WO2021104222A1 - 一种基于图像识别的钻井标定方法、装置、设备及介质 - Google Patents

一种基于图像识别的钻井标定方法、装置、设备及介质 Download PDF

Info

Publication number
WO2021104222A1
WO2021104222A1 PCT/CN2020/130972 CN2020130972W WO2021104222A1 WO 2021104222 A1 WO2021104222 A1 WO 2021104222A1 CN 2020130972 W CN2020130972 W CN 2020130972W WO 2021104222 A1 WO2021104222 A1 WO 2021104222A1
Authority
WO
WIPO (PCT)
Prior art keywords
top drive
drilling
tool
drill
state
Prior art date
Application number
PCT/CN2020/130972
Other languages
English (en)
French (fr)
Inventor
付长民
王啸天
底青云
Original Assignee
中国科学院地质与地球物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院地质与地球物理研究所 filed Critical 中国科学院地质与地球物理研究所
Priority to US17/616,524 priority Critical patent/US11494931B2/en
Publication of WO2021104222A1 publication Critical patent/WO2021104222A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/20Combined feeding from rack and connecting, e.g. automatically
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/04Measuring depth or liquid level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30232Surveillance

Definitions

  • This specification relates to the field of drilling technology, in particular to a drilling calibration method, device, equipment and medium based on image recognition.
  • the drilling system needs to be calibrated before the drilling system is in operation, so that the drilling system can complete the drilling work according to the calibration results while drilling.
  • One or more embodiments of this specification provide a method, device, equipment, and medium for drilling calibration based on image recognition to solve the following technical problems: most of the drilling calibration methods are too complicated and need to meet specific conditions before they can be implemented. Sometimes the drilling environment is complex and changeable, and errors often occur during drilling calibration, which leads to too large errors between the measured value and the true value of the drilling to be unusable.
  • An embodiment of this specification provides a method for drilling calibration based on image recognition, which includes:
  • the image recognition unit of the operating terminal receives and recognizes the target image acquired by the image acquisition device
  • the data processing unit of the operating terminal calculates the number of pixels from the top drive to the turntable surface in the target image
  • the operating terminal receives the height of the top drive measured by the rangefinder, where the height of the top drive is the height from the top drive to the surface of the turntable;
  • the calibration unit of the operating terminal establishes a pixel relationship table between the number of pixels from the top drive to the turntable surface and the height of the top drive to complete the calibration of the well.
  • One or more embodiments of this specification provide a drilling calibration device based on image recognition, which includes:
  • the top drive mobile unit is used to lift the top drive to the preset position of the derrick;
  • the image recognition unit is used to receive and recognize the target image acquired by the image acquisition device
  • a data processing unit for calculating the number of pixels from the top drive to the turntable surface in the target image
  • a data receiving unit for receiving the height of the top drive measured by the rangefinder, where the height of the top drive is the height from the top drive to the surface of the turntable;
  • the calibration unit is used to establish a pixel relationship table between the number of pixels from the top drive to the surface of the turntable and the height of the top drive to complete the calibration of the well.
  • One or more embodiments of this specification provide a drilling calibration device based on image recognition, which includes:
  • At least one processor and,
  • a memory communicatively connected with the at least one processor; wherein,
  • the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor, so that the at least one processor can:
  • the image recognition unit of the operating terminal receives and recognizes the target image acquired by the image acquisition device
  • the data processing unit of the operating terminal calculates the number of pixels from the top drive to the turntable surface in the target image
  • the operating terminal receives the height of the top drive measured by the rangefinder, where the height of the top drive is the height from the top drive to the surface of the turntable;
  • the calibration unit of the operating terminal establishes a pixel relationship table between the number of pixels from the top drive to the turntable surface and the height of the top drive to complete the calibration of the well.
  • One or more embodiments of this specification provide a drilling calibration medium based on image recognition, which stores computer-executable instructions, and the computer-executable instructions are set as:
  • the image recognition unit of the operating terminal receives and recognizes the target image acquired by the image acquisition device
  • the data processing unit of the operating terminal calculates the number of pixels from the top drive to the turntable surface in the target image
  • the operating terminal receives the height of the top drive measured by the rangefinder, where the height of the top drive is the height from the top drive to the surface of the turntable;
  • the calibration unit of the operating terminal establishes a pixel relationship table between the number of pixels from the top drive to the turntable surface and the height of the top drive to complete the calibration of the well.
  • the embodiment of this specification uses image recognition technology to determine the pixel relationship between the number of pixels from the top drive to the turntable surface and the height of the top drive Table, in order to complete the drilling calibration, greatly reducing the impact of the drilling environment on the drilling calibration.
  • Fig. 1 is a schematic flow diagram of a drilling calibration method based on image recognition provided by an embodiment of this specification
  • Figure 2 is a schematic flow chart of another method for drilling calibration based on image recognition provided by an embodiment of this specification
  • FIG. 3 is a schematic diagram of the state recognition process of the state recognition unit provided by the embodiment of this specification.
  • Figure 4 is a schematic diagram of the structure of the drilling system in the prior art provided by the embodiments of the specification;
  • FIG. 5 is a schematic structural diagram of the drilling system provided by the embodiment of the specification.
  • FIG. 6 is a schematic diagram 1 of the drilling process provided by the embodiment of this specification.
  • Figure 7 is the second schematic diagram of the drilling process provided by the embodiment of this specification.
  • Figure 8 is a schematic diagram of the drilling process provided by the embodiment of the specification.
  • Figure 9 is a schematic structural diagram of another drilling system provided by an embodiment of the specification.
  • Fig. 10 is a schematic structural diagram of a well calibration device based on image recognition provided by an embodiment of this specification.
  • the top drive system is the power system for drilling.
  • the examples in this specification only involve the top drive bell mouth and the hook.
  • the top drive bell mouth (hereinafter referred to as the top drive) is used to connect the top drive system and the drilling tool to break through the mud and transmit power.
  • the big hook is used to clamp the drilling tool to move during the tripping and drilling process.
  • the well site generally uses a short drill pipe or a lifting nipple to work with the big hook.
  • Slips are filled between the drilling tool and the wellhead to clamp the drilling tool on the turntable surface, and the weight of the entire drill string is borne by the turntable surface.
  • the drilling tool In the stuck state, the drilling tool is locked by slips on the rotary table of the drilling platform, and the top drive no longer bears the weight of the entire drilling tool, and its weight is borne by the slips and the derrick.
  • the unlocked state is that after the slips are removed, the top drive carries the entire drill tool up and down, and the top drive bears the weight of the entire drill tool.
  • Figure 1 is a schematic flow chart of a method for drilling calibration based on image recognition provided by an embodiment of this specification.
  • the execution unit of the drilling system may execute the following steps, which may include:
  • step S101 the top drive is lifted to the preset position of the derrick, and the image recognition unit of the operating terminal receives and recognizes the target image acquired by the image acquisition device.
  • the full name of the top drive is TDS (TOP DRIVE DRILLING SYSTEM), which is a top drive drilling system.
  • the top drive can directly rotate the drill pipe of the drilling tool from the upper space of the derrick, and feed it down along a special guide rail to complete various drilling operations such as rotary drilling of the drill pipe, circulating drilling fluid, connecting uprights, up-and-down and undercutting. Rotating drilling tools of top-driven drilling equipment and connecting and unloading drill pipes are more effective methods.
  • the preset position may be a preset position from the turntable surface, for example, 10 cm, 20 cm from the turntable surface, etc., which can be set according to actual conditions.
  • the image capture device may be a camera, and the image capture device may capture a target image, where the target image may be preset with an angle of the image capture device to capture the target image.
  • Step S102 The data processing unit of the operating terminal calculates the number of pixels from the top drive to the turntable surface in the target image.
  • Step S103 the operating terminal receives the height of the top drive measured by the rangefinder, where the height of the top drive is the height from the top drive to the surface of the turntable.
  • the rangefinder may be a laser rangefinder.
  • step S104 the calibration unit of the operating terminal establishes a pixel relationship table between the number of pixels from the top drive to the turntable surface and the height of the top drive to complete the calibration of the well.
  • Fig. 2 is a schematic flow diagram of another drilling calibration method based on image recognition provided by the embodiment of this specification.
  • the execution unit of the drilling system can execute the following steps in the embodiment of this specification. Can include:
  • Step S201 Lift the top drive to the preset position of the derrick, and the image recognition unit of the operating terminal receives and recognizes the target image acquired by the image acquisition device.
  • Step S202 The data processing unit of the operating terminal calculates the number of pixels from the top drive to the turntable surface in the target image.
  • step S203 the operating terminal receives the height of the top drive measured by the rangefinder, where the height of the top drive is the height from the top drive to the surface of the turntable.
  • the rangefinder may be a laser rangefinder.
  • step S204 the calibration unit of the operating terminal establishes a pixel relationship table between the number of pixels from the top drive to the turntable surface and the height of the top drive to complete the calibration of the well.
  • Step S205 The operating terminal determines the length of the drilling tool beyond the turntable surface according to the pixel relationship table established in advance, and determines the length of the drilling tool beyond the turntable surface according to the length of the drilling tool beyond the turntable surface, the information of the drilling tool, the status identification unit, The image recognition unit and the data processing unit complete the drilling phase, drilling phase, and drilling phase.
  • the information of the drilling tool includes the number of drilling tools and the length of each drilling tool.
  • the status recognition unit is used to switch the status of the drilling, so as to determine the drilling depth of the bit according to the different status of the drilling.
  • the drilling depth of the drilling phase is set to the first preset value, so that the drilling depth of the drill bit is gradually increased from zero to the first preset value.
  • the first preset value may be set according to requirements, for example, the first preset value may be 300 meters or 400 meters.
  • the drilling tool is driven to rotate as a whole by the top drive, and the completed drilling depth is set to the second preset value, so that the drilling depth of the drill bit is gradually increased from the first preset value To the second preset value.
  • the second preset value can be set according to requirements, for example, the second preset value can be 1000 meters or 2000 meters.
