WO2021103950A1 - 显示模组及增强现实眼镜 - Google Patents

显示模组及增强现实眼镜 Download PDF

Info

Publication number
WO2021103950A1
WO2021103950A1 PCT/CN2020/125974 CN2020125974W WO2021103950A1 WO 2021103950 A1 WO2021103950 A1 WO 2021103950A1 CN 2020125974 W CN2020125974 W CN 2020125974W WO 2021103950 A1 WO2021103950 A1 WO 2021103950A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide sheet
display module
diffractive waveguide
notch
area
Prior art date
Application number
PCT/CN2020/125974
Other languages
English (en)
French (fr)
Inventor
杜鹏
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20891948.0A priority Critical patent/EP4067969A4/en
Publication of WO2021103950A1 publication Critical patent/WO2021103950A1/zh
Priority to US17/825,986 priority patent/US20220283441A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0944Diffractive optical elements, e.g. gratings, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/44Grating systems; Zone plate systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0138Head-up displays characterised by optical features comprising image capture systems, e.g. camera
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present disclosure relates to the field of augmented reality technology, and in particular to a display module and augmented reality glasses.
  • Augmented Reality is a technology that integrates the virtual world and the real world. This technology has been widely used in education, games, medical care, the Internet of Things, intelligent manufacturing and other fields.
  • Augmented reality glasses As a portable device that integrates virtual and reality, augmented reality glasses have been widely concerned by developers and users since their appearance, and have a broad market prospect. Augmented reality glasses include various sensor devices, display devices, control devices, etc. At present, structural constraints cause the augmented reality glasses to be larger in size and clumsy in appearance, making them inconvenient for users to wear.
  • a display module including: a bracket; a first diffractive waveguide sheet and a second diffractive waveguide sheet arranged on the bracket, and the first diffractive waveguide sheet and the second diffractive waveguide sheet are configured For one-to-one correspondence with the user’s eyes; wherein, the first diffractive waveguide sheet includes a first area projected on the support, the first area is provided with a first notch on the side close to the second diffractive waveguide sheet, and the first notch faces the second diffractive Waveguide sheet.
  • an augmented reality glasses including the above-mentioned display module.
  • Fig. 1 shows a schematic diagram of a display module applied to augmented reality glasses according to an embodiment of the present disclosure
  • FIG. 2 shows a schematic diagram of a display module according to the first embodiment of the present disclosure
  • FIG. 3 shows a schematic diagram of a display module provided with a camera module according to the first embodiment of the present disclosure
  • FIG. 4 shows a schematic diagram of a display module according to a second embodiment of the present disclosure
  • FIG. 5 shows a schematic diagram of a display module provided with a camera module according to a second embodiment of the present disclosure
  • FIG. 6 shows a schematic diagram of a display module provided with a camera module according to a third embodiment of the present disclosure
  • FIG. 7 shows a schematic diagram of a display module provided with a camera module according to a fourth embodiment of the present disclosure
  • FIG. 8 shows a schematic diagram of a display module provided with a camera module according to a fifth embodiment of the present disclosure.
  • the optical machine needs to project the optical image to the entrance pupil grating of the diffractive waveguide sheet for optical coupling, and then output through the exit pupil grating of the diffractive waveguide sheet for human eyes The optical image can be seen.
  • the diffractive waveguide sheet described in the present disclosure may be referred to as a waveguide sheet for short, or may be referred to as a lens of augmented reality glasses.
  • Fig. 1 shows a schematic diagram of a display module applied to augmented reality glasses according to an embodiment of the present disclosure.
  • a first diffractive waveguide sheet 11 and a second diffractive waveguide sheet 12 can be provided on the display module support 10.
  • the first diffractive waveguide sheet 11 may include a corresponding entrance pupil grating 111 and an exit pupil grating 112
  • the second diffractive waveguide sheet 12 may include a corresponding entrance pupil grating 121 and an exit pupil grating 122.
  • the image input for the entrance pupil grating 111 may be realized based on the optical engine 13
  • the image input for the entrance pupil grating 121 may be realized based on the optical engine 14.
  • the entrance pupil grating 111 and the entrance pupil grating 121 are both arranged at a position close to the inner side of the stent 10.
  • the area between the optical engine 13 and the optical engine 14 is relatively small.
  • the first diffraction The available space between the waveguide sheet 11 and the second diffractive waveguide sheet 12 is small, and there are fewer components that can be placed here;
  • the entrance pupil grating 111 and the entrance pupil grating 121 are arranged on the inner side of the holder 10, the corresponding The optical machine and other optical elements need to extend to the inner side of the bracket in order to cooperate with the entrance pupil grating to present an image. Due to the large size of the optical machine and other optical elements, the weight of the augmented reality glasses is heavier. Therefore, the structure of the display module shown in FIG. 1 is not conducive to the miniaturization of augmented reality glasses.
  • the present disclosure provides a new display module that can reduce the volume and weight of augmented reality glasses.
  • the display module provided in the present disclosure can generally be applied to augmented reality glasses. However, it is not limited to this, and other devices for realizing augmented reality can also be constructed based on the display module, which is not limited in the present disclosure.
  • FIG. 2 shows a schematic diagram of a display module according to the first embodiment of the present disclosure.
  • the display module may include a support 20, and a first diffractive waveguide sheet 21 and a second diffractive waveguide sheet 22 provided on the support 20.
  • the diffractive waveguide sheet described in the present disclosure can be regarded as a lens of augmented reality glasses.
  • the first diffractive waveguide sheet 21 and the second diffractive waveguide sheet 22 are usually fixed on the holder 20.
  • the first diffractive waveguide sheet 21 and the second diffractive waveguide sheet 22 may be mounted on the holder 20. Slide on 20. It should be noted that the first diffractive waveguide sheet 21 and the second diffractive waveguide sheet 22 are configured to correspond to the eyes of the user (augmented reality glasses wearer) one-to-one.
  • the area where the first diffractive waveguide sheet 21 is projected on the support 20 may be regarded as the first area 2001, that is, the first diffractive waveguide sheet 21 may include the first area 2001 projected on the support 20.
  • a first notch 200 is provided on the side of the first region 2001 close to the second diffractive waveguide sheet 22, that is, for the first diffractive waveguide sheet 21, the first notch 200 is close to the bracket 20 center of.
  • the first notch 200 faces the second diffraction waveguide sheet 22.
  • the area where the second diffractive waveguide sheet 22 is projected on the support 20 can be used as the second area 2002.
  • the second diffractive waveguide sheet 22 does not exist with the first diffractive waveguide.
  • Slice 21 has similar notches.
