WO2021102675A1 - 一种基于网络进行联测的地震预测系统与方法 - Google Patents

一种基于网络进行联测的地震预测系统与方法 Download PDF

Info

Publication number
WO2021102675A1
WO2021102675A1 PCT/CN2019/120909 CN2019120909W WO2021102675A1 WO 2021102675 A1 WO2021102675 A1 WO 2021102675A1 CN 2019120909 W CN2019120909 W CN 2019120909W WO 2021102675 A1 WO2021102675 A1 WO 2021102675A1
Authority
WO
WIPO (PCT)
Prior art keywords
geomagnetic
time
earthquake
data
module
Prior art date
Application number
PCT/CN2019/120909
Other languages
English (en)
French (fr)
Inventor
谢镕键
Original Assignee
谢镕键
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 谢镕键 filed Critical 谢镕键
Priority to PCT/CN2019/120909 priority Critical patent/WO2021102675A1/zh
Publication of WO2021102675A1 publication Critical patent/WO2021102675A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis

Definitions

  • the present invention relates to the technical field of earthquake prediction, in particular to an earthquake prediction system and method based on network for joint measurement.
  • the prediction of earthquakes by a single device has isolation and limitations at various points. When the device fails or is abnormal, it is easy to cause false alarms, and it is impossible to make an overall prediction of an earthquake zone area.
  • One aspect of the present invention provides an earthquake prediction system based on a network for joint measurement.
  • the system communicates with a plurality of geomagnetic sensing devices through the network.
  • the system is characterized in that the system includes:
  • the time calibration module is used to control the clock time of each geomagnetic sensing device according to the clock time of the earthquake prediction system, so that the time of each clock is consistent;
  • the multi-wire transmission module is used to receive data from each geomagnetic sensing device, the data including the identification code of the geomagnetic sensing device and the collected geomagnetic signal;
  • the waveform generation module is used to generate a visible geomagnetic waveform diagram according to the identification code and the geomagnetic signal.
  • the system further includes: a geomagnetic device management module, which performs identity authentication on the geomagnetic sensor device based on the geomagnetic device access request; the time calibration module controls the clock time of the geomagnetic sensor device after the identity authentication to make it The clock time is consistent with that of the earthquake prediction system.
  • a geomagnetic device management module which performs identity authentication on the geomagnetic sensor device based on the geomagnetic device access request
  • the time calibration module controls the clock time of the geomagnetic sensor device after the identity authentication to make it The clock time is consistent with that of the earthquake prediction system.
  • the geomagnetic device management module stores the corresponding relationship between the identification code of each geomagnetic sensor device and the area information of the area in which it is located; the waveform generation module generates a visible geomagnetic waveform diagram according to the area information, and The regional information is related to the seismic zone.
  • the system further includes: a waveform analysis module and a data prediction module, wherein the waveform analysis module is used to analyze the waveform data and determine whether the at least two geomagnetic sensing devices in the same area correspond to at least within a predetermined time range. If the waveform is abnormal, the data prediction module is triggered; otherwise, the data prediction module is not triggered. The data prediction module determines the earthquake occurrence time, location, and level according to the amplitude and time relationship between the abnormal waveforms.
  • the system further includes a second transmission module for sending the data prediction result to the communication terminal.
  • the present invention also provides an earthquake prediction method based on the joint measurement of multiple geomagnetic sensing devices on the network, the method including:
  • each geomagnetic sensing device Receiving data from each geomagnetic sensing device, the data including the identification code of the geomagnetic sensing device and the corresponding geomagnetic signal;
  • a visible geomagnetic waveform diagram is generated.
  • the method further includes: performing identity authentication on the geomagnetic sensor device based on the geomagnetic device access request;
  • the method further includes: storing the corresponding relationship between the identification code of each geomagnetic sensor device and the area information of the area where it is located;
  • a visible geomagnetic waveform diagram is generated according to the regional information, and the regional information is related to the seismic zone.
  • the method further includes: analyzing the waveform data, and determining whether the waveforms corresponding to at least two geomagnetic sensing devices in the same area are abnormal within a predetermined time range, if so, triggering the data prediction step, otherwise not triggering
  • the time, location, and level of earthquake occurrence are determined according to the amplitude and time relationship between the abnormal waveforms.
  • the method further includes sending the data prediction result to the communication terminal.
  • the present invention also provides a geomagnetism detection device, which includes a geomagnetism sensor, a time calibration unit, a network connection unit, a waveform generation unit, and an information input unit.
  • the geomagnetism sensor is used to detect geomagnetism signals
  • the time calibration unit is based on the network connection unit.
  • the received clock signal is time calibrated
  • the waveform generation unit is used to generate the geomagnetic signal waveform diagram from the collected geomagnetic signal and time information
  • the information input unit is used to receive user input information, which is generally based on the user's Waveform diagram input
  • the network connection unit is used to connect the geomagnetic sensor device to a communication network, and is used to send geomagnetic signals and user input information to the server.
