WO2021102745A1 - 多通道ecg测量系统及方法、可穿戴设备 - Google Patents

多通道ecg测量系统及方法、可穿戴设备 Download PDF

Info

Publication number
WO2021102745A1
WO2021102745A1 PCT/CN2019/121305 CN2019121305W WO2021102745A1 WO 2021102745 A1 WO2021102745 A1 WO 2021102745A1 CN 2019121305 W CN2019121305 W CN 2019121305W WO 2021102745 A1 WO2021102745 A1 WO 2021102745A1
Authority
WO
WIPO (PCT)
Prior art keywords
ecg
controller
signal
channel
sensors
Prior art date
Application number
PCT/CN2019/121305
Other languages
English (en)
French (fr)
Inventor
殷海林
陈良寿
卢赛文
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2019/121305 priority Critical patent/WO2021102745A1/zh
Priority to CN201980004367.1A priority patent/CN111132611B/zh
Publication of WO2021102745A1 publication Critical patent/WO2021102745A1/zh

Links

Images

Definitions

  • This application relates to the field of detection technology, and in particular to a multi-channel ECG measurement system and method, and a wearable device.
  • Electrocardiogram is a technical electrocardiogram that uses an electrocardiograph to record the changes in the electrical activity of the heart during each cardiac cycle from the body surface. It is one of the important monitoring indicators of the human body.
  • the ECG measurement system is a special system for collecting ECG signal data under the embedded system. This portable ECG measurement system greatly facilitates users in need.
  • the purpose of this application is to provide a multi-channel ECG measurement system and method, and a wearable device, which can achieve high-synchronization sampling of multi-channel ECG signals, obtain more comprehensive and accurate ECG signals, and be more suitable for portable use scenarios.
  • the embodiment of the application provides a multi-channel ECG measurement system, including: a controller, a plurality of acquisition devices, and a plurality of ECG sensors; the ECG sensors and the acquisition devices are in one-to-one correspondence and are connected; each ECG sensor is provided with Synchronous sampling module, the controller is connected to the synchronous sampling module of each ECG sensor; the controller is used to send a preset length of external trigger signal to the synchronous sampling module of each ECG sensor; the synchronous sampling module is used to control when an external trigger signal is received
  • the belonging ECG sensor collects ECG signals through the corresponding collecting device; the controller is also used to obtain multi-channel ECG signals from multiple ECG sensors.
  • An embodiment of the present application also provides a wearable device, including the above-mentioned multi-channel ECG measurement system.
  • the embodiment of the present application provides a multi-channel ECG signal measurement method, which is applied to an ECG measurement system.
  • the ECG measurement system includes: a controller, a plurality of acquisition devices, and a plurality of ECG sensors; the ECG sensors and the acquisition devices correspond one-to-one and Each ECG sensor is equipped with a synchronous sampling module, and the controller is connected to the synchronous sampling module of each ECG sensor; the method includes: the controller sends a preset length of external trigger signal to the synchronous sampling module of each ECG sensor; synchronization When the sampling module receives an external trigger signal, it controls the ECG sensor to collect ECG signals through the corresponding acquisition device; the controller acquires multi-channel ECG signals from multiple ECG sensors.
  • the controller sends an external trigger signal of a preset length to the synchronous sampling module of each ECG sensor.
  • the synchronous sampling module controls the ECG sensor to pass the corresponding
  • the collection device collects the ECG signal, that is, controls the ECG sensor to collect the ECG signal of one channel through the corresponding collection device, so that the ECG signal of multiple channels can be collected.
  • each ECG sensor is controlled by the set synchronous sampling module to sample. Therefore, the length of the external trigger signal sent by the controller 1 can be controlled as needed.
  • the shorter the length of the external trigger signal the faster the transmission speed of the external trigger signal, and the smaller the time difference between each synchronous sampling module receiving the external trigger signal.
  • the synchronous sampling module is specifically configured to start timing when an external trigger signal is received, and after the timing reaches a preset duration, control the ECG sensor to which it belongs to collect ECG signals through the corresponding acquisition device.
  • the synchronous sampling module starts timing when it receives an external trigger signal, and after the timing reaches a preset duration, it controls the ECG sensor to collect ECG signals through the corresponding acquisition device, so as to reserve for each ECG sensor
  • the circuit preparation time is improved so that at the end of the timing, multiple ECG sensors can sample immediately, which further improves the synchronization accuracy of sampling.
  • the synchronous sampling modules of multiple ECG sensors are connected to the first pin of the controller through a cascade wire; the controller is specifically configured to send an external trigger signal to the synchronous sampling modules of each ECG sensor through the first pin.
  • This embodiment provides a specific implementation for sending an external trigger signal to the synchronous sampling module of each ECG sensor.
  • multiple ECG sensors are also connected to the second pin of the controller through a transmission line; the controller is specifically used to receive an interrupt signal sent by any ECG sensor through the second pin, which characterizes the completion of ECG signal acquisition, Acquire ECG signals from any ECG sensor.
  • This embodiment provides a specific implementation manner for the controller to obtain the ECG signal of each ECG sensor.
  • multiple ECG sensors are also connected to the third pin of the controller through a serial bus; the controller is specifically configured to obtain ECG signals from each ECG sensor through the serial bus.
  • the length of the external trigger signal is one pulse.
  • the controller is used to send an external trigger signal of a preset length to the synchronous sampling modules of multiple ECG sensors at the same time, so as to further realize synchronous sampling.
  • Figure 1 is a schematic diagram of an existing portable ECG measurement system
  • Fig. 2 is a schematic diagram of a multi-channel ECG measurement system according to the first embodiment of the present application
  • Fig. 3 is a sequence diagram of the multi-channel ECG measurement system in the first embodiment of the present application.
  • FIG. 4 is a timing diagram of the multi-channel ECG measurement system in the second embodiment of the present application.
  • FIG. 5 is a flowchart of a method for measuring a multi-channel ECG signal according to a third embodiment of the present application.
  • Fig. 6 is a flowchart of a method for measuring a multi-channel ECG signal according to a fourth embodiment of the present application.
  • Figure 1 is an existing portable ECG measurement system, which includes two lead wires 11 and 12, an analog front end AFE20, MCU30 and a display 40.
  • the two lead wires 11 and 12 are respectively connected to the measured object's
  • the two electrode placement positions are the left upper limb of LA and the right upper limb of RA.
  • the analog front end AFE20 includes an electromagnetic interference EMI filter module 21; an instrumentation amplifier module 22 for differential amplification of ECG signals; HPF+LPF high-pass and low-pass filters 23 , Used to limit the bandwidth; right leg drive signal module 24, used to suppress common-mode common-frequency interference; and ADC module 25.
  • the ECG signal generally uses eight channels and twelve leads, which are bipolar limb leads I, II, and III, compression limb leads avR, avL, avF, and pectoral leads V1 to V6.
