 22 divided into two pieces is damaged due to the decrease in strength, the damaged debris is included in the cooling water and flows. If the debris flows to the water pump that pumps the cooling water, the water pump may malfunction.
 そこで、本実施形態のチューブ20では、このようなインナーフィン22の中抜け化を抑制するために、インナーフィン22の板厚方向の中心の電位及び表層の電位をアウターチューブ21の心材210の電位よりも低くするとともに、インナーフィン22の板厚方向の中心の電位をインナーフィン22の表層の電位以上にしている。 Therefore, in the tube 20 of the present embodiment, in order to suppress such hollowing out of the inner fin 22, the potential of the center of the inner fin 22 in the plate thickness direction and the potential of the surface layer are set to the potential of the core material 210 of the outer tube 21. The potential at the center of the inner fin 22 in the plate thickness direction is set to be equal to or higher than the potential of the surface layer of the inner fin 22.
 次に、本実施形態のチューブ20の具体的な構造について説明する。
 発明者らはインナーフィン22の腐食形態を実験により求めた。この実験では、図8に示されるような構造を有するチューブ20が用いられた。図8に示されるように、このチューブ20では、アウターチューブ21が、心材210の外面に犠牲層211を有し、且つ心材210の内面にろう材層212を有する構造からなる。また、インナーフィン22は、その表層22a,22bに犠牲層を有する構造からなる。なお、図8に示されるアウターチューブ21及びインナーフィン22の構造は、ろう付け前のそれぞれの構造を示している。
Next, a specific structure of the tube 20 of the present embodiment will be described.
The inventors have experimentally determined the corroded form of the inner fin 22. In this experiment, a tube 20 having a structure as shown in FIG. 8 was used. As shown in FIG. 8, in this tube 20, the outer tube 21 has a structure having a sacrificial layer 211 on the outer surface of the core material 210 and a brazing material layer 212 on the inner surface of the core material 210. Further, the inner fin 22 has a structure having a sacrificial layer on the surface layers 22a and 22b. The structures of the outer tube 21 and the inner fin 22 shown in FIG. 8 show the respective structures before brazing.
 発明者らは、図8に示されるチューブ20において、アウターチューブ21の心材210の最も貴な部位の電位Vtmax、インナーフィン22の板厚方向の中心Cの電位Vfcent、及びインナーフィン22の表層22a,22bの電位Vfsurfを変化させた際のインナーフィン22の腐食形態を実験により求めた。なお、この実験では、板厚Haが「200[μm]」のアウターチューブ21と、板厚Hbが「100[μm]」のインナーフィン22が用いられた。各板厚Ha,Hbは、ろう付け前の板厚である。アウターチューブ21及びインナーフィン22のろう付け工程が行われると、それらがアウターチューブ21のろう材層212を介してろう付けされるため、ろう材層212の厚さが若干薄くなる。具体的には、ろう材層212の厚さは、ろう付け前は「20[μm]」程度であるが、ろう付け後は「10[μm]」程度に減少する。 In the tube 20 shown in FIG. 8, the inventors have found that the potential Vt max of the most precious part of the core material 210 of the outer tube 21, the potential Vf cent of the center C of the inner fin 22 in the plate thickness direction, and the inner fin 22. The corrosion form of the inner fin 22 when the potential Vf surf of the surface layers 22a and 22b was changed was determined by an experiment. In this experiment, an outer tube 21 having a plate thickness Ha of "200 [μm]" and an inner fin 22 having a plate thickness Hb of "100 [μm]" were used. Each plate thickness Ha and Hb is the plate thickness before brazing. When the outer tube 21 and the inner fin 22 are brazed, they are brazed via the brazing material layer 212 of the outer tube 21, so that the thickness of the brazing material layer 212 is slightly reduced. Specifically, the thickness of the brazing material layer 212 is about "20 [μm]" before brazing, but decreases to about "10 [μm]" after brazing.
 図9~図10は、発明者らにより行われた実験結果を示したものである。
 図9は、アウターチューブ21の心材210として、1000番台のアルミニウム合金(純Al系)を用いた際の実験結果である。この実験では、電位差「Vtmax-Vfmin」と電位差「Vfcent-Vfsurf」とを変化させつつ、アウターチューブ21の耐腐食性及びインナーフィン22の腐食形態を調査した。
9 to 10 show the results of experiments conducted by the inventors.