  • the geomagnetic detection equipment proposed in the present invention can not only collect the local geomagnetic signal, but also process the geomagnetic signal into a waveform diagram.
  • the change of the geomagnetic signal can be observed locally in the device, thereby providing supplementary to the joint judgment on the server side, because there will be local In the case of accidental collision, there may be some other special phenomena locally, and these related information provide the information basis for the joint judgment on the server side.
  • the present invention uses geomagnetic signals collected by multiple geomagnetic sensing devices in a seismic zone area to jointly perform seismic prediction, with high accuracy and capable of accurately determining Each location and area where the earthquake occurred. At the same time, the collection of geomagnetic signals is very convenient and cost-effective.
  • Figure 1 shows a schematic diagram of the network-based joint test proposed according to the present invention
  • Figure 2 shows a structural diagram of the network-based joint seismic prediction system proposed by the present invention
  • the present invention proposes a concept of placing a number of convenient and compact geomagnetic sensing devices 1, 2, ..., n on multiple locations in the fracture zone, and connecting modules through a network All geomagnetic sensing devices are networked with server 0, and all geomagnetic sensing devices are time-synchronized by executing a software program on the server and geomagnetic sensing signals are obtained from them, and then earthquake prediction is made based on the geomagnetic sensing signals on at least one fault zone area.
  • the present invention provides a network-based earthquake prediction system, which is implemented on the server 0 side.
  • the system communicates with a plurality of geomagnetic sensing devices via a network, and is characterized in that the system includes:
  • the time calibration module 01 is used to control the clock time of each geomagnetic sensing device according to the clock time of the earthquake prediction system, so that the time of each clock is consistent;
  • the multi-wire transmission module 02 is used to receive data from each geomagnetic sensing device, and the data includes the identification code of the geomagnetic sensing device and the collected geomagnetic signal;
  • the waveform generating module 03 is used to generate a visible geomagnetic waveform diagram according to the identification code and the geomagnetic signal.
  • All these geomagnetic sensing devices include a network connection module, the geomagnetic sensing device is connected to the Internet through the network connection module, and the network connection module is configured to the IP address of the earthquake prediction system (implemented by the server) to enable the network It is assigned to the communication path of the earthquake prediction system.
  • all these geomagnetic sensing devices are provided with a wifi module, and these geomagnetic sensing devices are placed in an environment where the Internet can be accessed, and the user name and password of the network environment are set in the wifi module configuration page , So that these geomagnetic sensing devices can be connected to the external network.
  • the earthquake prediction system is implemented on the server side, and the IP address of the designated server is set on the wifi module configuration page, so that the real-time geomagnetic data collected by the geomagnetic sensor can be transmitted to the designated server.
  • the earthquake prediction system includes a memory, and the memory pre-stores the mapping relationship between the geomagnetic sensing device number (equivalent to the identification mark) and its geographic location and geographic fault zone area.
  • the earthquake prediction system includes a time calibration module, which is implemented by software.
  • the time calibration module periodically controls the sending of time calibration information to the magnetic sensor equipment in various places, the time calibration information contains the clock information of the server, and the magnetic sensor equipment in each place synchronizes its time according to the received clock information of the server, So that its clock time is consistent with the server's clock time, ensuring that the time of all real-time networked geomagnetic sensor devices is consistent, and there will be no deviation.
  • the time calibration module periodically sends fixed data packets to the magnetic sensor equipment in various places.
  • the header information of the data packet contains the clock information of the server.
  • the geomagnetic sensor equipment includes a microprocessor 12, which only analyzes The header information of the data packet obtains clock information, and uses the clock information to adjust the time information of the geomagnetic sensor device.
  • the geomagnetic sensor device has a transmission setting unit, through which the interval time and transmission time point of data transmission can be set. For example, the data is transmitted to the earthquake prediction system (server) every 1 hour or half an hour.
  • the single-chip computer program realizes the transmission at the wrong time to avoid congestion.
  • the data file format of the geomagnetic data transmitted between the geomagnetic sensor device and the server may include the collection time and the corresponding geomagnetic sensor device number, for example: 0702_001, which represents the data transmitted by the geomagnetic sensor device numbered 1 on July 2.
  • Data transmission methods are divided into two types: centralized and distributed.
  • Centralized means that the data of multiple geomagnetic sensor devices are transmitted to the same server through the Internet.
  • Distributed means that the data of a single geomagnetic sensor device can be transmitted to different servers, and the waveform diagram analysis can be performed by opening the waveform processing module on the server.
  • the following data communication process is performed:
  • the server periodically automatically activates or manually activates the "set time” command
  • the server sends data packets to the magnetic sensor equipment in various places.
  • the data packet header contains the server's clock information