  • the present disclosure does not limit the relative positional relationship between the first diffractive waveguide sheet and the second diffractive waveguide sheet.
  • the lens on the right side is used as the first diffractive waveguide sheet, and the lens on the left side is used as the second diffractive waveguide sheet. In this case, the lens on the right side has a gap, and the lens on the left side has no gap.
  • the first diffractive waveguide sheet 21 includes a first entrance pupil grating 211 and a first exit pupil grating 212.
  • the first entrance pupil grating 211 is provided on the side of the first region 2001 far away from the second diffractive waveguide sheet 22 for acquiring an optical image so that the optical image can be transmitted on the first diffractive waveguide sheet 21.
  • the first exit pupil grating 212 is provided in the area of the first diffractive waveguide sheet 21 except the first area 2001. Referring to FIG. 2, the area except the first area 2001 is denoted as the third area 2003, that is, the first The exit pupil grating 212 is provided in the third area 2003.
  • the first exit pupil grating 212 may be used to receive the optical image transmitted on the first diffractive waveguide sheet 21 and output the optical image so that the human eye can perceive the optical image.
  • An optical machine may be used to project an optical image to the first entrance pupil grating 211.
  • the display module may further include a first optical engine 23, which is arranged between the support 20 and the first entrance pupil grating 211, and is arranged corresponding to the first entrance pupil grating 211, for sending optical images.
  • the display module includes a first light guide element, which can be arranged between the first optical engine 23 and the first entrance pupil grating 211, and is used to project the optical image sent by the first optical engine 23 to the first entrance pupil grating 211 .
  • the first light guide element can adjust the optical image sent by the first optical machine 23 by, for example, 90° adjustment, so that the optical image can be input to the first entrance pupil grating 211.
  • the first light guide element may be, for example, a prism.
  • the second diffractive waveguide sheet 22 includes a second entrance pupil grating 221 and a second exit pupil grating 222.
  • the second entrance pupil grating 221 is provided on the side of the second region 2002 far away from the first diffractive waveguide sheet 21, and is used to obtain an optical image so that the optical image can be transmitted on the second diffractive waveguide sheet 22.
  • the second exit pupil grating 222 is provided in the area of the second diffractive waveguide sheet 22 except the second area 2002. Referring to FIG. 2, the area except the second area 2002 is denoted as the fourth area 2004, that is, the second area The exit pupil grating 222 is provided in the fourth area 2004.
  • the second exit pupil grating 222 can be used to receive the optical image transmitted on the second diffractive waveguide sheet 22 and output the optical image so that the human eye can perceive the optical image.
  • the optical image output by the second exit pupil grating 222 and the optical image output by the first exit pupil grating 212 are usually the same image.
  • the display module may further include a second optical engine 24, which is arranged between the bracket 20 and the second entrance pupil grating 221, and is arranged corresponding to the second entrance pupil grating 221, for sending optical images.
  • the display module includes a second light guide element, which may be arranged between the second optical engine 24 and the second entrance pupil grating 221, for projecting the optical image sent by the second optical engine 24 to the second entrance pupil grating 221 .
  • the second light guide element can adjust the optical image sent by the second optical machine 24 by, for example, 90° adjustment, so that the optical image can be input to the second entrance pupil grating 221.
  • the second light guide element may also be a prism, for example.
  • the optical mechanism and the light guide element corresponding to the second entrance pupil grating 221 have a small volume, thereby helping to reduce the weight of the augmented reality glasses.
  • the usable area of the bracket between the first diffractive waveguide sheet 21 and the second diffractive waveguide sheet 22 is increased.
  • the camera module can be arranged at a position corresponding to the bracket 20 and the target area, which is composed of the first notch 200 and the area between the first notch 200 and the second diffractive waveguide sheet 22 .
  • the first entrance pupil grating 211 is arranged on the side away from the second diffractive waveguide sheet 22, and the second entrance pupil grating 221 is arranged on the side away from the first diffractive waveguide sheet 21, thereby increasing two In the area between the optical machines, some electronic components can also be deployed in the enlarged area to further reduce the volume of the augmented reality glasses. For example, if the size permits, the camera module can also be arranged between two optical machines.
  • the camera module 300 can be set in this area, so as to obtain real-time image information of the current scene, and then perform the fusion of virtual and reality.
  • the camera module described in the present disclosure includes one or more of various environment detection cameras such as a TOF (Time-Of-Flight) camera, an RGB camera, and the like for realizing attitude tracking and positioning.
  • TOF Time-Of-Flight
  • RGB camera RGB camera
  • the first diffractive waveguide sheet and the corresponding optical machine settings are the same as those shown in FIG. 2, and will not be repeated here.
  • the second diffractive waveguide sheet 42 shown in FIG. 4 includes a second area 4002 projected on the support 40, and a second notch is provided on the side of the second area 4002 close to the first diffractive waveguide sheet 21. 400, the second notch 400 faces the first diffractive waveguide sheet 21.
  • FIG. 4 shows a configuration structure in which the first notch 200 and the second notch 400 are arranged oppositely, that is, the first notch 200 and the second notch 400 may constitute a symmetrical structure, however, it should be understood that , The first notch 200 and the second notch 400 may be asymmetric, and the size of the notch may also be different.
  • the second diffractive waveguide sheet 42 includes a second entrance pupil grating 421 and a second exit pupil grating 422.
  • the second entrance pupil grating 421 is provided on the side of the second region 4002 away from the first diffractive waveguide sheet 21 for acquiring an optical image so that the optical image can be transmitted on the second diffractive waveguide sheet 42.
  • the second exit pupil grating 422 is provided in the fourth area 4004 of the second diffractive waveguide sheet 42 except for the second area, and is used to receive the optical image transmitted on the second diffractive waveguide sheet 42 and output the optical image for the convenience of people. The eye can perceive the optical image.
  • the second optical engine 24 may be used to project an optical image to the second entrance grating 421.
  • the display module may further include a second optical engine 24, which is arranged between the support 20 and the second entrance pupil grating 421, and is arranged corresponding to the second entrance pupil grating 421 for sending optical images.
  • the display module includes a second light guide element, which may be arranged between the second optical engine 24 and the second entrance pupil grating 421, for projecting the optical image sent by the second optical engine 24 to the second entrance pupil grating 421 .
  • the second light guide element can adjust the optical image sent by the second optical engine 24 by, for example, 90° adjustment, so that the optical image can be input to the second entrance pupil grating 421.