  • the drilling depth and the bit depth are equal in real time.
  • the drilling depth of the drill bit is gradually reduced from the second preset value to zero.
  • the drill-down stage can specifically include:
  • the operation terminal connects the first drilling tool to the bottom of the top drive vertically through a big hook, and installs a drill bit at the bottom of the first drilling tool, and records the length of the first drilling tool and the length of the drill bit;
  • the operating terminal When the position of the drill bit is flush with the surface of the turntable, the operating terminal records the depth of the drill bit as zero, and sets the drilling state to the jam-free state;
  • the first drilling tool is moved downward by the big hook, and the image recognition unit recognizes the current distance from the top surface of the first drilling tool to the turntable surface and the current top drive height;
  • the length of the first drill tool the length of the drill bit and the current distance from the top surface of the first drill tool to the turntable surface, the current drilling depth of the drill bit is calculated, wherein the top drive and the second The distance between the top surface of a drilling tool is stable;
  • the image recognition unit and the data processing unit recognize that the distance between the top drive and the top surface of the first drilling tool has increased, and the state recognition unit changes the state of the well to a stuck state;
  • the image recognition unit recognizes the top surface of the second drill tool, and when the distance between the top drive and the top surface of the second drill tool remains stable, the state recognition unit changes the state of the well to The stuck state is released, and the slips are taken out so that the top drive can move downwards, and the current drilling depth of the drill bit is calculated;
  • n is a positive integer greater than 1.
  • the drilling stage can specifically include:
  • the image recognition unit and the data processing unit recognize the change in the distance between the top drive and the top surface of the nth drill tool
  • the state recognition unit changes the state of the well to the stuck state, and the depth of the drill bit will remain unchanged, the height of the top drive will gradually decrease, and the distance between the top drive and the top surface of the nth drill tool will gradually Reduced to zero, the top drive is connected to the top surface of the nth drill tool by rotating in the first preset direction;
  • the operation terminal records the coincidence value of the coincident part between the top drive and the nth drill tool, and records the angular velocity of the top drive rotation in the first preset direction;
  • the image recognition unit and the data processing unit recognize that the coincidence value is a preset coincidence value, and the angular velocity of the top drive in the first preset direction is zero, the state of the well is switched to solution Card status, and remove slips;
  • the state recognition unit switches the state of the well to the stuck state And, the depth of the drill bit remains unchanged, and the top drive moves up to the top;
  • the operation terminal records the coincidence value of the coincident part between the top drive and the n+1th drilling tool, and records the angular velocity of the top drive rotation in the first preset direction;
  • the image recognition unit and the data processing unit recognize that the coincidence value is a preset coincidence value, and the angular velocity of the top drive in the first preset direction is zero, the state of the well is switched to solution Card status, and remove slips;
  • the tripping stage can specifically include:
  • the state recognition unit changes the state of the well to a stuck state
  • the status recognition unit will determine the status of the drilling Change to the jam-free state, take out the slips, and lift up all the drilling tools with the big hook to determine the current drilling depth of the drill bit;
  • the image recognition unit and the data processing unit recognize that the distance between the last drill tool and the top drive is gradually decreasing, and the state recognition unit changes the state of the well to the stuck state, and completes the disassembly of the last drill tool;
  • the rotation in the first preset direction may be a clockwise rotation
  • the rotation in the second preset direction may be a counterclockwise rotation
  • the status recognition unit is used to switch the status of the well.
  • FIG. 3 which specifically includes:
  • the method can also include:
  • the distance between the top drive and the rotary table surface can be added or subtracted according to different states of the drilling tool to obtain the real-time position value of the drill bit, and then the well depth value.
  • the rotation in the first preset direction may be a clockwise rotation
  • the rotation in the second preset direction may be a counterclockwise rotation
  • the current well depth measurement method used in drilling engineering is a calculation method that combines drawworks sensors and suspended load sensors.
  • the former can record the number of turns of the drawworks roller and the distance from the top drive to the surface of the turntable at this time to determine the rotation.
  • the corresponding relationship between the number of turns and the distance (this step is called calibration); the latter is to use the change of the drilling rope tension to judge the stuck or unlocked state.
  • the value of the suspended load sensor is small (the cable The tension is small), it means that it is in the stuck state at this time, and the up and down movement of the top drive is not included in the depth of the drill bit and the depth of the well.
  • the value of the suspended load sensor is large (the cable tension is large), it indicates that the stuck Status, the up and down movement of the top drive will be included in the drill bit depth and well depth.
  • the rope will be rolled into several layers in the winch, and the retracting and unwinding of the rope determines the up and down movement of the top drive.
  • the top drive moves the same distance, when the number of layers is large, the rope winding diameter is larger, and the number of turns required for the winch is less; when the number of layers is small, the rope winding diameter is smaller, and the number of turns required for the winch is smaller. Larger.
  • the driller 9 in the driller’s house 10 can control the top drive 4 to move up and down in the derrick 5 through the drawworks 3, and the drawworks sensor 2 is installed on the drawworks 3, which can record the number of rotations of the drawworks 3 in real time and transmit it through the cable
  • the operator terminal 15 and the engineer 13 in the logging while drilling workshop 12 can obtain the number of rotations of the drawworks sensor 2 at the moment through the operation terminal 15.
  • the steps of drilling system calibration can be:
  • the engineer 7 asks the driller 9 to move the top drive 4 down to the lowest point from the turntable surface 14.
  • the engineer 7 binds the meter stick 11 to the top drive 4 and records the height from the position to the turntable surface 14, and informs the engineer 13 in the logging while drilling workshop 12 of the reading.
  • the engineer 13 obtains the current number of rotations of the winch 3 through the operating terminal 15, and records the height reported by the engineer 7 at this time. After the engineer 13 finishes recording, he informs the engineer 7 to continue the operation.
  • Engineer 7 notifies the driller 9 to raise the top drive 4, and the engineer 8 pays attention to the cable changes of the winch 3 in real time.
  • the driller 9 is notified to lock the top drive 4.
  • the engineer 7 uses the meter ruler 11 to record the height of the top drive 4 to the turntable surface 14 at this time, and informs the engineer 13 of the value.
  • the engineer 7 informs the driller 9 to continue to raise the top drive 4, while the engineer 8 pays attention to the cable changes in the winch 3 in real time.
  • the driller 9 is notified to lock the top drive 4.
  • step 5 Repeat step 5 to step 7 until the top drive 4 reaches the highest point of the derrick 5.
  • the depth tracking software 15 will completely record the corresponding relationship between the number of rotations and the real-time height of the winch 3 under different rotation diameters, and complete the entire calibration process. After the calibration process is completed, remove the tape measure.
  • the suspension load sensor 1 is installed on the drilling rope 6, which can monitor the jamming and unlocking status of the drilling tool 16 in real time.
  • the distance between the top drive 4 and the turntable 14 can be added or subtracted according to different conditions to obtain the drill bit Real-time position value, and then get the well depth value.
  • the winch sensor needs to be installed, and the engineer needs to manually predict the position of the rope during calibration, and the result is not accurate.
  • the suspension load sensor needs to be installed. Under special circumstances, the suspension load sensor will respond incorrectly and the result will be inaccurate.
  • the embodiment of this specification provides an image recognition method for depth measurement.
  • the image recognition unit can automatically identify the drilling tool and the top drive without installing a drawworks sensor.
  • the height of the top drive and the length of the drilling tool on the turntable are automatically measured, only 2 Only one engineer can complete all operations in a short time.
  • the image recognition unit, data processing unit and status recognition unit can directly determine the status of card sitting and unlocking, without installing a hanging load sensor, and avoiding measurement errors caused by abnormal changes in the hanging load under special circumstances.
  • FIG. 5 it shows a schematic structural diagram of the drilling system provided by the embodiment of this specification, in which the image acquisition unit 2 (which can be a camera, which can be replaced by a camera below) is installed on the top of the driller's room 9 or a suitable position for shooting To the top drive system, drilling tool, drilling tool slot 20.
  • the camera 2 transmits the images through the wellsite data processor 11 to the operation terminal 6 located in the logging while drilling workshop 1 in real time.
  • the operation terminal 6 contains multiple units that can calculate the drilling status in real time and release the jam.
  • the laser rangefinder 3 is installed on the top drive 4 for initial calibration, and will be removed after the calibration is completed.
  • the engineer 7 can notify the driller 10 to place the top drive 4 at the lowest point from the turntable surface 8 (the lowest point of the turntable surface can be preset), install the laser rangefinder 3, and the engineer 7 returns to logging while drilling. 1. Turn on the calibration unit of the operation terminal 6, and start the calibration work through the calibration unit.
  • the engineer 7 can notify the driller 10 to lift the top drive 4 to the highest point of the derrick 5 (the highest point of the derrick can be set in advance).
  • the image recognition unit of the operating terminal 6 receives the image transmitted by the camera 2 in real time
  • the target size is identified.
  • the target boundaries are the top drive 4 and the turntable surface 8.
  • the processing unit calculates the real-time pixel number between the top drive 4 and the turntable surface 8. At the same time, it operates according to the real-time height information transmitted by the laser rangefinder 3.
  • the calibration unit of the terminal 6 establishes a table of correspondences between the number of target image pixels and the actual length to complete the calibration process. After that, the height of the top drive 4 at any position can be derived from the known number of pixels according to the table.
  • the drill pipe is placed directly under the top drive 4, and the image recognition unit is used to identify the number of pixels between the top surface of the drill tool and the turntable surface, and the length and height of the drill tool can be calculated using the correspondence table.
  • an eye-catching landmark can be placed on the top drive 4 during the drilling process to improve the accuracy of image recognition.
  • the engineer 7 can notify the driller 10 to place the top drive 4 at the lowest point (the lowest point of the top drive can be preset), and remove the laser rangefinder 3.
  • the complete drilling process can be divided into three stages: the drilling phase, the drilling phase, and the drilling phase.
  • the following describes how to perform top drive 4 height calculation, bit position calculation, well depth calculation, and drilling status judgment at different stages in the embodiment of this specification.
