WO2021104664A1 - Anlage mit energiespeicher und von einem wechselrichter speisbarem elektromotor und verfahren zum betreiben einer anlage - Google Patents

Anlage mit energiespeicher und von einem wechselrichter speisbarem elektromotor und verfahren zum betreiben einer anlage Download PDF

Info

Publication number
WO2021104664A1
WO2021104664A1 PCT/EP2020/025485 EP2020025485W WO2021104664A1 WO 2021104664 A1 WO2021104664 A1 WO 2021104664A1 EP 2020025485 W EP2020025485 W EP 2020025485W WO 2021104664 A1 WO2021104664 A1 WO 2021104664A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
contact
fuse
inverter
controllable
Prior art date
Application number
PCT/EP2020/025485
Other languages
English (en)
French (fr)
Inventor
Dominik HECHT
Hubert HEINE
Original Assignee
Sew-Eurodrive Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sew-Eurodrive Gmbh & Co. Kg filed Critical Sew-Eurodrive Gmbh & Co. Kg
Priority to EP20803746.5A priority Critical patent/EP4066338A1/de
Priority to CN202080080016.1A priority patent/CN114731039A/zh
Priority to US17/779,820 priority patent/US20230031711A1/en
Publication of WO2021104664A1 publication Critical patent/WO2021104664A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1225Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to internal faults, e.g. shoot-through
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/05Details with means for increasing reliability, e.g. redundancy arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1213Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1222Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to abnormalities in the input circuit, e.g. transients in the DC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications

Definitions

  • the invention relates to a system with an energy store and an electric motor that can be fed by an inverter, and to a method for operating a system.
  • an inverter can be fed from an energy store that is connected to the DC voltage-side connection of an inverter.
  • Capacitors or accumulators are generally known as energy stores.
  • a device for protecting an electrical line is known from DE 102013012 578 A1.
  • a power distribution unit and an energy management for an electric car are known from US 2019/0 140245 A1.
  • the invention is therefore based on the object of developing the safety in systems with an inverter.
  • the object is achieved in the system according to the features specified in claim 1 or 2 and in the method according to the features specified in claim 10.
  • the energy store forms an electrical series circuit with a first fuse and one or more further fuses, wherein a controllable contact, in particular switch, in particular contactor, is connected in parallel to the further fuse or a respective controllable contact, in particular switch, in particular contactor, is connected in parallel to each of the further fuses, a means for detecting the voltage applied to the series circuit with a Control electronics is connected, which generates a control signal for the contact or which control signals for the controllable contacts, in particular wherein the respective contact is opened when the voltage falls below a respective voltage threshold value.
  • the advantage here is that, depending on the voltage, a different fuse ensures protection. It is thus advantageously taken into account that the internal resistance of the energy store limits the maximum possible short-circuit current at lower voltages to a lower value than at higher voltages. The safety and protection are thus improved because the first fuse is unable to detect a short-circuit current in a voltage range below the first threshold value, that is to say the voltage threshold value, and therefore cannot trigger it either.
  • the fuses are preferably of the same design, so that the characteristics of different fuses do not intersect, the characteristics each representing the tripping current as a function of the duration of the application of the current.
  • the system is provided with an energy store and an electric motor that can be fed by an inverter, the energy store forming an electrical series circuit with a first fuse and one or more further fuses, the further fuse being a controllable contact, in particular a switch, in particular a contactor, is connected in parallel or a respective controllable contact, in particular a switch, in particular a contactor, is connected in parallel to the other fuses, wherein the series circuit feeds the DC voltage-side connection of the inverter, with a means for detecting the voltage applied to the series circuit being connected to control electronics which generate a control signal for the contact or which control signals for the controllable contacts, in particular whereby the respective contact is opened, when the voltage falls below a respective voltage threshold value.
  • the advantage here is that, depending on the voltage, a different fuse ensures protection, for example by a short circuit in the power electronics of the inverter or at one of the connections of the inverter. It is thus advantageously taken into account that the internal resistance of the energy store limits the maximum possible short-circuit current at lower voltages to a lower value than at higher voltages. The safety and the protection are thus improved, since the first fuse is not able to detect a short-circuit current in a voltage range below the first threshold value, that is to say the voltage threshold value, and is therefore also not triggered.
  • the fuses are preferably of the same design, so that the characteristics of different fuses do not intersect, the characteristics each representing the tripping current as a function of the duration of the application of the current.
  • control electronics have a comparison means which compares the voltage with one or more threshold values and generates a respective control signal dependent on the result of the comparison for controlling the controllable contact or the respective controllable contacts.
  • a comparison means which compares the voltage with one or more threshold values and generates a respective control signal dependent on the result of the comparison for controlling the controllable contact or the respective controllable contacts.
  • the minimum trip current of the first fuse is greater, in particular at least five times or at least twice greater than the minimum trip current of the fuse connected in parallel to the further contact, in particular its minimum trip current is greater, in particular at least five times or at least twice greater, than the minimum trip current of the fuses connected in parallel to other contacts.
  • control electronics are fed from a supply voltage, in particular if the contact or all contacts are opened if the voltage fails.
  • a supply voltage can be used in a simple manner in order to achieve safety independently of the voltage applied to the energy store.
  • a 24 volt voltage can preferably be used as the supply voltage.
  • the energy store has a double-layer capacitor or is designed as a double-layer capacitor, in particular with the double-layer capacitor being designed as an ultracap.
  • the advantage here is that an inexpensive production of the energy store and a large capacity can be produced in a simple manner.
  • the respective fuse is designed as a semiconductor fuse.
  • the advantage here is that the fuse can be used several times and thus costs are reduced.
  • control electronics also function as signal electronics of the inverter, the control electronics being pulse-width-modulated control signals generated, which controllable semiconductor switches are supplied, which are arranged in half-bridges connected in parallel and thus the AC voltage feeding the motor can be made available at the AC voltage-side connection of the inverter.
  • control electronics being pulse-width-modulated control signals generated, which controllable semiconductor switches are supplied, which are arranged in half-bridges connected in parallel and thus the AC voltage feeding the motor can be made available at the AC voltage-side connection of the inverter.
  • the electric motor is operated as a motor or generator, with the contact or contacts being opened in motor operation depending on the voltage detected at the DC connection of the inverter, and in generator operation the motor current at the AC-side connection of the inverter and the value of the voltage present at the DC-side connection of the inverter at a time t + ⁇ t in the future based on the current time t with a time interval ⁇ t is determined, in particular is calculated in advance and depending on this certain voltage of the contact or the contacts are controlled, in particular closed.
  • the time span equals or exceeds the response time of a respective controllable contact.
  • the voltage currently detected that is to say at time t
  • the capacity of the energy store are also taken into account.
  • the advantage here is that the current generated by the generator and the voltage at the DC voltage-side connection of the inverter are recorded and the generator power can be determined from this. Assuming that this power is also constant up to time t + ⁇ t, then, taking into account the capacity of the energy store and the current, i.e. at time t, am
  • the voltage present in the energy store can then be calculated in advance and the contacts can be controlled accordingly to ensure optimal safety.
  • FIG. 1 A system according to the invention with an energy store 1 and an electric motor M which can be fed by an inverter 2 is schematically sketched in FIG.
  • FIG. 2 shows the characteristics of the tripping current as a function of the duration of the occurrence of this tripping current.
  • the energy store 1 has a voltage between 0 volts and a maximum value, for example 800 volts, depending on its state of charge.
  • the energy store is preferably formed from double-layer capacitors, in particular ultracap.
  • the energy store has electrochemically operating energy storage cells, so in particular it has accumulator cells or battery cells.
  • An inverter 2 which feeds an electric motor M, is supplied from the energy store 1.
  • the voltage V occurring at the DC connection of the inverter 2 is detected and a controllable contact K1, in particular a contactor, in particular a relay, is controlled as a function of the detected value of the voltage V.
  • a second fuse F2 connected in series with a first fuse F1 can be bridged by means of the contact K1.
  • the energy store 1 and the two fuses (F1, F2) are connected to one another in series, with the connection on the DC voltage side of the inverter 2 being fed from the series connection formed in this way.
  • the energy store 1 For service purposes or for repairs, the energy store 1 must be discharged so that the energy store 1 is not at risk.
  • the first fuse F1 is designed in such a way that it has a higher, in particular at least five times or at least twice higher, minimum tripping current than the second fuse F2.
  • the minimum tripping current of the first fuse F1 is approximately 300 amperes and the minimum tripping current of the second fuse F2 is approximately 50 amperes.
  • the first threshold value is 260 volts.
  • the second threshold value is, for example, 24 volts.
  • the voltage at the connection on the DC voltage side of the inverter 2 is detected and compared at least with the first threshold value, in particular by a comparison means comprised by the inverter 2. If the voltage is lower than the first threshold value, the comparison means generates a control signal which causes the opening of the first contact K1.
  • the internal resistance of the energy store 1 causes smaller currents below the minimum tripping current of the first fuse F1 at these lower voltages; However, at these lower voltages, which are below the first threshold value, the contact K1 is opened, so that the second fuse F2 is effective and in the event of a fault, in particular a short circuit on the inverter side, the minimum tripping current of the second fuse F2 can be achieved.
  • the internal resistance of the energy store 1 is up to 120 milli-ohms, for example.
  • the respective fuse (F1, F2) triggers at the respective minimum tripping current if this occurs continuously, in particular for more than two or ten minutes. A faster triggering can only be brought about by a stronger current.
  • the fuse F1 is preferably designed as a semiconductor fuse and the fuse F2 as a full-range fuse.
  • the control electronics of the inverter 2 are designed in such a way that no current is supplied to the electric motor M below the first threshold value and / or no torque can be built up by the electric motor below the first threshold value.
  • below the threshold value from the voltage V applied to the voltage V on the equipotential side, only a supply of electrical devices arranged in a control cabinet comprising the inverter 2 is carried out and the electronics required for charging or discharging the energy store 2, in particular a charger, are supplied.
  • the control of the contactor can be carried out by means of control electronics, which are arranged in the switch cabinet separately from the inverter 2 or integrated in the inverter 2.
  • the control electronics are preferably also supplied from a 24 volt voltage. If, however, the supply of the control electronics fails, the contact K1 is de-energized and thus drops out, in particular it opens. In this way, the second fuse with the smallest minimum tripping current is then active and disconnects the energy store 2 when the minimum tripping current of this fuse F2 is exceeded.
  • a safety-related status detection is provided for contact K1, in that an auxiliary contact is provided. This prevents the fuse F1 from being overloaded in the event of a fault. In this case, the electric motor is switched off by the control electronics.
  • fuse F2 can then also be implemented as a semiconductor fuse.
  • both fuses F1 and F2 can then be implemented as semiconductor fuses.
  • the auxiliary contact at contact K1 is also advantageous because sticking of contact K1, in particular the contactor contact, can thus be seen.
  • the series circuit has not only the first fuse F1 and the second fuse F2, to which the first contact K1 is connected in parallel, but also a third or further fuses, each of which has a respective further contact connected in parallel.
  • a respective contact can thus be opened for a respective voltage range.
  • a fuse against a respective minimum tripping current can therefore be provided in the respective voltage range.
  • the contacts are controlled either by control electronics of the inverter 2 or by separate control electronics arranged in the switchgear cabinet that encompasses the inverter.
  • control electronics mentioned here are only designed as signal electronics and thus only carry harmless voltages, in particular voltages that are smaller than the second threshold value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inverter Devices (AREA)
  • Protection Of Static Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

