WO2021106314A1 - Electromagnetic suspension and washing machine - Google Patents

Electromagnetic suspension and washing machine Download PDF

Info

Publication number
WO2021106314A1
WO2021106314A1 PCT/JP2020/034068 JP2020034068W WO2021106314A1 WO 2021106314 A1 WO2021106314 A1 WO 2021106314A1 JP 2020034068 W JP2020034068 W JP 2020034068W WO 2021106314 A1 WO2021106314 A1 WO 2021106314A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic suspension
mover
stator
linear motor
shaft
Prior art date
Application number
PCT/JP2020/034068
Other languages
French (fr)
Japanese (ja)
Inventor
邦彦 法月
康明 青山
祐貴 馬飼野
真理 黒澤
陽平 門傳
Original Assignee
日立グローバルライフソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立グローバルライフソリューションズ株式会社 filed Critical 日立グローバルライフソリューションズ株式会社
Publication of WO2021106314A1 publication Critical patent/WO2021106314A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/20Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations
    • D06F37/22Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations in machines with a receptacle rotating or oscillating about a horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/06Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs
    • F16F15/067Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs using only wound springs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present invention relates to an electromagnetic suspension and a washing machine.
  • Linear motors and linear actuators are known as electric machines that move linearly.
  • the linear motor has a structure in which the rotating machine is cut open in a straight line, and thrust is generated in the mover by the magnetic force acting between the magnetic poles formed in each of the stator and the mover. Therefore, in motor control, the change in the gap length between the stator and the mover greatly affects the motor characteristics.
  • studies are underway to apply a linear motor as an electromagnetic suspension to a vibration damping device.
  • Patent Document 1 describes a technique for applying an electromagnetic suspension having a linear motor as a suspension for a washing machine.
  • Patent Document 2 describes a technique relating to a vibration isolator using a magnetic force.
  • Patent Document 1 the mover, the spring, and the shaft are arranged on the same axis as the vibration direction. Moreover, in order to secure the mechanical strength of the mover, a technique for devising the cross-sectional shape of the mover into a concave-convex shape or a geometric shape such as a semicircular shape is described. However, there is no description about correcting the change in gap length due to vibration. Further, Patent Document 2 describes a technique in which a permanent magnet and an electromagnet are arranged so as to face each other in the vibration direction and vibration isolation is performed by changing the distance between them. However, there is no description about stress such as front-back / left-right / twist other than the vibration direction.
  • the present invention has been made to solve the above-mentioned problems, and suppresses a change in the gap length between the stator and the mover caused by stress other than the propulsion direction of the electromagnetic suspension, and electromagnetic waves having high vibration damping robustness. It is intended to provide suspensions and washing machines.
  • the electromagnetic suspension of the present invention has a pair of opposing shafts connecting frames (for example, a shaft fixing bracket 23), a stator having an armature core and an armature winding, and a frame.
  • a stator having an armature core and an armature winding
  • a frame has a magnet or magnetic material fixed to the stator and having a first surface (eg, front surface 122f) and a second surface (eg, back surface 122r) facing the stator and moves relative to the stator.
  • a linear motor having a mover
  • an elastic body mounted on a shaft and contracted by one side of a frame and an arm of a stator.
  • an electromagnetic suspension having high vibration damping robustness can be realized.
  • FIG. 5 is a schematic cross-sectional view taken along the line I-I of FIG. It is an exploded perspective view of the mover in 1st Embodiment. It is operation
  • FIG. 1 is a cross-sectional perspective view of the electromagnetic suspension 100 according to the first embodiment.
  • the electromagnetic suspension 100 is applied, for example, to suppress the vibration of the washing machine W (see FIG. 10).
  • FIG. 1 gives a bird's-eye view of the appearance of the electromagnetic suspension 100 and shows the internal structure by cutting a quarter of the appearance.
  • the electromagnetic suspension 100 includes a linear motor 10.
  • the electromagnetic suspension 100 is fixed between the frames, the pair of shafts 21 facing each other connecting the frames (for example, the shaft fixing bracket 23), the stator 11 having the armature core and the armature winding, and the stator 11.
  • Has a magnet or magnetic material having a first surface (for example, the front surface 122f in FIG. 5) and a second surface (for example, the back surface 122r in FIG. 5) facing the stator 11 and moves relative to the stator 11.
  • a linear motor 10 having a mover 12 and an elastic body 20 mounted on a shaft and contracted by one of the frames and an arm (bearing 22) of the stator 11 is provided.
  • the shaft 21 penetrates the elastic body 20. Further, the shaft 21 slides in the moving direction of the mover 12 via the stator 11 and the bearing 22 of the linear motor 10.
  • a sliding bearing whose metal surface is lubricated is used as the bearing 22.
  • FIG. 2 is a perspective view showing a support mechanism portion including the mover 12 according to the first embodiment.
  • the mover 12 is arranged in a support mechanism portion of a mouth-shaped structure including a shaft fixing bracket 23 and a pair of facing shafts 21 connecting the shaft fixing brackets 23. That is, it forms a surface structure that is wider and thicker than the mover 12 alone.
  • the mover 12 In the z-axis direction, the mover 12 is movable via the bearing 22 (see FIG. 1). On the other hand, when stress is generated in the x-axis direction and the y-axis direction, the bearing 22 is restrained. Further, the force is only a frictional force between the bearing 22 and the shaft 21, and no stress is applied to the mover 12. Further, even when twisting around the z-axis (rotation around the z-axis) occurs, the bearing 22 outside the mover 12 from the central axis (z-axis) restrains the twist and rotation, and the mover 12 Does not move and is not stressed. That is, the mover 12 has a structure that operates only in the z-axis direction with respect to stress.
  • FIG. 3 is a perspective sectional view of the linear motor 10 according to the first embodiment.
  • FIG. 3 gives a bird's-eye view of the appearance of the linear motor 10 and cuts a quarter of the linear motor 10 to show the internal structure.
  • the linear motor 10 includes a stator 11 which is an armature, and a plate-shaped mover 12 extending in the z-axis direction.
  • the stator 11 is formed in a substantially prism along the z-axis direction, and a rectangular flat plate-shaped mover 12 is loosely inserted in the hollow portion thereof. Then, the linear motor 10 changes the relative position between the stator 11 and the mover 12 in the z-axis direction by the magnetic attraction / repulsion force acting between the stator 11 and the mover 12, that is, the thrust. ..
  • the linear motor 10 is applied to the electromagnetic suspension 100, the mover 12 is coupled to the vibration damping object.
  • the outer tub 37 (see FIG. 10) of the washing machine W is the vibration damping object, and the stator 11 or the mover 12 is coupled to the outer tub 37.
  • the stator 11 includes a core 11a (armature iron core) and a winding 11b (armature winding).
  • the core 11a is formed by laminating electromagnetic steel sheets in the z-axis direction, and includes magnetic teeth 151 (first magnetic teeth) that are adjacent to each other along the z-axis direction and project toward the mover 12. Further, the core 11a has a magnetic tooth 152 (second magnetic tooth) adjacent to the magnetic tooth 151 in the z-axis direction and projecting toward the mover 12 at a position facing the magnetic tooth 151 with the mover 12 interposed therebetween. I have.
  • the winding 11b is wound around these magnetic teeth 151 and 152.
  • the mover 12 includes a frame 122 made of a non-magnetic material and magnets 124 (magnets 124a, 124b) fitted in the frame 122.
  • FIG. 4 is a schematic cross-sectional view taken along the line I-I of FIG. However, the 1/4 portion cut in FIG. 1 is not cut in FIG. As shown in FIG. 4, the core 11a of the stator 11 includes an annular portion 156 and magnetic teeth 151 and 152.
  • the annular portion 156 has an annular shape, that is, a substantially rectangular frame shape in a vertical cross-sectional view, and the annular portion 156 constitutes a magnetic circuit.
  • the pair of magnetic teeth 151 and 152 extend inward from the annular portion 156 along the y-axis direction and face each other. That is, there are two gaps in the magnetic path having the motor characteristics of the present invention.
  • the magnetic flux ⁇ A indicated by the solid arrow is the magnetic flux generated by the mover 12.
  • Windings 11b are wound around the magnetic teeth 151 and 152, respectively.
  • An inverter (for example, an inverter 40 in FIG. 12, which will be described later) is connected to the winding 11b. Then, when the winding 11b is energized by this inverter, the stator 11 functions as an electromagnet.
  • FIG. 5 is an exploded perspective view of the mover 12 in the first embodiment.
  • the mover 12 includes a frame 122 and two magnets 124a and 124b.
  • the frame 122 is formed by forming a non-magnetic material into a rectangular frame shape.
  • the frame 122 is formed with a rectangular through hole 122h that penetrates the front surface 122f (first surface) and the back surface 122r (second surface).
  • the mover 12 is lightweight. Therefore, it is conceivable to apply a lightweight material such as plastic or aluminum to the non-magnetic material constituting the frame 122. Further, a lightweight and high-strength composite material such as carbon fiber reinforced plastic may be applied. That is, the material of the frame 122 may be arbitrarily selected according to the required strength and specifications of the linear motor 10.
  • the two magnets 124a and 124b are alternately arranged so that the magnetic poles are inverted in the y-axis direction.
  • the magnet 124a When the magnet 124 is fitted into the frame 122, the magnet 124a has an N pole and the magnet 124b has an S pole on the surface 122f side (upper surface in FIG. 5) of the through hole 122h. Further, the magnet 124a has an S pole and the magnet 124b has an N pole from the back surface 122r side (bottom surface in FIG. 5) of the through hole 122h.
  • FIG. 6A, 6B, and 6C are operation explanatory views of the linear motor according to the first embodiment.
  • FIG. 6A is an operation explanatory view of the first position (state P1) of the linear motor according to the first embodiment.
  • FIG. 6B is an operation explanatory view of a second position (state P2) of the linear motor according to the first embodiment.
  • FIG. 6C is an operation explanatory view of a third position (state P3) of the linear motor according to the first embodiment.
  • the stator 11 includes a core 11a (armature iron core) and a winding 11b (armature winding).
  • the core 11a includes a core back portion 11a1, a teeth portion 11a2, and a tee stop portion 11a3 which is an end face facing the magnet of the teeth portion 11a2.
  • the states P1 (first position), state P2 (second position), and state P3 (third position) shown in FIGS. 6A, 6B, and 6C are relative to the stator 11 and the mover 12. The positional relationship is different. Further, in FIGS. 6A, 6B, and 6C, the thick arrow on the solid line indicates the direction of the magnetic flux generated by the magnet 124, and the thick arrow on the broken line indicates the direction of the magnetic flux generated by the stator 11. .. In any of the states P1 to P3, the magnetic teeth 151 face the front surface 122f of the frame 122, and the magnetic teeth 152 face the back surface 122r of the frame 122.
  • the stator 11 since the winding 11b is not energized, the stator 11 does not generate magnetic flux. Then, the center of the stator 11 (unsigned) in the z-axis direction and the center of the mover 12 (unsigned) coincide with each other. Further, when a current is passed through the winding 11b, the magnetic teeth 151 and 152 can be magnetized according to the direction of the current. In the state P1, similarly to the symbols “N” and “S” shown in the state P2, when the magnetic tooth 151 is magnetized to the N pole and the magnetic tooth 152 is magnetized to the S pole, the magnet 124a becomes the magnetic tooth 151. , 152, and the magnet 124a is attracted to the magnetic teeth 151 and 152.
  • thrust acts relatively on the stator 11 and the mover 12 along the z-axis direction.
  • the "thrust” is a force that changes the relative positions of the mover 12 and the stator 11. Therefore, for example, as shown in the state P2, the mover 12 is urged and moves relative to the stator 11 in the z-axis plus direction (left direction on FIG. 6B).
  • the magnet 124a is generated in the same manner as the symbols “N” and “S” shown in the state P3. It is repelled by the magnetic teeth 151 and 152, and the magnet 124b is repelled by the magnetic tooth 151 and attracted by the magnetic tooth 152. Therefore, for example, as shown in the state P3, the mover 12 is urged and moves relative to the stator 11 in the minus direction on the z-axis (to the right in the drawing).
  • the length of the normal range which is the movement range of the mover 12 from the state P2 to the state P3, is indicated by the "normal range length UL (range length)".
  • FIG. 7 is a schematic diagram illustrating an assembly and winding method of the core 11a of the linear motor according to the embodiment.
  • the core back portion 11a1 and the teeth portion 11a2 are integrally press-molded from an electromagnetic steel plate in an xy plane and laminated in the z-axis direction to obtain a core 11a.
  • the pre-processed winding 11b is fitted into the teeth portion 11a2.
  • two cores 11a having windings 11b are similarly prepared and combined vertically (in the y-axis direction in the drawing) to obtain the magnetic teeth 152 from the magnetic teeth 151.
  • FIG. 8 is a cross-sectional perspective view of the electromagnetic suspension 100C of the comparative example.
  • FIG. 8 gives a bird's-eye view of the appearance of the electromagnetic suspension 100C of the comparative example, and shows the internal structure by cutting a quarter thereof.
  • the electromagnetic suspension 100C of the comparative example includes a linear motor 10.
  • the mover 12 of the linear motor 10 is connected to the shaft 21 on the same axis (Z axis in the drawing).
  • the shaft 21 is integrated with the elastic body 20 on the same shaft.
  • the mover 12 is integrated with the stator 11 via a rotary bearing 25.
  • the vibration and external force received by the shaft 21 and the elastic body 20 are directly transmitted to the mover 12, and the mover has vibration and stress in the x direction, vibration and stress in the y-axis direction, and vibration in the z-axis direction in the figure. And stress, various vibrations and stresses such as twisting around the Z axis are applied. Since the z-axis direction coincides with the propulsion direction of the electromagnetic suspension, it is a controllable factor, but vibration and stress in the x-axis direction and y-axis direction, and twisting around the Z-axis are not controlled.
  • the vibration of the mover 12 means a change in the gap length in the linear motor 10, and means that the magnetic circuit changes momentarily due to the vibration and the external force. Therefore, the vibration damping property of the linear motor 10 is disturbed.
  • the electromagnetic suspension 100 has a stator 11 having a pair of opposing shafts 21 connecting frames (for example, a shaft fixing bracket 23), an armature iron core, and an armature winding. And has a magnet or magnetic material fixed between the frames and having a first surface (for example, front surface 122f) and a second surface (for example, back surface 122r) facing the stator, and relative to the stator. It includes a linear motor 10 having a mover 12 that moves substantially, and an elastic body 20 that is mounted on a shaft 21 and is contracted by one of the frames and the arm of the stator.
  • a surface structure is formed by the shaft fixing bracket 23 and the shaft 21, and if the shaft 21 is arranged in parallel with the propulsion direction of the mover 12 and integrated with the mover 12, the motor characteristics of the electromagnetic suspension 100 will be disturbed. Since it is not affected, the vibration damping property of the electromagnetic suspension 100 is improved.
  • FIG. 15 is a cross-sectional perspective view of a modified example 1 of the electromagnetic suspension 100 according to the first embodiment.
  • FIG. 15 gives a bird's-eye view of the appearance of the mover 12, and cuts a quarter of the mover 12 to show the internal structure.
  • the difference from the embodiment shown in FIG. 1 is that the shaft 21 is arranged in the magnetizing direction of the magnet 124.
  • the electromagnetic suspension 100 has the effect of reducing the width in the x-axis direction.
  • FIG. 16 is a cross-sectional perspective view of a modified example 2 of the electromagnetic suspension 100 according to the first embodiment.
  • the difference from the embodiment shown in FIG. 1 is that the shaft 21 is arranged in the direction perpendicular to the magnetizing direction of the magnet 124 and in the parallel direction.
  • the disturbance of the mover 12 is suppressed as compared with FIG. 1, and the vibration damping property is improved.
  • the arrangement of the shaft 21 can be set while observing the cost and the physique of the product.
  • FIG. 9 is a perspective view of the electromagnetic suspension 100 according to the second embodiment.
  • the same reference numerals may be given to the parts corresponding to the respective parts of the first embodiment described above, and the description thereof may be omitted.
  • the electromagnetic suspension 100 includes a linear motor 10 according to the first embodiment and an elastic body 20. Then, one end of the mover 12 or one end of the stator 11 of the linear motor 10 is coupled to the vibration damping object. In the figure, one end of the mover 12 is connected to the vibration damping object.
  • the vibration damping object is an object whose vibration is to be suppressed by the electromagnetic suspension 100, and in the illustrated example, the vibration damping object is the outer tub 37 of the washing machine W (see FIG. 10). The other end is connected to the base 31 of the washing machine W.
