WO2021103271A1 - 一种ar显示设备 - Google Patents

一种ar显示设备 Download PDF

Info

Publication number
WO2021103271A1
WO2021103271A1 PCT/CN2019/130429 CN2019130429W WO2021103271A1 WO 2021103271 A1 WO2021103271 A1 WO 2021103271A1 CN 2019130429 W CN2019130429 W CN 2019130429W WO 2021103271 A1 WO2021103271 A1 WO 2021103271A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
device body
negative lens
display device
frame
Prior art date
Application number
PCT/CN2019/130429
Other languages
English (en)
French (fr)
Inventor
任红恩
姜滨
迟小羽
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2021103271A1 publication Critical patent/WO2021103271A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • This application relates to the technical field of AR products, and more specifically, to an AR display device.
  • AR augmented reality
  • AR products such as AR glasses and AR headsets have gradually appeared on the market.
  • AR products use AR technology to superimpose the light of the real world and virtual world into the human eye to achieve an augmented reality display effect.
  • AR products can also integrate environmental perception and interaction functions to bring users a full experience. Favored by more and more users.
  • Optical display technology is the core technology of AR products. Most of the AR products in the prior art adopt optical waveguide display technology. Optical waveguide display technology has the characteristics of large eyebox, light and thin, etc., which can achieve a smaller body volume. For example, AR The glasses are close to the shape of ordinary glasses.
  • the disadvantage of the optical waveguide display technology is that there are some problems with the image quality.
  • the virtual distance of the optical waveguide-based AR display technology is at infinity, otherwise its optical performance will be affected. Due to design constraints and cannot be changed, the shortest distance that the left and right eyes can display through convergence is 4m. Otherwise, when the screen distance is less than 4m, the convergence conflict will be more serious and it is very easy to cause visual fatigue.
  • the AR display technology based on optical waveguides can only display pictures at a distance greater than 4m. Obviously, this limits the use scenarios of AR products. For example, when AR products are used in offices, AR products can replace displays, based on human use. It is customary to place the screen distance at the distance of the display, such as 0.3-0.5m. However, because the display distance is less than 4m, AR products cannot meet office needs. Similarly, AR products based on optical waveguides cannot meet other display distances less than 4m usage scenario requirements.
  • the purpose of this application is to provide an AR display device that shortens the display distance of the virtual screen and expands the use environment of AR products while ensuring that the convergence conflict meets the requirements.
  • An AR display device includes a device body and a waveguide lens provided on the device body, the device body is further provided with:
  • a negative lens for shortening the distance of the virtual image where the negative lens is located on the side of the waveguide lens that faces the eye;
  • a positive lens used to offset the influence of the negative lens on the external environment, and the positive lens is located on the side of the waveguide lens that faces away from the eye.
  • it further includes a first frame, and the negative lens is mounted on the device body through the first frame.
  • the negative lens is detachably embedded in the first frame.
  • the first frame is fixedly connected to the device body.
  • it further includes a second frame, and the positive lens is mounted on the device body through the second frame.
  • the positive lens is detachably embedded in the second frame.
  • the second frame is fixedly connected to the device body.
  • the device body includes a glasses-type device body or a helmet-type device body.
  • the absolute value of the refractive power of the negative lens is greater than the refractive power of the positive lens to correct myopia.
  • the absolute value of the refractive power of the negative lens is smaller than the refractive power of the positive lens to correct hyperopia.
  • the negative lens since the negative lens is located on the side of the waveguide lens that faces the eye, the image light emitted by the optical machine in the device body enters the negative lens in the form of approximately parallel light after passing through the waveguide lens. Because the negative lens has a divergent effect on the light, the divergent light is along its reverse extension line and intersects at a point on the same side of the projected light to form a virtual focus. That is, the negative lens can bring the infinite virtual image distance closer to the human eye, so that the diopter of the image focused by the human eye is greater than 0D.
  • the diopter of the human eye corresponding to the image after the adjustment of the two-eye convergence can be correspondingly That is, the diopter of the human eye corresponding to the adjusted image of the two-eye convergence can be greater than 0.25D, so that the distance of the image adjusted by the two-eye convergence can be reduced, that is, the image after the two-eye convergence can be adjusted.
  • the screen distance is less than 4m, so that the AR display device provided by this application is suitable for use scenarios with a display distance less than 4m.
  • the positive lens on the side of the waveguide lens used to face away from the eye can offset the influence of the negative lens on the external environment.
  • the AR display device uses the negative lens to shorten the display distance of the virtual screen by adding a negative lens and a positive lens to the device body, and at the same time, the positive lens is used to offset the negative lens's impact on the external environment. Impact, on the premise of ensuring that the convergence conflict meets the requirements, the use environment of AR products is expanded.
  • FIG. 1 is a schematic diagram of the principle of an AR display device provided by a specific embodiment of this application;
  • FIG. 2 is a schematic structural diagram of a negative lens module in an AR display device provided by a specific embodiment of the application;
  • FIG. 3 is a schematic diagram of the structure of the device body in the AR display device provided by a specific embodiment of the application;
  • FIG. 4 is a schematic diagram of the structure of the negative lens module shown in FIG. 2 and the device body shown in FIG. 3 after being assembled;