  • the MCU sends out control commands to control the analog front-end AFE20 to collect single-channel ECG signals, but only single-channel ECG signals can be collected, and a more comprehensive ECG signal cannot be obtained; in addition, If you simply add channels, multiple channels cannot be synchronized, that is, the ECG signals of multiple channels cannot be sampled simultaneously. Based on this, the inventor proposed the technical solution of this application.
  • the first embodiment of this application relates to a multi-channel ECG measurement system, which is applied to wearable devices, such as watches, bracelets, etc.
  • the multi-channel ECG measurement system is used to measure the ECG signals of multiple channels of the measured object, please refer to Fig. 2, the multi-channel ECG measurement system includes: a controller 1, a plurality of acquisition devices 2, and a plurality of ECG sensors 3.
  • the ECG sensors 3 correspond to and are connected to the collection device 2 one by one; each ECG sensor 3 is provided with a synchronous sampling module 31, and the controller 1 is connected to the synchronous sampling module 31 of each ECG sensor 3.
  • the synchronous sampling modules 31 of multiple ECG sensors 3 are connected to the first pin D1 of the controller through a cascade wire, thereby reducing the number of wires between the controller 1 and each ECG sensor 3 .
  • each collection device 2 includes two test electrodes, which are used to connect the two electrode placement positions of the measured object.
  • the placement positions of the two test electrodes in each acquisition device 2 can be: bipolar limb leads I (LA and RA), II (LL and RA), III (LL and LA), plus Limb compression leads avR (RA and 1/2 (LA+LL)), avL (LA and 1/2 (RA+LL)), avF (LL and 1/2 (LA+RA)), front chest leads V1 to V6, the central potential terminal; among them, the central potential terminal is generated by connecting the RA, LA, LL electrodes through a resistor network, and represents the average voltage of the measured object.
  • the controller 1 is used to send an external trigger signal of a preset length to the synchronous sampling module 31 of each ECG sensor 3. Specifically, after each collection device 2 has been connected to the measured object, the controller 1 automatically or when receiving a measurement command, outputs an external trigger signal of a preset length on the first pin D1, and the external trigger signal passes The cascade wires are respectively input to the synchronous sampling module 31 of each ECG sensor 3. In an example, the controller 1 may simultaneously send an external trigger signal of a preset length to the synchronous sampling module 31 of each ECG sensor 3 to facilitate synchronous sampling.
  • the synchronous sampling module 31 is used for controlling the ECG sensor 3 to collect the ECG signal through the corresponding collecting device 2 when an external trigger signal is received. Specifically, taking any ECG sensor 3 as an example, the synchronous sampling module 31 in the ECG sensor 3 controls the ECG sensor 3 to start sampling when it receives an external trigger signal of a preset length sent by the controller 1 through a cascade wire. , That is, the ECG signal of one channel is collected through the collecting device 2 connected with the ECG sensor 3. Therefore, multiple ECG sensors 3 can collect ECG signals of multiple channels.
  • the ECG sensor 3 to which it belongs is controlled by the synchronous sampling module 31 to perform sampling, so the external trigger signal sent by the controller may only be a pulse signal; in one example, the length of the external trigger signal is one pulse, and
  • the sampling command issued by the controller 1 generally includes multiple bytes, and one byte includes 8 pulses.
  • this embodiment greatly reduces the length of the sampling command issued by the controller 1.
  • Each synchronous sampling module 31 can synchronously receive the external trigger signal and control the ECG sensor 3 to start sampling, thereby realizing the synchronous sampling of the multi-channel ECG signal; please refer to FIG.
  • the controller 1 periodically sends an external trigger signal of a preset length to the synchronous sampling module 31 of the ECG sensor 3.
  • the synchronous sampling module 31 receives the external trigger signal every time When the time, the ECG sensor 3 is controlled to start sampling, and the ECG sensor 3 uses the collection device 2 connected to it to sample the single-channel ECG signal for a preset duration of t0, so as to periodically obtain the ECG signal of the channel.
  • the sampling of the ECG sensor 3 can periodically obtain multi-channel ECG signals.
  • each ECG sensor 3 can collect ECG signals of one channel, so the controller 1 can acquire ECG signals of multiple channels from multiple ECG sensors 3.
  • multiple ECG sensors 3 are also connected to the second pin D2 of the controller through a transmission line; the controller is specifically configured to receive the characteristic ECG signal sent by any ECG sensor 3 through the second pin D2 When the interrupt signal is sampled, the ECG signal is obtained from any ECG sensor 3.
  • an interrupt signal representing the completion of the sampling of the ECG signal is sent to the second pin D2 of the controller 1, and the controller 1 receives the After the signal is interrupted, the ECG signal of one channel is obtained from the ECG sensor 3; when the ECG signal of multiple channels is obtained, the ECG signal of multiple channels can be processed to obtain the lead signal that meets the standard of wearable device use, for example In other words, if eight channels of ECG signals are obtained, twelve lead signals can be obtained after processing.
  • multiple ECG sensors 3 are also connected to the third pin D3 of the controller 1 through a serial bus, for example, connected to the third pin D3 of the controller 1 through a serial bus, that is, the controller 1
  • the ECG signal is obtained from each ECG sensor through a serial bus.
  • the serial bus is, for example, an SPI bus or an I2C bus.
  • the controller sends an external trigger signal of a preset length to the synchronous sampling module of each ECG sensor.
  • the synchronous sampling module receives the external trigger signal, it controls the ECG sensor to pass the corresponding acquisition.
  • the device collects the ECG signal, that is, controls the ECG sensor to collect the ECG signal of one channel through the corresponding acquisition device, so that it can collect the ECG signal of multiple channels.
  • each ECG sensor is controlled by the set synchronous sampling module to sample.
  • the length of the external trigger signal sent by the controller 1 can be controlled as needed. The shorter the length of the external trigger signal, the faster the transmission speed of the external trigger signal, and the smaller the time difference between each synchronous sampling module receiving the external trigger signal. The higher the synchronization accuracy of the ECG signal sampling of the channel; that is, the sampling of the multi-channel ECG signal with high synchronization can be realized, which is more suitable for portable use scenarios.
  • the synchronous sampling module 31 is specifically configured to start timing when an external trigger signal is received, and after the timing reaches a preset time period, control the ECG sensor to which it belongs to collect ECG signals through the corresponding acquisition device. Specifically, taking any ECG sensor 3 as an example, when the synchronous sampling module 31 in the ECG sensor 3 receives an external trigger signal of a preset length sent by the controller 1 through a cascade wire, it starts a timer to start timing.
  • the ECG sensor 3 is controlled to start sampling, that is, the ECG signal of one channel is collected through the acquisition device 2 connected to the ECG sensor 3; during the timing process, the sampling circuit in the ECG sensor In the preparation state, the timing duration is longer than the preparation time of the sampling circuit, so that the ECG sensor 3 can be controlled to start sampling immediately after the timing ends.
