WO2021103424A1 - 通信连接方法、设备和存储介质 - Google Patents

通信连接方法、设备和存储介质 Download PDF

Info

Publication number
WO2021103424A1
WO2021103424A1 PCT/CN2020/089451 CN2020089451W WO2021103424A1 WO 2021103424 A1 WO2021103424 A1 WO 2021103424A1 CN 2020089451 W CN2020089451 W CN 2020089451W WO 2021103424 A1 WO2021103424 A1 WO 2021103424A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
network element
smsf
message
smsf network
Prior art date
Application number
PCT/CN2020/089451
Other languages
English (en)
French (fr)
Inventor
王巍
张磊
邵俊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20892645.1A priority Critical patent/EP4068813A4/en
Publication of WO2021103424A1 publication Critical patent/WO2021103424A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • H04W4/14Short messaging services, e.g. short message services [SMS] or unstructured supplementary service data [USSD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/51Discovery or management thereof, e.g. service location protocol [SLP] or web services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/55Push-based network services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/568Storing data temporarily at an intermediate stage, e.g. caching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/568Storing data temporarily at an intermediate stage, e.g. caching
    • H04L67/5682Policies or rules for updating, deleting or replacing the stored data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/06Registration at serving network Location Register, VLR or user mobility server
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer

Definitions

  • This application relates to the field of communications, for example, to a communication connection method, device, and storage medium.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project, 3GPP
  • 3rd Generation Partnership Project 3rd Generation Partnership Project, 3GPP
  • 5G Core 5G Core
  • 5GC 5G Core
  • short message delivery failures may occur: First, due to network, routing or other abnormal reasons, when a 5G user turns on or moves in, the SMSF fails to receive the registration message, and the user is sending When sending or receiving short messages, the user context information cannot be queried in the SMSF cache, and the short message cannot be delivered, which results in the failure of the short message delivery, which causes user complaints; second, in the case of a failure of an SMSF network element, 5G The user cannot query the user context information, and the short message cannot be delivered, resulting in the failure of the short message delivery, which greatly reduces the user experience.
  • the embodiments of the present application provide a communication connection method, device, and storage medium, which ensure the normal delivery of short messages, thereby effectively improving the user experience.
  • An embodiment of the present application provides a communication connection method, including:
  • the user context information includes: calling user information, access and mobility management function AMF device information where the calling user is located, and subscription data information;
  • An embodiment of the present application provides a communication connection method, including:
  • the user context information of the calling user is obtained from the preset cache, and the corresponding call process is continued.
  • An embodiment of the present application provides a communication connection method, including:
  • An embodiment of the present application provides a communication connection method, including:
  • SMSF network element where the calling user is located fails and goes down, receive the SMSF network element service change information notification sent by the NRF;
  • the user calling message of the calling user is shunted according to the geographic identification and distribution weight of the disaster recovery SMSF network element.
  • An embodiment of the present application provides a device, including: a memory, and one or more processors;
  • Memory set to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the method described in any one of the foregoing embodiments.
  • An embodiment of the present application provides a storage medium that stores a computer program, and when the computer program is executed by a processor, the method described in any of the foregoing embodiments is implemented.
  • FIG. 1 is a flowchart of a communication connection method provided by an embodiment of the present application
  • FIG. 2 is a flowchart of another communication connection method provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of another communication connection method provided by an embodiment of the present application.
  • FIG. 4 is a flowchart of yet another communication connection method provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of a 5G user's short message abnormal protection provided by an embodiment of the present application
  • FIG. 6 is a flowchart of a 5G user receiving short message abnormal protection provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of a user context information caching logic provided by an embodiment of the present application.
  • FIG. 8 is a flowchart of normal operation of an SMSF network element provided by an embodiment of the present application.
  • FIG. 9 is a flowchart of SMSF network element fault tolerance provided by an embodiment of the present application.
  • FIG. 10 is a flowchart of MSF network element disaster recovery and recovery provided by an embodiment of the present application.
  • FIG. 11 is a structural block diagram of a communication connection system provided by an embodiment of the present application.
  • FIG. 12 is a structural block diagram of another communication connection system provided by an embodiment of the present application.
  • FIG. 13 is a structural block diagram of a communication connection device provided by an embodiment of the present application.
  • FIG. 14 is a structural block diagram of another communication connection device provided by an embodiment of the present application.
  • 15 is a structural block diagram of another communication connection device provided by an embodiment of the present application.
  • FIG. 16 is a structural block diagram of still another communication connection device provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • SMSF is a short message network element of the Network Attached Server (NAS) in the 5G core network that conforms to the 3GPP 29.540 protocol. SMSF interacts with the Access and Mobility Management Function (AMF) through the N20 interface. Interact with Unified Data Management (UDM) through the N21 interface, and connect with the Short Message Service Center (SMSC)/IP Short Message Gateway (IPSMGW) through the MAP interface to provide 5G terminal users with NAS short message service .
  • AMF Access and Mobility Management Function
  • UDM Unified Data Management
  • SMSC Short Message Service Center
  • IPSMGW IP Short Message Gateway
  • SMSC is set to realize the storage, forwarding and retry functions of terminal short messages.
  • the SMSF network element of the 5G short message service function is set to realize the registration/deregistration of 5G user terminals and the forwarding of call origination/termination SMS.
  • 5G AMF equipment is set to realize the mobile and access management functions of 5G terminals.
  • UDM equipment is set to realize the management and storage functions of 5G terminal users' subscription data and authentication data.
  • the Network Element Service Registration Discovery Center (Network Repository Function, NRF) is set to register and discover services between multiple 5GC network elements.
  • the network element that provides the service registers the service capability on the NRF, and the network element that uses the service discovers these service network elements from the NRF, and then performs subsequent business process interactions.
  • SMSF, AMF and UDM mutually discover each other's services through NRF, and can subscribe to each other's service change notifications.
  • Table 1 is a comparison table between four service scenarios of 5G NAS short message and user context state data provided by this application.
  • Table 1 A comparison table between the four business scenarios of 5G NAS SMS and user context status data
  • the 3GPP protocol provides a complete specification for the functions of 5GC network elements and basic business processes.
  • the SMSF obtains the user context, and the user context needs to be used for initiation and termination of calls.
  • SMSF failed to receive the registration message when a 5G user turned on or moved in.
  • the user context cannot be found in the SMSF cache, and the message cannot be delivered, resulting in failure, which will cause user complaints.
  • SMSF fails to receive the user's logout message, and the user context in the cache cannot be cleaned up in time, becoming dirty data, which will cause system memory over time. Hidden dangers.
  • an SMSF network element is down as a whole, how to make 5G users unaware of it and continue to provide NAS short message service.
  • the SMSF network element is down and recovered, how to solve the user context data of the above two problems is an urgent problem to be solved.
  • the 3GPP protocol does not define the above-mentioned abnormal scenarios, nor does it have a unified solution, which requires manufacturers to design by themselves.
  • manufacturers design use existing 3GPP protocol interfaces instead of privatized interfaces, which is more likely to become a common solution in the industry.
  • This application provides a communication connection method.
  • routing disaster tolerance or other abnormal reasons
  • the SMSF fails to receive the registration message, and the normal delivery of the message can also be guaranteed.
  • the user's 5G SMS is sent and received normally, which improves the user's experience.
  • FIG. 1 is a flowchart of a communication connection method provided by an embodiment of the present application. This embodiment is applied to the case of abnormal protection of SMSF network elements. This embodiment may be executed by a device. Illustratively, the device may be an SMSF network element.
  • the method in this embodiment includes S110-S140.
  • S110 Analyze the user's permanent identification code according to the user's call message.
  • the user call message refers to a message sent when the user initiates a call.
  • the user call message may include: a calling user's initiation message and a called user's termination message.
  • the calling user origination message refers to the message sent by the calling user;
  • the called user termination message refers to the message received by the called user.
  • the user calling message corresponds to the calling user.
  • the calling user is a user that supports 5G terminals, that is, the terminal equipment used by the calling user is not periodically registered, and the registration process is triggered only when the calling user powers on or moves into the SMSF.
  • the calling user in the case where the user calls the message for the calling user to initiate the call, the calling user is the calling user.
  • the user calling message in the case that the user call message is the calling user originating message, the user calling message may be a short message, and correspondingly, the calling user is the calling user.
  • the user calling message when the user calling message is a called user termination message, the calling user is the called user.
  • the user call message when the user calling message is a called user termination message, the user call message may be a received short message, and correspondingly, the calling user is the called user.
  • the SMSF when the SMSF receives the user call message, the SMSF parses the user call message, and the user permanent identification code (Subscription Permanent Identifier, SUPI) of the calling user can be obtained by analysis.
  • SUPI Subscribe Permanent Identifier
  • the SMSF queries the user context information of the calling user in the preset cache. In the case that the user context user of the calling user is not queried, the SMSF carries the user permanent identification code of the calling user and sends the information to UDM to obtain Request to obtain the corresponding related news.
  • the user context information includes: calling user information, AMF device information where the calling user is located, and subscription data information.
  • the UDM feeds back the corresponding user context information to the SMSF.
  • the SMSF obtains the calling user and the AMF device where the calling user is located through the information acquisition request, the subscription data of the calling user is acquired, and the subscription data change notification of the calling user is subscribed.
  • the user context information is cached.
  • the SMSF determines the origination authority or the termination authorization in the subscription data in the user context information. If the origination authority authentication is passed, the original call origination process is continued and forwarded to the SMSC, Otherwise, the AMF originating call authentication failure response is returned; if the terminating call authority authentication is passed, the original termination procedure is continued and forwarded to the corresponding AMF; otherwise, the SMSC final call authentication failure response is returned.
  • the SMSF cannot receive the registration message, which results in the failure of information transmission or information reception.
  • the SMSF when the calling user sends or receives a short message, if the SMSF does not find the user context information in its own preset cache, it will obtain the corresponding user context information from the UDM and cache it, so that the original message can be continued.
  • the call process or the termination process is not a direct failure, thus effectively improving the user experience.
  • a limited cache validity period is set for the user context information.
  • the user context information of the calling user is permanently stored by default. Due to network, routing or other abnormal reasons, when the calling user shuts down or moves out of the SMSF, the SMSF cannot receive the logout message of the calling user, which makes the SMSF's The user context information in the preset cache cannot be cleaned up in time and becomes dirty data, causing certain hidden dangers to system memory.
  • the SMSF when the calling user sets MO or MT exception protection, that is, when the calling user sends or receives short messages, if the SMSF does not find the user context information in its own preset cache, it can obtain the user from UDM When the context information is cached, a limited cache validity period can be set for the user context information to avoid dirty data in the preset cache of the SMSF network element.
  • the system when a calling user registers, sends a call origination message, or receives a call termination message, the system automatically extends the validity period of the calling user’s cache, thereby dispersing the cache data of each calling user to avoid centralized expiration leading to access Impact problem.
  • Fig. 2 is a flowchart of another communication connection method provided by an embodiment of the present application. This embodiment is suitable for the scenario of SMSF network element fault tolerance. In this embodiment, it is executed by the SMSF network element for disaster recovery. In the embodiment, the disaster recovery SMSF network element is other SMSF network elements in the system except the SMSF network element that has failed and went down. As shown in Figure 2, this embodiment includes S210-S230.
  • SMSF network element where the calling user is located fails and goes down, receive the SMSF network element service change information notification sent by the NRF.
  • the SMSF network element service change information notification refers to a notification related to information changes generated when an SMSF network element in the system fails or recovers.
  • the SMSF network element where the calling user is located fails, the heartbeat detection between the NRF and the SMSF network element fails.
  • the NRF sends the SMSF network to all SMSF network elements. Meta service change information notification, so that other normally working SMSF network elements can obtain relevant information about the SMSF network element that has failed and went down.
  • S220 Initiate SMSF network element alarm information according to the SMSF network element service change information notification.
  • SMSF network element service change information notification after other normally working SMSF network elements receive the SMSF network element service change information notification, they initiate SMSF network element alarm information to notify the operation and maintenance personnel to perform fault finding on the SMSF network element that has failed and went down. And maintenance.
  • S230 In the case of detecting a user call message, obtain the user context information of the calling user from a preset buffer or UDM device, and continue the corresponding call flow.
  • the service corresponding to the user call message is originally processed by the SMSF network element that fails and goes down.
  • the AMF device comprehensively judges the geographic identification and distribution weight of the disaster recovery SMSF network element, and shunts the user's call message.
  • the disaster recovery SMSF network element can obtain the user context information of the calling user from the preset cache to continue the corresponding call flow, ensure the normal call of the user, and improve the user experience.
  • the cache unit of the SMSF network element is used to cache user context information in a cluster and anti-affinity copy mode to ensure that the user context information inside the SMSF network element is a highly available cache.
  • multiple clusters may be used to cache user context information.
  • the user context information is cached in an inter-cluster synchronization manner to ensure that the user context information between SMSF network elements is a highly available cache.
  • the user context information can be cached in a manner of synchronization among multiple clusters.
  • the method when the calling user registers, sends a call origination message, or receives a call termination message, the method further includes: automatically extending the cache validity period of the user context information corresponding to the calling user.
  • the method further includes: sending an information obtaining request to the UDM device; receiving user context information fed back by the UDM device.