Anlage mit Energiespeicher und von einem Wechselrichter speisbarem Elektromotor und Verfahren zum Betreiben einer Anlage, wobei der Energiespeicher mit einer ersten Sicherung und einerweiteren oder mehreren weiteren Sicherungen eine elektrische Reihenschaltung bildet, wobei der weiteren Sicherung ein steuerbarer Kontakt, insbesondere Schalter, insbesondere Schütz, parallel zugeschaltet ist oder den weiteren Sicherungen jeweils ein jeweiliger steuerbarer Kontakt, insbesondere Schalter, insbesondere Schütz, parallel zugeschaltet ist, wobei die Reihenschaltung den gleichspannungsseitigen Anschluss des Wechselrichters speist, wobei ein Mittel zur Erfassung der an der Reihenschaltung anliegenden Spannung mit einer Steuerelektronik verbunden ist, welche ein Ansteuersignal für den Kontakt oder welche Ansteuersignale für die steuerbaren Kontakte erzeugt, insbesondere wobei der jeweilige Kontakt geöffnet wird, wenn die Spannung einen jeweiligen Spannungsschwellwert unterschreitet.

Description

Anlage mit Energiespeicher und von einem Wechselrichter speisbarem Elektromotor und Verfahren zum Betreiben einer Anlage
Beschreibung:
Die Erfindung betrifft eine Anlage mit Energiespeicher und von einem Wechselrichter speisbarem Elektromotor und Verfahren zum Betreiben einer Anlage.
Es ist allgemein bekannt, dass ein Wechselrichter aus einem Energiespeicher, der am gleichspannungsseitigen Anschluss eines Wechselrichters angeschlossen ist, speisbar ist. Als Energiespeicher sind allgemein Kondensatoren oder Akkumulatoren bekannt.
Außerdem ist bekannt, dass Sicherungen bei Überschreiten eines Auslösestroms ausgelöst werden.
Aus der DE 102013012 578 A1 ist eine Vorrichtung zum Absichern einer elektrischen Leitung bekannt.
Aus der US 2019 / 0 140245 A1 ist eine Leistungsverteilungseinheit und ein Energiemanagment für ein Elektroauto bekannt.
Der Erfindung liegt daher die Aufgabe zugrunde, die Sicherheit bei Anlagen mit Wechselrichter weiterzubilden.
Erfindungsgemäß wird die Aufgabe bei der Anlage nach den in Anspruch 1 oder 2 und bei dem Verfahren nach den in Anspruch 10 angegebenen Merkmalen gelöst.
Wichtige Merkmale der Erfindung bei der Anlage mit Energiespeicher sind, dass der Energiespeicher mit einer ersten Sicherung und einer oder mehreren weiteren Sicherungen eine elektrische Reihenschaltung bildet, wobei der weiteren Sicherung ein steuerbarer Kontakt, insbesondere Schalter, insbesondere Schütz, parallel zugeschaltet ist oder den weiteren Sicherungen jeweils ein jeweiliger steuerbarer Kontakt, insbesondere Schalter, insbesondere Schütz, parallel zugeschaltet ist, wobei ein Mittel zur Erfassung der an der Reihenschaltung anliegenden Spannung mit einer Steuerelektronik verbunden ist, welche ein Ansteuersignal für den Kontakt oder welche Ansteuersignale für die steuerbaren Kontakte erzeugt, insbesondere wobei der jeweilige Kontakt geöffnet wird, wenn die Spannung einen jeweiligen Spannungsschwellwert unterschreitet.
Von Vorteil ist dabei, dass spannungsabhängig eine jeweils andere Sicherung den Schutz gewährleistet. Somit ist vorteilig berücksichtigt, dass der Innenwiderstand des Energiespeichers den maximal möglichen Kurzschlussstrom bei kleineren Spannungen auf einen niedrigeren Wert begrenzt als bei höheren Spannungen. Die Sicherheit und der Schutz ist somit verbessert, da die erste Sicherung in einem Spannungsbereich unterhalb des ersten Schwellwertes, also Spannungsschwellwerts, keinen Kurzschlussstrom zu erkennen vermag und daher auch nicht auslöst.
Vorzugsweise sind die Sicherungen von gleicher Bauart, so dass die Kennlinien unterschiedlicher Sicherungen sich nicht schneiden, wobei die Kennlinien jeweils den Auslösestrom in Abhängigkeit von der Zeitdauer des Anliegens des Stroms darstellen.
Wichtige Merkmale bei der Anlage nach Anspruch 2 sind, dass die Anlage mit Energiespeicher und von einem Wechselrichter speisbarem Elektromotor vorgesehen ist, wobei der Energiespeicher mit einer ersten Sicherung und einerweiteren oder mehreren weiteren Sicherungen eine elektrische Reihenschaltung bildet, wobei der weiteren Sicherung ein steuerbarer Kontakt, insbesondere Schalter, insbesondere Schütz, parallel zugeschaltet ist oder den weiteren Sicherungen jeweils ein jeweiliger steuerbarer Kontakt, insbesondere Schalter, insbesondere Schütz, parallel zugeschaltet ist, wobei die Reihenschaltung den gleichspannungsseitigen Anschluss des Wechselrichters speist, wobei ein Mittel zur Erfassung der an der Reihenschaltung anliegenden Spannung mit einer Steuerelektronik verbunden ist, welche ein Ansteuersignal für den Kontakt oder welche Ansteuersignale für die steuerbaren Kontakte erzeugt, insbesondere wobei der jeweilige Kontakt geöffnet wird, wenn die Spannung einen jeweiligen Spannungsschwellwert unterschreitet.
