WO2021104327A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021104327A1
WO2021104327A1 PCT/CN2020/131567 CN2020131567W WO2021104327A1 WO 2021104327 A1 WO2021104327 A1 WO 2021104327A1 CN 2020131567 W CN2020131567 W CN 2020131567W WO 2021104327 A1 WO2021104327 A1 WO 2021104327A1
Authority
WO
WIPO (PCT)
Prior art keywords
target beam
delay compensation
terminal
target
timing advance
Prior art date
Application number
PCT/CN2020/131567
Other languages
English (en)
French (fr)
Inventor
王晓鲁
罗禾佳
徐晨蕾
周建伟
李榕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20892210.4A priority Critical patent/EP4057523A4/en
Publication of WO2021104327A1 publication Critical patent/WO2021104327A1/zh
Priority to US17/825,817 priority patent/US20220295434A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/006Synchronisation arrangements determining timing error of reception due to propagation delay using known positions of transmitter and receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • H04B7/18541Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for handover of resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • NTN non-terrestrial networks
  • base stations or relay devices can be placed on drone platforms, high-altitude platforms, or satellite platforms.
  • the network equipment in NTN communications will be at an altitude of several hundred kilometers or even tens of thousands of kilometers from the earth's surface, which will cause a relatively large round-trip delay.
  • the terminal due to the beam will switch the beam.
  • the terminal does not need to perform multiple beam switching within the time window covered by the same satellite, as shown in Figure 2.
  • the terminal in the gaze mode, when the terminal moves from the coverage area of one beam to the coverage area of another beam, the terminal will also switch beams.
  • the relative position of the terminal and the satellite changes, causing the terminal to move out of the beam coverage of the current satellite and enter the beam coverage of another satellite, beam switching will also occur.
  • the terminal's timing advance adjustment amount that is, the terminal's timing advance (TA) (UE-specific differential TA)
  • TA terminal's timing advance
  • the terminal cannot know the accurate differential timing advance after beam switching. Therefore, the timing of uplink transmission will deviate from the timing of the satellite base station side, causing the uplink to be interrupted.
  • the present application provides a communication method and device to improve the stability of the uplink in NTN communication.
  • this application provides a communication method, which can be executed by a terminal such as a mobile phone or a chip in the terminal.
  • the terminal can receive the first information through the service beam.
  • the first information may be used to indicate the delay compensation parameter corresponding to the target beam, and the serving beam and the target beam are different beams from each other.
  • the terminal may determine the differential timing advance corresponding to the target beam according to the delay compensation parameter and the complete timing advance corresponding to the target beam.
  • the terminal can obtain the delay compensation parameter corresponding to the target beam to be accessed from the currently connected network device, so the terminal can determine the difference corresponding to the target beam according to the complete timing advance and the delay compensation parameter corresponding to the target beam
  • the timing advance is used to compensate for time delay and initiate uplink random access on the target beam. Therefore, the continuity of the uplink can be maintained before and after beam switching, and the reliability of uplink communication can be improved.
  • the first information comes from a network device corresponding to the serving beam.
  • the serving beam is the beam used by the terminal to access the network device currently
  • the target beam is the beam to which the terminal is about to switch.
  • the terminal can determine the complete timing advance according to the location information of the terminal and the location information of the target satellite.
  • the target satellite corresponds to the target beam, in other words, the target satellite is a satellite that transmits the target beam.
  • the terminal may also receive the location information of the target satellite.
  • the terminal can receive the location information of the target satellite from the network device.
  • the terminal may determine the complete timing advance according to the delay compensation parameter corresponding to the serving beam and the differential timing advance corresponding to the serving beam.
  • the aforementioned delay compensation parameter corresponding to the target beam may include the delay compensation value of the service link of the target beam, and/or the delay compensation value of the feeder link of the target beam.
  • the delay compensation value of the service link of the target beam and the delay compensation value of the feeder link of the target beam may be determined by the network device of the target beam.
  • the above-mentioned first information may be carried in one or more of the initial partial bandwidth (BWP) signaling, non-initial BWP signaling, neighbor cell measurement configuration signaling, or inter-cell handover signaling.
  • the non-initial BWP signaling may include BWP-DownlinkCommon signaling, BWP-UplinkCommon signaling, BWP-DownlinkDedicated signaling, or BWP-UplinkDedicated signaling Any one or more of signaling.
  • an embodiment of the present application provides a communication method.
  • This method can be executed by a network device or a chip in the network device.
  • the network device may include an access network device, such as a satellite as a network device or a ground station as a network device.
  • the network device can determine the delay compensation parameter corresponding to the target beam.
  • the delay compensation parameter corresponding to the target beam can be used to determine the differential timing advance corresponding to the target beam.
  • the network device may send the first information through the service beam, and the first information may be used to indicate the delay compensation parameter corresponding to the target beam, and the service beam and the target beam are different beams.
  • the serving beam is the beam used by the terminal to access the network device currently
  • the target beam is the beam to which the terminal is about to switch.
  • the network device may also send the location information of the target satellite to the terminal.
  • the target satellite corresponds to the target beam.
  • the network device may send the location information of the target satellite.
  • the aforementioned delay compensation parameter corresponding to the target beam may include the delay compensation value of the service link of the target beam, and/or the delay compensation value of the feeder link of the target beam.
  • the delay compensation value of the service link of the target beam and the delay compensation value of the feeder link of the target beam may be determined by the network device of the target beam.
  • the above-mentioned first information may be carried in one or more of the initial partial bandwidth BWP signaling, non-initial BWP signaling, neighbor cell measurement configuration signaling, or inter-cell handover signaling.
  • an embodiment of the present application provides a communication method.
  • the communication method can be executed by a terminal such as a mobile phone or a chip in the terminal.
  • the terminal can receive the second information through the serving beam, and the second information can be used to indicate the differential timing advance corresponding to the target beam, and the target beam and the serving beam are different beams. Thereafter, the terminal can perform timing advance according to the differential timing advance corresponding to the target beam.
  • the network device can determine the delay compensation parameter corresponding to the target beam that the terminal is about to access, and determine the differential timing advance corresponding to the target beam according to the complete timing advance and the delay compensation parameter corresponding to the target beam.
  • the network device can indicate the differential timing advance corresponding to the target beam to the terminal, so that the terminal can compensate for the delay according to the differential timing advance corresponding to the target beam, and initiate uplink random access on the target beam, thus maintaining the uplink
  • the continuity of the link improves the communication reliability of the uplink.
  • the second information comes from the network device corresponding to the serving beam.
  • the terminal may send the location information of the terminal to the network device.
  • the terminal may send the differential timing advance of the serving beam to the network device.
  • the above-mentioned first information may be carried in one or more of the initial partial bandwidth BWP signaling, non-initial BWP signaling, neighbor cell measurement configuration signaling, or inter-cell handover signaling.
  • an embodiment of the present application provides a communication method.
  • This method can be executed by a network device or a chip in the network device.
  • the network device may include an access network device, such as a satellite as a network device or a ground station as a network device.
  • the network device can determine the delay compensation parameter corresponding to the target beam, and determine the differential timing advance corresponding to the target beam according to the complete timing advance of the terminal and the delay compensation parameter corresponding to the target beam.
  • the network device may also send second information through the serving beam, and the second information may be used to indicate the differential timing advance corresponding to the target beam.
  • the network device may receive the location information from the terminal, and determine the complete timing advance of the terminal according to the location information of the terminal and the location information of the target satellite.
  • the target satellite corresponds to the target beam.
  • the location information of the terminal may come from the terminal.
  • the network device may receive the differential timing advance of the serving beam, and determine the complete timing advance of the terminal according to the delay compensation parameter corresponding to the serving beam and the differential timing advance corresponding to the serving beam.
  • the differential timing advance of the serving beam may come from the terminal.
  • the aforementioned delay compensation parameter corresponding to the target beam may include the delay compensation value of the service link of the target beam, and/or the delay compensation value of the feeder link of the target beam.
  • the delay compensation value of the service link of the target beam and the delay compensation value of the feeder link of the target beam may be determined by the network device of the target beam.
  • the above-mentioned first information may be carried in one or more of the initial partial bandwidth BWP signaling, non-initial BWP signaling, neighbor cell measurement configuration signaling, or inter-cell handover signaling.
  • an embodiment of the present application provides a communication method.
  • the communication method can be executed by a terminal such as a mobile phone or a chip in the terminal.
  • the terminal can receive the third information through the service beam.
  • the third information can be used to indicate the first parameter.
  • the terminal may determine the differential timing advance corresponding to the target beam according to the first parameter and the differential timing advance of the serving beam.
  • the serving beam and the target beam are different beams from each other.
  • the first parameter may include the difference between the delay compensation parameter corresponding to the serving beam and the delay compensation parameter corresponding to the target beam; or, the first parameter may include the delay compensation parameter corresponding to the target beam, and the corresponding service beam The delay compensation parameters.
  • the network device can indicate the first parameter to the terminal, and the differential timing advance of the terminal, the first parameter and the serving beam determines the differential timing advance corresponding to the target beam, which is used to compensate for the delay and send on the target beam.
  • Uplink data to maintain the continuity of the uplink.
  • the third information comes from the network device corresponding to the serving beam.
  • the above-mentioned first information may be carried in one or more of the initial partial bandwidth BWP signaling, non-initial BWP signaling, neighbor cell measurement configuration signaling, or inter-cell handover signaling.
  • an embodiment of the present application provides a communication method.
  • This method can be executed by a network device or a chip in the network device.
  • the network device may include an access network device, such as a satellite as a network device or a ground station as a network device.
  • the network device can determine the first parameter.
  • the first parameter may be used for the terminal to determine the differential timing advance corresponding to the target beam.
  • the network device may send the third information through the service beam, and the third information may be used to indicate the first parameter.
  • the serving beam and the target beam are different beams from each other.
  • the first parameter may include the difference between the delay compensation parameter corresponding to the serving beam and the delay compensation parameter corresponding to the target beam; or, the first parameter may include the delay compensation parameter corresponding to the target beam and the delay corresponding to the serving beam Compensation parameters.
  • the above-mentioned first information may be carried in one or more of the initial partial bandwidth BWP signaling, non-initial BWP signaling, neighbor cell measurement configuration signaling, or inter-cell handover signaling.
  • this application provides a communication device.
  • the communication device can be used to implement any possible design of the first aspect or the first aspect, any possible design of the third aspect or the third aspect, or any possible design of the fifth aspect or the fifth aspect. Steps performed by the terminal.
  • the communication device can implement each function or step or operation in each of the foregoing methods in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a communication device may be provided with functional modules corresponding to the functions or steps or operations in the above-mentioned methods to support the communication device to execute the above-mentioned methods.
  • the communication device may include a communication module and a processing module coupled with each other, wherein the communication module can be used to support the communication device to communicate, and the processing module can be used for the communication device to perform processing operations, Such as generating information/messages that need to be sent, or processing received signals to obtain information/messages.
  • the above communication module can be used to perform the sending and/or receiving actions of the terminal in the above method, such as the action of sending information, messages or signaling from the terminal to the network device, or the receiving of information, message or information from the network device.
  • the processing module can be used to perform processing actions of the terminal in the method, for example, it is used to control the communication module to receive and send information, messages or signaling, and to store information.
  • the communication device may include a processor for executing any possible design of the first aspect or the first aspect, the third aspect or any one of the third aspect.
  • the communication device may also include a memory.
  • the memory may be used to store instructions, and the processor may be used to call and run the instructions from the memory to execute the steps executed by the terminal in the above possible design.
  • the communication device may further include a transceiver for the communication device to communicate. Exemplarily, the transceiver may be used to implement any possible design of the first aspect or the first aspect, any possible design of the third aspect or the third aspect, or any possible design of the fifth aspect or the fifth aspect.
  • the sending and/or receiving actions of the terminal in the design such as the actions used to execute the terminal sending information, messages or signaling to the network device, or the actions used to execute the receiving information, message or signaling from the network device.
  • the communication device may be a terminal or a chip in the terminal.
  • an embodiment of the present application provides a communication device.
  • the communication device can be used to implement any possible design of the second aspect or the second aspect, any possible design of the fourth aspect or the fourth aspect, or any possible design of the sixth aspect or the sixth aspect. Steps performed by the network device.
  • the communication device can implement each function or step or operation in each of the foregoing methods in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a communication device may be provided with functional modules corresponding to the functions or steps or operations in the above-mentioned methods to support the communication device to execute the above-mentioned methods.
  • the communication device may include a communication module and a processing module coupled with each other, wherein the communication module can be used to support the communication device to communicate, and the processing module can be used for the communication device to perform processing operations, Such as generating information/messages that need to be sent, or processing received signals to obtain information/messages.
  • the above communication module can be used to perform the sending and/or receiving actions of the terminal in the above method, such as the action of sending information, messages or signaling from the terminal to the network device, or the receiving of information, message or information from the network device.
  • the processing module can be used to perform processing actions of the terminal in the method, for example, it is used to control the communication module to receive and send information, messages or signaling, and to store information.
  • the communication device may include a processor for executing any possible design of the second aspect or the second aspect, and any one of the fourth aspect or the fourth aspect.
  • the communication device may also include a memory.
  • the memory may be used to store instructions, and the processor may be used to call and run the instructions from the memory to execute the steps executed by the terminal in the above possible design.
  • the communication device may further include a transceiver for the communication device to communicate.
  • the transceiver may be used to implement any possible design of the above-mentioned second aspect or the second aspect, any possible design of the fourth aspect or the fourth aspect, or any possible design of the sixth aspect or the sixth aspect.
  • the sending and/or receiving action of the network device in the design such as the action used to perform the action of the network device sending information, message or signaling to the terminal, or the action used to perform the action of receiving information, message or signaling from the terminal.
  • the communication device may be a network device or a chip in a network device.
  • this application provides a communication system.
  • the communication system may include the communication device shown in the seventh aspect and the communication device shown in the eighth aspect.
  • the communication device shown in the seventh aspect may be composed of software modules and/or hardware components.
  • the communication device shown in the eighth aspect may be composed of software modules and/or hardware components.
  • this application provides a computer-readable storage medium in which instructions (or programs) are stored, which when invoked and executed on a computer, cause the computer to execute the above-mentioned first aspect or Any possible design of the first aspect, any possible design of the second or second aspect, any possible design of the third or third aspect, any of the fourth aspect or the fourth aspect A possible design, any possible design of the fifth aspect or the fifth aspect, or any possible design of the sixth aspect or the method described in the sixth aspect.
  • this application provides a computer program product.
  • the computer program product may contain instructions that, when the computer program product runs on a computer, cause the computer to execute the first aspect or any one of the first aspects described above.
  • the present application provides a chip and/or a chip system including the chip, and the chip may include a processor.
  • the chip may also include a memory (or storage module) and/or a transceiver (or communication module).
  • the chip can be used to implement any possible design of the first aspect or the first aspect, any possible design of the second or second aspect, and any possible design of the third aspect or the third aspect.
  • the method described in any possible design of the fourth or fourth aspect, any possible design of the fifth or fifth aspect, or any possible design of the sixth or sixth aspect may be composed of the above-mentioned chips, or may include the above-mentioned chips and other discrete devices, such as a memory (or storage module) and/or a transceiver (or communication module).
  • FIG. 1 is a schematic diagram of the architecture of an NTN communication system provided by an embodiment of this application;
  • FIG. 2 is a schematic diagram of the architecture of an NTN communication system provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of the architecture of an NTN communication system provided by an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of an NTN communication system provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • the communication method provided by the embodiment of the present application can be used in an NTN communication system.
  • the communication system can be composed of terminals (or user terminals, user equipment), satellites (or satellite base stations), and ground stations (or gateways or gateways).
  • the terminal may be a wireless terminal device capable of receiving network device scheduling and instruction information.
  • a wireless terminal device can communicate with one or more core networks or the Internet via a wireless access network (e.g., radio access network, RAN).
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular" phone).
  • Mobile phones Mobile phones
  • computers and communication chips for example, can be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, and they can exchange language and/or data with the wireless access network.
  • the terminal can be a personal communication service (PCS) phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, and a personal digital assistant (PDA) , Tablet computers (Pad), computers with wireless transceiver functions and other equipment.
  • the terminal may also include subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile station, MS), remote station (remote station), access point (access point, AP) , Remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), subscriber station (SS), customer premises equipment, CPE), terminal (terminal), mobile terminal (mobile terminal, MT), etc.
  • Wireless terminal devices can also be wearable devices and next-generation communication systems, for example, terminal devices in 5G networks or terminal devices in public land mobile network (PLMN) networks that will evolve in the future, and NR communication systems. Terminal equipment, etc.
  • Satellites can provide wireless access services for terminals, dispatch wireless resources to connected terminals, and provide reliable wireless transmission protocols and data encryption protocols. Satellites can be artificial earth satellites and high-altitude aircraft as base stations for wireless communication, such as evolved base stations (eNB) and 5G base stations (gNB), etc.; or, satellites can be used as relays for these base stations and transparently transmit these base stations to the terminal. Wireless signal. At this time, the ground station can be regarded as a base station for wireless communication. Satellites can be geostationary (geostationary earth orbit, GEO) satellites, non-geostationary earth orbit (NGEO) medium orbit (MEO) satellites and low earth orbit (LEO) satellites , It can also be High Altitude Platform Station (HAPS), etc.
  • GEO geostationary earth orbit
  • NGEO non-geostationary earth orbit
  • MEO medium orbit
  • LEO low earth orbit
  • HAPS High Altitude Platform Station
  • the operating attitude of the satellite includes: the non-gazing attitude towards the ground and the gazing attitude towards the ground.
  • the beams emitted by the satellite equipment with a non-gazing attitude towards the ground follow the movement of the satellite, and the angle of each beam emitted by the satellite does not change with time from the perspective of the satellite, and the fixed point on the ground will experience more frequent beam switching during the satellite overhead period.
  • the speed of satellites is faster than the rotation of the earth, except for synchronous satellites, the relationship between satellites in non-stationary orbits and the earth can be approximated as stationary, and satellite equipment makes periodic circular motions around the earth.
  • the angle of the satellite beam will not change.
  • the ground range covered by the beam will change.
  • the terminal is in a relatively geostationary state, it will cover The beam of the terminal will also change. As the satellite moves, the beam covering the terminal will also change, and the terminal needs to perform beam switching.
  • the angle of each beam emitted by the satellite is adjusted in a certain way to achieve continuous observation of fixed points on the ground. For example, as shown in Figure 3, during the operation of the satellite, the continuous observation of the same area is achieved by adjusting the beam launch angle (that is, the continuous coverage of the same area by the same beam is formed). In the gaze attitude, if the position of the terminal moves out of the area where the satellite is gazing (that is, the area where the beam continues to cover), beam switching will also occur.
  • BWP bandwidth part
  • TCI transmission configuration indicator
  • SSB synchronization signal block
  • the beams described in this application can also be replaced with BWP, TCI or SSB. Therefore, the method provided in this application can also be used in BWP handover, TCI handover or SSB handover scenarios to improve the reliability of the terminal's uplink.
  • the service beam used by the terminal to access the network device can be replaced with a serving BWP, a serving TCI, or a serving SSB; accordingly, the target beam that the terminal switches from the serving beam can be replaced with the target BWP, target TCI or target SSB.
  • the ground station can be used to connect the satellite and the core network.
  • the ground station can transparently transmit the signaling between the satellite and the core network.
  • the ground station can be used as a base station for wireless communication, and the satellite can transparently transmit the signaling between the terminal and the ground station.
  • the ground station can send the signaling from the core network to the satellite through the feedback link (or feeder link), and the satellite passes the signal between it and the terminal.
  • the service link sends signaling to the terminal.
  • the terminal can transmit signaling to the satellite through the service link, and the satellite transmits the signaling to the core network through the ground station.
  • FIG. 1 only shows one satellite and one ground station.
  • a multi-satellite and/or multi-ground station architecture can be adopted as needed.
  • each satellite can provide services to one or more terminals, each satellite can correspond to one or more ground stations, and each ground station can correspond to one or more satellites, which is not specifically limited in this application.