  • FIG. 5 is a schematic structural diagram of a positive lens module in an AR display device provided by a specific embodiment of the application.
  • FIG. 6 is a schematic structural diagram of the device body shown in FIG. 3 from another perspective;
  • FIG. 7 is a schematic diagram of the structure of the positive lens module shown in FIG. 5 and the device body shown in FIG. 6 after being assembled.
  • 1 is the device body
  • 11 is the first permanent magnet
  • 12 is the screw hole
  • 2 is the waveguide lens
  • 3 is the negative lens
  • 4 is the positive lens
  • 5 is the first frame
  • 6 is the second frame
  • 61 is the positioning hole
  • 7 is screw
  • 8 is optical machine
  • 9 is human eye.
  • the core of this application is to provide an AR display device, which shortens the display distance of the virtual screen and expands the use environment of AR products while ensuring that the convergence conflict meets the requirements.
  • FIG. 1 is a schematic diagram of the principle of an AR display device provided by a specific embodiment of this application
  • FIG. 2 is a schematic structural diagram of a negative lens module in an AR display device provided by a specific embodiment of this application
  • 3 is a schematic diagram of the structure of the device body
  • FIG. 4 is a schematic diagram of the structure after the negative lens module and the device body are assembled
  • FIG. 5 is a schematic diagram of the structure of the positive lens module in the AR display device
  • FIG. 6 is the structure of the device body from another perspective Schematic diagram
  • Figure 7 is a schematic diagram of the structure of the positive lens module and the device body after assembly.
  • This application provides an AR display device, which includes a device body 1 and a waveguide lens 2 provided on the device body 1.
  • the device body 1 is also provided with a negative lens 3 and a positive lens 4.
  • the negative lens 3 is mainly used to shorten the distance of the virtual image.
  • the lens 3 is arranged on the side of the waveguide lens 2 facing the eye;
  • the positive lens 4 is mainly used to offset the influence of the negative lens 3 on the external environment, and the positive lens 4 is arranged on the side of the waveguide lens 2 facing away from the eye.
  • the present application does not limit the main structure of the device body 1.
  • the device body 1 includes a glasses-type device body or a helmet-type device body.
  • the AR The display device is AR glasses
  • the body structure of the device body 1 is the same as that of conventional AR glasses in the prior art
  • the device body 1 is a helmet-mounted device body and the AR display device is an AR head display
  • the device body 1 The main structure is the same as that of a conventional AR headset in the prior art.
  • the device body 1 integrates all the functional components necessary for the AR display device, for example, including the optical machine 8 and the waveguide lens 2, etc.
  • the optical machine 8 and the waveguide lens 2, etc.
  • the prior art please refer to the prior art, which will not be repeated here.
  • the main improvement of this application lies in the addition of a negative lens 3 and a positive lens 4 to the AR display device, so that the negative lens 3 is used to shorten the virtual image distance of the AR display device, and the positive lens 4 is used to offset the impact of the negative lens 3 on the external environment. Impact.
  • the virtual image distance of the existing AR display device is located at infinity, that is, the image light emitted by the optical machine 8 enters the human eye in the form of approximately parallel light after passing through the waveguide lens 2 9.
  • the diopter of the human eye 9's monocular focus image is 0D.
  • the diopter of the human eye 9 corresponding to the picture adjusted by the convergence of the two eyes needs to be less than or equal to 0.25D, because the diopter is inversely proportional to the focal length, that is, ,
  • the screen distance adjusted by the convergence of the two eyes must be greater than or equal to 4m.
  • the image light emitted by the optical engine 8 passes through the waveguide lens 2 and enters the negative lens 3 in the form of approximately parallel light, because the negative lens 3 has an effect on the light.
  • the effect of divergence the divergent light is along its reverse extension line and intersects at a point on the same side of the projected light to form a virtual focus. That is, the negative lens 3 can bring the infinite virtual image distance closer to the human eye 9 so that the diopter of the image focused by the human eye 9 is greater than 0D.
  • the image after the adjustment of the convergence of the two eyes corresponds to the human eye 9
  • the diopter can be enlarged correspondingly, that is, the diopter of the human eye 9 corresponding to the image after the adjustment of the two-eye convergence can be greater than 0.25D, so that the distance of the image after the adjustment of the two-eye convergence can be reduced, that is, the distance between the two eyes can be reduced.
  • the adjusted screen distance of the eye convergence is less than 4m, so that the AR display device provided in this application is suitable for use scenarios with a display distance less than 4m.
  • the AR display device provided by the present application can not only ensure that the convergence conflict meets the requirements, but also make the screen display distance adjusted by the two-eye convergence less than 4m, which not only ensures visual comfort, but also expands the AR display.
  • the screen distance adjusted by binocular convergence is related to the diopter of the negative lens 3, and the greater the absolute value of the diopter of the negative lens 3, the closer the screen distance adjusted by binocular convergence.
  • This embodiment does not limit the specific value of the refractive power of the negative lens 3, and those skilled in the art can set it according to actual needs.
  • the present application uses the positive lens 4 on the side of the waveguide lens 2 that faces away from the eye to offset the influence of the negative lens 3 on the external environment.
  • the refractive power of the positive lens 4 is determined by the refractive power of the negative lens 3.
  • the absolute value of the refractive power of the positive lens 4 and the refractive power of the negative lens 3 are equal, the two just cancel each other out, and the positive lens 4 can The influence of the negative lens 3 on the external environment is completely eliminated, and at the same time, the positive lens 4 will not have an additional influence on the external environment.