  • the real drilling status mentioned below refers to the drilling status switching caused by the driller putting in/extracting slips
  • the system drilling status mentioned below refers to the status switching of the drilling by the status recognition unit of the present invention.
  • the drilling process, drilling process and tripping process are as follows:
  • the well depth is a predetermined fixed value, and the bit depth starts from zero. See FIG. 6, which shows the first schematic diagram of the drilling process and the second schematic diagram of the drilling process shown in FIG.
  • the drill tool length L 1 can be identified according to the aforementioned method, and the drill bit is connected.
  • the drill bit length is recorded as BL.
  • the bit depth is recorded as zero at this time, and the initial drilling state is set to the unlocked state.
  • the hook 14 is moved down to the lowest point with the drilling tool 16 and slips are installed on the surface of the turntable.
  • the drilling tool 16 is in a static state.
  • the real drilling state is the stuck state.
  • both the hook 14 and the top drive 4 move upward.
  • the image recognition unit and the data processing unit recognize that the distance h between the top drive 4 and the top surface of the drill tool increases.
  • the state recognition unit changes to the stuck state at this time, and the internal state transition of the drilling system lags behind the real situation.
  • the bit depth BD does not change
  • the top drive 4 height BH increases, the top drive 4 moves up to the highest point, and the second drill is connected.
  • the length of the drilling tool is recognized, which is recorded as L 2.
  • the second drilling tool is connected to the top surface of the first drilling tool, in the image display, the top of the drilling tool at the bottom of the image is displayed. The surface disappears, the top surface of the drilling tool appears in the upper part of the image, and the image recognition unit recognizes the new top surface of the drilling tool.
  • the drilling system will change the drilling status from the stuck status to the solution.
  • the top drive 4 drives the drilling tool to rotate as a whole, while the hook 14 is stowed and placed on one side, so it is no longer used during the drilling process. After drilling down to the last drilling tool, preparations before drilling are required.
  • the top drive 4 must be connected to the drilling tool to pump mud. Refer to Figure 8, which shows a schematic diagram of the drilling process.
  • the whole drilling tool is stationary on the turntable surface 8, the hook 14 loosens the drill tool, the top drive 4 moves down to access the drill tool, and the data processing unit recognizes the height difference
  • h changes the state of the drilling is changed from the jam-free state to the stuck state.
  • the state discrimination unit is slightly behind the real drilling state transition at this time.
  • the depth of the bit remains unchanged, only the height reduction of the top drive 4 is recorded, and the height difference h will gradually decrease to zero.
  • the top drive 4 can enter the drill female buckle by rotating clockwise and lock it.
  • the overlapping length of the two is
  • the fixed value OL can be measured in advance, as shown in Figure 8.
  • the image unit recognizes that h is zero at this time, the drilling tool does not rotate, and the top drive 4 rotates clockwise when the rotation angular velocity is tracked and recorded.
  • the status recognition unit will change the status of the drilling
  • the stuck state is changed to the stuck state, and the drilling system is slightly ahead of the real situation.
  • the slips will be extracted, and the image recognition unit will no longer recognize the top surface of the drilling tool when h is zero, and the well depth calculation will be based on the height BH of the top drive 4 , The driller raises the slip, and the top drive 4 continues to be lowered.
  • the drill bit depth BD L 1 +L 2 +...+L n +BL-BH-OL.
  • a new drill tool needs to be connected to continue drilling.
  • a seat clamp will be installed on the turntable surface.
  • the top drive 4 can be detached from the drill tool counterclockwise.
  • the data processing unit recognizes
  • h is zero
  • the drilling tool does not rotate
  • the top drive 4 starts to rotate counterclockwise
  • the state recognition unit changes the drilling state from the unlocked state to the stuck state.
  • the drilling system lags behind the real situation, and the top drive 4 reverses.
  • the drilling tool is separated and moved up to the top of the derrick. During this process, the depth of the drill bit remains unchanged. Only the real-time height of the top drive 4 is recorded.
  • the top drive system uses the hook 14 to clamp the new drilling tool and it is in a vertical state.
  • the image recognition unit and the data processing unit calculate the new drill tool length L n+1 .
  • the top surface of the drill tool disappears in the lower part of the image, and the drill appears in the upper part of the image.
  • the image recognition unit recognizes the top surface of the new drill tool.
  • the whole drill tool is stationary on the rotary table.
  • the hook 14 releases the drill tool, and the top drive 4 moves down to connect to the drill tool. At this time, the drill bit is still not deep enough.
  • the drilling depth is fixed and no longer changes, and the bit depth is gradually reduced from the maximum value to zero.
  • the drilling operation is carried out.
  • the drilling operation is similar to the drilling operation but in the opposite direction.
  • the top drive 4 is ready to be separated from the drilling tool.
  • the data processing unit recognizes that h is zero, the drilling tool is not moving, and the top drive 4 is rotating counterclockwise in reverse.
  • the identification unit changes the drilling status from the unlocked state to the locked state. The state of the drilling system is lagging behind the real situation.
  • the top drive 4 is completely separated from the drill tool, the top surface of the drill tool is exposed.
  • the hook 14 is used to clamp the drill tool, and the top drive 4 is completely separated from the drill tool.
  • the height difference h between the drive 4 and the top surface of the drilling tool increases.
  • the state recognition unit will change the drilling state from the stuck state to the unlocked state, and the system state switch is ahead of the real situation, and the slips and hooks are extracted. 14
  • FIG. 9 there is shown a schematic structural diagram of another drilling system, which specifically includes:
  • the laser rangefinder sends the measured top drive height to the wellsite data processor through the A/D conversion module, and the camera sends the captured target image to the wellsite data processor through the A/D conversion module, and the wellsite data processor
  • the data is sent to the operation terminal, and the operation terminal can recognize the target size and the target rotation through the image recognition unit.
  • the data processing unit includes a calibration unit and a depth calculation unit.
  • the state recognition unit can switch between the card status and the unlock status.
  • the embodiment of the specification can reduce the manpower required for the calibration work.
  • the conventional method requires the cooperation of four engineers to complete the work, and the embodiment of the specification only requires two persons.
  • the embodiment of this specification can reduce the time required for the depth calibration work.
  • the conventional method needs to monitor the change of the cable at a specific time and requires repeated pauses several times.
  • the embodiment of this specification does not need to be tentatively performed during implementation, and the calibration time is greatly shortened.
  • the embodiment of this specification avoids the depth error under abnormal conditions.
  • the conventional method uses the suspended load sensor to identify the stuck-in and unlocked states, which is an indirect identification method. When the drilling encounters or jams, it will cause the suspended load sensor to respond incorrectly.
  • the embodiment of this specification uses image recognition technology to directly discriminate the stuck or unlocked state, which has nothing to do with the tension of the drilling rope, so as to avoid depth errors.
  • the embodiment of this specification avoids the calibration error caused by manual identification.
  • engineers need to manually predict the position of the cable change, which is often impossible to accurately do in reality.
  • the embodiment of this specification uses image recognition technology and a high-precision laser rangefinder to establish a calibration curve in real time. No manual intervention is required.
  • an object of known length can be bound to the drill rod of the drilling tool, the size of the object can be recognized through the image, and the conversion curve between the number of pixels and the real size can be established by using the object.
  • the embodiments of the present specification can use image recognition technology to determine the card seat and unlock status to replace the conventional suspended load sensor.
  • a calibration curve can be established through image recognition technology to replace the conventional winch sensor.
  • the embodiment of this specification can determine the stuck state or the unlocked state of the drilling by the change of the height difference between the top drive and the top surface of the drill pipe and the relative angle rotation between the top drive and the drill pipe of the drill tool.
  • Fig. 10 is a schematic structural diagram of a drilling calibration device based on image recognition provided by an embodiment of this specification.
  • the device includes: a top drive moving unit 1, an image recognition unit 2, a data processing unit 3 , The data receiving unit 4 and the calibration unit 5.
  • the top drive mobile unit 1 is used to lift the top drive to the preset position of the derrick;
  • the image recognition unit 2 is used to receive and recognize the target image acquired by the image acquisition device;
  • the data processing unit 3 is used to calculate the number of pixels from the top drive to the turntable surface in the target image
  • the data receiving unit 4 is configured to receive the height of the top drive measured by the rangefinder, where the height of the top drive is the height from the top drive to the surface of the turntable;
  • the calibration unit 5 is used to establish a pixel relationship table between the number of pixels from the top drive to the turntable surface and the height of the top drive to complete the calibration of the well.
  • One or more embodiments of this specification provide a drilling calibration device based on image recognition, which includes:
  • At least one processor and,
  • a memory communicatively connected with the at least one processor; wherein,
  • the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor, so that the at least one processor can:
  • the image recognition unit of the operating terminal receives and recognizes the target image acquired by the image acquisition device
  • the data processing unit of the operating terminal calculates the number of pixels from the top drive to the turntable surface in the target image
  • the operating terminal receives the height of the top drive measured by the rangefinder, where the height of the top drive is the height from the top drive to the surface of the turntable;
  • the calibration unit of the operating terminal establishes a pixel relationship table between the number of pixels from the top drive to the turntable surface and the height of the top drive to complete the calibration of the well.
  • One or more embodiments of this specification provide a drilling calibration medium based on image recognition, which stores computer-executable instructions, and the computer-executable instructions are set as:
  • the image recognition unit of the operating terminal receives and recognizes the target image acquired by the image acquisition device
  • the data processing unit of the operating terminal calculates the number of pixels from the top drive to the turntable surface in the target image
  • the operating terminal receives the height of the top drive measured by the rangefinder, where the height of the top drive is the height from the top drive to the surface of the turntable;
  • the calibration unit of the operating terminal establishes a pixel relationship table between the number of pixels from the top drive to the turntable surface and the height of the top drive to complete the calibration of the well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • General Physics & Mathematics (AREA)
  • Geology (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Geophysics (AREA)
  • Geometry (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