  • Magnetic sensor equipment in various places will automatically parse the data packet to obtain clock information
  • the above communication process can be started between the servers to keep the system time of these multiple servers consistent.
  • the multi-wire transmission module is specifically used to receive real-time geomagnetic data from different geomagnetic sensors in parallel at the same time, and the module is implemented by software.
  • the time calibration module and the multi-wire transmission module can be implemented by a piece of software.
  • the multi-wire transmission module stores these data in a predetermined folder location of the server.
  • the time calibration module and the multi-wire transmission module are realized by a software, in order to facilitate the software to synchronize the time of the magnetic sensor equipment in various places and control the simultaneous structure
  • the data of multiple devices, the software and the real-time data of the geomagnetic sensor are stored in the same folder location.
  • the waveform generation module 03 takes the received geomagnetic real-time data from the geomagnetic sensor devices of different numbers as input, and uses time information as a step basis to convert the geomagnetic data into a waveform graph.
  • the horizontal axis of the waveform graph represents time, and the vertical axis Represents the amplitude value (corresponding to the intensity of the geomagnetic signal), and is controlled to be displayed on the display unit 05 according to user operation, which is convenient for manual observation.
  • the earthquake prediction system also includes a data processing module 04, which analyzes the geomagnetic data, detects whether there is a sudden change in the amplitude of the geomagnetic data, if there is a sudden change, and judges whether there are multiple ( The number can be customized as 2, 3, 4)
  • the geomagnetic data sent by the geomagnetic sensing device all have a sudden change in the waveform, and the possibility of false alarms caused by the device being touched can be ruled out by this technical means. If the data processing module detects that only the geomagnetic data sent by a certain geomagnetic sensor device has changed significantly, it is determined that this device has a false alarm. In the case where it is determined that it is not a false alarm, that is, a sudden change occurs in multiple geomagnetic data, the amplitude of the sudden change, the corresponding time point, and the number of the geomagnetic sensor device are recorded.
  • the data processing module 04 compares the time points and amplitudes of the detected geomagnetic data amplitudes of different geomagnetic sensing devices with sudden changes, and determines the geomagnetic sensing equipment with the earliest amplitude mutation and the largest amplitude change, And according to the geomagnetic sensor number, it can automatically obtain the geographic fault zone area and geographic location information where the geomagnetic sensor device is located. Determine the geographic area or geographic location corresponding to the geomagnetic sensing device as a suspected epicentral area. The earthquake usually occurs within 1-7 days afterwards.
  • the area where the geomagnetic sensor device is located where the waveform mutation occurred earlier and the amplitude of the waveform mutation is large is regarded as a suspected epicentral area.
  • the earthquake usually occurs within 1-7 days, and the seismic intensity is relatively large.
  • the seismic intensity in other areas is relatively small compared to the epicentral area.
  • the seismic intensity of other geomagnetic sensor equipment with smaller amplitude of the sudden change of the waveform is smaller than that of the epicentral area.
  • the joint judgment is made based on the geomagnetic signals collected by the geomagnetic sensing equipment located in the same area (the same seismic zone area) that is relatively close. This is based on the fact that the geomagnetic sensing equipment near the earthquake onset area will have abrupt changes in the waveform. The closer the place is to the earthquake onset, the greater the amplitude of the waveform changes.
  • the server receives the data from each geomagnetic sensor device, and can directly interpret these data into waveform graphs and display them through the waveform processing module. If the waveform of a device changes significantly, it means that the area where the device is located is abnormal.
  • the earthquake occurrence area can be judged jointly based on the geomagnetic signals collected by the equipment in the same area (same seismic zone area) that are close together. That is to say, these devices near the earthquake strike area will have a sudden change in the waveform, and the closer the place is to the strike point, the greater the amplitude of the sudden change in waveform. If there are abnormal signals from multiple devices at different times, the one with a long time difference is multiple earthquakes, and the one with close time is the same earthquake.
  • the earthquake prediction system further includes a geomagnetic sensing device management module that stores the correspondence between each geomagnetic sensing device identification code and the area information of the area in which it is located, and performs the matching
  • the area information is related to the seismic zone; the waveform generation module generates a visible geomagnetic waveform diagram according to the area information, and the geomagnetic waveform diagram is for manual observation and verification.
  • the system further includes: a waveform analysis module and a data prediction module, wherein the waveform analysis module is used to analyze the waveform data and determine whether there are at least two geomagnetic sensors in the same area within a predetermined time range.
  • the waveform corresponding to the device is abnormal. If it is, the data prediction module is triggered; otherwise, the data prediction module is not triggered.
  • the data prediction module determines the earthquake occurrence time, location, and level according to the amplitude and time relationship between the abnormal waveforms.
  • abnormality judgment and prediction are performed based on the waveform data, which is convenient for obtaining more accurate and intuitive prediction results, and the prediction results can be directly marked on the waveform graph.