  • the second light guide element may also be a prism, for example.
  • the optical mechanism and the light guide element corresponding to the second entrance pupil grating 421 are relatively small in volume, thereby helping to reduce the weight of the augmented reality glasses.
  • the support in the first diffractive waveguide sheet 21 is greatly increased.
  • the usable area between the second diffractive waveguide sheet 42 and the second diffractive waveguide sheet 42 can be provided with other devices or modules. Taking the camera module as an example, the camera module can be arranged at a position corresponding to the bracket 40 and the target area. The target area is defined by the first gap 200, the second gap 400, and the gap between the first gap 200 and the second gap 400. Regional composition.
  • the camera module 500 can be set in this area to obtain real-time image information of the current scene, and then to merge the virtual and the reality.
  • the first entrance pupil grating 211 is arranged on the side away from the second diffractive waveguide sheet 42
  • the second entrance pupil grating 421 is arranged on the side away from the first diffractive waveguide sheet 21, thereby increasing two In the area between the optical machines, some electronic components can also be deployed in the enlarged area to further reduce the volume of the augmented reality glasses.
  • the camera module can also be arranged between two optical machines.
  • FIG. 6 shows a schematic diagram of a display module provided with a camera module according to a third embodiment of the present disclosure.
  • the first notch may be provided in a concave shape.
  • the second notch may also be provided in a concave shape.
  • the camera module 600 may be disposed in the first gap, the second gap, and the area between the first gap and the second gap.
  • the first diffractive waveguide sheet 61 may include a first entrance pupil grating 611 and a first exit pupil grating 612.
  • the holder 60 may be provided with a first optical engine 23 and a first guide Light components.
  • the second diffractive waveguide sheet 62 may include a second entrance pupil grating 621 and a second exit pupil grating 622.
  • a second optical mechanism 24 and a second light guide element may be provided on the bracket 60 .
  • the first entrance pupil grating 611 is arranged on the side away from the second diffraction waveguide sheet 62, and the second entrance pupil grating 621 is arranged on the side away from the first diffraction waveguide sheet 61, thereby increasing
  • the area between the two optical machines is enlarged, and some electronic components can also be deployed in the enlarged area, so as to further reduce the volume of the augmented reality glasses.
  • the camera module can also be arranged between two optical machines.
  • FIG. 7 shows a schematic diagram of a display module provided with a camera module according to a fourth embodiment of the present disclosure.
  • the first notch may be provided in a concave shape.
  • the second notch may be provided as the second notch 400 in FIG. 4.
  • the camera module 700 may be disposed in the first gap, the second gap, and the area between the first gap and the second gap.
  • the first notch and the second notch have an asymmetric structure.
  • the first diffractive waveguide sheet 71 may include a first entrance pupil grating 711 and a first exit pupil grating 712.
  • the support 70 may be provided with a first optical engine 23 and a first guide.
  • the second diffractive waveguide sheet 72 may include a second entrance pupil grating 721 and a second exit pupil grating 722.
  • a second optical mechanism 24 and a second light guide element may be provided on the support 70 .
  • the first entrance pupil grating 711 is arranged on the side away from the second diffraction waveguide sheet 72, and the second entrance pupil grating 721 is arranged on the side away from the first diffraction waveguide sheet 71, thereby increasing
  • the area between the two optical machines is enlarged, and some electronic components can also be deployed in the enlarged area, so as to further reduce the volume of the augmented reality glasses.
  • the camera module can also be arranged between two optical machines.
  • FIG. 8 shows a schematic diagram of a display module provided with a camera module according to a fifth embodiment of the present disclosure.
  • the shapes of the first notch and the second notch are different. Specifically, on the side of the first area 8001 of the first diffractive waveguide sheet 81 close to the second diffractive waveguide sheet 82, the top view shape of the first notch may be set to a rectangle. On the side of the second area 8002 of the second diffractive waveguide sheet 82 close to the first diffractive waveguide sheet 81, the top view shape of the second notch may be set to a semicircle.
  • the camera module 800 may be disposed in the first gap, the second gap, and the area between the first gap and the second gap.
  • the first diffractive waveguide sheet 81 may include a first entrance pupil grating 811 and a first exit pupil grating 812.
  • the holder 80 may be provided with a first optical engine 23 and a first guide Light components.
  • the second diffractive waveguide sheet 82 may include a second entrance pupil grating 821 and a second exit pupil grating 822.
  • a second optical mechanism 24 and a second light guide element may be provided on the support 80 .
  • the first entrance pupil grating 811 is arranged on the side away from the second diffraction waveguide sheet 82, and the second entrance pupil grating 821 is arranged on the side away from the first diffraction waveguide sheet 81, thereby increasing
  • the area between the two optical machines is enlarged, and some electronic components can also be deployed in the enlarged area, so as to further reduce the volume of the augmented reality glasses.
  • the camera module can also be arranged between two optical machines.
  • the bracket may be in a strip shape.
  • the first diffractive waveguide sheet and the second diffractive waveguide sheet may be arranged as a mirror image with respect to the center line of the bracket. It is easy to understand that the center line mentioned here is perpendicular to the length of the stent.
  • the present disclosure also provides an augmented reality glasses, which includes the above-mentioned display module.
  • the augmented reality glasses further include a glasses frame, and the above-mentioned display module is detachably disposed on the glasses frame.
  • the purpose of detachability is that for scenes with different image processing requirements, only the display module can be replaced, and the same glasses frame can be used to save material costs.
  • the augmented reality glasses may also include some control buttons, processing chips, storage units, etc., wherein, for example, some control buttons may be configured on the temples integrally formed with the glasses frame.
  • the augmented reality glasses constituted by the display module of the exemplary embodiment of the present disclosure on the one hand, due to the notch provided, the available space between the diffractive waveguide sheets is increased, and devices such as camera modules can be installed, and the space can be effectively used. It is helpful to reduce the volume of augmented reality glasses; on the other hand, since the entrance pupil grating of the diffractive waveguide sheet is set close to the two sides of the display module, the size of the corresponding optical machine and light guide element is also greatly reduced , Which reduces the weight of augmented reality glasses.
  • the use of the display module of the exemplary embodiment of the present disclosure contributes to the miniaturized design of the augmented reality glasses and is more convenient for users to wear.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)