  • the absolute value of the refractive power of the negative lens 3 is greater than the refractive power of the positive lens 4, so as to prevent myopia. Correction.
  • the AR display device has the function of correcting myopia.
  • the refractive power of the negative lens 3 is -2D and the refractive power of the positive lens 4 is +0.5D
  • the superimposed refractive power of the negative lens 3 and the positive lens 4 is -1.5D
  • the corresponding vision correction power is 150 degrees.
  • the negative lens 3 with a diopter of -2D corresponds to a picture distance of 0.5 m after adjusting the convergence of the two eyes.
  • the AR display device provided in this embodiment not only ensures that the display distance of the screen adjusted by the two-eye convergence is less than 4m while meeting the requirements of the convergence conflict, but also achieves the purpose of correcting myopia, and achieves the goal of two birds with one stone.
  • the difference between the absolute value of the refractive power of the negative lens 3 and the refractive power of the positive lens 4 is not specifically limited in this embodiment, and can be determined by those skilled in the art according to actual needs.
  • the absolute value of the refractive power of the negative lens 3 is smaller than the refractive power of the positive lens 4 to correct the hyperopia .
  • the AR display device has the function of correcting hyperopia.
  • the refractive power of the negative lens 3 is -2D and the refractive power of the positive lens 4 is +2.5D
  • the superimposed refractive power of the negative lens 3 and the positive lens 4 is +0.5D
  • the corresponding hyperopia correction power is 50 degrees.
  • the image distance of the negative lens 3 with the diopter of -2D after adjustment by the convergence of the two eyes is still 0.5m.
  • the AR display device provided in this embodiment not only ensures that the display distance of the screen adjusted by the two-eye convergence is less than 4m while meeting the requirements of the convergence conflict, but also achieves the purpose of correcting hyperopia, which achieves two goals.
  • the difference between the absolute value of the refractive power of the positive lens 4 and the absolute value of the negative lens 3 is not specifically limited, and can be determined by those skilled in the art according to actual needs.
  • the AR display device has the function of correcting myopia or correcting farsightedness, in actual use, it is necessary to first select the refractive power of the negative lens 3 according to the required convergence adjustment of the screen distance. Then, the refractive power of the positive lens 4 is determined according to the refractive power of the negative lens 3 and the required vision correction.
  • the present application does not specifically limit the connection between the negative lens 3 and the positive lens 4 and the device body 1, as long as the negative lens 3 and the positive lens 4 can be arranged on the device body 1 to ensure that the negative lens 3 and the positive lens 4 are respectively The position relative to the waveguide lens 2 is sufficient.
  • the AR display device further includes a first frame 5, and the negative lens 3 is set on the device body 1 through the first frame 5.
  • the negative lens 3 (two lenses) in this embodiment is arranged on the first frame 5, and then the connection between the negative lens 3 and the device body 1 is realized through the connection of the first frame 5 and the device body 1. That is, the negative lens 3 (two lenses) and the first frame 5 form a negative lens module to facilitate the assembly of the negative lens 3 and the device body 1.
  • the negative lens 3 is detachably embedded in the first frame 5, so that different negative lenses 3 can be replaced by disassembly, so that users A suitable negative lens 3 can be selected according to the needs of the display distance of the virtual screen, thereby improving the versatility of the AR display device.
  • the first frame 5 is fixedly connected to the device body 1.
  • first frame 5 and the device body 1 can be fixed by magnet adsorption or fixed by a buckle or fixed by screws, etc., as long as it can be realized. A fixed connection between the two is sufficient.
  • a first permanent magnet 11 can be embedded in the main frame of the device body 1
  • a second permanent magnet can be embedded in a corresponding position of the first frame 5
  • the first permanent magnet 11 and the second permanent magnet 11 can be embedded in the corresponding position of the first frame 5.
  • the magnetic poles of the two permanent magnets are opposite, so that the first frame 5 and the device body 1 are fixed by the attraction of the opposite poles of the first permanent magnet 11 and the second permanent magnet.
  • the first permanent magnet 11 is arranged above the main frame near the bridge of the nose.
  • the AR display device further includes a second frame 6 through which the positive lens 4 is set on the device body 1.
  • the positive lens 4 (two lenses) in this embodiment is arranged on the second frame 6, and then the connection between the positive lens 4 and the device body 1 is realized through the connection of the second frame 6 and the device body 1. That is, the positive lens 4 (two lenses) and the second frame 6 form a positive lens module to facilitate the assembly of the positive lens 4 and the device body 1.
  • the positive lens 4 is detachably embedded in the second frame 6, so that different positive lenses 4 can be replaced by disassembly to make The user can select the appropriate positive lens 4 according to the refractive power of the negative lens 3 and/or the visual acuity to be corrected, so as to further improve the versatility of the AR display device.
  • the second frame 6 is fixedly connected to the device body 1.
  • This application does not limit the specific fixing method of the second lens frame 6 and the device body 1.
  • the second lens frame 6 and the device body 1 can be fixed by magnet adsorption or fixed by a buckle or fixed by screws, etc., as long as it can be realized A fixed connection between the two is sufficient.
  • the main frame of the device body 1 is provided with screw holes 12 for locking the second frame 6, and the second frame 6 is provided with positioning holes at positions corresponding to the screw holes 12 61.
  • the locking of the second frame 6 and the device body 1 is realized by screws that are inserted through the positioning holes 61 and matched with the screw holes 12.
  • the screw hole 12 is provided at the nose bridge of the main frame of the device body 1.