  • the electromagnetic suspension 100 may be arranged upside down, and one end of the stator 11 may be connected to the outer tank 37 (see FIG. 10) and one end of the mover may be connected to the base 31.
  • a metal winding spring is applied as the elastic body 20.
  • the elastic body 20 applies an elastic force to the mover 12, and is between the bearing 22 and the shaft fixing bracket 23. As shown in FIG. 9, the shaft 21 also penetrates the elastic body 20.
  • the elastic body 20 has a spring force capable of holding the outer tub 37 at a predetermined position in the washing machine even when the linear motor 10 is not energized.
  • a force that pushes back the mover 12 acts due to the weight of the outer tank 37 and the spring force of the elastic body 20.
  • the elastic body 20 secures the fail-safe property of control, and the robustness can be enhanced without arranging members such as stoppers at both ends of the mover 12.
  • the electromagnetic suspension 100 of the present embodiment includes the linear motor 10 according to the first embodiment and the elastic body 20 that urges the stator 11 or the mover 12 in the moving direction (z-axis direction). ..
  • the elastic body 20 includes a metal winding spring.
  • FIG. 10 is a perspective view of the washing machine W according to the third embodiment.
  • the washing machine W shown in FIG. 10 is a drum-type washing machine and also has a function of drying clothes.
  • the washing machine W includes a base 31, a housing 32, a door 33, an operation / display panel 34, an outer tub 37, a pair of electromagnetic suspensions 100L and 100R, and a drain hose H.
  • the electromagnetic suspensions 100L and 100R are configured in the same manner as the electromagnetic suspension 100 in the second embodiment, respectively.
  • the housing 32 includes left and right side plates 32a and 32a, a front cover 32b, a back cover 32c (see FIG. 11), and a top cover 32d.
  • the base 31 supports the housing 32.
  • a circular input port h1 (see FIG. 11) for taking in and out clothes is formed near the center of the front cover 32b.
  • the door 33 is an openable / closable lid provided at the inlet h1.
  • FIG. 11 is a vertical cross-sectional view of the washing machine W according to the third embodiment.
  • the washing machine W includes a washing tub 35, a lifter 36, a drive mechanism 38, and a blower unit 39.
  • the washing tub 35 accommodates clothes and has a bottomed cylindrical shape.
  • the washing tub 35 is contained in the outer tub 37 and is rotatably supported on the same axis as the outer tub 37.
  • the peripheral wall and bottom wall of the washing tub 35 are provided with a large number of through holes (not shown) for water passage and ventilation. Further, the opening h2 of the washing tub 35 faces the closed door 33 together with the opening h3 of the outer tub 37.
  • the rotation center axis of the washing tub 35 is inclined so that the opening side is higher, but the present invention is not limited to this. That is, the rotation center axis of the washing tub 35 may be in the horizontal direction or the vertical direction.
  • the lifter 36 lifts and drops clothes during washing and drying, and is installed on the inner peripheral wall of the washing tub 35.
  • the outer tub 37 stores washing water and the like, and has a bottomed cylindrical shape. As shown in FIG. 11, the outer tub 37 includes a washing tub 35.
  • electromagnetic suspensions 100L and 100R are arranged on the left and right sides of the outer tank 37, but in FIG. 9, only the electromagnetic suspension 100L on the left side is shown. Further, a drainage hole (not shown) is provided at the lowermost part of the bottom wall of the outer tank 37, and a drainage hose H is connected to this drainage hole. Then, the washing water is stored in the outer tub 37 in a state where the drain valve (not shown) provided in the drain hose H is closed, and the washing water is discharged by opening the drain valve. It has become like.
  • the drive mechanism 38 is a mechanism for rotating the washing tub 35, and is installed outside the bottom wall of the outer tub 37.
  • the rotation shaft of the motor included in the drive mechanism 38 penetrates the bottom wall of the outer tub 37 and is connected to the bottom wall of the washing tub 35.
  • the blower unit 39 blows warm air into the washing tub 35 and is arranged above the washing tub 35.
  • the blower unit 39 includes a heater and a fan. Then, the air heated by the heater is sent to the washing tub 35 by the fan. As a result, the clothes containing water are gradually dried in the washing tub 35.
  • the vibration of the outer tub 37 that is, the vibration of the washing machine W will be briefly described.
  • the washing tub 35 is rotated at a low speed by the drive mechanism 38 shown in FIG. 11, and the tumbling operation of lifting and dropping the clothes collected on the bottom of the washing tub 35 by the lifter 36 is repeated.
  • the washing tub 35 rotates at high speed, and centrifugal dehydration is performed to push out the moisture of the clothes by the centrifugal force due to the rotation.
  • the amplitude of vibration of the washing tub 35 often increases due to the reaction force of falling clothes during washing, rinsing, and drying. Further, in the conventional washing machine, vibration and noise are often generated in the washing machine W due to the bias of the position of clothes during dehydration. In this way, the way the washing machine W vibrates changes from moment to moment depending on various conditions such as washing, rinsing, drying, and dehydration, in addition to the amount and position of clothes in the washing tub 35 and the water content. The vibration propagates to the outer tank 37.
  • FIG. 12 is a configuration diagram of the vibration damping device 200 applied to the third embodiment.
  • the vibration damping device 200 includes an inverter 40, a current detector 50, a thrust adjusting unit 60, a rectifier circuit 70, and left and right electromagnetic suspensions 100L and 100R.
  • the vibration damping device 200 suppresses the vibration of the vibration damping object G.
  • the vibration damping object G is the outer tub 37 of the washing machine W (see FIG. 10).
  • the left and right electromagnetic suspensions 100L and 100R are represented by one frame. Further, the linear motors 10 included in the electromagnetic suspensions 100L and 100R are referred to as linear motors 10L and 10R, respectively. Similarly, the elastic bodies 20 included in the electromagnetic suspensions 100L and 100R are referred to as elastic bodies 20L and 20R.
  • the rectifier circuit 70 rectifies the AC voltage applied by the AC power supply E, and applies a DC voltage to the inverter 40.
  • the AC power supply E and the rectifier circuit 70 may be considered as a DC power supply in combination.
  • the inverter 40 converts the DC voltage applied from the rectifier circuit 70 into a single-phase AC voltage based on the voltage command V * from the thrust adjusting unit 60, and converts this single-phase AC voltage into the windings of the linear motors 10L and 10R. Apply to 11b (see FIG. 2). In other words, the inverter 40 has a function of driving the linear motors 10L and 10R based on the voltage command V *.
  • FIG. 13 is a configuration diagram of a main part of the vibration damping device 200 applied to the third embodiment.
  • the rectifier circuit 70 is a well-known voltage doubler rectifier circuit that converts an AC voltage applied from the AC power supply E into a DC voltage.
  • the rectifier circuit 70 includes a diode bridge circuit 72 in which diodes D1 to D4 are bridge-connected, and two smoothing capacitors 74 and 76 connected in series.
  • the drive mechanism 38 shown in FIG. 13 includes an inverter 38a and a motor 38b.
  • the rectifier circuit 70 is connected to the inverter 40 via the wiring k1 on the positive side and the wiring k2 on the negative side, and is also connected to the inverter 38a of the drive mechanism 38 that rotates the washing tub 35 (see FIG. 11). There is.
  • the inverter 40 converts the DC voltage applied from the rectifier circuit 70 into two single-phase AC voltages, and converts these two single-phase AC voltages into the windings 11b (see FIG. 4) of the linear motors 10L and 10R, respectively. It is an inverter to be applied.
  • the inverter 40 includes a first leg including switching elements SW1 and SW2, a second leg including switching elements SW3 and SW4, and a third leg including switching elements SW5 and SW6.
  • these switching elements SW1 to SW6 for example, an IGBT (Insulated Gate Bipolar Transistor) can be used.
  • a freewheeling diode D is connected in antiparallel to each of the switching elements SW1 to SW6.
  • connection points of the switching elements SW1 and SW2 are connected to the winding 11b (see FIG. 4) of the linear motor 10L via the wiring k3. That is, the leg corresponding to one phase of the three-phase inverter 40 is connected to the linear motor 10L on the left side. Further, the connection points of the switching elements SW5 and SW6 are connected to the winding 11b (see FIG. 4) of the linear motor 10R via the wiring k5. That is, another leg corresponding to one phase of the three-phase inverter 40 is connected to the linear motor 10L on the right side.
  • connection points of the switching elements SW3 and SW4 are connected to the winding 11b (see FIG. 4) of the linear motor 10L via the wiring k4, and also to the winding 11b of the linear motor 10R via the wiring k4. It is connected. That is, the remaining legs of the three-phase inverter 40 are connected to the left and right linear motors 10L and 10R.
  • the cost of the inverter 40 can be reduced by sharing the left and right as one inverter 40 instead of separately providing the inverters corresponding to the left and right linear motors 10L and 10R. Then, by controlling the on / off of the switching elements SW1 to SW6 based on PWM (Pulse Width Modulation) control, a single-phase AC voltage is applied to the windings 11b (see FIG. 4) of the linear motors 10L and 10R. It has become so.
  • PWM Pulse Width Modulation
  • the current detector 50 detects the current applied to the linear motors 10L and 10R, and is inserted in the wiring k4. That is, the current detector 50 detects the current flowing through the windings 11b (see FIG. 4) of the linear motors 10L and 10R.
  • the thrust adjusting unit 60 shown in FIG. 12 includes electronic circuits such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces. .. Then, the program stored in the ROM is read out and expanded in the RAM, and the CPU executes various processes.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the thrust adjusting unit 60 has a function of adjusting the thrust of the linear motors 10L and 10R by driving the inverter 40 based on the current i detected by the current detector 50. That is, the thrust adjusting unit 60 detects the polarity of the current i flowing through the current detector 50 during the dead time of the inverter 40. The polarity of the current i indicates the moving direction of the linear motors 10L and 10R.
  • the thrust adjusting unit 60 generates a voltage command V * in the direction of suppressing the movement of the linear motors 10L and 10R, and switches the switching elements SW1 to SW6 on and off based on the voltage command V *.
  • the thrust adjusting unit 60 causes the thrusts of the linear motors 10L and 10R to cancel the change. Has a function to adjust.
  • the washing machine W of the present embodiment includes the electromagnetic suspensions 100L and 100R according to the second embodiment, the inverter 40 that supplies an alternating current to the armature winding (winding 11b), and the armature winding. It further includes a current detector 50 that detects the flowing current, and a thrust adjusting unit 60 that adjusts the thrust of the linear motor 10 by controlling the inverter 40 based on the current detected by the current detector 50.
  • the current flowing through the armature winding can be detected by the current detector 50, and the thrust of the linear motor 10 can be adjusted so as to suppress the relative movement of the stator 11 and the mover 12.
  • the washing machine W of the present embodiment includes a washing tub 35 for accommodating clothes, an outer tub 37 containing the washing tub 35 (see FIG. 11), and a drive mechanism 38 for rotating the washing tub (see FIG. 11).
  • the electromagnetic suspensions 100L and 100R suppress the vibration of the outer tank 37.
  • the vibration of the outer tank 37 can be suppressed with a relatively simple configuration. Further, according to the present embodiment, it is not necessary to provide a position sensor for detecting the position of the mover 12, so that the cost of the washing machine W can be reduced. Further, since the stator 11 and the mover 12, which are the components of the linear motors 10L and 10R, are hardly damaged or worn, the durability of the electromagnetic suspension 100L and 100R can be improved.
  • the single-phase AC voltage applied to the left and right linear motors 10L and 10R can be generated by one inverter 40 having six switching elements. If inverters are individually provided for the left and right linear motors 10L and 10R, eight switching elements are required. Therefore, according to the present embodiment, the cost of the washing machine W can be reduced as compared with the configuration in which the inverters are individually provided corresponding to the left and right linear motors 10L and 10R.
  • the output current of the inverter 40 is not changed based on the vibration frequencies of the linear motors 10L and 10R. That is, when the linear motors 10L and 10R are considered as "dampers", the viscous damping coefficient C [Ns / m] of the dampers in the third embodiment becomes constant regardless of the vibration frequency. On the other hand, in the present embodiment, the viscosity damping coefficient C [Ns / m] is changed according to the vibration frequencies of the linear motors 10L and 10R. The details will be described below.
  • the equation of motion of the electromagnetic suspension 100 which is an electromagnetic suspension, is expressed by the equation (1).
  • the FD [N] shown in the equation (1) is a force generated by the electromagnetic suspension 100 (that is, the thrust of the linear motor 10). Further, x [m] is the position of the mover 12.
  • the equation of motion of the thrust of the linear motor 10 is expressed by the equation (2).
  • FL [N] is the thrust of the linear motor 10
  • Ke [N / A] is the motor constant of the linear motor 10.
  • I [A] is a current flowing through the winding 11b (see FIG. 4)
  • V [V] is a voltage applied to the winding 11b.
  • R [ ⁇ ] is the resistance of the winding 11b
  • ⁇ [T] is the magnetic flux generated in the winding 11b.
  • FIG. 14A is an experimental result showing changes in the rotation speed of the washing tub 35 and the displacement (vibration) of the outer tub 37 in a comparative example using an oil damper (hydraulic damper) having a constant viscosity damping coefficient C.
  • the range from zero rotation speed of the washing machine W to the maximum rotation speed is displayed as a percentage.
  • the y-axis shows the displacement (vibration) of the outer tank 37 as a relative value when the value of zero rotation speed is set to 0.
  • the washing tub 35 was rotated with 1 kg of clothes placed in a biased predetermined position in the washing tub 35.
  • the amplitude of the outer tub 37 changes as the rotation speed of the washing tub 35 increases. Specifically, when the rotation speed of the washing tub 35 is increased from zero, the amplitude of the outer tub 37 once decreases at a rotation speed of about 5 [%], and the amplitude of the outer tub 37 decreases at a rotation speed of about 10 [%]. The amplitude suddenly increases to the maximum amplitude. Further, the amplitude of the outer tub 37 increases at a rotation speed of 10 to 17 [%], and in the region of 20 [%] or more, the amplitude of the outer tub 37 decreases as the rotation speed of the washing tub 35 increases. There is.
  • FIG. 14B is an experimental result showing changes in the rotation speed of the washing tub 35 and the displacement (vibration) of the outer tub 37 using the electromagnetic suspension of the comparative example shown in FIG. 8 in another control example of the third embodiment. ..
  • the duty ratio of the inverter 40 was set so that the higher the rotation speed of the washing tub 35 (that is, the higher the vibration frequency f of the outer tub 37), the smaller the viscous damping coefficient C of the linear motor 10. Controlled.
  • the maximum amplitude of the outer tub 37 is about 5 [PU]
  • the maximum amplitude of the comparative example shown in FIG. 14A is about half.
  • the amplitude of the outer tub 37 is about 1 [PU].
  • FIG. 14C shows the experimental results showing changes in the rotation speed of the washing tub 35 and the displacement (vibration) of the outer tub 37 using the electromagnetic suspension 100 of the present embodiment shown in FIG. 1 in another control example of the third embodiment. Is. In the experiment in FIG. 14C, it can be seen that the vibration damping property is dramatically improved as compared with FIG. 14B. Its value is ⁇ 2 [PU] or less regardless of the rotation speed.
  • the present invention is not limited to the above-described embodiment, and various modifications are possible.
  • the above-described embodiments are exemplified for the purpose of explaining the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to delete a part of the configuration of each embodiment, or add / replace another configuration.
  • the control lines and information lines shown in the figure show what is considered necessary for explanation, and do not necessarily show all the control lines and information lines necessary for the product. In practice, it can be considered that almost all configurations are interconnected. Possible modifications to the embodiment are, for example:
  • two rectangular plate-shaped magnets 124a and 124b are fitted into one rectangular plate-shaped frame 122 to form a mover 12. did.
  • one magnet may be attached to one frame 122.
  • a plurality of magnets may be attached to each of the plurality of frames.
  • the shapes of the frame 122 and the magnet 124 are not limited to the rectangular plate shape, and various shapes can be adopted.
  • the electromagnetic suspension 100 can be used for home appliances such as air conditioners and refrigerators. , Rail vehicles, automobiles, etc.
  • the mover, the shaft 21 arranged parallel to the propulsion direction of the mover, and the elastic body 20 are integrated, and the surface structure is formed to form a front-rear / left-right / twist. It is possible to increase the strength against stress.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Vibration Prevention Devices (AREA)
  • Linear Motors (AREA)