  • the geomagnetic sensing device used in the present invention is specially used to collect geomagnetic signals and send the collected geomagnetic signals to the earthquake prediction system.
  • the geomagnetic sensing device is small in size, simple in structure, and convenient to install. The greater the number of geomagnetic sensing devices for real-time networked joint surveys in the area of the earthquake fault zone, the more helpful it is to determine the epicenter area and the level of an upcoming earthquake.
  • the geomagnetic sensing device includes a geomagnetic sensor, a microprocessor, a communication unit, and a human-computer interaction unit.
  • the microprocessor adds a time tag to the geomagnetic intensity signal collected by the geomagnetic sensor to form a time-amplitude value. data.
  • the communication unit may be a wired or wireless network connection module for connecting the geomagnetic sensor device to the public network.
  • the communication unit is a wifi module. As long as these geomagnetic sensing devices are placed in an environment where the Internet can be accessed, the user name and password of the network environment are set in the wifi module configuration page, These geomagnetic sensing devices can be connected to the external network to establish a communication connection with the earthquake prediction system.
  • the geomagnetic sensor device can be set in the home. After the wifi module on the device is configured, it can be connected to the wireless router at home, and then data can be transmitted to the server with the designated IP address through the external network.
  • the system also includes: a geomagnetic device management module, which performs identity authentication on the geomagnetic sensor device based on the geomagnetic device access request; the time calibration module controls the geomagnetic sensor after the identity authentication
  • the clock time of the equipment is consistent with the clock time of the earthquake prediction system.
  • the system also includes a communication module 06 for sending the data prediction result to the communication terminal.
  • the present invention also provides an earthquake prediction method based on the joint measurement of multiple geomagnetic sensing devices on the network, the method including:
  • each geomagnetic sensing device Receiving data from each geomagnetic sensing device, the data including the identification code of the geomagnetic sensing device and the corresponding geomagnetic signal;
  • a visible geomagnetic waveform diagram is generated.
  • the method further includes: performing identity authentication on the geomagnetic sensor device based on the geomagnetic device access request;
  • the earthquake prediction system After performing identity authentication and time calibration, the earthquake prediction system receives data collected from each geomagnetic sensing device, and the data contains the number identification information of each geomagnetic sensing device.
  • the corresponding relationship between the identification code of each geomagnetic sensor device and the area information of the area where it is located is stored in advance, and the area information is related to the seismic fault zone.
  • the method further includes: analyzing the waveform data, and determining whether the waveforms corresponding to at least two geomagnetic sensing devices in the same area are abnormal within a predetermined time range, if so, triggering the data prediction step, otherwise not triggering
  • the time, location, and level of earthquake occurrence are determined according to the amplitude and time relationship between abnormal waveforms.
  • the level of earthquake occurrence is determined according to the magnitude of the sudden change of the geomagnetic signal, and the area information and geographic location information of the corresponding installation are obtained according to the number of the electromagnetic sensing device that produces the abnormal waveform, so as to perform earthquake prediction.
  • the method further includes the step of sending the data forecast result to the communication terminal.
  • the present invention also provides a geomagnetism detection device, which includes a geomagnetism sensor, a time calibration unit, a network connection unit, a waveform generation unit, and an information input unit.
  • the geomagnetism sensor is used to detect geomagnetism signals
  • the time calibration unit is based on the network connection unit.
  • the received clock signal is time calibrated
  • the waveform generation unit is used to generate the geomagnetic signal waveform diagram from the collected geomagnetic signal and time information
  • the information input unit is used to receive user input information, which is generally based on the user's Waveform diagram input
  • the network connection unit is used to connect the geomagnetic sensor device to a communication network, and is used to send geomagnetic signals and user input information to the server.
  • the geomagnetic detection equipment proposed in the present invention can not only collect the local geomagnetic signal, but also process the geomagnetic signal into a waveform diagram.
  • the change of the geomagnetic signal can be observed locally in the device, thereby providing supplementary to the joint judgment on the server side, because there will be local In the case of accidental collision, there may be some other special phenomena locally, and these related information provide the information basis for the joint judgment on the server side.
  • the present invention uses geomagnetic signals collected by multiple geomagnetic sensing devices in a seismic zone area to jointly perform seismic prediction, with high accuracy and capable of accurately determining Each location and area where the earthquake occurred. At the same time, the collection of geomagnetic signals is very convenient and cost-effective.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种基于网络进行联测的地震预测系统,该系统通过网络与多个地磁传感设备通信连接,其特征在于,该系统包括:时间校准模块(01),用于根据地震预测系统的时钟时间控制每个地磁传感设备的时钟时间,使得各时钟时间一致;多线传输模块(02),用于接收来自各个地磁传感设备的数据,数据包括地磁传感设备的识别码、采集的地磁信号;波形生成模块(03),用于根据识别码、地磁信号,生成可视的地磁波形图。该系统能够利用一个地震带区域内的多个地磁传感设备采集的地磁信号联合进行地震预测,准确度高,能够精确确定将发生地震的各个位置、区域。