Abstract

一种AR显示设备,包括设备本体(1)和设于设备本体(1)的波导镜片(2),设备本体(1)还设有:用于将虚像距离拉近的负透镜(3),负透镜(3)位于波导镜片(2)用于朝向眼睛的一侧;用于抵消负透镜(3)对外界环境影响的正透镜(4),正透镜(4)位于波导镜片(2)用于背向眼睛的一侧。该AR显示设备通过在设备本体(1)上增设负透镜(3)和正透镜(4),并利用负透镜(3)拉近了虚拟画面的显示距离,同时,利用正透镜(4)抵消了负透镜(3)对外界环境的影响,在保证辐辏冲突满足要求的前提下,扩展了AR产品的使用环境。

Description

一种AR显示设备
本申请要求于2019年11月28日提交中国专利局、申请号为201911191581.0、发明名称为“一种AR显示设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及AR产品技术领域,更具体地说,涉及一种AR显示设备。
背景技术
随着增强现实(AR)技术的发展,市场上逐渐出现了AR眼镜和AR头显等AR产品。AR产品利用AR技术将现实世界和虚拟世界的光线叠加后投入人眼,达到一种增强现实的显示效果,同时,AR产品还可以集成环境感知和交互等功能,给用户带来全方位体验,受到越来越多用户的青睐。
光学显示技术是AR产品的核心技术,现有技术中的AR产品大多采用光波导显示技术,光波导显示技术具有大eye box和轻薄等特点,可以实现较小的机身体积,例如,使AR眼镜接近普通眼镜外形。
然而,光波导显示技术的劣势是图像质量存在部分问题,为了最大化利用分辨率,提高画面质量,基于光波导的AR显示技术的虚相距位于无穷远,否则其光学性能将受到影响,这是受到设计上的限制而无法改变的,这就使得左右眼通过辐辏可以显示的最近距离为4m,否则当画面距离小于4m时,辐辏冲突会比较严重,极容易造成视觉疲劳。
也即,基于光波导的AR显示技术只能显示距离大于4m的画面,显然,这限制了AR产品的使用场景,例如,当AR产品用于办公时,AR产品可以代替显示器,基于人的使用习惯,需要将画面距离置于显示器的距离,如0.3-0.5m,然而,由于显示距离小于4m,使得AR产品无法满足办公需求,同样地,基于光波导的AR产品也无法满足其它显示距离小于4m的使用场景需求。
综上所述,如何提供一种在保证辐辏冲突满足要求的前提下,使虚拟画 面显示距离拉近的AR显示设备,是目前本领域技术人员亟待解决的问题。
发明内容
有鉴于此,本申请的目的是提供一种AR显示设备,在保证辐辏冲突满足要求的前提下,拉近了虚拟画面的显示距离,扩展了AR产品的使用环境。
为了实现上述目的,本申请提供如下技术方案:
一种AR显示设备,包括设备本体和设于所述设备本体的波导镜片,所述设备本体还设有:
用于将虚像距离拉近的负透镜,所述负透镜位于所述波导镜片用于朝向眼睛的一侧;
用于抵消所述负透镜对外界环境影响的正透镜,所述正透镜位于所述波导镜片用于背向眼睛的一侧。
优选地,还包括第一镜架,所述负透镜通过所述第一镜架设于所述设备本体。
优选地,所述负透镜可拆卸的嵌设于所述第一镜架。
优选地,所述第一镜架与所述设备本体固定连接。
优选地,还包括第二镜架,所述正透镜通过所述第二镜架设于所述设备本体。
优选地,所述正透镜可拆卸的嵌设于所述第二镜架。
优选地,所述第二镜架与所述设备本体固定连接。
优选地,所述设备本体包括眼镜式设备本体或头盔式设备本体。
优选地,所述负透镜的屈光度的绝对值大于所述正透镜的屈光度,以对近视进行矫正。
优选地,所述负透镜的屈光度的绝对值小于所述正透镜的屈光度,以对远视进行矫正。
本申请提供的AR显示设备,由于负透镜位于波导镜片用于朝向眼睛的一侧,因此,由设备本体内的光机发出的图像光线经由波导镜片后,以近似平行光的形式进入负透镜,因为负透镜对光线具有发散的作用,发散后的光线沿着其反向延长线,在投射光线的同一侧交于一点,形成虚焦点。也即,负透镜能够将无穷远的虚像距拉近人眼,进而使人眼单眼聚焦的画面的屈光 度大于0D,在此基础上,两眼辐辏调整后的画面对应的人眼屈光度可以相应地变大,也即,两眼辐辏调整后的画面对应的人眼屈光度可以大于0.25D,从而可以使通过两眼辐辏调整后的画面距离变小,也即,可以使通过两眼辐辏调整后的画面距离小于4m,进而使本申请提供的AR显示设备适用于显示距离小于4m的使用场景。
同时,位于波导镜片用于背向眼睛的一侧的正透镜可以抵消负透镜对外界环境所带来的影响。
由此可以看出,本申请提供的AR显示设备,通过在设备本体上增设负透镜和正透镜,利用负透镜拉近了虚拟画面的显示距离,同时,利用正透镜抵消了负透镜对外界环境的影响,在保证辐辏冲突满足要求的前提下,扩展了AR产品的使用环境。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其它的附图。
图1为本申请具体实施例所提供的AR显示设备的原理示意图;
图2为本申请一个具体实施例所提供的AR显示设备中负透镜模组的结构示意图;
图3为本申请一个具体实施例所提供的AR显示设备中设备本体的结构示意图;
图4为图2所示负透镜模组与图3所示设备本体组装后的结构示意图;