  • a terminal can apply for access to the network through a contention-based random access method, where the first step of random access is for the terminal to send a random access preamble for applying for access.
  • the terminal can make timing advance adjustments when sending the preamble to reduce the impact of the round-trip delay on receiving the random access preamble.
  • the time delay that needs to be compensated is related to the distance between the terminal and the satellite base station, and the TA used to compensate for the time delay is called a full timing advance (full TA).
  • the satellite base station can be responsible for compensating part of the time delay, and the terminal only needs to compensate for a part of the time delay that the terminal is responsible for. This part of the time delay compensated by the terminal is passed through the terminal.
  • the differential TA is compensated, and the time delay compensated by the network side is compensated by the network side delay compensation amount (compensated TA).
  • the beam before the switching may be referred to as the serving beam
  • the beam after the switching may be referred to as the target beam in this application.
  • the satellite that transmits the service beam can be called the service satellite (or the service satellite is the satellite to which the service beam belongs)
  • the satellite that transmits the target beam can be called the target satellite (or the target satellite is the satellite to which the target beam belongs).
  • the terminal When beam switching occurs, the terminal is at the boundary between the two beams. It can be considered that the distance between the terminal and the satellite remains unchanged before and after the beam switching. Therefore, the complete timing advance of the terminal before and after the beam switching is the same. However, for the service beam before the handover and the target beam after the handover, the time delay that the network side is responsible for compensating is different. Therefore, for the service beam and the target beam, the time delay that the terminal is responsible for compensating is also different. In other words, the differential TA of the terminal is different for the serving beam and the target beam.
  • this application provides a communication method, which can be applied to the NTN communication system as shown in FIG. 1.
  • the communication method can be implemented by the terminal and the network device.
  • the network device may be a base station that provides wireless network access to the terminal.
  • the network device may be a satellite or ground station as a wireless communication base station in FIG. 1.
  • the communication method may include the following steps:
  • the network device determines the first information.
  • the first information may be used to indicate the delay compensation parameter corresponding to the target beam, and the delay compensation parameter corresponding to the target beam is used to determine the differential timing advance corresponding to the target beam.
  • the network device is a network device corresponding to the service beam.
  • the network device sends the first information to the terminal through a service beam, where the service beam and the target beam are different beams.
  • S103 The terminal receives the first information through the serving beam.
  • S104 The terminal determines the differential timing advance corresponding to the target beam according to the delay compensation parameter corresponding to the target beam and the complete timing advance.
  • the terminal can obtain the delay compensation parameter corresponding to the target beam to be accessed from the currently connected network device, so the terminal can determine the difference corresponding to the target beam according to the complete timing advance and the delay compensation parameter corresponding to the target beam
  • the timing advance is used to compensate for the delay and initiate uplink random access on the target beam, so the continuity of the uplink can be maintained to improve the reliability of the uplink communication.
  • the delay compensation parameter corresponding to the target beam may be represented by delay_compensated_targ.
  • the complete timing advance can be calculated from the distance between the UE and the satellite, which can be expressed as TA_full.
  • the differential timing advance corresponding to the target beam can be expressed as UE_speci_diff_TA_targ, and subsequent terminals can use the timing advance to adjust the timing advance to perform uplink access or send uplink data.
  • the relationship among the differential timing advance corresponding to the target beam, the delay compensation parameter corresponding to the target beam, and the complete timing advance may satisfy the following formula:
  • UE_speci_diff_TA_targ TA_full-delay_compensated_targ (Formula 1).
  • this application is not limited to expressing the corresponding relationship between the above three, and making appropriate modifications to this formula, for example, adding a scale factor, offset, etc. to the formula.
  • the delay compensation parameter corresponding to the target beam may include the delay compensation value of the service link of the target beam and/or the delay compensation value of the feeder link of the target beam.
  • the delay compensation value of the service link of the target beam refers to the delay compensation value used by the network device of the target beam to compensate for the delay of the service link of the target beam.
  • the delay compensation value of the feeder link of the target beam refers to the delay compensation value used by the network device of the target beam to compensate for the delay of the feeder link of the target beam.
  • the delay compensation value of the service link of the target beam and/or the delay compensation value of the feeder link of the target beam can be determined by the network device of the target beam.
  • the network device of the target beam can be determined according to the network device and the selected reference
  • the signal round-trip delay between the points determines the delay compensation value of the service link of the target beam and/or the delay compensation value of the feeder link of the target beam.
  • the terminal may determine the adjustment value corresponding to the delay compensation parameter of the target beam through the received delay compensation parameter of the target beam.
  • the adjustment value may indicate the duration of time delay compensation performed by the network side on the uplink data.
  • the terminal may determine the adjustment value corresponding to the delay compensation parameter of the target beam according to the following formula:
  • N DC delay_compensated_targ*16*64/2 u *Tc (formula 2).
  • delay_compensated_targ represents the delay compensation parameter corresponding to the target beam, and the value is a non-negative integer.
  • N DC represents the delay compensation value made by the serving beam to the uplink signal.
  • u has a corresponding relationship with the data sub-carrier spacing.
  • the data sub-carrier spacing is 15*2 u kilohertz (kHz).
  • the adjustment value corresponding to the differential timing advance used by the terminal in the target beam can be expressed as UE_speci_diff_TA_targ*16*64/2 u *Tc.
  • the adjustment value corresponding to the differential timing advance may represent the timing advance adjustment value used when the terminal sends uplink data, that is, the length of time delay compensation for uplink data on the terminal side.
  • the terminal uses the adjusted value to compensate for the delay in sending the uplink signal to the network device. For example, if a certain uplink signal needs to be sent to the network device at a specific time, the terminal may send the uplink signal a period of time before the specific time. The period of time is the differential timing advance adjustment value used when the terminal sends uplink data.
  • the first information may include the delay compensation parameter corresponding to the above target beam.
  • the network device sends the delay compensation parameter corresponding to the target beam as the first information to the terminal.
  • the first information may have a certain association relationship with the delay compensation parameter corresponding to the target beam, and both the terminal and the network device have learned the association relationship, thereby indicating the delay compensation parameter corresponding to the target beam through the first information .
  • the association relationship is, for example, a scaling relationship, a function relationship, or a one-to-one correspondence relationship, etc.
  • the first information may include information for determining the delay compensation parameter corresponding to the target beam, such as the position information of the reference point of the target beam and/or the position information of the satellite to which the target beam belongs (ie, the target satellite) (Or the ephemeris information of the satellite is used to determine the position information of the satellite).
  • the position information of the reference point can be used to determine the delay compensation value of the service link of the target beam and/or the delay compensation value of the feeder link of the target beam.
  • the reference point may include the reference point of the service link of the target beam and/or the reference point of the feeder link of the target beam.
  • the terminal may determine the delay compensation parameter corresponding to the target beam based on the position information of the reference point and the position information of the satellite. For example, according to the position information of the reference point of the service link of the target beam and the position information of the satellite, the delay compensation value of the service link of the target beam can be determined; and/or, according to the reference point of the feeder link of the target beam The position information of the satellite and the position information of the satellite can determine the delay compensation value of the feeder link of the target beam.
  • a specific calculation method is to obtain the delay compensation value of the service link of the target beam according to the round trip delay between the satellite position of the target beam and the reference point position of the service link of the target beam. In the same way, the delay compensation value of the feeder link of the target beam can be obtained.
  • the terminal can determine the differential timing advance corresponding to the target beam according to the complete timing advance and the delay compensation parameter corresponding to the target beam.
  • Method 1 The terminal can determine the complete timing advance according to the terminal's own position information and the position information of the satellite to which the target beam belongs.
  • the complete timing advance is the complete timing advance of the serving link of the target beam.
  • the terminal can obtain its own location information through its own positioning function.
  • the terminal can determine the complete timing advance according to its own position information and the position information of the satellite.
  • the terminal may obtain the position information of the satellite to which the target beam belongs from the network device to which the serving beam belongs. Specifically, the network device to which the serving beam belongs can determine the satellite described by the target beam to be switched by the terminal, and the network device sends the position information of the satellite to the terminal. Thereafter, the terminal can determine the complete timing advance according to its own position information and the position information of the satellite to which the target beam belongs.
  • a terminal with positioning function can determine its own position information based on the positioning function, and determine the complete timing advance of the service link of the target beam according to its own position information and the position information of the satellite to which the target beam belongs. , And determine the differential timing advance corresponding to the target beam according to the complete timing advance of the service link of the target beam and the delay compensation value of the service link of the target beam.
  • a terminal with positioning function can determine its own position information based on the positioning function, and determine the feeder link and service link of the target beam according to the reference point of the target beam's feeder link and the position information of the satellite to which the target beam belongs The complete timing advance of the target beam is determined, and the differential timing advance corresponding to the target beam is determined according to the complete timing advance of the target beam and the delay compensation value of the feeder link and the service link of the target beam.
  • Method 2 The terminal can determine the complete timing advance according to the delay compensation parameter under the serving beam and the differential timing advance under the serving beam.
  • the delay compensation parameter under the service beam can be broadcast or multicast by the satellite of the service beam through the service beam or sent to the terminal separately, so the terminal can obtain the delay compensation parameter through the service beam.
  • the differential timing advance under the serving beam is used for the terminal to perform delay compensation in the serving beam, and therefore it can be considered as known to the terminal.
  • the relationship between the delay compensation parameter under the serving beam, the differential timing advance under the serving beam, and the complete timing advance may satisfy the following formula:
  • TA_full delay_compensated_serv+UE_speci_diff_TA_serv (Formula 3).
  • TA_full represents the complete timing advance
  • delay_compensated_serv represents the delay compensation parameter under the serving beam
  • UE_speci_diff_TA_serv represents the differential timing advance under the serving beam.
  • the differential timing advance corresponding to the target beam can be expressed by the following formula:
  • UE_speci_diff_TA_targ delay_compensated_serv+UE_speci_diff_TA_serv-delay_compensated_targ (Equation 4).
  • UE_speci_diff_TA_targ represents the differential timing advance used by the terminal in the target beam (or called the differential timing advance corresponding to the target beam)
  • delay_compensated_targ represents the delay compensation parameter used by the network device in the target beam.
  • the terminal may not have a positioning function.
  • a terminal that does not have a positioning function can obtain the complete timing advance of the serving beam according to the delay compensation value and the differential timing advance of the serving beam, and then according to the delay compensation value of the service link of the target beam and the target beam The delay compensation value of the feeder link determines the differential timing advance corresponding to the target beam.
  • the first information can be carried in system information block (system information block, SIB) 1, other system information (other system information, OSI), master system information block (mater information block, MIB), etc. At least one of the information is unicast, broadcast or multicast sent by the network device to the terminal. In addition, if it is sent in the radio resource control (RRC) connection phase, the network device can use RRC information, downlink control information (DCI), group DCI, and media access control (media access control, MAC) elements.
  • RRC radio resource control
  • DCI downlink control information
  • group DCI group DCI
  • media access control media access control
  • the fourth information is carried in at least one of (element) and timing advance command (timing advance command, TAC), or the first information is sent to the terminal along with data transmission or in a separately allocated PDSCH bearer.
  • TAC timing advance command
  • the first information may be carried in initial bandwidth part (BWP) signaling and/or non-initial BWP signaling sent by the network device to the terminal.
  • BWP initial bandwidth part
  • non-initial BWP signaling such as BWP-DownlinkCommon signaling, BWP-UplinkCommon signaling, BWP-DownlinkDedicated signaling, or BWP-UplinkDedicated signaling Any one or more of the orders.
  • the format of the initial BWP signaling is, for example:
  • DelayCompensatedTargeted can be used to carry the above first information.
  • DelayCompensatedTargetedList represents the specific value of the first information.
  • the format of the BWP downlink public signaling is, for example:
  • DelayCompensatedTargeted can be used to carry the above first information.
  • DelayCompensatedTargetedList represents the specific value of the first information.
  • the format of the BWP uplink common signaling is, for example:
  • DelayCompensatedTargeted field can be used to carry the above first information.
  • DelayCompensatedTargetedList represents the specific value of the first information.
  • the format of the BWP downlink dedicated signaling is for example:
  • DelayCompensatedTargeted can be used to carry the above first information.
  • DelayCompensatedTargetedList represents the specific value of the first information.
  • the format of the BWP uplink dedicated signaling is for example:
  • DelayCompensatedTargeted can be used to carry the above first information.
  • DelayCompensatedTargetedList represents the specific value of the first information.
  • the first information may also be carried in the neighbor cell measurement configuration signaling and/or the inter-cell handover signaling sent by the network device to the terminal.
  • the latter is, for example, a radio resource control (Radio Resource Control, RRC) reconfiguration (reconfiguration) message of inter-cell handover signaling.
  • RRC Radio Resource Control
  • the format of the neighbor cell measurement configuration signaling is, for example:
  • the format of the RRCReconfiguration message of the inter-cell handover signaling is, for example:
  • DelayCompensatedValue may represent the first information.
  • the first information is, for example, the delay compensation parameter of the target beam or the position information of the reference point of the service link in the target beam and/or the position information of the satellite to which the target beam belongs.
  • beamId represents the identification number (ID) of the target beam.
  • the embodiments of the present application provide another communication method to improve the continuity of NTN communication and avoid communication interruption due to beam switching.
  • the method will be explained by taking network equipment and terminals as examples. As shown in Figure 5, the following steps can be included:
  • the network device determines the delay compensation parameter corresponding to the target beam.
  • the network device determines the differential timing advance corresponding to the target beam according to the complete timing advance of the terminal and the delay compensation parameter corresponding to the target beam;
  • S203 The network device sends second information to the terminal, where the second information is used to indicate the differential timing advance corresponding to the target beam.
  • S204 The terminal receives the second information.
  • the network device corresponding to the serving beam of the terminal can determine the delay compensation parameter corresponding to the target beam, and determine the differential timing advance corresponding to the target beam according to the complete timing advance of the terminal and the delay compensation parameter corresponding to the target beam.
  • the network device may indicate to the terminal the differential timing advance corresponding to the target beam, which is used for the terminal to compensate for the delay and send uplink data on the target beam to maintain the continuity of the uplink.
  • Method 1 The network device receives the complete timing advance from the terminal.
  • the method for determining the complete timing advance of the terminal may refer to the method for determining its own complete timing advance by the terminal introduced in this application.
  • the network device can receive the terminal location information from the terminal, and determine the complete timing advance based on the terminal's location information and the location information of the satellite to which the target beam belongs.
  • the terminal can obtain its own location information through its own positioning function, and send the location information to the network device.
  • the network device can determine the complete timing advance of the terminal according to the terminal location information from the terminal and the satellite location information.
  • the network device can obtain the position information of the satellite to which the target beam belongs.
  • the network device to which the serving beam belongs may determine the satellite described by the target beam to be switched by the terminal, and obtain its position information. Thereafter, the network equipment can determine the complete timing advance of the terminal according to the position information of the terminal and the position information of the satellite to which the target beam belongs.
  • the network device can determine the complete timing advance of the terminal according to the delay compensation parameter under the serving beam and the differential timing advance under the serving beam.
  • the differential timing advance under the serving beam can be determined by the terminal and sent by the terminal to the network device.
  • the delay compensation parameter under the service beam is sent by the network device to the terminal (or broadcast by the network device) in the prior art, so the delay compensation parameter under the service beam is known to the network device.
  • the relationship among the complete timing advance of the terminal, the delay compensation parameter under the serving beam, and the differential timing advance under the serving beam may be as shown in Formula 3.
  • the relationship among the differential timing advance corresponding to the target beam, the delay compensation parameter corresponding to the target beam, and the complete timing advance may be as shown in Formula 1.
  • the terminal may not have a positioning function.
  • the signaling carrying the second information may include initial partial bandwidth signaling and/or non-initial BWP signaling sent by the network device to the terminal.
  • the non-initial BWP signaling for example, any one or more of BWP downlink public signaling, BWP uplink public signaling, BWP downlink dedicated signaling, or BWP uplink dedicated signaling.
  • the second information may be carried in neighboring cell measurement configuration signaling and/or inter-cell handover signaling.
  • the manner in which the second information is carried in the above-mentioned signaling may refer to the manner in which the above-mentioned signaling carries the first information.
  • the embodiments of the present application provide another communication method to improve the continuity of NTN communication and avoid communication interruption due to beam switching.
  • the method will be explained by taking network equipment and terminals as examples. As shown in Figure 6, the following steps can be included:
  • the network device determines a first parameter, where the first parameter is used by the terminal to determine the differential timing advance corresponding to the target beam.
  • the first parameter includes the difference between the delay compensation parameter corresponding to the serving beam and the delay compensation parameter corresponding to the target beam, or the first parameter includes the delay compensation parameter corresponding to the target beam and the delay corresponding to the serving beam Compensation parameters.
  • the network device sends third information to the terminal through the service beam, where the third information is used to indicate the first parameter, and the service beam and the target beam are different beams.
  • S303 The terminal receives the third information.
  • S304 The terminal determines the differential timing advance corresponding to the target beam according to the first parameter and the differential timing advance of the serving beam.
  • the network device can indicate the first parameter to the terminal, and the differential timing advance of the terminal, the first parameter and the serving beam determines the differential timing advance corresponding to the target beam, which is used to compensate for the delay and send on the target beam.
  • Uplink data to maintain the continuity of the uplink.
  • the method for determining the delay compensation parameter corresponding to the above-mentioned service beam, the delay compensation parameter corresponding to the target beam, and the differential timing advance of the service beam may refer to the introduction in this application, and the description will not be repeated here.
  • the following formula can be used to express the relationship between the differential timing advance corresponding to the target beam, the first parameter, and the differential timing advance of the serving beam:
  • UE_speci_diff_TA_targ ⁇ delay_compensated+UE_speci_diff_TA_serv (Equation 5).
  • UE_speci_diff_TA_targ represents the differential timing advance corresponding to the target beam
  • UE_speci_diff_TA_serv represents the differential timing advance of the serving beam
  • the delay compensation parameter corresponding to the serving beam can be expressed by delay_compensated_serv, and the delay compensation parameter corresponding to the serving beam can be expressed by delay_compensated_targ.
  • the delay compensation parameter corresponding to the target beam can be expressed by delay_compensated_serv, and the delay compensation parameter corresponding to the serving beam.
  • the relationship between the differential timing advance corresponding to the target beam, the delay compensation parameter corresponding to the serving beam, the delay compensation parameter corresponding to the target beam, and the differential timing advance of the serving beam may satisfy the following formula:
  • UE_speci_diff_TA_targ (delay_compensated_serv-delay_compensated_targ)+UE_speci_diff_TA_serv (Formula 6).
  • the foregoing third information may be carried in the initial partial bandwidth BWP signaling, BWP downlink common signaling, BWP uplink common signaling, BWP downlink dedicated signaling, BWP uplink dedicated signaling, neighbor cell measurement configuration signaling, and/ Or inter-cell handover signaling.
  • the third information may be carried in neighboring cell measurement configuration signaling and/or inter-cell handover signaling.
  • the manner in which the third information is carried in the above signaling may refer to the manner in which the first information is carried in the above signaling.
  • the first parameter may include the position information of the reference point of the serving beam, the position information of the reference point of the target beam, and the position information of the satellite (or The ephemeris information of the satellite is used to determine the position information of the satellite).
  • the reference point of the service beam may include the reference point of the service link of the service beam and the reference point of the feeder link of the service beam.
  • the reference point of the target beam may include the reference point of the service link of the target beam and the reference point of the feeder link of the target beam.
  • the terminal can determine the delay compensation parameter corresponding to the service beam based on the position information of the reference point of the service beam and the position information of the satellite. For example, the terminal can determine the delay compensation value of the service link of the service beam according to the position information of the reference point of the service link of the service beam and the position information of the satellite.
  • the round-trip delay between the reference points of the service beam is determined as the delay compensation value of the service link; and/or, the feeder of the service beam is determined according to the position information of the reference point of the feeder link of the service beam and the position information of the satellite.