FIG. 9 shows the experimental results when a 1000-series aluminum alloy (pure Al-based) was used as the core material 210 of the outer tube 21. In this experiment, the corrosion resistance of the outer tube 21 and the corrosion morphology of the inner fin 22 were investigated while changing the potential difference “Vt max −Vf min ” and the potential difference “Vf cent −Vf surf”.
 なお、電位差「Vfcent-Vfsurf」は、インナーフィン22の板厚方向の中心Cの電位Vfcentと、インナーフィン22の表層22a,22bの電位Vfsurfとの差である。電位差「Vfcent-Vfsurf」は、「-20[mV]」、「0[mV]」、及び「20[mV]」の範囲で変化させた。 The potential difference "Vf cent- Vf surf " is the difference between the potential Vf cent at the center C of the inner fin 22 in the plate thickness direction and the potential Vf surf of the surface layers 22a and 22b of the inner fin 22. The potential difference "Vf cent- Vf surf " was varied in the range of "-20 [mV]", "0 [mV]", and "20 [mV]".
 また、電位差「Vtmax-Vfmin」は、アウターチューブ21の心材210の最も貴な部位の電位Vtmaxと、インナーフィン22において最も卑な部位の電位Vfminとの差である。例えばインナーフィン22の板厚方向の中心Cの電位Vfcentがインナーフィン22の表層22a,22bの電位Vfsurfよりも低ければ、電位Vfminは電位Vfcentである。また、インナーフィン22の表層22a,22bの電位Vfsurfがインナーフィン22の板厚方向の中心Cの電位Vfcentよりも低ければ、電位Vfminは電位Vfsurfである。電位差「Vtmax-Vfmin」は、「50[mV]」、「80[mV]」、「100[mV]」、「150[mV]」、「200[mV]」、「250[mV]」、「270[mV]」、及び「300[mV]」の範囲で変化させた。 The potential difference “Vt max −Vf min ” is the difference between the potential Vt max of the most noble portion of the core material 210 of the outer tube 21 and the potential Vf min of the lowest portion of the inner fin 22. For example, if the potential Vf cent of the center C in the plate thickness direction of the inner fin 22 is lower than the potential Vf surf of the surface layers 22a and 22b of the inner fin 22, the potential Vf min is the potential Vf cent . Further, if the potential Vf surf of the surface layers 22a and 22b of the inner fin 22 is lower than the potential Vf cent of the center C in the plate thickness direction of the inner fin 22, the potential Vf min is the potential Vf surf . The potential difference "Vt max- Vf min " is "50 [mV]", "80 [mV]", "100 [mV]", "150 [mV]", "200 [mV]", "250 [mV]". , "270 [mV]", and "300 [mV]".
 図9の「チューブ耐腐食性」の欄に関しては、図4と同様に、アウターチューブ21の耐腐食性が合格のものに丸の印が記載され、不合格のものにバツの印が記載され、良好なものに二重丸の印が記載されている。
 また、「インナーフィン腐食形態」の欄には、インナーフィン22の腐食形態が層状腐食であるものに二重丸の印が記載され、ランダム腐食であるものに丸の印が記載され、中抜け腐食であるものに三角の印が記載され、腐食して無くなったものにバツの印が記載されている。層状腐食とは、表面が層状に剥がれるような腐食態様である。ランダム腐食とは、表面のランダムな箇所に穴が空くような腐食態様である。中抜け腐食とは、内部が無くなるような腐食態様である。腐食して無くなるとは、インナーフィンの全体が腐食してなくなる腐食態様である。
Regarding the column of "tube corrosion resistance" in FIG. 9, as in FIG. 4, those having passed the corrosion resistance of the outer tube 21 are marked with a circle, and those failing are marked with a cross. , Good ones are marked with double circles.
Further, in the column of "inner fin corrosion form", a double circle mark is described for those whose corrosion form is layered corrosion, and a circle mark is described for those whose corrosion form is random corrosion. Those that are corroded are marked with a triangle, and those that are corroded are marked with a cross. Layered corrosion is a form of corrosion in which the surface is peeled off in layers. Random corrosion is a form of corrosion in which holes are formed at random locations on the surface. The hollow corrosion is a corrosion mode in which the inside is lost. Corrosion and disappearance is a corrosion mode in which the entire inner fin is corroded and disappears.