Abstract

An electromagnetic suspension (100) includes: a linear motor (10) that includes a pair of shafts (21) facing each other and connecting frames to each other, a stator (11) having an armature core and an armature coil, and a mover (12) fixed between the frames, having a magnet or magnetic material having a first surface and a second surface facing the stator, and moving relative to the stator (11); and an elastic body (20) mounted on the shaft (21) and abutted and contracted by one of the frames and a bearing (22) which is an arm of the stator (11).

Description

電磁サスペンションおよび洗濯機Electromagnetic suspension and washing machine
 本発明は、電磁サスペンションおよび洗濯機に関する。 The present invention relates to an electromagnetic suspension and a washing machine.
 直線運動する電機としてリニアモータやリニアアクチュエータ(以下、総称してリニアモータと称する)が知られている。リニアモータは、回転機を直線状に切り開いた構造を有しており、固定子と可動子の各々に構成された磁極の間に働く磁力によって、可動子に推力を発生させる。よって、モータ制御において固定子と可動子のギャップ長の変化はモータ特性を大きく左右する。また、リニアモータを電磁サスペンションとして制振装置へ応用する検討も進められている。例えば、特許文献1は、洗濯機用のサスペンションとして、リニアモータを有する電磁サスペンションを適用する技術が記載されている。また、特許文献2は、磁力を用いた除振装置に関する技術が記載されている。 Linear motors and linear actuators (hereinafter collectively referred to as linear motors) are known as electric machines that move linearly. The linear motor has a structure in which the rotating machine is cut open in a straight line, and thrust is generated in the mover by the magnetic force acting between the magnetic poles formed in each of the stator and the mover. Therefore, in motor control, the change in the gap length between the stator and the mover greatly affects the motor characteristics. In addition, studies are underway to apply a linear motor as an electromagnetic suspension to a vibration damping device. For example, Patent Document 1 describes a technique for applying an electromagnetic suspension having a linear motor as a suspension for a washing machine. Further, Patent Document 2 describes a technique relating to a vibration isolator using a magnetic force.
特開2017-200336号公報Japanese Unexamined Patent Publication No. 2017-20306 特開2002-81498号公報JP-A-2002-81498
 発明者らの検討により、電磁サスペンションを制振装置に用いる場合、振動によって電磁サスペンションには推進方向だけではなく、前後/左右/捻じれなどの応力が加わる。この応力によりリニアモータのギャップ長は均等ではなくなり、リニアモータの特性や制御性を悪化させ、所望の制振効果が得られないことがわかってきた。 According to the study by the inventors, when the electromagnetic suspension is used as a vibration damping device, stress such as front-rear / left-right / twist is applied to the electromagnetic suspension as well as the propulsion direction due to vibration. It has been found that the gap length of the linear motor becomes uneven due to this stress, the characteristics and controllability of the linear motor are deteriorated, and the desired damping effect cannot be obtained.
 特許文献1は、可動子とバネとシャフトが振動方向と同じ軸上に配置してある。かつ可動子の機械強度を確保するために、可動子の断面形状を凹凸加工や、半円形状などの幾何学形状に工夫する技術が記載されている。しかし振動によるギャップ長の変化の是正に関する記述はない。また、特許文献2は、永久磁石と電磁石が振動方向に対向して配置し、その距離を変化させることで除振する技術に関して記載されている。しかし、振動方向以外の前後/左右/捻じれなど応力に関する記述はない。 In Patent Document 1, the mover, the spring, and the shaft are arranged on the same axis as the vibration direction. Moreover, in order to secure the mechanical strength of the mover, a technique for devising the cross-sectional shape of the mover into a concave-convex shape or a geometric shape such as a semicircular shape is described. However, there is no description about correcting the change in gap length due to vibration. Further, Patent Document 2 describes a technique in which a permanent magnet and an electromagnet are arranged so as to face each other in the vibration direction and vibration isolation is performed by changing the distance between them. However, there is no description about stress such as front-back / left-right / twist other than the vibration direction.
 本発明は、前記した課題を解決するためになされたものであり、電磁サスペンションの推進方向以外の応力によって発生する固定子と可動子のギャップ長の変化を抑制し、制振ロバスト性の高い電磁サスペンションおよび洗濯機を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and suppresses a change in the gap length between the stator and the mover caused by stress other than the propulsion direction of the electromagnetic suspension, and electromagnetic waves having high vibration damping robustness. It is intended to provide suspensions and washing machines.
 前記目的を達成するため、本発明の電磁サスペンションは、フレーム(例えば、シャフト固定金具23)間を繋ぐ対向する一対のシャフトと、電機子鉄心と電機子巻線とを有する固定子と、フレーム間に固定され、固定子に対向する第1の面(例えば、表面122f)と第2の面(例えば、裏面122r)とを有する磁石または磁性体を有し、固定子に対し相対的に移動する可動子と、を有するリニアモータと、シャフトに装着され、フレームの一方と固定子の腕とで縮接されている弾性体と、を備えることを特徴とする。
 本発明のその他の態様については、後記する実施形態において説明する。
In order to achieve the above object, the electromagnetic suspension of the present invention has a pair of opposing shafts connecting frames (for example, a shaft fixing bracket 23), a stator having an armature core and an armature winding, and a frame. Has a magnet or magnetic material fixed to the stator and having a first surface (eg, front surface 122f) and a second surface (eg, back surface 122r) facing the stator and moves relative to the stator. It is characterized by including a linear motor having a mover, and an elastic body mounted on a shaft and contracted by one side of a frame and an arm of a stator.
Other aspects of the present invention will be described in embodiments described below.
 本発明によれば、制振ロバスト性の高い電磁サスペンションを実現できる。 According to the present invention, an electromagnetic suspension having high vibration damping robustness can be realized.
第1実施形態に係る電磁サスペンションの断面斜視図である。It is sectional drawing of the electromagnetic suspension which concerns on 1st Embodiment. 第1実施形態に係る可動子を含む支持機構部の斜視図である。It is a perspective view of the support mechanism part including a mover which concerns on 1st Embodiment. 第1実施形態に係るリニアモータの斜視断面図である。It is a perspective sectional view of the linear motor which concerns on 1st Embodiment. 図1のI-I線の模式的な矢視断面図である。FIG. 5 is a schematic cross-sectional view taken along the line I-I of FIG. 第1実施形態における可動子の分解斜視図である。It is an exploded perspective view of the mover in 1st Embodiment. 第1実施形態によるリニアモータの第1の位置の動作説明図である。It is operation | movement explanatory drawing of the 1st position of the linear motor by 1st Embodiment. 第1実施形態によるリニアモータの第2の位置の動作説明図である。It is operation | movement explanatory drawing of the 2nd position of the linear motor by 1st Embodiment. 第1実施形態によるリニアモータの第3の位置の動作説明図である。It is operation | movement explanatory drawing of the 3rd position of the linear motor by 1st Embodiment. 実施形態に係るリニアモータのコア組立と巻線方法を説明する模式図である。It is a schematic diagram explaining the core assembly and winding method of the linear motor which concerns on embodiment. 比較例の電磁サスペンションの断面斜視図である。It is sectional drawing of the electromagnetic suspension of a comparative example. 第2実施形態による電磁サスペンションと洗濯機の斜視図である。It is a perspective view of the electromagnetic suspension and a washing machine according to 2nd Embodiment. 第2実施形態による洗濯機の斜視図である。It is a perspective view of the washing machine according to 2nd Embodiment. 第3実施形態による洗濯機の縦断面図である。It is a vertical sectional view of the washing machine according to 3rd Embodiment. 第3実施形態に適用される制振装置の構成図である。It is a block diagram of the vibration damping device applied to 3rd Embodiment. 第3実施形態に適用される制振装置の要部の構成図である。It is a block diagram of the main part of the vibration damping device applied to 3rd Embodiment. 粘性減衰係数が一定であるオイルダンパを用いた比較例における洗濯槽の回転速度と外槽の変位を示す図である。It is a figure which shows the rotation speed of the washing tub and the displacement of the outer tub in the comparative example using the oil damper which has a constant viscosity damping coefficient. 図8の比較例における洗濯槽の回転速度と外槽の変位を示す図である。It is a figure which shows the rotation speed of the washing tub and the displacement of the outer tub in the comparative example of FIG. 本実施形態における洗濯槽の回転速度と外槽の変位を示す図である。It is a figure which shows the rotation speed of the washing tub and the displacement of the outer tub in this embodiment. 第1実施形態に係る電磁サスペンションの変形例1の断面斜視図である。It is sectional drawing of the modification 1 of the electromagnetic suspension which concerns on 1st Embodiment. 第1実施形態に係る電磁サスペンションの変形例2の断面斜視図である。It is sectional drawing of the modification 2 of the electromagnetic suspension which concerns on 1st Embodiment.
 本発明を実施するための実施形態について、適宜図面を参照しながら詳細に説明する。
[第1実施形態]
〈第1実施形態の構成〉
 図1は、第1実施形態による電磁サスペンション100の断面斜視図である。なお、電磁サスペンション100は、例えば洗濯機W(図10参照)の振動を抑制するために適用される。
Embodiments for carrying out the present invention will be described in detail with reference to the drawings as appropriate.
[First Embodiment]
<Structure of the first embodiment>
FIG. 1 is a cross-sectional perspective view of the electromagnetic suspension 100 according to the first embodiment. The electromagnetic suspension 100 is applied, for example, to suppress the vibration of the washing machine W (see FIG. 10).
 図1の符号x,y,zに示すように、x軸,y軸,z軸を定める。図1は、電磁サスペンション100の外観を俯瞰するとともに、その1/4をカットし内部構造を図示している。電磁サスペンション100は、リニアモータ10を内包している。 As shown by the symbols x, y, z in FIG. 1, the x-axis, y-axis, and z-axis are defined. FIG. 1 gives a bird's-eye view of the appearance of the electromagnetic suspension 100 and shows the internal structure by cutting a quarter of the appearance. The electromagnetic suspension 100 includes a linear motor 10.
 電磁サスペンション100は、フレーム(例えば、シャフト固定金具23)間を繋ぐ対向する一対のシャフト21と、電機子鉄心と電機子巻線とを有する固定子11と、フレーム間に固定され、固定子11に対向する第1の面(例えば、図5の表面122f)と第2の面(例えば、図5の裏面122r)とを有する磁石または磁性体を有し、固定子11に対し相対的に移動する可動子12と、を有するリニアモータ10と、シャフトに装着され、フレームの一方と固定子11の腕(軸受け22)とで縮接されている弾性体20と、を備える。 The electromagnetic suspension 100 is fixed between the frames, the pair of shafts 21 facing each other connecting the frames (for example, the shaft fixing bracket 23), the stator 11 having the armature core and the armature winding, and the stator 11. Has a magnet or magnetic material having a first surface (for example, the front surface 122f in FIG. 5) and a second surface (for example, the back surface 122r in FIG. 5) facing the stator 11 and moves relative to the stator 11. A linear motor 10 having a mover 12 and an elastic body 20 mounted on a shaft and contracted by one of the frames and an arm (bearing 22) of the stator 11 is provided.
 リニアモータ10の可動子12と、推進方向に対して(図中z軸方向)に対して並行な位置に、2本のシャフト21、2個の弾性体20がある。シャフト21は弾性体20を貫通している。またシャフト21はリニアモータ10の固定子11と軸受け22を介して可動子12の移動方向に摺動する。本実施形態では軸受け22として金属表面に潤滑加工したすべり軸受けを用いている。 There are two shafts 21 and two elastic bodies 20 at positions parallel to the mover 12 of the linear motor 10 and the propulsion direction (z-axis direction in the figure). The shaft 21 penetrates the elastic body 20. Further, the shaft 21 slides in the moving direction of the mover 12 via the stator 11 and the bearing 22 of the linear motor 10. In this embodiment, a sliding bearing whose metal surface is lubricated is used as the bearing 22.
 図2は、第1実施形態に係る可動子12を含む支持機構部を示す斜視図である。シャフト固定金具23と、シャフト固定金具23間を繋ぐ対向する一対のシャフト21からなる口型構造の支持機構部内に可動子12は配設されている。つまり可動子12単体よりも広くて厚い面構造を形成している。 FIG. 2 is a perspective view showing a support mechanism portion including the mover 12 according to the first embodiment. The mover 12 is arranged in a support mechanism portion of a mouth-shaped structure including a shaft fixing bracket 23 and a pair of facing shafts 21 connecting the shaft fixing brackets 23. That is, it forms a surface structure that is wider and thicker than the mover 12 alone.
 ここで、電磁サスペンション100における可動子12並びに支持機構部に加わる応力を考える。z軸方向に関しては軸受け22(図1参照)を介して可動子12が可動する。一方、x軸方向、y軸方向の応力発生時は軸受け22が拘束する。またその力は軸受け22とシャフト21間の摩擦力となるだけで、可動子12に応力は及ぶことはない。また、z軸を中心に捻じれ(z軸中心に回転)が生じた場合も、中心軸(z軸)より可動子12の外側にある軸受け22が捻じれや回転を拘束し、可動子12は移動しないし、応力も及ばない。つまり、可動子12は応力に対し、z軸方向にしか稼働しない構造となっている。 Here, consider the stress applied to the mover 12 and the support mechanism portion in the electromagnetic suspension 100. In the z-axis direction, the mover 12 is movable via the bearing 22 (see FIG. 1). On the other hand, when stress is generated in the x-axis direction and the y-axis direction, the bearing 22 is restrained. Further, the force is only a frictional force between the bearing 22 and the shaft 21, and no stress is applied to the mover 12. Further, even when twisting around the z-axis (rotation around the z-axis) occurs, the bearing 22 outside the mover 12 from the central axis (z-axis) restrains the twist and rotation, and the mover 12 Does not move and is not stressed. That is, the mover 12 has a structure that operates only in the z-axis direction with respect to stress.
 図3は、第1実施形態に係るリニアモータ10の斜視断面図である。図3は、リニアモータ10の外観を俯瞰するとともに、その1/4をカットし内部構造を図示している。リニアモータ10は、電機子である固定子11と、z軸方向に延在する板状の可動子12と、を備えている。 FIG. 3 is a perspective sectional view of the linear motor 10 according to the first embodiment. FIG. 3 gives a bird's-eye view of the appearance of the linear motor 10 and cuts a quarter of the linear motor 10 to show the internal structure. The linear motor 10 includes a stator 11 which is an armature, and a plate-shaped mover 12 extending in the z-axis direction.
 固定子11は、z軸方向に沿った略角柱に形成され、その中空部分に矩形平板状の可動子12が遊挿されている。そして、リニアモータ10は、固定子11と可動子12との間に働く磁気的な吸引力・反発力、すなわち推力によって、固定子11と可動子12との相対位置をz軸方向に変化させる。リニアモータ10を電磁サスペンション100に適用する場合には、可動子12は、制振対象物に結合される。図1に示す例においては、洗濯機Wの外槽37(図10参照)が制振対象物であり、固定子11または可動子12が外槽37に結合されている。 The stator 11 is formed in a substantially prism along the z-axis direction, and a rectangular flat plate-shaped mover 12 is loosely inserted in the hollow portion thereof. Then, the linear motor 10 changes the relative position between the stator 11 and the mover 12 in the z-axis direction by the magnetic attraction / repulsion force acting between the stator 11 and the mover 12, that is, the thrust. .. When the linear motor 10 is applied to the electromagnetic suspension 100, the mover 12 is coupled to the vibration damping object. In the example shown in FIG. 1, the outer tub 37 (see FIG. 10) of the washing machine W is the vibration damping object, and the stator 11 or the mover 12 is coupled to the outer tub 37.
 固定子11は、コア11a(電機子鉄心)と、巻線11b(電機子巻線)と、を備えている。コア11aは、電磁鋼板をz軸方向に積層したものであり、z軸方向に沿って隣接し可動子12に向かって突出する磁気歯151(第1の磁気歯)を備えている。また、コア11aは、可動子12を挟んで磁気歯151に対向する位置に、z軸方向に沿って隣接し可動子12に向かって突出する磁気歯152(第2の磁気歯)と、を備えている。 The stator 11 includes a core 11a (armature iron core) and a winding 11b (armature winding). The core 11a is formed by laminating electromagnetic steel sheets in the z-axis direction, and includes magnetic teeth 151 (first magnetic teeth) that are adjacent to each other along the z-axis direction and project toward the mover 12. Further, the core 11a has a magnetic tooth 152 (second magnetic tooth) adjacent to the magnetic tooth 151 in the z-axis direction and projecting toward the mover 12 at a position facing the magnetic tooth 151 with the mover 12 interposed therebetween. I have.
 巻線11bは、これら磁気歯151と152に巻回されている。また、可動子12は、非磁性材料のフレーム122と、フレーム122に嵌め込まれた磁石124(磁石124a,124b)と、を備えている。 The winding 11b is wound around these magnetic teeth 151 and 152. Further, the mover 12 includes a frame 122 made of a non-magnetic material and magnets 124 ( magnets 124a, 124b) fitted in the frame 122.
 図4は、図3のI-I線の模式的な矢視断面図である。但し、図1においてカットされた1/4の部分は図2ではカットされていない。図4に示すように、固定子11のコア11aは、環状部156と、磁気歯151,152と、を備えている。 FIG. 4 is a schematic cross-sectional view taken along the line I-I of FIG. However, the 1/4 portion cut in FIG. 1 is not cut in FIG. As shown in FIG. 4, the core 11a of the stator 11 includes an annular portion 156 and magnetic teeth 151 and 152.
 環状部156は、縦断面視において環状すなわち略矩形枠状の形状を有しており、この環状部156によって磁気回路が構成されている。一対の磁気歯151,152は、環状部156からy軸方向に沿って内側に延びており、相互に対向している。つまり、本発明のモータ特性の磁路にはギャップが2個存在する。 The annular portion 156 has an annular shape, that is, a substantially rectangular frame shape in a vertical cross-sectional view, and the annular portion 156 constitutes a magnetic circuit. The pair of magnetic teeth 151 and 152 extend inward from the annular portion 156 along the y-axis direction and face each other. That is, there are two gaps in the magnetic path having the motor characteristics of the present invention.
 実線矢印で示す磁束ΦAは、可動子12によって生じる磁束である。磁気歯151,152には、それぞれ、巻線11bが巻回されている。巻線11bには、インバータ(例えば後述する図12のインバータ40等)が接続される。そして、このインバータによって巻線11bに通電すると、固定子11が電磁石として機能する。 The magnetic flux ΦA indicated by the solid arrow is the magnetic flux generated by the mover 12. Windings 11b are wound around the magnetic teeth 151 and 152, respectively. An inverter (for example, an inverter 40 in FIG. 12, which will be described later) is connected to the winding 11b. Then, when the winding 11b is energized by this inverter, the stator 11 functions as an electromagnet.