Description

一种基于网络进行联测的地震预测系统与方法 技术领域
本发明涉及地震预测技术领域,尤其涉及一种基于网络进行联测的地震预测系统与方法。
背景技术
很多地震预警是基于地震发生时横波和纵波的传输时间差来进行,但基于此原理的预警时间很短,即使预警成功,也没有足够的逃生时间。近些年出现了基于地磁异常进行地震预测的技术方案,这些技术方案几乎都是在设计地磁异常检测设备,即利用一个小型的磁针作为传感器,利用磁针的弱磁性和导电性,在地磁异常,磁针接通电路,产生信号,从而进行报警。该方法能够预测到地震,但对地震的级别、烈度等具体指标难以预测。有的具体涉及到利用地磁检测设备实时监测地磁场的垂直分量Z和磁北角a,通过对这两个分量的识别判断预测地震。现有技术中,通过单个设备对地震的预测存在各点的孤立性、局限性,在设备出现故障或者异常时,容易导致误报,而且无法对一个地震带区域进行整体预测。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的技术方案。本发明的一个方面,提供了一种基于网络进行联测的地震预测系统,该系统通过网络与多个地磁传感设备通信连接,其特征在于,该系统包括:
时间校准模块,用于根据地震预测系统的时钟时间控制每个地磁传感设备的时钟时间,使得各时钟时间一致;
多线传输模块,用于接收来自各个地磁传感设备的数据,所述数据包括地磁传感设备的识别码、采集的地磁信号;
波形生成模块,用于根据所述识别码、地磁信号,生成可视的地磁波形图。
可选的,该系统还包括:地磁设备管理模块,基于地磁设备接入请求,对地磁传感设备进行身份认证;所述时间校准模块在身份认证后控制地磁传感设备的时钟时间,使其时钟时间与地震预测系统的时钟时间一致。
可选的,所述地磁设备管理模块存储每个地磁传感设备识别码与其所处区域的区域信息的对应关系;所述波形生成模块根据所述区域信息生成可视的地磁波形图,所述区域信息与地震带相关。
可选的,该系统还包括:波形解析模块、数据预测模块,其中所述波形解析模块用于解析波形数据,并判断在预定时间范围内是否同区域内的至少两个地磁传感设备对应的波形出现异常,如果是,则触发数据预测模块,否则不触发,所述数据预测模块根据异常波形之间的幅度和时间关系,确定地震发生时间、位置、级别。
可选的,该系统还包括第二传输模块,用于将数据预测结果发送至通信终端。
本发明还提供一种基于网络多个地磁传感设备联测的地震预测方法,该方法包括:
根据地震预测系统的时钟时间控制每个地磁传感设备的时钟时间,使得各时钟时间一致;
接收来自各个地磁传感设备的数据,所述数据包括地磁传感设备的识别码、对应的地磁信号;
根据所述识别码、地磁信号,生成可视的地磁波形图。
可选的,该方法还包括:基于地磁设备接入请求,对地磁传感设备进行身份认证;
在身份认证后控制地磁传感设备的时钟时间,使其时钟时间与地震预测系统的 时钟时间一致。
可选的,该方法还包括:存储每个地磁传感设备识别码与其所处区域的区域信息的对应关系;
根据所述区域信息生成可视的地磁波形图,所述区域信息与地震带相关。
可选的,该方法还包括:解析波形数据,并判断在预定时间范围内是否同区域内的至少两个地磁传感设备对应的波形出现异常,如果是,则触发数据预测步骤,否则不触发,所述数据预测步骤根据异常波形之间的幅度和时间关系,确定地震发生时间、位置、级别。
可选的,该方法还包括将数据预测结果发送至通信终端。
本发明还提供一种地磁检测设备,该设备包括地磁传感器、时间校准单元、网络连接单元、波形生成单元、信息输入单元,所述地磁传感器用于检测地磁信号,该时间校准单元根据网络连接单元接收的时钟信号进行时间校准,所述波形生成单元用于采集的地磁信号以及时间信息生成地磁信号波形图,所述信息输入单元,用于接收用户输入信息,用户输入信息一般是用户基于所述波形图输入的;所述网络连接单元用于使所述地磁传感设备接入通信网络,用于将地磁信号以及用户输入信息发送至服务器。该设备有多个,分别分散在地震带的各个不同地理位置。本发明提出的地磁检测设备不仅能够采集当地的地磁信号,而且能够将地磁信号处理成波形图,在设备本地就可观察地磁信号的变化,从而为服务器端的联合判断提供补充,因为在本地会有发生误碰的状况、本地可能还有其他的一些特殊现象,这些相关信息为服务器端的联合判断提供信息基础。
本申请实施例中提供的技术方案,至少具有如下技术效果或优点:本发明利用一个地震带区域内的多个地磁传感设备采集的地磁信号联合进行地震预测,准确度高,能够精确确定将发生地震的各个位置、区域。同时地磁信号的采集又非常便捷,花费很低。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术 手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了根据本发明提出的基于网络进行联测的原理图;
图2示出了根据本发明提出的基于网络进行联测地震预测系统的结构图;
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员
如图1所示,本发明提出一种构思,将多个便捷小巧的地磁传感设备1,2,……,n,设置在断裂带区域的多个不同位置上,并通过网络连接模块将所有地磁传感备与服务器0联网,通过在服务器执行软件程序将所有地磁传感设备时间同步并从其获取地磁传感信号,进而根据至少一个断裂带区域上的地磁传感信号进行地震预测。
本发明提供一种基于网络的地震预测系统,在服务器0侧实现,如图2所示,该系统通过网络与多个地磁传感设备通信连接,其特征在于,该系统包括:
时间校准模块01,用于根据地震预测系统的时钟时间控制每个地磁传感设备的时钟时间,使得各时钟时间一致;
多线传输模块02,用于接收来自各个地磁传感设备的数据,所述数据包 括地磁传感设备的识别码、采集的地磁信号;
波形生成模块03,用于根据所述识别码、地磁信号,生成可视的地磁波形图。
为了采集地磁信号,多个地磁传感设备均匀放置在地震带活跃区数百公里范围内有联网条件的城市或乡村,地磁传感设备的数量越多,采集的地磁信号越多,越利于排除干扰、精准地预测地震。
所有这些地磁传感设备包括网络连接模块,所述地磁传感设备通过所述网络连接模块接入互联网,在所述网络连接模块配置到地震预测系统(通过服务器实现)的IP地址,以使网络为其分配到地震预测系统的通信路径。
作为一种优选实施方式,所有这些地磁传感设备设置有wifi模块,将这些地磁传感设备放置在可以上网的环境中,将此网络环境的用户名、密码设置在所述wifi模块配置页面中,从而让这些地磁传感设备连上外网。
在与所述地磁传感设备的连接中,所述地震预测系统在服务器端实现,在wifi模块配置页面设定指定服务器的IP地址,以便将地磁传感器采集的实时地磁数据传输到指定服务器上。
该地震预测系统包括存储器,存储器预先存储地磁传感设备编号(相当于识别标识)与其所处地理位置、地理断裂带区域的映射关系。
由于需要联合多个地磁传感设备传送来的地磁数据综合来预测地震,尤其是要考虑发生地磁异常的地磁传感设备之间的时间前后关系,时间差等因素,因此特别需要每个地磁传感设备之间的时钟时间一致,因而地震预测系统包括有时间校准模块,所述时间校准模块通过软件方式实现。时间校准模块周期性地控制向各地磁传感设备发送时间校准信息,所述时间校准信息包含有服务器的时钟信息,各地磁传感设备根据所接收的服务器的时钟信息对其时间进行同步处理,从而使得其时钟时间与服务器的时钟时间一致,保证所有实时联网地磁传感器设备的时间保持一致,不至于出现偏差。作为一种优选实施方式,时间校准模块周期性地向各地磁传感设备发送固定数据包,数据包的包头信息中 包含有服务器的时钟信息,地磁传感设备包括微处理器12,其仅仅解析数据包的包头信息获取时钟信息,并利用该时钟信息调整地磁传感设备的时间信息。
地磁传感设备具有传输设置单元,通过该传输设置单元可设置传输数据的间隔时间、传输时间点。例如,每隔1小时或半小时传输一次数据到地震预测系统(服务器)。单片机程序实现,错时间传输,避免拥堵。
地磁传感设备与服务器之间传输的地磁数据的数据文件格式中可包括采集时间与对应的地磁传感器设备编号,例如:0702_001,表示7月2日编号为1的地磁传感器设备传输的数据。
数据传输方式分为集中式、分布式2种。集中式是指多台地磁传感器设备的数据都通过国际互联网传输到同一台服务器。分布式是指单台地磁传感器设备的数据可以传输到不同的服务器,在服务器通过打开波形处理模块进行波形图分析。在集中方式传输时,执行下述数据通信流程:
服务器端周期性性地自动启动或者人工启动“设置时间”指令;
服务器向各地磁传感设备发送数据包,在http传输协议下,数据包包头中即包含服务器的时钟信息;
各地磁传感设备自动解析该数据包获取时钟信息;
根据所获取的时钟信息调整时间。
如果是多台服务器,服务器之间可启动上述通信过程,让这些多台服务器的系统时间保持一致。
所述多线传输模块专门用于同时并行接收不同地磁传感器传来的实时地磁数据,该模块通过软件实现。作为一种优选实施方式,所述时间校准模块、多线传输模块可通过一个软件实现。多线传输模块将这些数据存放在服务器的预定文件夹位置,在所述时间校准模块、多线传输模块通过一个软件实现时,为了便于软件对各地磁传感设备进行时间同步、以及控制同时结构多个设备的数据,该软件与地磁传感器实时数据存储在相同的文件夹位置。
波形生成模块03,以接收到的不同编号地磁传感器设备传来的地磁实时数据为输入,以时间信息为步调基础,将地磁数据转化为波形图,所述波形图的横轴表示时间,纵轴表示幅度值(对应地磁信号的强度),并根据用户操作控制其在显示单元05进行显示,便于人工观察。该地震预测系统还包括数据处理模块04,该数据处理模块04对地磁数据进行解析,检测地磁数据幅值是否出现突变,如果出现突变,并判断在较短的预定时间段范围内是否多个(数量可以自定义为2、3、4)地磁传感设备发送来的地磁数据均出现波形突变,通过该技术手段可以排除设备被触碰到造成误报的可能。如果数据处理模块检测到只有某台地磁传感设备发送来的地磁数据出现大幅度变化,即确定这台设备出现误报。在确定不是误报的情况下,即多个地磁数据均出现突变,则记录突变的幅值以及对应的时间点、地磁传感设备编号。
所述数据处理模块04将检测到的各不同地磁传感设备的地磁数据幅值出现突变的时间点、幅值进行比较,确定幅值突变发生时间最早、幅值变化最大的地磁传感设备,并根据地磁传感器编号自动获取地磁传感设备所处的地理断裂带区域、地理位置信息。将该地磁传感设备对应的地理区域或者地理位置确定为疑似震中区,地震通常在之后1-7天内发生,如果检测到多个地磁传感设备在不同时间出现异常信号,如果时间接近,则确定是同个地震;如果时间相差较远,即时间差大于预定时间阈值,则确定是不同的地震。
对于波形突变发生时间较早、波形突变幅度较大的地磁传感器设备所在区域,视为疑似震中区,地震通常在1-7天内发生,地震烈度相对较大。其他地区地震烈度相对震中区较小。其他波形突变幅度较小的地磁传感器设备所在区域,其地震烈度相对震中区较小。
在本发明中,根据距离较近的同一区域(同一地震带区域)安置的地磁传感设备采集的地磁信号联合判断。这是基于地震发作区域附近的地磁传感设备都会有波形图的突变,距离地震发作点越近的地方波形突变幅度越大。
