WO2021103512A1 - Method and apparatus for generating electronic map - Google Patents

Method and apparatus for generating electronic map Download PDF

Info

Publication number
WO2021103512A1
WO2021103512A1 PCT/CN2020/098281 CN2020098281W WO2021103512A1 WO 2021103512 A1 WO2021103512 A1 WO 2021103512A1 CN 2020098281 W CN2020098281 W CN 2020098281W WO 2021103512 A1 WO2021103512 A1 WO 2021103512A1
Authority
WO
WIPO (PCT)
Prior art keywords
pose change
vehicle
pose
electronic map
time
Prior art date
Application number
PCT/CN2020/098281
Other languages
French (fr)
Inventor
Xiaolin QI
Jingsen ZHENG
Ruyang SHOU
Xiao FANG
Lianxi LU
Original Assignee
Suzhou Zhijia Science & Technologies Co., Ltd.
Plusai, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Zhijia Science & Technologies Co., Ltd., Plusai, Inc. filed Critical Suzhou Zhijia Science & Technologies Co., Ltd.
Publication of WO2021103512A1 publication Critical patent/WO2021103512A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • G01C21/32Structuring or formatting of map data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3848Data obtained from both position sensors and additional sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3811Point data, e.g. Point of Interest [POI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases

Definitions

  • the present disclosure relates to the field of autonomous driving, and in particular, to a method and apparatus for generating an electronic map.
  • an electronic map In the process of autonomous driving of a vehicle, the generation of an electronic map is an important part of the autonomous driving system.
  • An electronic map with higher accuracy can help the autonomous driving system acquire accurate position and pose information of the vehicle.
  • the electronic map may also provide more partial travelling environment information, to provide a decision basis for a decision planning module.
  • a map collection vehicle may be used to collect travelling environment information and third-party positioning information required for the map. Offline matching and splicing of the collected travelling environment information with the third-party positioning information may then be performed in order to generate the electronic map.
  • Embodiments of the present disclosure provide a method and apparatus for generating an electronic map, which can improve the efficiency of constructing an electronic map in the related art.
  • a method for generating an electronic map including:
  • an apparatus for generating an electronic map including:
  • a first determining module configured to determine a first position and pose change of a vehicle according to travelling environment information at a first time and travelling environment information at a second time during travelling of the vehicle, the first time being a map updating time after the second time;
  • a second determining module configured to determine second position and pose change of the vehicle according to the travelling environment information at the first time and a first electronic map, an updating time of the first electronic map being the second time;
  • an acquiring module configured to acquire target position and pose change of the vehicle based on third position and pose change, the first position and pose change, and the second position and pose change, where the third position and pose change is position and pose change of the vehicle at the first time and the second time measured by a positioning apparatus on the vehicle;
  • an updating module configured to update the first electronic map based on the target position and pose change and the travelling environment at the first time, to obtain a second electronic map.
  • a computer device including one or more processors and one or more memories storing at least one instruction, the instruction being loaded and executed by the one or more processors to implement the operations performed in the method for generating an electronic map.
  • a computer readable storage medium storing at least one instruction, the instruction being loaded and executed by a processor to implement the operations performed in the method for generating an electronic map.
  • the position and pose change of the vehicle indicated by the target position and pose change is more accurate.
  • the electronic map is updated based on the position and pose change of the vehicle, therefore, the speed of generating the electronic map is increased. This may make it possible to generate the electronic map in real time while the autonomous vehicle is travelling.
  • FIG. 1 is a flowchart of a method for generating an electronic map according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart of a method for generating an electronic map according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram of a scenario of determining first position and pose change according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of an apparatus for generating an electronic map according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a vehicle-mounted terminal according to an embodiment of the present disclosure.
  • the present disclosure relates to generating an electronic map.
  • the electronic map is generated in part based on information ( “travelling environmental information” ) gathered by one or more sensors of an autonomous vehicle during a journey of the autonomous vehicle.
  • the electronic map may be updated over time and an earlier version of the electronic map may be referred to a first electronic map, while a later version of the electronic map may be referred to as a second electronic map.
  • FIG. 1 is a flowchart of a method for generating an electronic map according to an embodiment of the present disclosure. Referring to FIG. 1, the method includes the following blocks.
  • a first position and pose change of a vehicle is determined according to travelling environment information at a first time and travelling environment information at an earlier second time during travelling of the vehicle.
  • the first time is a time at which the electronic map is updated (a “map updating time” ) .
  • the second time is a time which is before the first time and may for example be an earlier map updating time.
  • the second time is a time at which a first electronic map is generated and thus may be referred to as an updating time of a first electronic map.
  • the position and pose change of the vehicle includes both the position change of the vehicle and the pose change of the vehicle at each time.
  • the position change of the vehicle is the difference of the positions of the vehicle between a first time and a second time, in a 2D plane or a 3D space.
  • the pose change of the vehicle is the difference of the direction in which the vehicle is heading between a first time and a second time, also in a 2D plane or a 3D space.
  • a second position and pose change of the vehicle is determined according to the travelling environment information at the first time and the first electronic map.
  • target position and pose change of the vehicle is determined based on a third position and pose change, the first position and pose change, and the second position and pose change, where the third position and pose change is a position and pose change of the vehicle from the second time to the first time measured by a positioning apparatus on the vehicle.
  • the positioning apparatus may for example be a satellite navigation system which determines a position of the vehicle based on a received satellite signal.
  • satellite navigation systems include, but are not limited to, global positioning system (GPS) , GNSS (Global Navigation Satellite System) , such as the US’s Global positioning system (GPS) , China's BeiDou Navigation Satellite System (BDS) , Russia's Global Navigation Satellite System (GLONASS) and the European Union's Galileo etc.
  • the satellite navigation system may be a low precision positioning system.
  • the position and pose of the vehicle at the first time and the second time may be measured respectively by the positioning apparatus, and the third position and pose change of the vehicle may be determined by comparing the position and pose of the vehicle at the first time and the second time.
  • the first electronic map is updated based on the target position and pose change and the travelling environment information at the first time, to obtain a second electronic map.
  • a vehicle-mounted terminal determines the first position and pose change of the vehicle based on the travelling environment information at the first time and the second time, determines the second position and pose change of the vehicle based on the travelling environment information at the first time and the first electronic map, determines the third position and pose change of the vehicle based on the measurements of the positioning apparatus, and acquires the target position and pose change based on the first position and pose change, the second position and pose change , and the third position and pose change.
  • the position and pose change of the vehicle indicated by the target position and pose change is more accurate, and the electronic map is updated based on the information change, so that the speed of generating the electronic map can be increased.
  • the acquiring target position and pose change of the vehicle based on third position and pose change, the first position and pose change, and the second position and pose change includes:
  • the position and pose change range of the vehicle indicating a possible position and pose change of the vehicle at the first time
  • the determining first position and pose change of a vehicle according to travelling environment information at a first time and travelling environment information at a second time during travelling of the vehicle includes:
  • determining at least one identical first environment element in the travelling environment information at the first time and the travelling environment at the second time predicting the first position and pose of the vehicle at the first time based on the at least one identical first environment element and the second position and pose of the vehicle at the second time, and determining the first position and pose change of the vehicle based on the first position and pose of the vehicle and the second position and pose change of the vehicle.
  • the determining second position and pose change of the vehicle according to the travelling environment information at the first time and a first electronic map includes:
  • the method before the updating the first electronic map based on the target position and pose change and the travelling environment information at the first time, to obtain a second electronic map, the method further includes:
  • determining whether the target position and pose change is greater than a position and pose change threshold determining whether the target position and pose change is greater than a position and pose change threshold, and updating the first electronic map when the target position and pose change is greater than the position and pose change threshold.
  • the updating the first electronic map based on the target position and pose change and the travelling environment information at the first time, to obtain a second electronic map includes:
  • FIG. 2 is a flowchart of a method for generating an electronic map according to an embodiment of the present disclosure. Referring to FIG. 2, the method includes the following blocks.
  • a vehicle-mounted terminal determines first position and pose change of a vehicle according to travelling environment information at a first time and travelling environment information at a second time during travelling of the vehicle.
  • the first time is a map updating time after the second time, and the position and pose change includes position change and pose change of the vehicle.
  • a change in the position of the vehicle may be considered as two-dimensional. In other words, it may be considered that the position of the vehicle changes on a plane, and the change in a pose of the vehicle may only indicate a direction of a head of the vehicle on the plane. If the vehicle is travelling on an uneven road section (e.g. with road bumps or varying gradient) , then the change in the position of the vehicle may be considered as three-dimensional. In other words, the change in the position of the vehicle occurs on the plane and in a direction perpendicular to the plane. Accordingly, the change in the pose of the vehicle may also occur in a direction perpendicular to the plane.
  • Information about the position change of the vehicle is used to describe the position change of the vehicle.
  • Such position change is actually converting the vehicle into a mass point, establishing a coordinate system with an object outside the vehicle as a reference, and simplifying the position change of the vehicle to the position change of the center of mass.
  • the pose change of the vehicle is used to describe the pose change of the vehicle. This pose change is essentially described through the change of the coordinate system established on the vehicle.
  • the center of mass of the vehicle may be used as an origin of coordinates to establish a coordinate system, and the coordinate system serves as a reference coordinate system.
  • the coordinate system will also change, so that a comparison coordinate system is obtained, and the pose change of the vehicle may be obtained based on the reference coordinate system and the comparison coordinate system.
  • the vehicle-mounted terminal may acquire the travelling environment information during travelling of the vehicle based on a sensing system of the vehicle. Specifically, the vehicle-mounted terminal may periodically send a travelling environment information acquisition request to the sensing system of the vehicle, and after receiving the travelling environment acquisition request, the sensing system of the vehicle calls various sensors installed on the vehicle, collects the environment information around the vehicle, fuses the collected environment information, and sends the fused environment information to the vehicle-mounted terminal.
  • the fusion of the environment information may be implemented by using a multi-sensor information fusion (MSIF) technology, and the embodiment of the present disclosure is not limited thereto.
  • MSIF multi-sensor information fusion
  • the vehicle may be equipped with one or more of a monocular camera, a binocular camera, a red green blue-depth (RGB-D) camera, a panorama camera, an event camera, and laser radar.
  • the sensing system of the vehicle may call one or more of the monocular camera, the binocular camera, the RGB-D camera, the panorama camera, the event camera, and the laser radar as a sensor for acquiring travelling environment information. If a plurality of sensors are used to collect environment information, the sensing system of the vehicle may fuse the environment information collected by the plurality of sensors based on the MSIF technology, and send the fused environment information to the vehicle-mounted terminal.