一种基于图像识别的钻井标定方法、装置、设备及介质,包括:将顶驱(4)上提至井架(5)的预设位置,操作终端(6)的图像识别单元接收并识别图像采集装置(2)获取的目标图像;所述操作终端(6)的数据处理单元计算所述目标图像中顶驱(4)至转盘面(8)的像素点数量;所述操作终端(6)接收测距仪(3)测量的顶驱高度,其中,所述顶驱高度为顶驱(4)至转盘面(8)的高度;所述操作终端(6)的标定单元建立所述顶驱(4)至转盘面(8)的像素点数量与顶驱高度之间的像素关系表,完成钻井的标定。通过图像识别技术,确定出顶驱(4)至转盘面(8)的像素点数量与顶驱高度之间的像素关系表,以完成钻井的标定,极大减少钻井环境对钻井标定的影响。

Description

一种基于图像识别的钻井标定方法、装置、设备及介质 技术领域
本说明书涉及钻井技术领域,尤其涉及一种基于图像识别的钻井标定方法、装置、设备及介质。
背景技术
钻井系统在作业前,需要对钻井系统进行标定,以便钻井系统在钻井时根据标定结果完成钻井工作。
在现有技术中,大多数的钻井标定方法过于复杂,需要满足特定的条件才能实施,但有时钻井环境复杂多变,比如,受到大风等恶劣天气影响,在钻井标定时常常会出现误差,从而导致钻井的测量值与真实值误差过大而无法使用。
发明内容
本说明书一个或多个实施例提供一种基于图像识别的钻井标定方法、装置、设备及介质,用以解决如下技术问题:大多数的钻井标定方法过于复杂,需要满足特定的条件才能实施,但有时钻井环境复杂多变,在钻井标定时常常会出现误差,从而导致钻井的测量值与真实值误差过大而无法使用。
为解决上述技术问题,本说明书一个或多个实施例是这样实现的:
本说明书实施例提供的一种基于图像识别的钻井标定方法,所述方法包括:
将顶驱上提至井架的预设位置,操作终端的图像识别单元接收并识别图像采集装置获取的目标图像;
所述操作终端的数据处理单元计算所述目标图像中顶驱至转盘面的像素点数量;
所述操作终端接收测距仪测量的顶驱高度,其中,所述顶驱高度为顶驱至转盘面的高度;
所述操作终端的标定单元建立所述顶驱至转盘面的像素点数量与顶驱高度之间的像素关系表,完成钻井的标定。
本说明书一个或多个实施例提供的一种基于图像识别的钻井标定装置,所述装置包括:
顶驱移动单元,用于将顶驱上提至井架的预设位置;
图像识别单元,用于接收并识别图像采集装置获取的目标图像;
数据处理单元,用于计算所述目标图像中顶驱至转盘面的像素点数量;
数据接收单元,用于接收测距仪测量的顶驱高度,其中,所述顶驱高度为顶驱至转盘面的高度;
标定单元,用于建立所述顶驱至转盘面的像素点数量与顶驱高度之间的像素关系表,完成钻井的标定。
本说明书一个或多个实施例提供的一种基于图像识别的钻井标定设备,所述设备包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个 处理器执行,以使所述至少一个处理器能够:
将顶驱上提至井架的预设位置,操作终端的图像识别单元接收并识别图像采集装置获取的目标图像;
所述操作终端的数据处理单元计算所述目标图像中顶驱至转盘面的像素点数量;
所述操作终端接收测距仪测量的顶驱高度,其中,所述顶驱高度为顶驱至转盘面的高度;
所述操作终端的标定单元建立所述顶驱至转盘面的像素点数量与顶驱高度之间的像素关系表,完成钻井的标定。
本说明书一个或多个实施例提供的一种基于图像识别的钻井标定介质,存储有计算机可执行指令,所述计算机可执行指令设置为:
将顶驱上提至井架的预设位置,操作终端的图像识别单元接收并识别图像采集装置获取的目标图像;
所述操作终端的数据处理单元计算所述目标图像中顶驱至转盘面的像素点数量;
所述操作终端接收测距仪测量的顶驱高度,其中,所述顶驱高度为顶驱至转盘面的高度;
所述操作终端的标定单元建立所述顶驱至转盘面的像素点数量与顶驱高度之间的像素关系表,完成钻井的标定。
本说明书一个或多个实施例采用的上述至少一个技术方案能够达到以下有益效果:本说明书实施例通过图像识别技术,确定出顶驱至转盘面的像素点数量与顶驱高度之间的像素关系表,以完成钻井的标定,极大减少钻井环境对钻井标定的影响。
附图说明
为了更清楚地说明本说明书实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本说明书实施例提供的一种基于图像识别的钻井标定方法的流程示意图;
图2为本说明书实施例提供的另一种基于图像识别的钻井标定方法的流程示意图;
图3为本说明书实施例提供的状态识别单元的状态识别的流程示意图;
图4为本说明书实施例提供的现有技术中钻井系统工作的结构示意图;
图5为本说明书实施例提供的钻井系统的结构示意图;
图6为本说明书实施例提供的下钻过程的示意图一;
图7为本说明书实施例提供的下钻过程的示意图二;
图8为本说明书实施例提供的打钻过程的示意图;
图9为本说明书实施例提供的另一个钻井系统的结构示意图;
图10为本说明书实施例提供的一种基于图像识别的钻井标定装置的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本说明书中的技术方案,下面将结合本说明书实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本说明书实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
名词解释:
顶驱系统为钻井的动力系统,本说明书实施例中只涉及顶驱喇叭口和大钩,顶驱喇叭口(下简称顶驱)用于连接顶驱系统和钻具,以打通泥浆,传递动力。大钩用于起钻与下钻过程中夹住钻具移动,对于MWD等无法使用大钩夹住的工具,井场一般会使用短钻杆或者提升短节配合大钩工作。
卡瓦为填放在钻具和井口之间用于卡住钻具于转盘面上,整条钻具串的重量由转盘面承受。
坐卡状态为钻具被卡瓦锁止在钻井平台转盘面上,顶驱不再承受整条钻具的重量,其重量由卡瓦和井架承担。
解卡状态为将卡瓦移除后,由顶驱携带整个钻具上下活动,顶驱承受整条钻具的重量。
图1为本说明书实施例提供的一种基于图像识别的钻井标定方法的流程示意图,本说明书实施例可以由钻井系统的执行单元执行下述步骤,步骤可以包括:
步骤S101,将顶驱上提至井架的预设位置,操作终端的图像识别单元接收并识别图像采集装置获取的目标图像。
在本说明书实施例的步骤S101中,顶驱的全称为顶部驱动钻井装置TDS(TOP DRIVE DRILLING SYSTEM),是一种顶部驱动钻井系统。顶驱可从井架上部空间直接旋转钻具的钻杆,沿专用导轨向下送进,完成钻杆旋转钻进,循环钻井液,接立柱,上卸扣和倒划眼等多种钻井操作。顶部驱动钻井装置的旋转钻具和接卸钻杆立根更为有效的方法。
在本说明书实施例的步骤S101中,预设位置可以为距离转盘面的预设位置,比如,距离转盘面10厘米、20厘米等,可以根据实际情况进行设置。
在本说明书实施例的步骤S101中,图像采集装置可以为摄像头,该图像采集装置可以采集到目标图像,其中,目标图像可以预先设定图像采集装置的角度,对目标图像进行采集。
步骤S102,所述操作终端的数据处理单元计算所述目标图像中顶驱至转盘面的像素点数量。
步骤S103,操作终端接收测距仪测量的顶驱高度,其中,所述顶驱高度为顶驱至转盘面的高度。
在本说明书实施例的步骤S103中,测距仪可以为激光测距仪。
步骤S104,操作终端的标定单元建立所述顶驱至转盘面的像素点数量与顶驱高度之间的像素关系表,完成钻井的标定。
与图1实施例相对应的是,图2为本说明书实施例提供的另一种基于图像识别的钻井标定方法的流程示意图,本说明书实施例可以由钻井系统的执行单元执行下述步骤,步骤可以包括:
步骤S201,将顶驱上提至井架的预设位置,操作终端的图像识别单元接收并识别图像采集装置获取的目标图像。
步骤S202,所述操作终端的数据处理单元计算所述目标图像中顶驱至转盘面的像素点数量。
步骤S203,操作终端接收测距仪测量的顶驱高度,其中,所述顶驱高度为顶驱至转盘面的高度。
在本说明书实施例的步骤S103中,测距仪可以为激光测距仪。
步骤S204,操作终端的标定单元建立所述顶驱至转盘面的像素点数量与顶驱高度之间的像素关系表,完成钻井的标定。
步骤S205,操作终端根据预先建立的所述像素关系表,确定出钻具超出所述转盘面的长度,并根据所述钻具超出所述转盘面的长度、钻具的信息、状态识别单元、图像识别单元与数据处理单元完成钻井的下钻阶段、打钻阶段与起钻阶段。
其中,所述钻具的信息包括钻具的数量与每根钻具的长度。状态识别单元用于对钻井的状态进行切换,以便根据钻井不同的状态确定出钻头钻进深度。
在本说明书实施例的下钻阶段中,将下钻阶段的钻井深度设为第一预设值,以便钻头钻进深度从零逐步增大至所述第一预设值。其中,第一预设值可以根据需求设置,比如,第一预设值可以为300米或400米。
在本说明书实施例的打钻阶段,通过所述顶驱带动钻具整体转动,并将完成钻井深度设为第二预设值,以便钻头钻进深度从所述第一预设值逐步增大至所述第二预设值。其中,第二预设值可以根据需求设置,比如,第二预设值可以为1000米或2000米。打钻过程中,一般钻井深度和钻头深度实时相等。
在本说明书实施例的起钻阶段中,将钻头钻进深度由所述第二预设值逐步减少为零。
下钻阶段具体可以包括:
所述操作终端通过大钩将将所述第一根钻具铅直连接于顶驱底部,并在所述第一 根钻具的底部安装钻头,记录第一根钻具长度与钻头长度;
当所述钻头的位置与转盘面齐平时,操作终端将钻头深度记录为零,并将钻井的状态设置为解卡状态;
通过大钩带着所述第一根钻具向下移动,所述图像识别单元识别出当前所述第一根钻具顶面至所述转盘面的距离与当前的顶驱高度;
根据所述第一根钻具长度、所述钻头长度与当前所述第一根钻具顶面至所述转盘面的距离,计算出当前的钻头钻进深度,其中,所述顶驱与第一根钻具顶面之间的距离稳定不变;
通过所述大钩将第一根钻具下移至最低点时,在所述转盘面处放入卡瓦,以便固定所述第一根钻具;
将所述大钩松开所述第一根钻具,并将所述顶驱与所述大钩一同向上移动;
所述图像识别单元与所述数据处理单元识别到所述顶驱与第一根钻具顶面之间的距离增加,所述状态识别单元将所述钻井的状态改为坐卡状态;