Abstract

一种显示模组及增强现实眼镜,涉及增强现实技术领域。显示模组包括:支架(20,40,60,70,80);设于支架(20,40,60,70,80)上的第一衍射波导片(21,61,71,81)和第二衍射波导片(22,42,62,72,82),第一衍射波导片(21,61,71,81)与第二衍射波导片(22,42,62,72,82)被配置为与用户双眼一一对应;其中,第一衍射波导片(21,61,71,81)包括投影在支架(20,40,60,70,80)上的第一区域(2001,6001,7001,8001),第一区域(2001,6001,7001,8001)靠近第二衍射波导片(22,42,62,72,82)的一侧设有第一缺口(200),第一缺口(200)朝向第二衍射波导片(22,42,62,72,82)。可以减小增强现实眼镜的体积,有助于增强现实眼镜的小型化设计。

Description

显示模组及增强现实眼镜
相关申请的交叉引用
本申请要求于2019年11月29日提交的申请号为201911204431.9、名称为“显示模组及增强现实眼镜”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及增强现实技术领域,具体而言,涉及一种显示模组及增强现实眼镜。
背景技术
增强现实(Augmented Reality,AR)是一种把虚拟世界和现实世界融合的技术,该技术已广泛应用到教育、游戏、医疗、物联网、智能制造等多个领域。
增强现实眼镜作为一种便携式的将虚拟与现实融合的设备,自出现以来,广泛受到开发者及用户的关注,市场前景广阔。增强现实眼镜包括各种传感器件、显示器件、控制器件等,目前,构造上的约束造成增强现实眼镜的体积较大,外观较笨拙,不便于用户佩戴。
发明内容
根据本公开的第一方面,提供了一种显示模组,包括:支架;设于支架上的第一衍射波导片和第二衍射波导片,第一衍射波导片与第二衍射波导片被配置为与用户双眼一一对应;其中,第一衍射波导片包括投影在支架上的第一区域,第一区域靠近第二衍射波导片的一侧设有第一缺口,第一缺口朝向第二衍射波导片。
根据本公开的第二方面,提供了一种增强现实眼镜,包括上述显示模组。
附图说明
图1示出了根据本公开的一个实施例的应用于增强现实眼镜的显示模组的示意图;
图2示出了根据本公开的第一实施方式的显示模组的示意图;
图3示出了根据本公开的第一实施方式的设置有摄像头模组的显示模组的示意图;
图4示出了根据本公开的第二实施方式的显示模组的示意图;
图5示出了根据本公开的第二实施方式的设置有摄像头模组的显示模组的示意图;
图6示出了根据本公开的第三实施方式的设置有摄像头模组的显示模组的示意图;
图7示出了根据本公开的第四实施方式的设置有摄像头模组的显示模组的示意图;
图8示出了根据本公开的第五实施方式的设置有摄像头模组的显示模组的示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”、“第三”、“第四”等仅作为标记使用,不是对其对象的数量限制。
在基于衍射波导来实现增强现实眼镜的光学显示的情况下,光机需要将光学图像投射到衍射波导片的入瞳光栅进行光学耦入,再经由衍射波导片的出瞳光栅输出,以便人眼可以看到该光学图像。
应当注意的是,本公开所述衍射波导片可以简称为波导片,或可称为增强现实眼镜的镜片。
图1示出了根据本公开一个实施例的应用于增强现实眼镜的显示模组的示意图。显示模组支架10上可以设置第一衍射波导片11和第二衍射波导片12。第一衍射波导片11可以包括对应的入瞳光栅111和出瞳光栅112,第二衍射波导片12可以包括对应的入瞳光栅121和出瞳光栅122。另外,可以基于光机13实现针对入瞳光栅111的图像输入,可以基于光机14实现针对入瞳光栅121的图像输入。
从图1中可以看出,入瞳光栅111和入瞳光栅121均设置在靠近支架10内侧的位置,一方面,光机13与光机14之间的区域较小,相应的,第一衍射波导片11和第二衍射波导片12之间可用空间较小,在此处能够放置的器件较少;另一方面,由于入瞳光栅111和入瞳光栅121设置在支架10的内侧,对应的光机以及其他光学元件需要延伸至支架的内侧,才能与入瞳光栅配合以呈现出图像,由于光机以及其他光学元件尺寸较大,导致增强现实眼镜的重量较大。由此,图1所示的显示模组的结构不利于增强现实眼镜的小型化。
鉴于此,本公开提供了一种新的显示模组,可以减小增强现实眼镜的体积并减轻重量。
应当理解的是,本公开提供的显示模组通常可以应用于增强现实眼镜。然而,不限于此,还可以基于该显示模组构造出其他实现增强现实的设备,本公开对此不做限制。
图2示出了根据本公开的第一实施方式的显示模组的示意图。参考图2,显示模组可以包括支架20,设于支架20上的第一衍射波导片21和第二衍射波导片22。在这种应用 衍射波导原理实现增强现实眼镜图像显示的情况下,本公开所述的衍射波导片可以被认为是增强现实眼镜的镜片。另外,第一衍射波导片21和第二衍射波导片22通常被固定在支架20上,然而,在本公开的一个实施例中,第一衍射波导片21和第二衍射波导片22可以在支架20上滑动。需要注意的是,第一衍射波导片21与第二衍射波导片22被配置为与用户(增强现实眼镜佩戴者)双眼一一对应。
参考图2,可以将第一衍射波导片21投影在支架20上的区域作为第一区域2001,也就是说,第一衍射波导片21可以包括投影在支架20上的第一区域2001。从图2中可以看出,第一区域2001靠近第二衍射波导片22的一侧设有第一缺口200,也就是说,就第一衍射波导片21而言,第一缺口200靠近支架20的中心。另外,第一缺口200朝向第二衍射波导片22。
相应的,可以将第二衍射波导片22投影在支架20上的区域作为第二区域2002,然而,在本公开的第一实施方式中,第二衍射波导片22并不存在与第一衍射波导片21类似的缺口。此外,需要说明的是,本公开对第一衍射波导片和第二衍射波导片的相对位置关系不做限制,例如,在一个实施例中,以佩戴后,人眼为标准,还可以将相对处于右侧的镜片作为第一衍射波导片,将相对处于左侧的镜片作为第二衍射波导片,在这种情况下,右侧的镜片存在缺口,而左侧的镜片不存在缺口。