  • the vehicle-mounted terminal may perform feature extraction on the received environment information, which will help the vehicle-mounted terminal locate the vehicle and generate the features of the electronic map for extraction. Specifically, the vehicle-mounted terminal may extract geometric features of the reference object, image features of an environment image, and semantic features of the environment information from the environment information, where the geometric feature of the reference object may be a representative point on the reference object, for example: a corner point, an end point of a line segment, or a point with the largest local curvature on a curve.
  • a scale-invariant feature transform (SIFT) method, a point of interest detection and description method (speeded up robust features, Surf) with scale and rotation invariant characteristics, and an algorithm for fast feature point extraction and description (oriented fast and rotated binary robust independent elementary features, ORB) may be used for extraction of image features of the environment image, which is not limited in the embodiments of the present disclosure.
  • SIFT scale-invariant feature transform
  • Surf point of interest detection and description method with scale and rotation invariant characteristics
  • an algorithm for fast feature point extraction and description oriented fast and rotated binary robust independent elementary features, ORB
  • a semantic feature of the environment information may be used to describe a category of the reference object to which each data point in the environment information belongs.
  • the vehicle-mounted terminal may determine at least one identical first environment element in the travelling environment information at the first time and the travelling environment information at the second time, predict the first position and pose of the vehicle at the first time based on the at least one identical first environment element and second position and pose of the vehicle at the second time, and determine the first position and pose change of the vehicle based on the first position and pose and the second position and pose.
  • the travelling environment carries a large number of environment elements, and the vehicle-mounted terminal may extract and match the features of the travelling environment information at the first time and the travelling environment information at the second time.
  • the vehicle-mounted terminal may determine at least one environment element which is in both the travelling environment information at the first time and the travelling environment information at the second time based on a result obtained through feature matching.
  • This environmental element may be referred to as an ‘identical first environmental element’ .
  • the vehicle-mounted terminal may establish a reference coordinate system with a geometric center or a center of mass of the vehicle as an origin, respectively map at least one identical first environment element in the reference coordinate system at the first time and the reference coordinate system at the second time to obtain a distance and orientation of the environment element from the vehicle at the first time and the second time respectively.
  • the vehicle-mounted terminal may predict the first position and pose of the vehicle at the first time by combining the distance and orientation of the environment element from the vehicle at the first time and the second time with the second position and pose of the vehicle at the second time. The vehicle-mounted terminal may then determine the first position and pose change of the vehicle based on the first position and pose and the second position and pose.
  • the vehicle-mounted terminal may project the reference object in the reference coordinate system of the vehicle at the second time and the reference coordinate system of the vehicle at the first time, respectively and obtain the relative pose change of the vehicle based on the coordinate change of the reference object in the two reference coordinate systems.
  • the vehicle-mounted terminal may then predict the first position and pose of the vehicle at the first time based on the relative pose change of the vehicle and the second position and pose of the vehicle at the second time.
  • the vehicle-mounted terminal may then determine the first position and pose change of the vehicle based on the first position and pose and the second position and pose.
  • the vehicle-mounted terminal may select a plurality of first environment elements to determine the first position and pose change of the vehicle. Specifically, the vehicle-mounted terminal may add and average the plurality of pieces of position and pose change of the vehicle determined based on the plurality of first environment elements, and use the average value as the first position and pose change. It should be noted that the vehicle-mounted terminal may determine the first position and pose change of the vehicle in real time, which can improve the accuracy of generating the electronic map.
  • the vehicle-mounted terminal determines second position and pose change of the vehicle according to the travelling environment information at the first time and a first electronic map, an updating time of the first electronic map being the second time.
  • the first electronic map and the second electronic map mentioned in the embodiment of the present disclosure are both generated based on the position and pose and the environment information during travelling of the vehicle.
  • the first electronic map and the second electronic map both include a large amount of position and pose and travelling environment information of the vehicle at different times.
  • the vehicle-mounted terminal may compare the travelling environment information at the first time with travelling environment information in the first electronic map, determine at least one identical second environment element, and determine third position and pose of the vehicle in the first electronic map at the first time based on the at least one identical second environment element; and determining the second position and pose change of the vehicle based on the first position and pose and the third position and pose.
  • the vehicle-mounted terminal may extract and match features of the travelling environment information at the first time and travelling environment information in the first electronic map, determine at least one identical second environment element in the travelling environment information at the first time and the electronic map based on the result obtained through feature matching, and determine the third position and pose of the vehicle in the first electronic map based on at least one identical second environment element.
  • the second position and pose change of the vehicle is determined based on the first position and pose and the third position and pose.
  • the manner in which the first posture is determined is similar to that in block S201, and details are not described herein again.
  • the vehicle-mounted terminal may not determine the second position and pose change of the vehicle in real time, and periodically determine the second position and pose change of the vehicle. In this way, the calculation amount of the vehicle-mounted terminal can be reduced, and the efficiency of generating the electronic map can be improved.
  • the vehicle-mounted terminal generates a position and pose change range of the vehicle based on the third position and pose change, the first position and pose change, and the second position and pose change, and selects a target amount of position and pose changes from the position and pose change range.
  • the position and pose change range of the vehicle indicates a possible position and pose change of the vehicle at the first time.
  • the third position and pose change is position and pose change of the vehicle at the first time and the second time measured by a positioning apparatus on the vehicle.
  • the positioning apparatus may be a positioning apparatus with lower precision to reduce costs of generating the electronic map.
  • the first position and pose change of the vehicle determined by the vehicle-mounted terminal based on the sensor, the second position and pose change of the vehicle determined based on the sensor and the first electronic map, and the third position and pose change of the vehicle obtained through measurement based on the sensor and the positioning apparatus may be different.
  • the vehicle-mounted terminal may determine the position and pose change range of a vehicle based on the first position and pose change , the second position and pose change, and the third position and pose change, and select target amount of position and pose changes from the position and pose change range.
  • the vehicle-mounted terminal may first extract the first position change, the second position change, and the third position change from the first position and pose change , the second position and pose change , and the third position and pose change, determine upper and lower limits of the position change based on the first position change, the second position change and the third position change. Then the vehicle-mounted terminal extracts the first pose change , the second pose change , and the third pose change from the first position and pose change, the second position and pose change , and the third position and pose , and determine the upper and lower limits of the pose change based on the first position and pose change, the second position and pose change , and the third position and pose change.
  • the upper and lower limits of the position change and the upper and lower limits of the pose change constitute the position and pose change range of the vehicle.
  • the position and pose change is expressed by a vector, such as (1, 2, 1, 2, 3, 1)
  • the first three numbers in the vector may represent the position change of the vehicle
  • the last three numbers may represent the pose change of the vehicle. Since the vectors in the six dimensions are relatively complicated, in order to facilitate understanding, a two-dimensional vector is used as an example in the embodiment of the present disclosure as an example to explain how the vehicle-mounted terminal determines the position and pose change range of the vehicle.
  • a vector of the first position and pose change may be (1, 1)
  • a vector of the second position and pose change may be (1, 2)
  • a vector of the third position and pose change may be (2, 3)
  • the vehicle-mounted terminal may determine a range of the position change of the vehicle to be 1-2 and a range of the pose change to be 1-3, and the vehicle-mounted terminal determines the position and pose change range of the vehicle to be ⁇ (1, 1) , (1, 2) , (1, 3) , (2, 1) , (2, 2) , (2, 3) ⁇ .
  • the position and pose change range is represented as two integers, and in fact there may be fractions and decimals.
  • the vehicle-mounted terminal may select a target quantity of vectors as the position and pose change from the position and pose change range of the vehicle. If the target quantity is 2, then the vehicle-mounted terminal may select (1, 3) and (2, 1) as the position and pose change. It should be noted that the foregoing specific vectors are set for ease of understanding and do not constitute an improper limitation on the present disclosure.
  • the vehicle-mounted terminal selects a plurality of position and pose changes from the target amount of position and pose changes, and determines first similarity between each selected position and pose change and the first position and pose change, second similarity between each selected position and pose change and the second position and pose change, and third similarity between each selected position and pose change and the third position and pose change.
  • the vehicle-mounted terminal may express the similarity by calculating a cosine similarity between the vectors.
  • the vector of the first position and pose change is (1, 1)
  • the second position and pose change is (1, 2)
  • the third position and pose change is (2, 3)
  • the alternative position and pose change is (1, 3) and (2, 1)
  • the vehicle-mounted terminal may use (1, 3) as the alternative position and pose change, and use the cosine similarity to represent the similarity. In other words, a larger cosine similarity leads to more similarity of the two vectors.
  • the vehicle-mounted terminal may respectively calculate the first similarity between the alternative position and pose change (1, 3) and the first position and pose change (1, 1) , the second similarity between the alternative position and pose change (1, 3) and the second position and pose change (1, 2) , and the third similarity between the alternative position and pose change (1, 3) and the third position and pose change (2, 1) .
  • the vehicle-mounted terminal sums the first similarity, the second similarity, and the third similarity to obtain a similarity sum, and determines the selected position and pose change with the largest similarity sum as target position and pose change of the vehicle.
  • the vehicle-mounted terminal may also weight and sum the three similarities based on a target weight to obtain the weighted similarity, and determine the alternative position and pose with the largest similarity sum as the target position and pose change of the vehicle.
  • the target weight may be a weight set in advance based on the accuracy of the positioning apparatus, or may be a weight determined by the vehicle-mounted terminal based on a deep learning model, which is not limited in the embodiments of the present disclosure.
  • the vehicle-mounted terminal determines whether the target position and pose change is greater than a position and pose change threshold, and performs block S207 when the target position and pose change is greater than the position and pose change threshold, otherwise performs block S201 again.
  • the position and pose change threshold may be preset, or may be set by the vehicle-mounted terminal based on calculation force thereof.
  • the first electronic map is not updated when the position and pose change of the vehicle is too small, which avoids a case that map updating is performed based on each acquired position and pose change, so that a calculation amount is reduced in the process of generating the electronic map in real time, thereby improving the efficiency of generating the electronic map.
  • the vehicle-mounted terminal updates the first electronic map based on the target position and pose change and the travelling environment information at the first time, to obtain a second electronic map.
  • the vehicle-mounted terminal may acquire, from the travelling environment information at the first time, travelling environment difference that is not included in the first electronic map; and updating the first electronic map based on the travelling environment difference and the target position and pose, to obtain the second electronic map.