当所述顶驱高度上移至最高点时,将第二根钻具铅直接入第一根钻具顶面,并记录第二根钻具长度;
所述图像识别单元识别出所述第二根钻具顶面,当所述顶驱与第二钻具顶面之间的距离稳定不变,所述状态识别单元将所述钻井的状态改为解卡状态,并将所述卡瓦取出,以便所述顶驱向下移动,并计算出当前的钻头钻进深度;
重复执行上述步骤,在接入第n根钻具时,将钻井钻进深度达到所述第一预设值,其中,n为大于1的正整数。
需要说明的是,重复执行上述步骤时,第二根钻具后续的操作、第三根钻具及后续钻具的操作与上述步骤相同,本说明书实施例不再赘述。
打钻阶段具体可以包括:
当第n根钻具铅直接入上一根钻具顶面时,在所述转盘面处放入卡瓦,将顶驱向下移动接入第n根钻具,以便泵入泥浆;
所述图像识别单元与所述数据处理单元识别到顶驱与所述第n根钻具顶面之间的距离变化;
所述状态识别单元将所述钻井的状态改为坐卡状态,并且,钻头的深度将不变,顶驱高度将逐渐减少,顶驱与所述第n根钻具顶面之间的距离逐渐减少至零,顶驱通过第一预设方向旋转的方式接入第n根钻具的顶面;
所述操作终端记录所述顶驱与第n根钻具之间重合部分的重合值,并记录顶驱第一预设方向旋转的角速度;
当所述图像识别单元与所述数据处理单元识别到所述重合值为预设重合值,且所述顶驱第一预设方向旋转的角速度为零时,将所述钻井的状态切换为解卡状态,并去除卡瓦;
根据钻头长度、n根钻具长度的总和、当前的顶驱高度与所述预设重合值,确定出当前的钻头钻进深度;
在所述转盘面处放入卡瓦,顶驱沿着第二预设方向旋转以将顶驱从钻具的钻杆脱离时,所述状态识别单元将所述钻井的状态切换为坐卡状态,并且,钻头的深度不变,顶驱上移至顶端;
将第n+1根钻具铅直接入第n根钻具顶面,并将顶驱向下移动以接入第n+1根钻具;
当所述数据处理单元识别到顶驱与第n+1根钻具顶面的距离为零,第n+1根钻具不转动,顶驱沿着第一预设方向旋转以钻进钻具的顶面;
所述操作终端记录所述顶驱与第n+1根钻具之间重合部分的重合值,并记录顶驱第一预设方向旋转的角速度;
当所述图像识别单元与所述数据处理单元识别到所述重合值为预设重合值,且所述顶驱第一预设方向旋转的角速度为零时,将所述钻井的状态切换为解卡状态,并去除卡瓦;
根据钻头长度、n+1根钻具长度的总和、当前的顶驱高度与所述预设重合值,确定出当前的钻头钻进深度;
重复执行上述步骤,在接入最后一根钻具时,将钻井钻进深度达到所述第二预设值。
需要说明的是,重复执行上述步骤时,分别接入第n+2根钻具、第n+3根钻具,直至在接入最后一根钻具时,将钻井深度达到第二预设值。
起钻阶段具体可以包括:
在所述转盘面处放入卡瓦,处理单元识别到最后一根钻具的顶面与顶驱的距离为零、最后一根钻具静止、顶驱沿着第二预设方向旋转时,所述状态识别单元将所述钻井的状态改为坐卡状态;
当顶驱脱离最后一根钻具,通过大钩连接最后一根钻具,顶驱和最后一根钻具顶 面之间的距离增加至稳定不变时,状态识别单元将所述钻井的状态改为解卡状态,并取出卡瓦,通过大钩带着所有钻具整体上提,确定出当前的钻头钻进深度;
当所有钻具整体提到最高点,在所述转盘面处放入卡瓦,以便固定所有钻具;
图像识别单元与数据处理单元识别出最后一根钻具与顶驱的距离逐渐减小,状态识别单元将所述钻井的状态改为坐卡状态,并完成最后一根钻具的拆卸;
重复执行上述步骤直至第一根钻具,以完成所有钻具的拆卸。
其中,第一预设方向旋转可以为顺时针方向旋转,第二预设方向旋转可以为逆时针方向旋转。
进一步的,状态识别单元用于对钻井的状态进行切换,参见图3示出的状态识别单元的状态识别的流程示意图,具体包括:
判断顶驱和最顶部一根钻具顶面之间的距离是否为零;
若判断出顶驱和最顶部一根钻具顶面之间的距离不为零,判断顶驱和最顶部一根钻具顶面之间的距离是否发生变化;
若判断出顶驱和最顶部一根钻具顶面之间的距离发生变化,判断出钻井的状态改为坐卡状态;
若判断出顶驱和最顶部一根钻具顶面之间的距离未发生变化,判断出钻井的状态改为解卡状态。
若判断出顶驱和最顶部一根钻具顶面之间的距离为零,方法还可以包括:
监测顶驱角速度,判断顶驱的转动方向;
若判断出顶驱沿着第一预设方向旋转,监测顶驱的移动距离,并判断顶驱是否移动预设重合值;
若判断出顶驱移动预设重合值,判断出钻井的状态改为解卡状态;
若判断出顶驱沿着第二预设方向旋转,判断出钻井的状态改为坐卡状态。
若判断出顶驱未发生转动,判断顶驱高度是否发生变化;
若判断出顶驱高度发生变化,判断出钻井的状态为解卡状态;
若判断出顶驱高度未发生变化,继续监测顶驱高度。
在本说明书实施例中,可以根据钻具不同状态来对顶驱与转盘面之间的距离进行加或减的累计,得到钻头的实时位置值,进而得到井深数值。
其中,第一预设方向旋转可以为顺时针方向旋转,第二预设方向旋转可以为逆时针方向旋转。
目前钻井工程中所采用的井深测量方式为绞车传感器和悬重传感器相结合的计算方式,前者可记录绞车滚轴旋转圈数,同时记录此时顶驱到转盘面的距离,由此确定出旋转圈数和距离之间的对应关系(该步骤称为标定);后者是利用钻井缆绳张力的变化来判断坐卡或者解卡状态,绝大多数情况下,如果悬重传感器数值较小(缆绳张力较小),则表明此时处于坐卡状态,顶驱的上下移动不会计入钻头深度和井深度,如果悬重传感器的数值较大(缆绳张力较大),则表明此时处于解卡状态,顶驱的上下移动将计入钻头深度和井深。
缆绳在绞车中会卷成数层盘在一起,缆绳的收放决定了顶驱的上下移动。在使顶驱移动的距离相同的前提下,层数较多时,缆绳旋绕直径较大,绞车需要转的圈数较少;层数较少时,缆绳旋绕直径较小,绞车需要转的圈数较大。在标定步骤中,需要在缆绳刚好收放完某层即将开始收放新的一层时记录此刻的旋转圈数以及顶驱到转盘面距离,这个临界状态需要工程师提前预判,由于钻井环境复杂多变,常常会出现误差。再次当钻井遇阻或者卡阻时,钻井缆绳的张力也会产生异常变化,导致悬重传感器产生错误响应,随即带来井深测量误差。当缆绳发生缠绕、破损时,需要重新划割缆绳,此时标定系数作废。这些误差会随着钻进过程而不断累加,导致测量值与真实值误差过大而无法使用。参见图4,示出了现有技术中钻井系统工作的结构示意图,操作步骤具体如下:
司钻房10内的司钻9可通过绞车3控制顶驱4携带钻具16在井架5内上下移动,绞车传感器2安装在绞车3上,可实时记录绞车3旋转圈数并通过电缆传给操作终端15,随钻测井工作间12内的工程师13通过操作终端15可获取此刻绞车传感器2的旋转圈数。当顶驱4位于井架5最高点时,绞车3中缆绳处于收起状态,一般会收起4-5层,当顶驱4向下移动时,缆绳将不断从绞车3中释放。
钻井系统标定的步骤可以为:
1.工程师7要求司钻9将顶驱4向下移动至距离转盘面14的最低点。
2.工程师7将米尺11绑定在顶驱4上并记录下该位置至转盘面14之间的高度,将读数通知位于随钻测井工作间12内的工程师13。
3.工程师13通过操作终端15获取当前绞车3的旋转圈数,并对应记录此时工程师7告知的高度,工程师13记录完毕后,通知工程师7继续操作。
4.工程师7通知司钻9上提顶驱4,工程师8实时关注绞车3缆绳变化,当绞车3内的缆绳刚好收回第一层时,通知司钻9锁止顶驱4。
5.工程师7利用米尺11记录此时顶驱4至转盘面14的高度,将该数值通知给工程师13。
6.工程师13重复步骤3。
7.工程师7通知司钻9继续上提顶驱4,同时工程师8实时关注绞车3内缆绳变化,当绞车3内缆绳刚好收回第二层时,通知司钻9锁止顶驱4。
8.重复步骤5-步骤7过程直至顶驱4到达井架5最高点。
完成步骤8后,深度跟踪软件15将完整记录下绞车3不同旋转直径下旋转圈数和实时高度形成的对应关系,完成整个标定过程。标定过程完成后,拆除卷尺。
悬重传感器1安装在钻井大绳6上,可实时监控钻具16坐卡和解卡状态,根据不同状态来对顶驱4与转盘面14之间的距离进行加或减的累计可得到钻头的实时位置值,进而得到井深数值。
上述现有技术的步骤,存在如下缺点:
1.标定步骤繁琐,耗时较长,同时需要4名工程师协作完成。
2.需要安装绞车传感器,标定时需要工程师人工预判缆绳变化位置,结果不准确。
3.需要安装悬重传感器,特殊情况下会导致悬重传感器响应错误,结果不准确。
在本说明书实施例中,可以解决如下问题:
常规钻井井深测量方法需要多名工程师协调配合工作,占用钻井时间较长,且由于标定方法和悬重传感器原理的局限性,深度误差会随着时间而累加。本说明书实施例提供一种图像识别的井深测量方法,可以由图像识别单元自动识别钻具和顶驱,无需安装绞车传感器,自动测量顶驱高度以及钻具在转盘面上的长度,仅需2名工程师即可完成所有操作,所需时间短。通过图像识别单元、数据处理单元及状态识别单元可以直接判断坐卡和解卡状态,无需安装悬重传感器,避免了特殊情况下悬重异常变化而引起的测量误差。
参见图5,示出了本说明书实施例提供的钻井系统的结构示意图,其中,图像采集单元2(可以为摄像仪,下边通过摄像仪替换)安装在司钻房9顶位置或适合位置以便拍摄到顶驱系统、钻具、钻具槽20。摄像仪2实时将图像通过井场数据处理器11传递给位于随钻测井工房1内的操作终端6,操作终端6内含多个单元,分别可实时计算出钻井状态坐卡或解卡,顶驱4高度、钻头深度以及井深。激光测距仪3安装在顶驱4上用于初始标定,标定完成后将拆除。
本发明方法的标定操作步骤描述如下:
1.可以通过工程师7通知司钻10将顶驱4放置到距离转盘面8的最低点(转盘面的最低点可以预设设置),安装激光测距仪3,工程师7返回随钻测井工作间1,打开操作终端6的标定单元,通过标定单元开始进行标定工作。
2.可以通过工程师7通知司钻10将顶驱4上提至井架5最高点(井架最高点可以预先设置),在此过程中,操作终端6的图像识别单元实时接收摄像仪2传递的图像并进行目标尺寸识别,目标边界分别为为顶驱4和转盘面8,处理单元计算顶驱4至转盘面8之间的实时像素数量,同时根据激光测距仪3传递的实时高度信息,操作终端6的标定单元建立起目标图像像素点数量与真实长度之间的对应关系表,完成标定过程,此后,根据该表格可由已知像素点数量推出任意位置顶驱4的高度,由于钻具的钻杆是放置在顶驱4正下方,使用图像识别单元识别出钻具的顶面和转盘面之间像素点数量,利用该对应表可推算出该钻具长度和高度。此外,钻井过程中可以在顶驱4上放置一个醒目标志物以提高图像识别准确率。