Von Vorteil ist dabei, dass spannungsabhängig eine jeweils andere Sicherung den Schutz gewährleistet, beispielsweise durch Kurzschluss in der Leistungselektronik des Wechselrichters oder an einem der Anschlüsse des Wechselrichters. Somit ist vorteilig berücksichtigt, dass der Innenwiderstand des Energiespeichers den maximal möglichen Kurzschlussstrom bei kleineren Spannungen auf einen niedrigeren Wert begrenzt als bei höheren Spannungen. Die Sicherheit und der Schutz ist somit verbessert, da die erste Sicherung in einem Spannungsbereich unterhalb des ersten Schwel Iwertes, also Spannungsschwellwerts, keinen Kurzschlussstrom zu erkennen vermag und daher auch nicht auslöst.
Vorzugsweise sind die Sicherungen von gleicher Bauart, so dass die Kennlinien unterschiedlicher Sicherungen sich nicht schneiden, wobei die Kennlinien jeweils den Auslösestrom in Abhängigkeit von der Zeitdauer des Anliegens des Stroms darstellen.
Bei einer vorteilhaften Ausgestaltung weist die Steuerelektronik ein Vergleichsmittel auf, welches die Spannung mit einem oder mehreren Schwellwerten vergleicht und ein vom Ergebnis des Vergleichs abhängiges jeweiliges Ansteuersignal zum Ansteuern des steuerbaren Kontakts oder der jeweiligen steuerbaren Kontakte erzeugt. Von Vorteil ist dabei, dass als Vergleichsmittel auch eine analoge Schaltung einsetzbar ist und somit eine sehr schnelle Reaktion bei Unterschreiten des Schwellwerts erreichbar ist. Vorzugsweise wird beim Absinken der Spannung deren Wert oder Verlauf für eine Zeitspanne vorausberechnet, welche der Reaktionszeit des Ansteuerns des Kontakts gleicht oder diese übertrifft. Somit ist im motorischen Betrieb ein Vorausberechnen der Spannung vorteilhaft. Bei einer vorteilhaften Ausgestaltung ist der Mindestauslösestrom der ersten Sicherung größer, insbesondere mindestens fünfmal oder mindestens zweimal größer, als der Mindestauslösestrom der dem weiteren Kontakt parallel zugeschalteten Sicherung, insbesondere deren Mindestauslösestrom größer, insbesondere mindestens fünfmal oder mindestens zweimal größer, ist als der Mindestauslösestrom der den weiteren Kontakten parallel zugeschalteten Sicherungen. Von Vorteil ist dabei, dass für hohe Spannungen ein Schutz erreicht ist und auch für kleinere Spannungen ein ausreichender Schutz erreicht ist, der von der ersten Sicherung nicht gewährleistbar ist. Somit ist in verschiedenen
Spannungsbereichen jeweils eine unterschiedliche Spannung aktiv, um den Schutz zu erzeugen.
Bei einer vorteilhaften Ausgestaltung wird die Steuerelektronik aus einer Versorgungsspannung gespeist, insbesondere bei deren Ausfall der Kontakt oder alle Kontakte geöffnet werden. Von Vorteil ist dabei, dass eine Versorgungsspannung in einfacher Weise verwendbar ist, um die Sicherheit unabhängig von der am Energiespeicher anliegenden Spannung zu erreichen. Als Versorgungsspannung ist vorzugsweise eine 24 Volt Spannung verwendbar.
Bei einer vorteilhaften Ausgestaltung ist der Energiespeicher einen Doppelschichtkondensator aufweist oder als Doppelschichtkondensator ausgeführt, insbesondere wobei der Doppelschichtkondensator als Ultracap ausgeführt ist. Von Vorteil ist dabei, dass eine kostengünstige Herstellung des Energiespeichers und eine große Kapazität in einfacher Weise herstellbar sind.
Bei einer vorteilhaften Ausgestaltung ist die jeweilige Sicherung jeweils als Halbleitersicherung ausgeführt. Von Vorteil ist dabei, dass die Sicherung mehrfach verwendbar ist und somit Kosten verringert sind.
Bei einer vorteilhaften Ausgestaltung fungiert die Steuerelektronik auch als Signalelektronik des Wechselrichters, wobei die Steuerelektronik pulsweitenmodulierte Ansteuersignale erzeugt, welche steuerbaren Halbleiterschaltern zugeführt werden, die in einander parallel geschalteten Halbbrücken angeordnet sind und somit am wechselspannungsseitigen Anschluss des Wechselrichters die den Motor speisende Wechselspannung bereitstellbar ist. Von Vorteil ist dabei, dass die sowieso vorhandene Signalelektronik des Wechselrichters für die Verbesserung der Sicherheit mittels der Verwendung unterschiedlicher Sicherungen verwendbar ist.