  • the vehicle-mounted terminal may compare, based on the target position and pose change, the travelling environment information at the first time with the travelling environment information included in the first electronic map, acquire travelling environment difference, update the first electronic map based on the travelling environment difference, to obtain a second electronic map.
  • the travelling environment difference consists of newly added environment elements in the environment information at the first time, and the newly added environment elements are actually based on the first electronic map, environment elements not included in the first electronic map determined from the travelling environment information at the first time.
  • the vehicle-mounted terminal may determine the position and pose change of the vehicle based on the target position and pose change, and add the position and pose change of the vehicle and the new environment elements in the travelling environment information to the first electronic map, to obtain the second electronic map.
  • the vehicle-mounted terminal may fuse the first position and pose change acquired based on the sensor, the second position and pose change acquired based on the sensor and the generated first map, and the third position and pose change acquired by the positioning apparatus in the travelling process of the vehicle, to obtain the target position and pose change .
  • the target position and pose change has high accuracy due to the combination of the sensor measurements, the generated first map, and the positioning apparatus measurements.
  • only the position and pose change and travelling environment change information are used to update the map in the generation process of the electronic map, thereby the computation of the vehicle-mounted terminal is reduced and the efficiency of generating the electronic map is improved.
  • FIG. 4 is a schematic structural diagram of an apparatus for generating an electronic map according to an embodiment of the present disclosure.
  • the apparatus may be a vehicle-mounted terminal.
  • the apparatus includes a first determining module 401, a second determining module 402, an acquiring module 403, and an updating module 404.
  • the first determining module 401 is configured to determine first position and pose change of a vehicle according to travelling environment information at a first time and travelling environment information at a second time during travelling of the vehicle, the first time being a map updating time after the second time.
  • the second determining module 402 is configured to determine second position and pose change of the vehicle according to the travelling environment information at the first time and a first electronic map, an updating time of the first electronic map being the second time.
  • the acquiring module 403 is configured to acquire target position and pose change of the vehicle based on third position and pose change, the first position and pose change, and the second position and pose change, where the third position and pose change is position and pose change of the vehicle at the first time and the second time measured by a positioning apparatus on the vehicle.
  • the updating module 404 is configured to update the first electronic map based on the target position and pose change and the travelling environment information at the first time, to obtain a second electronic map.
  • the acquiring module includes:
  • a generating unit configured to generate a position and pose change range of the vehicle based on the third position and pose change , the first position and pose change , and the second position and pose change ;
  • a first selecting unit configured to select a target amount of position and pose changes from the position and pose change range, the position and pose change range of the vehicle indicating a possible position and pose change of the vehicle at the first time;
  • a second selecting unit configured to select a plurality of position and pose changes from the target amount of position and pose changes, and determine a first difference between each of the selected position and pose and first position and pose, second difference between each piece of the alternative position and pose and second position and pose, and third difference between each piece of the alternative position and pose and third position and pose;
  • a first determining unit configured to sum the first difference, the second difference, and the third difference to obtain a difference sum, and determine alternative position and pose with the smallest difference sum as the target position and pose change of the vehicle.
  • the first determining module includes:
  • a second determining unit configured to determine at least one identical first environment element in the travelling environment information at the first time and the travelling environment information at the second time;
  • a predicting unit configured to predict first position and pose of the vehicle at the first time based on at least one identical first environment element and second position and pose of the vehicle at the second time;
  • a third determining unit configured to determine the first position and pose change of the vehicle based on the first position and pose and the second position and pose.
  • the second determining module determines the second position and pose change of the vehicle according to the travelling environment information at the first time and the first electronic map, and includes:
  • a third determining unit configured to compare the travelling environment information at the first time with environment information in the first electronic map, to determine a plurality of identical second environment elements
  • a fourth determining unit configured to determine third position and pose of the vehicle in the first electronic map at the first time based on the plurality of identical second environment elements
  • a fifth determining unit configured to determine the second position and pose change of the vehicle based on the first position and pose and the third position and pose.
  • the apparatus further includes:
  • a third determining module configured to determine whether the target position and pose change is greater than a position and pose change threshold, and update the first electronic map when the target position and pose change is greater than the position and pose change threshold.
  • the updating module includes:
  • an acquiring unit configured to acquire, from the travelling environment information at the first time, travelling environment difference that is not included in the first electronic map
  • an updating unit configured to update the first electronic map based on the travelling environment difference and the target position and pose, to obtain the second electronic map.
  • the vehicle-mounted terminal may fuse the first position and pose change acquired based on the sensor, the second position and pose change acquired based on the sensor and the generated first map, and the second position and pose change acquired by the positioning apparatus in the travelling process of the vehicle, to obtain the target position and pose change. Since the target position and pose change has high accuracy due to the sensor, the generated first map, and the positioning apparatus, only the position and pose change and travelling environment change are used to update the map in the generation process of the electronic map, thereby reducing the calculation amount of the vehicle-mounted terminal and improving the efficiency of generating the electronic map.
  • the apparatus for generating an electronic map provided in the foregoing embodiment when the apparatus for generating an electronic map provided in the foregoing embodiment generates an electronic map, it is described by taking division of each foregoing function module as an example. In actual application, the foregoing functions may be allocated to different function modules as required, that is, an internal structure of the apparatus is divided into different function modules to complete all or a part of the foregoing functions.
  • the embodiments of the method for generating an electronic map provided in the foregoing embodiments are based on the same concept. For a detailed implementation process, reference is made to the method embodiments, and the details are not described herein again.
  • the apparatus shown in Fig. 4 may be a computing device comprising a processor and/or memory. In some examples, the apparatus of Fig. 4 be implemented by a vehicle-mounted terminal as shown in Fig. 5.
  • FIG. 5 is a schematic structural diagram of a vehicle-mounted terminal according to an embodiment of the present disclosure.
  • the vehicle-mounted terminal 500 may be a portable vehicle-mounted terminal, a laptop vehicle-mounted terminal, a desktop vehicle-mounted terminal, or the like.
  • the vehicle-mounted terminal 500 includes one or more processors 501 and one or more memories 502.
  • the processor 501 includes one or more processing cores, for example, a 4-core processor or an 8-core processor.
  • the processor 501 may be implemented in at least one hardware form of digital signal processing (DSP) , a field-programmable gate array (FPGA) , and a programmable logic array (PLA) .
  • the processor 501 may alternatively include a main processor and a coprocessor.
  • the main processor is configured to process data in an awake state, also referred to as a central processing unit (CPU)
  • the coprocessor is a low-power processor configured to process data in an idle state.
  • the processor 501 may be integrated with a graphics processing unit (GPU) .
  • the GPU is responsible for rendering and drawing content to be displayed by a display screen.
  • the processor 501 may further include an artificial intelligence (AI) processor.
  • the AI processor is configured to process a calculation operation related to machine learning.
  • the memory 502 may include one or more computer-readable storage media.
  • the computer-readable storage medium may be non-transient.
  • the memory 502 may further include a high-speed random access memory, and a non-volatile memory such as one or more magnetic disk storage devices and a flash storage device.
  • the non-transitory computer-readable storage medium in the memory 502 is configured to store at least one instruction, and the at least one instruction being configured to be executed by the processor 501 to implement the method for generating an electronic map provided in the method embodiments of the present disclosure.
  • the vehicle-mounted terminal 500 further optionally includes a peripheral interface 503 and at least one peripheral.
  • the processor 501, the memory 502, and the peripheral interface 503 may be connected through a bus or a signal cable.
  • Each peripheral may be connected to the peripheral interface 503 through a bus, a signal cable, or a circuit board.
  • the peripheral device includes: at least one of a radio frequency (RF) circuit 504, a display screen 505, and a power source 506.
  • RF radio frequency
  • the peripheral interface 503 may be configured to connect at least one peripheral related to input/output (I/O) to the processor 501 and the memory 502.
  • the processor 501, the memory 502, and the peripheral interface 503 are integrated into the same chip or circuit board.
  • any one or two of the processor 501, the memory 502, and the peripheral interface 503 may be implemented on an independent chip or circuit board, and the implementation is not limited in this embodiment of the present disclosure.
  • the RF circuit 504 is configured to receive and transmit a RF signal, also referred to as an electromagnetic signal.
  • the RF circuit 504 communicates with a communications network and another communications device by using the electromagnetic signal.
  • the RF circuit 504 may convert an electric signal into an electromagnetic signal for transmission, or convert a received electromagnetic signal into an electric signal.
  • the RF circuit 504 includes an antenna system, an RF transceiver, one or more amplifiers, a tuner, an oscillator, a digital signal processor, a codec chip set, a subscriber identity module card, and the like.
  • the RF circuit 504 may communicate with another vehicle-mounted terminal by using at least one wireless communication protocol.
  • the wireless communication protocol includes, but is not limited to: a metropolitan area network, generations of mobile communication networks (2G, 3G, 4G, and 5G) , a wireless local area network and/or a Wi-Fi network.
  • the RF circuit 504 may further include a near field communication (NFC) related circuit. This is not limited in this embodiment of the present disclosure.
  • NFC near field communication
  • the display screen 505 is configured to display a user interface.
  • the UI may include a graph, text, an icon, a video, and any combination thereof.
  • the display screen 505 is further capable of collecting a touch signal on or over a surface of the display screen 505.
  • the touch signal may be inputted into the processor 501 as a control signal for processing.
  • the display screen 505 may further be configured to provide a virtual button and/or a virtual keyboard, which is also referred to as a soft button and/or a soft keyboard.
  • the display screen 505 may be a flexible display screen, disposed on a curved surface or a folded surface of the vehicle-mounted terminal 500. Even, the display screen 505 may further be set to have a non-rectangular irregular graph, that is, a special-shaped screen.
  • the display screen 505 may be made of materials such as a liquid crystal display (LCD) , an organic light-emitting diode (OLED) , or the like.
  • the power supply 506 is configured to supply power to components in the vehicle-mounted terminal 500.
  • the power supply 506 may be an alternating current, a direct current, a primary battery, or a rechargeable battery.
  • FIG. 5 constitutes no limitation to the vehicle-mounted terminal 500, and the terminal 1100 may include more or fewer components than those shown in the figure, or some components may be combined, or a different component deployment may be used.
  • a non-transitory computer-readable storage medium for example, a memory including instructions which are executable by a processor to perform any of the methods described herein.
  • the instructions may be executed by a processor, to complete the method for generating an electronic map in the foregoing embodiments.
  • the computer-readable storage medium may be a read-only memory (ROM) , a random access memory (RAM) , a compact disc read-only memory (CD-ROM) , a magnetic tape, a floppy disk, an optical data storage device, or the like.
  • a person of ordinary skill in the art may understand that all or some of the method blocks of the foregoing embodiments may be implemented by using hardware, or may be implemented by a program instructing relevant hardware.
  • the program may be stored in a computer readable storage medium.
  • the above-mentioned storage medium may be a read-only memory, a magnetic disk, an optical disc, or the like.