  • all AMF and all SMSF network elements subscribe to all SMSF network element services on the NRF.
  • the heartbeat detection between the NRF and the SMSF network element fails, and the NRF sends all SMSF network elements to AMF and all other normal working SMSF network elements send SMSF network element service change information notifications, and other normal working SMSF network elements will send SMSF network element alarms to notify operation and maintenance personnel after receiving the change information notification.
  • the AMF learns that the SMSF network element where the caller user was originally located is down and cannot deliver the text message, the AMF returns according to the NRF notification.
  • the normal working SMSF network elements comprehensively determine the geographic areas and distribution weights of these normally working SMSF network elements (ie, disaster recovery SMSF network elements) to divert the originating message of the calling user.
  • the user context information cache uses clusters and anti-affinity copies to ensure high availability within network elements, inter-cluster synchronization is used to ensure high availability of disaster tolerance between network elements.
  • These disaster recovery SMSF network elements can obtain the user context information from the cache; if it is not obtained abnormally, obtain it from the UDM device and cache it, and continue to provide the user with the NAS short message service. In an embodiment, if the calling user subsequently has a re-registration or call origination message, the SMSF network element will extend the validity period of the user's context cache.
  • FIG. 3 is a flowchart of another communication connection method provided by an embodiment of the present application.
  • This embodiment is suitable for the recovery of an SMSF network element that has a failure and downtime.
  • This embodiment is executed by an SMSF network element that fails and goes down and then recovers.
  • this embodiment includes S310-S340.
  • S320 Receive notification of SMSF network element service change information fed back by NRF.
  • S330 In the case of detecting a user call message, receive a new registration message and a user call message sent by the AMF device.
  • S340 Perform a corresponding call flow according to the user context information corresponding to the user call message.
  • the user context information corresponding to the user call message is obtained from a preset cache or UDM device.
  • the cache unit of the SMSF network element is used to cache user context information in a cluster and anti-affinity copy manner to ensure that the user context information inside the SMSF network element is a highly available cache.
  • the user context information is cached in an inter-cluster synchronization manner to ensure that the user context information between SMSF network elements is a highly available cache.
  • all AMFs and SMSFs subscribe to all SMSF network element services on the NRF, and after the SMSF network element that fails and goes down fails, it re-registers its services with the NRF.
  • NRF sends SMSF network element service change information notifications to all AMF and SMSF. After receiving the notification, the SMSF network element that was originally working normally sends an SMSF network element recovery to notify the operation and maintenance personnel.
  • the AMF learns that the SMSF network element in the nearest region where the calling user is located has been restored, and the AMF starts the new registration message and the origination message of these users Delivery to the SMSF network element that has recovered from the downtime. Because the user context information is cached with a cache validity period, the SMSF network element for disaster recovery will no longer receive AMF registration messages and initiation messages for the user. After the cache validity period expires, the user context information will be sent from the SMSF network element for disaster recovery. The cache is automatically deleted to avoid the existence of dirty data in the cache.
  • FIG. 4 is a flowchart of yet another communication connection method provided by an embodiment of the present application. This embodiment is applicable to a situation where the SMSF network element where the calling user is located fails and goes down. This embodiment is executed by the AMF device. As shown in Figure 4, this embodiment includes S410-S430.
  • SMSF network element where the calling user is located fails and goes down, receive the SMSF network element service change information notification sent by the NRF.
  • S420 Determine the corresponding SMSF network element for disaster recovery according to the SMSF network element service change information notification.
  • the disaster recovery SMSF network element is another SMSF network element except the SMSF network element that has failed and went down.
  • the NRF initiates SMSF network element service change information notifications to all AMF devices, and detects that the SMSF network element that was originally registered on the failure and downtime is detected.
  • the AMF device is unable to deliver the SMSF network element where the calling user was originally located.
  • the AMF device notifies the SMSF network element for disaster recovery according to the NRF, and comprehensively analyzes the regional identification and distribution weight of the SMSF network element for disaster recovery.
  • the user call messages are shunted so that the disaster recovery SMSF network element can process the user call messages to ensure the normal call flow, thereby improving the user experience.
  • the method further includes: in the case of detecting the user call message, from a preset cache or The user context information of the calling user is obtained in the UDM, and the corresponding call flow is continued.
  • the communication connection method further includes: adding a new registration message to the calling user and a user call message Sent to the restored SMSF network element.
  • the AMF device in the case where the SMSF network element that the calling user originally was in is restored, the AMF device will start to deliver the new registration message of the calling user and the user call message to the SMSF network element that has recovered from the downtime.
  • Other disaster recovery SMSF network elements set the user context information cache validity period. The disaster recovery SMSF network element will no longer receive new registration messages and user call messages from the AMF device to the calling user. After the cache validity period expires, The user context information is automatically deleted from the preset cache of the SMSF network element for disaster recovery, avoiding the existence of cached dirty data.
  • the communication connection method when the calling user initiates a call, the communication connection method further includes: obtaining the geographic identification and distribution weight of each SMSF network element; and determining the SMSF network element to be connected according to the geographic identification and distribution weight ; Distribute and register the calling user to the determined SMSF network element.
  • SMSF network element service priority (Priority) is the same, and the respective region identifiers are set ( Locality) and distribution weight (Capacity).
  • AMF can discover all SMSF network elements and their service registration parameters from NRF.
  • a calling user for example, a 5G user
  • AMF according to the SMSF (saving network resource overhead) corresponding to the nearest region of the calling user, from the SMSF network element with the highest priority, the calling user in that region is required to be distributed according to the weight Distribute and register to the corresponding SMSF.
  • the default priority and distribution weight of the SMSF network element are the same.
  • the performance of each SMSF network element changes, and the SMSF network element accordingly
  • the distribution weight of the yuan has also changed.
  • the distribution weight and priority of SMSF network elements can be configured manually.
  • FIG. 5 is a flowchart of a 5G user sending a short message abnormal protection provided by an embodiment of the present application. As shown in Figure 5, this embodiment includes S510-S5120.
  • the SMSF receives the calling user initiation message (ie, Nsmsf_SMService_UplinkSMS) from the AMF.
  • the calling user initiation message ie, Nsmsf_SMService_UplinkSMS
  • S520 The SMSF parses out the SUPI of the calling user, and the context information of the user is not queried in the cache.
  • the SMSF carries the calling user SUPI and initiates a Nudm_UECM_Get request to the UDM.
  • the SMSF carries the calling user SUPI and initiates a Nudm_SDM_Get request to UDM.
  • S570 The SMSF carries the calling user SUPI, and initiates a Nudm_SDM_Subscribe request to UDM.
  • the SMSF obtains the above-mentioned context information of the calling user and caches it.
  • the SMSF judges whether the MO authority in the subscription data in the calling user context information is authenticated, if yes, execute S5110; if not, execute S5120.
  • the SMSF when a 5G user sends a short message, if the SMSF does not find the user context information of the calling user in its preset cache, it will obtain and cache it from the UDM, and continue the original calling process, thereby improving the user’s Use experience.
  • FIG. 6 is a flow chart of a 5G user receiving short message abnormal protection provided by an embodiment of the present application. As shown in Figure 6, this embodiment includes S610-S6120.
  • the SMSF receives the called user termination message (ie, MT_Forward) from the short message center.
  • MT_Forward the called user termination message
  • the SMSF parses out the SUPI of the called user, and the context information of the user is not queried in the cache.
  • the SMSF carries the called user SUPI and initiates a Nudm_UECM_Get request to the UDM.
  • the SMSF carries the called user SUPI and initiates a Nudm_SDM_Get request to UDM.
  • the SMSF carries the called user SUPI and initiates a Nudm_SDM_Subscribe request to UDM.
  • the SMSF obtains the aforementioned context information of the called user and caches it.
  • the SMSF judges whether the MT authority in the subscription data in the called user context information is authenticated, if yes, execute S6110; if not, execute S6120.
  • S6120 Return an authentication failure response of the SMSC termination call of the SMSC.
  • the SMSF when a 5G user receives a short message, if the SMSF does not find the user context information of the called user in its preset cache, it will obtain and cache it from the UDM, and continue the original termination process, thereby improving the user’s Use experience.
  • FIG. 7 is a flowchart of a user context information caching logic provided in an embodiment of the present application. As shown in Figure 7, this embodiment includes S710-S790.
  • a 5G user powers on or moves into the SMSF, and obtains the user context information according to the SMSF registration message flow.
  • the SMSF puts the acquired user context information into a preset cache, and sets a cache validity period.
  • the cache validity period may be the sum of the registration message time and the preset system-level validity period.
  • the SMSF deletes the user context information from the preset cache.
  • the SMSF deletes the user context information from the cache, a complete process the end.
  • the SMSF extends the cache validity period of the user context information.
  • the buffer validity period may be the sum of the call origination or termination message time and the preset system-level validity period.
  • the 5G user sends or receives short messages again.
  • S790 is executed.
  • the SMSF queries UDM to obtain user context information, and continues the original call origination or termination message flow.
  • S730 and S740 are two scenarios.
  • the SMSF may delete the user context information from the preset cache to reduce the storage of dirty data.
  • S770 is executed to extend the cache validity period of the 5G user to avoid the phenomenon that the corresponding user context information cannot be queried.
  • SMSF puts the obtained user context information into the cache, and sets the cache validity period, that is, the sum of the initiating or terminating message time and the preset system-level effective time, and querying the corresponding user context information.
  • FIG. 8 is a flowchart of normal operation of an SMSF network element provided by an embodiment of the present application. As shown in Figure 8, this embodiment includes S810-S880.
  • the SMSF1 network element registers its own service to the NRF through the Nnrf_NFManagement_NFRegister message.
  • the SMSF1 is built in region A, and the network element registers its own service on the NRF through the Nnrf_NFManagement_NFRegister message after startup, and carries the region identifier of the region A of its own service, with a priority of 1, and a distribution weight of 1.
  • the SMSF2 network element registers its own service to the NRF through the Nnrf_NFManagement_NFRegister message.
  • the SMSF2 is built in region B, and the network element registers its own service on the NRF through the Nnrf_NFManagement_NFRegister message after starting, and carries the region identification of the region B of its own service, the priority is also 1, and the distribution weight is 2.
  • the SMSF3 network element registers its own service to the NRF through the Nnrf_NFManagement_NFRegister message.
  • the SMSF3 is built in region B, and the network element registers its own service on the NRF through the Nnrf_NFManagement_NFRegister message after startup, and carries the region identifier of the region B that it serves, the priority is also 1, and the distribution weight is 1.
  • the NRF initiates an Nnrf_NFDiscovery message to the AMF.
  • the NRF initiates the Nnrf_NFDiscovery message to the AMF, discovers three SMSFs, and learns that the SMSF1 service area A, the SMSF2 and the SMSF3 service area B according to their service registration parameters, and the distribution weight is 2:1.
  • AMF judges that it is a user in region A according to the user number, and chooses to register user 1 to the only SMSF1 in region A.
  • AMF judges that it is a user in region B according to the user number, and selects to register user 2 to SMSF2 of region B.
  • AMF judges that it is a user in region B according to the user number, and in region B, SMSF2 and SMSF3 provide services, and the distribution weight is 2:1.
  • AMF chooses to register user 2 with Nsmsf_SMService_Activate to SMSF2 in region B.
  • AMF judges that it is a user in region B according to the user number, and selects to register user 3 to SMSF2 of region B.
  • the AMF judges that it is a user of region B according to the user number, and the region B has SMSF2 and SMSF3 to provide services, and the distribution weight is 2:1.
  • AMF chooses to register user 3 with Nsmsf_SMService_Activate to SMSF2 in region B.
  • AMF judges that they are users in region B according to the user number, and chooses to register user 3 to SMSF3 of region B.
  • the AMF judges that it is a user in region B according to the user number, and the region B has SMSF2 and SMSF3 to provide services, and the distribution weight is 2:1.
  • AMF chooses to register user 4 with Nsmsf_SMService_Activate to SMSF3 in region B.
  • FIG. 9 is a flowchart of an SMSF network element fault tolerance provided by an embodiment of the present application. As shown in Figure 9, this embodiment includes S910-S9110.
  • SMSF1, SMSF2, and SMSF3 work normally, and register their services to the NRF through the Nnrf_NFManagement_NFRegister message after startup.
  • SMSF1, SMSF2, and SMSF3 subscribe to the NRF for all SMSF service change notifications through the Nnrf_NFManagement_NFStatusSubscribe message.
  • the AMF subscribes all SMSF service change notifications to the NRF through the Nnrf_NFManagement_NFStatusSubscribe message.
  • SMSF1, SMSF2, and SMSF3 keep the heartbeat alive with the NRF through the Nnrf_NFManagement_NFUpdate message.
  • SMSF1 network element fails and goes offline as a whole, and the heartbeat keep-alive message Nnrf_NFManagement_NFUpdate between SMSF1 and NRF is interrupted.
  • the NRF uses the Nnrf_NFManagement_NFStatusNotify message to notify the SMSF2 and SMSF3 that the SMSF1 goes offline due to a failure.
  • SMSF2 and SMSF3 network elements issue an alarm to notify the operation and maintenance personnel.
  • the NRF uses the Nnrf_NFManagement_NFStatusNotify message to notify the AMF that the SMSF1 goes offline due to a failure.
  • SMSF2 and SMSF3 can provide NAS short message service.
  • the AMF diverts the user Nsmsf_SMService_Activate registration message to SMSF3.
  • 5G user 1 is turned on, and the user should be registered to the down SMSF1 network element according to the region.
  • AMF knows that SMSF1 is down and cannot be delivered.
  • AMF comprehensively judges the region and distribution weight of SMSF2 and SMSF3, and diverges user 1Nsmsf_SMService_Activate registration Message to SMSF3.
  • SMSF3 initiates a Nudm_UECM_Registration registration message to UDM.
  • SMSF3 initiates a Nudm_UECM_Registration registration message to UDM, including user 1 and SMSF3, and informs UDM to record that user 1 has currently taken over on SMSF3.
  • the 5G user 2 originally registered on the down SMSF1 network element sends a text message at this time.
  • AMF knows that SMSF1 is down and cannot be delivered.
  • AMF comprehensively judges the regions and distribution weights of SMSF2 and SMSF3, and diverges the user Nsmsf_SMService_UplinkSMS initiation message To SMSF2.
  • AMF offloads user 2Nsmsf_SMService_Uplink SMS initiation message to SMSF2.
  • SMSF2 initiates a Nudm_UECM_Registration registration message to UDM.
  • SMSF2 initiates a Nudm_UECM_Registration registration message to UDM, including user 2 and SMSF2, and notifies UDM to record that user 2 has currently taken over on SMSF2. Then proceed with the process shown in Figure 3 to continue processing.
  • FIG. 10 is a flowchart of an SMSF network element disaster recovery recovery provided by an embodiment of the present application. As shown in Figure 10, this embodiment includes S1010-S10110.
  • S1010, SMSF2, and SMSF3 work normally and have registered their services to NRF through the Nnrf_NFManagement_NFRegister message.
  • S1020, SMSF2, and SMSF3 subscribe to the NRF for all SMSF service change notifications through the Nnrf_NFManagement_NFStatusSubscribe message.
  • the AMF subscribes to the NRF for all SMSF service change notifications through the Nnrf_NFManagement_NFStatusSubscribe message.