 図9の実験結果から明らかなように、電位差「Vtmax-Vfmin」が「Vtmax-Vfmin≧80[mV]」を満たしている場合には、「チューブ耐腐食性」が合格又は良好となる。このアウターチューブ21の耐腐食性に関しては、図4の「1000番台アルミニウム合金(純Al系)」欄と同様の実験結果が得られている。 As is clear from the experimental results of FIG. 9, when the potential difference “Vt max −Vf min ” satisfies “Vt max −Vf min ≧ 80 [mV]”, “tube corrosion resistance” is acceptable or good. It becomes. Regarding the corrosion resistance of the outer tube 21, the same experimental results as in the "1000 series aluminum alloy (pure Al type)" column of FIG. 4 have been obtained.
 一方、電位差「Vtmax-Vfmin」が「270[mV]」以上であれば、電位差「Vfcent-Vfsurf」が「0[mV]」及び「20[mV]」であるときには、すなわちインナーフィン22の板厚方向の中心Cの電位Vfcentがインナーフィン22の表層22a,22bの電位Vfsurf以上であるときには、インナーフィンの腐食形態が層状腐食又はランダム腐食であるため、中抜け腐食よりも良好な結果を得ることができる。しかしながら、電位差「Vtmax-Vfmin」が「300[mV]」以上になると、インナーフィン22が腐食して無くなってしまう。すなわちインナーフィン22の腐食が進行したときに最後に残るインナーフィン22において最も電位的に貴な電位Vfmaxがアウターチューブ21の心材210の最も貴な部位の電位Vtmaxよりも「280mV」以上低くなると、インナーフィン22が腐食して無くなってしまうため、好ましくない。 On the other hand, when the potential difference "Vt max- Vf min " is "270 [mV]" or more, when the potential difference "Vf cent- Vf surf " is "0 [mV]" and "20 [mV]", that is, the inner When the potential Vf cent of the center C in the plate thickness direction of the fin 22 is equal to or higher than the potential Vf surf of the surface layers 22a and 22b of the inner fin 22, the corrosion form of the inner fin is layered corrosion or random corrosion, so that it is more than hollow corrosion. Can also obtain good results. However, when the potential difference “Vt max −Vf min ” becomes “300 [mV]” or more, the inner fin 22 is corroded and disappears. That is, when the most potentially noble potential Vf max of the inner fin 22 that remains last when the inner fin 22 is corroded is lower than the potential Vt max of the most noble portion of the core material 210 of the outer tube 21 by "280 mV" or more. , The inner fin 22 is corroded and disappears, which is not preferable.
 一方、図10は、アウターチューブ21の心材210として、1000番台のアルミニウム合金(純Al系)に代えて、3000番台のアルミニウム合金(Al-Mn系)を用いた場合の実験結果である。この場合には、「チューブ耐腐食性」及び「インナーフィン腐食形態」に関して、図9に示される実験結果と同様の実験結果が得られた。 On the other hand, FIG. 10 shows the experimental results when a 3000 series aluminum alloy (Al—Mn type) is used instead of the 1000 series aluminum alloy (pure Al type) as the core material 210 of the outer tube 21. In this case, the same experimental results as those shown in FIG. 9 were obtained with respect to "tube corrosion resistance" and "inner fin corrosion form".
 また、図11は、アウターチューブ21の心材210として、1000番台のアルミニウム合金(純Al系)に代えて、6000番台のアルミニウム合金(Al-Mg-Si系)を用いた場合の実験結果である。この場合には、「チューブ耐腐食性」に関しては、電位差「Vtmax-Vfmin」が「Vtmax-Vfmin≧100[mV]」を満たす必要があるものの、「インナーフィン腐食形態」に関しては、図9に示される実験結果と同様の実験結果が得られた。 Further, FIG. 11 shows the experimental results when a 6000 series aluminum alloy (Al—Mg—Si system) is used instead of the 1000 series aluminum alloy (pure Al system) as the core material 210 of the outer tube 21. .. In this case, regarding "tube corrosion resistance", the potential difference "Vt max- Vf min " must satisfy "Vt max- Vf min ≥ 100 [mV]", but regarding "inner fin corrosion form", , The same experimental results as those shown in FIG. 9 were obtained.