 図5は、第1実施形態における可動子12の分解斜視図である。図3に示したように、可動子12は、フレーム122と、2つの磁石124a,124bと、を備えている。フレーム122は、非磁性材料を矩形枠状に形成したものである。そして、フレーム122には、表面122f(第1の面)および裏面122r(第2の面)を貫通する、矩形の貫通孔122hが形成されている。 FIG. 5 is an exploded perspective view of the mover 12 in the first embodiment. As shown in FIG. 3, the mover 12 includes a frame 122 and two magnets 124a and 124b. The frame 122 is formed by forming a non-magnetic material into a rectangular frame shape. The frame 122 is formed with a rectangular through hole 122h that penetrates the front surface 122f (first surface) and the back surface 122r (second surface).
 また、リニアモータ10の応答性を高めるためには、可動子12は軽量であることが望ましい。そこでフレーム122を構成する非磁性材料には、プラスチックやアルミニウム等の軽量材料を適用することが考えられる。また、炭素繊維強化プラスチック等、軽量で強度の高い複合材を適用してもよい。すなわち、フレーム122の材質は、リニアモータ10の要求強度や仕様に応じて、任意に選択するとよい。 Further, in order to improve the responsiveness of the linear motor 10, it is desirable that the mover 12 is lightweight. Therefore, it is conceivable to apply a lightweight material such as plastic or aluminum to the non-magnetic material constituting the frame 122. Further, a lightweight and high-strength composite material such as carbon fiber reinforced plastic may be applied. That is, the material of the frame 122 may be arbitrarily selected according to the required strength and specifications of the linear motor 10.
 また、2つの磁石124a,124bは、y軸方向に磁極が反転するように交互に配列している。磁石124がフレーム122に嵌め込まれると、貫通孔122hの表面122f側(図5における上面)は磁石124aはN極、磁石124bはS極となっている。また、貫通孔122hの裏面122r側(図5における底面)から磁石124aはS極、磁石124bはN極となっている。 Further, the two magnets 124a and 124b are alternately arranged so that the magnetic poles are inverted in the y-axis direction. When the magnet 124 is fitted into the frame 122, the magnet 124a has an N pole and the magnet 124b has an S pole on the surface 122f side (upper surface in FIG. 5) of the through hole 122h. Further, the magnet 124a has an S pole and the magnet 124b has an N pole from the back surface 122r side (bottom surface in FIG. 5) of the through hole 122h.
 次にリニアモータ10の動作について説明する。
 図6A、図6B、図6Cは、第1実施形態によるリニアモータの動作説明図である。図6Aは、第1実施形態によるリニアモータの第1の位置(状態P1)の動作説明図である。図6Bは、第1実施形態によるリニアモータの第2の位置(状態P2)の動作説明図である。図6Cは、第1実施形態によるリニアモータの第3の位置(状態P3)の動作説明図である。
Next, the operation of the linear motor 10 will be described.
6A, 6B, and 6C are operation explanatory views of the linear motor according to the first embodiment. FIG. 6A is an operation explanatory view of the first position (state P1) of the linear motor according to the first embodiment. FIG. 6B is an operation explanatory view of a second position (state P2) of the linear motor according to the first embodiment. FIG. 6C is an operation explanatory view of a third position (state P3) of the linear motor according to the first embodiment.
 固定子11は、前述したように、コア11a(電機子鉄心)と、巻線11b(電機子巻線)と、を備えている。コア11aは、コアバック部11a1と、ティース部11a2と、ティース部11a2に磁石に対向する端面であるティーストップ部11a3からなる。 As described above, the stator 11 includes a core 11a (armature iron core) and a winding 11b (armature winding). The core 11a includes a core back portion 11a1, a teeth portion 11a2, and a tee stop portion 11a3 which is an end face facing the magnet of the teeth portion 11a2.
 図6A、図6B、図6Cに示す状態P1(第1の位置)、状態P2(第2の位置)、状態P3(第3の位置)は、固定子11と可動子12との相対的な位置関係が、それぞれ異なっている。また、図6A、図6B、図6Cにおいて、実線の太矢印は、磁石124が発生する磁束の向きを示しており、破線の太矢印は、固定子11が発生する磁束の向きを示している。状態P1~P3のいずれにおいても、磁気歯151はフレーム122の表面122fに対向し、磁気歯152はフレーム122の裏面122rに対向している。 The states P1 (first position), state P2 (second position), and state P3 (third position) shown in FIGS. 6A, 6B, and 6C are relative to the stator 11 and the mover 12. The positional relationship is different. Further, in FIGS. 6A, 6B, and 6C, the thick arrow on the solid line indicates the direction of the magnetic flux generated by the magnet 124, and the thick arrow on the broken line indicates the direction of the magnetic flux generated by the stator 11. .. In any of the states P1 to P3, the magnetic teeth 151 face the front surface 122f of the frame 122, and the magnetic teeth 152 face the back surface 122r of the frame 122.
 図6Aの状態P1において、巻線11bは通電されていないため、固定子11は磁束を発生していない。そして、z軸方向における固定子11の中心(符号なし)と、可動子12の中心(符号なし)とが一致している。また、巻線11bに電流を流すと、電流の方向に応じて、磁気歯151と152を磁化させることができる。状態P1において、状態P2に示している「N」,「S」の記号と同様に、磁気歯151をN極に磁化させ、磁気歯152をS極に磁化させると、磁石124aは磁気歯151,152に反発され、磁石124aは磁気歯151,152に吸引される。 In the state P1 of FIG. 6A, since the winding 11b is not energized, the stator 11 does not generate magnetic flux. Then, the center of the stator 11 (unsigned) in the z-axis direction and the center of the mover 12 (unsigned) coincide with each other. Further, when a current is passed through the winding 11b, the magnetic teeth 151 and 152 can be magnetized according to the direction of the current. In the state P1, similarly to the symbols “N” and “S” shown in the state P2, when the magnetic tooth 151 is magnetized to the N pole and the magnetic tooth 152 is magnetized to the S pole, the magnet 124a becomes the magnetic tooth 151. , 152, and the magnet 124a is attracted to the magnetic teeth 151 and 152.
 このように、固定子11と可動子12との間に働く吸引力・反発力によって、固定子11および可動子12には、z軸方向に沿って相対的に推力が働く。なお、「推力」とは、可動子12と固定子11との相対位置を変化させる力である。このため、例えば状態P2に示すように、可動子12は、固定子11に対してz軸プラス方向(図6B上では左方向)に相対的に付勢され移動する。 In this way, due to the attractive force / repulsive force acting between the stator 11 and the mover 12, thrust acts relatively on the stator 11 and the mover 12 along the z-axis direction. The "thrust" is a force that changes the relative positions of the mover 12 and the stator 11. Therefore, for example, as shown in the state P2, the mover 12 is urged and moves relative to the stator 11 in the z-axis plus direction (left direction on FIG. 6B).
 逆に、状態P1において、状態P3に示している「N」,「S」の記号と同様に、磁気歯151をS極に磁化させ、磁気歯152をN極に磁化させると、磁石124aは磁気歯151,152に反発され、磁石124bは磁気歯151に反発され、磁気歯152に吸引される。このため、例えば状態P3に示すように、可動子12は、固定子11に対してz軸マイナス方向(図上では右方向)に相対的に付勢され移動する。なお、状態P2から状態P3までの可動子12の移動範囲である常用範囲の長さを「常用範囲長UL(範囲長)」で示している。 On the contrary, in the state P1, when the magnetic tooth 151 is magnetized to the S pole and the magnetic tooth 152 is magnetized to the N pole, the magnet 124a is generated in the same manner as the symbols “N” and “S” shown in the state P3. It is repelled by the magnetic teeth 151 and 152, and the magnet 124b is repelled by the magnetic tooth 151 and attracted by the magnetic tooth 152. Therefore, for example, as shown in the state P3, the mover 12 is urged and moves relative to the stator 11 in the minus direction on the z-axis (to the right in the drawing). The length of the normal range, which is the movement range of the mover 12 from the state P2 to the state P3, is indicated by the "normal range length UL (range length)".
 図7は、実施形態に係るリニアモータのコア11aの組立と巻線方法を説明する模式図である。リニアモータのコア11aを成型する場合、コアバック部11a1と、ティース部11a2を電磁鋼板よりx-y平面で一体プレス成型し、z軸方向に積層し、コア11aを得る。次に、予め加工した巻線11bをティース部11a2に勘合する。以下、同様に巻線11bを備えるコア11aを2つ準備し、上下(図中y軸方向)に組み合わせ、磁気歯151から磁気歯152を得る。 FIG. 7 is a schematic diagram illustrating an assembly and winding method of the core 11a of the linear motor according to the embodiment. When molding the core 11a of a linear motor, the core back portion 11a1 and the teeth portion 11a2 are integrally press-molded from an electromagnetic steel plate in an xy plane and laminated in the z-axis direction to obtain a core 11a. Next, the pre-processed winding 11b is fitted into the teeth portion 11a2. Hereinafter, two cores 11a having windings 11b are similarly prepared and combined vertically (in the y-axis direction in the drawing) to obtain the magnetic teeth 152 from the magnetic teeth 151.
 図8は、比較例の電磁サスペンション100Cの断面斜視図である。図8は、比較例の電磁サスペンション100Cの外観を俯瞰するとともに、その1/4をカットし内部構造を図示している。比較例の電磁サスペンション100Cは、リニアモータ10を内包している。リニアモータ10の可動子12は、同一軸上(図中Z軸)でシャフト21と連結している。シャフト21は、同一軸上で弾性体20と一体化している。また可動子12は、回転軸受け25を介して固定子11と一体化されている。故に、シャフト21と弾性体20とが受ける振動や外力は、直接可動子12に伝達され、可動子に、図中x方向の振動と応力、y軸方向の振動と応力、z軸方向の振動と応力、Z軸を中心とした捻じれなどの様々な振動や応力が加わる。z軸方向は電磁サスペンションの推進方向と一致するため、制御可能な因子であるが、x軸方向、y軸方向の振動と応力、Z軸を中心とした捻じれは制御されていない。 FIG. 8 is a cross-sectional perspective view of the electromagnetic suspension 100C of the comparative example. FIG. 8 gives a bird's-eye view of the appearance of the electromagnetic suspension 100C of the comparative example, and shows the internal structure by cutting a quarter thereof. The electromagnetic suspension 100C of the comparative example includes a linear motor 10. The mover 12 of the linear motor 10 is connected to the shaft 21 on the same axis (Z axis in the drawing). The shaft 21 is integrated with the elastic body 20 on the same shaft. Further, the mover 12 is integrated with the stator 11 via a rotary bearing 25. Therefore, the vibration and external force received by the shaft 21 and the elastic body 20 are directly transmitted to the mover 12, and the mover has vibration and stress in the x direction, vibration and stress in the y-axis direction, and vibration in the z-axis direction in the figure. And stress, various vibrations and stresses such as twisting around the Z axis are applied. Since the z-axis direction coincides with the propulsion direction of the electromagnetic suspension, it is a controllable factor, but vibration and stress in the x-axis direction and y-axis direction, and twisting around the Z-axis are not controlled.
 ここで、図4を用いて示したように、可動子12の振動はリニアモータ10におけるギャップ長の変化を意味し、磁気回路が振動と外力によって時々刻々と変化することを意味する。よって、リニアモータ10の制振性は乱れたものとなる。 Here, as shown with reference to FIG. 4, the vibration of the mover 12 means a change in the gap length in the linear motor 10, and means that the magnetic circuit changes momentarily due to the vibration and the external force. Therefore, the vibration damping property of the linear motor 10 is disturbed.
〈第1実施形態の効果〉
 以上のように本実施形態によれば、電磁サスペンション100は、フレーム(例えば、シャフト固定金具23)間を繋ぐ対向する一対のシャフト21と、電機子鉄心と電機子巻線とを有する固定子11と、フレーム間に固定され、固定子に対向する第1の面(例えば、表面122f)と第2の面(例えば、裏面122r)とを有する磁石または磁性体を有し、固定子に対し相対的に移動する可動子12と、を有するリニアモータ10と、シャフト21に装着され、フレームの一方と固定子の腕とで縮接されている弾性体20と、を備える。シャフト固定金具23とシャフト21とにより、面構造が形成され、シャフト21は可動子12の推進方向に対し並列に配置し、かつ可動子12と一体化すれば電磁サスペンション100のモータ特性が外乱の影響を受けないため、電磁サスペンション100の制振性が向上する。
<Effect of the first embodiment>
As described above, according to the present embodiment, the electromagnetic suspension 100 has a stator 11 having a pair of opposing shafts 21 connecting frames (for example, a shaft fixing bracket 23), an armature iron core, and an armature winding. And has a magnet or magnetic material fixed between the frames and having a first surface (for example, front surface 122f) and a second surface (for example, back surface 122r) facing the stator, and relative to the stator. It includes a linear motor 10 having a mover 12 that moves substantially, and an elastic body 20 that is mounted on a shaft 21 and is contracted by one of the frames and the arm of the stator. A surface structure is formed by the shaft fixing bracket 23 and the shaft 21, and if the shaft 21 is arranged in parallel with the propulsion direction of the mover 12 and integrated with the mover 12, the motor characteristics of the electromagnetic suspension 100 will be disturbed. Since it is not affected, the vibration damping property of the electromagnetic suspension 100 is improved.
〈第1実施形態の変形例〉
 図15は、第1実施形態に係る電磁サスペンション100の変形例1の断面斜視図である。図15は、可動子12の外観を俯瞰するとともに、その1/4をカットし内部構造を図示している。図1に示した実施形態との違いは、磁石124の着磁方向にシャフト21を配置した点である。これにより、電磁サスペンション100は、x軸方向の幅が小さくなる効果がある。
<Modified example of the first embodiment>
FIG. 15 is a cross-sectional perspective view of a modified example 1 of the electromagnetic suspension 100 according to the first embodiment. FIG. 15 gives a bird's-eye view of the appearance of the mover 12, and cuts a quarter of the mover 12 to show the internal structure. The difference from the embodiment shown in FIG. 1 is that the shaft 21 is arranged in the magnetizing direction of the magnet 124. As a result, the electromagnetic suspension 100 has the effect of reducing the width in the x-axis direction.
 図16は、第1実施形態に係る電磁サスペンション100の変形例2の断面斜視図です。図1に示した実施形態との違いは、磁石124の着磁方向に対し、垂直方向と並列方向にシャフト21を配置した点である。これにより、可動子12の外乱は図1よりも抑えられ、制振性が向上する。前記示したように、シャフト21の配置はコストと製品の体格をみながら設定することが可能である。 FIG. 16 is a cross-sectional perspective view of a modified example 2 of the electromagnetic suspension 100 according to the first embodiment. The difference from the embodiment shown in FIG. 1 is that the shaft 21 is arranged in the direction perpendicular to the magnetizing direction of the magnet 124 and in the parallel direction. As a result, the disturbance of the mover 12 is suppressed as compared with FIG. 1, and the vibration damping property is improved. As shown above, the arrangement of the shaft 21 can be set while observing the cost and the physique of the product.
[第2実施形態]
〈第2実施形態の構成〉
 図9は、第2実施形態による電磁サスペンション100の斜視図である。なお、以下の説明において、前述した第1実施形態の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
[Second Embodiment]
<Structure of the second embodiment>
FIG. 9 is a perspective view of the electromagnetic suspension 100 according to the second embodiment. In the following description, the same reference numerals may be given to the parts corresponding to the respective parts of the first embodiment described above, and the description thereof may be omitted.
 電磁サスペンション100は、第1実施形態によるリニアモータ10と、弾性体20と、を備えている。そして、リニアモータ10の可動子12の一端、または固定子11の一端は、制振対象物に結合される。図では可動子12の一端を制振対象物に結合している。ここで、制振対象物とは、電磁サスペンション100によって振動を抑制しようとする対象物であり、図示の例において制振対象物は、洗濯機W(図10参照)の外槽37である。他端は洗濯機Wのベース31と結合している。当然、電磁サスペンション100を上下逆さまに配置し、固定子11の一端を外槽37(図10参照)に、可動子の一端をベース31に結合してもよい。 The electromagnetic suspension 100 includes a linear motor 10 according to the first embodiment and an elastic body 20. Then, one end of the mover 12 or one end of the stator 11 of the linear motor 10 is coupled to the vibration damping object. In the figure, one end of the mover 12 is connected to the vibration damping object. Here, the vibration damping object is an object whose vibration is to be suppressed by the electromagnetic suspension 100, and in the illustrated example, the vibration damping object is the outer tub 37 of the washing machine W (see FIG. 10). The other end is connected to the base 31 of the washing machine W. As a matter of course, the electromagnetic suspension 100 may be arranged upside down, and one end of the stator 11 may be connected to the outer tank 37 (see FIG. 10) and one end of the mover may be connected to the base 31.
 従って、洗濯機の外槽37がz軸方向に振動すると、それに伴って可動子12がz軸方向に沿って往復し、可動子12と固定子11との相対的な位置関係が変化する。 Therefore, when the outer tub 37 of the washing machine vibrates in the z-axis direction, the mover 12 reciprocates along the z-axis direction, and the relative positional relationship between the mover 12 and the stator 11 changes.
 また、本実施形態においては、弾性体20として金属製の巻バネを適用した。ここで、弾性体20は、可動子12に弾性力を付与するものであり、軸受け22とシャフト固定金具23の間ある。図9に示すように、シャフト21は、弾性体20も貫通している。 Further, in the present embodiment, a metal winding spring is applied as the elastic body 20. Here, the elastic body 20 applies an elastic force to the mover 12, and is between the bearing 22 and the shaft fixing bracket 23. As shown in FIG. 9, the shaft 21 also penetrates the elastic body 20.
 弾性体20は、リニアモータ10の非通電状態においても、外槽37を洗濯機内の所定の位置に保持できるバネ力を備えている。これにより、万が一、制御ミスにより可動子12がz軸上方に突き抜けかけた場合においても、外槽37の自重と、弾性体20のバネ力により、可動子12を押し戻す力が働く。同様に、可動子12がz軸下方に突き抜けかけた場合は、弾性体20のバネ力により、押し戻される。すなわち、弾性体20が制御のフェールセーフ性を確保し、可動子12の両端にストッパーのような部材を配置することなく、ロバスト性を高めることができる。 The elastic body 20 has a spring force capable of holding the outer tub 37 at a predetermined position in the washing machine even when the linear motor 10 is not energized. As a result, even in the unlikely event that the mover 12 penetrates upward on the z-axis due to a control error, a force that pushes back the mover 12 acts due to the weight of the outer tank 37 and the spring force of the elastic body 20. Similarly, when the mover 12 penetrates downward on the z-axis, it is pushed back by the spring force of the elastic body 20. That is, the elastic body 20 secures the fail-safe property of control, and the robustness can be enhanced without arranging members such as stoppers at both ends of the mover 12.