  • the SMSF1 network element recovers from the failure, and registers its own service to the NRF through the Nnrf_NFManagement_NFRegister message after startup.
  • the SMSF1 keeps the heartbeat alive with the NRF through the Nnrf_NFManagement_NFUpdate message.
  • NRF uses the Nnrf_NFManagement_NFStatusNotify message to notify SMSF2 and SMSF3: SMSF1 fails to recover and goes online to provide services.
  • SMSF2 and SMSF3 network elements issue an alarm recovery and notify the operation and maintenance personnel.
  • the NRF uses the Nnrf_NFManagement_NFStatusNotify message to notify the AMF that the SMSF1 fails to recover.
  • the SMSF1, SMSF2, and SMSF3 that can provide NAS short message services.
  • the AMF sends the user Nsmsf_SMService_Activate registration message to SMSF1.
  • the AMF learns that the SMSF1 network element in the nearest region of the calling user has resumed providing services, and the AMF sends the user Nsmsf_SMService_Activate registration message to SMSF1.
  • SMSF1 initiates a Nudm_UECM_Registration registration message to UDM.
  • SMSF1 initiates a Nudm_UECM_Registration message (User 1, SMSF1) to UDM, and informs UDM to record that User 1 has currently taken over on SMSF1.
  • the SMSF1 when the SMSF1 fails, the 5G user 2 originally registered on the disaster recovery SMSF2 or SMSF3 network element sends a short message at this time, and the AMF knows that the SMSF1 has resumed providing services, and the AMF initiates the Nsmsf_SMService_UplinkSMS message to SMSF1.
  • the AMF sends the user Nsmsf_SMService_UplinkSMS initiation message to SMSF1.
  • SMSF1 initiates a Nudm_UECM_Registration message (user 2, SMSF1) to UDM, and informs UDM to record that user 2 has currently taken over on SMSF1. Then proceed with the process shown in Figure 2 to continue processing.
  • the disaster recovery SMSF2 and SMSF3 network elements will no longer receive AMF registration and initiation messages for users whose locality belongs to SMSF1.
  • the user context Information is automatically deleted from the network element cache of SMSF2 and SMSF3 for disaster recovery, avoiding the existence of cached dirty data.
  • Fig. 11 is a structural block diagram of a communication connection system provided by an embodiment of the present application.
  • the communication connection system of this embodiment includes: an SMSF network element 1101 and a UDM device 1102.
  • the SMSF network element 1101 sends an information acquisition request to the UDM device 1102 when the user context information corresponding to the user permanent identification code is not queried in the preset cache of the SMSF network element 1101;
  • the UDM device 1102 is configured to feed back user context information to the SMSF network element 1101 according to the information acquisition request;
  • the SMSF network element 1101 is set to continue the corresponding call flow according to the user context information.
  • Fig. 12 is a structural block diagram of another communication connection system provided by an embodiment of the present application.
  • the communication connection system of this embodiment includes: an AMF device 1201, an NRF 1202, and a disaster recovery SMSF network element 1203;
  • the AMF device 1201 is set to receive the SMSF network element service change information notification sent by the NRF when the SMSF network element where the calling user is located fails and goes down;
  • the AMF device 1201 is configured to determine the corresponding disaster recovery SMSF network element 1203 according to the SMSF network element service change information notification;
  • Disaster recovery SMSF network element 1203 is set to receive SMSF network element service change information notification sent by NRF1202 when the SMSF network element where the calling user is located fails and goes down;
  • the AMF device 1201 is configured to, in the case of detecting the call request of the calling user, divert the user call message of the calling user according to the geographic identification and distribution weight of the disaster recovery SMSF network element 1203;
  • the disaster recovery SMSF network element 1203 is set to obtain the user context information of the calling user from the preset cache or UDM device when a user call message is detected, and continue the corresponding call process.
  • the service corresponding to the user call message is originally The SMSF network element that fails and goes down is processed.
  • the communication connection system further includes: an SMSF network element for fault recovery;
  • the failed SMSF network element is set to re-register the SMSF network element service with NRF1202; and receive notification of SMSF network element service change information fed back by NRF1202; in the case of detecting a user call message, receive a new registration message sent by AMF device 1201 Call the message with the user; perform the corresponding call flow according to the user context information corresponding to the user call message.
  • FIG. 13 is a structural block diagram of a communication connection device provided by an embodiment of the present application. This embodiment is applied to the case of abnormal protection of SMSF network elements. As shown in FIG. 13, the device in this embodiment includes: an analysis module 1110, a first sending module 1120, a first receiving module 1130, and a first calling module 1140.
  • the parsing module 1110 is configured to analyze the user's permanent identification code of the calling user according to the user's call message
  • the first sending module 1120 is configured to carry the user's permanent identification code and send an information acquisition request to the UDM device when the user context information corresponding to the user's permanent identification code is not queried in the preset cache;
  • the first receiving module 1130 is configured to receive corresponding user context information fed back by the UDM device, and the user context information includes: calling user information, AMF device information where the calling user is located, and subscription data information;
  • the first call module 1140 is configured to continue the corresponding call process according to the feedback user context information.
  • the communication connection device provided in this embodiment is configured to implement the communication connection method of the embodiment shown in FIG. 1.
  • the implementation principle and technical effect of the communication connection device provided in this embodiment are similar, and will not be repeated here.
  • the calling user in the case where the user calls the message for the calling user to initiate the call, the calling user is the calling user.
  • the calling user is the called user.
  • a cache validity period is set for the user context information.
  • the buffer validity period is automatically extended.
  • Fig. 14 is a structural block diagram of another communication connection device provided by an embodiment of the present application. This embodiment is applied to the situation that the SMSF network element fails and goes down. As shown in FIG. 14, the device in this embodiment includes: a second receiving module 1210 and a second calling module 1220.
  • the second receiving module 1210 is configured to receive the SMSF network element service change information notification sent by the network element service registration discovery center NRF when the SMSF network element where the calling user is located fails and goes down;
  • the second calling module 1220 is configured to obtain the user context information of the calling user from the preset cache when the user calling message is detected, and continue the corresponding call flow.
  • the communication connection device provided in this embodiment is configured to implement the communication connection method of the embodiment shown in FIG. 2.
  • the implementation principle and technical effect of the communication connection device provided in this embodiment are similar, and will not be repeated here.
  • the communication connection device further includes: an initiation module configured to receive the SMSF network element service change information notification sent by the network element service registration discovery center NRF, and before the user call message is detected, Initiate SMSF network element alarm information according to the SMSF network element service change information notification.
  • the communication connection device in the case of a calling user registering, sending an initiation message, or receiving a termination message, the communication connection device further includes: an extension module configured to automatically extend the cache validity period of the user context information corresponding to the calling user .
  • the communication connection device further includes:
  • the second sending module is configured to send an information acquisition request to the UDM device
  • the third receiving module is configured to receive user context information fed back by the UDM device.
  • FIG. 15 is a structural block diagram of another communication connection device provided by an embodiment of the present application. This embodiment is applied to the case where the SMSF network element is down due to a failure. As shown in FIG. 15, the device in this embodiment includes: a first registration module 1310, a fourth receiving module 1320, a fifth receiving module 1330, and a third calling module 1340.
  • the first registration module 1310 is configured to re-register the SMSF network element service with the NRF when the SMSF network element that fails and goes down is restored;
  • the fourth receiving module 1320 is configured to receive SMSF network element service change information notifications fed back by NRF;
  • the fifth receiving module 1330 is configured to receive the new registration message and the user call message sent by the AMF device when the user call message is detected;
  • the third call module 1340 is configured to perform a corresponding call flow according to the user context information corresponding to the user call message.
  • the communication connection device provided in this embodiment is configured to implement the communication connection method of the embodiment shown in FIG. 3, and the implementation principles and technical effects of the communication connection device provided in this embodiment are similar, and will not be repeated here.
  • the user context information corresponding to the user call message is obtained from a preset cache or UDM device.
  • FIG. 16 is a structural block diagram of still another communication connection device provided by an embodiment of the present application. This embodiment is applied to the situation that the SMSF network element fails and goes down. As shown in FIG. 16, the device in this embodiment includes: a sixth receiving module 1410, a first determining module 1420, and a shunting module 1430.
  • the sixth receiving module 1410 is configured to receive the SMSF network element service change information notification sent by the NRF when the SMSF network element where the calling user is located fails and goes down;
  • the first determining module 1420 is configured to determine the corresponding disaster recovery SMSF network element according to the SMSF network element service change information notification, and the disaster recovery SMSF network element is another SMSF network element other than the SMSF network element that has failed and went down. yuan;
  • the offloading module 1430 is configured to offload the user call message of the calling user according to the geographic identification and distribution weight of the disaster recovery SMSF network element when the calling request of the calling user is detected.
  • the communication connection device provided in this embodiment is configured to implement the communication connection method of the embodiment shown in FIG. 4, and the implementation principles and technical effects of the communication connection device provided in this embodiment are similar, and will not be repeated here.
  • the user call message of the calling user is shunted according to the geographic identification and distribution weight of the disaster recovery SMSF network element, in the case of detecting the user call message, it is obtained from a preset cache or UDM
  • the user context information of the calling user continues the corresponding call flow.
  • the communication connection device when the calling user initiates a call, the communication connection device further includes:
  • the obtaining module is set to obtain the regional identification and distribution weight of each SMSF network element
  • the second determining module is configured to determine the SMSF network element to be connected according to the geographic identification and the distribution weight;
  • the second registration module is configured to distribute and register the calling user to the determined SMSF network element.
  • the communication connection device further includes: a third sending module configured to send the new registration message of the calling user and the user call message to the restored SMSF network element.
  • the clustering and anti-affinity copy mode of the SMSF network element is used to cache the user context information.
  • an inter-cluster synchronization method is adopted to cache user context information.
  • the communication connection device further includes: a registration module configured to re-register the SMSF network element service with the NRF; and a third receiving module configured to receive the NRF SMSF network element service change information notification sent.
  • FIG. 17 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the device provided by this application includes a processor 1510 and a memory 1520.
  • the number of processors 1510 in the device may be one or more.
  • one processor 1510 is taken as an example.
  • the number of memories 1520 in the device may be one or more.
  • one memory 1520 is taken as an example.
  • the processor 1510 and the memory 1520 of the device are connected by a bus or in other ways. In FIG. 17, the connection by a bus is taken as an example.
  • the device is an SMSF network element.
  • the memory 1520 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the device of any embodiment of the present application (for example, the analysis module in the communication connection device, The first sending module, the first receiving module and the first calling module).
  • the memory 1520 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the device, and the like.
  • the memory 1520 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 1520 may include a memory remotely provided with respect to the processor 1510, and these remote memories may be connected to the device through a network. Examples of the aforementioned networks include the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the above-provided device can be configured to execute the communication connection method provided in any of the above-mentioned embodiments, and has corresponding functions and effects.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are executed by a computer processor, they are used to execute a communication connection method, which is executed by an SMSF network element, and the method includes:
  • the user's call message is analyzed to obtain the user permanent identification code corresponding to the calling user; if the user's permanent identification code corresponding to the user context information is not queried in the preset cache, the user permanent identification code is sent to the unified data management UDM device to obtain an information request ;
  • Receive UDM device feedback corresponding user context information, user context information includes: calling user information, AMF device information where the calling user is located, and subscription data information; continue the corresponding call flow according to the feedback user context information.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are executed by a computer processor, they are used to execute a communication connection method, which is executed by a disaster recovery SMSF network element, and the method includes:
  • the SMSF network element where the calling user is located fails, receive the SMSF network element service change information notification sent by the network element service registration discovery center NRF; initiate SMSF network element alarm information according to the SMSF network element service change information notification;
  • the user context information of the calling user is obtained from the preset cache, and the corresponding call process is continued.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are executed by a computer processor, they are used to execute a communication connection method, which is executed by an SMSF network element that fails and then resumes.
  • the method includes: in the case that the SMSF network element that fails and goes down is restored, re-registering the SMSF network element service with the NRF; receiving the SMSF network element service change information notification feedback from the NRF; in the case of detecting the user call message, Receive the new registration message and the user call message sent by the AMF device; perform the corresponding call flow according to the user context information corresponding to the user call message.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are executed by a computer processor, they are used to execute a communication connection method, which is executed by the AMF device, and the method includes:
  • the SMSF network element fails and goes down, receive the SMSF network element service change information notification sent by the NRF; determine the corresponding disaster recovery SMSF network element according to the SMSF network element service change information notification, and the disaster recovery SMSF network element It is other SMSF network elements except the SMSF network element that has failed and went down; in the case of detecting the call request of the calling user, the call is split according to the geographic identification and distribution weight of the disaster recovery SMSF network element The user's user call message.
  • user equipment encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicular mobile stations.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical memory devices, and System (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs), Programmable logic devices (Field-Programmable Gate Array, FGPA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FGPA Programmable logic devices