  • One possible way to determine the delay compensation value of the link is to set the round-trip delay between the satellite and the reference point of the feeder link as the delay compensation value of the service link.
  • the terminal may determine the time delay compensation parameter corresponding to the target beam based on the position information of the reference point of the target beam and the position information of the satellite, and the specific method may refer to the description in this application.
  • the corresponding delay compensation parameter, the delay compensation parameter corresponding to the target beam, and the differential timing advance of the serving beam determine the differential timing advance of the target beam.
  • the relationship between the delay compensation parameter corresponding to the serving beam, the delay compensation parameter corresponding to the target beam, the differential timing advance of the serving beam, and the differential timing advance of the target beam may satisfy Formula 6.
  • the reason for the switching of the service beam and the target beam is not limited to the change of the relative position between the terminal and the satellite, and may also include the switching of the ground station.
  • the satellite transparent forwarding (transparent) mode when a ground station handover occurs, the round-trip delay between the ground station and the terminal jumps, and the timing advance adjustment amount on the terminal side also jumps.
  • ground station #1 before the satellite access is switched from ground station #1 to ground station #2, ground station #1 can send the second parameter to the terminal through the satellite, and the terminal can send the second parameter to the terminal according to the The second parameter determines the amount of timing advance adjustment used after switching to ground station #2.
  • the second parameter may include the amount of timing advance adjustment used by the terminal after switching to ground station #2.
  • the second parameter may include the timing advance adjustment amount used by the terminal after switching to ground station #2 and the timing advance adjustment amount used by the terminal before switching to ground station #2 (that is, the timing advance adjustment amount currently used by the terminal)
  • the terminal can determine the timing advance adjustment value used after switching the ground station based on the difference value and the timing advance adjustment amount used by the terminal before switching from ground station #1 to ground station #2.
  • the ground station #1 can use the satellite to indicate to the terminal when to use a new one to adjust the amount in advance to send uplink data.
  • ground station #1 can send the fourth information to the terminal.
  • the fourth information may be carried in at least one of the broadcast information of SIB1, OSI, MIB, etc., and sent by the network device to the terminal in unicast, broadcast or multicast.
  • the network device can also carry the fourth information through at least one of RRC information, DCI, group DCI, MAC element, and TAC, or transmit with data or in a separately allocated PDSCH bearer. Send the fourth information to the terminal.
  • the network device may carry the fourth information in the initial partial bandwidth signaling and/or non-initial BWP signaling.
  • the fourth information may be used to indicate the second parameter, or there is an association relationship such as a correspondence relationship or a functional relationship between the fourth information and the second parameter.
  • the fourth information may also include time information, so that the terminal can determine when a new one is used to adjust the amount in advance for uplink transmission.
  • the satellite may broadcast to the terminal or separately send the location information of the ground station #2.
  • the terminal can use the satellite position information (which can be obtained according to the ephemeris information) and the position information of the ground station #2 to determine the round-trip delay of the feeder link between the satellite and the ground station #2.
  • the terminal can determine the difference between the round-trip delay between the satellite and the ground station #1 and the round-trip delay between the satellite and the ground station #2 (hereinafter referred to as the round-trip delay difference).
  • the terminal can obtain the timing advance adjustment amount that should be used after switching the ground station according to the timing advance adjustment amount it is using and the round-trip delay difference.
  • the satellite can send the location information of the ground station #1 to the terminal through broadcast or separate transmission, for the terminal to determine the round-trip delay difference between the ground station #1 and the ground station #2.
  • the terminal when the terminal needs to perform intra-satellite beam switching (that is, the serving beam and the target beam belong to the same satellite), the terminal can determine the target beam corresponding to any one or more of the following methods 1 to 9 Differential timing advance.
  • the network device can send the delay compensation value of the service link of the target beam to the terminal.
  • the terminal can determine its own position information through the positioning function, and determine the complete timing advance of the service link of the target beam according to its own position information and the position information of the satellite.
  • the complete timing advance can be based on the round-trip delay between the terminal and the satellite. determine. After that, due to intra-satellite beam switching, the serving beam and the target beam have the same complete timing advance of the service link.
  • the terminal can compensate based on the complete timing advance of the service link and the delay of the service link of the target beam Value to determine the differential timing advance corresponding to the target beam.
  • the relationship between the differential timing advance corresponding to the target beam, the complete timing advance of the service link of the target beam, and the delay compensation value of the service link of the target beam satisfies formula 1, or is modified according to formula 1.
  • UE_speci_diff_TA_targ represents the differential timing advance corresponding to the target beam
  • TA_full may represent the complete timing advance of the service link of the target beam
  • delay_compensated_targ may represent the delay compensation value of the service link of the target beam.
  • the network device can send the terminal the position information of the reference point of the service link of the target beam.
  • the terminal may determine the delay compensation value of the service link of the target beam according to the position information of the reference point of the service link of the target beam and the position information of the satellite.
  • the terminal can also determine the position information of the terminal through its own positioning function, and determine the complete timing advance of the service link of the target beam according to the position information of the terminal and the position information of the satellite. Thereafter, the terminal may determine the differential timing advance corresponding to the target beam according to the complete timing advance of the service link of the target beam and the delay compensation value of the service link of the target beam.
  • the relationship between the differential timing advance corresponding to the target beam, the complete timing advance of the service link of the target beam, and the delay compensation value of the service link of the target beam satisfies formula 1, or is modified according to formula 1.
  • UE_speci_diff_TA_targ represents the differential timing advance corresponding to the target beam
  • TA_full may represent the complete timing advance of the service link of the target beam
  • delay_compensated_targ may represent the delay compensation value of the service link of the target beam.
  • the network device can send the delay compensation parameter corresponding to the target beam to the terminal, where the delay compensation parameter of the target beam may include the delay compensation value of the service link of the target beam and / Or the delay compensation value of the feeder link of the target beam.
  • the terminal can also receive the delay compensation parameters corresponding to the service beam from the network device.
  • the terminal can determine the complete timing advance according to the delay compensation parameter corresponding to the serving beam and the currently used differential timing advance (that is, the differential timing advance corresponding to the serving beam). Thereafter, the terminal may determine the differential timing advance corresponding to the target beam according to the complete timing advance and the delay compensation parameter corresponding to the target beam.
  • the differential timing advance corresponding to the target beam, the complete timing advance, and the delay compensation parameter corresponding to the target beam may satisfy formula 4, or other formulas obtained by deforming according to formula 4.
  • the network device can send the location information of the reference point of the target beam to the terminal before the beam is switched.
  • the reference point of the target beam may include the reference point of the service link of the target beam and/or the reference point of the feeder link of the target beam.
  • the terminal can also receive the delay compensation parameter corresponding to the service beam from the network device.
  • the terminal may determine the delay compensation parameter of the target beam according to the position information of the reference point of the target beam and the position information of the satellite, where the delay compensation parameter of the target beam may include the delay compensation value of the service link of the target beam and/ Or the delay compensation value of the feeder link of the target beam.
  • the terminal can determine the complete timing advance according to the delay compensation parameter corresponding to the serving beam and the currently used differential timing advance.
  • the terminal may also determine the differential timing advance corresponding to the target beam according to the complete timing advance and the delay compensation parameter corresponding to the target beam.
  • the differential timing advance corresponding to the target beam, the complete timing advance, and the delay compensation parameter corresponding to the target beam may satisfy formula 4, or other formulas obtained by deforming according to formula 4.
  • the terminal can send the location information of the terminal to the network device before switching the beam.
  • the network equipment can determine the complete timing advance of the terminal according to the position information of the terminal and the position information of the satellite. Thereafter, the network device may determine the differential timing advance of the target beam according to the delay compensation parameter and the complete timing advance of the target beam, and send the differential timing advance of the target beam to the terminal.
  • the delay compensation parameter of the target beam may include the delay compensation value of the service link of the target beam and/or the delay compensation value of the feeder link of the target beam.
  • the differential timing advance of the target beam, the time delay compensation parameter of the target beam, and the complete timing advance may satisfy Formula One, or other formulas obtained by deforming it according to Formula One.
  • the terminal can send the differential timing advance currently used by the terminal to the network device.
  • the network device can determine the complete timing advance of the terminal according to the differential timing advance from the terminal and the delay compensation parameter of the serving beam. Thereafter, the network device may determine the differential timing advance of the target beam according to the delay compensation parameter and the complete timing advance of the target beam, and send the differential timing advance of the target beam to the terminal.
  • the delay compensation parameter of the target beam may include the delay compensation value of the service link of the target beam and/or the delay compensation value of the feeder link of the target beam.
  • the differential timing advance of the target beam, the time delay compensation parameter of the target beam, and the complete timing advance may satisfy formula one, or other formulas obtained by deforming according to formula one.
  • the network device may send the difference between the delay compensation parameter corresponding to the target beam and the delay compensation parameter corresponding to the serving beam to the terminal.
  • the terminal can determine the differential timing advance of the target beam according to the differential timing advance currently used by the terminal (that is, the differential timing advance of the serving beam) and the above-mentioned difference from the network device.
  • the differential timing advance currently used by the terminal, the above difference, and the differential timing advance of the target beam satisfy Formula 5, or other formulas obtained by deforming it according to Formula 5.
  • the network device can send the delay compensation parameter corresponding to the target beam to the terminal before the beam is switched.
  • the terminal can also obtain the delay compensation parameter corresponding to the service beam from the network device.
  • the terminal can determine the differential timing advance of the target beam according to the differential timing advance (ie, the differential timing advance of the serving beam) currently used by the terminal, the delay compensation parameter corresponding to the target beam, and the delay compensation parameter corresponding to the serving beam.
  • the differential timing advance ie, the differential timing advance of the serving beam
  • the differential timing advance of the target beam, the differential timing advance currently used by the terminal, the delay compensation parameter corresponding to the target beam, and the delay compensation parameter corresponding to the serving beam may satisfy formula 6 or follow formula 6 Other formulas obtained by deformation.
  • the network device can send the position information of the reference point of the target beam and the position information of the reference point of the serving beam to the terminal.
  • the reference point of the target beam may include the reference point of the service link of the target beam and/or the reference point of the feeder link of the target beam.
  • the reference point of the service beam may include the reference point of the service link of the service beam and/or the reference point of the feeder link of the service beam.
  • the terminal may determine the delay compensation parameter of the target beam according to the position information of the reference point of the target beam and the position information of the satellite, where the delay compensation parameter of the target beam may include the delay compensation value of the service link of the target beam and/ Or the delay compensation value of the feeder link of the target beam. And, the terminal may determine the delay compensation parameter of the service beam according to the position information of the reference point of the service beam and the position information of the satellite, where the delay compensation parameter of the service beam may include the delay compensation value of the service link of the service beam And/or the delay compensation value of the feeder link of the service beam.
  • the terminal can determine the differential timing advance of the target beam according to the differential timing advance (that is, the differential timing advance of the serving beam) currently used by the terminal, the delay compensation parameter corresponding to the target beam, and the delay compensation parameter corresponding to the serving beam .
  • the differential timing advance of the target beam, the differential timing advance currently used by the terminal, the delay compensation parameter corresponding to the target beam, and the delay compensation parameter corresponding to the serving beam may satisfy formula 6 or follow formula 6 Other formulas obtained by deformation.
  • the terminal when the terminal needs to perform inter-satellite beam switching (that is, the serving beam and the target beam belong to different satellites), the terminal can determine the difference corresponding to the target beam according to any one or more of the following ten to twelve methods Timing advance.
  • the network device can send the terminal the delay compensation value of the service link of the target beam and the position information of the satellite to which the target beam belongs (or the ephemeris information of the satellite to which the target beam belongs, according to The ephemeris information can determine the position information of the satellite to which the target beam belongs).
  • the terminal can determine its own location information through the positioning function, and determine the complete timing advance of the service link of the target beam according to its own location information and the location information of the satellite to which the target beam belongs. Thereafter, the terminal may determine the differential timing advance corresponding to the target beam according to the complete timing advance of the service link of the target beam and the delay compensation value of the service link of the target beam.
  • the relationship between the differential timing advance corresponding to the target beam, the complete timing advance of the service link of the target beam, and the delay compensation value of the service link of the target beam satisfies formula 1, or is modified according to formula 1.
  • UE_speci_diff_TA_targ represents the differential timing advance corresponding to the target beam
  • TA_full may represent the complete timing advance of the service link of the target beam
  • delay_compensated_targ may represent the delay compensation value of the service link of the target beam.
  • the network device can send to the terminal the position information of the reference point of the service link of the target beam and the position information of the satellite to which the target beam belongs (or the ephemeris information of the satellite to which the target beam belongs,
  • the position information of the satellite to which the target beam belongs can be determined according to the ephemeris information).
  • the terminal may determine the delay compensation value of the service link of the target beam according to the position information of the reference point of the service link of the target beam and the position information of the satellite to which the target beam belongs.
  • the terminal can also determine the position information of the terminal through its own positioning function, and determine the complete timing advance of the service link of the target beam according to the position information of the terminal and the position information of the satellite. Thereafter, the terminal may determine the differential timing advance corresponding to the target beam according to the complete timing advance of the service link of the target beam and the delay compensation value of the service link of the target beam.
  • the relationship between the differential timing advance corresponding to the target beam, the complete timing advance of the service link of the target beam, and the delay compensation value of the service link of the target beam satisfies formula 1, or is modified according to formula 1.
  • UE_speci_diff_TA_targ represents the differential timing advance corresponding to the target beam
  • TA_full may represent the complete timing advance of the service link of the target beam
  • delay_compensated_targ may represent the delay compensation value of the service link of the target beam.
  • the terminal can send the location information of the terminal to the network device before switching the beam.
  • the network equipment can determine the complete timing advance of the terminal according to the position information of the terminal and the position information of the satellite to which the target beam belongs. Thereafter, the network device may determine the differential timing advance of the target beam according to the delay compensation parameter and the complete timing advance of the target beam, and send the differential timing advance of the target beam to the terminal.
  • the delay compensation parameter of the target beam may include the delay compensation value of the service link of the target beam and/or the delay compensation value of the feeder link of the target beam.
  • the differential timing advance of the target beam, the time delay compensation parameter of the target beam, and the complete timing advance may satisfy Formula One, or other formulas obtained by deforming it according to Formula One.
  • the network device can use the initial partial bandwidth BWP signaling, non-initial BWP signaling, neighbor cell measurement configuration signaling, and / Or inter-cell handover signaling.
  • the network device may use neighbor cell measurement configuration signaling and/or inter-cell handover signaling when sending information to the terminal.
  • the methods and operations implemented by terminal devices can also be implemented by components (such as chips or circuits) that can be used in terminal devices
  • the methods and operations implemented by network devices can also be implemented by It can be implemented by components (such as chips or circuits) of network devices.
  • the method provided in the embodiments of the present application is introduced from the perspective of the functions implemented by the terminal.
  • the terminal may include a hardware structure and/or software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function among the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • a communication device may include a communication module 801 and a processing module 802, and the communication module 801 and the processing module 802 are coupled with each other.
  • the communication device 800 can be used to execute the steps executed by the terminal in the above method embodiments.
  • the communication module 801 may be used to support the communication device 800 to communicate, and the communication module 801 may have a wireless communication function, for example, it can communicate with other communication devices through a wireless communication method.
  • the processing module 802 can be used to support the communication device 800 to perform the processing actions of the terminal device in the foregoing method embodiments, including but not limited to: generating information and messages sent by the communication module 801, and/or performing processing on the signals received by the communication module 801 Demodulation and decoding and so on.
  • the above communication module 801 can be used to perform the sending and/or receiving actions of the terminal in the above method embodiment, such as being used to perform the terminal sending information, messages or messages to the network device. Commands, or to perform actions to receive information, messages, or signaling from network devices. And/or, the processing module 802 can be used to perform processing actions of the terminal in the foregoing method embodiment, such as controlling the communication module 801 to receive and send information, messages or signaling, and to store information.
  • the communication module 801 may be used to receive the first information through a service beam.
  • the first information may be used to indicate the delay compensation parameter corresponding to the target beam, and the serving beam and the target beam are different beams from each other.
  • the processing module 802 may determine the differential timing advance corresponding to the target beam according to the delay compensation parameter and the complete timing advance corresponding to the target beam.
  • the first information comes from a network device corresponding to the serving beam.
  • the serving beam is the beam used by the terminal to access the network device currently
  • the target beam is the beam to which the terminal is about to switch.
  • the processing module 802 may determine the complete timing advance according to the position information of the terminal and the position information of the target satellite.
  • the target satellite corresponds to the target beam, in other words, the target satellite is a satellite that transmits the target beam.
  • the communication module 801 may also receive the location information of the target satellite.
  • the communication module 801 may receive the location information of the target satellite from the network device.
  • the processing module 802 may determine the complete timing advance according to the delay compensation parameter corresponding to the serving beam and the differential timing advance corresponding to the serving beam.
  • the aforementioned delay compensation parameter corresponding to the target beam may include the delay compensation value of the service link of the target beam, and/or the delay compensation value of the feeder link of the target beam.
  • the delay compensation value of the service link of the target beam and the delay compensation value of the feeder link of the target beam may be determined by the network device of the target beam.
  • the above-mentioned first information may be carried in one or more of the initial partial bandwidth BWP signaling, non-initial BWP signaling, neighbor cell measurement configuration signaling, or inter-cell handover signaling.
  • the communication module 801 may be used to receive second information through the service beam, and the second information may be used to indicate the differential timing advance corresponding to the target beam, and the target beam and the service beam are different Beam. Thereafter, the processing module 802 may perform timing advance according to the differential timing advance corresponding to the target beam.
  • the communication module 801 may also be used to send the location information of the terminal to the network device.
  • the communication module 801 may also be used to send the differential timing advance of the serving beam to the network device.
  • the above-mentioned first information may be carried in one or more of the initial partial bandwidth BWP signaling, non-initial BWP signaling, neighbor cell measurement configuration signaling, or inter-cell handover signaling.
  • the communication module 801 may be used to receive the third information through a service beam.
  • the third information can be used to indicate the first parameter.
  • the processing module 802 determines the differential timing advance corresponding to the target beam according to the first parameter and the differential timing advance of the serving beam.
  • the serving beam and the target beam are different beams from each other.
  • the first parameter may include the difference between the delay compensation parameter corresponding to the serving beam and the delay compensation parameter corresponding to the target beam; or, the first parameter may include the delay compensation parameter corresponding to the target beam, and the corresponding service beam The delay compensation parameters.
  • the third information comes from the network device corresponding to the serving beam.
  • the above-mentioned first information may be carried in one or more of the initial partial bandwidth BWP signaling, non-initial BWP signaling, neighbor cell measurement configuration signaling, or inter-cell handover signaling.
  • the communication device may also be composed of hardware components.
  • a mobile phone is taken as an example to illustrate the structure of a communication device 900 composed of hardware components.
  • the communication device 900 may include a processor 901, a memory 902, and a transceiver 903.
  • the above processor 901 can be used to process the communication protocol and communication data, and to control the communication device 900, execute a program, process data of the program, and so on.
  • the memory 902 may be used to store a program and data, and the processor 901 may execute the method executed by the receiving end device in the embodiment of the present application based on the program.
  • the transceiver 903 may include a radio frequency unit and an antenna.
  • the radio frequency unit can be used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • the antenna can be used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the radio frequency unit can be regarded as the transceiver 903, and then the communication device 900 can include a processor 901, a memory 902, a transceiver 903, and an antenna at this time.
  • the communication device 900 may further include an input and output device 904, such as a touch screen, a display screen, or a keyboard, etc., which can be used to receive data input by the user and output data to the user. It should be noted that some types of communication devices may not have input and output devices.
  • the above communication module 801 may have the structure shown in the transceiver 903, that is, including a radio frequency unit and an antenna; or, the communication module 801 may include the above radio frequency unit.
  • the above processing module 802 may include a processor 901, or include a processor 901 and a memory 902.
  • the above communication device 900 may also be composed of a chip.
  • the chip includes a processor 901.