图5为本申请一个具体实施例所提供的AR显示设备中正透镜模组的结构示意图;
图6为图3所示设备本体的另一视角的结构示意图;
图7为图5所示正透镜模组与图6所示设备本体组装后的结构示意图。
图1至图7中的附图标记如下:
1为设备本体、11为第一永磁铁、12为螺丝孔、2为波导镜片、3为负透镜、4为正透镜、5为第一镜架、6为第二镜架、61为定位孔、7为螺丝、 8为光机、9为人眼。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请的核心是提供一种AR显示设备,在保证辐辏冲突满足要求的前提下,拉近了虚拟画面的显示距离,扩展了AR产品的使用环境。
请参考图1-图7,图1为本申请具体实施例所提供的AR显示设备的原理示意图;图2为本申请一个具体实施例所提供的AR显示设备中负透镜模组的结构示意图;图3为设备本体的结构示意图;图4为负透镜模组与设备本体组装后的结构示意图;图5为AR显示设备中正透镜模组的结构示意图;图6为设备本体的另一视角的结构示意图;图7为正透镜模组与设备本体组装后的结构示意图。
本申请提供一种AR显示设备,包括设备本体1和设于设备本体1的波导镜片2,设备本体1还设有负透镜3和正透镜4,负透镜3主要用于将虚像距离拉近,负透镜3设置在波导镜片2用于朝向眼睛的一侧;正透镜4主要用于抵消负透镜3对外界环境的影响,正透镜4设置在波导镜片2用于背向眼睛的一侧。
需要说明的是,本申请对设备本体1的主体结构不做限定,优选地,设备本体1包括眼镜式设备本体或头盔式设备本体,例如,当设备本体1为眼镜式设备本体时,该AR显示设备为AR眼镜,设备本体1的主体结构与现有技术中常规AR眼镜的主体结构相同;当设备本体1为头盔式设备本体时,该AR显示设备为AR头显时,设备本体1的主体结构与现有技术中常规AR头显的主体结构相同。
进一步地,设备本体1集成有AR显示设备所必须的所有功能部件,例如,包括光机8和波导镜片2等,具体请参见现有技术,本文不再赘述。
本申请的主要改进在于,在AR显示设备中增设负透镜3和正透镜4,以利用负透镜3将AR显示设备的虚像距离拉近,并利用正透镜4抵消负透镜3 对外界环境所带来的影响。
可以理解的是,由于受到光学性能的限制,现有AR显示设备的虚像距位于无穷远处,也即,光机8发出的图像光线经由波导镜片2后,以近似平行光的形式进入人眼9,对应地,人眼9单眼聚焦画面的屈光度为0D。
所公知的是,为了避免视觉辐辏调节冲突,通过两眼辐辏调整后的画面对应的人眼9屈光度与单眼聚焦画面的屈光度之差需要小于或等于0.25D,否则将造成辐辏冲突严重,极容易造成视觉疲劳。
因此,当现有技术中常规AR显示设备的虚像距位于无穷远处时,通过两眼辐辏调整后的画面对应的人眼9屈光度需小于或等于0.25D,由于屈光度与焦距成反比,也即,通过两眼辐辏调整后的画面距离需大于或等于4m。
而当在波导镜片2用于朝向眼睛的一侧设置负透镜3时,光机8发出的图像光线经由波导镜片2后,以近似平行光的形式进入负透镜3,因为负透镜3对光线具有发散的作用,发散后的光线沿着其反向延长线,在投射光线的同一侧交于一点,形成虚焦点。也即,负透镜3能够将无穷远的虚像距拉近人眼9,进而使人眼9单眼聚焦的画面的屈光度大于0D,在此基础上,两眼辐辏调整后的画面对应的人眼9屈光度可以相应地变大,也即,两眼辐辏调整后的画面对应的人眼9屈光度可以大于0.25D,从而可以使通过两眼辐辏调整后的画面距离变小,也即,可以使通过两眼辐辏调整后的画面距离小于4m,从而使本申请提供的AR显示设备适用于显示距离小于4m的使用场景。
由此可以看出,本申请提供的AR显示设备,既能够保证辐辏冲突满足要求,又能够使通过两眼辐辏调整后的画面显示距离小于4m,既保证了视觉舒适性,又扩展了AR显示设备的使用环境。
需要说明的是,通过两眼辐辏调整后的画面距离与负透镜3的屈光度相关,负透镜3的屈光度的绝对值越大,则通过两眼辐辏调整后的画面距离越近。本实施例对负透镜3的屈光度的具体值不做限定,本领域技术人员可以根据实际需要来设定。
另外,由于负透镜3同时也作用于外界环境光线,因此,本申请通过在波导镜片2用于背向眼睛的一侧设置正透镜4,来抵消负透镜3对外界环境的影响。
可以理解的是,正透镜4的屈光度的大小由负透镜3的屈光度大小来决定,当正透镜4的屈光度与负透镜3的屈光度的绝对值相等时,两者刚好相互抵消,正透镜4能够完全消除负透镜3对外界环境造成的影响,同时,正透镜4不会对外界环境带来额外的影响。
另一方面,考虑到近视人群使用该AR显示设备时,为了使该AR显示设备能够矫正视力,作为一种优选方案,负透镜3的屈光度的绝对值大于正透镜4的屈光度,以对近视进行矫正。
也就是说,本实施例中,负透镜3和正透镜4的作用叠加后,呈现负屈光度,此时,该AR显示设备具有近视矫正的作用。例如,当负透镜3的屈光度为-2D,正透镜4的屈光度为+0.5D时,负透镜3和正透镜4叠加后的屈光度为-1.5D,对应的视力矫正度数为150度。同时,屈光度为-2D的负透镜3对应的通过两眼辐辏调整后的画面距离为0.5m。
也即,本实施例提供的AR显示设备,既保证了在满足辐辏冲突的要求下使通过两眼辐辏调整后的画面显示距离小于4m,又达到了矫正近视的目的,一举两得。