另外,第一衍射波导片21包括第一入瞳光栅211和第一出瞳光栅212。其中,第一入瞳光栅211设于第一区域2001远离第二衍射波导片22的一侧,用于获取光学图像,以便光学图像在第一衍射波导片21上进行传递。第一出瞳光栅212设于第一衍射波导片21除第一区域2001外的区域内,参考图2,将除第一区域2001外的区域记为第三区域2003,也就是说,第一出瞳光栅212设于第三区域2003内。第一出瞳光栅212可以用于接收在第一衍射波导片21上传递的光学图像,并输出该光学图像,以便人眼可以感知到该光学图像。
可以采用光机向第一入瞳光栅211投射光学图像。也就是说,显示模组还可以包括第一光机23,设于支架20与第一入瞳光栅211之间,且与第一入瞳光栅211对应设置,用于发送光学图像。另外,显示模组包括第一导光元件,可以设于第一光机23与第一入瞳光栅211之间,用于将第一光机23发送的光学图像投射到第一入瞳光栅211。具体的,第一导光元件可以将第一光机23发送的光学图像进行例如90°调整,以便光学图像可以输入至第一入瞳光栅211。其中,第一导光元件可以例如为棱镜。
对比图1和图2可以看出,由于第一入瞳光栅211远离支架20的中心而配置,因此,第一入瞳光栅211对应的光机和导光元件可以被设置为较小的体积,进而有助于减轻增强现实眼镜的重量。
针对图2中与第二衍射波导片22相关的配置,具体的,第二衍射波导片22包括第二入瞳光栅221和第二出瞳光栅222。其中,第二入瞳光栅221设于第二区域2002远离第一衍射波导片21的一侧,用于获取光学图像,以便光学图像在第二衍射波导片22上进行 传递。第二出瞳光栅222设于第二衍射波导片22除第二区域2002外的区域内,参考图2,将除第二区域2002外的区域记为第四区域2004,也就是说,第二出瞳光栅222设于第四区域2004内。第二出瞳光栅222可以用于接收在第二衍射波导片22上传递的光学图像,并输出该光学图像,以便人眼可以感知到该光学图像。其中,第二出瞳光栅222输出的光学图像与第一出瞳光栅212输出的光学图像通常为同一图像。
可以采用另一光机向第二入瞳光栅221投射光学图像。也就是说,显示模组还可以包括第二光机24,设于支架20与第二入瞳光栅221之间,且与第二入瞳光栅221对应设置,用于发送光学图像。另外,显示模组包括第二导光元件,可以设于第二光机24与第二入瞳光栅221之间,用于将第二光机24发送的光学图像投射到第二入瞳光栅221。具体的,第二导光元件可以将第二光机24发送的光学图像进行例如90°调整,以便光学图像可以输入至第二入瞳光栅221。其中,第二导光元件也可以例如为棱镜。
类似地,由于第二入瞳光栅221远离支架20的中心而配置,因此,第二入瞳光栅221对应的光机和导光元件体积较小,进而有助于减轻增强现实眼镜的重量。
在上述第一实施方式中,由于第一衍射波导片21设有第一缺口200,因此,增加了支架在第一衍射波导片21与第二衍射波导片22之间的可用区域,可以在该区域上设置其他器件或模组。以摄像头模组为例,该摄像头模组可以设于支架20与目标区域对应的位置上,该目标区域由第一缺口200、以及第一缺口200与第二衍射波导片22之间的区域组成。
另外,将第一入瞳光栅211设置在远离第二衍射波导片22的一侧,将第二入瞳光栅221设置在远离第一衍射波导片21的一侧,由此,增大了两个光机之间的区域,也可以在该增大的区域内部署一些电子元件,以便进一步减少增强现实眼镜的体积。例如,在尺寸允许的情况下,还可以将摄像头模组设置在两个光机之间。
如图3所示,可以将该区域设置摄像头模组300,以便实时获取当前场景的图像信息,进而进行虚拟与现实的融合。其中,本公开所述的摄像头模组包括TOF(Time-Of-Flight,飞行时间)摄像头、RGB摄像头等用于实现姿态跟踪和定位的各种环境检测摄像头中的一种或多种。
为了进一步增大第一衍射波导片与第二衍射波导片之间的可用区域,在本公开的第二实施方式中,还提供了第二衍射波导片设有缺口的方案。
参考图4,第一衍射波导片以及对应的光机设置与图2所示相同,不再赘述。
与图2不同的是,图4所示的第二衍射波导片42包括投影在支架40上的第二区域4002,该第二区域4002靠近第一衍射波导片21的一侧设有第二缺口400,该第二缺口400朝向第一衍射波导片21。应当注意的是,虽然图4示出了第一缺口200与第二缺口400相对设置的配置结构,也就是说,第一缺口200与第二缺口400可以构成对称结构,然而,应当理解的是,第一缺口200与第二缺口400可以不对称,且缺口的尺寸也可以存在差异。
在这种情况下,第二衍射波导片42包括第二入瞳光栅421和第二出瞳光栅422。其 中,第二入瞳光栅421设于第二区域4002远离第一衍射波导片21的一侧,用于获取光学图像,以便光学图像在第二衍射波导片42上进行传递。第二出瞳光栅422设于第二衍射波导片42除第二区域外的第四区域4004内,用于接收在第二衍射波导片42上传递的光学图像,并输出该光学图像,以便人眼可以感知到该光学图像。
可以采用第二光机24向第二入瞳光栅421投射光学图像。也就是说,显示模组还可以包括第二光机24,设于支架20与第二入瞳光栅421之间,且与第二入瞳光栅421对应设置,用于发送光学图像。另外,显示模组包括第二导光元件,可以设于第二光机24与第二入瞳光栅421之间,用于将第二光机24发送的光学图像投射到第二入瞳光栅421。具体的,第二导光元件可以将第二光机24发送的光学图像进行例如90°调整,以便光学图像可以输入至第二入瞳光栅421。其中,第二导光元件也可以例如为棱镜。
由于第二入瞳光栅421远离支架20的中心而配置,因此,第二入瞳光栅421对应的光机和导光元件体积较小,进而有助于减轻增强现实眼镜的重量。