  • the chip may further include a memory 902 and a transceiver 903, wherein any two of the memory 902, the transceiver 903, and the processor 901 can be coupled to each other.
  • the transceiver 903 may be used to receive the first information through the service beam.
  • the first information may be used to indicate the delay compensation parameter corresponding to the target beam, and the serving beam and the target beam are different beams from each other.
  • the processor 901 may determine the differential timing advance corresponding to the target beam according to the delay compensation parameter and the complete timing advance corresponding to the target beam.
  • the first information comes from a network device corresponding to the serving beam.
  • the serving beam is the beam used by the terminal to access the network device currently
  • the target beam is the beam to which the terminal is about to switch.
  • the processor 901 may determine the complete timing advance according to the location information of the terminal and the location information of the target satellite.
  • the target satellite corresponds to the target beam, in other words, the target satellite is a satellite that transmits the target beam.
  • the transceiver 903 may also receive the location information of the target satellite.
  • the transceiver 903 may receive the location information of the target satellite from the network device.
  • the processor 901 may determine the complete timing advance according to the delay compensation parameter corresponding to the serving beam and the differential timing advance corresponding to the serving beam.
  • the aforementioned delay compensation parameter corresponding to the target beam may include the delay compensation value of the service link of the target beam, and/or the delay compensation value of the feeder link of the target beam.
  • the delay compensation value of the service link of the target beam and the delay compensation value of the feeder link of the target beam may be determined by the network device of the target beam.
  • the above-mentioned first information may be carried in one or more of the initial partial bandwidth BWP signaling, non-initial BWP signaling, neighbor cell measurement configuration signaling, or inter-cell handover signaling.
  • the transceiver 903 may be used to receive second information through the service beam, and the second information may be used to indicate the differential timing advance corresponding to the target beam, and the target beam and the service beam are different Beam. Thereafter, the processor 901 may perform timing advance according to the differential timing advance corresponding to the target beam.
  • the second information may come from a network device corresponding to the serving beam.
  • the transceiver 903 may also be used to send the location information of the terminal to the network device.
  • the transceiver 903 may also be used to send the differential timing advance of the serving beam to the network device.
  • the above-mentioned first information may be carried in one or more of the initial partial bandwidth BWP signaling, non-initial BWP signaling, neighbor cell measurement configuration signaling, or inter-cell handover signaling.
  • the transceiver 903 may be used to receive the third information through the service beam.
  • the third information can be used to indicate the first parameter.
  • the processor 901 determines the differential timing advance corresponding to the target beam according to the first parameter and the differential timing advance of the serving beam.
  • the serving beam and the target beam are different beams from each other.
  • the first parameter may include the difference between the delay compensation parameter corresponding to the serving beam and the delay compensation parameter corresponding to the target beam; or, the first parameter may include the delay compensation parameter corresponding to the target beam, and the corresponding service beam The delay compensation parameters.
  • the third information comes from the network device corresponding to the serving beam.
  • the above-mentioned first information may be carried in one or more of the initial partial bandwidth BWP signaling, non-initial BWP signaling, neighbor cell measurement configuration signaling, or inter-cell handover signaling.
  • a communication device may include a communication module 1001 and a processing module 1002, and the communication module 1001 and the processing module 1002 are coupled with each other.
  • the communication device 1000 can be used to execute the steps executed by the network device in the above method embodiments.
  • the communication device 1000 may be a satellite as a network device or a ground station as a network device.
  • the communication module 1001 may be used to support the communication device 1000 to communicate, and the communication module 1001 may have a wireless communication function, for example, it can communicate with other communication devices (such as a terminal) through a wireless communication method.
  • the processing module 1002 can be used to support the communication device 1000 to perform the processing actions of the terminal device in the foregoing method embodiments, including but not limited to: generating information and messages sent by the communication module 1001, and/or performing processing on the signals received by the communication module 1001 Demodulation and decoding and so on.
  • the processing module 1002 may be used to determine the delay compensation parameter corresponding to the target beam.
  • the delay compensation parameter corresponding to the target beam can be used to determine the differential timing advance corresponding to the target beam.
  • the communication module 1001 may send the first information through the service beam, and the first information may be used to indicate the delay compensation parameter corresponding to the target beam, and the service beam and the target beam are different beams.
  • the serving beam is the beam used by the terminal to access the network device currently
  • the target beam is the beam to which the terminal is about to switch.
  • the communication module 1001 may send the location information of the target satellite to the terminal.
  • the target satellite corresponds to the target beam.
  • the communication module 1001 may send the location information of the target satellite.
  • the aforementioned delay compensation parameter corresponding to the target beam may include the delay compensation value of the service link of the target beam, and/or the delay compensation value of the feeder link of the target beam.
  • the delay compensation value of the service link of the target beam and the delay compensation value of the feeder link of the target beam may be determined by the network device of the target beam.
  • the above-mentioned first information may be carried in one or more of the initial partial bandwidth BWP signaling, non-initial BWP signaling, neighbor cell measurement configuration signaling, or inter-cell handover signaling.
  • the processing module 1002 may be used to determine the delay compensation parameter corresponding to the target beam, and determine the target according to the complete timing advance of the terminal and the delay compensation parameter corresponding to the target beam The differential timing advance corresponding to the beam.
  • the communication module 1001 may send the second information through the serving beam, and the second information may be used to indicate the differential timing advance corresponding to the target beam.
  • the communication module 1001 can receive position information from the terminal, and the processing module 1002 can determine the complete timing advance of the terminal according to the position information of the terminal and the position information of the target satellite.
  • the target satellite corresponds to the target beam.
  • the location information of the terminal may come from the terminal.
  • the communication module 1001 may receive the differential timing advance of the serving beam, and the processing module 1002 may determine the complete timing of the terminal according to the delay compensation parameter corresponding to the serving beam and the differential timing advance corresponding to the serving beam. Advance amount.
  • the differential timing advance of the serving beam may come from the terminal.
  • the aforementioned delay compensation parameter corresponding to the target beam may include the delay compensation value of the service link of the target beam, and/or the delay compensation value of the feeder link of the target beam.
  • the delay compensation value of the service link of the target beam and the delay compensation value of the feeder link of the target beam may be determined by the network device of the target beam.
  • the above-mentioned first information may be carried in one or more of the initial partial bandwidth BWP signaling, non-initial BWP signaling, neighbor cell measurement configuration signaling, or inter-cell handover signaling.
  • the processing module 1002 may be used to determine the first parameter.
  • the first parameter may be used for the terminal to determine the differential timing advance corresponding to the target beam.
  • the communication module 1001 may be used to send third information through the service beam, and the third information may be used to indicate the first parameter.
  • the serving beam and the target beam are different beams from each other.
  • the first parameter may include the difference between the delay compensation parameter corresponding to the serving beam and the delay compensation parameter corresponding to the target beam; or, the first parameter may include the delay compensation parameter corresponding to the target beam and the delay corresponding to the serving beam Compensation parameters.
  • the above-mentioned first information may be carried in one or more of the initial partial bandwidth BWP signaling, non-initial BWP signaling, neighbor cell measurement configuration signaling, or inter-cell handover signaling.
  • the communication device in this embodiment when the communication device in this embodiment is a network device, the communication device may have a structure as shown in FIG. 11.
  • the communication device 1100 shown in FIG. 11 may be a satellite as a network device or a ground station as a network device.
  • the communication device 1100 includes one or more remote radio units (RRU) 1110 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU) 1120.
  • RRU 1110 may be referred to as a communication module, which may correspond to the communication module 1001 in FIG. 10, and is used to perform the above steps performed by the communication module 1001.
  • the RRU 1110 may also be called a transceiver, a transceiver circuit, etc., and may include at least one antenna 1111 and a radio frequency unit 1112.
  • the RRU 1110 part is mainly used for sending and receiving of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending resource indications to terminal equipment. It should be understood that the RRU 1110 may be regarded as a transceiver, or only the radio frequency unit 1112 may be regarded as a transceiver.
  • the 1120 part of the BBU is mainly used to perform baseband processing, control the base station, and so on.
  • the RRU 1110 and the BBU 1120 may be physically installed together, and the RRU 1110 and the BBU 1120 may also be physically installed separately, that is, a distributed base station.
  • the BBU 1120 is the control center of the network device, and may also be referred to as a processing module, which may correspond to the processing module 1002 in FIG. 10, and is used to execute the steps performed by the processing module 1002 above.