〈第2実施形態の効果〉
 以上のように、本実施形態の電磁サスペンション100は、第1実施形態によるリニアモータ10と、固定子11または可動子12を移動方向(z軸方向)に付勢する弾性体20と、を有する。特に、弾性体20は、金属製の巻バネを含む。これにより、リニアモータ10の非通電状態においても、リニアモータ10を所定の位置に保持でき、リニアモータ10の動作時においても、可動子12の突き抜けを防止することができる。
<Effect of the second embodiment>
As described above, the electromagnetic suspension 100 of the present embodiment includes the linear motor 10 according to the first embodiment and the elastic body 20 that urges the stator 11 or the mover 12 in the moving direction (z-axis direction). .. In particular, the elastic body 20 includes a metal winding spring. As a result, the linear motor 10 can be held at a predetermined position even when the linear motor 10 is not energized, and the mover 12 can be prevented from penetrating even when the linear motor 10 is operating.
[第3実施形態]
〈第3実施形態の構成〉
(全体構成)
 図10は、第3実施形態による洗濯機Wの斜視図である。図10に示す洗濯機Wは、ドラム式の洗濯機であり、また、衣類を乾燥する機能も有している。洗濯機Wは、ベース31と、筐体32と、ドア33と、操作・表示パネル34と、外槽37と、一対の電磁サスペンション100L,100Rと、排水ホースHと、を備えている。ここで、電磁サスペンション100L,100Rは、それぞれ第2実施形態における電磁サスペンション100と同様に構成されている。
[Third Embodiment]
<Structure of the third embodiment>
(overall structure)
FIG. 10 is a perspective view of the washing machine W according to the third embodiment. The washing machine W shown in FIG. 10 is a drum-type washing machine and also has a function of drying clothes. The washing machine W includes a base 31, a housing 32, a door 33, an operation / display panel 34, an outer tub 37, a pair of electromagnetic suspensions 100L and 100R, and a drain hose H. Here, the electromagnetic suspensions 100L and 100R are configured in the same manner as the electromagnetic suspension 100 in the second embodiment, respectively.
 筐体32は、左右の側板32a,32aと、前面カバー32bと、背面カバー32c(図11参照)と、上面カバー32dと、を備えている。ベース31は、筐体32を支持するものである。前面カバー32bの中央付近には、衣類の出し入れを行うための円形の投入口h1(図11参照)が形成されている。ドア33は、この投入口h1に設けられる開閉可能な蓋である。 The housing 32 includes left and right side plates 32a and 32a, a front cover 32b, a back cover 32c (see FIG. 11), and a top cover 32d. The base 31 supports the housing 32. A circular input port h1 (see FIG. 11) for taking in and out clothes is formed near the center of the front cover 32b. The door 33 is an openable / closable lid provided at the inlet h1.
 図11は、第3実施形態による洗濯機Wの縦断面図である。洗濯機Wは、前述した構成の他に、洗濯槽35と、リフタ36と、駆動機構38と、送風ユニット39と、を備えている。洗濯槽35は、衣類を収容するものであり、有底円筒状を呈している。洗濯槽35は、外槽37に内包され、この外槽37と同軸上で回転自在に軸支されている。洗濯槽35の周壁および底壁には、通水・通風のための貫通孔(図示せず)が多数設けられている。また、洗濯槽35の開口h2は、外槽37の開口h3とともに、閉状態のドア33に臨んでいる。 FIG. 11 is a vertical cross-sectional view of the washing machine W according to the third embodiment. In addition to the above-described configuration, the washing machine W includes a washing tub 35, a lifter 36, a drive mechanism 38, and a blower unit 39. The washing tub 35 accommodates clothes and has a bottomed cylindrical shape. The washing tub 35 is contained in the outer tub 37 and is rotatably supported on the same axis as the outer tub 37. The peripheral wall and bottom wall of the washing tub 35 are provided with a large number of through holes (not shown) for water passage and ventilation. Further, the opening h2 of the washing tub 35 faces the closed door 33 together with the opening h3 of the outer tub 37.
 なお、図11に示す例において洗濯槽35の回転中心軸は、開口側が高くなるように傾斜しているが、本発明はこれに限定されるわけではない。すなわち、洗濯槽35の回転中心軸は、水平方向または鉛直方向であってもよい。リフタ36は、洗濯中・乾燥中に衣類を持ち上げて落下させるものであり、洗濯槽35の内周壁に設置されている。外槽37は、洗濯水の貯留等を行うものであり、有底円筒状を呈している。図11に示すように、外槽37は、洗濯槽35を内包している。 In the example shown in FIG. 11, the rotation center axis of the washing tub 35 is inclined so that the opening side is higher, but the present invention is not limited to this. That is, the rotation center axis of the washing tub 35 may be in the horizontal direction or the vertical direction. The lifter 36 lifts and drops clothes during washing and drying, and is installed on the inner peripheral wall of the washing tub 35. The outer tub 37 stores washing water and the like, and has a bottomed cylindrical shape. As shown in FIG. 11, the outer tub 37 includes a washing tub 35.
 また、図10に示したように、外槽37の左右には、電磁サスペンション100L,100Rが配置されているが、図9においては、左側の電磁サスペンション100Lのみを示している。また、外槽37の底壁の最下部には排水孔(図示せず)が設けられ、この排水孔に排水ホースHが接続されている。そして、排水ホースHに設けられた排水弁(図示せず)が閉弁された状態で外槽37に洗濯水が貯留され、また、排水弁が開弁されることで洗濯水が排出されるようになっている。 Further, as shown in FIG. 10, electromagnetic suspensions 100L and 100R are arranged on the left and right sides of the outer tank 37, but in FIG. 9, only the electromagnetic suspension 100L on the left side is shown. Further, a drainage hole (not shown) is provided at the lowermost part of the bottom wall of the outer tank 37, and a drainage hose H is connected to this drainage hole. Then, the washing water is stored in the outer tub 37 in a state where the drain valve (not shown) provided in the drain hose H is closed, and the washing water is discharged by opening the drain valve. It has become like.
 駆動機構38は、洗濯槽35を回転させる機構であり、外槽37の底壁の外側に設置されている。駆動機構38が備えるモータの回転軸は、外槽37の底壁を貫通して、洗濯槽35の底壁に連結されている。送風ユニット39は、洗濯槽35に温風を送り込むものであり、洗濯槽35の上側に配置されている。送風ユニット39は、ヒータおよびファンを備えている。そして、ヒータで熱せられた空気が、ファンによって洗濯槽35に送り込まれる。これによって、水を含んだ衣類が、洗濯槽35内で徐々に乾燥する。 The drive mechanism 38 is a mechanism for rotating the washing tub 35, and is installed outside the bottom wall of the outer tub 37. The rotation shaft of the motor included in the drive mechanism 38 penetrates the bottom wall of the outer tub 37 and is connected to the bottom wall of the washing tub 35. The blower unit 39 blows warm air into the washing tub 35 and is arranged above the washing tub 35. The blower unit 39 includes a heater and a fan. Then, the air heated by the heater is sent to the washing tub 35 by the fan. As a result, the clothes containing water are gradually dried in the washing tub 35.
 ここで、外槽37の振動、すなわち洗濯機Wの振動について簡単に説明する。洗い・すすぎ・乾燥時には、図11に示す駆動機構38によって洗濯槽35が低速回転し、洗濯槽35の底に溜まった衣類をリフタ36によって持ち上げて落下させるタンブリング動作が繰り返される。また、脱水時には洗濯槽35が高速回転し、回転による遠心力で衣類の水分を外に押し出す遠心脱水が行われる。 Here, the vibration of the outer tub 37, that is, the vibration of the washing machine W will be briefly described. During washing, rinsing, and drying, the washing tub 35 is rotated at a low speed by the drive mechanism 38 shown in FIG. 11, and the tumbling operation of lifting and dropping the clothes collected on the bottom of the washing tub 35 by the lifter 36 is repeated. Further, during dehydration, the washing tub 35 rotates at high speed, and centrifugal dehydration is performed to push out the moisture of the clothes by the centrifugal force due to the rotation.
 なお、従来の洗濯機では、洗い・すすぎ・乾燥時において、落下する衣類の反力で洗濯槽35の振動の振幅が大きくなることが多かった。また、従来の洗濯機では、脱水時において、衣類の位置の偏りに起因して、洗濯機Wで振動・騒音が発生することが多かった。このように、洗濯槽35における衣類の量や位置の偏り、含水率の他、洗い・すすぎ・乾燥・脱水等の諸条件によって、洗濯機Wの振動の仕方は時々刻々と変化する。その振動は外槽37に伝播する。 In a conventional washing machine, the amplitude of vibration of the washing tub 35 often increases due to the reaction force of falling clothes during washing, rinsing, and drying. Further, in the conventional washing machine, vibration and noise are often generated in the washing machine W due to the bias of the position of clothes during dehydration. In this way, the way the washing machine W vibrates changes from moment to moment depending on various conditions such as washing, rinsing, drying, and dehydration, in addition to the amount and position of clothes in the washing tub 35 and the water content. The vibration propagates to the outer tank 37.
(制振装置200の構成)
 図12は、実施形態3に適用される制振装置200の構成図である。図12において制振装置200は、インバータ40と、電流検出器50と、推力調整部60と、整流回路70と、左右の電磁サスペンション100L,100Rと、を備えている。制振装置200は、制振対象物Gの振動を抑制するものである。なお、本実施形態においては、制振対象物Gは、洗濯機Wの外槽37(図10参照)である。
(Structure of vibration damping device 200)
FIG. 12 is a configuration diagram of the vibration damping device 200 applied to the third embodiment. In FIG. 12, the vibration damping device 200 includes an inverter 40, a current detector 50, a thrust adjusting unit 60, a rectifier circuit 70, and left and right electromagnetic suspensions 100L and 100R. The vibration damping device 200 suppresses the vibration of the vibration damping object G. In the present embodiment, the vibration damping object G is the outer tub 37 of the washing machine W (see FIG. 10).
 図12においては、左右の電磁サスペンション100L,100Rを一つの枠で表している。また、電磁サスペンション100L,100Rに含まれるリニアモータ10を、それぞれリニアモータ10L,10Rと呼ぶ。同様に、電磁サスペンション100L,100Rに含まれる弾性体20を、弾性体20L,20Rと呼ぶ。 In FIG. 12, the left and right electromagnetic suspensions 100L and 100R are represented by one frame. Further, the linear motors 10 included in the electromagnetic suspensions 100L and 100R are referred to as linear motors 10L and 10R, respectively. Similarly, the elastic bodies 20 included in the electromagnetic suspensions 100L and 100R are referred to as elastic bodies 20L and 20R.
 整流回路70は、交流電源Eによって印加された交流電圧を整流し、インバータ40に直流電圧を印加する。なお、交流電源Eと整流回路70とを合わせて直流電源であると考えてもよい。インバータ40は、整流回路70から印加される直流電圧を、推力調整部60からの電圧指令Vに基づいて単相交流電圧に変換し、この単相交流電圧をリニアモータ10L,10Rの巻線11b(図2参照)に印加する。換言すれば、インバータ40は、電圧指令Vに基づいて、リニアモータ10L,10Rを駆動する機能を有している。 The rectifier circuit 70 rectifies the AC voltage applied by the AC power supply E, and applies a DC voltage to the inverter 40. The AC power supply E and the rectifier circuit 70 may be considered as a DC power supply in combination. The inverter 40 converts the DC voltage applied from the rectifier circuit 70 into a single-phase AC voltage based on the voltage command V * from the thrust adjusting unit 60, and converts this single-phase AC voltage into the windings of the linear motors 10L and 10R. Apply to 11b (see FIG. 2). In other words, the inverter 40 has a function of driving the linear motors 10L and 10R based on the voltage command V *.
 図13は、第3実施形態に適用される制振装置200の要部の構成図である。整流回路70は、交流電源Eから印加される交流電圧を直流電圧に変換する周知の倍電圧整流回路である。図13に示すように、整流回路70は、ダイオードD1~D4をブリッジ接続してなるダイオードブリッジ回路72と、直列接続された2つの平滑コンデンサ74,76と、を備えている。また、図13に示した駆動機構38は、図13に示すように、インバータ38aと、モータ38bと、を備えている。 FIG. 13 is a configuration diagram of a main part of the vibration damping device 200 applied to the third embodiment. The rectifier circuit 70 is a well-known voltage doubler rectifier circuit that converts an AC voltage applied from the AC power supply E into a DC voltage. As shown in FIG. 13, the rectifier circuit 70 includes a diode bridge circuit 72 in which diodes D1 to D4 are bridge-connected, and two smoothing capacitors 74 and 76 connected in series. Further, as shown in FIG. 13, the drive mechanism 38 shown in FIG. 13 includes an inverter 38a and a motor 38b.
 そして、ダイオードブリッジ回路72によって生成される電圧(脈流を含む直流電圧)が、平滑コンデンサ74,76によって平滑化され、交流電源Eの電圧の略2倍に相当する直流電圧が生成される。整流回路70は、正側の配線k1と、負側の配線k2を介してインバータ40に接続されるとともに、洗濯槽35(図11参照)を回転させる駆動機構38のインバータ38aにも接続されている。 Then, the voltage (DC voltage including pulsating current) generated by the diode bridge circuit 72 is smoothed by the smoothing capacitors 74 and 76, and a DC voltage corresponding to approximately twice the voltage of the AC power supply E is generated. The rectifier circuit 70 is connected to the inverter 40 via the wiring k1 on the positive side and the wiring k2 on the negative side, and is also connected to the inverter 38a of the drive mechanism 38 that rotates the washing tub 35 (see FIG. 11). There is.
 インバータ40は、整流回路70から印加される直流電圧を二系統の単相交流電圧に変換し、これら二系統の単相交流電圧を各々リニアモータ10L,10Rの巻線11b(図4参照)に印加するインバータである。 The inverter 40 converts the DC voltage applied from the rectifier circuit 70 into two single-phase AC voltages, and converts these two single-phase AC voltages into the windings 11b (see FIG. 4) of the linear motors 10L and 10R, respectively. It is an inverter to be applied.
 図13に示すように、インバータ40は、スイッチング素子SW1,SW2を備える第1のレグと、スイッチング素子SW3,SW4を備える第2のレグと、スイッチング素子SW5,SW6を備える第3のレグと、が並列接続された構成になっている。これらのスイッチング素子SW1~SW6として、例えば、IGBT(Insulated Gate Bipolar Transistor)を用いることができる。スイッチング素子SW1~SW6には、それぞれ、還流ダイオードDが逆並列に接続されている。 As shown in FIG. 13, the inverter 40 includes a first leg including switching elements SW1 and SW2, a second leg including switching elements SW3 and SW4, and a third leg including switching elements SW5 and SW6. Are connected in parallel. As these switching elements SW1 to SW6, for example, an IGBT (Insulated Gate Bipolar Transistor) can be used. A freewheeling diode D is connected in antiparallel to each of the switching elements SW1 to SW6.
 また、スイッチング素子SW1,SW2の接続点は、配線k3を介して、リニアモータ10Lの巻線11b(図4参照)に接続されている。すなわち、三相のインバータ40の一相分に対応するレグが、左側のリニアモータ10Lに接続されている。また、スイッチング素子SW5,SW6の接続点は、配線k5を介して、リニアモータ10Rの巻線11b(図4参照)に接続されている。すなわち、三相のインバータ40の一相分に対応する別のレグが、右側のリニアモータ10Lに接続されている。 Further, the connection points of the switching elements SW1 and SW2 are connected to the winding 11b (see FIG. 4) of the linear motor 10L via the wiring k3. That is, the leg corresponding to one phase of the three-phase inverter 40 is connected to the linear motor 10L on the left side. Further, the connection points of the switching elements SW5 and SW6 are connected to the winding 11b (see FIG. 4) of the linear motor 10R via the wiring k5. That is, another leg corresponding to one phase of the three-phase inverter 40 is connected to the linear motor 10L on the right side.
 また、スイッチング素子SW3,SW4の接続点は、配線k4を介してリニアモータ10Lの巻線11b(図4参照)に接続されるとともに、この配線k4を介してリニアモータ10Rの巻線11bにも接続されている。すなわち、3相のインバータ40の残りのレグが、左右のリニアモータ10L,10Rに接続されている。 Further, the connection points of the switching elements SW3 and SW4 are connected to the winding 11b (see FIG. 4) of the linear motor 10L via the wiring k4, and also to the winding 11b of the linear motor 10R via the wiring k4. It is connected. That is, the remaining legs of the three-phase inverter 40 are connected to the left and right linear motors 10L and 10R.
 このように、左右のリニアモータ10L,10Rに対応して別々にインバータを設けるのではなく、左右を一つのインバータ40として共通化することで、インバータ40のコストを削減できる。そして、PWM(Pulse Width Modulation)制御に基づいてスイッチング素子SW1~SW6のオン・オフが制御されることで、リニアモータ10L,10Rの巻線11b(図4参照)に単相交流電圧が印加されるようになっている。 In this way, the cost of the inverter 40 can be reduced by sharing the left and right as one inverter 40 instead of separately providing the inverters corresponding to the left and right linear motors 10L and 10R. Then, by controlling the on / off of the switching elements SW1 to SW6 based on PWM (Pulse Width Modulation) control, a single-phase AC voltage is applied to the windings 11b (see FIG. 4) of the linear motors 10L and 10R. It has become so.
 電流検出器50は、リニアモータ10L,10Rに通電される電流を検出するものであり、配線k4に挿入されている。すなわち、電流検出器50によって、リニアモータ10L,10Rの巻線11b(図4参照)に流れる電流が検出される。 The current detector 50 detects the current applied to the linear motors 10L and 10R, and is inserted in the wiring k4. That is, the current detector 50 detects the current flowing through the windings 11b (see FIG. 4) of the linear motors 10L and 10R.
(推力調整部60)
 図12に示す推力調整部60は、図示は省略するが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成されている。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。
(Thrust adjustment unit 60)
Although not shown, the thrust adjusting unit 60 shown in FIG. 12 includes electronic circuits such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces. .. Then, the program stored in the ROM is read out and expanded in the RAM, and the CPU executes various processes.
 図12において、推力調整部60は、電流検出器50によって検出される電流iに基づき、インバータ40を駆動することによって、リニアモータ10L,10Rの推力を調整する機能を有している。すなわち、推力調整部60は、インバータ40のデッドタイム中に電流検出器50を流れる電流iの極性を検出する。電流iの極性は、リニアモータ10L,10Rの移動方向を示している。 In FIG. 12, the thrust adjusting unit 60 has a function of adjusting the thrust of the linear motors 10L and 10R by driving the inverter 40 based on the current i detected by the current detector 50. That is, the thrust adjusting unit 60 detects the polarity of the current i flowing through the current detector 50 during the dead time of the inverter 40. The polarity of the current i indicates the moving direction of the linear motors 10L and 10R.
 そこで、推力調整部60は、リニアモータ10L,10Rの移動を抑制する方向の電圧指令Vを生成し、この電圧指令Vに基づいてスイッチング素子SW1~SW6のオン・オフを切り替える。これにより、推力調整部60は、外槽37(図11参照)の振動に伴って可動子12と固定子11との相対位置が変化すると、この変化を打ち消すようにリニアモータ10L,10Rの推力を調整する機能を有している。 Therefore, the thrust adjusting unit 60 generates a voltage command V * in the direction of suppressing the movement of the linear motors 10L and 10R, and switches the switching elements SW1 to SW6 on and off based on the voltage command V *. As a result, when the relative positions of the mover 12 and the stator 11 change due to the vibration of the outer tank 37 (see FIG. 11), the thrust adjusting unit 60 causes the thrusts of the linear motors 10L and 10R to cancel the change. Has a function to adjust.