 図9及び図10の実験結果に基づけば、アウターチューブ21の耐腐食性を確保するためには、電位差「Vtmax-Vfmin」が「Vtmax-Vfmin≧80[mV]」を満たせば良い。ここで、「Vfmin」は、インナーフィン22において最も卑な部位の電位であるため、インナーフィン22の板厚方向の中心Cの電位Vfcent及びインナーフィン22の表層22a,22bの電位Vfsurfのうちのいずれか低い方の電位である。これに着目すれば、アウターチューブ21の耐腐食性を確保するためには、電位Vfcent,Vfsurfが、以下の式f4,f5のうちどちらか一方を満たせば良いことになる。 Based on the experimental results of FIGS. 9 and 10, in order to secure the corrosion resistance of the outer tube 21, if the potential difference “Vt max −Vf min ” satisfies “Vt max −Vf min ≧ 80 [mV]”. good. Here, since "Vf min " is the potential of the lowest portion of the inner fin 22, the potential Vf cent of the center C in the plate thickness direction of the inner fin 22 and the potential Vf surf of the surface layers 22a and 22b of the inner fin 22. Whichever is the lower potential. Focusing on this, in order to secure the corrosion resistance of the outer tube 21, the potentials Vf cent and Vf surf need to satisfy either one of the following equations f4 and f5.
 Vtmax-Vfcent≧80[mV] (f4)
 Vtmax-Vfsurf≧80[mV] (f5)
 また、図9及び図10の実験結果だけでなく、図11の実験結果に更に基づくと、電位Vfcent,Vfsurfは、より好ましくは以下の式f6,f7のうちどちらか一方を満たせば良い。
Vt max −Vf cent ≧ 80 [MV] (f4)
Vt max- Vf surf ≧ 80 [mV] (f5)
Further, based on not only the experimental results of FIGS. 9 and 10 but also the experimental results of FIG. 11, the potentials Vf cent and Vf surf may more preferably satisfy either one of the following formulas f6 and f7. ..
 Vtmax-Vfcent≧100[mV] (f6)
 Vtmax-Vfsurf≧100[mV] (f7)
 一方、図9~図11の実験結果に基づけば、インナーフィン22の中抜け腐食を抑制するためには、インナーフィン22の板厚方向の中心Cの電位Vfcentとインナーフィン22の表層22a,22bの電位Vfsurfとが、以下の式f8を満たせば良い。
Vt max −Vf cent ≧ 100 [mV] (f6)
Vt max- Vf surf ≧ 100 [mV] (f7)
On the other hand, based on the experimental results of FIGS. 9 to 11, in order to suppress the hollow corrosion of the inner fin 22, the potential Vf cent of the center C in the plate thickness direction of the inner fin 22 and the surface layer 22a of the inner fin 22 The potential Vf surf of 22b may satisfy the following equation f8.
 Vfcent-Vfsurf≧0[mV] (f8)
 なお、上記の式f8が満たされるとき、上記の式f5が上記の式f4を包含する関係になるとともに、及び上記の式f7が上記のf6を包含する関係になる。
 また、図9~図11の実験結果に基づけば、インナーフィン22が腐食して無くならないようにするためには、インナーフィン22において最も貴な部位の電位Vfmaxとアウターチューブ21の心材210の最も貴な部位の電位Vtmaxとが以下の式f9を満たせばよい。
Vf cent- Vf surf ≧ 0 [mV] (f8)
When the above formula f8 is satisfied, the above formula f5 has a relationship including the above formula f4, and the above formula f7 has a relationship including the above f6.
Further, based on the experimental results of FIGS. 9 to 11, in order to prevent the inner fin 22 from corroding and disappearing, the potential Vf max of the most precious part of the inner fin 22 and the core material 210 of the outer tube 21 The potential Vt max of the most noble part may satisfy the following equation f9.
 Vtmax-Vfmax≦250[mV] (f9)
 特に、インナーフィン22の板厚方向の中心Cの電位Vfcentとインナーフィン22の表層22a,22bの電位Vfsurfとが以下の式f10を満たせば、インナーフィン22の腐食形態をより良好にすることが可能である。
Vt max −Vf max ≦ 250 [mV] (f9)
In particular, if the potential Vf cent at the center C of the inner fin 22 in the plate thickness direction and the potential Vf surf of the surface layers 22a and 22b of the inner fin 22 satisfy the following equation f10, the corrosion form of the inner fin 22 is further improved. It is possible.