  • the BBU 1120 can also be used to perform baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU 1120 may be used to control the network device to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU 1120 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or can support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1120 further includes a memory 1121 and a processor 1122.
  • the memory 1121 is used to store necessary instructions and data.
  • the processor 1122 is used to control the network device to perform necessary actions, for example, to control the network device to execute the operation procedure executed by the CU and/or the CU in the foregoing method embodiment.
  • the above steps executed by the processing module 1702 may be executed by the processor 1122.
  • the memory 1121 and the processor 1122 may serve one or more boards.
  • the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor.
  • necessary circuits can be provided on each board.
  • the processor 1122 may be used to determine the delay compensation parameter corresponding to the target beam.
  • the delay compensation parameter corresponding to the target beam can be used to determine the differential timing advance corresponding to the target beam.
  • the transceiver RRU 1110 or radio frequency unit 1112 may send the first information through the service beam, and the first information may be used to indicate the delay compensation parameter corresponding to the target beam, and the service beam and the target beam are different beams.
  • the serving beam is the beam used by the terminal to access the network device currently
  • the target beam is the beam to which the terminal is about to switch.
  • the transceiver may send the location information of the target satellite to the terminal.
  • the target satellite corresponds to the target beam.
  • the transceiver may send the location information of the target satellite.
  • the aforementioned delay compensation parameter corresponding to the target beam may include the delay compensation value of the service link of the target beam, and/or the delay compensation value of the feeder link of the target beam.
  • the delay compensation value of the service link of the target beam and the delay compensation value of the feeder link of the target beam may be determined by the network device of the target beam.
  • the above-mentioned first information may be carried in one or more of the initial partial bandwidth BWP signaling, non-initial BWP signaling, neighbor cell measurement configuration signaling, or inter-cell handover signaling.
  • the processor 1122 may be used to determine the delay compensation parameter corresponding to the target beam, and determine the target according to the complete timing advance of the terminal and the delay compensation parameter corresponding to the target beam The differential timing advance corresponding to the beam.
  • the transceiver may send the second information through the serving beam, and the second information may be used to indicate the differential timing advance corresponding to the target beam.
  • the transceiver may receive position information from the terminal, and the processor 1122 may determine the complete timing advance of the terminal according to the position information of the terminal and the position information of the target satellite.
  • the target satellite corresponds to the target beam.
  • the location information of the terminal may come from the terminal.
  • the transceiver may receive the differential timing advance of the serving beam, and the processor 1122 may determine the complete timing advance of the terminal according to the delay compensation parameter corresponding to the serving beam and the differential timing advance corresponding to the serving beam. the amount.
  • the differential timing advance of the serving beam may come from the terminal.
  • the aforementioned delay compensation parameter corresponding to the target beam may include the delay compensation value of the service link of the target beam, and/or the delay compensation value of the feeder link of the target beam.
  • the delay compensation value of the service link of the target beam and the delay compensation value of the feeder link of the target beam may be determined by the network device of the target beam.
  • the above-mentioned first information may be carried in one or more of the initial partial bandwidth BWP signaling, non-initial BWP signaling, neighbor cell measurement configuration signaling, or inter-cell handover signaling.
  • the processor 1122 may be used to determine the first parameter.
  • the first parameter may be used for the terminal to determine the differential timing advance corresponding to the target beam.
  • the transceiver may be used to send third information through the service beam, and the third information may be used to indicate the first parameter.
  • the serving beam and the target beam are different beams from each other.
  • the first parameter may include the difference between the delay compensation parameter corresponding to the serving beam and the delay compensation parameter corresponding to the target beam; or, the first parameter may include the delay compensation parameter corresponding to the target beam and the delay corresponding to the serving beam Compensation parameters.
  • the above-mentioned first information may be carried in one or more of the initial partial bandwidth BWP signaling, non-initial BWP signaling, neighbor cell measurement configuration signaling, or inter-cell handover signaling.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the program When the program is executed by a processor, the computer executes the above method embodiment and method implementation. Examples of operations performed by a terminal or network device in any possible implementation manner.
  • this application also provides a computer program product, which may include instructions, which when invoked and executed by a computer, can enable the computer to implement any of the above method embodiments and method embodiments.
  • a terminal or a network device An operation performed by a terminal or a network device in a possible implementation manner.
  • the present application also provides a chip or chip system, and the chip may include a processor.
  • the chip may also include a memory (or storage module) and/or a transceiver (or communication module), or the chip may be coupled with a memory (or storage module) and/or a transceiver (or communication module), wherein the transceiver ( (Or communication module) can be used to support the chip for wired and/or wireless communication, the memory (or storage module) can be used to store a program, and the processor can call the program to implement any one of the above method embodiments and method embodiments.
  • the chip system may include the above chips, or may include the above chips and other discrete devices, such as a memory (or storage module) and/or a transceiver (or communication module).
  • the present application also provides a communication system, which may include the above terminal and/or network device.
  • the communication system can be used to implement the operations performed by the terminal or the network device in the foregoing method embodiment and any one of the possible implementation manners of the method embodiment.
  • the communication system may have a structure as shown in FIG. 1 or FIG. 2.
  • These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Abstract

本申请提供一种通信方法及装置,用以提高非陆地网络(non-terrestrial networks,NTN)通信中上行链路的稳定性。本申请中,可由终端从当前接入的网络设备获取即将接入的目标波束对应的时延补偿参数,并由终端根据完整定时提前量以及目标波束对应的时延补偿参数确定目标波束对应的差分定时提前量,用于进行时延补偿并在目标波束上发起上行随机接入,因此可在波束切换前后保持上行链路的连续,提高上行链路的通信可靠性。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2019年11月29日提交中国专利局、申请号为201911205253.1、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
目前的非陆地网络(non-terrestrial networks,NTN)通信中,可以将基站或中继设备等网络设备放置在无人机平台、高空平台或卫星平台等。与陆地网络不同的是NTN通信中的网络设备会在距离地球表面几百公里甚至上万公里的高空,这会造成比较大的往返时延。
如图1所示,如果卫星的覆盖波束(beam)(或小区(cell))是随着卫星一起移动的,那么即使终端(UE)不移动,由于波束的移动终端也会地进行波束切换。当卫星的波束是与地面绑定时(或称,采用凝视模式),在同一个卫星覆盖的时间窗内,终端不需要做多次的波束切换,如图2所示。不过,凝视模式中,当终端发生移动,从一个波束的覆盖区域移动到另一个波束的覆盖区域时,终端也会发生波束切换。此外,当终端与卫星的相对位置发生变化,导致终端移出当前卫星的波束覆盖范围而进入另一个卫星的波束覆盖范围时,同样会发生波束切换。
由于波束切换,终端的定时提前调整量,即终端的差分定时提前量(timing advance,TA)(UE-specific differential TA),会出现跳变,然而目前终端无法获知波束切换后准确的差分定时提前量,上行发送的定时将与卫星基站侧的定时出现偏差,造成上行链路发生中断。
发明内容
本申请提供一种通信方法及装置,用以提高NTN通信中上行链路的稳定性。
第一方面,本申请提供一种通信方法,该通信方法可由手机等终端或终端中的芯片执行。
根据该方法,终端可通过服务波束接收第一信息。其中,该第一信息可用于指示目标波束对应的时延补偿参数,该服务波束与该目标波束互为不同的波束。此外,终端可根据所述目标波束对应的时延补偿参数以及完整定时提前量,确定该目标波束对应的差分定时提前量。
采用以上方法,可由终端从当前接入的网络设备获取即将接入的目标波束对应的时延补偿参数,因此可由终端根据完整定时提前量以及目标波束对应的时延补偿参数确定目标波束对应的差分定时提前量,用于进行时延补偿并在目标波束上发起上行随机接入,因此可在波束切换前后保持上行链路的连续,提高上行链路的通信可靠性。
示例性的,第一信息来自于服务波束对应的网络设备。
示例性的,服务波束为终端当前接入网络设备所采用的波束,目标波束为终端即将切换到的波束。
在一种具体的示例中,该终端可根据终端的位置信息以及目标卫星的位置信息,确定完整定时提前量。其中,目标卫星对应于该目标波束,或者说,目标卫星为发射目标波束的卫星。该示例中,终端还可接收所述目标卫星的位置信息。例如,终端可从网络设备接收目标卫星的位置信息。
在另一种示例中,该终端可根据该服务波束对应的时延补偿参数以及该服务波束对应的差分定时提前量,确定完整定时提前量。
上述目标波束对应的时延补偿参数可包括目标波束的服务链路的时延补偿值,和/或目标波束的馈电链路的时延补偿值。其中,目标波束的服务链路的时延补偿值以及目标波束的馈电链路的时延补偿值可由目标波束的网络设备确定。
上述第一信息可承载于初始部分带宽(bandwidth part,BWP)信令、非初始BWP信令、邻区测量配置信令或者小区间切换信令等信令中的一个或多个信令中。其中,非初始BWP信令可包括BWP下行公共(BWP-DownlinkCommon)信令、BWP上行公共(BWP-UplinkCommon)信令、BWP下行专用(BWP-DownlinkDedicated)信令或者BWP上行专用(BWP-UplinkDedicated)信令中的任意一种或多种。
第二方面,本申请实施例提供一种通信方法。该方法可由网络设备或网络设备中的芯片执行。其中,网络设备可包括接入网设备,如作为网络设备的卫星或作为网络设备的地面站等。
根据该方法,网络设备可确定目标波束对应的时延补偿参数。该目标波束对应的时延补偿参数可用于目标波束对应的差分定时提前量的确定。网络设备可通过服务波束发送第一信息,第一信息可用于指示目标波束对应的时延补偿参数,该服务波束与该目标波束为不同的波束。
示例性的,服务波束为终端当前接入网络设备所采用的波束,目标波束为终端即将切换到的波束。
在一种可能的示例中,网络设备还可向终端发送目标卫星的位置信息。其中,目标卫星对应于目标波束。示例性的,当目标波束与服务波束对于不同的卫星时,网络设备可发送目标卫星的位置信息。
上述目标波束对应的时延补偿参数可包括目标波束的服务链路的时延补偿值,和/或目标波束的馈电链路的时延补偿值。其中,目标波束的服务链路的时延补偿值以及目标波束的馈电链路的时延补偿值可由目标波束的网络设备确定。
上述第一信息可承载于初始部分带宽BWP信令、非初始BWP信令、邻区测量配置信令或者小区间切换信令等信令中的一个或多个信令中。
第三方面,本申请实施例提供一种通信方法。该通信方法可由手机等终端或终端中的芯片执行。
根据该方法,终端可通过服务波束接收第二信息,该第二信息可用于指示目标波束对应的差分定时提前量,目标波束与服务波束为不同的波束。此后,终端可根据目标波束对应的差分定时提前量进行定时提前。
采用以上方法,可由网络设备确定终端即将接入的目标波束对应的时延补偿参数,并 根据完整定时提前量以及目标波束对应的时延补偿参数确定目标波束对应的差分定时提前量。此外,网络设备可向终端指示该目标波束对应的差分定时提前量,使得终端得以根据目标波束对应的差分定时提前量进行时延补偿,并在目标波束上发起上行随机接入,因此可保持上行链路的连续,提高上行链路的通信可靠性。
示例性的,第二信息来自于服务波束对应的网络设备。
在一种可能的示例中,终端可向网络设备发送终端的位置信息。
在另一种可能的示例中,终端可向网络设备发送服务波束的差分定时提前量。
上述第一信息可承载于初始部分带宽BWP信令、非初始BWP信令、邻区测量配置信令或者小区间切换信令等信令中的一个或多个信令中。
第四方面,本申请实施例提供一种通信方法。该方法可由网络设备或网络设备中的芯片执行。其中,网络设备可包括接入网设备,如作为网络设备的卫星或作为网络设备的地面站等。
根据该方法,网络设备可确定目标波束对应的时延补偿参数,并根据终端的完整定时提前量以及所述目标波束对应的时延补偿参数,确定目标波束对应的差分定时提前量。网络设备还可通过服务波束发送第二信息,该第二信息可用于指示目标波束对应的差分定时提前量。
在一种可能的示例中,网络设备可接收来自终端的位置信息,并根据终端的位置信息以及目标卫星的位置信息,确定终端的完整定时提前量。其中,目标卫星对应于所述目标波束。其中,终端的位置信息可来自于终端。
在另一种可能的示例中,网络设备可接收服务波束的差分定时提前量,并根据服务波束对应的时延补偿参数以及服务波束对应的差分定时提前量,确定终端的完整定时提前量。其中,服务波束的差分定时提前量可来自于终端。
上述目标波束对应的时延补偿参数可包括目标波束的服务链路的时延补偿值,和/或目标波束的馈电链路的时延补偿值。其中,目标波束的服务链路的时延补偿值以及目标波束的馈电链路的时延补偿值可由目标波束的网络设备确定。
上述第一信息可承载于初始部分带宽BWP信令、非初始BWP信令、邻区测量配置信令或者小区间切换信令等信令中的一个或多个信令中。
第五方面,本申请实施例提供一种通信方法。该通信方法可由手机等终端或终端中的芯片执行。
根据该方法,终端可通过服务波束接收第三信息。该第三信息可用于指示第一参数。此外,终端可根据第一参数以及服务波束的差分定时提前量,确定目标波束对应的差分定时提前量。该服务波束与该目标波束互为不同的波束。其中,第一参数可包括服务波束对应的时延补偿参数与目标波束对应的时延补偿参数之间的差值;或者,第一参数可包括目标波束对应的时延补偿参数,以及服务波束对应的时延补偿参数。
采用以上方法,可由网络设备向终端指示第一参数,并由终端跟第一参数以及服务波束的差分定时提前量确定目标波束对应的差分定时提前量,用于进行时延补偿并在目标波束发送上行数据,以保持上行链路的连续性。
示例性的,第三信息来自于服务波束对应的网络设备。
上述第一信息可承载于初始部分带宽BWP信令、非初始BWP信令、邻区测量配置信令或者小区间切换信令等信令中的一个或多个信令中。
第六方面,本申请实施例提供一种通信方法。该方法可由网络设备或网络设备中的芯片执行。其中,网络设备可包括接入网设备,如作为网络设备的卫星或作为网络设备的地面站等。
根据该方法,网络设备可确定第一参数。其中,第一参数可用于所述终端确定目标波束对应的差分定时提前量。网络设备可通过服务波束发送第三信息,该第三信息可用于指示第一参数。其中,该服务波束与该目标波束互为不同的波束。第一参数可包括服务波束对应的时延补偿参数与目标波束对应的时延补偿参数之间的差值;或者,第一参数可包括目标波束对应的时延补偿参数以及服务波束对应的时延补偿参数。
上述第一信息可承载于初始部分带宽BWP信令、非初始BWP信令、邻区测量配置信令或者小区间切换信令等信令中的一个或多个信令中。
第七方面,本申请提供一种通信装置。该通信装置可用于执行上述第一方面或第一方面的任一可能的设计、第三方面或第三方面的任一可能的设计或第五方面或第五方面的任一可能的设计中由终端执行的步骤。该通信装置可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能或步骤或操作。比如,在通信装置中可以设置与上述各方法中的功能或步骤或操作相对应的功能模块来支持所述通信装置执行上述方法。
在通过软件模块实现第七方面所示通信装置时,该通信装置可包括相互耦合的通信模块以及处理模块,其中,通信模块可用于支持通信装置进行通信,处理模块可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
以上通信模块可用于执行上述方法中终端的发送和/或接收的动作,如用于执行终端向网络设备发送信息、消息或信令的动作,或用于执行从网络设备接收信息、消息或信令的动作。和/或,处理模块可用于执行所述方法中终端的处理动作,如用于控制通信模块进行信息、消息或信令的接收和或发送,以及信息的存储等操作。