Wichtige Merkmale der Erfindung bei dem Verfahren zum Betreiben einer Anlage sind, dass der Elektromotor motorisch oder generatorisch betrieben wird, wobei bei motorischem Betrieb abhängig von der am gleichspannungsseitigen Anschluss des Wechselrichters erfassten Spannung der Kontakt oder die Kontakte geöffnet werden, und bei generatorischem Betrieb der Motorstrom am wechselspannungsseitigen Anschluss des Wechselrichters erfasst wird und der Wert der am gleichspannungsseitigen Anschluss des Wechselrichters anliegenden Spannung zu einem bezogen auf den jeweils aktuellen Zeitpunkt t mit einem Zeitabstand Ät in der Zukunft liegenden Zeitpunkt t + Ät bestimmt wird, insbesondere vorausberechnet wird und abhängig von dieser so bestimmten Spannung der Kontakt oder die Kontakte angesteuert, insbesondere geschlossen, werden.
Von Vorteil ist dabei, dass die Sicherheit und der durch die unterschiedlichen Sicherungen bewirkte Schutz zeitnah bereitstellbar ist.
Bei einer vorteilhaften Ausgestaltung gleicht die Zeitspanne der Reaktionszeit eines jeweiligen steuerbaren Kontakts oder übertrifft diese. Von Vorteil ist dabei, dass somit vorausschauend die Sicherheit gewährleistbar ist und angepasst an die zu erwartende Spannung verbessert bereitstellbar ist.
Bei einer vorteilhaften Ausgestaltung wird bei der Bestimmung der zum Zeitpunkt t + Ät erwarteten Spannung auch die aktuell, also zum Zeitpunkt t, erfasste Spannung und die Kapazität des Energiespeichers berücksichtigt. Von Vorteil ist dabei, dass der generatorisch erzeugte Strom und die Spannung am gleichspannungsseitigen Anschluss des Wechselrichters erfasst werden und daraus die generatorische Leistung bestimmbar ist. Unter der Annahme, dass diese Leistung auch bis zum Zeitpunkt t + Ät konstant ist, wird dann unter Berücksichtigung der Kapazität des Energiespeichers und der aktuell, also zum Zeitpunkt t, am Energiespeicher anliegenden Spannung ist dann die zukünftig anliegende Spannung vorausberechenbar und das Steuern der Kontakte entsprechend ausführbar zur Gewährleistung einer optimalen Sicherheit. Weitere Vorteile ergeben sich aus den Unteransprüchen. Die Erfindung ist nicht auf die Merkmalskombination der Ansprüche beschränkt. Für den Fachmann ergeben sich weitere sinnvolle Kombinationsmöglichkeiten von Ansprüchen und/oder einzelnen Anspruchsmerkmalen und/oder Merkmalen der Beschreibung und/oder der Figuren, insbesondere aus der Aufgabenstellung und/oder der sich durch Vergleich mit dem Stand der Technik stellenden Aufgabe.
Die Erfindung wird nun anhand von schematischen Abbildungen näher erläutert:
In der Figur 1 ist eine erfindungsgemäße Anlage mit Energiespeicher 1 und von einem Wechselrichter 2 speisbarem Elektromotor M schematisch skizziert.
In der Figur 2 sind die Kennlinien des Auslösestroms in Abhängigkeit von der Dauer des Auftretens dieses Auslösestroms dargestellt.
Wie in der Figur 1 gezeigt, weist der Energiespeicher 1 abhängig von seinem Ladezustand eine Spannung zwischen 0 Volt und einem Maximalwert, beispielsweise 800 Volt, auf.
Vorzugsweise ist der Energiespeicher aus Doppelschichtkondensatoren, insbesondere Ultracap, gebildet. Alternativ oder zusätzlich weist der Energiespeicher elektrochemisch arbeitende Energiespeicherzellen auf, insbesondere weist er also als Akkumulator-Zellen oder Batterie-Zellen auf.
Aus dem Energiespeicher 1 wird ein Wechselrichter 2 versorgt, der einen Elektromotor M speist.
Die am geichspannungsseitigen Anschluss des Wechselrichters 2 auftretende Spannung V wird erfasst und von dem erfassten Wert der Spannung V abhängig ein steuerbarer Kontakt K1, insbesondere Schütz, insbesondere Relais, angesteuert.
Mittels des Kontakts K1 ist eine einer ersten Sicherung F1 in Reihe zugeschaltete, zweite Sicherung F2 überbrückbar.
Der Energiespeicher 1 und die beiden Sicherungen (F1, F2) sind miteinander in Reihe geschaltet, wobei aus der so gebildeten Reihenschaltung der gleichspannungsseitige Anschluss des Wechselrichters 2 gespeist wird.
Für Servicezwecke oder bei Reparaturen muss der Energiespeicher 1 entladen werden, damit keine Gefahr von dem Energiespeicher 1 ausgeht. Hierzu ist die erste Sicherung F1 derart ausgeführt, dass sie einen höheren, insbesondere mindestens fünfmal oder mindestens zweimal höheren, Mindestauslösestrom aufweist als die zweite Sicherung F2.
Beispielsweise beträgt der Mindestauslösestrom der ersten Sicherung F1 ca. 300 Ampere und der Mindestauslösestrom der zweiten Sicherung F2 etwa 50 Ampere.
In einem ersten Spannungsbereich, der oberhalb eines ersten Schwellwerts der Spannung V liegt, ist der Kontakt K1 geschlossen, so dass die Absicherung nur durch die erste Sicherung F1 erfolgt.
Beispielhaft beträgt der erste Schwellwert 260 Volt.
In einem zweiten Spannungsbereich, der oberhalb eines zweiten Schwellwerts der Spannung V und unterhalb des ersten Schwellwerts der Spannung V liegt, wird der Kontakt K1 geöffnet und somit ist die zweite Sicherung F2 aktiv.