〈第3実施形態の効果〉
 以上のように、本実施形態の洗濯機Wは、第2実施形態による電磁サスペンション100L,100Rと、電機子巻線(巻線11b)に交流電流を供給するインバータ40と、電機子巻線に流れる電流を検出する電流検出器50と、電流検出器50によって検出される電流に基づいてインバータ40を制御することによってリニアモータ10の推力を調整する推力調整部60と、をさらに備える。
<Effect of the third embodiment>
As described above, the washing machine W of the present embodiment includes the electromagnetic suspensions 100L and 100R according to the second embodiment, the inverter 40 that supplies an alternating current to the armature winding (winding 11b), and the armature winding. It further includes a current detector 50 that detects the flowing current, and a thrust adjusting unit 60 that adjusts the thrust of the linear motor 10 by controlling the inverter 40 based on the current detected by the current detector 50.
 これにより、電流検出器50によって電機子巻線に流れる電流を検出することができ、固定子11および可動子12の相対運動を抑制するように、リニアモータ10の推力を調整することができる。 Thereby, the current flowing through the armature winding can be detected by the current detector 50, and the thrust of the linear motor 10 can be adjusted so as to suppress the relative movement of the stator 11 and the mover 12.
 さらに、本実施形態の洗濯機Wは、衣類を収容する洗濯槽35と、洗濯槽35を内包する外槽37(図11参照)と、洗濯槽を回転させる駆動機構38(図11参照)と、を備え、電磁サスペンション100L,100Rは外槽37の振動を抑制する。 Further, the washing machine W of the present embodiment includes a washing tub 35 for accommodating clothes, an outer tub 37 containing the washing tub 35 (see FIG. 11), and a drive mechanism 38 for rotating the washing tub (see FIG. 11). , And the electromagnetic suspensions 100L and 100R suppress the vibration of the outer tank 37.
 これにより、本実施形態によれば、比較的簡素な構成で外槽37の振動を抑制することができる。また、本実施形態によれば、可動子12の位置を検出する位置センサを設ける必要がないため、洗濯機Wの低コスト化を図ることができる。また、リニアモータ10L,10Rの構成要素である固定子11および可動子12は、損傷や摩耗がほとんど発生しないため、電磁サスペンション100L,100Rの耐久性を高めることができる。 Thereby, according to the present embodiment, the vibration of the outer tank 37 can be suppressed with a relatively simple configuration. Further, according to the present embodiment, it is not necessary to provide a position sensor for detecting the position of the mover 12, so that the cost of the washing machine W can be reduced. Further, since the stator 11 and the mover 12, which are the components of the linear motors 10L and 10R, are hardly damaged or worn, the durability of the electromagnetic suspension 100L and 100R can be improved.
 また、本実施形態によれば、左右のリニアモータ10L,10Rに印加される単相交流電圧を、6個のスイッチング素子を有する1台のインバータ40によって生成することができる。仮に、左右のリニアモータ10L,10Rに対応して個別にインバータを設けると、8個のスイッチング素子が必要になる。従って、本実施形態によれば、左右のリニアモータ10L,10Rに対応して個別にインバータを設ける構成と比較して、洗濯機Wの低コスト化を図ることができる。 Further, according to the present embodiment, the single-phase AC voltage applied to the left and right linear motors 10L and 10R can be generated by one inverter 40 having six switching elements. If inverters are individually provided for the left and right linear motors 10L and 10R, eight switching elements are required. Therefore, according to the present embodiment, the cost of the washing machine W can be reduced as compared with the configuration in which the inverters are individually provided corresponding to the left and right linear motors 10L and 10R.
[第3実施形態における他の制御例の効果]
 次に、第3実施形態の他の制御例について説明する。洗濯機の構成および動作は、第3実施形態のもの(図10~図13参照)と同様である。但し、本実施形態において、推力調整部60(図12参照)は、電流検出器50の出力信号に基づいて左右のリニアモータ10L,10Rの振動周波数を検出し、振動周波数に応じてインバータ40の出力電流を変化させる点が異なる。
[Effects of other control examples in the third embodiment]
Next, another control example of the third embodiment will be described. The configuration and operation of the washing machine are the same as those of the third embodiment (see FIGS. 10 to 13). However, in the present embodiment, the thrust adjusting unit 60 (see FIG. 12) detects the vibration frequencies of the left and right linear motors 10L and 10R based on the output signal of the current detector 50, and the inverter 40 responds to the vibration frequencies. The difference is that the output current is changed.
 まず、前述した第3実施形態においては、リニアモータ10L,10Rの振動周波数に基づいて、インバータ40の出力電流を変化させるものではなかった。すなわち、リニアモータ10L,10Rを「ダンパ」と考えた場合、第3実施形態においてダンパの粘性減衰係数C[Ns/m]は、振動周波数に関わらず一定になる。一方、本実施形態においては、リニアモータ10L,10Rの振動周波数に応じて粘性減衰係数C[Ns/m]を変化させる。その詳細について、以下説明する。 First, in the third embodiment described above, the output current of the inverter 40 is not changed based on the vibration frequencies of the linear motors 10L and 10R. That is, when the linear motors 10L and 10R are considered as "dampers", the viscous damping coefficient C [Ns / m] of the dampers in the third embodiment becomes constant regardless of the vibration frequency. On the other hand, in the present embodiment, the viscosity damping coefficient C [Ns / m] is changed according to the vibration frequencies of the linear motors 10L and 10R. The details will be described below.
 電磁サスペンションである電磁サスペンション100の運動方程式は、式(1)で表される。なお、式(1)に示すF[N]は、電磁サスペンション100で発生する力(すなわち、リニアモータ10の推力)である。また、x[m]は、可動子12の位置である。
Figure JPOXMLDOC01-appb-M000001
The equation of motion of the electromagnetic suspension 100, which is an electromagnetic suspension, is expressed by the equation (1). The FD [N] shown in the equation (1) is a force generated by the electromagnetic suspension 100 (that is, the thrust of the linear motor 10). Further, x [m] is the position of the mover 12.
Figure JPOXMLDOC01-appb-M000001
 また、リニアモータ10の推力の運動方程式は、式(2)で表される。なお、F[N]はリニアモータ10の推力であり、K[N/A]はリニアモータ10のモータ定数である。また、I[A]は巻線11b(図4参照)に流れる電流であり、V[V]は巻線11bに印加される電圧である。また、R[Ω]は巻線11bの抵抗であり、φ[T]は巻線11bで発生する磁束である。
Figure JPOXMLDOC01-appb-M000002
The equation of motion of the thrust of the linear motor 10 is expressed by the equation (2). FL [N] is the thrust of the linear motor 10, and Ke [N / A] is the motor constant of the linear motor 10. Further, I [A] is a current flowing through the winding 11b (see FIG. 4), and V [V] is a voltage applied to the winding 11b. Further, R [Ω] is the resistance of the winding 11b, and φ [T] is the magnetic flux generated in the winding 11b.
Figure JPOXMLDOC01-appb-M000002
 ここで、式(1)の力Fと、式(2)の推力Fと、は等価であるため、以下の式(3)が導かれる。なお、C[N・m/s]は、リニアモータ10の粘性減衰係数である。
Figure JPOXMLDOC01-appb-M000003
Here, the force F D of the formula (1), since the thrust F L of formula (2), are equivalent, the following equation (3) is derived. C [Nm / s] is a viscous damping coefficient of the linear motor 10.
Figure JPOXMLDOC01-appb-M000003
 図14Aは、粘性減衰係数Cが一定であるオイルダンパ(油圧ダンパ)を用いた比較例において、洗濯槽35の回転速度と外槽37の変位(振動)の変化を示す実験結果である。x軸は洗濯機Wの回転速度ゼロから最高回転速度までの範囲をパーセント表示としている。y軸は外槽37の変位(振動)を回転速度ゼロの値を0とした場合の相対値で示している。なお、図14に係る実験では、洗濯槽35内の偏った所定位置に1kgの衣類を置いた状態で、洗濯槽35を回転させた。 FIG. 14A is an experimental result showing changes in the rotation speed of the washing tub 35 and the displacement (vibration) of the outer tub 37 in a comparative example using an oil damper (hydraulic damper) having a constant viscosity damping coefficient C. On the x-axis, the range from zero rotation speed of the washing machine W to the maximum rotation speed is displayed as a percentage. The y-axis shows the displacement (vibration) of the outer tank 37 as a relative value when the value of zero rotation speed is set to 0. In the experiment according to FIG. 14, the washing tub 35 was rotated with 1 kg of clothes placed in a biased predetermined position in the washing tub 35.
 図14Aに示すように、洗濯槽35の回転速度が大きくなるにつれて、外槽37の振幅が変化している。具体的には、洗濯槽35の回転速度をゼロから増加させると、約5[%]の回転速度において外槽37の振幅が一旦減少し、約10[%]の回転速度において外槽37の振幅が急激に大きくなって最大振幅になっている。また、10~17[%]の回転速度において外槽37の振幅が増加し、20[%]以上の領域では、洗濯槽35の回転速度が大きくなるにつれて、外槽37の振幅は小さくなっている。 As shown in FIG. 14A, the amplitude of the outer tub 37 changes as the rotation speed of the washing tub 35 increases. Specifically, when the rotation speed of the washing tub 35 is increased from zero, the amplitude of the outer tub 37 once decreases at a rotation speed of about 5 [%], and the amplitude of the outer tub 37 decreases at a rotation speed of about 10 [%]. The amplitude suddenly increases to the maximum amplitude. Further, the amplitude of the outer tub 37 increases at a rotation speed of 10 to 17 [%], and in the region of 20 [%] or more, the amplitude of the outer tub 37 decreases as the rotation speed of the washing tub 35 increases. There is.
 図14Bは、第3実施形態の他の制御例において、図8に示す比較例の電磁サスペンションを用い、洗濯槽35の回転速度と外槽37の変位(振動)の変化を示す実験結果である。図14Bにおける実験では、洗濯槽35の回転速度が高いほど(すなわち、外槽37の振動周波数fが高いほど)、リニアモータ10の粘性減衰係数Cが小さくなるように、インバータ40のデューティ比を制御した。 FIG. 14B is an experimental result showing changes in the rotation speed of the washing tub 35 and the displacement (vibration) of the outer tub 37 using the electromagnetic suspension of the comparative example shown in FIG. 8 in another control example of the third embodiment. .. In the experiment in FIG. 14B, the duty ratio of the inverter 40 was set so that the higher the rotation speed of the washing tub 35 (that is, the higher the vibration frequency f of the outer tub 37), the smaller the viscous damping coefficient C of the linear motor 10. Controlled.
 図14Bに示すように、洗濯槽35の回転速度が約10[%]のときの外槽37の最大振幅は約5[PU]であり、図14Aに示す比較例の最大振幅(約10[PU])の半分程度になっている。また、洗濯槽35の回転速度が50[%]以上の領域では、外槽37の振幅が1[PU]程度になっている。このように、第3実施形態によれば、粘性減衰係数Cを可変制御することによって、オイルダンパを用いた場合よりも外槽37の振動を効果的に抑制できる。 As shown in FIG. 14B, when the rotation speed of the washing tub 35 is about 10 [%], the maximum amplitude of the outer tub 37 is about 5 [PU], and the maximum amplitude of the comparative example shown in FIG. 14A (about 10 [%]). PU]) is about half. Further, in the region where the rotation speed of the washing tub 35 is 50 [%] or more, the amplitude of the outer tub 37 is about 1 [PU]. As described above, according to the third embodiment, by variably controlling the viscosity damping coefficient C, the vibration of the outer tank 37 can be effectively suppressed as compared with the case where the oil damper is used.
 図14Cは、第3実施形態の他の制御例において、図1に示す本実施形態の電磁サスペンション100を用い、洗濯槽35の回転速度と外槽37の変位(振動)の変化を示す実験結果である。図14Cにおける実験では、図14Bに比べ、制振性が飛躍的に向上していることがわかる。その値は回転速度に関係なく±2[PU]以下である。 FIG. 14C shows the experimental results showing changes in the rotation speed of the washing tub 35 and the displacement (vibration) of the outer tub 37 using the electromagnetic suspension 100 of the present embodiment shown in FIG. 1 in another control example of the third embodiment. Is. In the experiment in FIG. 14C, it can be seen that the vibration damping property is dramatically improved as compared with FIG. 14B. Its value is ± 2 [PU] or less regardless of the rotation speed.
 以上より、電磁サスペンション100を構成するリニアモータ10の可動子12に、外乱因子(x軸方向の振動と外力、y軸方向の振動と外力、z軸を中心とした捻じれ)を与えないように、弾性体20とシャフト21を可動子12の推進方向に対し並列に配置し、かつ可動子12と一体化することが有効であることを確認した。 From the above, disturbing factors (vibration and external force in the x-axis direction, vibration and external force in the y-axis direction, and twisting around the z-axis) are not applied to the mover 12 of the linear motor 10 constituting the electromagnetic suspension 100. It was confirmed that it is effective to arrange the elastic body 20 and the shaft 21 in parallel with the propulsion direction of the mover 12 and integrate them with the mover 12.
[変形例]
 本発明は前述した実施形態に限定されるものではなく、種々の変形が可能である。前述した実施形態は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について削除し、もしくは他の構成の追加・置換をすることが可能である。また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。前記実施形態に対して可能な変形は、例えば以下のようなものである。
[Modification example]
The present invention is not limited to the above-described embodiment, and various modifications are possible. The above-described embodiments are exemplified for the purpose of explaining the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to delete a part of the configuration of each embodiment, or add / replace another configuration. In addition, the control lines and information lines shown in the figure show what is considered necessary for explanation, and do not necessarily show all the control lines and information lines necessary for the product. In practice, it can be considered that almost all configurations are interconnected. Possible modifications to the embodiment are, for example:
(1)前記各実施形態においては、図5に示したように、1個の矩形板状のフレーム122に、2個の矩形板状の磁石124a,124b、を嵌め込んで可動子12を構成した。しかし、1個のフレーム122に、1個の磁石を装着してもよい。また、複数のフレームの各々に複数の磁石を装着してもよい。また、フレーム122および磁石124の形状は矩形板状に限られるものではなく、様々な形状のものを採用することができる。 (1) In each of the above-described embodiments, as shown in FIG. 5, two rectangular plate-shaped magnets 124a and 124b are fitted into one rectangular plate-shaped frame 122 to form a mover 12. did. However, one magnet may be attached to one frame 122. Further, a plurality of magnets may be attached to each of the plurality of frames. Further, the shapes of the frame 122 and the magnet 124 are not limited to the rectangular plate shape, and various shapes can be adopted.
(2)また、図6Aにおいて、磁石124a,124bのS極およびN極、磁気歯151,152の磁化方向を逆にしてもよい。 (2) Further, in FIG. 6A, the magnetization directions of the S pole and N pole of the magnets 124a and 124b and the magnetic teeth 151 and 152 may be reversed.
(3)また、前記第2,第3実施形態においては、電磁サスペンション100を洗濯機Wの制振に適用した例を説明したが、電磁サスペンション100は、空気調和機、冷蔵庫等の家電製品や、鉄道車両、自動車等にも適用することができる。 (3) Further, in the second and third embodiments, an example in which the electromagnetic suspension 100 is applied to the vibration suppression of the washing machine W has been described, but the electromagnetic suspension 100 can be used for home appliances such as air conditioners and refrigerators. , Rail vehicles, automobiles, etc.
(4)また、前記各実施形態においては、単相交流電流でリニアモータ10を駆動する構成について説明したが、例えば、3相交流電流でリニアモータ10を駆動してもよい。 (4) Further, in each of the above-described embodiments, the configuration for driving the linear motor 10 with a single-phase alternating current has been described, but for example, the linear motor 10 may be driven with a three-phase alternating current.
(5)各実施形態においては、偶数本のシャフト21と偶数個の弾性体20を用いた例を示したが、偶数本に限定されるものではない。振動により発生する推進方向以外の応力が可動子12に集中しないように、大きな面構造を構築でき、機械強度が確保できれば本数や個数は限定されない。 (5) In each embodiment, an example in which an even number of shafts 21 and an even number of elastic bodies 20 are used is shown, but the present invention is not limited to an even number of shafts. The number and number are not limited as long as a large surface structure can be constructed and the mechanical strength can be secured so that stress generated by vibration other than the propulsion direction is not concentrated on the mover 12.
 本実施形態の電磁サスペンション100によれば、可動子と、当該可動子の推進方向に平行に配置したシャフト21と弾性体20とを一体化し、面構造を成形することで前後/左右/捻じれなど応力に対する強度を高めることができる。 According to the electromagnetic suspension 100 of the present embodiment, the mover, the shaft 21 arranged parallel to the propulsion direction of the mover, and the elastic body 20 are integrated, and the surface structure is formed to form a front-rear / left-right / twist. It is possible to increase the strength against stress.
 10,10L,10R  リニアモータ
 11  固定子
 11a  コア(電機子鉄心)
 11b  巻線(電機子巻線)
 11a1  コアバック部(電機子鉄心)
 11a2  ティース部(電機子鉄心)
 11a3  ティーストップ部(電機子鉄心)
 12  可動子
 20,20L,20R  弾性体
 21  シャフト
 22  軸受け(腕)
 23  シャフト固定金具(フレーム)
 25  回転軸受け
 35  洗濯槽
 37  外槽
 38  駆動機構
 40  インバータ
 50  電流検出器
 60  推力調整部
 100,100L,100R  電磁サスペンション
 100C  比較例の電磁サスペンション
 122  フレーム
 122f  表面(第1の面)
 122h  貫通孔
 122r  裏面(第2の面)
 124,124a,124b  磁石
 151  磁気歯(第1の磁気歯)
 152  磁気歯(第2の磁気歯)
 P1  状態(第1の位置)
 P2  状態(第2の位置)
 P3  状態(第3の位置)
 W  洗濯機
 z  z軸方向(移動方向)
10,10L, 10R Linear motor 11 Stator 11a Core (armature iron core)
11b winding (armature winding)
11a1 core back part (armature iron core)
11a2 Teeth section (armature iron core)
11a3 Tea stop (armature iron core)
12 Movables 20, 20L, 20R Elastic body 21 Shaft 22 Bearing (arm)
23 Shaft fixing bracket (frame)
25 Rotating bearing 35 Washing tub 37 Outer tub 38 Drive mechanism 40 Inverter 50 Current detector 60 Thrust adjuster 100, 100L, 100R Electromagnetic suspension 100C Electromagnetic suspension 122 frame 122f surface (first surface)
122h through hole 122r back surface (second surface)
124, 124a, 124b Magnet 151 Magnetic tooth (first magnetic tooth)
152 Magnetic tooth (second magnetic tooth)
P1 state (first position)
P2 state (second position)
P3 state (third position)
W washing machine z z axis direction (movement direction)