在本公开的第二实施方式中,由于第一衍射波导片21设有第一缺口200以及第二衍射波导片42设有第二缺口400,因此,大大增加了支架在第一衍射波导片21与第二衍射波导片42之间的可用区域,可以在该区域上设置其他器件或模组。以摄像头模组为例,该摄像头模组可以设于支架40与目标区域对应的位置上,该目标区域由第一缺口200、第二缺口400以及第一缺口200与第二缺口400之间的区域组成。
如图5所示,可以在该区域设置摄像头模组500,以便实时获取当前场景的图像信息,进而进行虚拟与现实的融合。
对于图3和图5的效果可知,由于第一缺口和第二缺口均存在,第一衍射波导片与第二衍射波导片之间的可用区域进一步增大,可以设置更多的摄像头。
另外,将第一入瞳光栅211设置在远离第二衍射波导片42的一侧,将第二入瞳光栅421设置在远离第一衍射波导片21的一侧,由此,增大了两个光机之间的区域,也可以在该增大的区域内部署一些电子元件,以便进一步减少增强现实眼镜的体积。例如,在尺寸允许的情况下,还可以将摄像头模组设置在两个光机之间。
图6示出了根据本公开的第三实施方式的设置有摄像头模组的显示模组的示意图。参考图6,在第一衍射波导片61的第一区域6001靠近第二衍射波导片62的一侧,第一缺口可以被设置为凹状。在第二衍射波导片62的第二区域6002靠近第一衍射波导片61的一侧,第二缺口也可以被设置为凹状。摄像头模组600可以设置在第一缺口、第二缺口以及第一缺口与第二缺口之间的区域内。
此外,第一衍射波导片61可以包括第一入瞳光栅611和第一出瞳光栅612,与第一入瞳光栅611对应的,在支架60上可以设有第一光机23以及第一导光元件。第二衍射波导片62可以包括第二入瞳光栅621和第二出瞳光栅622,与第二入瞳光栅621对应的,在支架60上可以设有第二光机24以及第二导光元件。
另外,参考图6,将第一入瞳光栅611设置在远离第二衍射波导片62的一侧,将第 二入瞳光栅621设置在远离第一衍射波导片61的一侧,由此,增大了两个光机之间的区域,也可以在该增大的区域内部署一些电子元件,以便进一步减少增强现实眼镜的体积。例如,在尺寸允许的情况下,还可以将摄像头模组设置在两个光机之间。
图7示出了根据本公开的第四实施方式的设置有摄像头模组的显示模组的示意图。参考图7,在第一衍射波导片71的第一区域7001靠近第二衍射波导片72的一侧,第一缺口可以被设置为凹状。在第二衍射波导片72的第二区域7002靠近第一衍射波导片71的一侧,第二缺口可以如图4第二缺口400被设置。摄像头模组700可以设置在第一缺口、第二缺口以及第一缺口与第二缺口之间的区域内。在图7所示的实施例中,第一缺口与第二缺口为非对称结构。
此外,第一衍射波导片71可以包括第一入瞳光栅711和第一出瞳光栅712,与第一入瞳光栅711对应的,在支架70上可以设有第一光机23以及第一导光元件。第二衍射波导片72可以包括第二入瞳光栅721和第二出瞳光栅722,与第二入瞳光栅721对应的,在支架70上可以设有第二光机24以及第二导光元件。
另外,参考图7,将第一入瞳光栅711设置在远离第二衍射波导片72的一侧,将第二入瞳光栅721设置在远离第一衍射波导片71的一侧,由此,增大了两个光机之间的区域,也可以在该增大的区域内部署一些电子元件,以便进一步减少增强现实眼镜的体积。例如,在尺寸允许的情况下,还可以将摄像头模组设置在两个光机之间。
图8示出了根据本公开的第五实施方式的设置有摄像头模组的显示模组的示意图。参考图8,第一缺口与第二缺口的形状不同。具体的,在第一衍射波导片81的第一区域8001靠近第二衍射波导片82的一侧,第一缺口的俯视图形状可以被设置为矩形。在第二衍射波导片82的第二区域8002靠近第一衍射波导片81的一侧,第二缺口的俯视图形状可以被设置为半圆形。摄像头模组800可以设置在第一缺口、第二缺口以及第一缺口与第二缺口之间的区域内。
此外,第一衍射波导片81可以包括第一入瞳光栅811和第一出瞳光栅812,与第一入瞳光栅811对应的,在支架80上可以设有第一光机23以及第一导光元件。第二衍射波导片82可以包括第二入瞳光栅821和第二出瞳光栅822,与第二入瞳光栅821对应的,在支架80上可以设有第二光机24以及第二导光元件。
另外,参考图8,将第一入瞳光栅811设置在远离第二衍射波导片82的一侧,将第二入瞳光栅821设置在远离第一衍射波导片81的一侧,由此,增大了两个光机之间的区域,也可以在该增大的区域内部署一些电子元件,以便进一步减少增强现实眼镜的体积。例如,在尺寸允许的情况下,还可以将摄像头模组设置在两个光机之间。
需要说明的是,上述各实施方式以摄像头模组为例,对本公开所设置缺口的应用进行了说明,然而,在缺口区域,还可以配置例如图像处理芯片、控制按钮等,本示例性实施方式中对此不做特殊限定。另外,从上述各实施方式中也可以看出,本公开对衍射波导片上缺口的形状、位置等均不作特殊限制。
此外,在上述各实施方式中,支架可以为条状,为了更近似于用户日常佩戴的眼镜,通常第一衍射波导片与第二衍射波导片可以相对于支架的中心线镜像配置。容易理解的是,这里所说的中心线与支架的长度方向垂直。
进一步的,本公开还提供了一种增强现实眼镜,该增强现实眼镜包括上述显示模组。
根据本公开的示例性实施例,增强现实眼镜还包括眼镜框架,上述显示模组可拆卸地设置在该眼镜框架上。可拆卸的目的在于,针对不同图像处理要求的场景,可以仅更换显示模组,而采用同一眼镜框架,节省物料成本。
另外,增强现实眼镜还可以包括一些控制按钮、处理芯片、存储单元等,其中,可以例如将一些控制按钮配置在与眼镜框架一体构成的眼镜腿上。
采用本公开示例性实施方式的显示模组构成的增强现实眼镜,一方面,由于设置有缺口,使得衍射波导片间的可用空间增大,可以设置例如摄像机模组的器件,空间得到有效利用,有助于减小增强现实眼镜的体积;另一方面,由于衍射波导片的入瞳光栅设置在靠近显示模组两侧的位置,由此,对应光机和导光元件的尺寸也大大减小,减轻了增强现实眼镜的重量。综上,采用本公开示例性实施方式的显示模组,有助于增强现实眼镜的小型化设计,更便于用户佩戴。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限。