Beispielhaft beträgt der zweite Schwellwert 24 Volt.
Unterhalb des zweiten Schwellwerts liegt keine gefährliche Spannung vor.
Erfindungsgemäß wird die Spannung am gleichspannungsseitigen Anschluss des Wechselrichters 2 erfasst und zumindest mit dem ersten Schwellwert verglichen, insbesondere von einem vom Wechselrichter 2 umfassten Vergleichsmittel. Liegt eine Spannung vor, die kleiner ist als der erste Schwellwert, erzeugt das Vergleichsmittel ein Steuersignal, welches das Öffnen des ersten Kontakts K1 bewirkt.
Somit bewirkt der Innenwiderstand des Energiespeichers 1 bei diesen kleineren Spannungen zwar kleinere Ströme unterhalb des Mindestauslösestroms der ersten Sicherung F1; jedoch wird bei diesen kleineren Spannungen, die unterhalb des ersten Schwellwerts liegen, der Kontakt K1 geöffnet, so dass die zweite Sicherung F2 wirksam ist und bei einem Fehler, insbesondere wechselrichterseitigem Kurzschluss, der Mindestauslösestrom der zweiten Sicherung F2 sehr wohl erreichbar ist.
Der Innenwiderstand des Energiespeichers 1 beträgt beispielsweise bis zu 120 Milli-Ohm. Wie in Figur 2 gezeigt, löst die jeweilige Sicherung (F1, F2) beim jeweiligen Mindestauslösestrom dann aus, wenn dieser dauerhaft, insbesondere also mehr als zwei oder zehn Minuten, auftritt. Ein schnelleres Auslösen ist jeweils nur durch einen stärkeren Strom bewirkbar.
Die Sicherung F1 ist vorzugsweise als Halbleitersicherung und die Sicherung F2 als Ganzbereichssicherung ausgeführt.
Die Steuerelektronik des Wechselrichters 2 ist derart ausgeführt, dass unterhalb des ersten Schwellwerts dem Elektromotor M kein Strom zugeführt wird und/oder unterhalb des ersten Schwellwerts vom Elektromotor kein Drehmoment aufbaubar ist. Außerdem wird unterhalb des Schwellwerts aus der am geichspannungsseitigen Spannung V anliegenden Spannung V nur eine Versorgung von in einem den Wechselrichter 2 umfassenden Schaltschrank angeordneten Elektrogeräten ausgeführt und die zum Laden oder Entladen des Energiespeichers 2 notwendige Elektronik, insbesondere Ladegerät, versorgt.
Die Ansteuerung des Schütz ist mittels einer Steuerelektronik ausführbar, welche im Schaltschrank separat zum Wechselrichter 2 oder im Wechselrichter 2 integriert angeordnet ist. Vorzugsweise liegt auch eine Versorgung der Steuerelektronik aus einer 24 Volt Spannung vor. Wenn nun aber die Versorgung der Steuerelektronik ausfällt, ist der Kontakt K1 stromlos und fällt somit ab, insbesondere öffnet er also. Auf diese Weise ist dann die zweite Sicherung mit dem kleinsten Mindestauslösestrom aktiv und trennt den Energiespeicher 2 ab, wenn der Mindestauslösestrom dieser Sicherung F2 überschritten wird.
Bei weiteren erfindungsgemäßen Ausführungsbeispielen ist eine sicherheitsgerichtete Zustandserkennung beim Kontakt K1 vorgesehen, indem ein Hilfskontakt vorgesehen ist. Dadurch ist im Fehlerfall eine Überlastung der Sicherung F1 verhinderbar. Der Elektromotor wird in diesem Fehlerfall von der Steuerelektronik abgeschaltet.
Da der Schaltzustand des Kontakts K1 somit sicherheitsgerichtet und zuverlässig erkennbar ist, ist die Sicherung F2 dann auch als Halbleitersicherung ausführbar. Somit sind dann also beide Sicherungen F1 und F2 als Halbleitersicherung ausführbar. Der Hilfskontakt am Kontakt K1 ist auch deshalb vorteilhaft, weil damit ein Verkleben des Kontaktes K1, insbesondere des Schützkontaktes, erkennbar ist.
Bei weiteren erfindungsgemäßen Ausführungsbeispielen weist die Reihenschaltung nicht nur die erste Sicherung F1 und die zweite Sicherung F2, welcher der erste Kontakt K1 parallel zugeschaltet ist, auf, sondern auch eine dritte oder weitere Sicherungen, denen jeweils ein jeweiliger weiterer Kontakt parallel zugeschaltet ist. Somit ist für einen jeweiligen Spannungsbereich ein jeweiliger Kontakt öffenbar. Also ist im jeweiligen Spannungsbereich eine Sicherung gegen einen jeweiligen Mindestauslösestrom bereit stellbar. Die Ansteuerung der Kontakte wird dabei entweder von einer Steuerelektronik des Wechselrichters 2 ausgeführt oder von einer im den Wechselrichter umfassenden Schaltschrank angeordneten separaten Steuerelektronik.
Die hier genannten Steuerelektroniken sind im Unterschied zur Leistungselektronik des Wechselrichters 2 nur jeweils als Signalelektronik ausgeführt und führen somit nur ungefährliche Spannungen, insbesondere Spannungen, die kleiner als der zweite Schwellwert sind.
Bezugszeichenliste
1 Energiespeicher 2 Wechselrichter
K1 steuerbarer Kontakt, insbesondere Schütz F1 erste Sicherung F2 zweite Sicherung
V Spannung am geichspannungsseitigen Eingang des Wechselrichters 2 M Elektromotor