Abstract

The present disclosure provides a method for generating an electronic map, comprising: determining a first position and pose change of a vehicle according to travelling environment information at a first time and travelling environment information at a second time during travelling of the vehicle, the first time being a map updating time after the second time (S101); determining a second position and pose change of the vehicle according to the travelling environment information at the first time and a first electronic map (S102); determining a third position and pose change of the vehicle from the first time to the second time according to position and pose of the vehicle measured by a positioning apparatus on the vehicle; acquiring a target position and pose change of the vehicle based on the first position and pose change, the second position and pose change and the third position and pose change (S103); and generating a second electronic map by updating the first electronic map based on the target position and pose change of the vehicle and the travelling environment information at the first time (S104).

Description

METHOD AND APPARATUS FOR GENERATING ELECTRONIC MAP TECHNICAL FIELD
The present disclosure relates to the field of autonomous driving, and in particular, to a method and apparatus for generating an electronic map.
BACKGROUND
In the process of autonomous driving of a vehicle, the generation of an electronic map is an important part of the autonomous driving system. An electronic map with higher accuracy can help the autonomous driving system acquire accurate position and pose information of the vehicle. The electronic map may also provide more partial travelling environment information, to provide a decision basis for a decision planning module.
Traditional methods of constructing a map depend on high-precision third-party positioning information. For example, a map collection vehicle may be used to collect travelling environment information and third-party positioning information required for the map. Offline matching and splicing of the collected travelling environment information with the third-party positioning information may then be performed in order to generate the electronic map.
Due to the large amounts of data in the travelling environment information and high-precision third-party positioning information used for generating the electronic map, matching and splicing of the data is very time-consuming. Therefore, the efficiency of generating the electronic map is not high and the map generation process may take a long time.
SUMMARY
Embodiments of the present disclosure provide a method and apparatus for generating an electronic map, which can improve the efficiency of constructing an electronic map in the related art.
In one aspect, a method for generating an electronic map is provided, including:
determining a first position and pose change of a vehicle according to travelling environment at a first time and travelling environment at a second time during travelling of the vehicle, the first time being a map updating time after the second time;
determining a second position and pose change of the vehicle according to the travelling environment at the first time and the first electronic map, an updating time of the first electronic map being the second time;
determining a third position and pose change of the vehicle from the first time to the second time according to position and pose change of the vehicle measured by a positioning apparatus on the vehicle;
acquiring target position and pose change of the vehicle based on the third position and pose change, the first position and pose change , and the second position and pose change ; and
generating a second electronic map by updating the first electronic map based on the target position and pose change of the vehicle and the travelling environment at the first time.
In another aspect, an apparatus for generating an electronic map is provided, the apparatus including:
a first determining module configured to determine a first position and pose change of a vehicle according to travelling environment information at a first time and travelling environment information at a second time during travelling of the vehicle, the first time being a map updating time after the second time;
a second determining module configured to determine second position and pose change of the vehicle according to the travelling environment information at the first time and a first electronic map, an updating time of the first electronic map being the second time;
an acquiring module configured to acquire target position and pose change of the vehicle based on third position and pose change, the first position and pose change, and the second position and pose change, where the third position and pose change is position and pose change of the vehicle at the first time and the second time measured by a positioning apparatus on the vehicle; and
an updating module configured to update the first electronic map based on the target position and pose change and the travelling environment at the first time, to obtain a second electronic map.
In one aspect, a computer device is provided, including one or more processors and one or more memories storing at least one instruction, the instruction being loaded and executed by the one or more processors to implement the operations performed in the method for generating an electronic map.
In another aspect, a computer readable storage medium is provided, storing at least one instruction, the instruction being loaded and executed by a processor to implement the operations performed in the method for generating an electronic map.
As a variety of information is combined in the process of acquiring the target position and pose change, the position and pose change of the vehicle indicated by the target position and pose change is more accurate. As the electronic map is updated based on the position and pose change of the vehicle, therefore, the speed of generating the electronic map is increased. This may make it possible to generate the electronic map in real time while the autonomous vehicle is travelling.
BRIEF DESCRIPTION OF THE DRAWINGS
To describe the technical solutions in the embodiments of the present disclosure more clearly, the following briefly describes the accompanying drawings required for describing the embodiments. Apparently, the accompanying drawings in the following description show merely some embodiments of the present disclosure, and a person of ordinary skill in the art may still derive other drawings from these accompanying drawings without creative efforts.
FIG. 1 is a flowchart of a method for generating an electronic map according to an embodiment of the present disclosure.
FIG. 2 is a flowchart of a method for generating an electronic map according to an embodiment of the present disclosure.
FIG. 3 is a diagram of a scenario of determining first position and pose change according to an embodiment of the present disclosure.
FIG. 4 is a schematic structural diagram of an apparatus for generating an electronic map according to an embodiment of the present disclosure.
FIG. 5 is a schematic structural diagram of a vehicle-mounted terminal according to an embodiment of the present disclosure.
DETAILED DESCRIPTION
To make the objectives, technical solutions, and advantages of the present disclosure clearer, implementations of the present disclosure will be further described in detail below with reference to the accompanying drawings.
The present disclosure relates to generating an electronic map. The electronic map is generated in part based on information ( “travelling environmental information” ) gathered by one or more sensors of an autonomous vehicle during a journey of the autonomous vehicle. The electronic map may be updated over time and an earlier version of the electronic map may be referred to a first electronic map, while a later version of the electronic map may be referred to as a second electronic map.
FIG. 1 is a flowchart of a method for generating an electronic map according to an embodiment of the present disclosure. Referring to FIG. 1, the method includes the following blocks.
In block S101, a first position and pose change of a vehicle is determined according to travelling environment information at a first time and travelling environment information at an earlier second time during travelling of the vehicle.
The first time is a time at which the electronic map is updated (a “map updating time” ) . The second time is a time which is before the first time and may for example be an earlier map updating time. In one example the second time is a time at which a first electronic map is generated and thus may be referred to as an updating time of a first electronic map.
The position and pose change of the vehicle includes both the position change of the vehicle and the pose change of the vehicle at each time. The position change of the vehicle is the difference of the positions of the vehicle between a first time and a second time, in a 2D plane or a 3D space. The pose change of the vehicle is the difference of the direction in which the vehicle is heading between a first time and a second time, also in a 2D plane or a 3D space.
In block S102, a second position and pose change of the vehicle is determined according to the travelling environment information at the first time and the first electronic map.
In block S103, target position and pose change of the vehicle is determined based on a third position and pose change, the first position and pose change, and the second position and pose change, where the third position and pose change is a position and pose change of the vehicle from the second time to the first time measured by a positioning apparatus on the vehicle. The positioning apparatus may for example be a satellite navigation system which determines a position of the vehicle based on a received satellite signal. Examples of satellite navigation systems include, but are not limited to, global positioning system (GPS) , GNSS (Global Navigation Satellite System) , such as the US’s Global positioning system (GPS) , China's BeiDou Navigation  Satellite System (BDS) , Russia's Global Navigation Satellite System (GLONASS) and the European Union's Galileo etc. The satellite navigation system may be a low precision positioning system. By way of example, the position and pose of the vehicle at the first time and the second time may be measured respectively by the positioning apparatus, and the third position and pose change of the vehicle may be determined by comparing the position and pose of the vehicle at the first time and the second time.
In block S104, the first electronic map is updated based on the target position and pose change and the travelling environment information at the first time, to obtain a second electronic map.
According to the method provided by the embodiment of the present disclosure, a vehicle-mounted terminal determines the first position and pose change of the vehicle based on the travelling environment information at the first time and the second time, determines the second position and pose change of the vehicle based on the travelling environment information at the first time and the first electronic map, determines the third position and pose change of the vehicle based on the measurements of the positioning apparatus, and acquires the target position and pose change based on the first position and pose change, the second position and pose change , and the third position and pose change.
Because a variety of information is combined in the process of acquiring the target position and pose change, the position and pose change of the vehicle indicated by the target position and pose change is more accurate, and the electronic map is updated based on the information change, so that the speed of generating the electronic map can be increased.
In a possible implementation, the acquiring target position and pose change of the vehicle based on third position and pose change, the first position and pose change, and the second position and pose change includes:
generating a position and pose change range of the vehicle based on the third position and pose change, the first position and pose change, and the second position and pose change;
selecting a target amount of position and pose changes from the position and pose change range, the position and pose change range of the vehicle indicating a possible position and pose change of the vehicle at the first time;
selecting a plurality of position and pose changes from the target amount of position and pose changes, and determining a first similarity between each selected position and pose and the first position and pose change, a second similarity between each selected position and pose change and the second position and pose change, and a third similarity between each selected position and pose change and the third position and pose change;
summing the first similarity, the second similarity, and the third similarity to obtain a similarity sum for each of the selected position and pose changes; and
determining the selected position and pose change with a largest similarity sum as the target position and pose change of the vehicle.
In a possible implementation, the determining first position and pose change of a vehicle according to travelling environment information at a first time and travelling environment information at a second time during travelling of the vehicle includes:
determining at least one identical first environment element in the travelling environment information at the first time and the travelling environment at the second time, predicting the first position and pose of the vehicle at the first time based on the at least one identical first environment element and the second position and pose of the vehicle at the second time, and determining the first position and pose change of the vehicle based on the first position and pose of the vehicle and the second position and pose change of the vehicle.
In a possible implementation, the determining second position and pose change of the vehicle according to the travelling environment information at the first time and a first electronic map includes:
comparing the travelling environment information at the first time with environment in the first electronic map, determining at least one identical second environment element, and determining a third position and pose of the vehicle in the first electronic map at the first time based on the at least one identical second environment element; and
determining the second position and pose change of the vehicle based on the first position and pose and the third position and pose .
In a possible implementation, before the updating the first electronic map based on the target position and pose change and the travelling environment information at the first time, to obtain a second electronic map, the method further includes:
determining whether the target position and pose change is greater than a position and pose change threshold, and updating the first electronic map when the target position and pose change is greater than the position and pose change threshold.
In a possible implementation, the updating the first electronic map based on the target position and pose change and the travelling environment information at the first time, to obtain a second electronic map includes:
acquiring, from the travelling environment information at the first time, a travelling environment difference that is not included in the first electronic map; and
updating the first electronic map based on the travelling environment difference and the target position and pose change, to obtain the second electronic map.
All the foregoing optional technical solutions may be combined in any combination to form optional embodiments of the present disclosure, and details are not described herein again.
FIG. 2 is a flowchart of a method for generating an electronic map according to an embodiment of the present disclosure. Referring to FIG. 2, the method includes the following blocks.
In block S201, a vehicle-mounted terminal determines first position and pose change of a vehicle according to travelling environment information at a first time and travelling environment information at a second time during travelling of the vehicle.
The first time is a map updating time after the second time, and the position and pose change includes position change and pose change of the vehicle.
Specifically, if the vehicle is travelling on a generally flat road section, then a change in the position of the vehicle may be considered as two-dimensional. In other words, it may be considered that the position of the  vehicle changes on a plane, and the change in a pose of the vehicle may only indicate a direction of a head of the vehicle on the plane. If the vehicle is travelling on an uneven road section (e.g. with road bumps or varying gradient) , then the change in the position of the vehicle may be considered as three-dimensional. In other words, the change in the position of the vehicle occurs on the plane and in a direction perpendicular to the plane. Accordingly, the change in the pose of the vehicle may also occur in a direction perpendicular to the plane. Information about the position change of the vehicle is used to describe the position change of the vehicle. Such position change is actually converting the vehicle into a mass point, establishing a coordinate system with an object outside the vehicle as a reference, and simplifying the position change of the vehicle to the position change of the center of mass. The pose change of the vehicle is used to describe the pose change of the vehicle. This pose change is essentially described through the change of the coordinate system established on the vehicle. For example, the center of mass of the vehicle may be used as an origin of coordinates to establish a coordinate system, and the coordinate system serves as a reference coordinate system. When the pose of the vehicle changes, the coordinate system will also change, so that a comparison coordinate system is obtained, and the pose change of the vehicle may be obtained based on the reference coordinate system and the comparison coordinate system.