Claims (20)

  1. 一种显示模组,应用于增强现实眼镜,显示模组包括:
    支架;
    设于所述支架上的第一衍射波导片和第二衍射波导片,所述第一衍射波导片与所述第二衍射波导片被配置为与用户双眼一一对应;
    其中,所述第一衍射波导片包括投影在所述支架上的第一区域,所述第一区域靠近所述第二衍射波导片的一侧设有第一缺口,所述第一缺口朝向所述第二衍射波导片。
  2. 根据权利要求1所述的显示模组,其中,所述显示模组还包括:
    摄像头模组,设于所述支架与目标区域对应的位置上,所述目标区域由所述第一缺口以及所述第一缺口与所述第二衍射波导片之间的区域组成。
  3. 根据权利要求2所述的显示模组,其中,所述显示模组还包括:
    图像处理芯片,设于所述支架与所述目标区域对应的位置上。
  4. 根据权利要求1所述的显示模组,其中,所述第二衍射波导片包括投影在所述支架上的第二区域,所述第二区域靠近所述第一衍射波导片的一侧设有第二缺口,所述第二缺口朝向所述第一衍射波导片。
  5. 根据权利要求4所述的显示模组,其中,所述第一缺口与所述第二缺口相对设置。
  6. 根据权利要求4所述的显示模组,其中,所述第一缺口与所述第二缺口为非对称结构。
  7. 根据权利要求5或6所述的显示模组,其中,所述第一缺口和所述第二缺口被设置为凹状。
  8. 根据权利要求5或6所述的显示模组,其中,所述第一缺口与所述第二缺口形状不同。
  9. 根据权利要求5所述的显示模组,其中,所述显示模组还包括:
    摄像头模组,设于所述支架与目标区域对应的位置上,所述目标区域由所述第一缺口、所述第二缺口以及所述第一缺口与所述第二缺口之间的区域组成。
  10. 根据权利要求9所述的显示模组,其中,所述显示模组还包括:
    图像处理芯片,设于所述支架与所述目标区域对应的位置上。
  11. 根据权利要求4所述的显示模组,其中,所述第一衍射波导片包括:
    第一入瞳光栅,设于所述第一区域远离所述第二衍射波导片的一侧,用于获取光学图像,使所述光学图像在所述第一衍射波导片上进行传递;
    第一出瞳光栅,设于所述第一衍射波导片除所述第一区域外的区域内,用于接收在所述第一衍射波导片上传递的所述光学图像,并输出所述光学图像,以便人眼感知。
  12. 根据权利要求11所述的显示模组,其中,所述显示模组还包括:
    第一光机,设于所述支架与所述第一入瞳光栅之间,且与所述第一入瞳光栅对应设置, 用于发送所述光学图像;
    第一导光元件,设于所述第一光机与所述第一入瞳光栅之间,用于将所述第一光机发送的所述光学图像投射到所述第一入瞳光栅。
  13. 根据权利要求12所述的显示模组,其中,所述第一导光元件用于将所述第一光机发送的所述光学图像进行90°调整,以便所述光学图像输入至所述第一入瞳光栅。
  14. 根据权利要求12所述的显示模组,其中,所述第二衍射波导片包括:
    第二入瞳光栅,设于所述第二区域远离所述第一衍射波导片的一侧,用于获取所述光学图像,使所述光学图像在所述第二衍射波导片上进行传递;
    第二出瞳光栅,设于所述第二衍射波导片除所述第二区域外的区域内,用于接收在所述第二衍射波导片上传递的所述光学图像,并输出所述光学图像,以便人眼感知。
  15. 根据权利要求14所述的显示模组,其中,所述显示模组还包括:
    第二光机,设于所述支架与所述第二入瞳光栅之间,且与所述第二入瞳光栅对应设置,用于发送所述光学图像;
    第二导光元件,设于所述第二光机与所述第二入瞳光栅之间,用于将所述第二光机发送的所述光学图像投射到所述第二入瞳光栅。
  16. 根据权利要求15所述的显示模组,其中,所述第二导光元件用于将所述第二光机发送的所述光学图像进行90°调整,以便所述光学图像输入至所述第二入瞳光栅。
  17. 根据权利要求1所述的显示模组,其中,所述支架为条状,所述第一衍射波导片与所述第二衍射波导片相对于所述支架的中心线镜像设置,所述中心线与所述支架的长度方向垂直。
  18. 一种增强现实眼镜,包括权利要求1至17中任一项所述的显示模组。
  19. 根据权利要求18所述的增强现实眼镜,其中,所述增强现实眼镜还包括:
    眼镜框架;
    其中,所述显示模组可拆卸地设置在所述眼镜框架上。
  20. 根据权利要求19所述的增强现实眼镜,其中,所述增强现实眼镜还包括:
    控制按钮,配置在与所述眼镜框架一体构成的眼镜腿上。
PCT/CN2020/125974 2019-11-29 2020-11-02 显示模组及增强现实眼镜 WO2021103950A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20891948.0A EP4067969A4 (en) 2019-11-29 2020-11-02 AUGMENTED REALITY DISPLAY AND GLASSES
US17/825,986 US20220283441A1 (en) 2019-11-29 2022-05-26 Display module and augmented reality glasses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911204431.9A CN110908114A (zh) 2019-11-29 2019-11-29 显示模组及增强现实眼镜
CN201911204431.9 2019-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/825,986 Continuation US20220283441A1 (en) 2019-11-29 2022-05-26 Display module and augmented reality glasses