  • the timing duration of the synchronous sampling module 31 in each ECG sensor 3 is equal, so that multiple ECG sensors 3 can sample immediately at the end of the timing, which further improves the synchronization accuracy of sampling. Please refer to FIG. 4, which is this embodiment.
  • the sampling timing diagram of the multi-channel ECG measurement system in the example taking any ECG sensor 3 as an example, the controller 1 periodically sends an external trigger signal of a preset length to the synchronous sampling module 31 of the ECG sensor 3, and the synchronous sampling module 31 Each time an external trigger signal is received, a timer is started to start timing, and after the timer reaches the preset time t1, the ECG sensor 3 is controlled to start sampling, and the ECG sensor 3 performs continuous pre-processing through the collection device 2 connected to it.
  • a single-channel ECG signal with a duration of t0 is sampled, so that the ECG signal of the channel can be periodically obtained. Therefore, through the sampling of multiple ECG sensors 3, the multi-channel ECG signal can be periodically obtained.
  • the synchronous sampling module starts timing when it receives an external trigger signal, and after the timing reaches a preset duration, controls the ECG sensor to which it belongs to collect ECG signals through the corresponding acquisition device. Therefore, circuit preparation time is reserved for each ECG sensor, so that at the end of timing, multiple ECG sensors can sample immediately, which further improves the synchronization accuracy of sampling.
  • the third embodiment of the present application relates to a multi-channel ECG signal measurement method, which is applied to the multi-channel ECG measurement system in the first or second embodiment. Please refer to FIG. 2.
  • the method in the first embodiment is used Take a multi-channel ECG measurement system as an example.
  • Step 101 The controller sends an external trigger signal of a preset length to the synchronous sampling modules of multiple ECG sensors.
  • the controller 1 automatically or when receiving a measurement command, outputs an external trigger signal of a preset length on the first pin D1.
  • the external trigger signal It is respectively input to the synchronous sampling module 31 of each ECG sensor 3 through a cascade wire.
  • the controller 1 may simultaneously send an external trigger signal of a preset length to the synchronous sampling module 31 of each ECG sensor 3 to facilitate synchronous sampling.
  • Each synchronous sampling module 31 can synchronously receive the external trigger signal and control the ECG sensor 3 to start sampling, thereby realizing the synchronous sampling of the multi-channel ECG signal.
  • Step 103 The controller obtains multi-channel ECG signals from multiple ECG sensors.
  • the controller is specifically used to receive the characterization sent by any ECG sensor 3 through the second pin D2.
  • the ECG signal is obtained from any ECG sensor 3.
  • the controller 1 After the controller 1 receives the interrupt signal, the The ECG sensor 3 acquires the ECG signal of one channel; after acquiring the ECG signal of multiple channels, it can process the ECG signals of multiple channels to obtain the lead signal that meets the use standard of wearable devices. For example, if acquired Eight channels of ECG signals can be processed to obtain twelve lead signals.
  • the first embodiment corresponds to this embodiment, this embodiment can be implemented in cooperation with the first embodiment.
  • the related technical details mentioned in the first embodiment are still valid in this embodiment, and the technical effects that can be achieved in the first embodiment can also be achieved in this embodiment. In order to reduce repetition, details are not repeated here. Correspondingly, the related technical details mentioned in this embodiment can also be applied in the first embodiment.
  • the controller sends an external trigger signal of a preset length to the synchronous sampling module of each ECG sensor.
  • the synchronous sampling module receives the external trigger signal, it controls the ECG sensor to pass the corresponding acquisition.
  • the device collects the ECG signal, that is, controls the ECG sensor to collect the ECG signal of one channel through the corresponding acquisition device, so that it can collect the ECG signal of multiple channels.
  • each ECG sensor is controlled by the set synchronous sampling module to sample.
  • the length of the external trigger signal sent by the controller 1 can be controlled as needed. The shorter the length of the external trigger signal, the faster the transmission speed of the external trigger signal, and the smaller the time difference between each synchronous sampling module receiving the external trigger signal. The higher the synchronization accuracy of the ECG signal sampling of the channel; that is, the sampling of the multi-channel ECG signal with high synchronization can be realized, which is more suitable for portable use scenarios.
  • the fourth embodiment of the present application relates to a method for measuring multi-channel ECG signals. Compared with the third embodiment, the main difference of this embodiment is that the sampling preparation time is reserved for the ECG sensor.
  • Step 201 The controller sends an external trigger signal of a preset length to the synchronous sampling modules of multiple ECG sensors.
  • step 101 in the third embodiment is substantially the same as step 101 in the third embodiment, and will not be repeated here.
  • Step 202 The synchronous sampling module starts timing when receiving an external trigger signal, and after the timing reaches a preset time period, controls the ECG sensor to which it belongs to collect ECG signals through the corresponding acquisition device.
  • the synchronous sampling module 31 in the ECG sensor 3 when the synchronous sampling module 31 in the ECG sensor 3 receives an external trigger signal of a preset length sent by the controller 1 through a cascade wire, it starts a timer to start timing. , And after the timer reaches the preset time t1, the ECG sensor 3 is controlled to start sampling, that is, the ECG signal of one channel is collected through the acquisition device 2 connected to the ECG sensor 3; in the timing process, the sampling in the ECG sensor The circuit is in a ready state, and the timing time is longer than the preparation time of the sampling circuit, so that the ECG sensor 3 can be controlled to start sampling immediately after the timing ends.
  • the timing duration of the synchronous sampling module 31 in each ECG sensor 3 is equal, so that multiple ECG sensors 3 can sample immediately at the end of the timing, which further improves the synchronization accuracy of sampling.
  • Step 203 The controller obtains multi-channel ECG signals from multiple ECG sensors.
  • step 103 in the third embodiment is roughly the same as step 103 in the third embodiment, and will not be repeated here.
  • the second embodiment corresponds to this embodiment, this embodiment can be implemented in cooperation with the second embodiment.
  • the related technical details mentioned in the second embodiment are still valid in this embodiment, and the technical effects that can be achieved in the second embodiment can also be achieved in this embodiment. In order to reduce repetition, details are not repeated here. Correspondingly, the related technical details mentioned in this embodiment can also be applied in the second embodiment.
  • the synchronous sampling module starts timing when it receives an external trigger signal, and after the timing reaches a preset time period, it controls the ECG sensor to which it belongs to collect ECG signals through the corresponding acquisition device. Therefore, circuit preparation time is reserved for each ECG sensor, so that at the end of timing, multiple ECG sensors can sample immediately, which further improves the synchronization accuracy of sampling.
  • the fifth embodiment of the present application relates to a wearable device.
  • the wearable device is, for example, a watch, a bracelet, etc.
  • the wearable device includes the multi-channel ECG measurement system in the first embodiment or the second embodiment.