Claims (9)

  1.  フレーム間を繋ぐ対向する一対のシャフトと、
     電機子鉄心と電機子巻線とを有する固定子と、前記フレーム間に固定され、前記固定子に対向する第1の面と第2の面とを有する磁石または磁性体を有し、前記固定子に対し相対的に移動する可動子と、を有するリニアモータと、
     前記シャフトに装着され、前記フレームの一方と前記固定子の腕とで縮接されている弾性体と、を備える
     ことを特徴とする電磁サスペンション。
    A pair of opposing shafts connecting the frames and
    A stator having an armature core and an armature winding, and a magnet or magnetic material fixed between the frames and having a first surface and a second surface facing the stator, and the fixing A linear motor having a mover that moves relative to the child,
    An electromagnetic suspension comprising an elastic body mounted on the shaft and contracted by one of the frames and the arm of the stator.
  2.  請求項1において、
     前記シャフトは、前記磁石の着磁方向に対し垂直方向に配置している
     ことを特徴とする電磁サスペンション
    In claim 1,
    The shaft is an electromagnetic suspension characterized in that it is arranged in a direction perpendicular to the magnetizing direction of the magnet.
  3.  請求項1または請求項2において、
     前記シャフトは、前記固定子の磁気歯方向に対し垂直方向に配置している
     ことを特徴とする電磁サスペンション。
    In claim 1 or 2,
    An electromagnetic suspension characterized in that the shaft is arranged in a direction perpendicular to the magnetic tooth direction of the stator.
  4.  請求項1において、
     前記腕は軸受けであり、
     前記シャフトは前記軸受けで支持され、前記可動子の移動方向に摺動可能である
     ことを特徴とする電磁サスペンション。
    In claim 1,
    The arm is a bearing
    An electromagnetic suspension characterized in that the shaft is supported by the bearing and is slidable in the moving direction of the mover.
  5.  請求項4において、
     前記軸受けがすべり軸受けである
     ことを特徴とする電磁サスペンション。
    In claim 4,
    An electromagnetic suspension characterized in that the bearing is a sliding bearing.
  6.  請求項5において、
     前記シャフトは、前記シャフト1本あたり2個の前記軸受けで支持され、前記可動子の移動方向に摺動可能である
     ことを特徴とする電磁サスペンション。
    In claim 5,
    An electromagnetic suspension characterized in that the shaft is supported by two bearings per shaft and can slide in the moving direction of the mover.
  7.  請求項1において、
     前記弾性体は、金属製の巻バネである
     ことを特徴とする電磁サスペンション。
    In claim 1,
    The elastic body is an electromagnetic suspension characterized by being a wound spring made of metal.
  8.  請求項7において、さらに、
     前記電機子巻線に交流電流を供給するインバータと、
     前記電機子巻線に流れる電流を検出する電流検出器と、
     前記電流検出器によって検出される電流に基づいて前記インバータを制御することによって前記リニアモータの推力を調整する推力調整部と、備える
     ことを特徴とする電磁サスペンション。
    In claim 7, further
    An inverter that supplies alternating current to the armature winding,
    A current detector that detects the current flowing through the armature winding, and
    An electromagnetic suspension including a thrust adjusting unit that adjusts the thrust of the linear motor by controlling the inverter based on the current detected by the current detector.
  9.  請求項1から8のいずれか1項の電磁サスペンションと、
     衣類を収容する洗濯槽と、
     前記洗濯槽を内包する外槽と、
     前記洗濯槽を回転させる駆動機構と、を備え、
     前記電磁サスペンションは、前記外槽の振動を抑制する
     ことを特徴とする洗濯機。
    The electromagnetic suspension according to any one of claims 1 to 8 and
    A washing tub for storing clothes and
    An outer tub containing the washing tub and
    A drive mechanism for rotating the washing tub is provided.
    The electromagnetic suspension is a washing machine characterized by suppressing vibration of the outer tub.
PCT/JP2020/034068 2019-11-26 2020-09-09 Electromagnetic suspension and washing machine WO2021106314A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-213550 2019-11-26
JP2019213550A JP7324695B2 (en) 2019-11-26 2019-11-26 electromagnetic suspension and washing machine