Publications (1)

Publication Number Publication Date
WO2021103950A1 true WO2021103950A1 (zh) 2021-06-03

Family

ID=69820776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125974 WO2021103950A1 (zh) 2019-11-29 2020-11-02 显示模组及增强现实眼镜

Country Status (4)

Country Link
US (1) US20220283441A1 (zh)
EP (1) EP4067969A4 (zh)
CN (1) CN110908114A (zh)
WO (1) WO2021103950A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116203733A (zh) * 2023-04-28 2023-06-02 中国兵器装备集团自动化研究所有限公司 一种混合现实穿戴设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110908114A (zh) * 2019-11-29 2020-03-24 Oppo广东移动通信有限公司 显示模组及增强现实眼镜
CN111814497A (zh) * 2020-08-05 2020-10-23 Oppo广东移动通信有限公司 翻译方法、装置、可穿戴设备及计算机可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101930125A (zh) * 2009-06-22 2010-12-29 索尼公司 头戴型显示器以及头戴型显示器中的图像显示方法
US9939647B2 (en) * 2016-06-20 2018-04-10 Microsoft Technology Licensing, Llc Extended field of view in near-eye display using optically stitched imaging
CN108681067A (zh) * 2018-05-16 2018-10-19 上海鲲游光电科技有限公司 一种扩展视场角的波导显示装置
CN109239842A (zh) * 2017-07-11 2019-01-18 苏州苏大维格光电科技股份有限公司 一种全息波导镜片及其制备方法、及三维显示装置
CN109313339A (zh) * 2016-06-13 2019-02-05 微软技术许可有限责任公司 通过降低近眼显示中的空间相干性来避免干涉
CN109407313A (zh) * 2018-10-29 2019-03-01 北京枭龙科技有限公司 一种衍射波导显示装置
CN110908114A (zh) * 2019-11-29 2020-03-24 Oppo广东移动通信有限公司 显示模组及增强现实眼镜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8355610B2 (en) * 2007-10-18 2013-01-15 Bae Systems Plc Display systems
CN204178064U (zh) * 2014-09-29 2015-02-25 上海万明眼镜有限公司 一种可配备摄像头的眼镜片
CN105353517A (zh) * 2015-10-30 2016-02-24 芜湖迈特电子科技有限公司 一种监测镜片清洁度3d眼镜
US10444419B2 (en) * 2016-08-22 2019-10-15 Magic Leap, Inc. Dithering methods and apparatus for wearable display device
US10466487B2 (en) * 2017-06-01 2019-11-05 PogoTec, Inc. Releasably attachable augmented reality system for eyewear
US20190317270A1 (en) * 2018-04-17 2019-10-17 Microsoft Technology Licensing, Llc Near-eye display system with air-gap interference fringe mitigation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101930125A (zh) * 2009-06-22 2010-12-29 索尼公司 头戴型显示器以及头戴型显示器中的图像显示方法
CN109313339A (zh) * 2016-06-13 2019-02-05 微软技术许可有限责任公司 通过降低近眼显示中的空间相干性来避免干涉
US9939647B2 (en) * 2016-06-20 2018-04-10 Microsoft Technology Licensing, Llc Extended field of view in near-eye display using optically stitched imaging
CN109239842A (zh) * 2017-07-11 2019-01-18 苏州苏大维格光电科技股份有限公司 一种全息波导镜片及其制备方法、及三维显示装置
CN108681067A (zh) * 2018-05-16 2018-10-19 上海鲲游光电科技有限公司 一种扩展视场角的波导显示装置
CN109407313A (zh) * 2018-10-29 2019-03-01 北京枭龙科技有限公司 一种衍射波导显示装置
CN110908114A (zh) * 2019-11-29 2020-03-24 Oppo广东移动通信有限公司 显示模组及增强现实眼镜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4067969A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116203733A (zh) * 2023-04-28 2023-06-02 中国兵器装备集团自动化研究所有限公司 一种混合现实穿戴设备

Also Published As

Publication number Publication date
CN110908114A (zh) 2020-03-24
US20220283441A1 (en) 2022-09-08
EP4067969A4 (en) 2023-01-18
EP4067969A1 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
WO2021103950A1 (zh) 显示模组及增强现实眼镜
WO2018028379A1 (zh) 视频眼镜的眼球追踪模组
WO2017173847A1 (zh) 视频眼镜的眼球追踪模组
US11378802B2 (en) Smart eyeglasses
CN106019568B (zh) 一种目镜系统和头戴显示设备
GB2516242A (en) Head mounted display
WO2017147999A1 (zh) 电子设备、脸部识别跟踪方法和三维显示方法
KR20140116517A (ko) 입력 및 출력 구조들을 구비한 웨어러블 디바이스
KR20140053341A (ko) 입력 및 출력 구조들을 구비한 착용가능한 디바이스
US11448864B2 (en) Optical system and image enlargement device
WO2020238476A1 (zh) 增强现实眼镜
US20220128815A1 (en) Glasses-type display device for realizing a high viewing angle
KR102218207B1 (ko) 가상 오브젝트의 처리가 가능한 스마트 안경
US20210055560A1 (en) Compact optics in crossed configuration for virtual and mixed reality
KR20190097894A (ko) 가상 오브젝트의 처리가 가능한 스마트 안경
TW201831949A (zh) 虛擬實境頭戴設備
CN110927967A (zh) 增强现实眼镜
WO2018045985A1 (zh) 一种增强现实显示系统
KR20180109669A (ko) 가상 오브젝트의 처리가 가능한 스마트 안경
WO2016123925A1 (zh) 3d显示眼镜
KR20190085345A (ko) 헤드 마운트 장치
WO2018006238A1 (zh) 视觉系统及观片器
CN103837989A (zh) 头戴式影像设备及头戴式智能终端
CN203745730U (zh) 头戴式影像设备及头戴式智能终端
TWI666483B (zh) 可調焦之影像顯示眼鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020891948

Country of ref document: EP

Effective date: 20220628