In a possible implementation, the vehicle-mounted terminal may acquire the travelling environment information during travelling of the vehicle based on a sensing system of the vehicle. Specifically, the vehicle-mounted terminal may periodically send a travelling environment information acquisition request to the sensing system of the vehicle, and after receiving the travelling environment acquisition request, the sensing system of the vehicle calls various sensors installed on the vehicle, collects the environment information around the vehicle, fuses the collected environment information, and sends the fused environment information to the vehicle-mounted terminal. The fusion of the environment information may be implemented by using a multi-sensor information fusion (MSIF) technology, and the embodiment of the present disclosure is not limited thereto. For example, the vehicle may be equipped with one or more of a monocular camera, a binocular camera, a red green blue-depth (RGB-D) camera, a panorama camera, an event camera, and laser radar. The sensing system of the vehicle may call one or more of the monocular camera, the binocular camera, the RGB-D camera, the panorama camera, the event camera, and the laser radar as a sensor for acquiring travelling environment information. If a plurality of sensors are used to collect environment information, the sensing system of the vehicle may fuse the environment information collected by the plurality of sensors based on the MSIF technology, and send the fused environment information to the vehicle-mounted terminal. The vehicle-mounted terminal may perform feature extraction on the received environment information, which will help the vehicle-mounted terminal locate the vehicle and generate the features of the electronic map for extraction. Specifically, the vehicle-mounted terminal may extract geometric features of the reference object, image features of an environment image, and semantic features of the environment information from the environment information, where the geometric feature of the reference object may be a representative point on the reference object, for example: a corner point, an end point of a line segment, or a point with the largest local curvature on a curve. A scale-invariant feature transform (SIFT) method, a point of interest detection and description method (speeded up robust features, Surf) with scale and rotation invariant characteristics, and an algorithm for fast feature point extraction and description (oriented fast and rotated binary  robust independent elementary features, ORB) may be used for extraction of image features of the environment image, which is not limited in the embodiments of the present disclosure. A semantic feature of the environment information may be used to describe a category of the reference object to which each data point in the environment information belongs.
In a possible implementation, the vehicle-mounted terminal may determine at least one identical first environment element in the travelling environment information at the first time and the travelling environment information at the second time, predict the first position and pose of the vehicle at the first time based on the at least one identical first environment element and second position and pose of the vehicle at the second time, and determine the first position and pose change of the vehicle based on the first position and pose and the second position and pose. Specifically, the travelling environment carries a large number of environment elements, and the vehicle-mounted terminal may extract and match the features of the travelling environment information at the first time and the travelling environment information at the second time. The vehicle-mounted terminal may determine at least one environment element which is in both the travelling environment information at the first time and the travelling environment information at the second time based on a result obtained through feature matching. This environmental element may be referred to as an ‘identical first environmental element’ . The vehicle-mounted terminal may establish a reference coordinate system with a geometric center or a center of mass of the vehicle as an origin, respectively map at least one identical first environment element in the reference coordinate system at the first time and the reference coordinate system at the second time to obtain a distance and orientation of the environment element from the vehicle at the first time and the second time respectively. Based on this information, the vehicle-mounted terminal may predict the first position and pose of the vehicle at the first time by combining the distance and orientation of the environment element from the vehicle at the first time and the second time with the second position and pose of the vehicle at the second time. The vehicle-mounted terminal may then determine the first position and pose change of the vehicle based on the first position and pose and the second position and pose.
For example, as shown in FIG. 3, after determining that the reference object shown in the figure is a same first environment element present in both the first and second travelling environmental information, the vehicle-mounted terminal may project the reference object in the reference coordinate system of the vehicle at the second time and the reference coordinate system of the vehicle at the first time, respectively and obtain the relative pose change of the vehicle based on the coordinate change of the reference object in the two reference coordinate systems. The vehicle-mounted terminal may then predict the first position and pose of the vehicle at the first time based on the relative pose change of the vehicle and the second position and pose of the vehicle at the second time. The vehicle-mounted terminal may then determine the first position and pose change of the vehicle based on the first position and pose and the second position and pose. It should be noted that while a single first environment element is used as an example in the foregoing description, in other examples, the vehicle-mounted terminal may select a plurality of first environment elements to determine the first position and pose change of the vehicle. Specifically, the vehicle-mounted terminal may add and average the plurality of pieces of position and pose change of the vehicle determined based on the plurality of first environment elements, and use the average value as the  first position and pose change. It should be noted that the vehicle-mounted terminal may determine the first position and pose change of the vehicle in real time, which can improve the accuracy of generating the electronic map.
In block S202, the vehicle-mounted terminal determines second position and pose change of the vehicle according to the travelling environment information at the first time and a first electronic map, an updating time of the first electronic map being the second time.
The first electronic map and the second electronic map mentioned in the embodiment of the present disclosure are both generated based on the position and pose and the environment information during travelling of the vehicle. In other words, the first electronic map and the second electronic map both include a large amount of position and pose and travelling environment information of the vehicle at different times.
In a possible implementation, the vehicle-mounted terminal may compare the travelling environment information at the first time with travelling environment information in the first electronic map, determine at least one identical second environment element, and determine third position and pose of the vehicle in the first electronic map at the first time based on the at least one identical second environment element; and determining the second position and pose change of the vehicle based on the first position and pose and the third position and pose. Specifically, the vehicle-mounted terminal may extract and match features of the travelling environment information at the first time and travelling environment information in the first electronic map, determine at least one identical second environment element in the travelling environment information at the first time and the electronic map based on the result obtained through feature matching, and determine the third position and pose of the vehicle in the first electronic map based on at least one identical second environment element. The second position and pose change of the vehicle is determined based on the first position and pose and the third position and pose. The manner in which the first posture is determined is similar to that in block S201, and details are not described herein again. It should be noted that the vehicle-mounted terminal may not determine the second position and pose change of the vehicle in real time, and periodically determine the second position and pose change of the vehicle. In this way, the calculation amount of the vehicle-mounted terminal can be reduced, and the efficiency of generating the electronic map can be improved.
In block S203, the vehicle-mounted terminal generates a position and pose change range of the vehicle based on the third position and pose change, the first position and pose change, and the second position and pose change, and selects a target amount of position and pose changes from the position and pose change range.
The position and pose change range of the vehicle indicates a possible position and pose change of the vehicle at the first time. The third position and pose change is position and pose change of the vehicle at the first time and the second time measured by a positioning apparatus on the vehicle. The positioning apparatus may be a positioning apparatus with lower precision to reduce costs of generating the electronic map.
In a possible embodiment, the first position and pose change of the vehicle determined by the vehicle-mounted terminal based on the sensor, the second position and pose change of the vehicle determined based on the sensor and the first electronic map, and the third position and pose change of the vehicle obtained through measurement based on the sensor and the positioning apparatus may be different. In this case, the vehicle-mounted  terminal may determine the position and pose change range of a vehicle based on the first position and pose change , the second position and pose change, and the third position and pose change, and select target amount of position and pose changes from the position and pose change range. Specifically, the vehicle-mounted terminal may first extract the first position change, the second position change, and the third position change from the first position and pose change , the second position and pose change , and the third position and pose change, determine upper and lower limits of the position change based on the first position change, the second position change and the third position change. Then the vehicle-mounted terminal extracts the first pose change , the second pose change , and the third pose change from the first position and pose change, the second position and pose change , and the third position and pose , and determine the upper and lower limits of the pose change based on the first position and pose change, the second position and pose change , and the third position and pose change. The upper and lower limits of the position change and the upper and lower limits of the pose change constitute the position and pose change range of the vehicle. For example, if the position and pose change is expressed by a vector, such as (1, 2, 1, 2, 3, 1) , the first three numbers in the vector may represent the position change of the vehicle, and the last three numbers may represent the pose change of the vehicle. Since the vectors in the six dimensions are relatively complicated, in order to facilitate understanding, a two-dimensional vector is used as an example in the embodiment of the present disclosure as an example to explain how the vehicle-mounted terminal determines the position and pose change range of the vehicle. A vector of the first position and pose change may be (1, 1) , a vector of the second position and pose change may be (1, 2) , and a vector of the third position and pose change may be (2, 3) , where if the first number indicates the position change of the vehicle, and the second number indicates the pose change of the vehicle, then the vehicle-mounted terminal may determine a range of the position change of the vehicle to be 1-2 and a range of the pose change to be 1-3, and the vehicle-mounted terminal determines the position and pose change range of the vehicle to be { (1, 1) , (1, 2) , (1, 3) , (2, 1) , (2, 2) , (2, 3) } . Definitely, for convenience of description, the position and pose change range is represented as two integers, and in fact there may be fractions and decimals. The vehicle-mounted terminal may select a target quantity of vectors as the position and pose change from the position and pose change range of the vehicle. If the target quantity is 2, then the vehicle-mounted terminal may select (1, 3) and (2, 1) as the position and pose change. It should be noted that the foregoing specific vectors are set for ease of understanding and do not constitute an improper limitation on the present disclosure.
In block S204, the vehicle-mounted terminal selects a plurality of position and pose changes from the target amount of position and pose changes, and determines first similarity between each selected position and pose change and the first position and pose change, second similarity between each selected position and pose change and the second position and pose change, and third similarity between each selected position and pose change and the third position and pose change.
Specifically, if the vehicle-mounted terminal expresses the position and pose change of the vehicle in a vector, the vehicle-mounted terminal may express the similarity by calculating a cosine similarity between the vectors.
Alternatively, the vector of the first position and pose change is (1, 1) , the second position and pose change is (1, 2) , and the third position and pose change is (2, 3) . For example, the alternative position and pose change is (1, 3) and (2, 1) . The vehicle-mounted terminal may use (1, 3) as the alternative position and pose change, and use the cosine similarity to represent the similarity. In other words, a larger cosine similarity leads to more similarity of the two vectors. The vehicle-mounted terminal may respectively calculate the first similarity 
Figure PCTCN2020098281-appb-000001
between the alternative position and pose change (1, 3) and the first position and pose change (1, 1) , the second similarity
Figure PCTCN2020098281-appb-000002
between the alternative position and pose change (1, 3) and the second position and pose change (1, 2) , and the third similarity
Figure PCTCN2020098281-appb-000003
between the alternative position and pose change (1, 3) and the third position and pose change (2, 1) .
In block S205, the vehicle-mounted terminal sums the first similarity, the second similarity, and the third similarity to obtain a similarity sum, and determines the selected position and pose change with the largest similarity sum as target position and pose change of the vehicle.
In a possible implementation manner, the vehicle-mounted terminal may also weight and sum the three similarities based on a target weight to obtain the weighted similarity, and determine the alternative position and pose with the largest similarity sum as the target position and pose change of the vehicle. The target weight may be a weight set in advance based on the accuracy of the positioning apparatus, or may be a weight determined by the vehicle-mounted terminal based on a deep learning model, which is not limited in the embodiments of the present disclosure.
In block S206, the vehicle-mounted terminal determines whether the target position and pose change is greater than a position and pose change threshold, and performs block S207 when the target position and pose change is greater than the position and pose change threshold, otherwise performs block S201 again.
The position and pose change threshold may be preset, or may be set by the vehicle-mounted terminal based on calculation force thereof.