需要说的是,本实施例对负透镜3的屈光度的绝对值与正透镜4的屈光度之间的差值不做具体限定,本领域技术人员可以根据实际需要来确定。
同理,考虑到远视人群使用该AR显示设备时,为了使该AR显示设备能够矫正视力,作为一种优选方案,负透镜3的屈光度的绝对值小于正透镜4的屈光度,以对远视进行矫正。
也就是说,本实施例中,负透镜3和正透镜4的作用叠加后,呈现正屈光度,此时,该AR显示设备具有远视矫正的作用。例如,当负透镜3的屈光度为-2D,正透镜4的屈光度为+2.5D时,则负透镜3和正透镜4叠加后的屈光度为+0.5D,对应的远视矫正度数为50度。同时,屈光度为-2D的负透镜3对应的通过两眼辐辏调整后的画面距离仍然为0.5m。
也即,本实施例提供的AR显示设备,既保证了在满足辐辏冲突的要求下使通过两眼辐辏调整后的画面显示距离小于4m,又达到了矫正远视的目的,一举两得。
本实施例对正透镜4的屈光度与负透镜3的屈光度的绝对值之间的差值不做具体限定,本领域技术人员可以根据实际需要来确定。
需要说明的是,不管是该AR显示设备具有近视矫正的作用,还是远视矫正的作用,在实际使用过程中,需要首先根据需要的辐辏调整后的画面距离,来选定负透镜3的屈光度,然后再根据负透镜3的屈光度以及需要视力矫正度数,来确定正透镜4的屈光度。
进一步地,本申请对负透镜3和正透镜4分别与设备本体1的连接方式不做具体限定,只要能够使负透镜3和正透镜4设置在设备本体1上,以保证负透镜3和正透镜4分别与波导镜片2的相对位置即可。
下面以AR眼镜为例,来介绍负透镜3和正透镜4的具体设置方式。
考虑到负透镜3设置的方便性,在上述实施例的基础之上,该AR显示设备还包括第一镜架5,负透镜3通过第一镜架5设于设备本体1。
具体地,本实施例中的负透镜3(两个镜片)设置在第一镜架5上,再通过第一镜架5与设备本体1的连接,实现负透镜3与设备本体1的连接,也即,负透镜3(两个镜片)与第一镜架5组成一个负透镜模组,以便于负透镜3与设备本体1的组装。
为了提高AR显示设备的通用性,在上述实施例的基础之上,负透镜3可拆卸的嵌设于第一镜架5,以便于通过拆卸的方式,来更换不同的负透镜3,使用户可以根据虚拟画面显示距离的需要来选择合适的负透镜3,进而提高AR显示设备的通用性。
进一步地,考虑到第一镜架5与设备本体1的具体连接方式的实现,在上述各个实施例的基础之上,第一镜架5与设备本体1固定连接。
本申请对第一镜架5与设备本体1的具体固定方式不做限定,例如,第一镜架5与设备本体1可以通过磁铁吸附固定或通过卡扣固定或通过螺丝固定等,只要能够实现两者的固定连接即可。
例如,如图3所示,可以在设备本体1的主镜框内嵌设第一永磁铁11,在第一镜架5的对应位置嵌设第二永磁铁,并使第一永磁铁11与第二永磁铁的磁极相反,以通过第一永磁铁11与第二永磁铁的异极相吸作用,实现第一镜架5与设备本体1的固定。
优选地,第一永磁铁11设置在主镜框靠近鼻梁的上方。
当然,也可以通过在设备本体1的主镜框与第一镜架5的对应位置设置常规的卡接结构,使第一镜架5与设备本体1通过卡扣实现固定连接。
考虑到正透镜4设置的方便性,在上述各个实施例的基础之上,该AR显示设备还包括第二镜架6,正透镜4通过第二镜架6设于设备本体1。
具体地,本实施例中的正透镜4(两个镜片)设置在第二镜架6上,再通过第二镜架6与设备本体1的连接,实现正透镜4与设备本体1的连接,也即,正透镜4(两个镜片)与第二镜架6组成一个正透镜模组,以便于正透镜4与设备本体1的组装。
为了进一步提高AR显示设备的通用性,在上述实施例的基础之上,正透镜4可拆卸的嵌设于第二镜架6,以便于通过拆卸的方式,来更换不同的正透镜4,使用户可以根据负透镜3的屈光度和/或需要矫正的视力度数,来选择合适的正透镜4,进一步提高AR显示设备的通用性。
进一步地,考虑到第二镜架6与设备本体1的具体连接方式的实现,在上述各个实施例的基础之上,第二镜架6与设备本体1固定连接。
本申请对第二镜架6与设备本体1的具体固定方式不做限定,例如,第二镜架6与设备本体1可以通过磁铁吸附固定或通过卡扣固定或通过螺丝固定等,只要能够实现两者的固定连接即可。
例如,如图5和图6所示,在设备本体1的主镜框上设有用于锁定第二镜架6的螺丝孔12,第二镜架6上与螺丝孔12对应的位置设有定位孔61,通过穿设于定位孔61并与螺丝孔12配合连接的螺钉实现第二镜架6与设备本体1的锁紧。
需要说明的是,本申请对螺丝孔12和定位孔61的具体设置位置及数量不做限定,本领域技术人员可以根据实际情况来设定。
优选地,螺丝孔12设于设备本体1的主镜框的鼻梁处。
需要说明的是,以上是以AR眼镜为例,介绍了负透镜3与正透镜4的具体设置方式,对于AR头显等其它AR显示设备,也可以采用相同的申请构思来设置负透镜3和正透镜4。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
本说明书中各个实施例采用递进方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上对本申请所提供的AR显示设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。