在通过硬件组件实现第七方面所示通信装置时,该通信装置可包括处理器,用于执行上述第一方面或第一方面的任一可能的设计、第三方面或第三方面的任一可能的设计或第五方面或第五方面的任一可能的设计中由终端执行的步骤。该通信装置还可以包括存储器。其中,存储器可用于存储指令,处理器可用于从所述存储器中调用并运行所述指令,以执行上述可能的设计中由终端执行的步骤。该通信装置还可包括收发器,用于通信装置进行通信。示例性的,收发器可用于执行上述第一方面或第一方面的任一可能的设计、第三方面或第三方面的任一可能的设计或第五方面或第五方面的任一可能的设计中终端发送和/或接收的动作,如用于执行终端向网络设备发送信息、消息或信令的动作,或用于执行从网络设备接收信息、消息或信令的动作。
示例性的,该通信装置可以是终端或终端中的芯片。
第八方面,本申请实施例提供一种通信装置。该通信装置可用于执行上述第二方面或第二方面的任一可能的设计、第四方面或第四方面的任一可能的设计或第六方面或第六方面的任一可能的设计中由网络设备执行的步骤。该通信装置可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能或步骤或操作。比如,在通信装置中可以设置与上述各方法中的功能或步骤或操作相对应的功能模块来支持所述通信装置执行上述方法。
在通过软件模块实现第八方面所示通信装置时,该通信装置可包括相互耦合的通信模块以及处理模块,其中,通信模块可用于支持通信装置进行通信,处理模块可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
以上通信模块可用于执行上述方法中终端的发送和/或接收的动作,如用于执行终端向网络设备发送信息、消息或信令的动作,或用于执行从网络设备接收信息、消息或信令的动作。和/或,处理模块可用于执行所述方法中终端的处理动作,如用于控制通信模块进行信息、消息或信令的接收和或发送,以及信息的存储等操作。
在通过硬件组件实现第八方面所示通信装置时,该通信装置可包括处理器,用于执行上述第二方面或第二方面的任一可能的设计、第四方面或第四方面的任一可能的设计或第六方面或第六方面的任一可能的设计中由网络设备执行的步骤。该通信装置还可以包括存储器。其中,存储器可用于存储指令,处理器可用于从所述存储器中调用并运行所述指令,以执行上述可能的设计中由终端执行的步骤。该通信装置还可包括收发器,用于通信装置进行通信。示例性的,收发器可用于执行上述第二方面或第二方面的任一可能的设计、第四方面或第四方面的任一可能的设计或第六方面或第六方面的任一可能的设计中网络设备发送和/或接收的动作,如用于执行网络设备向终端发送信息、消息或信令的动作,或用于执行从终端接收信息、消息或信令的动作。
示例性的,该通信装置可以是网络设备或网络设备中的芯片。
第九方面,本申请提供一种通信系统。该通信系统可以包括第七方面所示的通信装置以及第八方面所示的通信装置。其中,第七方面所示的通信装置可由软件模块和/或硬件组件构成。第八方面所示的通信装置可由软件模块和/或硬件组件构成。
第十方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称程序),当其在计算机上被调用执行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计、第二方面或第二方面的任意一种可能的设计、第三方面或第三方面的任意一种可能的设计、第四方面或第四方面的任意一种可能的设计、第五方面或第五方面的任意一种可能的设计或第六方面或第六方面的任意一种可能的设计中所述的方法。
第十一方面,本申请提供一种计算机程序产品,该计算机程序产品可包含指令,当所述计算机程序产品在计算机上运行时使得计算机执行上述第一方面或第一方面的任意一种可能的设计、第二方面或第二方面的任意一种可能的设计、第三方面或第三方面的任意一种可能的设计、第四方面或第四方面的任意一种可能的设计、第五方面或第五方面的任意一种可能的设计或第六方面或第六方面的任意一种可能的设计中所述的方法。
第十二方面,本申请提供一种芯片和/或包含芯片的芯片系统,该芯片可包括处理器。该芯片还可以包括存储器(或存储模块)和/或收发器(或通信模块)。该芯片可用于执行上述第一方面或第一方面的任意一种可能的设计、第二方面或第二方面的任意一种可能的设计、第三方面或第三方面的任意一种可能的设计、第四方面或第四方面的任意一种可能的设计、第五方面或第五方面的任意一种可能的设计或第六方面或第六方面的任意一种可能的设计中所述的方法。该芯片系统可以由上述芯片构成,也可以包含上述芯片和其他分立器件,如存储器(或存储模块)和/或收发器(或通信模块)。
附图说明
图1为本申请实施例提供的一种NTN通信系统的架构示意图;
图2为本申请实施例提供的一种NTN通信系统的架构示意图;
图3为本申请实施例提供的一种NTN通信系统的架构示意图;
图4为本申请实施例提供的一种通信方法的流程示意图;
图5为本申请实施例提供的一种通信方法的流程示意图;
图6为本申请实施例提供的一种通信方法的流程示意图;
图7为本申请实施例提供的一种NTN通信系统的架构示意图;
图8为本申请实施例提供的一种通信装置的结构示意图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的一种通信装置的结构示意图;
图11为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
如图1所述,本申请实施例提供的通信方法可以用于NTN通信系统。该通信系统可由终端(或称用户终端、用户设备)、卫星(或称卫星基站)以及地面站(或称关口站、信关站)(gateway)组成。
其中,终端可以是能够接收网络设备调度和指示信息的无线终端设备。如用于向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端设备可以经无线接入网(如,radio access network,RAN)与一个或多个核心网或者互联网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话,手机(mobile phone))、计算机和通信芯片,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们可与无线接入网交换语言和/或数据。终端具体可以是个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、平板电脑(Pad)、带无线收发功能的电脑等设备。终端也可以包括订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile station,MS)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户站(subscriber station,SS)、用户端设备(customer premises equipment,CPE)、终端(terminal)、移动终端(mobile terminal,MT)等。无线终端设备也可以是可穿戴设备以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备、NR通信系统中的终端设备等。
卫星可为终端提供无线接入服务,调度无线资源给接入的终端,提供可靠的无线传输协议和数据加密协议等。卫星可以是将人造地球卫星和高空飞行器等作为无线通信的基站,例如演进型基站(eNB)和5G基站(gNB)等;或者,卫星可作为这些基站的中继,向终端透传这些基站的无线信号,此时,地面站可视为无线通信的基站。卫星可以是静止轨道(geostationary earth orbit,GEO)卫星,也可以是非静止轨道(none-geostationary earth orbit, NGEO)的中轨道(medium earth orbit,MEO)卫星和低轨道(low earth orbit,LEO)卫星,还可以是高空通信平台(High Altitude Platform Station,HAPS)等。
卫星的运行姿态包括:对地非凝视姿态和对地凝视姿态。
其中,对地非凝视姿态的卫星设备发射的波束随着卫星运动,在卫星看来自身发射各波束的角度不会随时间改变,地面固定点在卫星过顶期间会经历较为频繁的波束切换。由于卫星运行的速度比地球自转的速度还要快,因此除同步卫星外,对于非静止轨道的卫星与地球的关系,可以近似为地球静止不动,卫星设备绕着地球做周期性圆周运动。图2所示,非凝视姿态中,卫星发射波束的角度不会改变,随着卫星与地面相对位置的变化,波束覆盖到的地面范围会发生变化,如果终端处于相对地球静止的状态,覆盖到终端的波束也会发生变化。随着卫星的移动,覆盖到终端的波束也会发生变化,终端需要进行波束切换。
而在凝视卫星系统中,卫星发射各波束的角度按一定方式调整,以实现对地面固定点的连续观测。比如图3所示,在卫星运行过程中,通过调节波束的发射角度来实现对同一区域的持续观测(即形成同一波束对于相同区域的持续覆盖)。在凝视姿态下,如果终端的位置移出卫星凝视的区域(即波束持续覆盖的区域),则同样会发生波束切换。
应理解,不同的波束在协议中可根据部分带宽(bandwidth part,BWP)、传输配置指示(transmission configuration indicator,TCI)或同步信号块(synchronization signal block,SSB)进行区分;或者换句话说,波束可根据BWP、TCI或SSB进行指示。因此,终端和网络设备之间可以通过BWP、TCI或者SSB的切换,来指示波束的切换,从而对于终端和/或网络设备来说,实际进行的可能是BWP、TCI或者SSB的切换。
此外,本申请中所述的波束也可替换为BWP、TCI或者SSB,因此也可根据本申请提供的方法在BWP切换、TCI切换或者SSB切换的场景,提高终端的上行链路的可靠性。例如,本申请中,终端当前接入网络设备所使用的服务波束,可替换为服务BWP、服务TCI或者服务SSB;相应地,终端从服务波束切换到的目标波束,可替换为目标BWP、目标TCI或者目标SSB。
地面站可用于连接卫星与核心网。当卫星作为无线通信的基站时,地面站可透传卫星与核心网之间的信令。或者,地面站可作为无线通信的基站,卫星可透传终端与地面站之间的信令。示例性的,当进行通信时,地面站可将来自于核心网的信令通过反馈链路(或称馈电链路)(feeder link)发送至卫星,并由卫星通过其与终端之间的服务链路(service link)向终端发送信令。或者,终端可通过服务链路向卫星发射信令,由卫星通过地面站向核心网发送信令。
应理解,图1仅示出了一个卫星以及一个地面站,在实际使用中,可根据需要采取多卫星和/或多地面站的架构。其中,每个卫星可向一个或多个终端提供服务,每个卫星可对应于一个或多个地面站,每个地面站可对应于一个或多个卫星,本申请中不予具体限定。
基于如图1所示的NTN通信系统,终端可通过基于竞争的随机接入方式申请接入网络,其中,随机接入的第一步是终端发送申请接入的随机接入前导(preamble)。对于NTN通信,终端在发送前导时可以做定时提前调整,以降低往返时延对接收随机接入前导的影响。其中,需要进行补偿的时延与终端与卫星基站间的距离有关,对该时延进行补偿所使用的TA被称为完整定时提前量(full TA)。目前,为了降低信令开销以及终端侧信号处理的复杂度,卫星基站可以负责补偿一部分时延,终端只需要对自身负责的一部分时延进行 补偿,这部分由终端负责补偿的时延通过终端的差分TA进行补偿,由网络侧进行补偿的时延由网络侧时延补偿量(compensated TA)进行补偿。
对于波束切换的场景,本申请中可将切换前的波束称为服务波束,切换后的波束称为目标波束。此外,发射服务波束的卫星可称为服务卫星(或者说,服务卫星为服务波束所属的卫星),发射目标波束的卫星可称为目标卫星(或者说,目标卫星为目标波束所属的卫星)。以图1为例,当前终端处于波束#2的覆盖范围内,当终端位于波束#2与波束#3(或波束#1)之间的边界位置时,将未发生波束切换,其中,波束#2即终端的服务波束,切换后的波束#3(或波束#1)即目标波束。
当发生波束切换时,终端处于两个波束之间的边界,可以认为波束切换前、后,终端与卫星之间的距离不变,因此,波束切换前后终端的完整定时提前相同。但是,对于切换前的服务波束以及切换后的目标波束,由网络侧负责补偿的时延是不同的,因此,对于服务波束以及目标波束,由终端负责补偿的时延也是不同的。换句话说,对于服务波束以及目标波束,终端的差分TA不同。
由于无法准确获知目标波束下的差分TA,终端无法通过切换后的上行波束发起随机接入,会导致终端与卫星之间的通信中断。本申请为了提高上行链路的通信连续性,提供了一种通信方法,该通信方法可应用于如图1所述的NTN通信系统。具体来说,该通信方法可由终端与网络设备实施。其中,网络设备可以是向终端提供无线网络接入的基站,例如,网络设备可以是图1中作为无线通信基站的卫星或地面站。
如图4所示,该通信方法可包括以下步骤:
S101:网络设备确定第一信息。
其中,第一信息可用于指示目标波束对应的时延补偿参数,目标波束对应的时延补偿参数用于目标波束对应的差分定时提前量的确定。
应理解,该网络设备为服务波束对应的网络设备。
S102:网络设备通过服务波束向终端发送所述第一信息,服务波束与目标波束为不同的波束。
S103:终端通过服务波束接收第一信息。
S104:终端根据目标波束对应的时延补偿参数以及完整定时提前量,确定目标波束对应的差分定时提前量。
采用以上方法,可由终端从当前接入的网络设备获取即将接入的目标波束对应的时延补偿参数,因此可由终端根据完整定时提前量以及目标波束对应的时延补偿参数确定目标波束对应的差分定时提前量,用于进行时延补偿并在目标波束上发起上行随机接入,因此可保持上行链路的连续性,以提高上行链路的通信可靠性。
在本申请中,目标波束对应的时延补偿参数可通过delay_compensated_targ表示。完整定时提前量可通过UE与卫星之间的距离计算得到,其可表示为TA_full。目标波束对应的差分定时提前量可表示为UE_speci_diff_TA_targ,后续终端可采用该定时提前量做定时提前调整,以进行上行接入或发送上行数据。
在S104的一种实现方式中,目标波束对应的差分定时提前量、目标波束对应的时延补偿参数以及完整定时提前量三者之间的关系可满足以下公式:
UE_speci_diff_TA_targ=TA_full-delay_compensated_targ(公式一)。
此外,本申请并不限制在表述以上三者之间的对应关系时,对于此公式进行适当的变 形,例如,在公式中添加比例系数、偏移量等等。
上述示例中,目标波束对应的时延补偿参数,可包括目标波束的服务链路的时延补偿值和/或目标波束的馈电链路的时延补偿值。其中,目标波束的服务链路的时延补偿值,是指目标波束的网络设备对于目标波束的服务链路进行时延补偿所使用的时延补偿值。目标波束的馈电链路的时延补偿值,是指目标波束的网络设备对于目标波束的馈电链路进行时延补偿所使用的时延补偿值。
目标波束的服务链路的时延补偿值和/或目标波束的馈电链路的时延补偿值,可由目标波束的网络设备确定,例如,目标波束的网络设备可根据网络设备与选取的参考点之间的信号往返时延,确定目标波束的服务链路的时延补偿值和/或目标波束的馈电链路的时延补偿值。应理解,对于卫星不变的波束切换场景,服务波束以及目标波束均属于相同的卫星,因此,目标波束的网络设备与服务波束的网络设备相同。对于卫星切换导致波束切换的场景,目标波束的网络设备与服务波束的网络设备不同,此时,服务波束的网络设备可从目标波束的网络设备获取目标波束对应的时延补偿参数。
在一种可能的实现方式中,终端可以通过接收到的目标波束的时延补偿参数确定目标波束的时延补偿参数对应的调整值。该调整值可表示网络侧对上行数据进行的时延补偿的时长。
示例性的,终端可以根据以下公式确定目标波束的时延补偿参数对应的调整值:
N DC=delay_compensated_targ*16*64/2 u*Tc(公式二)。
其中,delay_compensated_targ表示目标波束对应的时延补偿参数,取值为非负整数。N DC表示服务波束对上行信号做的时延补偿值。u与数据子载波间隔有对应关系。数据子载波间隔为15*2 u千赫兹(kHz)。Tc表示时间单位,可以定义为Tc=0.509*10 -6ms。
同理,终端在目标波束中使用的差分定时提前量对应的调整值可以表示为UE_speci_diff_TA_targ*16*64/2 u*Tc。差分定时提前量对应的调整值,可表示终端发送上行数据时使用的定时提前调整值,即在终端侧对上行数据进行的时延补偿的时长。换句话说,终端通过该调整值,补偿上行信号发送至网络设备的时延。比如,某上行信号需要在特定时间发送至网络设备,则终端可在该特定时间之前的一段时长发送该上行信号,该一段时长即终端发送上行数据时使用的差分定时提前调整值。
本申请的一种可能的实现方式中,第一信息可包括以上目标波束对应的时延补偿参数,例如,网络设备将目标波束对应的时延补偿参数作为第一信息发送至终端。或者,第一信息可与目标波束对应的时延补偿参数之间具备一定的关联关系,终端和网络设备之间均已获知该关联关系,从而通过第一信息指示目标波束对应的时延补偿参数。其中,关联关系例如缩放关系、函数关系或者一一对应关系等等。
在另外的实现方式中,第一信息可包括用于确定目标波束对应的时延补偿参数的信息,例如目标波束的参考点的位置信息和/或目标波束所属卫星(即目标卫星)的位置信息(或该卫星的星历信息,用于确定该卫星的位置信息)。其中,参考点的位置信息可用于确定目标波束的服务链路的时延补偿值和/或目标波束的馈电链路的时延补偿值。参考点可包括目标波束的服务链路的参考点和/或目标波束的馈电链路的参考点。
具体的,终端可基于参考点的位置信息以及卫星的位置信息,确定目标波束对应的时延补偿参数。例如,根据目标波束的服务链路的参考点的位置信息以及卫星的位置信息,可确定目标波束的服务链路的时延补偿值;和/或,根据目标波束的馈电链路的参考点的位 置信息以及卫星的位置信息,可确定目标波束的馈电链路的时延补偿值。一种具体的计算方式为根据目标波束的卫星位置和目标波束的服务链路的参考点位置间的往返时延得到目标波束的服务链路的时延补偿值。同理,可以得到目标波束的馈电链路的时延补偿值。
此后,终端可根据完整定时提前量及目标波束对应的时延补偿参数,确定目标波束对应的差分定时提前量。
本申请中,终端确定完整定时提前量的方法可以有多种,下面通过举例的方式对几种可能的实现方式进行介绍。
方式一:终端可根据终端自身的位置信息和目标波束所属卫星的位置信息,确定完整定时提前量。该完整定时提前量为目标波束的服务链路的完整定时提前量。
其中,终端可通过自身的定位功能获取自身的位置信息。
此外,对于卫星不变的波束切换场景,目标波束所属的卫星即服务波束所属的卫星,该卫星的位置信息对于终端来说是已知信息。从而终端可根据自身位置信息以及该卫星的位置信息确定完整定时提前量。
对于卫星切换导致的波束切换场景,终端可从服务波束所属的网络设备获取目标波束所属卫星的位置信息。具体的,可由服务波束所属的网络设备确定终端即将切换的目标波束所述的卫星,并由网络设备向终端发送该卫星的位置信息。此后,可由终端根据自身位置信息以及目标波束所属卫星的位置信息,确定完整定时提前量。
在一种具体的实现方式中,具备定位功能的终端可基于定位功能确定自身的位置信息,并根据自身的位置信息以及目标波束所属卫星的位置信息确定目标波束的服务链路的完整定时提前量,并根据目标波束的服务链路的完整定时提前量及目标波束的服务链路的时延补偿值,确定目标波束对应的差分定时提前量。
或者,具备定位功能的终端可基于定位功能确定自身的位置信息,并根据目标波束的馈电链路的参考点以及目标波束所属卫星的位置信息,确定目标波束的馈电链路和服务链路的完整定时提前量,并根据目标波束的完整定时提前量以及目标波束的馈电链路和服务链路的时延补偿值确定目标波束对应的差分定时提前量。
方式二:终端可根据服务波束下的时延补偿参数以及服务波束下的差分定时提前量,确定完整定时提前量。
其中,服务波束下的时延补偿参数可由服务波束的卫星通过服务波束进行广播或组播或单独发送给终端,因此终端可通过服务波束获取该时延补偿参数。服务波束下的差分定时提前量用于终端在服务波束中进行时延补偿,因此对于终端来说可认为是已知的。
示例性的,服务波束下的时延补偿参数、服务波束下的差分定时提前量以及完整定时提前量之间的关系可满足以下公式:
TA_full=delay_compensated_serv+UE_speci_diff_TA_serv(公式三)。
其中,TA_full表示完整定时提前量,delay_compensated_serv表示服务波束下的时延补偿参数,UE_speci_diff_TA_serv表示服务波束下的差分定时提前量。
该示例中,目标波束对应的差分定时提前量可通过以下公式表示:
UE_speci_diff_TA_targ=delay_compensated_serv+UE_speci_diff_TA_serv-delay_compensated_targ(公式四)。
其中,UE_speci_diff_TA_targ表示终端在目标波束中使用的差分定时提前量(或称目标波束对应的差分定时提前量),delay_compensated_targ表示目标波束中网络设备使用的 时延补偿参数。
应理解,在该方式二中,终端可不具备定位功能。
示例性的,不具有定位功能的终端可根据服务波束的时延补偿值和差分定时提前量得到服务波束的完整定时提前量,再根据目标波束的服务链路的时延补偿值以及目标波束的馈电链路的时延补偿值,确定目标波束对应的差分定时提前量。
在本申请的实施中,第一信息可承载于系统信息块(system information block,SIB)1、其他系统消息(other system information,OSI)、主系统信息块(mater information block,MIB)等的广播信息中的至少一种,并由网络设备向终端单播、广播或组播发送。此外,如果在无线资源控制(radio resource control,RRC)连接阶段发送,网络设备可以在RRC信息、下行控制信息(downlink control information,DCI)、组DCI、介质访问控制(media access control,MAC)元素(element)、定时提前命令(timing advance command,TAC)中的至少一种信息中携带第四信息,或者随数据传输或在单独分配的PDSCH承载中向终端发送第一信息。
示例性的,第一信息可承载于由网络设备向终端发送的初始部分带宽(bandwidth part,BWP)信令和/或非初始BWP信令中。其中,非初始BWP信令例如BWP下行公共(BWP-DownlinkCommon)信令、BWP上行公共(BWP-UplinkCommon)信令、BWP下行专用(BWP-DownlinkDedicated)信令或者BWP上行专用(BWP-UplinkDedicated)信令中的任意一种或多种。
下面,对于第一信息的承载方式进行举例说明。
当第一信息承载于初始BWP信令中时,初始BWP信令的格式例如:
Figure PCTCN2020131567-appb-000001
其中,“DelayCompensatedTargeted字段可用于携带以上第一信息。“DelayCompensatedTargetedList”表示第一信息的具体数值。
当第一信息承载于BWP下行公共信令中时,BWP下行公共信令的格式例如:
Figure PCTCN2020131567-appb-000002
其中,“DelayCompensatedTargeted”字段可用于携带以上第一信息。“DelayCompensatedTargetedList”表示第一信息的具体数值。
当第一信息承载于BWP上行公共信令中时,BWP上行公共信令的格式例如:
Figure PCTCN2020131567-appb-000003
其中,DelayCompensatedTargeted字段可用于携带以上第一信息。“DelayCompensatedTargetedList”表示第一信息的具体数值。
当第一信息承载于BWP下行专用信令中时,BWP下行专用信令的格式例如:
Figure PCTCN2020131567-appb-000004
其中,“DelayCompensatedTargeted”字段可用于携带以上第一信息。“DelayCompensatedTargetedList”表示第一信息的具体数值。
当第一信息承载于BWP上行专用信令中时,BWP上行专用信令的格式例如:
Figure PCTCN2020131567-appb-000005
其中,“DelayCompensatedTargeted”字段可用于携带以上第一信息。“DelayCompensatedTargetedList”表示第一信息的具体数值。
此外,当服务波束与目标波束属于不同的小区时,第一信息也可承载于由网络设备向终端发送的邻区测量配置信令和/或小区间切换信令中。其中,后者例如小区间切换信令的无线资源控制(Radio Resource Control,RRC)重配置(reconfiguration)消息。
当第一信息承载于邻区测量配置信令中时,邻区测量配置信令的格式例如:
Figure PCTCN2020131567-appb-000006
当第一信息承载于小区间切换信令的RRCReconfiguration消息中时,小区间切换信令的RRCReconfiguration消息的格式例如:
Figure PCTCN2020131567-appb-000007
上述示例中,“DelayCompensatedTargetedList”字段包含的具体信息可以为:
Figure PCTCN2020131567-appb-000008
其中,DelayCompensatedValue可表示第一信息。第一信息例如目标波束的时延补偿参数或目标波束中服务链路的参考点位置信息和/或目标波束所属卫星的位置信息。beamId表示目标波束的识别号(ID)。
本申请实施例提供另一种通信方法,用以提高NTN通信的连续性,避免由于波束的切换导致通信中断。下面仍以网络设备以及终端为例,对该方法进行说明。如图5所示,可包括以下步骤:
S201:网络设备确定目标波束对应的时延补偿参数。
S202:网络设备根据终端的完整定时提前量以及目标波束对应的时延补偿参数,确定目标波束对应的差分定时提前量;
S203:网络设备向所述终端发送第二信息,第二信息用于指示目标波束对应的差分定时提前量。
S204:终端接收第二信息。
采用以上方法,可由终端的服务波束对应的网络设备确定目标波束对应的时延补偿参 数,并根据终端的完整定时提前量以及目标波束对应的时延补偿参数确定目标波束对应的差分定时提前量。此外,可由网络设备向终端指示该目标波束对应的差分定时提前量,用于终端进行时延补偿并在目标波束发送上行数据,以保持上行链路的连续性。
该示例中,网络设备确定终端的完整定时提前量的方式有多种,下面通过举例的方式,介绍几种可行的实现方式。
方式一、网络设备接收来自终端的完整定时提前量。
该方式中,终端的完整定时提前量的确定方式可参照本申请中介绍的由终端确定自身的完整定时提前量的方法。
方式二、网络设备可接收来自终端的终端位置信息,根据终端的位置信息以及目标波束所属卫星的位置信息,确定完整定时提前量。
其中,终端可通过自身的定位功能获取自身的位置信息,并将位置信息发送至网络设备。
此外,对于卫星不变的波束切换场景,目标波束所属的卫星与服务波束所属的卫星相同,该卫星的位置信息对于网络设备来说可认为是已知的。从而网络设备可根据来自终端的终端位置信息以及该卫星的位置信息,确定终端的完整定时提前量。
对于卫星切换导致的波束切换场景,网络设备可从目标波束所属的卫星获取其位置信息。具体的,可由服务波束所属的网络设备确定终端即将切换的目标波束所述的卫星,并获取其位置信息。此后,可由网络设备根据终端的位置信息以及目标波束所属卫星的位置信息,确定终端的完整定时提前量。
方式三、网络设备可根据服务波束下的时延补偿参数以及服务波束下的差分定时提前量,确定终端的完整定时提前量。
其中,服务波束下的差分定时提前量可由终端确定,并由终端向网络设备发送。
此外,服务波束下的时延补偿参数在现有技术中由网络设备向终端发送(或者由网络设备广播),因此服务波束下的时延补偿参数对于网络设备来说是已知的。