According to the embodiment of the present disclosure, it is determined, by setting a position and pose change threshold, whether the position and pose change of the vehicle is too small. The first electronic map is not updated when the position and pose change of the vehicle is too small, which avoids a case that map updating is performed based on each acquired position and pose change, so that a calculation amount is reduced in the process of generating the electronic map in real time, thereby improving the efficiency of generating the electronic map.
In block S207, the vehicle-mounted terminal updates the first electronic map based on the target position and pose change and the travelling environment information at the first time, to obtain a second electronic map.
In a possible implementation, the vehicle-mounted terminal may acquire, from the travelling environment information at the first time, travelling environment difference that is not included in the first electronic map; and updating the first electronic map based on the travelling environment difference and the target position and pose, to obtain the second electronic map. Specifically, the vehicle-mounted terminal may compare, based on the target position and pose change, the travelling environment information at the first time with the travelling environment information included in the first electronic map, acquire travelling environment difference, update the first electronic map based on the travelling environment difference, to obtain a second electronic map. The travelling environment difference consists of newly added environment elements in the environment information at the first time, and the newly added environment elements are actually based on the first electronic map, environment elements not included in the first electronic map determined from the travelling environment information at the first time. In other words, when the target position and pose change is greater than the position and pose change threshold, it indicates that the position and pose change of the vehicle is large, and a relatively large quantity of environment elements may be added to the environment information acquired by the sensor. Then the vehicle-mounted terminal may determine the position and pose change of the vehicle based on the target position and pose change, and add the position and pose change of the vehicle and the new environment elements in the travelling environment information to the first electronic map, to obtain the second electronic map.
According to the method provided in the embodiment of the present disclosure, the vehicle-mounted terminal may fuse the first position and pose change acquired based on the sensor, the second position and pose change acquired based on the sensor and the generated first map, and the third position and pose change acquired by the positioning apparatus in the travelling process of the vehicle, to obtain the target position and pose change . The target position and pose change has high accuracy due to the combination of the sensor measurements, the generated first map, and the positioning apparatus measurements. In addition, only the position and pose change and travelling environment change information are used to update the map in the generation process of the electronic map, thereby the computation of the vehicle-mounted terminal is reduced and the efficiency of generating the electronic map is improved.
FIG. 4 is a schematic structural diagram of an apparatus for generating an electronic map according to an embodiment of the present disclosure. The apparatus may be a vehicle-mounted terminal. Referring to FIG. 4, the apparatus includes a first determining module 401, a second determining module 402, an acquiring module 403, and an updating module 404.
The first determining module 401 is configured to determine first position and pose change of a vehicle according to travelling environment information at a first time and travelling environment information at a second time during travelling of the vehicle, the first time being a map updating time after the second time.
The second determining module 402 is configured to determine second position and pose change of the vehicle according to the travelling environment information at the first time and a first electronic map, an updating time of the first electronic map being the second time.
The acquiring module 403 is configured to acquire target position and pose change of the vehicle based on third position and pose change, the first position and pose change, and the second position and pose  change, where the third position and pose change is position and pose change of the vehicle at the first time and the second time measured by a positioning apparatus on the vehicle.
The updating module 404 is configured to update the first electronic map based on the target position and pose change and the travelling environment information at the first time, to obtain a second electronic map.
In a possible implementation, the acquiring module includes:
a generating unit configured to generate a position and pose change range of the vehicle based on the third position and pose change , the first position and pose change , and the second position and pose change ;
a first selecting unit configured to select a target amount of position and pose changes from the position and pose change range, the position and pose change range of the vehicle indicating a possible position and pose change of the vehicle at the first time;
a second selecting unit configured to select a plurality of position and pose changes from the target amount of position and pose changes, and determine a first difference between each of the selected position and pose and first position and pose, second difference between each piece of the alternative position and pose and second position and pose, and third difference between each piece of the alternative position and pose and third position and pose; and
a first determining unit configured to sum the first difference, the second difference, and the third difference to obtain a difference sum, and determine alternative position and pose with the smallest difference sum as the target position and pose change of the vehicle.
In a possible implementation, the first determining module includes:
a second determining unit configured to determine at least one identical first environment element in the travelling environment information at the first time and the travelling environment information at the second time;
a predicting unit configured to predict first position and pose of the vehicle at the first time based on at least one identical first environment element and second position and pose of the vehicle at the second time; and
a third determining unit configured to determine the first position and pose change of the vehicle based on the first position and pose and the second position and pose.
In a possible implementation, the second determining module determines the second position and pose change of the vehicle according to the travelling environment information at the first time and the first electronic map, and includes:
a third determining unit configured to compare the travelling environment information at the first time with environment information in the first electronic map, to determine a plurality of identical second environment elements;
a fourth determining unit configured to determine third position and pose of the vehicle in the first electronic map at the first time based on the plurality of identical second environment elements; and
a fifth determining unit configured to determine the second position and pose change of the vehicle based on the first position and pose and the third position and pose.
In a possible implementation, the apparatus further includes:
a third determining module configured to determine whether the target position and pose change is greater than a position and pose change threshold, and update the first electronic map when the target position and pose change is greater than the position and pose change threshold.
In a possible implementation, the updating module includes:
an acquiring unit configured to acquire, from the travelling environment information at the first time, travelling environment difference that is not included in the first electronic map; and
an updating unit configured to update the first electronic map based on the travelling environment difference and the target position and pose, to obtain the second electronic map.
According to the apparatus provided in the embodiment of the present disclosure, the vehicle-mounted terminal may fuse the first position and pose change acquired based on the sensor, the second position and pose change acquired based on the sensor and the generated first map, and the second position and pose change acquired by the positioning apparatus in the travelling process of the vehicle, to obtain the target position and pose change. Since the target position and pose change has high accuracy due to the sensor, the generated first map, and the positioning apparatus, only the position and pose change and travelling environment change are used to update the map in the generation process of the electronic map, thereby reducing the calculation amount of the vehicle-mounted terminal and improving the efficiency of generating the electronic map.
It should be noted that: when the apparatus for generating an electronic map provided in the foregoing embodiment generates an electronic map, it is described by taking division of each foregoing function module as an example. In actual application, the foregoing functions may be allocated to different function modules as required, that is, an internal structure of the apparatus is divided into different function modules to complete all or a part of the foregoing functions. In addition, the embodiments of the method for generating an electronic map provided in the foregoing embodiments are based on the same concept. For a detailed implementation process, reference is made to the method embodiments, and the details are not described herein again.
The apparatus shown in Fig. 4 may be a computing device comprising a processor and/or memory. In some examples, the apparatus of Fig. 4 be implemented by a vehicle-mounted terminal as shown in Fig. 5.
FIG. 5 is a schematic structural diagram of a vehicle-mounted terminal according to an embodiment of the present disclosure. The vehicle-mounted terminal 500 may be a portable vehicle-mounted terminal, a laptop vehicle-mounted terminal, a desktop vehicle-mounted terminal, or the like.
Generally, the vehicle-mounted terminal 500 includes one or more processors 501 and one or more memories 502.
The processor 501 includes one or more processing cores, for example, a 4-core processor or an 8-core processor. The processor 501 may be implemented in at least one hardware form of digital signal processing (DSP) , a field-programmable gate array (FPGA) , and a programmable logic array (PLA) . The processor 501 may alternatively include a main processor and a coprocessor. The main processor is configured to process data in an awake state, also referred to as a central processing unit (CPU) , and the coprocessor is a low-power processor configured to process data in an idle state. In some embodiments, the processor 501 may be integrated with a  graphics processing unit (GPU) . The GPU is responsible for rendering and drawing content to be displayed by a display screen. In some embodiments, the processor 501 may further include an artificial intelligence (AI) processor. The AI processor is configured to process a calculation operation related to machine learning.
The memory 502 may include one or more computer-readable storage media. The computer-readable storage medium may be non-transient. The memory 502 may further include a high-speed random access memory, and a non-volatile memory such as one or more magnetic disk storage devices and a flash storage device. In some embodiments, the non-transitory computer-readable storage medium in the memory 502 is configured to store at least one instruction, and the at least one instruction being configured to be executed by the processor 501 to implement the method for generating an electronic map provided in the method embodiments of the present disclosure.
In some embodiments, the vehicle-mounted terminal 500 further optionally includes a peripheral interface 503 and at least one peripheral. The processor 501, the memory 502, and the peripheral interface 503 may be connected through a bus or a signal cable. Each peripheral may be connected to the peripheral interface 503 through a bus, a signal cable, or a circuit board. Specifically, the peripheral device includes: at least one of a radio frequency (RF) circuit 504, a display screen 505, and a power source 506.
The peripheral interface 503 may be configured to connect at least one peripheral related to input/output (I/O) to the processor 501 and the memory 502. In some embodiments, the processor 501, the memory 502, and the peripheral interface 503 are integrated into the same chip or circuit board. In some other embodiments, any one or two of the processor 501, the memory 502, and the peripheral interface 503 may be implemented on an independent chip or circuit board, and the implementation is not limited in this embodiment of the present disclosure.
The RF circuit 504 is configured to receive and transmit a RF signal, also referred to as an electromagnetic signal. The RF circuit 504 communicates with a communications network and another communications device by using the electromagnetic signal. The RF circuit 504 may convert an electric signal into an electromagnetic signal for transmission, or convert a received electromagnetic signal into an electric signal. Optionally, the RF circuit 504 includes an antenna system, an RF transceiver, one or more amplifiers, a tuner, an oscillator, a digital signal processor, a codec chip set, a subscriber identity module card, and the like. The RF circuit 504 may communicate with another vehicle-mounted terminal by using at least one wireless communication protocol. The wireless communication protocol includes, but is not limited to: a metropolitan area network, generations of mobile communication networks (2G, 3G, 4G, and 5G) , a wireless local area network and/or a Wi-Fi network. In some embodiments, the RF circuit 504 may further include a near field communication (NFC) related circuit. This is not limited in this embodiment of the present disclosure.
The display screen 505 is configured to display a user interface. The UI may include a graph, text, an icon, a video, and any combination thereof. When the display screen 505 is a touch display screen, the display screen 505 is further capable of collecting a touch signal on or over a surface of the display screen 505. The touch signal may be inputted into the processor 501 as a control signal for processing. In this case, the display screen 505 may further be configured to provide a virtual button and/or a virtual keyboard, which is also referred to as a soft  button and/or a soft keyboard. In some embodiments, there may be one display screen 505, disposed on a front panel of the vehicle-mounted terminal 500. In some other embodiments, there may be two display screens 505, respectively disposed on different surfaces of the vehicle-mounted terminal 500 or designed in a foldable shape. In still some other embodiments, the display screen 505 may be a flexible display screen, disposed on a curved surface or a folded surface of the vehicle-mounted terminal 500. Even, the display screen 505 may further be set to have a non-rectangular irregular graph, that is, a special-shaped screen. The display screen 505 may be made of materials such as a liquid crystal display (LCD) , an organic light-emitting diode (OLED) , or the like.
The power supply 506 is configured to supply power to components in the vehicle-mounted terminal 500. The power supply 506 may be an alternating current, a direct current, a primary battery, or a rechargeable battery.
Persons skilled in the art may understand that the structure shown in FIG. 5 constitutes no limitation to the vehicle-mounted terminal 500, and the terminal 1100 may include more or fewer components than those shown in the figure, or some components may be combined, or a different component deployment may be used.
In an exemplary embodiment, a non-transitory computer-readable storage medium, for example, a memory including instructions which are executable by a processor to perform any of the methods described herein, is further provided. The instructions may be executed by a processor, to complete the method for generating an electronic map in the foregoing embodiments. For example, the computer-readable storage medium may be a read-only memory (ROM) , a random access memory (RAM) , a compact disc read-only memory (CD-ROM) , a magnetic tape, a floppy disk, an optical data storage device, or the like.
A person of ordinary skill in the art may understand that all or some of the method blocks of the foregoing embodiments may be implemented by using hardware, or may be implemented by a program instructing relevant hardware. The program may be stored in a computer readable storage medium. The above-mentioned storage medium may be a read-only memory, a magnetic disk, an optical disc, or the like.
The foregoing descriptions are merely optional embodiments of the present disclosure, but are not intended to limit the present disclosure. Any modification, equivalent replacement, or improvement made without departing from the spirit and principle of the present disclosure should fall within the protection scope of the present disclosure.