Claims (10)

  1. 一种AR显示设备,包括设备本体(1)和设于所述设备本体(1)的波导镜片(2),其特征在于,所述设备本体(1)还设有:
    用于将虚像距离拉近的负透镜(3),所述负透镜(3)位于所述波导镜片(2)用于朝向眼睛的一侧;
    用于抵消所述负透镜(3)对外界环境影响的正透镜(4),所述正透镜(4)位于所述波导镜片(2)用于背向眼睛的一侧。
  2. 根据权利要求1所述的AR显示设备,其特征在于,还包括第一镜架(5),所述负透镜(3)通过所述第一镜架(5)设于所述设备本体(1)。
  3. 根据权利要求2所述的AR显示设备,其特征在于,所述负透镜(3)可拆卸的嵌设于所述第一镜架(5)。
  4. 根据权利要求2所述的AR显示设备,其特征在于,所述第一镜架(5)与所述设备本体(1)固定连接。
  5. 根据权利要求1所述的AR显示设备,其特征在于,还包括第二镜架(6),所述正透镜(4)通过所述第二镜架(6)设于所述设备本体(1)。
  6. 根据权利要求5所述的AR显示设备,其特征在于,所述正透镜(4)可拆卸的嵌设于所述第二镜架(6)。
  7. 根据权利要求5所述的AR显示设备,其特征在于,所述第二镜架(6)与所述设备本体(1)固定连接。
  8. 根据权利要求1所述的AR显示设备,其特征在于,所述设备本体(1)包括眼镜式设备本体或头盔式设备本体。
  9. 根据权利要求1-8任一项所述的AR显示设备,其特征在于,所述负透镜(3)的屈光度的绝对值大于所述正透镜(4)的屈光度,以对近视进行矫正。
  10. 根据权利要求1-8任一项所述的AR显示设备,其特征在于,所述负透镜(3)的屈光度的绝对值小于所述正透镜(4)的屈光度,以对远视进行矫正。
PCT/CN2019/130429 2019-11-28 2019-12-31 一种ar显示设备 WO2021103271A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911191581.0A CN110749997A (zh) 2019-11-28 2019-11-28 一种ar显示设备
CN201911191581.0 2019-11-28

Publications (1)

Publication Number Publication Date
WO2021103271A1 true WO2021103271A1 (zh) 2021-06-03

Family

ID=69284923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130429 WO2021103271A1 (zh) 2019-11-28 2019-12-31 一种ar显示设备

Country Status (2)