Publications (1)

Publication Number Publication Date
WO2021106314A1 true WO2021106314A1 (en) 2021-06-03

Family

ID=76087206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034068 WO2021106314A1 (en) 2019-11-26 2020-09-09 Electromagnetic suspension and washing machine

Country Status (2)

Country Link
JP (1) JP7324695B2 (en)
WO (1) WO2021106314A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276118A (en) * 2004-03-26 2005-10-06 Hazama Corp Active floor vibration suppression device
JP2011078150A (en) * 2009-09-29 2011-04-14 Nidec Sankyo Corp Linear drive device and optical element drive device
JP2011097747A (en) * 2009-10-29 2011-05-12 Nidec Copal Corp Vibration actuator
JP2015095943A (en) * 2013-11-11 2015-05-18 日本電産コパル株式会社 Vibration actuator and portable information terminal
JP2016101019A (en) * 2014-11-25 2016-05-30 株式会社日立製作所 Linear motor, and compressor mounting the same
JP2018046624A (en) * 2016-09-13 2018-03-22 日立アプライアンス株式会社 Vibration damping device and washing machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276118A (en) * 2004-03-26 2005-10-06 Hazama Corp Active floor vibration suppression device
JP2011078150A (en) * 2009-09-29 2011-04-14 Nidec Sankyo Corp Linear drive device and optical element drive device
JP2011097747A (en) * 2009-10-29 2011-05-12 Nidec Copal Corp Vibration actuator
JP2015095943A (en) * 2013-11-11 2015-05-18 日本電産コパル株式会社 Vibration actuator and portable information terminal
JP2016101019A (en) * 2014-11-25 2016-05-30 株式会社日立製作所 Linear motor, and compressor mounting the same
JP2018046624A (en) * 2016-09-13 2018-03-22 日立アプライアンス株式会社 Vibration damping device and washing machine

Also Published As

Publication number Publication date
JP2021085442A (en) 2021-06-03
JP7324695B2 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
JP6877263B2 (en) Linear actuator and vibration damping device for washing machines using it
US11646650B2 (en) Swing motor with two movable members having elastic support members and torsion elastic members
CN106558965A (en) Electric machine and drive mechanism
JP6673789B2 (en) Damping device and washing machine
JP7366842B2 (en) Electromagnetic suspension and washing machine
WO2021106314A1 (en) Electromagnetic suspension and washing machine
CN112583324B (en) Vibration control device and washing machine
JP6725443B2 (en) Vibration control device and washing machine
JP7507068B2 (en) Linear motor, electromagnetic suspension and washing machine
JP7099926B2 (en) Linear motors, vibration damping devices, and washing machines equipped with them
JP7169941B2 (en) Linear motors, electromagnetic suspensions and washing machines
TWI675950B (en) Vibration control system and washing machine
JP6908748B2 (en) Washing machine and electromagnetic suspension
CN111371280B (en) Linear motor, electromagnetic suspension and washing machine
JP2022188405A (en) Linear motor, electromagnetic suspension and washing machine
JP2023117963A (en) Linear motor, electromagnetic suspension, and washing machine
JP2023173316A (en) Linear motor, electromagnetic suspension, and washing machine
JP2020167936A (en) Inverter
JP7260404B2 (en) drum washing machine
Liang Modeling and Dynamics Characteristics Analysis of a Linear Oscillating Motor
JP2021186493A (en) Drum type washing machine
JP2023023238A (en) Washing machine and vibration control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891539

Country of ref document: EP

Kind code of ref document: A1