Abstract

一种多通道ECG测量系统及方法、可穿戴设备。ECG测量系统,包括:控制器(1)、多个采集装置(2),以及多个ECG传感器(3);ECG传感器(3)与采集装置(2)一一对应且相连接;每个ECG传感器(3)中均设有同步采样模块(31),控制器(1)连接于各ECG传感器(3)的同步采样模块(31);控制器(1)用于向各ECG传感器(3)的同步采样模块(31)发送预设长度的外部触发信号;同步采样模块(31)用于在接收到外部触发信号时,控制所属的ECG传感器(3)通过对应的采集装置(2)采集ECG信号;控制器(1)还用于多个ECG传感器(3)获取多通道的ECG信号。采用上述方案,能够实现多通道ECG信号高同步的采样,获取更全面准确的心电信号,更加适用于便携式的使用场景。

Description

多通道ECG测量系统及方法、可穿戴设备 技术领域
本申请涉及检测技术领域,特别涉及一种多通道ECG测量系统及方法、可穿戴设备。
背景技术
心电图(Electrocardiogram,简称ECG)是利用心电图机从体表记录心脏每一心动周期所产生的电活动变化图形的技术心电图,是人体的重要监测指标之一。
现今,越来越多的人开始关注高可靠性、低成本的、便携式的测量系统。ECG测量系统是提供在嵌入式系统下采集心电信号数据的专用系统,这种便携式的ECG测量系统大大方便了有需求的用户。
发明内容
本申请的目的在于提供一种多通道ECG测量系统及方法、可穿戴设备,能够实现多通道ECG信号高同步的采样,获取更全面准确的心电信号,更加适用于便携式的使用场景。
本申请实施例提供了一种多通道ECG测量系统,包括:控制器、多个采集装置,以及多个ECG传感器;ECG传感器与采集装置一一对应且相连接; 每个ECG传感器中均设有同步采样模块,控制器连接于各ECG传感器的同步采样模块;控制器用于向各ECG传感器的同步采样模块发送预设长度的外部触发信号;同步采样模块用于在接收到外部触发信号时,控制所属的ECG传感器通过对应的采集装置采集ECG信号;控制器还用于从多个ECG传感器获取多通道的ECG信号。
本申请实施例还提供了一种可穿戴设备,包括上述的多通道ECG测量系统。
本申请实施例提供了一种多通道ECG信号的测量方法,应用于ECG测量系统,ECG测量系统包括:控制器、多个采集装置,以及多个ECG传感器;ECG传感器与采集装置一一对应且相连接;每个ECG传感器中均设有同步采样模块,控制器连接于各ECG传感器的同步采样模块;方法包括:控制器向各ECG传感器的同步采样模块发送预设长度的外部触发信号;同步采样模块在接收到外部触发信号时,控制所属的ECG传感器通过对应的采集装置采集ECG信号;控制器从多个ECG传感器获取多通道的ECG信号。
本申请实施例现对于现有技术而言,控制器向各ECG传感器的同步采样模块发送预设长度的外部触发信号,同步采样模块在接收到外部触发信号时,控制所属的ECG传感器通过对应的采集装置采集ECG信号,即控制所属的ECG传感器通过对应的采集装置采集一个通道的ECG信号,从而能够采集多个通道的ECG信号,同时,各ECG传感器由设定的同步采样模块控制进行采样,因此可以按需控制控制器1所发送的外部触发信号的长度,外部触发信号的长度越短,外部触发信号的传输速度越快,各同步采样模块接收到外部触发信号的时间差越小,使得多个通道的ECG信号采样的同步精度越高;即能够实 现高同步的多通道ECG信号的采样,更加适用于便携式的使用场景。
例如,同步采样模块具体用于在接收到外部触发信号时,开始计时,并在计时达到预设时长后,控制所属的ECG传感器通过对应的采集装置采集ECG信号。本实施例中,同步采样模块在接收到外部触发信号时,开始计时,并在计时达到预设时长后,再控制所属的ECG传感器通过对应的采集装置采集ECG信号,从而为各ECG传感器预留了电路准备时间,以在计时结束时,多个ECG传感器均能够立刻进行采样,进一步提高了采样的同步精度。
例如,多个ECG传感器的同步采样模块通过级联导线连接于控制器的第一引脚;控制器具体用于通过第一引脚向各ECG传感器的同步采样模块发送外部触发信号。本实施例提供了向各ECG传感器的同步采样模块发送外部触发信号的一种具体实现方式。
例如,多个ECG传感器还通过一根传输线连接于控制器的第二引脚;控制器具体用于在通过第二引脚接收到任一ECG传感器发送的表征ECG信号采集完成的中断信号时,从任一ECG传感器获取ECG信号。本实施例提供了控制器获取各ECG传感器的ECG信号的一种具体实现方式。
例如,多个ECG传感器还通过一根串行总线连接于控制器的第三引脚;控制器具体用于通过串行总线从各ECG传感器获取ECG信号。
例如,外部触发信号的长度为一个脉冲。
例如,控制器用于同时向多个ECG传感器的同步采样模块发送预设长度的外部触发信号,以便于进一步实现同步采样。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是现有的一种便携式ECG测量系统的示意图;
图2是根据本申请第一实施例中的多通道ECG测量系统的示意图;
图3是根据本申请第一实施例中的多通道ECG测量系统的时序图;
图4是根据本申请第二实施例中的多通道ECG测量系统的时序图;
图5是根据本申请第三实施例中的多通道ECG信号的测量方法的流程图;
图6是根据本申请第四实施例中的多通道ECG信号的测量方法的流程图。
具体实施例
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请部分实施例进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
请参考图1,为现有的一种便携式ECG测量系统,包括2个导联线11和12、模拟前端AFE20、MCU30和显示器40。2个导联线11和12分别连接于被测对象的两个电极安放位置,分别为LA左上肢和RA右上肢,模拟前端AFE20包括电磁干扰EMI滤波器模块21;仪表放大器模块22,用于差分放大ECG信号;HPF+LPF高通和低通滤波器23,用于限制带宽;右腿驱动信模块24,用于抑制共模共频干扰;以及ADC模块25。
目前,ECG信号一般采用八通道十二导联,分别为双极肢体导联I,II,III、 加压肢体导联avR,avL,avF、胸前导联V1至V6。在图1中的便携式ECG测量系统中,由MCU发出控制命令,以控制模拟前端AFE20采集单通道的ECG信号,但是仅能够采集单通道的ECG信号,无法获得较为全面的心电信号;另外,若单纯的增加通道,则多个通道无法同步,即无法同步采样多个通道的ECG信号。基于此,发明人提出了本申请的技术方案。