Abstract

本申请提出一种通信连接方法、设备和存储介质。该通信连接方法包括:根据用户呼叫消息解析得到呼叫用户的用户永久识别码;在预设缓存中未查询到与用户永久识别码对应的用户上下文信息的情况下,携带用户永久识别码向统一数据管理UDM设备发送信息获取请求;接收UDM设备反馈对应的用户上下文信息,用户上下文信息包括:呼叫用户信息、呼叫用户所在接入及移动性管理功能AMF设备信息和签约数据信息;根据反馈的用户上下文信息继续进行对应的呼叫流程。

Description

通信连接方法、设备和存储介质
本申请要求在2019年11月28日提交中国专利局、申请号为201911194314.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,例如涉及一种通信连接方法、设备和存储介质。
背景技术
第三代合作伙伴计划(3rdGeneration Partnership Project,3GPP)协议为5G核心网(5G Core,5GC)网元的功能和基本业务流程打通,提供了完备的规范。但在运营商的实际使用过程中,由于5G终端没有周期性注册,只有用户开机或移入短消息服务功能(Short Message Service Function,SMSF)时才会触发注册流程。
在实际通信过程中,可能会出现短消息投递失败的情况:其一,由于网络、路由或其他异常原因,在5G用户开机或移入时,SMSF未能收到注册消息,此时该用户在发短信或收短信时,SMSF缓存中查询不到用户上下文信息,短消息无法投递,即导致短消息投递失败,从而引起用户投诉;其二,在一个SMSF网元出现故障宕机的情况下,5G用户也无法查询到用户上下文信息,短消息无法进行投递,导致短消息投递失败,从而大大降低了用户的使用体验。
发明内容
本申请实施例提供一种通信连接方法、设备和存储介质,保证了短消息的正常投递,进而有效提升了用户的使用体验。
本申请实施例提供一种通信连接方法,包括:
根据用户呼叫消息解析得到呼叫用户的用户永久识别码;
在预设缓存中未查询到与所述用户永久识别码对应的用户上下文信息的情况下,携带所述用户永久识别码向统一数据管理UDM设备发送信息获取请求;
接收所述UDM设备反馈的用户上下文信息,所述用户上下文信息包括:呼叫用户信息、呼叫用户所在接入及移动性管理功能AMF设备信息和签约数据信息;
根据反馈的所述用户上下文信息继续进行对应的呼叫流程。
本申请实施例提供一种通信连接方法,包括:
在呼叫用户所在的SMSF网元出现故障宕机的情况下,接收网元服务注册发现中心NRF发送的SMSF网元服务变动信息通知;
根据所述SMSF网元服务变动信息通知发起SMSF网元告警信息;
在检测到用户呼叫消息的情况下,从预设缓存中获取所述呼叫用户的用户上下文信息,继续进行对应的呼叫流程。
本申请实施例提供一种通信连接方法,包括:
在出现故障宕机的SMSF网元恢复的情况下,向NRF重新注册SMSF网元服务;
接收NRF反馈的SMSF网元服务变动信息通知;
在检测到用户呼叫消息的情况下,接收AMF设备发送的新注册消息和用户呼叫消息;
根据所述用户呼叫消息对应的用户上下文信息进行对应的呼叫流程。
本申请实施例提供一种通信连接方法,包括:
在呼叫用户所在的SMSF网元出现故障宕机的情况下,接收NRF发送的SMSF网元服务变动信息通知;
根据所述SMSF网元服务变动信息通知确定对应的灾备SMSF网元,所述灾备SMSF网元为除所述呼叫用户所在SMSF网元的其它SMSF网元;
在检测到所述呼叫用户的呼叫请求的情况下,根据所述灾备SMSF网元的地域标识和分发权重分流所述呼叫用户的用户呼叫消息。
本申请实施例提供一种设备,包括:存储器,以及,一个或多个处理器;器
存储器,设置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述任一实施例所述的方法。
本申请实施例提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述任一实施例所述的方法。
附图说明
图1是本申请实施例提供的一种通信连接方法的流程图;
图2是本申请实施例提供的另一种通信连接方法的流程图;
图3是本申请实施例提供的又一种通信连接方法的流程图;
图4是本申请实施例提供的再一种通信连接方法的流程图;
图5是本申请实施例提供的一种5G用户发短信异常保护的流程图;
图6是本申请实施例提供的一种5G用户收短信异常保护的流程图;
图7是本申请实施例提供的一种用户上下文信息缓存逻辑的流程图;
图8是本申请实施例提供的一种SMSF网元正常工作的流程图;
图9是本申请实施例提供的一种SMSF网元故障容灾的流程图;
图10是本申请实施例提供的一种MSF网元容灾恢复的流程图;
图11是本申请实施例提供的一种通信连接系统的结构框图;
图12是本申请实施例提供的另一种通信连接系统的结构框图;
图13是本申请实施例提供的一种通信连接装置的结构框图;
图14是本申请实施例提供的另一种通信连接装置的结构框图;
图15是本申请实施例提供的又一种通信连接装置的结构框图;
图16是本申请实施例提供的再一种通信连接装置的结构框图;
图17是本申请实施例提供的一种设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
SMSF是5G核心网中,符合3GPP 29.540协议的网络接入服务器(Network Attached Server,NAS)短信网元,SMSF通过N20接口与接入及移动性管理功能(Access and bility Management Function,AMF)交互、通过N21接口与统一数据管理(Unified Data Management,UDM)交互,通过MAP接口与短消息服务中心(Short Message Service Center,SMSC)/IP短消息网关(IPSMGW)对接,为5G终端用户提供NAS短信服务。
SMSC,设置为实现终端短消息的存储、转发及重试功能。
5G短消息服务功能SMSF网元,设置为实现5G用户终端的注册/注销,以 及起呼/终呼短消息的转发。
5G AMF设备,设置为实现5G终端的移动及接入管理功能。
UDM设备,设置为实现5G终端用户的签约数据和鉴权数据的管理和存储功能。
网元服务注册发现中心(Network Repository Function,NRF),设置为5GC多个网元间服务的注册和发现。提供服务的网元将服务能力注册在NRF上,使用服务的网元从NRF发现这些服务网元,然后进行后续的业务流程交互。SMSF、AMF和UDM互相之间,就是通过NRF互相发现对方的服务,并可订阅对方的服务变动通知。
在3GPP协议中,表1是本申请提供的一种5G NAS短信的四种业务场景与用户上下文状态数据之间的对照表。
表1一种5G NAS短信的四种业务场景与用户上下文状态数据之间的对照表
Figure PCTCN2020089451-appb-000001
如表1所示,3GPP协议为5GC网元的功能和基本业务流程打通,提供了完备的规范。但在运营商实际商用过程中,还会遇到很多异常场景:只有注册流程,SMSF才能获取用户上下文,起呼和终呼需要使用用户上下文。5G终端没有周期性注册,只有用户开机、网络切换或移入SMSF时才会触发注册流程,从而出现以下几种情况:
其一,因网络、路由或其他异常原因,一个5G用户开机或移入时,SMSF未能收到注册消息。此时该用户发短信或收短信,SMSF缓存中查询不到用户上下文,消息无法投递导致失败,会引起用户投诉。
其二,因网络、路由或其他异常原因,一个5G用户关机或移出时,SMSF未能收到用户的注销消息,缓存中的用户上下文得不到及时清理,成为脏数据,日积月累会造成系统内存隐患。
其三,一个SMSF网元整体宕机,如何让5G用户无感知,继续提供NAS短信服务。同时,在SMSF网元宕机和恢复后,上述2个问题的用户上下文数据如何解决,是亟待解决的问题。
3GPP协议对上述异常场景是没有定义的,也没有统一的解决方案,需要厂商自行设计。厂商设计时,使用已有3GPP协议接口,而不是私有化接口,才更有可能成为业界通用解决方案。
本申请中提供一种通信连接方法,在网络、路由、容灾或其他异常原因的情况下,5G用户在开机或移入时,SMSF未能收到注册消息,还能保证消息的正常投递,保证用户的5G短信正常发送和接收,提升用户的使用体验。
在一实现方式中,图1是本申请实施例提供的一种通信连接方法的流程图。本实施例应用于对SMSF网元进行异常保护的情况。本实施例可以由设备来执行,示例性地,设备可以为SMSF网元。
如图1所示,本实施例中的方法包括S110-S140。
S110、根据用户呼叫消息解析得到呼叫用户的用户永久识别码。
在实施例中,用户呼叫消息指的是用户发起呼叫时所进行发送的消息。在实施例中,用户呼叫消息可以包括:主叫用户起呼消息和被叫用户终呼消息。主叫用户起呼消息指的主叫用户发送的消息;被叫用户终呼消息指的是被叫用户接收的消息。也就是说,用户呼叫消息和呼叫用户是对应的。在实施例中,呼叫用户为支持5G终端的用户,即呼叫用户所使用的终端设备没有周期性注册,只有在呼叫用户开机或移入SMSF时才会触发注册流程。
在一实施例中,在用户呼叫消息为主叫用户起呼消息的情况下,呼叫用户为主叫用户。在用户呼叫消息为主叫用户起呼消息的情况下,用户呼叫消息可以为发短信,相应的,呼叫用户为主叫用户。在一实施例中,在用户呼叫消息为被叫用户终呼消息的情况下,呼叫用户为被叫用户。在用户呼叫消息为被叫用户终呼消息的情况下,用户呼叫消息可以为接收短信,相应的,呼叫用户为被叫用户。
在实施例中,在SMSF接收到用户呼叫消息时,SMSF对用户呼叫消息进行解析,可解析得到呼叫用户的用户永久识别码(SUbscription Permanent Identifier,SUPI)。每个呼叫用户对应唯一的用户永久识别码。
S120、在预设缓存中未查询到与用户永久识别码对应的用户上下文信息的 情况下,携带用户永久识别码向UDM设备发送信息获取请求。
在实施例中,SMSF在预设缓存中查询该呼叫用户的用户上下文信息,在未查询到该呼叫用户的用户上下文用户的情况下,SMSF携带该呼叫用户的用户永久识别码向UDM发送信息获取请求,以获取对应的相关消息。
S130、接收UDM设备反馈的用户上下文信息。
在实施例中,用户上下文信息包括:呼叫用户信息、呼叫用户所在AMF设备信息和签约数据信息。在实施例中,在SMSF向UDM发送信息获取请求之后,UDM将对应的用户上下文信息反馈至SMSF。在实施例中,在SMSF通过信息获取请求获取到呼叫用户以及呼叫用户所在AMF设备时,获取呼叫用户的签约数据,订阅呼叫用户的签约数据变更通知。在SMSF完成呼叫用户、呼叫用户所在接入及移动性管理功能AMF设备、签约数据的获取,订阅签约数据变更通知之后,对用户上下文信息进行缓存。
S140、根据反馈的用户上下文信息继续进行对应的呼叫流程。
在实施例中,在SMSF获取到用户上下文信息之后,判断用户上下文信息中签约数据中的起呼权限或终呼权限,若起呼权限鉴权通过,继续原起呼流程,并转发至SMSC,否则,返回AMF起呼鉴权失败响应;若终呼权限鉴权通过,继续原终呼流程,并转发至对应的AMF,否则,返回SMSC终呼鉴权失败响应。
在相关技术中,在网络、路由或其它异常原因,导致呼叫用户开机或移入时,SMSF无法接收到注册消息,从而导致信息发送失败或信息接收失败的情况。在实施例中,在呼叫用户发短信或接收短信时,SMSF若在自身的预设缓存中未查询到用户上下文信息,则向UDM获取对应的用户上下文信息并缓存,从而可继续原有的起呼流程或终呼流程,而并非直接失败,从而有效提升了用户的使用体验。