 Vfcent-Vfsurf≧20[mV] (f10)
 以上説明した本実施形態の熱交換器10のチューブ20によれば、以下の(4)~(7)に示される作用及び効果を得ることができる。
 (4)インナーフィン22の板厚方向の中心Cの電位Vfcent及びインナーフィン22の表層22a,22bの電位Vfsurfをアウターチューブ21の心材210の最も貴な部位の電位Vtmaxよりも低くする。また、インナーフィン22の板厚方向の中心Cの電位Vfcent及びインナーフィン22の表層22a,22bの電位Vfsurfが上記の式f8を満たすようにする。すなわち、電位Vfcentを電位Vfsurf以上にする。これにより、アウターチューブ21の耐腐食性を確保することができるとともに、インナーフィン22の中抜け腐食を抑制することができる。
Vf cent- Vf surf ≧ 20 [mV] (f10)
According to the tube 20 of the heat exchanger 10 of the present embodiment described above, the actions and effects shown in the following (4) to (7) can be obtained.
(4) Make the potential Vf cent of the center C of the inner fin 22 in the plate thickness direction and the potential Vf surf of the surface layers 22a and 22b of the inner fin 22 lower than the potential Vt max of the most precious part of the core material 210 of the outer tube 21. .. Further, the potential Vf cent at the center C of the inner fin 22 in the plate thickness direction and the potential Vf surf of the surface layers 22a and 22b of the inner fin 22 satisfy the above equation f8. That is, the potential Vf cent is set to the potential Vf surf or higher. As a result, the corrosion resistance of the outer tube 21 can be ensured, and the hollow corrosion of the inner fin 22 can be suppressed.
 (5)インナーフィン22の板厚方向の中心Cの電位Vfcent及びインナーフィン22の表層22a,22bの電位Vfsurfは上記の式f4,またはf5を満たすことが好ましい。この構成によれば、アウターチューブ21の耐腐食性を更に向上させることができる。 (5) It is preferable that the potential Vf cent at the center C of the inner fin 22 in the plate thickness direction and the potential Vf surf of the surface layers 22a and 22b of the inner fin 22 satisfy the above formula f4 or f5. According to this configuration, the corrosion resistance of the outer tube 21 can be further improved.
 (6)インナーフィン22の板厚方向の中心Cの電位Vfcent及びインナーフィン22の表層22a,22bの電位Vfsurfは上記の式f10を満たすことが好ましい。この構成によれば、インナーフィン22の腐食をより好適に抑制することが可能となる。 (6) It is preferable that the potential Vf cent at the center C of the inner fin 22 in the plate thickness direction and the potential Vf surf of the surface layers 22a and 22b of the inner fin 22 satisfy the above formula f10. According to this configuration, it is possible to more preferably suppress the corrosion of the inner fin 22.
 (7)インナーフィン22において最も貴な部位の電位Vfmax及びアウターチューブ21の心材210の電位Vtは上記の式f9を満たすことが好ましい。この構成によれば、インナーフィン22の腐食をより好適に抑制することが可能となる。 (7) It is preferable that the potential Vf max of the most noble portion of the inner fin 22 and the potential Vt of the core material 210 of the outer tube 21 satisfy the above formula f9. According to this configuration, it is possible to more preferably suppress the corrosion of the inner fin 22.
 <他の実施形態>
 なお、上記実施形態は、以下の形態にて実施することもできる。
 ・アウターチューブ21の外面には犠牲層211が設けられていなくてもよい。発明者らの実験結果によれば、インナーフィンの最も卑な部位の電位Vfmin、及びアウターチューブの心材の最も貴な部位の電位Vtmaxが上記の式f2を満たす場合には、外面に犠牲層が設けられていないアウターチューブの場合、図6に示されるように、200[μm]の板厚を有するアウターチューブには腐食貫通が生じない。また、そのアウターチューブの腐食深さは100[μm]以下である。よって、アウターチューブ21の板厚Htは、100[μm]の腐食深さを許容できる板厚が120[μm]であることを考慮して、次式f4の範囲で設定することが可能である。
<Other Embodiments>
The above embodiment can also be implemented in the following embodiments.