3.可以通过工程师7通知司钻10将顶驱4放置最低点(顶驱的最低点可以预先设置),拆除激光测距仪3。
在本说明书实施例中,完整的钻井流程可分为三个阶段:下钻阶段、打钻阶段和起钻阶段。下面分别从这三个方面出发,描述本说明书实施例在不同的阶段如何进行顶驱4高度计算、钻头位置计算、井深计算以及钻井状态判别。下文中提到的真实钻井状态指由于钻工放入/提取卡瓦而导致的钻井状态切换,下文提到的系统钻井状态指本发明的状态识别单元对钻井的状态切换,两者存在不同的情况下的时间差,但是由于该时间差内顶驱4和钻具没有发生移动或移动微小距离,因此并不影响计算结果,下钻过程、打钻过程与起钻过程如下所示:
下钻过程中井深为一预定固定值,钻头深度从零开始,参见图6,示出了下钻过程的示意图一与图7示出的下钻过程的示意图二。
1.当大钩14从钻具槽20中夹取出一根钻具16时,铅直放置后,根据前述方法可识别出该钻具长度L 1,接钻头,记钻头长度为BL,当钻头位置和转盘面齐平时,此时钻头深度记录为零,初始钻井状态设置为解卡状态。
2.大钩14带着钻具16向下移动,参见图6,图像识别单元识别出钻具16顶面至转盘面8距离DH,实时顶驱4高度为BH,实时钻头深BD=L 1+BL-DH。此过程中,顶驱4和钻具16顶面之间距离h稳定不变。
3.大钩14带着钻具16下移至最低点,在转盘面安装卡瓦,钻具16处于静止状 态,此时真实的钻井状态为坐卡状态,大钩14向两侧张开后松开钻具16,大钩14和顶驱4均向上移动,在顶驱4刚开始向上方移动时,图像识别单元和数据处理单元识别到顶驱4和钻具顶面之间距离h增加,状态识别单元此时更改为坐卡状态,钻井系统内部状态转换滞后于真实情况,此时钻头深度BD不变化,顶驱4高度BH增加,顶驱4上移至最高点,接第二根钻具,该钻具处于铅直状态后,识别出该钻具长度,记为L 2,第二根钻具接入第一根钻具顶面后,在图像显示中,图像下部的钻具顶面消失,图像上部出现钻具顶面,图像识别单元识别出新的钻具顶面,如图7所示,当高度差h稳定不变,钻井系统内部将钻井状态由坐卡状态更改为解卡状态,然后将卡瓦取出,顶驱4向下移动,实时钻头深为BD=L 1+L 2+BL-DH,此过程中,系统状态稍提前于真实转态切换,但是不影响计算结果。
4.重复上述过程,则下钻过程中,实时钻头深度为BD=L 1+L 2+…+L n+BL-DH。
打钻过程时顶驱4带动钻具整体转动,而大钩14则收起放在一侧,打钻过程中不再使用。当下钻至最后一根钻具后,需进行钻进前的准备,顶驱4要接入钻具以便泵入泥浆,参见图8,示出了打钻过程的示意图。
1.在转盘面8处放入卡瓦,整个钻具静止在转盘面8上,大钩14松开钻具,顶驱4向下移动接入钻具,此时数据处理单元识别到高度差h发生变化,钻井的状态由解卡状态更改为坐卡状态,同样,此时状态判别单元略滞后于真实钻井状态转换。此时钻头深度不变,仅记录顶驱4高度减少量,高度差h会逐步减少至零,顶驱4可以通过顺时针旋转的方式进入钻具母扣中并锁死,两者重合长度是固定值OL,可以事先量出,如图8所示。图像单元识别此时h为零,钻具不转动,顶驱4发生顺时针旋转时跟踪记录旋转角速度,当角速度为零时并且顶驱4高度下降OL时,状态识别单元将钻井的状态由坐卡状态改为解卡状态,钻井系统稍微提前于真实情况。顶驱4和钻具顶面接入并锁死后,将提取出卡瓦,图像识别单元在h为零的情况下不再识别钻具顶面,井深计算将以顶驱4高度BH作为计算依据,钻工将卡瓦提出,顶驱4继续下放,此时钻头深度BD=L 1+L 2+…+L n+BL-BH-OL。当钻头深度等于井深后进入新地层,此时井深随着钻头深度的增加而等量增加。
2.当该钻具打至最低点后,需要新接一根钻具继续打钻,首先将在转盘面安装坐卡,顶驱4可以逆时针将从钻具脱离,此时数据处理单元识别到此时h为零,钻具不转动,顶驱4开始逆时针转动时,状态识别单元将钻井状态由解卡状态更改为坐卡状态,此时钻井系统滞后于真实情况,顶驱4逆时针旋转卸扣后将钻具分离,上移到井架顶端,此过程钻头深度不变,仅记录顶驱4实时高度,顶驱系统使用大钩14夹取新的钻具,处于铅直状态后,此时图像识别单元和数据处理单元计算出新的钻具长度L n+1,新钻具接入原钻具串后,在图像显示中,图像下部钻具顶面消失,图像上部出现钻具顶面,图像识别单元识别出新的钻具顶面,整个钻具静止在转盘面上,大钩14松开钻具,顶驱4向下移动接入钻具,此时钻头仍然深度不变,仅记录顶驱4高度,顶驱4高度和钻具顶面高度差h持续减少,当h减少为零,钻具不转动,顶驱4发生顺时针旋转时跟踪记录旋转角速度,当角速度为零时并且顶驱4高度下降OL时,钻井状态由坐卡状态改为解卡状态,移除卡瓦、开泵后顶驱4继续下放,此时钻头深度BD=L 1+L 2+…+L n+L n+1+BL-BH-OL。
3.重复上述过程,则下钻过程中,实时钻头深度为BD=L 1+L 2+…+L n+…+L m+BL-BH-OL,其中,L m为最后一根钻具。
起钻过程中钻井深固定不再变化,钻头深度由最大值逐步减少为零。
1.当完钻后进行起钻作业,起钻作业和下钻作业类似,但是方向相反。打钻后,停泵,将整串钻具坐卡,顶驱4准备从钻具脱离,此时数据处理单元识别到h为零、钻具不动、顶驱4反向逆时针转动,状态识别单元将钻井状态由解卡状态更改为坐卡 状态,钻井系统状态切换滞后于真实情况,顶驱4完全脱离钻具后,露出钻具顶面,改用大钩14夹住钻具,顶驱4和钻具顶面高度差h增加,当h稳定不变时,状态识别单元将钻井状态由坐卡状态更改为解卡状态,系统状态切换提前于真实情况,提取出卡瓦,大钩14带着钻具整体上提,实时的钻头深度为BD=L 1+L 2+…+L n+…+L m+BL-DH。
2.当大钩14上提至最高点附近,在转盘面上安装坐卡,整个钻具处于静止状态,大钩14将向下移动以转移整体钻具重量至卡瓦上,此时图像上部分显示高度差h将减小,状态识别单元将钻井状态由解卡状态更改为坐卡状态,钻井系统状态切换滞后于真实状态,将整柱卸掉,甩回钻具槽20,顶驱4向下移动,h持续减少,当大钩14夹住剩余钻具串后,h稳定不变,状态识别单元将钻井状态由坐卡状态更改为解卡状态,大钩14带着钻具整体上提,实时的钻头深度为BD=L 1+L 2+…+L n+…+L m-1+BL-DH。
3.重复上述过程,直至钻头出井。
需要说明的,参见图9,示出了另一个钻井系统的结构示意图,具体包括:
激光测距仪将测量的顶驱高度通过A/D转换模块发送到井场数据处理器,摄像仪将拍摄的目标图像通过A/D转换模块发送到井场数据处理器,井场数据处理器将数据发送至操作终端,操作终端通过图像识别单元可以进行目标尺寸识别与目标旋转识别,数据处理单元包括标定单元与深度计算单元,状态识别单元可以转换坐卡状态与解卡状态。
本说明书实施例可以减少标定工作所需人力,常规方法需要4名工程师协作才能完成工作,本说明书实施例仅需两人。
本说明书实施例可以减少深度标定工作所需时间,常规方法需要在特定时刻监测缆绳变化情况,需要重复暂停数次,本说明书实施例在实施时无需暂定,标定时间大大缩短。
本说明书实施例无需安装悬重传感器,无需安装绞车传感器,简化了深度测量步骤。
本说明书实施例避免异常情况下的深度误差,常规方法使用悬重传感器来识别坐卡和解卡状态,属于间接识别方法,当钻井出现遇阻或者卡阻时,会引起悬重传感器错误响应。本说明书实施例通过图像识别技术,直接判别坐卡或者解卡状态,和钻井缆绳张力无关,避免深度出错。
本说明书实施例避免人工识别的标定误差,标定时需要工程师人工预判缆绳变化位置,现实中常常无法精确做到,本说明书实施例通过图像识别技术和高精度激光测距仪实时建立标定曲线,无需人工干预。
本说明书实施例还可以在钻具的钻杆上绑定已知长度的物体,通过图像识别出该物体尺寸,利用该物体建立像素数量同真实尺寸之间的转换曲线。
本说明书实施例可以通过图像识别技术判断坐卡、解卡状态以代替常规悬重传感器。
本说明书实施例可以通过图像识别技术,建立标定曲线,以代替常规绞车传感器。
本说明书实施例可以通过顶驱和钻杆顶面之间的高度差的变化情况以及顶驱和钻具的钻杆之间的相对角度旋转来判定钻井的状态坐卡状态或解卡状态。
与图1实施例相对应的是,图10为本说明书实施例提供的一种基于图像识别的钻井标定装置的结构示意图,装置包括:顶驱移动单元1、图像识别单元2、数据处理单元3、数据接收单元4与标定单元5。
顶驱移动单元1用于将顶驱上提至井架的预设位置;
图像识别单元2用于接收并识别图像采集装置获取的目标图像;
数据处理单元3用于计算所述目标图像中顶驱至转盘面的像素点数量;
数据接收单元4用于接收测距仪测量的顶驱高度,其中,所述顶驱高度为顶驱至转盘面的高度;
标定单元5用于建立所述顶驱至转盘面的像素点数量与顶驱高度之间的像素关系表,完成钻井的标定。
本说明书一个或多个实施例提供的一种基于图像识别的钻井标定设备,所述设备包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够:
将顶驱上提至井架的预设位置,操作终端的图像识别单元接收并识别图像采集装置获取的目标图像;
所述操作终端的数据处理单元计算所述目标图像中顶驱至转盘面的像素点数量;
所述操作终端接收测距仪测量的顶驱高度,其中,所述顶驱高度为顶驱至转盘面的高度;
所述操作终端的标定单元建立所述顶驱至转盘面的像素点数量与顶驱高度之间的像素关系表,完成钻井的标定。
本说明书一个或多个实施例提供的一种基于图像识别的钻井标定介质,存储有计算机可执行指令,所述计算机可执行指令设置为:
将顶驱上提至井架的预设位置,操作终端的图像识别单元接收并识别图像采集装置获取的目标图像;
所述操作终端的数据处理单元计算所述目标图像中顶驱至转盘面的像素点数量;
所述操作终端接收测距仪测量的顶驱高度,其中,所述顶驱高度为顶驱至转盘面的高度;
所述操作终端的标定单元建立所述顶驱至转盘面的像素点数量与顶驱高度之间的像素关系表,完成钻井的标定。
以上所述仅为本说明书的一个或多个实施例而已,并不用于限制本说明书。对于本领域技术人员来说,本说明书的一个或多个实施例可以有各种更改和变化。凡在本说明书的一个或多个实施例的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本说明书的权利要求范围之内。