在一实施例中,在呼叫用户设置短信上行(Mobile Original,MO)或短信下行(Mobile Terminated,MT)异常保护的情况下,对用户上下文信息设置有限的缓存有效期。在相关技术中,呼叫用户的用户上下文信息默认设置的是永久保存,由于网络、路由或其他异常原因,在呼叫用户关机或移出SMSF时,SMSF无法接收到呼叫用户的注销消息,从而使得SMSF的预设缓存中的用户上下文信息无法得到及时清理,成为脏数据,对系统内存造成一定隐患。在实施例中,在呼叫用户设置MO或MT异常保护的情况下,即在呼叫用户发短信或接收短信时,SMSF若在自身的预设缓存中未查询到用户上下文信息,可向UDM获取用户上下文信息并缓存的情况下,可对用户上下文信息设置有限的缓存有效期,避免在SMSF网元的预设缓存中出现脏数据。
在一实施例中,在呼叫用户进行注册、发送起呼消息或接收终呼消息时,系统自动延长该呼叫用户的缓存有效期,从而分散每个呼叫用户的缓存数据,以避免出现集中过期导致访问冲击问题。
图2是本申请实施例提供的另一种通信连接方法的流程图。本实施例适用于SMSF网元故障容灾的场景。本实施例中由灾备SMSF网元执行。在实施例中,灾备SMSF网元为系统中除出现故障宕机的SMSF网元之外的其它SMSF网元。如图2所示,本实施例包括S210-S230。
S210、在呼叫用户所在的SMSF网元出现故障宕机的情况下,接收NRF发送的SMSF网元服务变动信息通知。
在实施例中,SMSF网元服务变动信息通知,指的是系统中的一个SMSF网元出现故障或者恢复的情况下,所产生的信息变动的相关通知。在呼叫用户所在的SMSF网元出现故障宕机的情况下,NRF与出现故障宕机的SMSF网元之间的心跳检测失效,为了保证呼叫流程的正常运行,NRF向所有SMSF网元发出SMSF网元服务变动信息通知,以使其它正常工作的SMSF网元得到出现故障宕机的SMSF网元的相关信息。
S220、根据SMSF网元服务变动信息通知发起SMSF网元告警信息。
在实施例中,在其它正常工作的SMSF网元收到SMSF网元服务变动信息通知之后,发起SMSF网元告警信息,以通知运维人员,对出现故障宕机的SMSF网元进行故障查找,以及维修。
S230、在检测到用户呼叫消息的情况下,从预设缓存或UDM设备中获取所述呼叫用户的用户上下文信息,继续进行对应的呼叫流程。
在实施例中,用户呼叫消息对应的业务原先由出现故障宕机的SMSF网元进行处理。原本注册在故障宕机的SMSF网元上的呼叫用户进行呼叫时,AMF设备综合判断灾备SMSF网元的地域标识和分发权重,对用户呼叫消息进行分流。灾备SMSF网元可以从预设缓存中获取呼叫用户的用户上下文信息,以继续进行对应的呼叫流程,保证了用户的正常呼叫,提升了用户的使用体验。
在一实施例中,在SMSF网元内部,利用SMSF网元的缓存单元采用集群和反亲和副本的方式,进行缓存用户上下文信息,以保证SMSF网元内部的用户上下文信息为高可用缓存。在实施例中,在一个集群的存储空间无法缓存用户上下文信息的情况下,可利用多个集群进行缓存用户上下文信息。
在一实施例中,在SMSF网元之间,采用集群间同步的方式进行缓存用户上下文信息,以保证SMSF网元间的用户上下文信息为高可用缓存。在实施例中,在一个集群出现故障的情况下,可利用多个集群间同步的方式缓存用户上 下文信息。
在一实施例中,在呼叫用户注册、发送起呼消息或接收终呼消息的情况下,所述方法还包括:自动延长所述呼叫用户所对应的用户上下文信息的缓存有效期。
在一实施例中,在从预设缓存中未获取到所述呼叫用户的用户上下文信息的情况下,所述方法还包括:向UDM设备发送信息获取请求;接收UDM设备反馈的用户上下文信息。
在实施例中,所有AMF和所有SMSF网元在NRF上订阅所有的SMSF网元服务,在其中一个SMSF网元出现故障宕机的情况下,NRF与该SMSF网元心跳检测失效,NRF向所有AMF和其它正常工作的所有SMSF网元发出SMSF网元服务变动信息通知,其余正常工作的SMSF网元收到变动信息通知之后,发出SMSF网元告警,以通知运维人员。
此时原本注册在故障宕机的SMSF网元上的主叫用户发短信时,AMF在得知该主叫用户原本所在的SMSF网元已宕机,并且无法进行短信投递,AMF根据NRF通知还在正常工作的SMSF网元,综合判断这些正常工作的SMSF网元(即灾备SMSF网元)的地域和分发权重分流主叫用户的起呼消息。因用户上下文信息缓存采用集群和反亲和副本的方式保证网元内部高可用,使用集群间同步保证网元间容灾高可用。这些灾备SMSF网元可以从缓存获取该用户上下文信息;如果异常未获取到,向UDM设备获取并缓存,继续为用户提供NAS短信服务。在一实施例中,若呼叫用户后续有重新注册或起呼消息时,SMSF网元会延长该用户的上下文缓存有效期。
在一实现方式中,图3是本申请实施例提供的又一种通信连接方法的流程图。本实施例适用于出现故障宕机的SMSF网元恢复的情况。本实施例由出现故障宕机,然后恢复的SMSF网元执行。如图3所示,本实施例包括S310-S340。
S310、在出现故障宕机的SMSF网元恢复的情况下,向NRF重新注册SMSF网元服务。
S320、接收NRF反馈的SMSF网元服务变动信息通知。
S330、在检测到用户呼叫消息的情况下,接收AMF设备发送的新注册消息和用户呼叫消息。
S340、根据用户呼叫消息对应的用户上下文信息进行对应的呼叫流程。
在一实施例中,从预设缓存或UDM设备中获取所述用户呼叫消息对应的用户上下文信息。
在一实施例中,在SMSF网元内部,利用SMSF网元的缓存单元采用集群和反亲和副本的方式进行缓存用户上下文信息,以保证SMSF网元内部的用户上下文信息为高可用缓存。
在一实施例中,在SMSF网元之间,采用集群间同步的方式进行缓存用户上下文信息,以保证SMSF网元间的用户上下文信息为高可用缓存。
在实施例中,所有AMF和SMSF在NRF上订阅所有SMSF网元服务,出现故障宕机的SMSF网元故障恢复之后,重新向NRF注册其服务。NRF向所有AMF和SMSF发出SMSF网元服务变动信息通知。原本正常工作的SMSF网元收到通知后,发出SMSF网元恢复,通知运维人员。
此时,原本注册在宕机恢复的SMSF网元上的呼叫用户发短信时,AMF得知该呼叫用户所在最近地域的SMSF网元已恢复,AMF将这些用户新的注册消息和起呼消息开始向宕机恢复的SMSF网元投递。因用户上下文信息的缓存设置了缓存有效期,灾备SMSF网元上将不会再收到AMF对该用户的注册消息和起呼消息,超过缓存有效期之后,该用户上下文信息从灾备SMSF网元缓存中自动删除,避免了缓存脏数据的存在。
在一实现方式中,图4是本申请实施例提供的再一种通信连接方法的流程图。本实施例适用于呼叫用户所在的SMSF网元出现故障宕机的情况。本实施例由AMF设备执行。如图4所示,本实施例包括S410-S430。
S410、在呼叫用户所在的SMSF网元出现故障宕机的情况下,接收NRF发送的SMSF网元服务变动信息通知。
S420、根据SMSF网元服务变动信息通知确定对应的灾备SMSF网元。
在实施例中,灾备SMSF网元为除出现故障宕机的SMSF网元之外的其它SMSF网元。
S430、在检测到呼叫用户的呼叫请求的情况下,根据灾备SMSF网元的地域标识和分发权重分流呼叫用户的用户呼叫消息。
在实施例中,在呼叫用户所在的SMSF网元出现故障宕机的情况下,NRF向所有AMF设备发起SMSF网元服务变动信息通知,并在检测到原本注册在故障宕机的SMSF网元上的呼叫用户进行呼叫时,AMF设备得到呼叫用户原先所在的SMSF网元无法进行投递,AMF设备根据NRF通知灾备SMSF网元,并综合分析灾备SMSF网元的地域标识和分发权重,以对用户呼叫消息进行分流,以使灾备SMSF网元对用户呼叫消息进行处理,保证正常的呼叫流程,进而提升用户的使用体验。
在一实施例中,在根据所述灾备SMSF网元的地域标识和分发权重分流所 述呼叫用户的用户呼叫消息之后,还包括:在检测到用户呼叫消息的情况下,从预设缓存或UDM中获取所述呼叫用户的用户上下文信息,继续进行对应的呼叫流程。
在一实施例中,在出现故障宕机的SMSF网元恢复,且未存在出现故障宕机的SMSF网元的情况下,通信连接方法,还包括:将呼叫用户的新注册消息和用户呼叫消息发送至恢复的SMSF网元。
在实施例中,在呼叫用户原先所在的故障宕机的SMSF网元恢复的情况下,AMF设备将呼叫用户的新注册消息和用户呼叫消息开始向宕机恢复的SMSF网元投递。而其它的灾备SMSF网元设置了用户上下文信息的缓存有效期,灾备SMSF网元上将不会再接收到AMF设备对该呼叫用户的新注册消息和用户呼叫消息,在超过缓存有效期之后,该用户上下文信息自动从灾备SMSF网元的预设缓存中删除,避免了缓存脏数据的存在。
在一实施例中,在呼叫用户发起呼叫的情况下,通信连接方法,还包括:获取每个SMSF网元的地域标识和分发权重;根据所述地域标识和分发权重确定所要连接的SMSF网元;将所述呼叫用户分发注册到确定的SMSF网元上。
在实施例中,在多个SMSF网元正常工作的情况下,向NRF注册自身对应的SMSF网元服务,并且,默认SMSF网元服务的优先级(Priority)相同,以及设置各自的地域标识(Locality)和分发权重(Capacity)。AMF从NRF上可以发现所有的SMSF网元及其服务注册参数。在呼叫用户(比如,5G用户)开机时,AMF根据主叫用户的最近地域对应的SMSF(节省网络资源开销),从优先级最高的SMSF网元中,将该地域的呼叫用户按分发权重要求分发注册到对应的SMSF上。在实施例中,在SMSF网元初始化时,默认SMSF网元的优先级和分发权重是相同的,随着SMSF网元的不断使用,每个SMSF网元的性能发生变化,则相应地SMSF网元的分发权重也发生变化。其中,SMSF网元的分发权重和优先级可人为配置。
在一实现方式中,图5是本申请实施例提供的一种5G用户发短信异常保护的流程图。如图5所示,本实施例包括S510-S5120。
S510、SMSF接收到来自AMF的主叫用户起呼消息(即Nsmsf_SMService_UplinkSMS)。
S520、SMSF解析出主叫用户SUPI,在缓存中未查询到该用户的上下文信息。
S530、SMSF携带该主叫用户SUPI,向UDM发起Nudm_UECM_Get请求。
S540、获取UDM反馈的主叫用户及主叫用户所在AMF。
S550、SMSF携带该主叫用户SUPI,向UDM发起Nudm_SDM_Get请求。
S560、获取UDM反馈的主叫用户的签约数据。
S570、SMSF携带该主叫用户SUPI,向UDM发起Nudm_SDM_Subscribe请求。
S580、订阅UDM反馈的主叫用户的签约数据变更通知。
S590、SMSF获取到主叫用户的上述上下文信息并缓存。
S5100、SMSF判断主叫用户上下文信息中的签约数据中的MO权限是否鉴权通过,若是,则执行S5110;若否,则执行S5120。
S5110、继续原起呼流程,转发给短信中心SMSC。
S5120、返回AMF起呼鉴权失败响应。
在实施例中,在5G用户发短信时,SMSF如果在自身的预设缓存中未查询到主叫用户的用户上下文信息,则向UDM获取并缓存,继续原起呼流程,从而提升了用户的使用体验。
在一实现方式中,图6是本申请实施例提供的一种5G用户收短信异常保护流程图。如图6所示,本实施例包括S610-S6120。
S610、SMSF收到来自短信中心的该被叫用户终呼消息(即MT_Forward)。
S620、SMSF解析出被叫用户SUPI,在缓存中未查询到该用户的上下文信息。
S630、SMSF携带该被叫用户SUPI,向UDM发起Nudm_UECM_Get请求。
S640、获取UDM反馈的被叫用户及其所在AMF。
S650、SMSF携带该被叫用户SUPI,向UDM发起Nudm_SDM_Get请求。