Claims

Patentansprüche:
1. Anlage mit Energiespeicher, dadurch gekennzeichnet, dass der Energiespeicher mit einer ersten Sicherung und einerweiteren oder mehreren weiteren Sicherungen eine elektrische Reihenschaltung bildet, wobei der weiteren Sicherung ein steuerbarer Kontakt, insbesondere Schalter, insbesondere Schütz, parallel zugeschaltet ist oder den weiteren Sicherungen jeweils ein jeweiliger steuerbarer Kontakt, insbesondere Schalter, insbesondere Schütz, parallel zugeschaltet ist, wobei ein Mittel zur Erfassung der an der Reihenschaltung anliegenden Spannung mit einer Steuerelektronik verbunden ist, welche ein Ansteuersignal für den Kontakt oder welche Ansteuersignale für die steuerbaren Kontakte erzeugt, insbesondere wobei der jeweilige Kontakt geöffnet wird, wenn die Spannung einen jeweiligen Spannungsschwellwert unterschreitet.
2. Anlage mit Energiespeicher und von einem Wechselrichter speisbarem Elektromotor, dadurch gekennzeichnet, dass der Energiespeicher mit einer ersten Sicherung und einerweiteren oder mehreren weiteren Sicherungen eine elektrische Reihenschaltung bildet, wobei der weiteren Sicherung ein steuerbarer Kontakt, insbesondere Schalter, insbesondere Schütz, parallel zugeschaltet ist oder den weiteren Sicherungen jeweils ein jeweiliger steuerbarer Kontakt, insbesondere Schalter, insbesondere Schütz, parallel zugeschaltet ist, wobei die Reihenschaltung den gleichspannungsseitigen Anschluss des Wechselrichters speist, wobei ein Mittel zur Erfassung der an der Reihenschaltung anliegenden Spannung mit einer Steuerelektronik verbunden ist, welche ein Ansteuersignal für den Kontakt oder welche Ansteuersignale für die steuerbaren Kontakte erzeugt, insbesondere wobei der jeweilige Kontakt geöffnet wird, wenn die Spannung einen jeweiligen Spannungsschwellwert unterschreitet.
3. Anlage nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Steuerelektronik ein Vergleichsmittel aufweist, welches die Spannung mit einem oder mehreren Schwellwerten vergleicht und ein vom Ergebnis des Vergleichs abhängiges jeweiliges Ansteuersignal zum Ansteuern des steuerbaren Kontakts oder der jeweiligen steuerbaren Kontakte erzeugt.
4. Anlage nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Mindestauslösestrom der ersten Sicherung größer, insbesondere mindestens fünfmal oder mindestens zweimal größer, ist als der Mindestauslösestrom der dem weiteren Kontakt parallel zugeschalteten Sicherung, insbesondere deren Mindestauslösestrom größer, insbesondere mindestens fünfmal oder mindestens zweimal größer, ist als der Mindestauslösestrom der den weiteren Kontakten parallel zugeschalteten Sicherungen.
5. Anlage nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Steuerelektronik aus einer Versorgungsspannung gespeist wird, insbesondere bei deren Ausfall der Kontakt oder alle Kontakte geöffnet werden.
6. Anlage nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Energiespeicher einen Doppelschichtkondensator aufweist oder als Doppelschichtkondensator ausgeführt ist, insbesondere wobei der Doppelschichtkondensator als Ultracap ausgeführt ist.
7. Anlage nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die jeweilige Sicherung jeweils als Halbleitersicherung ausgeführt ist.
8. Anlage nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Steuerelektronik auch als Signalelektronik des Wechselrichters fungiert, wobei die Steuerelektronik pulsweitenmodulierte Ansteuersignale erzeugt, welche steuerbaren Halbleiterschaltern zugeführt werden, die in einander parallel geschalteten Halbbrücken angeordnet sind und somit am wechselspannungsseitigen Anschluss des Wechselrichters die den Motor speisende Wechselspannung bereitstellbar ist.
9. Verfahren zum Betreiben einer Anlage nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Elektromotor motorisch oder generatorisch betrieben wird, wobei bei motorischem Betrieb abhängig von der am gleichspannungsseitigen Anschluss des Wechselrichters erfassten Spannung der Kontakt oder die Kontakte geöffnet werden, und bei generatorischem Betrieb der Motorstrom am wechselspannungsseitigen Anschluss des Wechselrichters erfasst wird und der Wert der am gleichspannungsseitigen Anschluss des Wechselrichters anliegenden Spannung zu einem bezogen auf den jeweils aktuellen Zeitpunkt t mit einem Zeitabstand Ät in der Zukunft liegenden Zeitpunkt t + Ät bestimmt wird, insbesondere vorausberechnet wird und abhängig von dieser so bestimmten Spannung der Kontakt oder die Kontakte angesteuert, insbesondere geschlossen, werden.
10. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Zeitspanne der Reaktionszeit eines jeweiligen steuerbaren Kontakts gleicht oder diese übertrifft.
11. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass bei der Bestimmung der zum Zeitpunkt t + Ät erwarteten Spannung auch die aktuell, also zum Zeitpunkt t, erfasste Spannung und die Kapazität des Energiespeichers berücksichtigt wird.
PCT/EP2020/025485 2019-11-29 2020-11-03 Anlage mit energiespeicher und von einem wechselrichter speisbarem elektromotor und verfahren zum betreiben einer anlage WO2021104664A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20803746.5A EP4066338A1 (de) 2019-11-29 2020-11-03 Anlage mit energiespeicher und von einem wechselrichter speisbarem elektromotor und verfahren zum betreiben einer anlage
CN202080080016.1A CN114731039A (zh) 2019-11-29 2020-11-03 具有蓄能器和能由逆变器供电的电机的设备及其运行方法
US17/779,820 US20230031711A1 (en) 2019-11-29 2020-11-03 Installation including a stored energy source and an electric motor which can be fed by an inverter, and method for operating an installation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019008309.1 2019-11-29
DE102019008309 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021104664A1 true WO2021104664A1 (de) 2021-06-03