Claims (16)

  1. A method for generating an electronic map, comprising:
    determining a first position and pose change of a vehicle according to travelling environment information at a first time and travelling environment information at a second time during travelling of the vehicle, the first time being a map updating time after the second time;
    determining a second position and pose change of the vehicle according to the travelling environment information at the first time and a first electronic map;
    determining a third position and pose change of the vehicle according to a measured position and pose change from the first time to the second time by a positioning apparatus on the vehicle;
    determining a target position and pose change of the vehicle based on the first position and pose change, the second position and pose change and the third position and pose change; and
    generating a second electronic map by updating the first electronic map based on the target position and pose change of the vehicle and the travelling environment information at the first time.
  2. The method for generating an electronic map according to claim 1, wherein the acquiring the target position and pose change of the vehicle based on the first position and pose change, the second position and pose change and the third position and pose change comprises:
    determining a position and pose change range of the vehicle based on the first position and pose change, the second position and pose change and the third position and pose change, the position and pose change range of the vehicle indicating a possible position and pose change of the vehicle at the first time;
    selecting a plurality of position and pose changes from the position and pose change range;
    determining a first similarity between each selected position and pose change and the first position and pose change, a second similarity between each selected position and pose change and the second position and pose change, and a third similarity between each selected position and pose change and the third position and pose change;
    calculating a summed similarity for each selected position and pose change by summing the first similarity, the second similarity, and the third similarity, and
    determining the target position and pose change of the vehicle by the selected position and pose change with a largest summed similarity.
  3. The method for generating an electronic map according to claim 1, wherein the determining the first position and pose change of a vehicle comprises:
    determining at least one identical first environment element from the travelling environment information at the first time and the travelling environment information at the second time;
    predicting a first position and pose of the vehicle at the first time based on the at least one identical first environment element and a second position and pose of the vehicle at the second time, and
    determining the first position and pose change of the vehicle based on the predicted first position and pose and the second position and pose of the vehicle.
  4. The method for generating an electronic map according to claim 3, wherein the determining second position and pose change of the vehicle comprises:
    comparing the travelling environment information at the first time with environment information in the first electronic map, determining at least one identical second environment element, and determining a third position and pose of the vehicle in the first electronic map at the first time based on the at least one identical second environment element; and
    determining the second position and pose change of the vehicle based on the first position and pose of the vehicle and the third position and pose of the vehicle.
  5. The method for generating an electronic map according to claim 1, further comprising:
    determining whether the target position and pose change is greater than a position and pose change threshold, and updating the first electronic map when the target position and pose change is greater than the position and pose change threshold.
  6. The method for generating an electronic map according to claim 1, wherein the updating the first electronic map further comprises:
    acquiring, from the travelling environment information at the first time, a travelling environment difference that is not included in the first electronic map; and
    updating the first electronic map based on the travelling environment difference and the target position and pose .
  7. An apparatus for generating an electronic map, comprising:
    a first determining module configured to determine a first position and pose change of a vehicle according to travelling environment information at a first time and travelling environment information at a second time during travelling of the vehicle, an updating time of a first electronic map being the second time, the first time being a map updating time after the second time;
    a second determining module configured to determine second position and pose change of the vehicle according to the travelling environment information at the first time and the first electronic map, ;
    an acquiring module configured to acquire target position and pose change of the vehicle based on third position and pose change, the first position and pose change, and the second position and pose change, wherein the third position and pose change is determined based on position and pose of the vehicle measured by a positioning apparatus on the vehicle at the first time and the second time respectively; and
    an updating module configured to obtain a second electronic map by updating the first electronic map based on the target position and pose change and the travelling environment information at the first time.
  8. The apparatus for generating an electronic map according to claim 7, wherein the acquiring module comprises:
    a generating unit configured to generate a position and pose change range of the vehicle based on the third position and pose change, the first position and pose change , and the second position and pose change ;
    a selecting unit configured to select at least one position and pose change from the position and pose change range indicating a possible position and pose change of the vehicle at the first time, and determine a first difference  between each selected position and pose change and the first position and pose change, a second difference between each selected position and pose change and the second position and pose change, and a third difference between each selected position and pose change and the third position and pose change; and
    a first determining unit configured to sum the first difference, the second difference, and the third difference to obtain a difference sum, and determine the selected position and pose change with a smallest difference sum as the target position and pose change of the vehicle.
  9. The apparatus for generating an electronic map according to claim 7, wherein the first determining module comprises:
    a second determining unit configured to determine at least one identical first environment element in the travelling environment information at the first time and the travelling environment information at the second time;
    a predicting unit configured to predict a first position and pose of the vehicle at the first time based on the at least one identical first environment element and a second position and pose of the vehicle at the second time; and
    a third determining unit configured to determine the first position and pose change of the vehicle based on the first position and pose of the vehicle and the second position and pose of the vehicle.
  10. The apparatus for generating an electronic map according to claim 9, wherein the second determining module comprises:
    a third determining unit configured to compare the travelling environment information at the first time with environment information in the first electronic map, to determine a plurality of identical second environment elements;
    a fourth determining unit configured to determine a third position and pose of the vehicle in the first electronic map at the first time based on the plurality of identical second environment elements; and
    a fifth determining unit configured to determine the second position and pose change of the vehicle based on the first position and pose of the vehicle and the third position and pose of the vehicle.
  11. The apparatus for generating an electronic map according to claim 7, further comprising:
    a third determining module configured to determine whether the target position and pose change is greater than a position and pose change threshold, and update the first electronic map when the target position and pose change is greater than the position and pose change threshold.
  12. The apparatus for generating an electronic map according to claim 7, wherein the updating module comprises:
    an acquiring unit configured to acquire, from the travelling environment information at the first time, a travelling environment difference that is not included in the first electronic map; and
    an updating unit configured to update the first electronic map based on the travelling environment difference and the target position and pose change, to obtain the second electronic map.
  13. A computer device, comprising: one or more processors and one or more memories storing at least one instruction that can be loaded and executed by the one or more processors to implement the operations performed in the method for generating an electronic map according to any of claims 1 to 6.
  14. A non-transitory computer readable storage medium, storing machine readable instructions which are executable by a processor to perform the method for generating an electronic map according to any of claims 1 to 6.
  15. A method for generating an electronic map, comprising:
    determining first position and pose change information of a vehicle according to travelling environment information at a first moment and travelling environment information at a second moment during travelling of the vehicle, the first moment being a map updating moment after the second moment;
    determining second position and pose change information of the vehicle according to the travelling environment information at the first moment and a first electronic map, an updating time of the first electronic map being the second moment;
    acquiring target position and pose change information of the vehicle based on third position and pose change information, the first position and pose change information, and the second position and pose change information, wherein the third position and pose change information is position and pose change information of the vehicle at the first moment and the second moment measured by a positioning apparatus on the vehicle; and
    updating the first electronic map based on the target position and pose change information and the travelling environment information at the first moment, to obtain a second electronic map.
  16. An apparatus for generating an electronic map, comprising:
    a first determining module configured to determine first position and pose change information of a vehicle according to travelling environment information at a first moment and travelling environment information at a second moment during travelling of the vehicle, the first moment being a map updating moment after the second moment;
    a second determining module configured to determine second position and pose change information of the vehicle according to the travelling environment information at the first moment and a first electronic map, an updating time of the first electronic map being the second moment;
    an acquiring module configured to acquire target position and pose change information of the vehicle based on third position and pose change information, the first position and pose change information, and the second position and pose change information, wherein the third position and pose change information is position and pose change information of the vehicle at the first moment and the second moment measured by a positioning apparatus on the vehicle; and
    an updating module configured to update the first electronic map based on the target position and pose change information and the travelling environment information at the first moment, to obtain a second electronic map.
PCT/CN2020/098281 2019-11-26 2020-06-24 Method and apparatus for generating electronic map WO2021103512A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911176930.1 2019-11-26
CN201911176930.1A CN110954114B (en) 2019-11-26 2019-11-26 Method and device for generating electronic map, terminal and storage medium