S660、获取UDM反馈的被叫用户的签约数据。
S670、SMSF携带该被叫用户SUPI,向UDM发起Nudm_SDM_Subscribe请求。
S680、订阅UDM反馈的被叫用户的签约数据变更通知。
S690、SMSF获取到该被叫用户的上述上下文信息并缓存。
S6100、SMSF判断该被叫用户上下文信息中的签约数据中的MT权限是否鉴权通过,若是,则执行S6110;若否,则执行S6120。
S6110、继续原终呼流程,从上下文信息中得到该被叫用户当前所在AMF,转发给对应的AMF。
S6120、返回短信中心SMSC终呼鉴权失败响应。
在实施例中,在5G用户接收短信时,SMSF如果在自身的预设缓存中未查询到被叫用户的用户上下文信息,则向UDM获取并缓存,继续原终呼流程,从而提升了用户的使用体验。
在一实现方式中,图7是本申请实施例提供的一种用户上下文信息缓存逻辑的流程图。如图7所示本实施例包括S710-S790。
S710、一个5G用户开机或移入SMSF,按照SMSF注册消息流程获取到该用户上下文信息。
S720、SMSF将获取到的用户上下文信息放入预设缓存,并设置缓存有效期。
在实施例中,缓存有效期可以为:注册消息时间和预置的系统级有效时长的总和。
S730、5G用户关机或移出SMSF。
S740、缓存有效期内,该5G用户未发短信或收短信。
S750、SMSF将该用户上下文信息从预设缓存中删除。
在实施例中,在5G用户关机或移出SMSF的场景,或者,在缓存有效期内,该5G用户未发短信或收短信的场景下,SMSF将该用户上下文信息从缓存中删除,一个完整的流程结束。
S760、缓存有效期内,该5G用户有发短信或收短信的行为。
S770、SMSF延长该用户上下文信息的缓存有效期。
在实施例中,缓存有效期可以为:起呼或终呼消息时间和预置的系统级有效时长的总和。
S780、该5G用户又发短信或收短信。
在实施例中,在S750之后,即在SMSF将该用户上下文从缓存中删除之后,若该5G用户又发短信或收短信,则执行S790。
S790、SMSF向UDM查询获取到用户上下文信息,继续原起呼或终呼消息流程。
在实施例中,S730和S740是两种场景,在满足S730或S740的场景时,SMSF可将用户上下文信息从预设缓存中删除,以减少脏数据的存储。在满足S760的场景下,则执行S770,以延长该5G用户的缓存有效期,避免出现无法查询到对应用户上下文信息的现象。
在实施例中,发短信的流程参见上述实施例中图5的描述,收短信的流程 参见上述实施例中图6的描述,在此不再赘述。然后返回到S720,即SMSF将获取到的该用户上下文信息放入缓存,并设置缓存有效期,即起呼消息或终呼消息时间和预置的系统级有效时长的总和,并查询对应的用户上下文信息。
在一实现方式中,图8是本申请实施例提供的一种SMSF网元正常工作的流程图。如图8所示,本实施例包括S810-S880。
S810、SMSF1网元将自身服务通过Nnrf_NFManagement_NFRegister消息注册到NRF上。
在实施例中,SMSF1建设在地域A,网元启动后将自身服务通过Nnrf_NFManagement_NFRegister消息,注册到NRF上,携带地域标识自身服务的地域A,优先级为1,分发权重为1。
S820、SMSF2网元将自身服务通过Nnrf_NFManagement_NFRegister消息注册到NRF上。
在实施例中,SMSF2建设在地域B,网元启动后将自身服务通过Nnrf_NFManagement_NFRegister消息,注册到NRF上,携带地域标识自身服务的地域B,优先级也为1,分发权重为2。
S830、SMSF3网元将自身服务通过Nnrf_NFManagement_NFRegister消息注册到NRF上。
在实施例中,SMSF3建设在地域B,网元启动后将自身服务通过Nnrf_NFManagement_NFRegister消息,注册到NRF上,携带地域标识自身服务的地域B,优先级也为1,分发权重为1。
S840、NRF向AMF发起Nnrf_NFDiscovery消息。
在实施例中,在NRF向AMF发起Nnrf_NFDiscovery消息,发现3个SMSF,并根据其服务注册参数得知SMSF1服务地域A,SMSF2和SMSF3服务地域B,分发权重为2:1。
S850、5G用户1开机时,AMF根据用户号码判断是地域A用户,选择将用户1注册到地域A唯一的SMSF1。
S860、5G用户2开机时,AMF根据用户号码判断是地域B用户,选择将用户2注册到地域B的SMSF2。
在实施例中,5G用户2开机时,AMF根据用户号码判断是地域B用户,而地域B有SMSF2和SMSF3提供服务,且分发权重2:1。AMF选择将用户2注册Nsmsf_SMService_Activate到地域B的SMSF2。
S870、5G用户3开机时,AMF根据用户号码判断是地域B用户,选择将 用户3注册到地域B的SMSF2。
在实施例中,5G用户3开机时,AMF根据用户号码判断是地域B用户,而地域B有SMSF2和SMSF3提供服务,且分发权重2:1。AMF选择将用户3注册Nsmsf_SMService_Activate到地域B的SMSF2。
S880、5G用户4开机时,AMF根据用户号码判断是地域B用户,选择将用户3注册到地域B的SMSF3。
在实施例中,5G用户4开机时,AMF根据用户号码判断是地域B用户,而地域B有SMSF2和SMSF3提供服务,且分发权重2:1。AMF选择将用户4注册Nsmsf_SMService_Activate到地域B的SMSF3。
在一实现方式中,图9是本申请实施例提供的一种SMSF网元故障容灾的流程图。如图9所示,本实施例包括S910-S9110。
S910、SMSF1、SMSF2和SMSF3工作正常,启动后通过Nnrf_NFManagement_NFRegister消息,将自身服务注册到NRF上。
S920、SMSF1、SMSF2、SMSF3通过Nnrf_NFManagement_NFStatusSubscribe消息,向NRF订阅所有SMSF的服务变更通知。
S930、AMF通过Nnrf_NFManagement_NFStatusSubscribe消息,向NRF订阅所有SMSF的服务变更通知。
S940、SMSF1、SMSF2、SMSF3通过Nnrf_NFManagement_NFUpdate消息,与NRF之间心跳保活。
S950、SMSF1网元发生故障,整体下线,SMSF1与NRF之间的心跳保活消息Nnrf_NFManagement_NFUpdate中断。
S960、NRF使用Nnrf_NFManagement_NFStatusNotify消息通知SMSF2和SMSF3:SMSF1发生故障下线。
在实施例中,SMSF2和SMSF3网元发出告警,通知运维人员。
S970、NRF使用Nnrf_NFManagement_NFStatusNotify消息通知AMF:SMSF1发生故障下线。
在实施例中,当前可提供NAS短信服务的只有SMSF2和SMSF3。
S980、AMF分流用户Nsmsf_SMService_Activate注册消息到SMSF3。
在实施例中,5G用户1开机,按地域该用户原本应该注册到宕机SMSF1网元上,AMF知道SMSF1已宕机无法投递,AMF综合判断SMSF2和SMSF3的地域和分发权重,分流用户1Nsmsf_SMService_Activate注册消息到SMSF3。
S990、SMSF3向UDM发起Nudm_UECM_Registration注册消息。
在实施例中,SMSF3向UDM发起Nudm_UECM_Registration注册消息,包括用户1和SMSF3,通知UDM记录用户1目前已在SMSF3上接管。
在实施例中,原本注册在宕机SMSF1网元上的5G用户2此时发短信,AMF知道SMSF1已宕机无法投递,AMF综合判断SMSF2和SMSF3的地域和分发权重,分流用户Nsmsf_SMService_UplinkSMS起呼消息到SMSF2。
S9100、AMF分流用户2Nsmsf_SMService_UplinkSMS起呼消息到SMSF2。
S9110、SMSF2向UDM发起Nudm_UECM_Registration注册消息。
在实施例中,SMSF2向UDM发起Nudm_UECM_Registration注册消息,包括用户2和SMSF2,并通知UDM记录用户2目前已在SMSF2上接管。然后在进行如图3所示的流程进行继续处理。
在一实现方式中,图10是本申请实施例提供的一种SMSF网元容灾恢复的流程图。如图10所示,本实施例包括S1010-S10110。
S1010、SMSF2、SMSF3工作正常,已通过Nnrf_NFManagement_NFRegister消息,将自身服务注册到NRF上。
S1020、SMSF2、SMSF3通过Nnrf_NFManagement_NFStatusSubscribe消息,向NRF订阅所有SMSF的服务变更通知。
S1030、AMF通过Nnrf_NFManagement_NFStatusSubscribe消息,向NRF订阅所有SMSF的服务变更通知。
S1040、SMSF1网元故障恢复,启动后通过Nnrf_NFManagement_NFRegister消息,将自身服务注册到NRF上。
S1050、SMSF1通过Nnrf_NFManagement_NFUpdate消息,与NRF之间心跳保活。
S1060、NRF使用Nnrf_NFManagement_NFStatusNotify消息通知SMSF2和SMSF3:SMSF1故障恢复,上线提供服务。
在实施例中,SMSF2和SMSF3网元发出告警恢复,通知运维人员。
S1070、NRF使用Nnrf_NFManagement_NFStatusNotify消息通知AMF:SMSF1故障恢复,当前可提供NAS短信服务的为SMSF1、SMSF2和SMSF3。
S1080、AMF将该用户Nsmsf_SMService_Activate注册消息发给SMSF1。
在实施例中,一个5G用户1开机,AMF得知该主叫用户最近地域的SMSF1网元已恢复提供服务,AMF将该用户Nsmsf_SMService_Activate注册消息发给 SMSF1。
S1090、SMSF1向UDM发起Nudm_UECM_Registration注册消息。
在实施例中,SMSF1向UDM发起Nudm_UECM_Registration注册消息(用户1,SMSF1),并通知UDM记录用户1目前已在SMSF1上接管。
在实施例中,SMSF1故障时,原本注册在灾备SMSF2或SMSF3网元上的5G用户2此时发短信,AMF知道SMSF1已恢复提供服务,AMF将该用户Nsmsf_SMService_UplinkSMS起呼消息到SMSF1。
S10100、AMF将该用户Nsmsf_SMService_UplinkSMS起呼消息到SMSF1。
S10110、SMSF1向UDM发起Nudm_UECM_Registration注册消息(用户2,SMSF1),通知UDM记录用户2目前已在SMSF1上接管。然后在进行如图2所示的流程进行继续处理。
在实施例中,因用户的上下文缓存设置了有效期,灾备SMSF2和SMSF3网元上将不会再收到AMF对locality归属SMSF1的用户的注册、起呼消息,超过缓存有效期后,该用户上下文信息从灾备SMSF2和SMSF3网元缓存中自动删除,避免了缓存脏数据的存在。
图11是本申请实施例提供的一种通信连接系统的结构框图。如图11所示,本实施例的通信连接系统包括:SMSF网元1101和UDM设备1102。