-The sacrificial layer 211 may not be provided on the outer surface of the outer tube 21. According to the experimental results of the inventors, when the potential Vf min of the lowest part of the inner fin and the potential Vt max of the most precious part of the core material of the outer tube satisfy the above equation f2, the outer surface is sacrificed. In the case of the outer tube without the layer, as shown in FIG. 6, the outer tube having a plate thickness of 200 [μm] does not undergo corrosion penetration. The corrosion depth of the outer tube is 100 [μm] or less. Therefore, the plate thickness Ht of the outer tube 21 can be set within the range of the following equation f4, considering that the plate thickness that can tolerate a corrosion depth of 100 [μm] is 120 [μm]. ..
 120[μm]≦Ht≦200[μm] (f4)
 ・第3実施形態のチューブ20では、アウターチューブ21及びインナーフィン22のそれぞれの板厚を変更してもよい。例えば、インナーフィン22の板厚は、「100[μm]」に限らず、「80[μm]」から「200[μm]」の範囲で設定可能である。
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。
120 [μm] ≤ Ht ≤ 200 [μm] (f4)
-In the tube 20 of the third embodiment, the thickness of each of the outer tube 21 and the inner fin 22 may be changed. For example, the plate thickness of the inner fin 22 is not limited to "100 [μm]" and can be set in the range of "80 [μm]" to "200 [μm]".
-The present disclosure is not limited to the above specific examples. Specific examples described above with appropriate design changes by those skilled in the art are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the above-mentioned specific examples, and their arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. The combinations of the elements included in each of the above-mentioned specific examples can be appropriately changed as long as there is no technical contradiction.

Claims (10)

  1.  内部に冷却水が流れるアウターチューブ(21)と、
     前記アウターチューブの内部に設けられるインナーフィン(22)と、を備え、
     前記インナーフィンの最も卑な部位の電位が、前記アウターチューブの心材(210)の最も貴な部位の電位よりも低く、
     前記アウターチューブの内面の表層、及び前記インナーフィンの表層の少なくとも一方にろう材層を有する
     熱交換器のチューブ。
    The outer tube (21) through which cooling water flows inside,
    An inner fin (22) provided inside the outer tube is provided.
    The potential of the lowest part of the inner fin is lower than the potential of the most noble part of the core material (210) of the outer tube.
    A tube of a heat exchanger having a brazing material layer on at least one of the surface layer of the inner surface of the outer tube and the surface layer of the inner fin.
  2.  前記アウターチューブの心材の最も貴な部位の電位を「Vtmax」とし、前記インナーフィンの最も卑な部位の電位を「Vfmin」とするとき、電位Vtmax,Vfminは、次式
     Vtmax-Vfmin≧80[mV]
    を満たす
     請求項1に記載の熱交換器のチューブ。
    When the potential of the most noble part of the core material of the outer tube is "Vt max " and the potential of the most base part of the inner fin is "Vf min ", the potentials Vt max and Vf min are expressed by the following equations Vt max. -Vf min ≥ 80 [mV]
    The tube of the heat exchanger according to claim 1.
  3.  前記アウターチューブの心材の最も貴な部位の電位を「Vtmax」とし、前記インナーフィンの最も卑な部位の電位を「Vfmin」とするとき、電位Vtmax,Vfminは、次式
     Vtmax-Vfmin≧100[mV]
    を満たす
     請求項1に記載の熱交換器のチューブ。
    When the potential of the most noble part of the core material of the outer tube is "Vt max " and the potential of the most base part of the inner fin is "Vf min ", the potentials Vt max and Vf min are expressed by the following equations Vt max. -Vf min ≥ 100 [mV]
    The tube of the heat exchanger according to claim 1.
  4.  前記アウターチューブの外面の表層には犠牲層(211)が設けられ、
     前記犠牲層を含む前記アウターチューブの板厚をHtとするとき、板厚Htは、次式
     120[μm]≦Ht≦300[μm]
    を満たす
     請求項1~3のいずれか一項に記載の熱交換器のチューブ。
    A sacrificial layer (211) is provided on the surface layer of the outer surface of the outer tube.
    When the plate thickness of the outer tube including the sacrificial layer is Ht, the plate thickness Ht is the following formula 120 [μm] ≤ Ht ≤ 300 [μm].
    The tube of the heat exchanger according to any one of claims 1 to 3.
  5.  前記アウターチューブの外面の表層には犠牲層が設けられておらず、
     前記アウターチューブの板厚をHtとするとき、板厚Htは、次式
     120[μm]≦Ht≦200[μm]
    を満たす
     請求項1~3のいずれか一項に記載の熱交換器のチューブ。
    No sacrificial layer is provided on the surface layer of the outer surface of the outer tube.