本申请第一实施例涉及一种多通道ECG测量系统,应用于可穿戴设备,例如手表、手环等,该多通道ECG测量系统用于测量被测对象的多个通道的ECG信号,请参考图2,多通道ECG测量系统包括:控制器1、多个采集装置2,以及多个ECG传感器3。
ECG传感器3与采集装置2一一对应且相连接;每个ECG传感器3中均设有同步采样模块31,控制器1连接于各ECG传感器3的同步采样模块31。
在一个例子中,多个ECG传感器3的同步采样模块31通过一根级联导线连接于控制器的第一引脚D1,从而减少了控制器1与各ECG传感器3之间的连线的数量。
本实施例中,每个采集装置2包括两个测试电极,这两个测试电极用于连接被测对象的两个电极安放位置,举例来说,采集装置2的数量为8个,则可以采集八通道的ECG信号,各采集装置2中的两个测试电极的安放位置可以分别为:双极肢体导联I(LA和RA)、II(LL和RA)、III(LL和LA),加压肢体导联avR(RA和1/2(LA+LL))、avL(LA和1/2(RA+LL))、avF(LL和1/2(LA+RA)),胸前导联V1至V6,中央电势端;其中,中央电势端是通过一个电阻网络将RA,LA,LL电极连接而产生的,代表了被测对象的平均电压。
控制器1用于向各ECG传感器3的同步采样模块31发送预设长度的外部触发信号。具体的,控制器1在各采集装置2已经连接于被测对象后,自动的或者在接收到测量命令时,在第一引脚D1输出一个预设长度的外部触发信号,该外部触发信号通过级联导线分别输入到各ECG传感器3的同步采样模块31。在一个例子中,控制器1可以同时向各ECG传感器3的同步采样模块31发送预设长度的外部触发信号,以便于实现同步采样。
同步采样模块31用于在接收到外部触发信号时,控制所属的ECG传感器3通过对应的采集装置2采集ECG信号。具体的,以任一ECG传感器3为例,该ECG传感器3中的同步采样模块31在通过级联导线接收到控制器1发送的预设长度的外部触发信号时,控制该ECG传感器3开始采样,即通过与该ECG传感器3连接的采集装置2采集一个通道的ECG信号。因此,可以通过多个ECG传感器3采集多个通道的ECG信号。其中,本实施例通过同步采样模块31控制其所属的ECG传感器3进行采样,因此控制器发送的外部触发信号可以仅为脉冲信号;在一个例子中,该外部触发信号的长度为一个脉冲,而现有技术中控制器1发出采样命令一般包括多个字节,一个字节包括8个脉冲,相对于现有技术来说本实施例大大减小了控制器1所发出的采样命令的长度,各同步采样模块31可以同步接收到该外部触发信号,并控制ECG传感器3开始采样,从而实现了多通道的ECG信号的同步采样;请参考图3,为本实施例中的多通道ECG测量系统的时序图,以任一ECG传感器3为例,控制器1周期性的向该ECG传感器3的同步采样模块31发送预设长度的外部触发信号,同步采样模块31在每次接收到外部触发信号时,便控制ECG传感器3开始采样,ECG传感器3通过与其连接的采集装置2进行持续预设时长t0的单通道 ECG信号的采样,从而能够周期性的获取该通道的ECG信号,因此通过多个ECG传感器3的采样,便能够周期性的获取多通道的ECG信号。
本实施例中,每个ECG传感器3能够采集一个通道的ECG信号,因此控制器1能够从多个ECG传感器3获取多通道的ECG信号。
在一个例子中,多个ECG传感器3还通过一根传输线连接于控制器的第二引脚D2;控制器具体用于在通过第二引脚D2接收到任一ECG传感器3发送的表征ECG信号采样完成的中断信号时,从任一ECG传感器3获取ECG信号。具体的,对于每个ECG传感器3来说,当该ECG传感器3采样结束之后,会向控制器1的第二引脚D2发送一个表征ECG信号采样完成的中断信号,控制器1在接收到该中断信号后,从该ECG传感器3获取一个通道的ECG信号;当获取多个通道的ECG信号之后,能够对多个通道的ECG信号进行处理,得到符合可穿戴设备使用标准的导联信号,举例来说,若获取了八个通道的ECG信号,经过处理可以得到十二个导联信号。
在一个例子中,多个ECG传感器3还通过串行总线连接于控制器1的第三引脚D3,例如通过一根串行总线连接于控制器1的第三引脚D3,即控制器1通过串行总线从各ECG传感器获取ECG信号,串行总线例如为SPI总线或I2C总线。
本实施例相对于现有技术而言,控制器向各ECG传感器的同步采样模块发送预设长度的外部触发信号,同步采样模块在接收到外部触发信号时,控制所属的ECG传感器通过对应的采集装置采集ECG信号,即控制所属的ECG传感器通过对应的采集装置采集一个通道的ECG信号,从而能够采集多个通道的ECG信号,同时,各ECG传感器由设定的同步采样模块控制进行采样,因此 可以按需控制控制器1所发送的外部触发信号的长度,外部触发信号的长度越短,外部触发信号的传输速度越快,各同步采样模块接收到外部触发信号的时间差越小,使得多个通道的ECG信号采样的同步精度越高;即能够实现高同步的多通道ECG信号的采样,更加适用于便携式的使用场景。
本申请第二实施例涉及一种多通道ECG测量系统,本实施例相对于第一实施例而言,主要区别之处在于:为ECG传感器预留了采样准备时间。
请参考图2,同步采样模块31具体用于在接收到外部触发信号时,开始计时,并在计时达到预设时长后,控制所属的ECG传感器通过对应的采集装置采集ECG信号。具体的,以任一ECG传感器3为例,该ECG传感器3中的同步采样模块31在通过级联导线接收到控制器1发送的预设长度的外部触发信号时,启动一个计时器开始计时,并在计时器计时达到预设时长t1后,控制该ECG传感器3开始采样,即通过与该ECG传感器3连接的采集装置2采集一个通道的ECG信号;在计时过程中,ECG传感器中的采样电路处于准备状态,计时时长大于采样电路的准备时间,从而在计时结束之后,能够立刻控制ECG传感器3开始采样。其中,各ECG传感器3中的同步采样模块31的计时时长相等,从而在计时结束时多个ECG传感器3均能够立刻进行采样,进一步提高了采样的同步精度,请参考图4,其为本实施例中的多通道ECG测量系统的采样时序图,以任一ECG传感器3为例,控制器1周期性的向该ECG传感器3的同步采样模块31发送预设长度的外部触发信号,同步采样模块31在每次接收到外部触发信号时,启动一个计时器开始计时,并在计时器计时达到预设时长t1后,控制ECG传感器3开始采样,ECG传感器3通过与其连接的采集装置2进行持续预设时长t0的单通道ECG信号的采样,从而能够周期性的获取 该通道的ECG信号,因此通过多个ECG传感器3的采样,便能够周期性的获取多通道的ECG信号。