在实施例中,SMSF网元1101,在SMSF网元1101的预设缓存中未查询到与用户永久识别码对应的用户上下文信息的情况下,向UDM设备1102发送信息获取请求;
UDM设备1102设置为根据所述信息获取请求向SMSF网元1101反馈用户上下文信息;
SMSF网元1101设置为根据所述用户上下文信息继续进行对应的呼叫流程。
图12是本申请实施例提供的另一种通信连接系统的结构框图。如图12所示,本实施例的通信连接系统包括:AMF设备1201、NRF1202和灾备SMSF网元1203;
AMF设备1201设置为,在呼叫用户所在的SMSF网元出现故障宕机的情况下,接收NRF发送的SMSF网元服务变动信息通知;
AMF设备1201设置为,根据SMSF网元服务变动信息通知确定对应的灾备SMSF网元1203;
灾备SMSF网元1203设置为,在呼叫用户所在的SMSF网元出现故障宕机的情况下,接收NRF1202发送的SMSF网元服务变动信息通知;
AMF设备1201设置为,在检测到呼叫用户的呼叫请求的情况下,根据灾备SMSF网元1203的地域标识和分发权重分流呼叫用户的用户呼叫消息;
灾备SMSF网元1203设置为,在检测到用户呼叫消息的情况下,从预设缓存或UDM设备中获取呼叫用户的用户上下文信息,继续进行对应的呼叫流程,用户呼叫消息对应的业务原先由出现故障宕机的SMSF网元进行处理。
在一实施例中,通信连接系统,还包括:故障恢复的SMSF网元;
故障恢复的SMSF网元设置为,向NRF1202重新注册SMSF网元服务;并接收NRF1202反馈的SMSF网元服务变动信息通知;在检测到用户呼叫消息的情况下,接收AMF设备1201发送的新注册消息和用户呼叫消息;根据用户呼叫消息对应的用户上下文信息进行对应的呼叫流程。
图13是本申请实施例提供的一种通信连接装置的结构框图。本实施例应用于对SMSF网元进行异常保护的情况。如图13所示,本实施例中的装置包括:解析模块1110、第一发送模块1120、第一接收模块1130和第一呼叫模块1140。
其中,解析模块1110,设置为根据用户呼叫消息解析得到呼叫用户的用户永久识别码;
第一发送模块1120,设置为在预设缓存中未查询到与用户永久识别码对应用户上下文信息的情况下,携带用户永久识别码向UDM设备发送信息获取请求;
第一接收模块1130,设置为接收UDM设备反馈对应的用户上下文信息,用户上下文信息包括:呼叫用户信息、呼叫用户所在AMF设备信息和签约数据信息;
第一呼叫模块1140,设置为根据反馈的用户上下文信息继续进行对应的呼叫流程。
本实施例提供的通信连接装置设置为实现图1所示实施例的通信连接方法,本实施例提供的通信连接装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,在用户呼叫消息为主叫用户起呼消息的情况下,呼叫用户为主叫用户。
在一实施例中,在用户呼叫消息为被叫用户终呼消息的情况下,呼叫用户为被叫用户。
在一实施例中,在所述呼叫用户设置短信上行MO或短信下行MT异常保护的情况下,对用户上下文信息设置缓存有效期。
在一实施例中,在所述呼叫用户注册、发送起呼消息或接收终呼消息的情 况下,自动延长所述缓存有效期。
图14是本申请实施例提供的另一种通信连接装置的结构框图。本实施例应用于SMSF网元出现故障宕机的情况。如图14所示,本实施例中的装置包括:第二接收模块1210和第二呼叫模块1220。
第二接收模块1210,设置为在呼叫用户所在的SMSF网元出现故障宕机的情况下,接收网元服务注册发现中心NRF发送的SMSF网元服务变动信息通知;
第二呼叫模块1220,设置为在检测到用户呼叫消息的情况下,从预设缓存中获取所述呼叫用户的用户上下文信息,继续进行对应的呼叫流程。
本实施例提供的通信连接装置设置为实现图2所示实施例的通信连接方法,本实施例提供的通信连接装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,通信连接装置,还包括:发起模块,设置为在所述接收网元服务注册发现中心NRF发送的SMSF网元服务变动信息通知之后,在所述检测到用户呼叫消息之前,根据所述SMSF网元服务变动信息通知发起SMSF网元告警信息。
在一实施例中,在呼叫用户注册、发送起呼消息或接收终呼消息的情况下,通信连接装置,还包括:延期模块,设置为自动延长所述呼叫用户所对应用户上下文信息的缓存有效期。
在一实施例中,在从预设缓存中未获取到所述呼叫用户的用户上下文信息的情况下,通信连接装置,还包括:
第二发送模块,设置为向UDM设备发送信息获取请求;
第三接收模块,设置为接收所述UDM设备反馈的用户上下文信息。
图15是本申请实施例提供的又一种通信连接装置的结构框图。本实施例应用于出现故障宕机SMSF网元恢复的情况。如图15所示,本实施例中的装置包括:第一注册模块1310、第四接收模块1320、第五接收模块1330和第三呼叫模块1340。
第一注册模块1310,设置为在出现故障宕机的SMSF网元恢复的情况下,向NRF重新注册SMSF网元服务;
第四接收模块1320,设置为接收NRF反馈的SMSF网元服务变动信息通知;
第五接收模块1330,设置为在检测到用户呼叫消息的情况下,接收AMF设备发送的新注册消息和用户呼叫消息;
第三呼叫模块1340,设置为根据所述用户呼叫消息对应的用户上下文信息进行对应的呼叫流程。
本实施例提供的通信连接装置设置为实现图3所示实施例的通信连接方法,本实施例提供的通信连接装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,从预设缓存或UDM设备中获取所述用户呼叫消息对应的用户上下文信息。
图16是本申请实施例提供的再一种通信连接装置的结构框图。本实施例应用于SMSF网元出现故障宕机的情况。如图16所示,本实施例中的装置包括:第六接收模块1410、第一确定模块1420和分流模块1430。
第六接收模块1410,设置为在呼叫用户所在的SMSF网元出现故障宕机的情况下,接收NRF发送的SMSF网元服务变动信息通知;
第一确定模块1420,设置为根据所述SMSF网元服务变动信息通知确定对应的灾备SMSF网元,所述灾备SMSF网元为除出现故障宕机的SMSF网元之外的其它SMSF网元;
分流模块1430,设置为在检测到所述呼叫用户的呼叫请求的情况下,根据所述灾备SMSF网元的地域标识和分发权重分流所述呼叫用户的用户呼叫消息。
本实施例提供的通信连接装置设置为实现图4所示实施例的通信连接方法,本实施例提供的通信连接装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,在根据所述灾备SMSF网元的地域标识和分发权重分流所述呼叫用户的用户呼叫消息之后,在检测到用户呼叫消息的情况下,从预设缓存或UDM中获取所述呼叫用户的用户上下文信息,继续进行对应的呼叫流程。
在一实施例中,在呼叫用户发起呼叫的情况下,通信连接装置,还包括:
获取模块,设置为获取每个SMSF网元的地域标识和分发权重;
第二确定模块,设置为根据所述地域标识和分发权重确定所要连接的SMSF网元;
第二注册模块,设置为将所述呼叫用户分发注册到确定的SMSF网元上。
在出现故障宕机的SMSF网元恢复的情况下,通信连接装置,还包括:第三发送模块,设置为将呼叫用户的新注册消息和用户呼叫消息发送至恢复的SMSF网元。
在一实施例中,在呼叫用户在出现故障宕机的SMSF网元的情况下,在SMSF网元内部,利用SMSF网元的采用集群和反亲和副本的方式进行缓存用户上下文信息。
在一实施例中,在SMSF网元之间,采用集群间同步的方式进行缓存用户上下文信息。
在一实施例中,在出现故障宕机的SMSF网元恢复的情况下,通信连接装置,还包括:注册模块,设置为向NRF重新注册SMSF网元服务;第三接收模块,设置为接收NRF发送的SMSF网元服务变动信息通知。
图17是本申请实施例提供的一种设备的结构示意图。如图17所示,本申请提供的设备,包括:处理器1510和存储器1520。该设备中处理器1510的数量可以是一个或者多个,图17中以一个处理器1510为例。该设备中存储器1520的数量可以是一个或者多个,图17中以一个存储器1520为例。该设备的处理器1510和存储器1520以通过总线或者其他方式连接,图17中以通过总线连接为例。在该实施例中,该设备为SMSF网元。
存储器1520作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请任意实施例的设备对应的程序指令/模块(例如,通信连接装置中的解析模块、第一发送模块、第一接收模块和第一呼叫模块)。存储器1520可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器1520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器1520可包括相对于处理器1510远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括互联网、企业内部网、局域网、移动通信网及其组合。
上述提供的设备可设置为执行上述任意实施例提供的通信连接方法,具备相应的功能和效果。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种通信连接方法,由SMSF网元执行,该方法包括:根据接收到的用户呼叫消息解析得到对应呼叫用户的用户永久识别码;在预设缓存中未查询到用户永久识别码对应用户上下文信息的情况下,携带用户永久识别码向统一数据管理UDM设备发送信息获取请求;接收UDM设备反馈对应的用户上下文信息,用户上下文信息包括:呼叫用户信息、呼叫用户所在AMF设备信息和签约数据信息;根据反馈的用户上下文信息继续进行对应的呼叫流程。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种通信连接方法,由灾备SMSF网元执行,该方法包括:在呼叫用户所在的SMSF网元出现故障宕机的情况下,接收网元服务注册发现中心NRF发送的SMSF网元服务变动信息通知;根据所述SMSF网元服务变动信息通知发起SMSF网元告警信息;在检测到用户呼叫 消息的情况下,从预设缓存中获取所述呼叫用户的用户上下文信息,继续进行对应的呼叫流程。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种通信连接方法,由出现故障宕机,然后恢复的SMSF网元执行,该方法包括:在出现故障宕机的SMSF网元恢复的情况下,向NRF重新注册SMSF网元服务;接收NRF反馈的SMSF网元服务变动信息通知;在检测到用户呼叫消息的情况下,接收AMF设备发送的新注册消息和用户呼叫消息;根据所述用户呼叫消息对应的用户上下文信息进行对应的呼叫流程。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种通信连接方法,由AMF设备执行,该方法包括:在呼叫用户所在的SMSF网元出现故障宕机的情况下,接收NRF发送的SMSF网元服务变动信息通知;根据所述SMSF网元服务变动信息通知确定对应的灾备SMSF网元,所述灾备SMSF网元为除出现故障宕机的SMSF网元之外的其它SMSF网元;在检测到所述呼叫用户的呼叫请求的情况下,根据所述灾备SMSF网元的地域标识和分发权重分流所述呼叫用户的用户呼叫消息。
术语用户设备涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介 质。数据处理器可以是任何适合于本地技术环境的类型,例如通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。