Family

ID=73198253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/025485 WO2021104664A1 (de) 2019-11-29 2020-11-03 Anlage mit energiespeicher und von einem wechselrichter speisbarem elektromotor und verfahren zum betreiben einer anlage

Country Status (5)

Country Link
US (1) US20230031711A1 (de)
EP (1) EP4066338A1 (de)
CN (1) CN114731039A (de)
DE (1) DE102020006740A1 (de)
WO (1) WO2021104664A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1033765B (de) * 1955-11-04 1958-07-10 Licentia Gmbh Anordnung zum Kurzschlussschutz bei mechanischen Wechselrichtern
DE102013012578A1 (de) 2013-07-30 2015-02-05 Lisa Dräxlmaier GmbH Vorrichtung zum Absichern einer elektrischen Leitung
JP2017061186A (ja) * 2015-09-24 2017-03-30 トヨタ自動車株式会社 ハイブリッド車両
US20190140245A1 (en) 2017-11-08 2019-05-09 Eaton Intelligent Power Limited Power distribution unit and fuse management for an electric mobile application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1033765B (de) * 1955-11-04 1958-07-10 Licentia Gmbh Anordnung zum Kurzschlussschutz bei mechanischen Wechselrichtern
DE102013012578A1 (de) 2013-07-30 2015-02-05 Lisa Dräxlmaier GmbH Vorrichtung zum Absichern einer elektrischen Leitung
JP2017061186A (ja) * 2015-09-24 2017-03-30 トヨタ自動車株式会社 ハイブリッド車両
US20190140245A1 (en) 2017-11-08 2019-05-09 Eaton Intelligent Power Limited Power distribution unit and fuse management for an electric mobile application

Also Published As

Publication number Publication date
US20230031711A1 (en) 2023-02-02
EP4066338A1 (de) 2022-10-05
DE102020006740A1 (de) 2021-06-02
CN114731039A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
EP3583695B1 (de) Verfahren zum steuern eines gleichstromschalters, gleichstromschalter und gleichspannungssystem
EP2907150B1 (de) Schaltgerät zum steuern der energiezufuhr eines nachgeschalteten elektromotors
DE102005008766B3 (de) U-Boot-Gleichstromnetz
DE102016216331B3 (de) Trennvorrichtung zur Stromunterbrechung, Schutzschalter mit einem Sensor und einer Trennvorrichtung sowie Verfahren zum Betrieb einer Trennvorrichtung
EP2297830A2 (de) Schnellschalteinrichtung für eine hochleistungs-batterie in einem gleichstrominselnetz
WO2015110142A1 (de) Vorrichtung zum schalten eines gleichstroms
DE102012006104B4 (de) Überwachungsvorrichtung zum Berührungsschutz eines mit mindestens einer Elektro-Antriebsmaschine versehenen Fahrzeugs, sowie Verfahren hierzu
DE102012018321A1 (de) Verfahren zum Abschalten eines Batteriesystems unter Last sowie Batteriesystem
EP2898521B1 (de) Schaltgerät zum steuern der energiezufuhr eines nachgeschalteten elektromotors
EP3599125A1 (de) Traktionsnetz und verfahren zum betreiben eines traktionsnetzes eines elektrisch angetriebenen fahrzeugs im kurzschlussfall
DE102004057694A1 (de) Bordnetz mit höherer Spannung
DE102020206478A1 (de) Steuervorrichtung für einen Stromrichter, elektrisches Antriebssystem und Verfahren zum Einstellen eines sicheren Betriebszustandes
WO2022128521A1 (de) Fahrzeugladeschaltung mit gleichrichtereinrichtung, zwischenkreiskondensator und vor-/entladeschaltung
EP2111628B1 (de) Elektrisches gleichstromnetz für wasserfahrzeuge sowie für offshoreanlagen
WO2021104664A1 (de) Anlage mit energiespeicher und von einem wechselrichter speisbarem elektromotor und verfahren zum betreiben einer anlage
EP2511956A2 (de) Drei-Schalter Überspannungsschutz für eine Photovoltaikanlage
EP3857664A1 (de) Schaltgerät zum sicheren abschalten eines elektrischen verbrauchers von einem energieversorgungsnetz sowie ein sicherheitsschaltsystem
EP3991195A1 (de) Leistungsschalter für gleichströme
DE102014200206A1 (de) Stromunterbrechungseinrichtung für Traktionsbatterien
EP1480241A1 (de) Verfahren zur Abschaltung von Gleichströmen und Gleichstrom-Schnellschalteinrichtung für Bahnstromversorgungen
DE102015115284B3 (de) Schutzvorrichtung für eine elektrische Energieversorgungseinrichtung und elektrische Energieversorgungseinrichtung mit einer derartigen Schutzvorrichtung
DE102006004182B3 (de) Leistungswandler mit einer Schalteinrichtung
DE102021201468B3 (de) Architektur und Schaltungstopologie zur Sicherstellung einer schaltbaren allpoligen galvanischen Trennung in Hochvoltbatteriesystemen
WO2022136072A1 (de) Leistungsschalter für gleichströme
EP4311054A1 (de) Verfahren zum behandeln eines fehlers in einer hochspannungs-anordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20803746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020803746

Country of ref document: EP

Effective date: 20220629