Publications (1)

Publication Number Publication Date
WO2021103512A1 true WO2021103512A1 (en) 2021-06-03

Family

ID=69976877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098281 WO2021103512A1 (en) 2019-11-26 2020-06-24 Method and apparatus for generating electronic map

Country Status (2)

Country Link
CN (1) CN110954114B (en)
WO (1) WO2021103512A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110954114B (en) * 2019-11-26 2021-11-23 苏州智加科技有限公司 Method and device for generating electronic map, terminal and storage medium
CN112068172A (en) * 2020-09-08 2020-12-11 广州小鹏自动驾驶科技有限公司 Vehicle positioning method and device
CN114485607B (en) * 2021-12-02 2023-11-10 陕西欧卡电子智能科技有限公司 Method, operation equipment, device and storage medium for determining motion trail

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107991680A (en) * 2017-11-21 2018-05-04 南京航空航天大学 SLAM methods based on laser radar under dynamic environment
US20180188039A1 (en) * 2016-12-30 2018-07-05 DeepMap Inc. Alignment of data captured by autonomous vehicles to generate high definition maps
CN109374008A (en) * 2018-11-21 2019-02-22 深动科技(北京)有限公司 A kind of image capturing system and method based on three mesh cameras
CN109934920A (en) * 2019-05-20 2019-06-25 奥特酷智能科技(南京)有限公司 High-precision three-dimensional point cloud map constructing method based on low-cost equipment
WO2019204800A1 (en) * 2018-04-20 2019-10-24 WeRide Corp. Method and system for generating high definition map
CN110954114A (en) * 2019-11-26 2020-04-03 苏州智加科技有限公司 Method and device for generating electronic map, terminal and storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10852749B2 (en) * 2017-08-28 2020-12-01 Nec Corporation Learning good features for visual odometry
CN108180917B (en) * 2017-12-31 2021-05-14 芜湖哈特机器人产业技术研究院有限公司 Top map construction method based on pose graph optimization
CN110197615B (en) * 2018-02-26 2022-03-04 北京京东尚科信息技术有限公司 Method and device for generating map
CN109064506B (en) * 2018-07-04 2020-03-13 百度在线网络技术(北京)有限公司 High-precision map generation method and device and storage medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180188039A1 (en) * 2016-12-30 2018-07-05 DeepMap Inc. Alignment of data captured by autonomous vehicles to generate high definition maps
CN107991680A (en) * 2017-11-21 2018-05-04 南京航空航天大学 SLAM methods based on laser radar under dynamic environment
WO2019204800A1 (en) * 2018-04-20 2019-10-24 WeRide Corp. Method and system for generating high definition map
CN109374008A (en) * 2018-11-21 2019-02-22 深动科技(北京)有限公司 A kind of image capturing system and method based on three mesh cameras
CN109934920A (en) * 2019-05-20 2019-06-25 奥特酷智能科技(南京)有限公司 High-precision three-dimensional point cloud map constructing method based on low-cost equipment
CN110954114A (en) * 2019-11-26 2020-04-03 苏州智加科技有限公司 Method and device for generating electronic map, terminal and storage medium

Also Published As

Publication number Publication date
CN110954114A (en) 2020-04-03
CN110954114B (en) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2021103512A1 (en) Method and apparatus for generating electronic map
WO2021128777A1 (en) Method, apparatus, device, and storage medium for detecting travelable region
CN110121118B (en) Video clip positioning method and device, computer equipment and storage medium
US10878621B2 (en) Method and apparatus for creating map and positioning moving entity
CN109059906B (en) Vehicle positioning method and device, electronic equipment and storage medium
CN112329826A (en) Training method of image recognition model, image recognition method and device
CN111125283B (en) Electronic map construction method and device, computer equipment and storage medium
JP7214803B2 (en) Building positioning method, device, electronic device, storage medium, program, and terminal device
CN111104893B (en) Target detection method, target detection device, computer equipment and storage medium
CN112053360B (en) Image segmentation method, device, computer equipment and storage medium
CN113932796A (en) High-precision map lane line generation method and device and electronic equipment
CN114674328B (en) Map generation method, map generation device, electronic device, storage medium, and vehicle
CN116798027A (en) Three-dimensional point cloud real-time cloud matching method and device based on multi-scale feature extraction
CN114266830B (en) Underground large space high-precision positioning method
CN115760827A (en) Point cloud data detection method, device, equipment and storage medium
CN111664860B (en) Positioning method and device, intelligent equipment and storage medium
KR20220168170A (en) Methods and systems for maximum consistency based outlier handling
CN115032672A (en) Fusion positioning method and system based on positioning subsystem
CN113032681A (en) Method, apparatus, electronic device, and medium for map search
CN112163062A (en) Data processing method and device, computer equipment and storage medium
CN114623836A (en) Vehicle pose determining method and device and vehicle
CN113124816A (en) Antenna work parameter generation method and device, storage medium and computer equipment
US20230196608A1 (en) Method and apparatus for improving localization of a device
CN115164914B (en) Navigation method, system, electronic equipment and medium for individual combat
US20230196618A1 (en) Neural network-based method and apparatus for improving localization of a device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894349

Country of ref document: EP

Kind code of ref document: A1