    When the plate thickness of the outer tube is Ht, the plate thickness Ht is the following formula 120 [μm] ≤ Ht ≤ 200 [μm].
    The tube of the heat exchanger according to any one of claims 1 to 3.
  6.  前記インナーフィンの板厚方向の中心の電位及び表層の電位が、前記アウターチューブの心材の最も貴な部位の電位よりも低く、
     前記インナーフィンの板厚方向の中心の電位が前記インナーフィンの表層の電位以上であり、
     前記アウターチューブの内面の表層、及び前記インナーフィンの表層の少なくとも一方に、ろう材層が形成されている
     請求項1に記載の熱交換器のチューブ。
    The potential of the center of the inner fin in the plate thickness direction and the potential of the surface layer are lower than the potential of the most precious part of the core material of the outer tube.
    The potential at the center of the inner fin in the plate thickness direction is equal to or higher than the potential on the surface layer of the inner fin.
    The tube of the heat exchanger according to claim 1, wherein a brazing material layer is formed on at least one of the surface layer of the inner surface of the outer tube and the surface layer of the inner fin.
  7.  前記インナーフィンの板厚方向の中心の電位を「Vfcent」とし、前記インナーフィンの表層の電位を「Vfsurf」とし、前記アウターチューブの心材の最も貴な部位の電位を「Vtmax」とするとき、電位Vfcent,Vfsurf,Vtmaxは、次式
     Vtmax-Vfsurf≧80[mV]
    を満たす
     請求項6に記載の熱交換器のチューブ。
    The potential at the center of the inner fin in the plate thickness direction is defined as "Vf cent", the potential at the surface layer of the inner fin is defined as "Vf surf ", and the potential at the most precious part of the core material of the outer tube is defined as "Vt max ". to time, the potential Vf cent, Vf surf, Vt max, the following equation Vt max -Vf surf ≧ 80 [mV ]
    The tube of the heat exchanger according to claim 6.
  8.  前記インナーフィンの板厚方向の中心の電位を「Vfcent」とし、前記インナーフィンの表層の電位を「Vfsurf」とし、前記アウターチューブの心材の最も貴な部位の電位を「Vtmax」とするとき、電位Vfcent,Vfsurf,Vtmaxは、次式
     Vtmax-Vfsurf≧100[mV]
    を満たす
     請求項6に記載の熱交換器のチューブ。
    The potential at the center of the inner fin in the plate thickness direction is defined as "Vf cent", the potential at the surface layer of the inner fin is defined as "Vf surf ", and the potential at the most precious part of the core material of the outer tube is defined as "Vt max ". to time, the potential Vf cent, Vf surf, Vt max, the following equation Vt max -Vf surf ≧ 100 [mV ]
    The tube of the heat exchanger according to claim 6.
  9.  前記インナーフィンの板厚方向の中心の電位を「Vfcent」とし、前記インナーフィンの表層の電位を「Vfsurf」とするとき、電位Vfcent,Vfsurfは、次式
     Vfcent-Vfsurf≧20[mV]
    を満たす
     請求項6~8のいずれか一項に記載の熱交換器のチューブ。
    When the potential at the center of the inner fin in the plate thickness direction is "Vf cent " and the potential on the surface layer of the inner fin is "Vf surf ", the potentials Vf cent and Vf surf are as follows: Vf cent − Vf surf ≧ 20 [mV]
    The tube of the heat exchanger according to any one of claims 6 to 8.
  10.  前記インナーフィンの最も貴な部位の電位を「Vfmax」とし、前記アウターチューブの心材の最も貴な部位の電位を「Vtmax」とするとき、電位Vfmax,Vtmaxは、次式
     Vtmax-Vfmax≦250[mV]
    を満たす
     請求項6~9のいずれか一項に記載の熱交換器のチューブ。
    When the potential of the most noble part of the inner fin is "Vf max " and the potential of the most noble part of the core material of the outer tube is "Vt max ", the potentials Vf max and Vt max are expressed by the following equations Vt max. -Vf max ≤ 250 [mV]
    The tube of the heat exchanger according to any one of claims 6 to 9.