示例性的,终端的完整定时提前量、服务波束下的时延补偿参数以及服务波束下的差分定时提前量三者之间的关系可如公式三所示。
示例性的,S202中,目标波束对应的差分定时提前量、目标波束对应的时延补偿参数以及完整定时提前量三者之间的关系可如公式一所示。
应理解,在该方式三中,终端可不具备定位功能。
在S203的实施中,承载第二信息的信令可包括由网络设备向终端发送的初始部分带宽信令和/或非初始BWP信令。其中,非初始BWP信令例如BWP下行公共信令、BWP上行公共信令、BWP下行专用信令或者BWP上行专用信令中的任意一种或多种。
此外,当服务波束与目标波束分别属于不同的卫星时,第二信息可承载于邻区测量配置信令和/或小区间切换信令中。
应理解,在上述信令中携带第二信息的方式可参照上述信令携带第一信息的方式。
本申请实施例提供另一种通信方法,用以提高NTN通信的连续性,避免由于波束的切换导致通信中断。下面仍以网络设备以及终端为例,对该方法进行说明。如图6所示,可包括以下步骤:
S301:网络设备确定第一参数,第一参数用于终端确定目标波束对应的差分定时提前量。
其中,第一参数包括服务波束对应的时延补偿参数与目标波束对应的时延补偿参数之间的差值,或者,第一参数包括目标波束对应的时延补偿参数以及服务波束对应的时延补偿参数。
S302:网络设备通过服务波束向终端发送第三信息,所述第三信息用于指示第一参数,服务波束与目标波束为不同的波束。
S303:终端接收第三信息。
S304:终端根据第一参数以及服务波束的差分定时提前量,确定目标波束对应的差分定时提前量。
采用以上方法,可由网络设备向终端指示第一参数,并由终端跟第一参数以及服务波束的差分定时提前量确定目标波束对应的差分定时提前量,用于进行时延补偿并在目标波束发送上行数据,以保持上行链路的连续性。
应理解,上述服务波束对应的时延补偿参数、目标波束对应的时延补偿参数以及服务波束的差分定时提前量的确定方式可参照本申请中介绍,在此不再重复说明。
在一种可能的示例中,当第一参数为服务波束对应的时延补偿参数与目标波束对应的时延补偿参数之间的差值时,可通过△delay_compensated表示第一参数,其中,△delay_compensated=delay_compensated_serv-delay_compensated_targ。
此时可通过以下公式,表示目标波束对应的差分定时提前量、第一参数以及服务波束的差分定时提前量之间的关系:
UE_speci_diff_TA_targ=△delay_compensated+UE_speci_diff_TA_serv(公式五)。
其中,UE_speci_diff_TA_targ表示目标波束对应的差分定时提前量,UE_speci_diff_TA_serv表示服务波束的差分定时提前量。
在另一种可能的示例中,当第一参数包括服务波束对应的时延补偿参数以及目标波束对应的时延补偿参数时,可通过delay_compensated_serv表示服务波束对应的时延补偿参数,以及通过delay_compensated_targ表示目标波束对应的时延补偿参数。
该示例中,目标波束对应的差分定时提前量、服务波束对应的时延补偿参数、目标波束对应的时延补偿参数以及服务波束的差分定时提前量之间的关系可满足如下公式:
UE_speci_diff_TA_targ=(delay_compensated_serv-delay_compensated_targ)+UE_speci_diff_TA_serv(公式六)。
示例性的,上述第三信息可承载于初始部分带宽BWP信令、BWP下行公共信令、BWP上行公共信令、BWP下行专用信令、BWP上行专用信令、邻区测量配置信令和/或小区间切换信令。
此外,当服务波束与目标波束分别属于不同的卫星时,第三信息可承载于邻区测量配置信令和/或小区间切换信令中。
应理解,在上述信令中携带第三信息的方式可参照上述信令携带第一信息的方式。
在另一种可能的示例中,当服务波束以及目标波束属于同一卫星时,第一参数可包括服务波束的参考点的位置信息、目标波束的参考点的位置信息以及该卫星的位置信息(或该卫星的星历信息,用于确定该卫星的位置信息)。
其中,服务波束的参考点可包括服务波束的服务链路的参考点,以及服务波束的馈电链路的参考点。目标波束的参考点可包括目标波束的服务链路的参考点,以及目标波束的馈电链路的参考点。终端可基于服务波束的参考点的位置信息以及卫星的位置信息,确定 服务波束对应的时延补偿参数。例如,终端可根据服务波束的服务链路的参考点的位置信息以及卫星的位置信息,确定服务波束的服务链路的时延补偿值,一种可能的确定方式为:将卫星与服务链路的参考点之间的往返时延定为服务链路的时延补偿值;和/或,根据服务波束的馈电链路的参考点的位置信息以及卫星的位置信息,确定服务波束的馈电链路的时延补偿值,一种可能的确定方式为:将卫星与馈电链路的参考点之间的往返时延定为服务链路的时延补偿值。
此外,终端可基于目标波束的参考点的位置信息以及卫星的位置信息,确定目标波束对应的时延补偿参数,具体方式可参照本申请中的说明。
在根据服务波束的参考点的位置信息、目标波束的参考点的位置信息以及该卫星的位置信息,确定服务波束对应的时延补偿参数以及目标波束对应的时延补偿参数后,可根据服务波束对应的时延补偿参数、目标波束对应的时延补偿参数以及服务波束的差分定时提前量确定目标波束的差分定时提前量。其中,服务波束对应的时延补偿参数、目标波束对应的时延补偿参数、服务波束的差分定时提前量以及目标波束的差分定时提前量之间的关系可满足公式六。
应理解,本申请中,服务波束以及目标波束进行切换的原因,并不局限于终端与卫星之间的相对位置的变化,还可包括地面站的切换等原因。例如,在卫星透明转发(transparent)模式中,在发生地面站切换时,地面站与终端间的往返时延发生跳变,终端侧的定时提前调整量也会发生跳变。
如图7所示,当卫星接入的地面站由地面站#1切换至地面站#2时,地面站与终端间的往返时延发会生跳变,终端需要重新确定其使用的定时提前量。
以图7为例,在一种可能的示例中,在卫星接入的从地面站#1切换到地面站#2之前,地面站#1可通过卫星将第二参数发送至终端,由终端根据第二参数确定切换到地面站#2之后使用的定时提前调整量。其中,第二参数可包括切换到地面站#2之后终端使用的定时提前调整量。或者,第二参数可包括切换到地面站#2之后终端使用的定时提前调整量与切换到地面站#2之前终端使用的定时提前调整量(也就是终端当前使用的定时提前调整量)之间的差值,终端可根据该差值以及从地面站#1切换到地面站#2之前终端使用的定时提前调整量,确定切换地面站后使用的定时提前调整量。
此外,地面站#1可通过卫星向终端指示何时采用新的时提前调整量来发送上行数据。
该示例中,地面站#1可向终端发送第四信息。第四信息可承载于SIB1、OSI、MIB等的广播信息中的至少一种信息中,并由网络设备向终端单播、广播或组播发送。此外,如果在RRC连接阶段发送,网络设备还可以通过RRC信息、DCI、组DCI、MAC元素、TAC中的至少一种信息中携带第四信息,或者随数据传输或在单独分配的PDSCH承载中向终端发送第四信息。
示例性的,网络设备可在初始部分带宽信令和/或非初始BWP信令中承载第四信息。其中,第四信息可用于指示第二参数,或者,第四信息与第二参数之间存在对应关系或函数关系等关联关系。此外,第四信息还可包括时间信息,以使终端确定何时采用新的时提前调整量来进行上行发送。
仍以图7为例,在另一种可能的示例中,在卫星接入的从地面站#1切换到地面站#2之前,卫星可以向终端广播或单独发送地面站#2的位置信息。终端可以利用卫星位置信息(可以根据星历信息获取)与地面站#2的位置信息确定卫星与地面站#2的馈电链路的往 返时延。以及,终端可确定卫星与地面站#1之间的往返时延以及卫星与地面站#2之间的往返时延之间的差值(以下称为往返时延差)。此后,终端可根据其正在使用的定时提前调整量以及该往返时延差,获得切换地面站后应该使用的定时提前调整量。其中,可由卫星通过广播或单独发送的方式,向终端发送地面站#1的位置信息,用于终端确定地面站#1和地面站#2之间的往返时延差。
基于以上方法实施例,当终端需要进行星内的波束切换(即服务波束与目标波束属于同一卫星)时,终端可根据以下方式一至方式九中的任意一种或多种方式确定目标波束对应的差分定时提前量。
方式一
若终端具备定位功能,在切换波束前,网络设备可向终端发送目标波束的服务链路的时延补偿值。
终端可通过定位功能确定自身的位置信息,并根据自身的位置信息以及卫星的位置信息确定目标波束的服务链路的完整定时提前量,该完整定时提前量可根据终端与卫星的往返时延来确定。此后,由于是星内波束切换,因此服务波束与目标波束具有相同的服务链路的完整定时提前量,终端可根据该服务链路的完整定时提前量以及目标波束的服务链路的时延补偿值,确定目标波束对应的差分定时提前量。
示例性的,目标波束对应的差分定时提前量、目标波束的服务链路的完整定时提前量以及目标波束的服务链路的时延补偿值之间的关系满足公式一,或根据公式一进行变形得到的其他公式。
公式一中,UE_speci_diff_TA_targ表示目标波束对应的差分定时提前量,TA_full可表示目标波束的服务链路的完整定时提前量,delay_compensated_targ可表示目标波束的服务链路的时延补偿值。
方式二
若终端具备定位功能,在切换波束前,网络设备可向终端发送目标波束的服务链路的参考点的位置信息。
终端可根据目标波束的服务链路的参考点的位置信息以及卫星的位置信息,确定目标波束的服务链路的时延补偿值。终端还可通过自身的定位功能确定终端的位置信息,并根据终端的位置信息以及卫星的位置信息确定目标波束的服务链路的完整定时提前量。此后,终端可根据目标波束的服务链路的完整定时提前量以及目标波束的服务链路的时延补偿值,确定目标波束对应的差分定时提前量。
示例性的,目标波束对应的差分定时提前量、目标波束的服务链路的完整定时提前量以及目标波束的服务链路的时延补偿值之间的关系满足公式一,或根据公式一进行变形得到的其他公式。
公式一中,UE_speci_diff_TA_targ表示目标波束对应的差分定时提前量,TA_full可表示目标波束的服务链路的完整定时提前量,delay_compensated_targ可表示目标波束的服务链路的时延补偿值。
方式三
若终端不具备定位功能,在切换波束前,网络设备可向终端发送目标波束对应的时延补偿参数,其中,目标波束的时延补偿参数可包括目标波束的服务链路的时延补偿值和/或目标波束的馈电链路的时延补偿值。此外,终端还可接收来自网络设备的服务波束对应 的时延补偿参数。
终端可根据服务波束对应的时延补偿参数以及当前使用的差分定时提前量(即服务波束对应的差分定时提前量),确定完整定时提前量。此后,终端可根据完整定时提前量以及目标波束对应的时延补偿参数,确定目标波束对应的差分定时提前量。
示例性的,目标波束对应的差分定时提前量、完整定时提前量以及目标波束对应的时延补偿参数之间可满足公式四,或根据公式四进行变形得到的其他公式。
方式四
若终端不具备定位功能,在切换波束前,网络设备可向终端发送目标波束的参考点的位置信息。目标波束的参考点可包括目标波束的服务链路的参考点和/或目标波束的馈电链路的参考点。此外,终端还可接收来自网络设备的服务波束对应的时延补偿参数。
终端可根据目标波束的参考点的位置信息以及卫星的位置信息,确定目标波束的时延补偿参数,其中,目标波束的时延补偿参数可包括目标波束的服务链路的时延补偿值和/或目标波束的馈电链路的时延补偿值。
此外,终端可根据服务波束对应的时延补偿参数以及当前使用的差分定时提前量,确定完整定时提前量。终端还可根据完整定时提前量以及目标波束对应的时延补偿参数,确定目标波束对应的差分定时提前量。
示例性的,目标波束对应的差分定时提前量、完整定时提前量以及目标波束对应的时延补偿参数之间可满足公式四,或根据公式四进行变形得到的其他公式。
方式五
若终端具备定位功能,在切换波束前,终端可向网络设备发送终端的位置信息。网络设备可根据终端的位置信息以及卫星的位置信息确定终端的完整定时提前量。此后,网络设备可根据目标波束的时延补偿参数以及完整定时提前量,确定目标波束的差分定时提前量,并将目标波束的差分定时提前量发送至终端。其中,目标波束的时延补偿参数可包括目标波束的服务链路的时延补偿值和/或目标波束的馈电链路的时延补偿值。
示例性的,目标波束的差分定时提前量、目标波束的时延补偿参数以及完整定时提前量之间可满足公式一,或根据公式一进行变形得到的其他公式。
方式六
若终端不具备定位功能,在切换波束前,终端可向网络设备发送终端当前使用的差分定时提前量。网络设备可根据来自于终端的差分定时提前量以及服务波束的时延补偿参数,确定终端的完整定时提前量。此后,网络设备可根据目标波束的时延补偿参数以及完整定时提前量,确定目标波束的差分定时提前量,并将目标波束的差分定时提前量发送至终端。其中,目标波束的时延补偿参数可包括目标波束的服务链路的时延补偿值和/或目标波束的馈电链路的时延补偿值。
示例性的,目标波束的差分定时提前量、目标波束的时延补偿参数以及完整定时提前量之间可满足公式一,或根据公式一进行变形得到的其他公式。
方式七
若终端不具备定位功能,在切换波束前,网络设备可向终端发送目标波束对应的时延补偿参数与服务波束对应的时延补偿参数之间的差值。
终端可根据终端当前使用的差分定时提前量(即服务波束的差分定时提前量),以及来自网络设备的上述差值,确定目标波束的差分定时提前量。其中,终端当前使用的差分 定时提前量、上述差值以及目标波束的差分定时提前量之间满足公式五,或根据公式五进行变形得到的其他公式。
方式八
若终端不具备定位功能,在切换波束前,网络设备可向终端发送目标波束对应的时延补偿参数。此外,终端还可从网络设备获取服务波束对应的时延补偿参数。
终端可根据终端当前使用的差分定时提前量(即服务波束的差分定时提前量)、目标波束对应的时延补偿参数以及服务波束对应的时延补偿参数,确定目标波束的差分定时提前量。
示例性的,目标波束的差分定时提前量、终端当前使用的差分定时提前量、目标波束对应的时延补偿参数以及服务波束对应的时延补偿参数之间可满足公式六,或根据公式六进行变形得到的其他公式。
方式九
若终端不具备定位功能,在切换波束前,网络设备可向终端发送目标波束的参考点的位置信息以及服务波束的参考点的位置信息。目标波束的参考点可包括目标波束的服务链路的参考点和/或目标波束的馈电链路的参考点。服务波束的参考点可包括服务波束的服务链路的参考点和/或服务波束的馈电链路的参考点。
终端可根据目标波束的参考点的位置信息以及卫星的位置信息,确定目标波束的时延补偿参数,其中,目标波束的时延补偿参数可包括目标波束的服务链路的时延补偿值和/或目标波束的馈电链路的时延补偿值。以及,终端可根据服务波束的参考点的位置信息以及卫星的位置信息,确定服务波束的时延补偿参数,其中,服务波束的时延补偿参数可包括服务波束的服务链路的时延补偿值和/或服务波束的馈电链路的时延补偿值。
此后,终端可根据终端当前使用的差分定时提前量(即服务波束的差分定时提前量)、目标波束对应的时延补偿参数以及服务波束对应的时延补偿参数,确定目标波束的差分定时提前量。
示例性的,目标波束的差分定时提前量、终端当前使用的差分定时提前量、目标波束对应的时延补偿参数以及服务波束对应的时延补偿参数之间可满足公式六,或根据公式六进行变形得到的其他公式。
此外,当终端需要进行星间的波束切换(即服务波束与目标波束分别属于不同的卫星)时,终端可根据以下方式十至十二中的任意一种或多种方式确定目标波束对应的差分定时提前量。
方式十
若终端具备定位功能,在切换波束前,网络设备可向终端发送目标波束的服务链路的时延补偿值,以及发送目标波束所属卫星的位置信息(或者目标波束所属卫星的星历信息,根据星历信息可确定目标波束所属卫星的位置信息)。
终端可通过定位功能确定自身的位置信息,并根据自身的位置信息以及目标波束所属卫星的位置信息确定目标波束的服务链路的完整定时提前量。此后,终端可根据目标波束的服务链路的完整定时提前量以及目标波束的服务链路的时延补偿值,确定目标波束对应的差分定时提前量。
示例性的,目标波束对应的差分定时提前量、目标波束的服务链路的完整定时提前量以及目标波束的服务链路的时延补偿值之间的关系满足公式一,或根据公式一进行变形得 到的其他公式。
公式一中,UE_speci_diff_TA_targ表示目标波束对应的差分定时提前量,TA_full可表示目标波束的服务链路的完整定时提前量,delay_compensated_targ可表示目标波束的服务链路的时延补偿值。
方式十一
若终端具备定位功能,在切换波束前,网络设备可向终端发送目标波束的服务链路的参考点的位置信息,以及发送目标波束所属卫星的位置信息(或者目标波束所属卫星的星历信息,根据星历信息可确定目标波束所属卫星的位置信息)。
终端可根据目标波束的服务链路的参考点的位置信息以及目标波束所属卫星的位置信息,确定目标波束的服务链路的时延补偿值。终端还可通过自身的定位功能确定终端的位置信息,并根据终端的位置信息以及卫星的位置信息确定目标波束的服务链路的完整定时提前量。此后,终端可根据目标波束的服务链路的完整定时提前量以及目标波束的服务链路的时延补偿值,确定目标波束对应的差分定时提前量。
示例性的,目标波束对应的差分定时提前量、目标波束的服务链路的完整定时提前量以及目标波束的服务链路的时延补偿值之间的关系满足公式一,或根据公式一进行变形得到的其他公式。
公式一中,UE_speci_diff_TA_targ表示目标波束对应的差分定时提前量,TA_full可表示目标波束的服务链路的完整定时提前量,delay_compensated_targ可表示目标波束的服务链路的时延补偿值。
方式十二
若终端具备定位功能,在切换波束前,终端可向网络设备发送终端的位置信息。网络设备可根据终端的位置信息以及目标波束所属卫星的位置信息确定终端的完整定时提前量。此后,网络设备可根据目标波束的时延补偿参数以及完整定时提前量,确定目标波束的差分定时提前量,并将目标波束的差分定时提前量发送至终端。其中,目标波束的时延补偿参数可包括目标波束的服务链路的时延补偿值和/或目标波束的馈电链路的时延补偿值。
示例性的,目标波束的差分定时提前量、目标波束的时延补偿参数以及完整定时提前量之间可满足公式一,或根据公式一进行变形得到的其他公式。
应理解,对于以上确定目标波束对应的差分定时提前量的方式一至方式九,网络设备在向终端发送信息时可采用初始部分带宽BWP信令、非初始BWP信令、邻区测量配置信令和/或小区间切换信令。对于以上确定目标波束对应的差分定时提前量的方式十至方式十二,网络设备在向终端发送信息时可采用邻区测量配置信令和/或小区间切换信令。
应理解,本申请中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述本申请提供的实施例中,从终端所实现的功能的角度对本申请实施例提供的方法即方法流程进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现 上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图8所示,本申请实施例提供的一种通信装置可以包括通信模块801以及处理模块802,以上通信模块801以及处理模块802之间相互耦合。该通信装置800可用于执行以上方法实施例中由终端执行的步骤。该通信模块801可用于支持通信装置800进行通信,通信模块801可具备无线通信功能,例如能够通过无线通信方式与其他通信装置进行通信。处理模块802可用于支持该通信装置800执行上述方法实施例中终端设备的处理动作,包括但不限于:生成由通信模块801发送的信息、消息,和/或,对通信模块801接收的信号进行解调解码等等。
在执行上述方法实施例中由终端执行的步骤时,以上通信模块801可用于执行上述方法实施例中终端的发送和/或接收的动作,如用于执行终端向网络设备发送信息、消息或信令的动作,或用于执行从网络设备接收信息、消息或信令的动作。和/或,处理模块802可用于执行上述方法实施例中终端的处理动作,如用于控制通信模块801进行信息、消息或信令的接收和或发送,以及信息的存储等操作。
具体的,在执行本申请提供的一种实施例时,通信模块801可用于通过服务波束接收第一信息。其中,该第一信息可用于指示目标波束对应的时延补偿参数,该服务波束与该目标波束互为不同的波束。此外,处理模块802可根据目标波束对应的时延补偿参数以及完整定时提前量,确定该目标波束对应的差分定时提前量。
示例性的,第一信息来自于服务波束对应的网络设备。
示例性的,服务波束为终端当前接入网络设备所采用的波束,目标波束为终端即将切换到的波束。
在一种具体的示例中,处理模块802可根据终端的位置信息以及目标卫星的位置信息,确定完整定时提前量。其中,目标卫星对应于该目标波束,或者说,目标卫星为发射目标波束的卫星。该示例中,通信模块801还可接收所述目标卫星的位置信息。例如,通信模块801可从网络设备接收目标卫星的位置信息。
在另一种示例中,处理模块802可根据该服务波束对应的时延补偿参数以及该服务波束对应的差分定时提前量,确定完整定时提前量。
上述目标波束对应的时延补偿参数可包括目标波束的服务链路的时延补偿值,和/或目标波束的馈电链路的时延补偿值。其中,目标波束的服务链路的时延补偿值以及目标波束的馈电链路的时延补偿值可由目标波束的网络设备确定。
上述第一信息可承载于初始部分带宽BWP信令、非初始BWP信令、邻区测量配置信令或者小区间切换信令等信令中的一个或多个信令中。
在执行本申请提供的另一种实施例时,通信模块801可用于通过服务波束接收第二信息,该第二信息可用于指示目标波束对应的差分定时提前量,目标波束与服务波束为不同的波束。此后,处理模块802可根据目标波束对应的差分定时提前量进行定时提前。
示例性的,第二信息可来自于服务波束对应的网络设备。
在一种可能的示例中,通信模块801还可用于向网络设备发送终端的位置信息。
在另一种可能的示例中,通信模块801还可用于向网络设备发送服务波束的差分定时提前量。
上述第一信息可承载于初始部分带宽BWP信令、非初始BWP信令、邻区测量配置信 令或者小区间切换信令等信令中的一个或多个信令中。
在执行本申请提供的另一种实施例时,通信模块801可用于通过服务波束接收第三信息。该第三信息可用于指示第一参数。此外,处理模块802根据第一参数以及服务波束的差分定时提前量,确定目标波束对应的差分定时提前量。该服务波束与该目标波束互为不同的波束。其中,第一参数可包括服务波束对应的时延补偿参数与目标波束对应的时延补偿参数之间的差值;或者,第一参数可包括目标波束对应的时延补偿参数,以及服务波束对应的时延补偿参数。
示例性的,第三信息来自于服务波束对应的网络设备。
上述第一信息可承载于初始部分带宽BWP信令、非初始BWP信令、邻区测量配置信令或者小区间切换信令等信令中的一个或多个信令中。
在实现本申请提供的终端时,通信装置还可由硬件组件构成。便于理解和图示方便,图9中,以手机为例说明由硬件组件构成的通信装置900的结构。如图9所示,通信装置900可包括处理器901、存储器902以及收发器903。
以上处理器901可用于对通信协议以及通信数据进行处理,以及对通信装置900进行控制,执行程序,处理程序的数据等。存储器902可用于存储程序和数据,处理器901可基于该程序执行本申请实施例中由接收端设备执行的方法。
收发器903可包括射频单元以及天线。其中,射频单元可用于基带信号与射频信号的转换以及对射频信号的处理。天线可用于收发电磁波形式的射频信号。另外,也可仅将射频单元视为收发器903,则此时通信装置900可包括处理器901、存储器902、收发器903以及天线。
另外,该通信装置900还可包括输入输出装置904,如触摸屏、显示屏或者键盘等可用于接收用户输入的数据以及对用户输出数据的组件。需要说明的是,有些种类的通信装置可以不具有输入输出装置。
示例性的,以上通信模块801可具备收发器903所示结构,即包括射频单元以及天线;或者,通信模块801可包括以上射频单元。以上处理模块802可包括处理器901,或包括处理器901以及存储器902。
以上通信装置900也可由芯片构成。例如,该芯片包含处理器901。另外,该芯片还可包括存储器902以及收发器903,其中,存储器902、收发器903以及处理器901三者中,任意两者之间可相互耦合。
基于图9所示结构,在执行本申请提供的一种实施例时,收发器903可用于通过服务波束接收第一信息。其中,该第一信息可用于指示目标波束对应的时延补偿参数,该服务波束与该目标波束互为不同的波束。此外,处理器901可根据目标波束对应的时延补偿参数以及完整定时提前量,确定该目标波束对应的差分定时提前量。
示例性的,第一信息来自于服务波束对应的网络设备。
示例性的,服务波束为终端当前接入网络设备所采用的波束,目标波束为终端即将切换到的波束。
在一种具体的示例中,处理器901可根据终端的位置信息以及目标卫星的位置信息,确定完整定时提前量。其中,目标卫星对应于该目标波束,或者说,目标卫星为发射目标波束的卫星。该示例中,收发器903还可接收所述目标卫星的位置信息。例如,收发器903可从网络设备接收目标卫星的位置信息。
在另一种示例中,处理器901可根据该服务波束对应的时延补偿参数以及该服务波束对应的差分定时提前量,确定完整定时提前量。
上述目标波束对应的时延补偿参数可包括目标波束的服务链路的时延补偿值,和/或目标波束的馈电链路的时延补偿值。其中,目标波束的服务链路的时延补偿值以及目标波束的馈电链路的时延补偿值可由目标波束的网络设备确定。
上述第一信息可承载于初始部分带宽BWP信令、非初始BWP信令、邻区测量配置信令或者小区间切换信令等信令中的一个或多个信令中。
在执行本申请提供的另一种实施例时,收发器903可用于通过服务波束接收第二信息,该第二信息可用于指示目标波束对应的差分定时提前量,目标波束与服务波束为不同的波束。此后,处理器901可根据目标波束对应的差分定时提前量进行定时提前。
示例性的,第二信息可来自于服务波束对应的网络设备。
在一种可能的示例中,收发器903还可用于向网络设备发送终端的位置信息。
在另一种可能的示例中,收发器903还可用于向网络设备发送服务波束的差分定时提前量。
上述第一信息可承载于初始部分带宽BWP信令、非初始BWP信令、邻区测量配置信令或者小区间切换信令等信令中的一个或多个信令中。
在执行本申请提供的另一种实施例时,收发器903可用于通过服务波束接收第三信息。该第三信息可用于指示第一参数。此外,处理器901根据第一参数以及服务波束的差分定时提前量,确定目标波束对应的差分定时提前量。该服务波束与该目标波束互为不同的波束。其中,第一参数可包括服务波束对应的时延补偿参数与目标波束对应的时延补偿参数之间的差值;或者,第一参数可包括目标波束对应的时延补偿参数,以及服务波束对应的时延补偿参数。
示例性的,第三信息来自于服务波束对应的网络设备。
上述第一信息可承载于初始部分带宽BWP信令、非初始BWP信令、邻区测量配置信令或者小区间切换信令等信令中的一个或多个信令中。
如图10所示,本申请实施例提供的一种通信装置可以包括通信模块1001以及处理模块1002,以上通信模块1001以及处理模块1002之间相互耦合。该通信装置1000可用于执行以上方法实施例中由网络设备执行的步骤。该通信装置1000可以是作为网络设备的卫星或作为网络设备的地面站。
该通信模块1001可用于支持通信装置1000进行通信,通信模块1001可具备无线通信功能,例如能够通过无线通信方式与其他通信装置(如终端)进行通信。处理模块1002可用于支持该通信装置1000执行上述方法实施例中终端设备的处理动作,包括但不限于:生成由通信模块1001发送的信息、消息,和/或,对通信模块1001接收的信号进行解调解码等等。
在执行本申请提供的一种实施例时,处理模块1002可用于确定目标波束对应的时延补偿参数。该目标波束对应的时延补偿参数可用于目标波束对应的差分定时提前量的确定。通信模块1001可通过服务波束发送第一信息,第一信息可用于指示目标波束对应的时延补偿参数,该服务波束与该目标波束为不同的波束。
示例性的,服务波束为终端当前接入网络设备所采用的波束,目标波束为终端即将切换到的波束。
在一种可能的示例中,通信模块1001可向终端发送目标卫星的位置信息。其中,目标卫星对应于目标波束。示例性的,当目标波束与服务波束对于不同的卫星时,通信模块1001可发送目标卫星的位置信息。