本实施例相对于第一实施例而言,同步采样模块在接收到外部触发信号时,开始计时,并在计时达到预设时长后,再控制所属的ECG传感器通过对应的采集装置采集ECG信号,从而为各ECG传感器预留了电路准备时间,以在计时结束时,多个ECG传感器均能够立刻进行采样,进一步提高了采样的同步精度。
本申请第三实施例涉及一种多通道ECG信号的测量方法,应用于第一或第二实施例中的多通道ECG测量系统,请参考图2,本实施例中以第一实施例中的多通道ECG测量系统为例进行说明。
本实施例的多通道ECG信号的测量方法的具体流程如图5所示。
步骤101,控制器向多个ECG传感器的同步采样模块发送预设长度的外部触发信号。
具体而言,控制器1在各采集装置2已经连接于被测对象后,自动的或者在接收到测量命令时,在第一引脚D1输出一个预设长度的外部触发信号,该外部触发信号通过级联导线分别输入到各ECG传感器3的同步采样模块31。
在一个例子中,控制器1可以同时向各ECG传感器3的同步采样模块31发送预设长度的外部触发信号,以便于实现同步采样。
步骤102,同步采样模块在接收到外部触发信号时,控制所属的ECG传感器通过对应的采集装置采集ECG信号。
具体而言,以任一ECG传感器3为例,该ECG传感器3中的同步采样模块31在通过级联导线接收到控制器1发送的预设长度的外部触发信号时,控 制该ECG传感器3开始采样,即通过与该ECG传感器3连接的采集装置2采集一个通道的ECG信号。因此,可以通过多个ECG传感器3采集多个通道的ECG信号。其中,本实施例通过同步采样模块31控制其所属的ECG传感器3进行采样,因此控制器发送的外部触发信号可以仅为脉冲信号;在一个例子中,该外部触发信号的长度为一个脉冲,而现有技术中控制器1发出采样命令一般包括多个字节,一个字节包括8个脉冲,相对于现有技术来说本实施例大大减小了控制器1所发出的采样命令的长度,各同步采样模块31可以同步接收到该外部触发信号,并控制ECG传感器3开始采样,从而实现了多通道的ECG信号的同步采样。
步骤103,控制器从多个ECG传感器获取多通道的ECG信号。
具体而言,以多个ECG传感器3还通过一根传输线连接于控制器的第二引脚D2为例,控制器具体用于在通过第二引脚D2接收到任一ECG传感器3发送的表征采样完成的中断信号时,从任一ECG传感器3获取ECG信号。具体的,对于每个ECG传感器3来说,当该ECG传感器3采样结束之后,会向控制器1的第二引脚D2发送一个中断信号,控制器1在接收到该中断信号后,到该ECG传感器3获取一个通道的ECG信号;当获取多个通道的ECG信号之后,能够对多个通道的ECG信号进行处理,得到符合可穿戴设备使用标准的导联信号,举例来说,若获取了八个通道的ECG信号,经过处理可以得到十二个导联信号。
由于第一实施例与本实施例相互对应,因此本实施例可与第一实施例互相配合实施。第一实施例中提到的相关技术细节在本实施例中依然有效,在第一实施例中所能达到的技术效果在本实施例中也同样可以实现,为了减少重复, 这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在第一实施例中。
本实施例相对于现有技术而言,控制器向各ECG传感器的同步采样模块发送预设长度的外部触发信号,同步采样模块在接收到外部触发信号时,控制所属的ECG传感器通过对应的采集装置采集ECG信号,即控制所属的ECG传感器通过对应的采集装置采集一个通道的ECG信号,从而能够采集多个通道的ECG信号,同时,各ECG传感器由设定的同步采样模块控制进行采样,因此可以按需控制控制器1所发送的外部触发信号的长度,外部触发信号的长度越短,外部触发信号的传输速度越快,各同步采样模块接收到外部触发信号的时间差越小,使得多个通道的ECG信号采样的同步精度越高;即能够实现高同步的多通道ECG信号的采样,更加适用于便携式的使用场景。
本申请第四实施例涉及一种多通道ECG信号的测量方法,本实施例相对于第三实施例而言,主要区别之处在于:为ECG传感器预留了采样准备时间。
本实施例的多通道ECG信号的测量方法的具体流程如图6所示。
步骤201,控制器向多个ECG传感器的同步采样模块发送预设长度的外部触发信号。
具体而言,与第三实施例中的步骤101大致相同,在此不再赘述。
步骤202,同步采样模块在接收到外部触发信号时,开始计时,并在计时达到预设时长后,控制所属的ECG传感器通过对应的采集装置采集ECG信号。
具体而言,以任一ECG传感器3为例,该ECG传感器3中的同步采样模块31在通过级联导线接收到控制器1发送的预设长度的外部触发信号时,启 动一个计时器开始计时,并在计时器计时达到预设时长t1后,控制该ECG传感器3开始采样,即通过与该ECG传感器3连接的采集装置2采集一个通道的ECG信号;在计时过程中,ECG传感器中的采样电路处于准备状态,计时时长大于采样电路的准备时间,从而在计时结束之后,能够立刻控制ECG传感器3开始采样。其中,各ECG传感器3中的同步采样模块31的计时时长相等,从而在计时结束时多个ECG传感器3均能够立刻进行采样,进一步提高了采样的同步精度。
步骤203,控制器从多个ECG传感器获取多通道的ECG信号。
具体而言,与第三实施例中的步骤103大致相同,在此不再赘述。
由于第二实施例与本实施例相互对应,因此本实施例可与第二实施例互相配合实施。第二实施例中提到的相关技术细节在本实施例中依然有效,在第二实施例中所能达到的技术效果在本实施例中也同样可以实现,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在第二实施例中。
本实施例相对于第三实施例而言,同步采样模块在接收到外部触发信号时,开始计时,并在计时达到预设时长后,再控制所属的ECG传感器通过对应的采集装置采集ECG信号,从而为各ECG传感器预留了电路准备时间,以在计时结束时,多个ECG传感器均能够立刻进行采样,进一步提高了采样的同步精度。
本申请第五实施例涉及一种可穿戴设备,可穿戴设备例如为手表、手环等,可穿戴设备包括第一实施例或第二实施例中的多通道ECG测量系统。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实 施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (13)