Claims (10)

  1. 一种基于图像识别的钻井标定方法,其特征在于,所述方法包括:
    将顶驱上提至井架的预设位置,操作终端的图像识别单元接收并识别图像采集装置获取的目标图像;
    所述操作终端的数据处理单元计算所述目标图像中顶驱至转盘面的像素点数量;
    所述操作终端接收测距仪测量的顶驱高度,其中,所述顶驱高度为顶驱至转盘面的高度;
    所述操作终端的标定单元建立所述顶驱至转盘面的像素点数量与顶驱高度之间的像素关系表,完成钻井的标定。
  2. 根据权利要求1所述的基于图像识别的钻井标定方法,其特征在于,所述完成钻井的标定之后,所述方法还包括:
    所述操作终端根据预先建立的所述像素关系表,确定出钻具超出所述转盘面的长度,并根据所述钻具超出所述转盘面的长度、钻具的信息、状态识别单元、图像识别单元与数据处理单元完成钻井的下钻阶段、打钻阶段与起钻阶段,其中:
    所述钻具的信息包括钻具的数量与每根钻具的长度;
    所述状态识别单元用于对钻井的状态进行切换,以便根据钻井不同的状态确定出钻头钻进深度;
    所述下钻阶段中,将下钻阶段的钻井深度设为第一预设值,以便钻头钻进深度从零增大至所述第一预设值;
    所述打钻阶段中,通过所述顶驱带动钻具整体转动,并将完成钻井深度设为第二预设值,以便钻头钻进深度从所述第一预设值增大至所述第二预设值;
    所述起钻阶段中,将钻头钻进深度由所述第二预设值减少为零。
  3. 根据权利要求2所述的基于图像识别的钻井标定方法,其特征在于,所述下钻阶段具体包括:
    所述操作终端通过大钩将将第一根钻具铅直连接于顶驱底部,并在所述第一根钻具的底部安装钻头,记录第一根钻具长度与钻头长度;
    当所述钻头的位置与转盘面齐平时,操作终端将钻头深度记录为零,并将钻井的状态设置为解卡状态;
    通过大钩带着所述第一根钻具向下移动,所述图像识别单元识别出当前所述第一 根钻具顶面至所述转盘面的距离与当前的顶驱高度;
    根据所述第一根钻具长度、所述钻头长度与当前所述第一根钻具顶面至所述转盘面的距离,计算出当前的钻头钻进深度,其中,所述顶驱与第一根钻具顶面之间的距离稳定不变;
    通过所述大钩将第一根钻具下移至最低点时,在所述转盘面处放入卡瓦,以便固定所述第一根钻具;
    将所述大钩松开所述第一根钻具,并将所述顶驱与所述大钩一同向上移动;
    所述图像识别单元与所述数据处理单元识别到所述顶驱与第一根钻具顶面之间的距离变化,所述状态识别单元将所述钻井的状态改为坐卡状态;
    当所述顶驱高度上移至最高点时,将第二根钻具铅直接入第一根钻具顶面,并记录第二根钻具长度;
    所述图像识别单元识别出所述第二根钻具顶面,当所述顶驱与第二钻具顶面之间的距离稳定不变,所述状态识别单元将所述钻井的状态改为解卡状态,并将所述卡瓦取出,以便所述顶驱向下移动,并计算出当前的钻头钻进深度;
    重复执行上述步骤,在接入第n根钻具时,将钻井钻进深度达到所述第一预设值,其中,n为大于1的正整数。
  4. 根据权利要求3所述的基于图像识别的钻井标定方法,其特征在于,所述打钻阶段具体包括:
    当第n根钻具铅直接入上一根钻具顶面时,在所述转盘面处放入卡瓦,将顶驱向下移动接入第n根钻具,以便泵入泥浆;
    所述图像识别单元与所述数据处理单元识别到顶驱与所述第n根钻具顶面之间的距离变化;
    所述状态识别单元将所述钻井的状态改为坐卡状态,并且,钻头的深度将不变,顶驱高度将逐渐减少,顶驱与所述第n根钻具顶面之间的距离逐渐减少至零,顶驱通过第一预设方向旋转的方式接入第n根钻具的顶面;
    所述操作终端记录所述顶驱与第n根钻具之间重合部分的重合值,并记录顶驱第一预设方向旋转的角速度;
    当所述图像识别单元与所述数据处理单元识别到所述重合值为预设重合值,且所述顶驱第一预设方向旋转的角速度为零时,将所述钻井的状态切换为解卡状态,并去除卡瓦;
    根据钻头长度、n根钻具长度的总和、当前的顶驱高度与所述预设重合值,确定出当前的钻头钻进深度;
    在所述转盘面处放入卡瓦,顶驱沿着第二预设方向旋转以将顶驱从钻具的钻杆脱离时,所述状态识别单元将所述钻井的状态切换为坐卡状态,并且,钻头的深度不变,顶驱上移至顶端;
    将第n+1根钻具铅直接入第n根钻具顶面,并将顶驱向下移动以接入第n+1根钻具;
    当所述数据处理单元识别到顶驱与第n+1根钻具顶面的距离为零,第n+1根钻具不转动,顶驱沿着第一预设方向旋转以钻进钻具的顶面;
    所述操作终端记录所述顶驱与第n+1根钻具之间重合部分的重合值,并记录顶驱第一预设方向旋转的角速度;
    当所述图像识别单元与所述数据处理单元识别到所述重合值为预设重合值,且所述顶驱第一预设方向旋转的角速度为零时,将所述钻井的状态切换为解卡状态,并去除卡瓦;
    根据钻头长度、n+1根钻具长度的总和、当前的顶驱高度与所述预设重合值,确定出当前的钻头钻进深度;
    重复执行上述步骤,在接入最后一根钻具时,将钻井钻进深度达到所述第二预设值。
  5. 根据权利要求4所述的基于图像识别的钻井标定方法,其特征在于,所述起钻阶段具体包括:
    在所述转盘面处放入卡瓦,处理单元识别到最后一根钻具的顶面与顶驱的距离为零、最后一根钻具静止、顶驱沿着第二预设方向旋转时,所述状态识别单元将所述钻井的状态改为坐卡状态;
    当顶驱脱离最后一根钻具,通过大钩连接最后一根钻具,顶驱和最后一根钻具顶面之间的距离增加至稳定不变时,状态识别单元将所述钻井的状态改为解卡状态,并取出卡瓦,通过大钩带着所有钻具整体上提,确定出当前的钻头钻进深度;
    当所有钻具整体提到最高点,在所述转盘面处放入卡瓦,以便固定所有钻具;
    图像识别单元与数据处理单元识别出最后一根钻具与顶驱的距离逐渐减小,状态识别单元将所述钻井的状态改为坐卡状态,并完成最后一根钻具的拆卸;
    重复执行上述步骤直至第一根钻具,以完成所有钻具的拆卸。
  6. 根据权利要求2所述的基于图像识别的钻井标定方法,其特征在于,所述状态识别单元用于对钻井的状态进行切换,具体包括:
    判断顶驱和最顶部一根钻具顶面之间的距离是否为零;
    若判断出顶驱和最顶部一根钻具顶面之间的距离不为零,判断顶驱和最顶部一根钻具顶面之间的距离是否发生变化;
    若判断出顶驱和最顶部一根钻具顶面之间的距离发生变化,判断出钻井的状态改为坐卡状态;
    若判断出顶驱和最顶部一根钻具顶面之间的距离未发生变化,判断出钻井的状态改为解卡状态。
  7. 根据权利要求6所述的基于图像识别的钻井标定方法,其特征在于,若判断出顶驱和最顶部一根钻具顶面之间的距离为零,所述方法还包括:
    监测顶驱角速度,判断顶驱的转动方向;
    若判断出顶驱沿着第一预设方向旋转,监测顶驱的移动距离,并判断顶驱是否移动预设重合值;
    若判断出顶驱移动预设重合值,判断出钻井的状态改为解卡状态;
    若判断出顶驱沿着第二预设方向旋转,判断出钻井的状态改为坐卡状态。
  8. 一种基于图像识别的钻井标定装置,其特征在于,所述装置包括:
    顶驱移动单元,用于将顶驱上提至井架的预设位置;
    图像识别单元,用于接收并识别图像采集装置获取的目标图像;
    数据处理单元,用于计算所述目标图像中顶驱至转盘面的像素点数量;
    数据接收单元,用于接收测距仪测量的顶驱高度,其中,所述顶驱高度为顶驱至转盘面的高度;
    标定单元,用于建立所述顶驱至转盘面的像素点数量与顶驱高度之间的像素关系表,完成钻井的标定。
  9. 一种基于图像识别的钻井标定设备,其特征在于,所述设备包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够:
    将顶驱上提至井架的预设位置,操作终端的图像识别单元接收并识别图像采集装 置获取的目标图像;
    所述操作终端的数据处理单元计算所述目标图像中顶驱至转盘面的像素点数量;
    所述操作终端接收测距仪测量的顶驱高度,其中,所述顶驱高度为顶驱至转盘面的高度;
    所述操作终端的标定单元建立所述顶驱至转盘面的像素点数量与顶驱高度之间的像素关系表,完成钻井的标定。
  10. 一种基于图像识别的钻井标定介质,存储有计算机可执行指令,其特征在于,所述计算机可执行指令设置为:
    将顶驱上提至井架的预设位置,操作终端的图像识别单元接收并识别图像采集装置获取的目标图像;
    所述操作终端的数据处理单元计算所述目标图像中顶驱至转盘面的像素点数量;
    所述操作终端接收测距仪测量的顶驱高度,其中,所述顶驱高度为顶驱至转盘面的高度;
    所述操作终端的标定单元建立所述顶驱至转盘面的像素点数量与顶驱高度之间的像素关系表,完成钻井的标定。
PCT/CN2020/130972 2019-11-26 2020-11-24 一种基于图像识别的钻井标定方法、装置、设备及介质 WO2021104222A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/616,524 US11494931B2 (en) 2019-11-26 2020-11-24 Drilling calibration method, apparatus, device and medium based on image recognition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911175237.2 2019-11-26
CN201911175237 2019-11-26
CN202011311422.2 2020-11-20
CN202011311422.2A CN112196517B (zh) 2019-11-26 2020-11-20 一种基于图像识别的钻井标定方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2021104222A1 true WO2021104222A1 (zh) 2021-06-03