上述目标波束对应的时延补偿参数可包括目标波束的服务链路的时延补偿值,和/或目标波束的馈电链路的时延补偿值。其中,目标波束的服务链路的时延补偿值以及目标波束的馈电链路的时延补偿值可由目标波束的网络设备确定。
上述第一信息可承载于初始部分带宽BWP信令、非初始BWP信令、邻区测量配置信令或者小区间切换信令等信令中的一个或多个信令中。
在执行本申请提供的另一种实施例时,处理模块1002可用于确定目标波束对应的时延补偿参数,并根据终端的完整定时提前量以及所述目标波束对应的时延补偿参数,确定目标波束对应的差分定时提前量。通信模块1001可通过服务波束发送第二信息,该第二信息可用于指示目标波束对应的差分定时提前量。
在一种可能的示例中,通信模块1001可接收来自终端的位置信息,处理模块1002可根据终端的位置信息以及目标卫星的位置信息,确定终端的完整定时提前量。其中,目标卫星对应于所述目标波束。其中,终端的位置信息可来自于终端。
在另一种可能的示例中,通信模块1001可接收服务波束的差分定时提前量,处理模块1002可根据服务波束对应的时延补偿参数以及服务波束对应的差分定时提前量,确定终端的完整定时提前量。其中,服务波束的差分定时提前量可来自于终端。
上述目标波束对应的时延补偿参数可包括目标波束的服务链路的时延补偿值,和/或目标波束的馈电链路的时延补偿值。其中,目标波束的服务链路的时延补偿值以及目标波束的馈电链路的时延补偿值可由目标波束的网络设备确定。
上述第一信息可承载于初始部分带宽BWP信令、非初始BWP信令、邻区测量配置信令或者小区间切换信令等信令中的一个或多个信令中。
在执行本申请提供的另一种实施例时,处理模块1002可用于确定第一参数。其中,第一参数可用于所述终端确定目标波束对应的差分定时提前量。通信模块1001可用于通过服务波束发送第三信息,该第三信息可用于指示第一参数。其中,该服务波束与该目标波束互为不同的波束。第一参数可包括服务波束对应的时延补偿参数与目标波束对应的时延补偿参数之间的差值;或者,第一参数可包括目标波束对应的时延补偿参数以及服务波束对应的时延补偿参数。
上述第一信息可承载于初始部分带宽BWP信令、非初始BWP信令、邻区测量配置信令或者小区间切换信令等信令中的一个或多个信令中。
另外,当本实施例中的通信装置为网络设备时,该通信装置可以具备如图11所示结构。图11所示的通信装置1100可以是作为网络设备的卫星或作为网络设备的地面站。其中,通信装置1100包括一个或多个远端射频单元(remote radio unit,RRU)1110和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1120。所述RRU1110可以称为通信模块,其可与图10中的通信模块1001对应,用于执行以上由通信模块1001执行的步骤。该RRU 1110还可以称为收发机、收发电路等等,其可以包括至少一个天线1111和射频单元1112。所述RRU 1110部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送资源指示。应理解,可将RRU 1110视为收发器,也可仅将射频单元1112视为收发器。
所述BBU 1120部分主要用于进行基带处理,对基站进行控制等。所述RRU 1110与BBU 1120可以是物理上设置在一起,RRU 1110与BBU 1120也可以物理上分离设置的,即分布式基站。所述BBU 1120为网络设备的控制中心,也可以称为处理模块,可以与图10中的处理模块1002对应,用于执行以上由处理模块1002执行的步骤。BBU 1120还可用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU 1120可以用于控制网络设备执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 1120可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1120还包括存储器1121和处理器1122。所述存储器1121用以存储必要的指令和数据。所述处理器1122用于控制网络设备进行必要的动作,例如用于控制网络设备执行上述方法实施例中由CU和/或CU执行的操作流程。
示例性的,可由处理器1122执行以上由处理模块1702执行的步骤。所述存储器1121和处理器1122可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在执行本申请提供的第一种实施例时,处理器1122可用于确定目标波束对应的时延补偿参数。该目标波束对应的时延补偿参数可用于目标波束对应的差分定时提前量的确定。收发器(RRU 1110或射频单元1112)可通过服务波束发送第一信息,第一信息可用于指示目标波束对应的时延补偿参数,该服务波束与该目标波束为不同的波束。
示例性的,服务波束为终端当前接入网络设备所采用的波束,目标波束为终端即将切换到的波束。
在一种可能的示例中,收发器可向终端发送目标卫星的位置信息。其中,目标卫星对应于目标波束。示例性的,当目标波束与服务波束对于不同的卫星时,收发器可发送目标卫星的位置信息。
上述目标波束对应的时延补偿参数可包括目标波束的服务链路的时延补偿值,和/或目标波束的馈电链路的时延补偿值。其中,目标波束的服务链路的时延补偿值以及目标波束的馈电链路的时延补偿值可由目标波束的网络设备确定。
上述第一信息可承载于初始部分带宽BWP信令、非初始BWP信令、邻区测量配置信令或者小区间切换信令等信令中的一个或多个信令中。
在执行本申请提供的另一种实施例时,处理器1122可用于确定目标波束对应的时延补偿参数,并根据终端的完整定时提前量以及所述目标波束对应的时延补偿参数,确定目标波束对应的差分定时提前量。收发器可通过服务波束发送第二信息,该第二信息可用于指示目标波束对应的差分定时提前量。
在一种可能的示例中,收发器可接收来自终端的位置信息,处理器1122可根据终端的位置信息以及目标卫星的位置信息,确定终端的完整定时提前量。其中,目标卫星对应于所述目标波束。其中,终端的位置信息可来自于终端。
在另一种可能的示例中,收发器可接收服务波束的差分定时提前量,处理器1122可根据服务波束对应的时延补偿参数以及服务波束对应的差分定时提前量,确定终端的完整定时提前量。其中,服务波束的差分定时提前量可来自于终端。
上述目标波束对应的时延补偿参数可包括目标波束的服务链路的时延补偿值,和/或目 标波束的馈电链路的时延补偿值。其中,目标波束的服务链路的时延补偿值以及目标波束的馈电链路的时延补偿值可由目标波束的网络设备确定。
上述第一信息可承载于初始部分带宽BWP信令、非初始BWP信令、邻区测量配置信令或者小区间切换信令等信令中的一个或多个信令中。
在执行本申请提供的另一种实施例时,处理器1122可用于确定第一参数。其中,第一参数可用于所述终端确定目标波束对应的差分定时提前量。收发器可用于通过服务波束发送第三信息,该第三信息可用于指示第一参数。其中,该服务波束与该目标波束互为不同的波束。第一参数可包括服务波束对应的时延补偿参数与目标波束对应的时延补偿参数之间的差值;或者,第一参数可包括目标波束对应的时延补偿参数以及服务波束对应的时延补偿参数。
上述第一信息可承载于初始部分带宽BWP信令、非初始BWP信令、邻区测量配置信令或者小区间切换信令等信令中的一个或多个信令中。
基于与上述方法实施例相同构思,本申请实施例中还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时,使该计算机执行上述方法实施例、方法实施例的任意一种可能的实现方式中由终端或者网络设备执行的操作。
基于与上述方法实施例相同构思,本申请还提供一种计算机程序产品,该计算机程序产品可包括指令,当其在被计算机调用执行时,可以使得计算机实现上述方法实施例、方法实施例的任意一种可能的实现方式中由终端或者网络设备执行的操作。
基于与上述方法实施例相同构思,本申请还提供一种芯片或芯片系统,该芯片可包括处理器。该芯片还可包括存储器(或存储模块)和/或收发器(或通信模块),或者,该芯片与存储器(或存储模块)和/或收发器(或通信模块)耦合,其中,收发器(或通信模块)可用于支持该芯片进行有线和/或无线通信,存储器(或存储模块)可用于存储程序,该处理器调用该程序可用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中由终端或者网络设备执行的操作。该芯片系统可包括以上芯片,也可以包含上述芯片和其他分立器件,如存储器(或存储模块)和/或收发器(或通信模块)。
基于与上述方法实施例相同构思,本申请还提供一种通信系统,该通信系统可包括以上终端和/或网络设备。该通信系统可用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中由终端或者网络设备执行的操作。示例性的,该通信系统可具有如图1或图2所示结构。
本申请实施例是参照实施例所涉及的方法、装置、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (24)

  1. 一种通信方法,其特征在于,包括:
    终端通过服务波束接收第一信息,所述第一信息用于指示目标波束对应的时延补偿参数,所述服务波束与所述目标波束为不同的波束;
    所述终端根据所述目标波束对应的时延补偿参数以及完整定时提前量,确定所述目标波束对应的差分定时提前量。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端根据所述终端的位置信息以及目标卫星的位置信息,确定所述完整定时提前量,所述目标卫星对应于所述目标波束;和/或
    所述终端根据所述服务波束对应的时延补偿参数以及所述服务波束对应的差分定时提前量,确定所述完整定时提前量。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    终端接收所述目标卫星的位置信息。
  4. 如权利要求1-3中任一所述的方法,其特征在于,所述目标波束对应的时延补偿参数包括:
    所述目标波束的服务链路的时延补偿值,所述目标波束的服务链路的时延补偿值由所述目标波束的网络设备确定;和/或,
    所述目标波束的馈电链路的时延补偿值,所述目标波束的馈电链路的时延补偿值由所述目标波束的网络设备确定。
  5. 如权利要求1-4中任一所述的方法,其特征在于,所述第一信息承载于以下信令中的任意一个或多个信令中:
    初始部分带宽BWP信令;或者,
    非初始BWP信令;或者,
    邻区测量配置信令;或者,
    小区间切换信令。
  6. 一种通信方法,其特征在于,包括:
    网络设备确定目标波束对应的时延补偿参数,所述目标波束对应的时延补偿参数用于所述目标波束对应的差分定时提前量的确定;
    所述网络设备通过服务波束发送第一信息,所述第一信息用于指示所述目标波束对应的时延补偿参数,所述服务波束与所述目标波束为不同的波束。
  7. 如权利要求6所述的方法,其特征在于,所述目标波束对应的时延补偿参数包括:
    所述目标波束的服务链路的时延补偿值,所述目标波束的服务链路的时延补偿值由所述目标波束的网络设备确定;和/或,
    所述目标波束的馈电链路的时延补偿值,所述目标波束的馈电链路的时延补偿值由所述目标波束的网络设备确定。
  8. 如权利要求6或7所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送目标卫星的位置信息,所述目标卫星对应于所述目标波束。
  9. 如权利要求6-8中任一所述的方法,其特征在于,所述第一信息承载于以下信令中的任意一个或多个信令中:
    初始部分带宽BWP信令;或者,
    非初始BWP信令;或者,
    邻区测量配置信令;或者,
    小区间切换信令。
  10. 一种通信装置,其特征在于,包括:
    通信模块,用于通过服务波束接收第一信息,所述第一信息用于指示目标波束对应的时延补偿参数,所述服务波束与所述目标波束为不同的波束;
    处理模块,用于根据所述目标波束对应的时延补偿参数以及完整定时提前量,确定所述目标波束对应的差分定时提前量。
  11. 如权利要求10所述的通信装置,其特征在于,所述处理模块还用于:
    根据所述终端的位置信息以及目标卫星的位置信息,确定所述完整定时提前量,所述目标卫星对应于所述目标波束;和/或
    根据所述服务波束对应的时延补偿参数以及所述服务波束对应的差分定时提前量,确定所述完整定时提前量。
  12. 如权利要求11所述的通信装置,其特征在于,所述通信模块还用于:
    接收来所述目标卫星的位置信息。
  13. 如权利要求10-12中任一所述的通信装置,其特征在于,所述目标波束对应的时延补偿参数包括:
    所述目标波束的服务链路的时延补偿值,所述目标波束的服务链路的时延补偿值由所述目标波束的网络设备确定;和/或,
    所述目标波束的馈电链路的时延补偿值,所述目标波束的馈电链路的时延补偿值由所述目标波束的网络设备确定。
  14. 如权利要求10-13中任一所述的通信装置,其特征在于,所述第一信息承载于以下信令中的任意一个或多个信令中:
    初始部分带宽BWP信令;或者,
    非初始BWP信令;或者,
    邻区测量配置信令;或者,
    小区间切换信令。
  15. 一种通信装置,其特征在于,包括:
    处理模块,用于确定目标波束对应的时延补偿参数,所述目标波束对应的时延补偿参数用于所述目标波束对应的差分定时提前量的确定;
    通信模块,用于通过服务波束发送第一信息,所述第一信息用于指示所述目标波束对应的时延补偿参数,所述服务波束与所述目标波束为不同的波束。
  16. 如权利要求15所述的通信装置,其特征在于,所述目标波束对应的时延补偿参数包括:
    所述目标波束的服务链路的时延补偿值,所述目标波束的服务链路的时延补偿值由所述目标波束的网络设备确定;和/或,
    所述目标波束的馈电链路的时延补偿值,所述目标波束的馈电链路的时延补偿值由所述目标波束的网络设备确定。
  17. 如权利要求15或16所述的通信装置,其特征在于,所述通信模块还用于:
    所述网络设备向所述终端发送目标卫星的位置信息,所述目标卫星对应于所述目标波束。
  18. 如权利要求15-17中任一所述的通信装置,其特征在于,所述第一信息承载于以下信令中的任意一个或多个信令中:
    初始部分带宽BWP信令;或者,
    非初始BWP信令;或者,
    邻区测量配置信令;或者,
    小区间切换信令。
  19. 一种通信装置,其特征在于,包括:
    存储器,用于存储指令;
    处理器,用于从所述存储器中调用并运行所述指令,使得所述通信装置执行如权利要求1-5中任一项所述的方法。
  20. 一种通信装置,其特征在于,包括:
    存储器,用于存储指令;
    处理器,用于从所述存储器中调用并运行所述指令,使得所述通信装置执行如权利要求6-9中任一项所述的方法。
  21. 一种通信系统,其特征在于,包括如权利要求10-14或19中任一所述的通信装置和如权利要求15-18或20中任一所述的通信装置。
  22. 一种计算机存储介质,其特征在于,所述计算机存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求1-9中任一项所述的方法。
  23. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-9中任一项所述的方法。
  24. 一种电路,其特征在于,所述电路与存储器耦合,所述电路用于读取并执行所述存储器中存储的程序以执行如权利要求1-9中任一项所述的方法。
PCT/CN2020/131567 2019-11-29 2020-11-25 一种通信方法及装置 WO2021104327A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20892210.4A EP4057523A4 (en) 2019-11-29 2020-11-25 COMMUNICATION METHOD AND DEVICE
US17/825,817 US20220295434A1 (en) 2019-11-29 2022-05-26 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911205253.1A CN112887004B (zh) 2019-11-29 2019-11-29 一种通信方法及装置
CN201911205253.1 2019-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/825,817 Continuation US20220295434A1 (en) 2019-11-29 2022-05-26 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021104327A1 true WO2021104327A1 (zh) 2021-06-03

Family

ID=76038994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131567 WO2021104327A1 (zh) 2019-11-29 2020-11-25 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20220295434A1 (zh)
EP (1) EP4057523A4 (zh)
CN (1) CN112887004B (zh)
WO (1) WO2021104327A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023071802A1 (zh) * 2021-10-29 2023-05-04 华为技术有限公司 卫星通信的方法和装置
WO2024050711A1 (en) * 2022-09-07 2024-03-14 Qualcomm Incorporated Enhancement for aircraft relaying continuity

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113824485B (zh) * 2020-06-18 2022-09-02 大唐移动通信设备有限公司 传输信号补偿方法、网络侧设备和终端
CN115441923B (zh) * 2021-06-04 2024-01-26 大唐移动通信设备有限公司 无线馈电链路的传输方法、设备、装置和存储介质
CN115915378A (zh) * 2021-08-13 2023-04-04 大唐移动通信设备有限公司 基于ta的同步方法、设备、装置及存储介质
CN117479252A (zh) * 2022-07-18 2024-01-30 维沃移动通信有限公司 通信资源切换方法、装置及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101022668A (zh) * 2007-03-16 2007-08-22 北京航空航天大学 星地链路切换方法及星地链路切换方式选择处理装置
CN103220773A (zh) * 2012-01-20 2013-07-24 电信科学技术研究院 卫星通信系统中实现初始同步的方法及装置
CN109089309A (zh) * 2017-06-14 2018-12-25 维沃移动通信有限公司 一种定时提前信息的获取、反馈方法、终端及基站
CN109302720A (zh) * 2017-07-25 2019-02-01 华为技术有限公司 一种选择波束的方法及设备
CN109819511A (zh) * 2017-11-22 2019-05-28 华为技术有限公司 一种数据传输的方法及相关装置
US20190313357A1 (en) * 2018-04-05 2019-10-10 Qualcomm Incorporated Techniques for initial access in wireless systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2692198B1 (en) * 2011-03-30 2017-05-10 Telefonaktiebolaget LM Ericsson (publ) Adjusting uplink transmission based on the time delay of a feedback signal
EP3499984B1 (en) * 2014-09-30 2020-09-09 Huawei Technologies Co., Ltd. Transmission timing adjustment method and device
CN108810922B (zh) * 2017-05-03 2021-02-23 华为技术有限公司 一种通信方法及终端、基站
EP3447936A1 (en) * 2017-08-22 2019-02-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wireless communication system, base-station and user-side-device
CN110418402B (zh) * 2019-07-16 2021-06-01 东南大学 基于星历广播辅助定位的用户随机接入方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101022668A (zh) * 2007-03-16 2007-08-22 北京航空航天大学 星地链路切换方法及星地链路切换方式选择处理装置
CN103220773A (zh) * 2012-01-20 2013-07-24 电信科学技术研究院 卫星通信系统中实现初始同步的方法及装置
CN109089309A (zh) * 2017-06-14 2018-12-25 维沃移动通信有限公司 一种定时提前信息的获取、反馈方法、终端及基站
CN109302720A (zh) * 2017-07-25 2019-02-01 华为技术有限公司 一种选择波束的方法及设备
CN109819511A (zh) * 2017-11-22 2019-05-28 华为技术有限公司 一种数据传输的方法及相关装置
US20190313357A1 (en) * 2018-04-05 2019-10-10 Qualcomm Incorporated Techniques for initial access in wireless systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4057523A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023071802A1 (zh) * 2021-10-29 2023-05-04 华为技术有限公司 卫星通信的方法和装置
WO2024050711A1 (en) * 2022-09-07 2024-03-14 Qualcomm Incorporated Enhancement for aircraft relaying continuity

Also Published As

Publication number Publication date
CN112887004B (zh) 2023-04-07
EP4057523A4 (en) 2022-12-28
US20220295434A1 (en) 2022-09-15
CN112887004A (zh) 2021-06-01
EP4057523A1 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
WO2021104327A1 (zh) 一种通信方法及装置
US20220393957A1 (en) Timing advance determining method and communication apparatus
EP4054232A1 (en) Cell measurement method, terminal device, and network device
US20220070738A1 (en) Flexible quality of service framework for diverse networks
US11671932B2 (en) Timing adjust for a non-terrestrial network
JP2023525201A (ja) セルハンドオーバー方法、電子デバイス及び記憶媒体
US20240031965A1 (en) Information transmission method, terminal device, and network device
US20230412257A1 (en) Neighbor low earth orbit/high altitude platform stations inter-satellite link change and synchronization signal block measurements
CN114788245A (zh) 网络管理
CN114374988A (zh) 一种更新参数的方法以及相关装置
WO2023008095A1 (en) User equipment, method of user equipment, network node, and method of network node
JP2020061732A (ja) ハンドオーバーでのアップリンクベアラーバインディング
WO2023028941A1 (en) Coverage enhancements in ntn
US20240121830A1 (en) Rach occasion repetition and prach format selection based on device type in ntn
WO2024031340A1 (en) Intra-cell handover optimization
CN114982309B (zh) 用于非陆地网络的定时调整
WO2022236574A1 (zh) 时域参数确定方法、终端设备及网络设备
WO2024060197A1 (en) Group scheduling and/or group message transmission
WO2024031320A1 (en) Handover load distribution
WO2023010572A1 (en) Closed-loop and open-loop timing advance in ntn
CN114501558B (zh) 一种信息传输、获取方法及装置
WO2023143248A1 (zh) 一种通信方法及通信装置
WO2024093733A1 (zh) 一种通信方法、通信设备、计算机可读存储介质及程序产品
EP4290785A2 (en) Timing synchronization for non-terrestrial network
WO2024031210A1 (en) Earth moving cell enhancements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892210

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020892210

Country of ref document: EP

Effective date: 20220610

NENP Non-entry into the national phase

Ref country code: DE