  1. 一种多通道ECG测量系统,其特征在于,包括:控制器、多个采集装置,以及多个ECG传感器;所述ECG传感器与所述采集装置一一对应且相连接;每个所述ECG传感器中均设有同步采样模块,所述控制器连接于各所述ECG传感器的所述同步采样模块;
    所述控制器用于向多个所述ECG传感器的所述同步采样模块发送预设长度的外部触发信号;
    所述同步采样模块用于在接收到所述外部触发信号时,控制所属的所述ECG传感器通过对应的所述采集装置采集ECG信号;
    所述控制器还用于从多个所述ECG传感器获取多通道的所述ECG信号。
  2. 如权利要求1所述的多通道ECG测量系统,其特征在于,所述同步采样模块具体用于在接收到所述外部触发信号时,开始计时,并在计时达到预设时长后,控制所属的所述ECG传感器通过对应的所述采集装置采集ECG信号。
  3. 如权利要求1所述的多通道ECG测量系统,其特征在于,多个所述ECG传感器的所述同步采样模块通过级联导线连接于所述控制器的第一引脚;
    所述控制器具体用于通过所述第一引脚向多个所述ECG传感器的所述同步采样模块发送所述外部触发信号。
  4. 如权利要求1所述的多通道ECG测量系统,其特征在于,多个所述ECG传感器还通过传输线连接于所述控制器的第二引脚;
    所述控制器具体用于在通过所述第二引脚接收到任一所述ECG传感器发送的表征ECG信号采集完成的中断信号时,从所述任一所述ECG传感器获取所述ECG信号。
  5. 如权利要求1所述的多通道ECG测量系统,其特征在于,多个所述ECG传感器还通过串行总线连接于所述控制器的第三引脚;
    所述控制器具体用于通过所述串行总线从各所述ECG传感器获取所述ECG信号。
  6. 如权利要求1所述的多通道ECG测量系统,其特征在于,所述外部触发信号的长度为一个脉冲。
  7. 如权利要求1所述的多通道ECG测量系统,其特征在于,所述控制器用于同时向多个所述ECG传感器的所述同步采样模块发送预设长度的外部触发信号。
  8. 一种可穿戴设备,其特征在于,包括权利要求1至7中任一项所述的多通道ECG测量系统。
  9. 一种多通道ECG信号的测量方法,其特征在于,应用于多通道ECG测量系统,所述多通道ECG测量系统包括:控制器、多个采集装置,以及多个ECG传感器;所述ECG传感器与所述采集装置一一对应且相连接;每个所述ECG传感器中均设有同步采样模块,所述控制器连接于各所述ECG传感器的所述同步采样模块;所述方法包括:
    所述控制器向多个所述ECG传感器的所述同步采样模块发送预设长度的外部触发信号;
    所述同步采样模块在接收到所述外部触发信号时,控制所属的所述ECG传感器通过对应的所述采集装置采集ECG信号;
    所述控制器从多个所述ECG传感器获取多通道的所述ECG信号。
  10. 如权利要求9所述的多通道ECG信号的测量方法,其特征在于,所述同步采样模块在接收到所述外部触发信号时,控制所属的所述ECG传感器通过对应的所述采集装置采集ECG信号,包括:
    所述同步采样模块在接收到所述外部触发信号时,开始计时,并在计时达到预设时长后,控制所属的所述ECG传感器通过对应的所述采集装置采集ECG信号。
  11. 如权利要求9所述的多通道ECG信号的测量方法,其特征在于,多个所述ECG传感器通过传输线连接于所述控制器的第二引脚;
    所述控制器从各所述ECG传感器获取所述ECG信号,包括:
    所述控制器在通过所述第二引脚接收到任一所述ECG传感器发送的表征采样完成的中断信号时,从所述任一所述ECG传感器获取所述ECG信号。
  12. 如权利要求9所述的多通道ECG信号的测量方法,其特征在于,所述外部触发信号的长度为一个脉冲。
  13. 如权利要求9所述的多通道ECG信号的测量方法,其特征在于,所述控制器向多个所述ECG传感器的所述同步采样模块发送预设长度的外部触发信号,包括:
    所述控制器同时向多个所述ECG传感器的所述同步采样模块发送预设长度的外部触发信号。
PCT/CN2019/121305 2019-11-27 2019-11-27 多通道ecg测量系统及方法、可穿戴设备 WO2021102745A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/121305 WO2021102745A1 (zh) 2019-11-27 2019-11-27 多通道ecg测量系统及方法、可穿戴设备
CN201980004367.1A CN111132611B (zh) 2019-11-27 2019-11-27 多通道ecg测量系统及方法、可穿戴设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/121305 WO2021102745A1 (zh) 2019-11-27 2019-11-27 多通道ecg测量系统及方法、可穿戴设备