Family

ID=74033158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130972 WO2021104222A1 (zh) 2019-11-26 2020-11-24 一种基于图像识别的钻井标定方法、装置、设备及介质

Country Status (3)

Country Link
US (1) US11494931B2 (zh)
CN (2) CN112196517B (zh)
WO (1) WO2021104222A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112196517B (zh) 2019-11-26 2021-05-04 中国科学院地质与地球物理研究所 一种基于图像识别的钻井标定方法、装置、设备及介质
CN113591680B (zh) * 2021-07-28 2023-11-21 上海交通大学 对地质图片钻井经纬度进行识别的方法和系统
CN115807685B (zh) * 2023-01-20 2023-04-28 太原理工大学 矿用锚护装备钻锚作业的自动控制系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942976A (zh) * 2010-09-01 2011-01-12 中国石油天然气集团公司 连续循环钻井系统的钻杆接头定位控制方法
US20130271576A1 (en) * 2012-04-16 2013-10-17 Canrig Drilling Technology Ltd Device control employing three-dimensional imaging
US20130345878A1 (en) * 2010-04-29 2013-12-26 National Oilwell Varco, L.P. Videometric systems and methods for offshore and oil-well drilling
CN104632193A (zh) * 2013-11-13 2015-05-20 中国石油化工股份有限公司 钻井大钩高度图像测量系统
US20180363392A1 (en) * 2017-06-15 2018-12-20 Mhwirth As Drilling system and method
CN109328256A (zh) * 2016-05-25 2019-02-12 斯伦贝谢技术有限公司 基于图像的钻井作业系统
WO2019169067A1 (en) * 2018-02-28 2019-09-06 Schlumberger Technology Corporation Cctv system
CN112196518A (zh) * 2019-11-26 2021-01-08 中国科学院地质与地球物理研究所 一种基于图像识别的钻井方法、装置、设备及介质

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4610005A (en) * 1980-06-19 1986-09-02 Dresser Industries, Inc. Video borehole depth measuring system
US5107705A (en) * 1990-03-30 1992-04-28 Schlumberger Technology Corporation Video system and method for determining and monitoring the depth of a bottomhole assembly within a wellbore
US20100025109A1 (en) * 2008-07-30 2010-02-04 Baker Hughes Incorporated Apparatus and Method for Generating Formation Textural Feature Images
CN202064839U (zh) * 2011-04-22 2011-12-07 中国石油天然气集团公司 陆地钻机四钻杆柱双联井架
CN102788568A (zh) * 2012-07-25 2012-11-21 北京豪络科技有限公司 石油钻机大钩高度测量系统及标定和测量方法
CN104100256B (zh) * 2013-04-15 2017-04-12 西安科技大学 基于图像处理技术的煤矿井下钻孔深度测量方法
CN103437751B (zh) * 2013-08-23 2016-03-16 中国石油集团川庆钻探工程有限公司 钻头位置实时自动校正系统
CN104132613B (zh) * 2014-07-16 2017-01-11 佛山科学技术学院 一种复杂表面和不规则物体体积的非接触光学测量方法
CN104240264B (zh) * 2014-08-29 2017-06-30 青岛海信电器股份有限公司 一种运动物体的高度检测方法和装置
CN104343438B (zh) * 2014-09-10 2018-07-31 北京纳特斯拉科技有限公司 测量钻井相对距离的旋转磁场测距仪及其测量方法
CN104295288B (zh) * 2014-10-14 2017-02-01 四川航天电液控制有限公司 石油钻井井深测量系统及方法
US11378387B2 (en) * 2014-11-12 2022-07-05 Helmerich & Payne Technologies, Llc System and method for locating, measuring, counting, and aiding in the handling of drill pipes
CN105221135A (zh) * 2015-09-17 2016-01-06 航天科工惯性技术有限公司 用于无线随钻系统的井深测量装置及测量方法
CN107654199B (zh) * 2016-03-16 2019-05-24 刘玉友 钻井顶驱与井架二层台保护装置
US10697257B2 (en) * 2018-02-19 2020-06-30 Nabors Drilling Technologies Usa, Inc. Interlock system and method for a drilling rig
CN108764032B (zh) * 2018-04-18 2019-12-24 北京百度网讯科技有限公司 煤矿探放水智能监控方法、装置、计算机设备及存储介质
CN109267995B (zh) * 2018-10-16 2022-02-11 安徽理工大学 一种基于像差分析钻杆节点的地质钻杆进给深度测量系统
CN109138972A (zh) * 2018-10-16 2019-01-04 安徽理工大学 一种基于激光多普勒效应的煤矿瓦斯钻机钻杆进给深度测量系统
US20200224526A1 (en) * 2019-01-15 2020-07-16 Schlumberger Technology Corporation Utilizing Vision Systems at a Wellsite
CN110259438B (zh) * 2019-06-21 2020-12-04 精英数智科技股份有限公司 一种煤矿探放水智能监控方法、装置及终端设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130345878A1 (en) * 2010-04-29 2013-12-26 National Oilwell Varco, L.P. Videometric systems and methods for offshore and oil-well drilling
CN101942976A (zh) * 2010-09-01 2011-01-12 中国石油天然气集团公司 连续循环钻井系统的钻杆接头定位控制方法
US20130271576A1 (en) * 2012-04-16 2013-10-17 Canrig Drilling Technology Ltd Device control employing three-dimensional imaging
CN104632193A (zh) * 2013-11-13 2015-05-20 中国石油化工股份有限公司 钻井大钩高度图像测量系统
CN109328256A (zh) * 2016-05-25 2019-02-12 斯伦贝谢技术有限公司 基于图像的钻井作业系统
US20180363392A1 (en) * 2017-06-15 2018-12-20 Mhwirth As Drilling system and method
WO2019169067A1 (en) * 2018-02-28 2019-09-06 Schlumberger Technology Corporation Cctv system
CN112196518A (zh) * 2019-11-26 2021-01-08 中国科学院地质与地球物理研究所 一种基于图像识别的钻井方法、装置、设备及介质

Also Published As

Publication number Publication date
US20220270281A1 (en) 2022-08-25
CN112196518A (zh) 2021-01-08
CN112196517B (zh) 2021-05-04
CN112196517A (zh) 2021-01-08
CN112196518B (zh) 2021-05-04
US11494931B2 (en) 2022-11-08

Similar Documents

Publication Publication Date Title
WO2021104222A1 (zh) 一种基于图像识别的钻井标定方法、装置、设备及介质
US12049811B2 (en) Integrated well construction system operations
US10995571B2 (en) Image based system for drilling operations
RU2658183C1 (ru) Способ контроля глубины спуска бурильной колонны
CA3019308C (en) Pipe tally vision system
EP3218568B1 (en) A method for placing and removing pipe from a finger rack
US10567735B2 (en) Wellsite control employing three-dimensional imaging
US20190226287A1 (en) System and method for placing pipe in and removing pipe from a finger rack
CN110462159A (zh) 接头识别系统
US11761273B2 (en) Determining stickup height based on pipe tally, block position, and digital images
CN204457426U (zh) 一种对既有建筑物下大直径灌注桩进行钻芯检测的成套设备
EP3841275B1 (en) Tong cassette positioning device
CN104514488A (zh) 一种对既有建筑物下大直径灌注桩进行钻芯检测的成套设备及方法
CN118167196A (zh) 一种钻探设备及钻探方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893984

Country of ref document: EP

Kind code of ref document: A1