Claims (21)

  1. 一种通信连接方法,包括:
    根据用户呼叫消息解析得到呼叫用户的用户永久识别码;
    在预设缓存中未查询到与所述用户永久识别码对应的用户上下文信息的情况下,携带所述用户永久识别码向统一数据管理UDM设备发送信息获取请求;
    接收所述UDM设备反馈的用户上下文信息,所述用户上下文信息包括:呼叫用户信息、呼叫用户所在接入及移动性管理功能AMF设备信息和签约数据信息;
    根据反馈的所述用户上下文信息继续进行呼叫流程。
  2. 根据权利要求1所述的方法,其中,在所述用户呼叫消息为主叫用户起呼消息的情况下,所述呼叫用户为主叫用户。
  3. 根据权利要求1所述的方法,其中,在所述用户呼叫消息为被叫用户终呼消息的情况下,所述呼叫用户为被叫用户。
  4. 根据权利要求1所述的方法,还包括:对所述用户上下文信息设置缓存有效期。
  5. 根据权利要求4所述的方法,其中,在所述呼叫用户注册、发送起呼消息或接收终呼消息的情况下,自动延长所述缓存有效期。
  6. 一种通信连接方法,包括:
    在呼叫用户所在的短消息服务功能SMSF网元出现故障宕机的情况下,接收网元服务注册发现中心NRF发送的SMSF网元服务变动信息通知;
    在检测到用户呼叫消息的情况下,从预设缓存或统一数据管理UDM设备中获取所述呼叫用户的用户上下文信息,继续进行呼叫流程,所述用户呼叫消息对应的业务原先由出现故障宕机的SMSF网元进行处理。
  7. 根据权利要求6所述的方法,其中,在所述接收NRF发送的SMSF网元服务变动信息通知之后,在所述检测到用户呼叫消息之前,还包括:
    根据所述SMSF网元服务变动信息通知发起SMSF网元告警信息。
  8. 根据权利要求6所述的方法,其中,在所述呼叫用户注册、发送起呼消息或接收终呼消息的情况下,所述方法还包括:
    自动延长所述呼叫用户所对应的用户上下文信息的缓存有效期。
  9. 一种通信连接方法,包括:
    在出现故障宕机的短消息服务功能SMSF网元恢复的情况下,向网元服务 注册发现中心NRF重新注册SMSF网元服务;
    接收NRF反馈的SMSF网元服务变动信息通知;
    在检测到用户呼叫消息的情况下,接收接入及移动性管理功能AMF设备发送的新注册消息和用户呼叫消息;
    根据所述用户呼叫消息对应的用户上下文信息进行呼叫流程。
  10. 根据权利要求9所述的方法,其中,从预设缓存或统一数据管理UDM设备中获取所述用户呼叫消息对应的用户上下文信息。
  11. 一种通信连接方法,包括:
    在呼叫用户所在的短消息服务功能SMSF网元出现故障宕机的情况下,接收网元服务注册发现中心NRF发送的SMSF网元服务变动信息通知;
    根据所述SMSF网元服务变动信息通知确定灾备SMSF网元,所述灾备SMSF网元为除出现故障宕机的SMSF网元之外的其它SMSF网元;
    在检测到所述呼叫用户的呼叫请求的情况下,根据所述灾备SMSF网元的地域标识和分发权重分流所述呼叫用户的用户呼叫消息。
  12. 根据权利要求11所述的方法,其中,在所述根据所述灾备SMSF网元的地域标识和分发权重分流所述呼叫用户的用户呼叫消息之后,还包括:
    在检测到用户呼叫消息的情况下,从预设缓存或统一数据管理UDM中获取所述呼叫用户的用户上下文信息,继续进行呼叫流程。
  13. 根据权利要求11所述的方法,其中,在所述呼叫用户发起呼叫的情况下,所述方法还包括:
    获取每个SMSF网元的地域标识和分发权重;
    根据所述地域标识和分发权重确定所要连接的SMSF网元;
    将所述呼叫用户分发注册到确定的SMSF网元上。
  14. 根据权利要求11所述的方法,其中,在出现故障宕机的SMSF网元恢复的情况下,所述方法还包括:将所述呼叫用户的新注册消息和用户呼叫消息发送至恢复的SMSF网元。
  15. 根据权利要求1、6、9或11所述的方法,其中,在SMSF网元内部,SMSF网元的缓存单元采用集群和反亲和副本的方式,进行缓存用户上下文信息。
  16. 根据权利要求1、6、9或11所述的方法,其中,在SMSF网元之间,采用集群间同步的方式进行缓存用户上下文信息。
  17. 一种通信连接系统,包括:短消息服务功能SMSF网元和统一数据管理UDM设备;
    所述SMSF网元设置为在所述SMSF网元的预设缓存中未查询到与用户永久识别码对应的用户上下文信息的情况下,向所述UDM设备发送信息获取请求;
    所述UDM设备设置为根据所述信息获取请求向所述SMSF网元反馈用户上下文信息;
    所述SMSF网元还设置为根据所述用户上下文信息继续进行呼叫流程。
  18. 一种通信连接系统,包括:接入及移动性管理功能AMF设备、网元服务注册发现中心NRF和灾备短消息服务功能SMSF网元;
    所述AMF设备设置为,在呼叫用户所在的SMSF网元出现故障宕机的情况下,接收所述NRF发送的SMSF网元服务变动信息通知;
    所述AMF设备还设置为,根据所述SMSF网元服务变动信息通知确定灾备SMSF网元;
    所述灾备SMSF网元设置为,在所述呼叫用户所在的SMSF网元出现故障宕机的情况下,接收所述NRF发送的SMSF网元服务变动信息通知;
    所述AMF设备还设置为,在检测到所述呼叫用户的呼叫请求的情况下,根据所述灾备SMSF网元的地域标识和分发权重分流所述呼叫用户的用户呼叫消息;
    所述灾备SMSF网元还设置为,在检测到用户呼叫消息的情况下,从预设缓存或统一数据管理UDM设备中获取所述呼叫用户的用户上下文信息,继续进行呼叫流程,所述用户呼叫消息对应的业务原先由出现故障宕机的SMSF网元进行处理。
  19. 根据权利要求18所述的方法,还包括:故障恢复的SMSF网元;
    所述故障恢复的SMSF网元设置为,向所述NRF重新注册SMSF网元服务;并接收所述NRF反馈的SMSF网元服务变动信息通知;在检测到所述用户呼叫消息的情况下,接收所述AMF设备发送的新注册消息和用户呼叫消息;根据所述用户呼叫消息对应的用户上下文信息进行呼叫流程。
  20. 一种设备,包括:存储器,以及一个或多个处理器;
    存储器,设置为存储一个或多个程序;
    所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-17任一项所述的方法。
  21. 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-17中任一项所述的方法。
PCT/CN2020/089451 2019-11-28 2020-05-09 通信连接方法、设备和存储介质 WO2021103424A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20892645.1A EP4068813A4 (en) 2019-11-28 2020-05-09 COMMUNICATION CONNECTION METHOD AND DEVICE AND STORAGE MEDIA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911194314.9 2019-11-28
CN201911194314.9A CN112866932B (zh) 2019-11-28 2019-11-28 一种通信连接方法、设备和存储介质

Publications (1)

Publication Number Publication Date
WO2021103424A1 true WO2021103424A1 (zh) 2021-06-03

Family

ID=75995830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089451 WO2021103424A1 (zh) 2019-11-28 2020-05-09 通信连接方法、设备和存储介质

Country Status (3)

Country Link
EP (1) EP4068813A4 (zh)
CN (1) CN112866932B (zh)
WO (1) WO2021103424A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4329345A1 (en) * 2021-05-31 2024-02-28 Huawei Technologies Co., Ltd. Tag management method and related apparatus
CN116261153A (zh) * 2021-12-02 2023-06-13 中兴通讯股份有限公司 数据缓存方法、网元、电子设备和存储介质
CN114363935A (zh) * 2021-12-31 2022-04-15 中国电信股份有限公司 网元检测方法、装置、存储介质及电子设备
CN115396930B (zh) * 2022-08-19 2024-05-03 中国联合网络通信集团有限公司 容灾处理方法、装置及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101164352A (zh) * 2005-07-24 2008-04-16 华为技术有限公司 一种分流短消息的方法及其系统
WO2018137152A1 (zh) * 2017-01-24 2018-08-02 华为技术有限公司 短消息传输方法、设备和系统
WO2018199668A1 (ko) * 2017-04-27 2018-11-01 엘지전자 주식회사 무선 통신 시스템에서 udm이 amf의 등록에 관련된 절차를 수행하는 방법 및 이를 위한 장치
US20190037407A1 (en) * 2017-07-27 2019-01-31 Nokia Solutions And Networks Oy Secure short message service over non-access stratum
CN109818766A (zh) * 2017-11-21 2019-05-28 中兴通讯股份有限公司 一种通信方法、网络功能实体、网络功能仓储及计算机可读存储介质
US20190306695A1 (en) * 2018-04-02 2019-10-03 Lg Electronics Inc. Method and apparatus for transmitting and receiving short message-related signal in a wireless communication system
CN110392369A (zh) * 2018-04-16 2019-10-29 电信科学技术研究院有限公司 一种短信息服务能力更新方法、设备及装置
WO2019211496A1 (en) * 2018-06-25 2019-11-07 Telefonaktiebolaget Lm Ericsson (Publ) Network function handling in the context of inter-management function mobility

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018202284A1 (en) * 2017-05-03 2018-11-08 Telefonaktiebolaget Lm Ericsson (Publ) Authorizing access to user data
US10764789B2 (en) * 2017-08-11 2020-09-01 Comcast Cable Communications, Llc Application-initiated network slices in a wireless network
CN114731735A (zh) * 2019-11-07 2022-07-08 三星电子株式会社 在无线通信系统中提供服务的方法和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101164352A (zh) * 2005-07-24 2008-04-16 华为技术有限公司 一种分流短消息的方法及其系统
WO2018137152A1 (zh) * 2017-01-24 2018-08-02 华为技术有限公司 短消息传输方法、设备和系统
WO2018199668A1 (ko) * 2017-04-27 2018-11-01 엘지전자 주식회사 무선 통신 시스템에서 udm이 amf의 등록에 관련된 절차를 수행하는 방법 및 이를 위한 장치
US20190037407A1 (en) * 2017-07-27 2019-01-31 Nokia Solutions And Networks Oy Secure short message service over non-access stratum
CN109818766A (zh) * 2017-11-21 2019-05-28 中兴通讯股份有限公司 一种通信方法、网络功能实体、网络功能仓储及计算机可读存储介质
US20190306695A1 (en) * 2018-04-02 2019-10-03 Lg Electronics Inc. Method and apparatus for transmitting and receiving short message-related signal in a wireless communication system
CN110392369A (zh) * 2018-04-16 2019-10-29 电信科学技术研究院有限公司 一种短信息服务能力更新方法、设备及装置
WO2019211496A1 (en) * 2018-06-25 2019-11-07 Telefonaktiebolaget Lm Ericsson (Publ) Network function handling in the context of inter-management function mobility

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Restoration Procedures (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 23.527, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. CT WG4, no. V16.1.0, 19 September 2019 (2019-09-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 19, XP051784569 *
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Subscriber and equipment trace; Trace control and configuration management (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 32.422, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG5, no. V15.2.0, 12 June 2019 (2019-06-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 189, XP051754020 *
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Procedures for the 5G System (5GS); Stage 2 (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 23.502, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. V16.2.0, 30 September 2019 (2019-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 525, XP051784671 *
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System Architecture for the 5G System (5GS); Stage 2 (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 23.501, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. V16.2.0, 24 September 2019 (2019-09-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 391, XP051784669 *
CHINA MOBILE,: "SA WG2 Meeting #127, S2-183500,", UPDATE ON SMSONAS PROCEDURES TO SUPPORT MT SMS DOMAIN SELECTION,, 10 April 2018 (2018-04-10), XP051437812 *
HUAWEI ET AL.,: "3GPP TSG-SA2 Meeting #128BIS, S2-188229,", UPDATE REGISTRATION PROCEDURES FOR SMS OVER NAS,, 14 August 2018 (2018-08-14), XP051503037 *
HUAWEI: "3GPP TSG-CT WG4 Meeting #94, C4-194069,", NF INSTANCE ID IN DEREGISTRATION SERVICE OPERATION,, 27 September 2019 (2019-09-27), XP051786655 *
ZTE,: "3GPP TSG CT WG4 Meeting #85, C4-184470,", UPDATES TO SERVICE OPERATIONS,, 25 May 2018 (2018-05-25), XP051461199 *

Also Published As

Publication number Publication date
EP4068813A4 (en) 2023-01-18
EP4068813A1 (en) 2022-10-05
CN112866932A (zh) 2021-05-28
CN112866932B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2021103424A1 (zh) 通信连接方法、设备和存储介质
US20220191665A1 (en) Event notification method, apparatus and storage medium
US11523268B2 (en) Communications method and apparatus
EP3860189B1 (en) Ue migration method, apparatus, system, and storage medium
CN110535676B (zh) Smf动态容灾的实现方法、装置、设备及存储介质
US9125003B2 (en) Machine to machine service management device, network device, and method processing service system
WO2023165277A1 (zh) 会话管理方法、通信设备及存储介质
WO2017079906A1 (zh) 选择服务网络的方法、网络设备和管理设备
KR102571099B1 (ko) 통신 방법, 통신 장치, 및 통신 시스템
EP3544232B1 (en) Processing method, device and system for nf component abnormality
CN109067578B (zh) 一种组播快速切换的方法和装置
WO2020098622A1 (zh) 消息通知方法、装置、网元、系统及存储介质
US20200218715A1 (en) Method and apparatus for providing big data analysis service, and computer readable storage medium
KR102233894B1 (ko) 네트워크 기능 장치 및 이를 이용한 요청 처리 방법
WO2018166328A1 (zh) 信息处理方法、装置、计算机可读存储介质及电子设备
WO2021164471A1 (zh) 拥塞控制方法、装置、设备、介质及系统
US20240048975A1 (en) Secure data collection in fifth generation system (5gs)
WO2017215408A1 (zh) 会话切换控制方法、装置及接入点设备
EP3917083A1 (en) Network device and method for searching for edge service implemented in network device
EP4366334A1 (en) Message processing method, electronic device, and storage medium
US11595871B2 (en) Systems and methods for securely sharing context between MEC clusters
US11962868B2 (en) Detecting a quality issue associated with a video stream delivery
US20230403761A1 (en) Non-service initiated emergency call device parameters
WO2023213286A1 (zh) 模型标识管理方法、装置及存储介质
US20230208804A1 (en) Ip address allocation in a wireless communication network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020892645

Country of ref document: EP

Effective date: 20220628