服务器端收到各个地磁传感设备传来的数据,可通过波形处理模块直接将 这些数据解读为波形图并进行显示。如果某台设备的波形图出现大幅度变化,就是这台设备所在地区出现异常。地震发作区域,可以根据距离较近的同一区域(同一地震带区域)的设备采集的地磁信号联合判断。也就是说地震发作区域附近的这些设备都会有波形图的突变,距离发作点越近的地方波形突变幅度越大。如果是多个设备不同时间出现异常信号,时间相差较远的就是多个地震,时间接近的就是同个地震。
作为一种优选实施方式,该地震预测系统还包括地磁传感设备管理模块,所述地磁设备管理模块存储每个地磁传感设备识别码与其所处区域的区域信息的对应关系以及执行对要接入的地磁传感设备进行认证的过程,所述区域信息与地震带相关;所述波形生成模块根据所述区域信息生成可视的地磁波形图,地磁波形图供人工观察以及核对实用。
作为另一种实施方式,该系统还包括:波形解析模块、数据预测模块,其中所述波形解析模块用于解析波形数据,并判断在预定时间范围内是否同区域内的至少两个地磁传感设备对应的波形出现异常,如果是,则触发数据预测模块,否则不触发,所述数据预测模块根据异常波形之间的幅度和时间关系,确定地震发生时间、位置、级别。
该实施方式是基于波形数据进行异常判断与预测,便于取得更准确的、直观的预测结果,预测结果可直接标识在波形图上。
本发明中采用的地磁传感设备专门用来采集地磁信号,并将所采集的地磁信号发送至地震预测系统,该地磁传感设备体型小,结构简单,方便安置。地震断裂带区域分布的实时联网联测的地磁传感设备数量越多,越有助于判断震中区及即将发作的地震级别。
作为另一种具体实施方式,地磁传感设备包括地磁传感器、微处理器、通讯单元以及人机交互单元,所述微处理器对地磁传感器采集的地磁强度信号添加时间标签,形成时间-幅值数据。所述通讯单元可以是有线或者无线网络连接模块,用于将地磁传感设备接入公共网络。作为一种优选实施方式,所述通 讯单元为一wifi模块,只要将这些地磁传感设备放置在可以上网的环境中,将此网络环境的用户名、密码设置在所述wifi模块配置页面中,就可以这些地磁传感设备连上外网,与地震预测系统建立通信连接。
地磁传感设备可以设置在家庭内,设备上的wifi模块配置好以后,连接上家里的无线路由器,就可以通过外网传输数据到指定IP地址的服务器上。
为了保证地磁传感数据获取的安全性,该系统还包括:地磁设备管理模块,基于地磁设备接入请求,对地磁传感设备进行身份认证;所述时间校准模块在身份认证后控制地磁传感设备的时钟时间,使其时钟时间与地震预测系统的时钟时间一致。
为了便于自动地将预测结果发送给相关人员,该系统还包括通信模块06,用于将数据预测结果发送至通信终端。
在基于上述系统架构的基础上,本发明还提供一种基于网络多个地磁传感设备联测的地震预测方法,该方法包括:
根据地震预测系统的时钟时间控制每个地磁传感设备的时钟时间,使得各时钟时间一致;
接收来自各个地磁传感设备的数据,所述数据包括地磁传感设备的识别码、对应的地磁信号;
根据所述识别码、地磁信号,生成可视的地磁波形图。
为了保证地磁数据采集上的安全性,该方法还包括:基于地磁设备接入请求,对地磁传感设备进行身份认证;
在身份认证后控制地磁传感设备的时钟时间,使其时钟时间与地震预测系统的时钟时间一致。
在进行身份认证、时间校准后,地震预测系统接收来自各个地磁传感设备采集的数据,数据中包含各个地磁传感设备的编号识别信息。
该方法中,预先存储每个地磁传感设备识别码与其所处区域的区域信息的对应关系,所述区域信息与地震断裂带相关。
可选的,该方法还包括:解析波形数据,并判断在预定时间范围内是否同区域内的至少两个地磁传感设备对应的波形出现异常,如果是,则触发数据预测步骤,否则不触发,所述数据预测步骤中,根据异常波形之间的幅度和时间关系,确定地震发生时间、位置、级别。其中在根据地磁信号突变的幅度大小确定地震发生的级别,根据产生异常波形的电磁传感设备的编号获取其对应安置的区域信息、地理位置信息,从而进行地震预报。为了将预报内容及时为相关人员所知,该方法还包括将数据预测结果发送至通信终端的步骤。
本发明还提供一种地磁检测设备,该设备包括地磁传感器、时间校准单元、网络连接单元、波形生成单元、信息输入单元,所述地磁传感器用于检测地磁信号,该时间校准单元根据网络连接单元接收的时钟信号进行时间校准,所述波形生成单元用于采集的地磁信号以及时间信息生成地磁信号波形图,所述信息输入单元,用于接收用户输入信息,用户输入信息一般是用户基于所述波形图输入的;所述网络连接单元用于使所述地磁传感设备接入通信网络,用于将地磁信号以及用户输入信息发送至服务器。该设备有多个,分别分散在地震带的各个不同地理位置。本发明提出的地磁检测设备不仅能够采集当地的地磁信号,而且能够将地磁信号处理成波形图,在设备本地就可观察地磁信号的变化,从而为服务器端的联合判断提供补充,因为在本地会有发生误碰的状况、本地可能还有其他的一些特殊现象,这些相关信息为服务器端的联合判断提供信息基础。
本申请实施例中提供的技术方案,至少具有如下技术效果或优点:本发明利用一个地震带区域内的多个地磁传感设备采集的地磁信号联合进行地震预测,准确度高,能够精确确定将发生地震的各个位置、区域。同时地磁信号的采集又非常便捷,花费很低。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本公开并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。