Country Link
CN (1) CN110749997A (zh)
WO (1) WO2021103271A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023154241A1 (en) * 2022-02-08 2023-08-17 Meta Platforms Technologies, Llc Lightguide based illuminator for a reflective display panel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253459A (zh) * 2021-05-20 2021-08-13 深圳市光舟半导体技术有限公司 一种光波导片与透镜集成镜片、集成方法及ar显示模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040184160A1 (en) * 2003-03-19 2004-09-23 Kiichiro Nishina Zoom lens, camera, and mobile information terminal
US20060158742A1 (en) * 2002-05-14 2006-07-20 Shinichi Mihara Zoom lens and electronic imaging device having the same
CN105259656A (zh) * 2015-09-10 2016-01-20 上海理鑫光学科技有限公司 具有屈光度眼镜效果的增强现实眼镜
CN106940478A (zh) * 2017-04-24 2017-07-11 核桃智能科技(常州)有限公司 一种近眼显示系统以及带有该近眼显示系统的头戴设备
CN107272210A (zh) * 2017-08-14 2017-10-20 上海理湃光晶技术有限公司 一种能改善视觉体验的波导显示结构
CN109445109A (zh) * 2018-12-26 2019-03-08 深圳珑璟光电技术有限公司 一种透光板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104656258B (zh) * 2015-02-05 2017-06-16 上海理湃光晶技术有限公司 屈光度可调的曲面波导近眼光学显示器件
CN205562959U (zh) * 2016-01-28 2016-09-07 辛承军 一种虚拟增强的光学设备以及望远镜
CN105572877B (zh) * 2016-02-03 2018-11-09 上海群英软件有限公司 一种头戴式增强现实智能显示装置
CN205581417U (zh) * 2016-04-13 2016-09-14 中山联合光电科技股份有限公司 一种虚拟现实光学系统
CN106680998A (zh) * 2016-09-14 2017-05-17 浙江舜通智能科技有限公司 头戴式显示装置
CN106405719A (zh) * 2016-12-15 2017-02-15 金华唯见科技有限公司 一种偏振反射片、增强现实近眼显示系统及头戴显示设备
CN106997099A (zh) * 2017-01-23 2017-08-01 佛山市戴胜科技有限公司 一种基于透明显示屏的ar光学模组及产品
CN207780375U (zh) * 2018-01-08 2018-08-28 联想新视界(北京)科技有限公司 Ar眼镜
CN208689280U (zh) * 2018-09-30 2019-04-02 北京京东方光电科技有限公司 一种ar或vr设备
CN110045503A (zh) * 2019-03-29 2019-07-23 北京蚁视科技有限公司 一种基于全反射的紧凑型大视场角近眼显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060158742A1 (en) * 2002-05-14 2006-07-20 Shinichi Mihara Zoom lens and electronic imaging device having the same
US20040184160A1 (en) * 2003-03-19 2004-09-23 Kiichiro Nishina Zoom lens, camera, and mobile information terminal
CN105259656A (zh) * 2015-09-10 2016-01-20 上海理鑫光学科技有限公司 具有屈光度眼镜效果的增强现实眼镜
CN106940478A (zh) * 2017-04-24 2017-07-11 核桃智能科技(常州)有限公司 一种近眼显示系统以及带有该近眼显示系统的头戴设备
CN107272210A (zh) * 2017-08-14 2017-10-20 上海理湃光晶技术有限公司 一种能改善视觉体验的波导显示结构
CN109445109A (zh) * 2018-12-26 2019-03-08 深圳珑璟光电技术有限公司 一种透光板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023154241A1 (en) * 2022-02-08 2023-08-17 Meta Platforms Technologies, Llc Lightguide based illuminator for a reflective display panel
US11822086B2 (en) 2022-02-08 2023-11-21 Meta Platforms Technologies, Llc Lightguide based illuminator for reflective display panel

Also Published As

Publication number Publication date
CN110749997A (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
US20220146839A1 (en) Binocular type head mounted display system with adjustable interpupillary distance mechanism
US20190121132A1 (en) Binocular wide field of view (wfov) wearable optical display system
US10890776B1 (en) Pancake lens ghosting mitigation
TW201910861A (zh) 近眼顯示系統及其操作方法
US10609364B2 (en) Pupil swim corrected lens for head mounted display
JP2012520487A (ja) バイザー型ヘッドアップディスプレイ
CN104956257A (zh) 具有隐形光学器件的眼镜状物
EP1720058A1 (en) Image display device
CN104714303B (zh) 一种单图像源双目近眼显示装置
JPH03214872A (ja) 眼鏡型網膜直接表示装置
CN202948204U (zh) 可透视型头戴式显示器光学系统
US11391906B2 (en) Optical system for head-mounted display device
CN110376734B (zh) 单面板头戴式显示器
JP2009075195A (ja) 眼鏡型画像表示装置及び画像表示装置付き眼鏡
WO2017073953A1 (ko) 초근거리를 볼 수 있는 교정렌즈
WO2021103271A1 (zh) 一种ar显示设备
JP2023500177A (ja) 奥行きのある物体を表示するシステム及び方法
CN208847961U (zh) 焦深可调的透视型近眼显示光学系统
CN107111143B (zh) 视觉系统及观片器
CN204374515U (zh) 一种便于屈光不正患者使用的头戴式显示器
TWI666483B (zh) 可調焦之影像顯示眼鏡
CN217386006U (zh) Ar眼镜
CN217587769U (zh) Ar眼镜
TWI812406B (zh) 左右眼可分別微調出清晰的人工生成影像的增強現實裝置
KR20150056198A (ko) 곡선형 프리즘과 이를 이용한 헤드 마운트 디스플레이

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954249

Country of ref document: EP

Kind code of ref document: A1