PCT/JP2020/036509 2019-11-27 2020-09-28 Heat-exchanger tube WO2021106347A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019214461 2019-11-27
JP2019-214461 2019-11-27
JP2020148188A JP2021089131A (en) 2019-11-27 2020-09-03 Tube for heat exchanger
JP2020-148188 2020-09-03

Publications (1)

Publication Number Publication Date
WO2021106347A1 true WO2021106347A1 (en) 2021-06-03

Family

ID=76128892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036509 WO2021106347A1 (en) 2019-11-27 2020-09-28 Heat-exchanger tube

Country Status (1)

Country Link
WO (1) WO2021106347A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272069A (en) * 1993-03-22 1994-09-27 Nippon Light Metal Co Ltd Corrosion prevention of al alloy radiator using sacrificed anode
JP2001050677A (en) * 1999-08-10 2001-02-23 Zexel Valeo Climate Control Corp Heat exchanger
JP2001116490A (en) * 1999-08-06 2001-04-27 Denso Corp Heat exchanger
JP2003181629A (en) * 2001-12-18 2003-07-02 Denso Corp Method for manufacturing aluminum heat exchanger
JP2007053307A (en) * 2005-08-19 2007-03-01 Denso Corp Stacked heat exchanger and its manufacturing method
WO2013150766A1 (en) * 2012-04-04 2013-10-10 株式会社デンソー Tube and heat exchanger employing said tube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272069A (en) * 1993-03-22 1994-09-27 Nippon Light Metal Co Ltd Corrosion prevention of al alloy radiator using sacrificed anode
JP2001116490A (en) * 1999-08-06 2001-04-27 Denso Corp Heat exchanger
JP2001050677A (en) * 1999-08-10 2001-02-23 Zexel Valeo Climate Control Corp Heat exchanger
JP2003181629A (en) * 2001-12-18 2003-07-02 Denso Corp Method for manufacturing aluminum heat exchanger
JP2007053307A (en) * 2005-08-19 2007-03-01 Denso Corp Stacked heat exchanger and its manufacturing method
WO2013150766A1 (en) * 2012-04-04 2013-10-10 株式会社デンソー Tube and heat exchanger employing said tube

Similar Documents

Publication Publication Date Title
JP5517728B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
JP2006022405A (en) Composite material made of high-strength aluminum alloy
JP2017044468A (en) Brazable component and heat exchanger comprising the same
BR112017010323B1 (en) aluminum alloy coated material
JP2010249426A (en) Method of manufacturing aluminum heat exchanger for exhaust gas and heat exchanger
JP2017036906A (en) Aluminum-extruded flat perforated tube excellent in inner surface anticorrosion property and aluminium heat exchanger using the same
JP6003778B2 (en) Manufacturing method of heat exchanger
WO2021106347A1 (en) Heat-exchanger tube
JP2021089131A (en) Tube for heat exchanger
WO2017203805A1 (en) Member formed from aluminum alloy and lng vaporizer
JP5944626B2 (en) Manufacturing method of heat exchanger
WO2017026510A1 (en) Aluminum extruded flat perforated pipe having excellent internal surface anticorrosion property and aluminum heat exchanger using same
JP2012087342A (en) Aluminum clad material for heat exchanger
JP2005161352A (en) Heat exchanger made of aluminum alloy and manufacturing method for the same
WO2018147375A1 (en) Aluminum extruded flat perforated pipe exhibiting excellent brazing properties and outer-surface corrosion resistance, and aluminum heat exchanger obtained using same
JP2014145571A (en) Exhaust heat exchanger
CN109931192B (en) Cooler for vehicle
JP3704178B2 (en) Aluminum material for brazing and drone cup type heat exchanger using the material and excellent in corrosion resistance
CN117002104A (en) Heat exchange tube for heat exchanger and heat exchanger
JPS60230953A (en) Composite plate made of aluminum material for heat exchanger
JP4347145B2 (en) Aluminum alloy extruded tube and heat exchanger for heat exchanger
JP2000034532A (en) Composite material for heat exchanger made of aluminum alloy
JPH0752308A (en) Aluminium alloy materials and heat exchanger using that
WO2023190890A1 (en) Air conditioner
WO2018147349A1 (en) Aluminum extruded flat perforated pipe exhibiting excellent inner/outer surface corrosion resistance, and aluminum heat exchanger obtained using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892444

Country of ref document: EP

Kind code of ref document: A1