Publications (1)

Publication Number Publication Date
WO2021102745A1 true WO2021102745A1 (zh) 2021-06-03

Family

ID=70507776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121305 WO2021102745A1 (zh) 2019-11-27 2019-11-27 多通道ecg测量系统及方法、可穿戴设备

Country Status (2)

Country Link
CN (1) CN111132611B (zh)
WO (1) WO2021102745A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1788676A (zh) * 2005-12-22 2006-06-21 东北大学 心电无线远程监护系统
US20100256511A1 (en) * 2009-04-06 2010-10-07 Fabienne Poree Reconstruction of a surface electrocardiogram from an endocardial electrogram using non-linear filtering
EP2289402A1 (en) * 2009-09-01 2011-03-02 Adidas AG Method and system for interpretation and analysis of physiological, performance, and contextual information
CN102512154A (zh) * 2011-12-31 2012-06-27 济南汇医融工科技有限公司 一种检测冠状动脉狭窄的装置
CN103857330A (zh) * 2011-10-12 2014-06-11 皇家飞利浦有限公司 在实时ecg监测中全自动测量心电图的st-段水平的方法和系统
CN105748038A (zh) * 2016-02-01 2016-07-13 山东大学 一种冠心病风险指数的无损检测装置
US20160374580A1 (en) * 2015-06-29 2016-12-29 Kaunas University Of Technology Method and System for Predicting of Acute Hypotensive Episodes
US9808165B2 (en) * 2009-11-02 2017-11-07 Applied Cardiac Systems, Inc. Multi-function health monitor with integrated cellular module
CN108324266A (zh) * 2018-02-26 2018-07-27 河南善仁医疗科技有限公司 基于心电心音分析的家用心脏监控系统
CN109124622A (zh) * 2018-08-17 2019-01-04 山东康佑医疗科技有限公司 一种胎儿心电检测分析系统及方法
CN109431493A (zh) * 2018-12-07 2019-03-08 南京医科大学 基于距离分段加权算法的可穿戴体表电势采集装置和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2714028A1 (en) * 2009-09-01 2011-03-01 Adidas Ag Noninvasive method and system for monitoring physiological characteristics and athletic performance

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1788676A (zh) * 2005-12-22 2006-06-21 东北大学 心电无线远程监护系统
US20100256511A1 (en) * 2009-04-06 2010-10-07 Fabienne Poree Reconstruction of a surface electrocardiogram from an endocardial electrogram using non-linear filtering
EP2289402A1 (en) * 2009-09-01 2011-03-02 Adidas AG Method and system for interpretation and analysis of physiological, performance, and contextual information
US9808165B2 (en) * 2009-11-02 2017-11-07 Applied Cardiac Systems, Inc. Multi-function health monitor with integrated cellular module
CN103857330A (zh) * 2011-10-12 2014-06-11 皇家飞利浦有限公司 在实时ecg监测中全自动测量心电图的st-段水平的方法和系统
CN102512154A (zh) * 2011-12-31 2012-06-27 济南汇医融工科技有限公司 一种检测冠状动脉狭窄的装置
US20160374580A1 (en) * 2015-06-29 2016-12-29 Kaunas University Of Technology Method and System for Predicting of Acute Hypotensive Episodes
CN105748038A (zh) * 2016-02-01 2016-07-13 山东大学 一种冠心病风险指数的无损检测装置
CN108324266A (zh) * 2018-02-26 2018-07-27 河南善仁医疗科技有限公司 基于心电心音分析的家用心脏监控系统
CN109124622A (zh) * 2018-08-17 2019-01-04 山东康佑医疗科技有限公司 一种胎儿心电检测分析系统及方法
CN109431493A (zh) * 2018-12-07 2019-03-08 南京医科大学 基于距离分段加权算法的可穿戴体表电势采集装置和方法

Also Published As

Publication number Publication date
CN111132611B (zh) 2022-05-27
CN111132611A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
SG174302A1 (en) Ecg device with impulse and channel switching adc noise filter and error corrector for derived leads
GB2442330A (en) Floating, expandable ECG and/or EEG data acquisition system
US20210345270A1 (en) Method for synchronization of a multitude of wearable devices
CN203619544U (zh) 贴片式传感器电极及生理参数检测系统
JP2002125939A (ja) 子宮活動モニター及びその動作方法
CN109793532B (zh) 讯号同步处理装置、听诊器、输出系统与病征诊断系统
WO2015000312A1 (zh) 自动体外除颤仪及其前端测量系统和测量方法
WO2022179408A1 (zh) 生理信号采集系统及方法生理信号采集系统及方法
CN110916657A (zh) 可无线充电式多通道无线表面肌电信号采集系统
WO2021102745A1 (zh) 多通道ecg测量系统及方法、可穿戴设备
CN106562783B (zh) 一种心电测量方法和装置
CN211674226U (zh) 一种多通道生物电信号采集系统
CN106798546A (zh) 数据采集处理终端
CN103977503B (zh) 一种低成本的pace波检测装置及方法
WO2022091195A1 (ja) Rri計測装置、rri計測方法およびrri計測プログラム
CN113288178B (zh) 一种基于多通道脑电采集的脑电事件同步系统及方法
CN105326482A (zh) 记录生理信号的方法和装置
CN113274036A (zh) 一种基于ads1299和stm32和esp8266的脑电采集系统
CN211432866U (zh) 一种心冲击、心电和指尖脉搏波同步采集装置
Kulau et al. BCG Measurement by differential Sensing in Real-Time
CN215458070U (zh) 一种新型的无线运动传感装置
CN211633314U (zh) 一种用于情感识别的信号采集装置
CN112890823A (zh) 生理数据采集方法、系统及存储介质
CN112754504A (zh) 肌电检测装置
CN114500616A (zh) 一种无线分布式同步心电实时监测系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954170

Country of ref document: EP

Kind code of ref document: A1