Claims (10)

  1. 一种基于网络进行联测的地震预测系统,该系统通过网络与多个地磁传感设备通信连接,其特征在于,该系统包括:
    时间校准模块,用于根据地震预测系统的时钟时间控制每个地磁传感设备的时钟时间,使得各时钟时间一致;
    多线传输模块,用于接收来自各个地磁传感设备的数据,所述数据包括地磁传感设备的识别码、采集的地磁信号;
    波形生成模块,用于根据所述识别码、地磁信号,生成可视的地磁波形图。
  2. 根据权利要求1所述的地震预测系统,其特征还在于,该系统还包括:地磁设备管理模块,基于地磁设备接入请求,对地磁传感设备进行身份认证;所述时间校准模块在身份认证后控制地磁传感设备的时钟时间,使其时钟时间与地震预测系统的时钟时间一致。
  3. 根据权利要求2所述的地震预测系统,其特征还在于,所述地磁设备管理模块存储每个地磁传感设备识别码与其所处区域的区域信息的对应关系;所述波形生成模块根据所述区域信息生成可视的地磁波形图,所述区域信息与地震带相关。
  4. 根据权利要求1所述的地震预测系统,其特征还在于,该系统还包括:波形解析模块、数据预测模块,其中所述波形解析模块用于解析波形数据,并判断在预定时间范围内是否同区域内的至少两个地磁传感设备对应的波形出现异常,如果是,则触发数据预测模块,否则不触发,所述数据预测模块根据异常波形之间的幅度和时间关系,确定地震发生时间、位置、级别。
  5. 根据权利要求1-4任一项所述的地震预测系统,其特征还在于,该系统还包括第二传输模块,用于将数据预测结果发送至通信终端。
  6. 一种基于网络多个地磁传感设备联测的地震预测方法,该方法包括:根据地震预测系统的时钟时间控制每个地磁传感设备的时钟时间,使得各时钟时间一致;
    接收来自各个地磁传感设备的数据,所述数据包括地磁传感设备的识别码、对应的地磁信号;
    根据所述识别码、地磁信号,生成可视的地磁波形图。
  7. 根据权利要求6所述的地震预测方法,其特征还在于,该方法还包括:基于地磁设备接入请求,对地磁传感设备进行身份认证;
    在身份认证后控制地磁传感设备的时钟时间,使其时钟时间与地震预测系统的时钟时间一致。
  8. 根据权利要求7所述的地震预测方法,其特征还在于,该方法还包括:存储每个地磁传感设备识别码与其所处区域的区域信息的对应关系;
    根据所述区域信息生成可视的地磁波形图,所述区域信息与地震带相关。
  9. 根据权利要求6所述的地震预测方法,其特征还在于,该方法还包括:解析波形数据,并判断在预定时间范围内是否同区域内的至少两个地磁传感设备对应的波形出现异常,如果是,则触发数据预测步骤,否则不触发,所述数据预测步骤根据异常波形之间的幅度和时间关系,确定地震发生时间、位置、级别。
  10. 根据权利要求6-9任一项所述的地震预测方法,其特征还在于,该方法还包括将数据预测结果发送至通信终端。
PCT/CN2019/120909 2019-11-26 2019-11-26 一种基于网络进行联测的地震预测系统与方法 WO2021102675A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/120909 WO2021102675A1 (zh) 2019-11-26 2019-11-26 一种基于网络进行联测的地震预测系统与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/120909 WO2021102675A1 (zh) 2019-11-26 2019-11-26 一种基于网络进行联测的地震预测系统与方法

Publications (1)

Publication Number Publication Date
WO2021102675A1 true WO2021102675A1 (zh) 2021-06-03

Family

ID=76128991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120909 WO2021102675A1 (zh) 2019-11-26 2019-11-26 一种基于网络进行联测的地震预测系统与方法

Country Status (1)

Country Link
WO (1) WO2021102675A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594911A (zh) * 2012-03-15 2012-07-18 招商局重庆交通科研设计院有限公司 基于无线传感器的地质灾害物联网监测系统及方法
CN104601716A (zh) * 2015-01-31 2015-05-06 哈尔滨理工大学 基于手机的地震云监测及预警网络系统
CN104865593A (zh) * 2015-04-20 2015-08-26 昆明理工大学 一种基于地磁偏转监测的本地地震预测系统
CN104914459A (zh) * 2015-05-18 2015-09-16 谢镕键 地磁传感器实时联网地震短临监测系统及预报方法
CN106199683A (zh) * 2016-07-04 2016-12-07 曾雄飞 一种基于共振包波谱监测数据的地震预测方法
CN109061719A (zh) * 2018-07-05 2018-12-21 张崇耀 一种预测地震的方法
US20190340912A1 (en) * 2016-10-19 2019-11-07 Weir-Jones Engineering Consultants Ltd. Systems and methods for early warning of seismic events

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594911A (zh) * 2012-03-15 2012-07-18 招商局重庆交通科研设计院有限公司 基于无线传感器的地质灾害物联网监测系统及方法
CN104601716A (zh) * 2015-01-31 2015-05-06 哈尔滨理工大学 基于手机的地震云监测及预警网络系统
CN104865593A (zh) * 2015-04-20 2015-08-26 昆明理工大学 一种基于地磁偏转监测的本地地震预测系统
CN104914459A (zh) * 2015-05-18 2015-09-16 谢镕键 地磁传感器实时联网地震短临监测系统及预报方法
CN106199683A (zh) * 2016-07-04 2016-12-07 曾雄飞 一种基于共振包波谱监测数据的地震预测方法
US20190340912A1 (en) * 2016-10-19 2019-11-07 Weir-Jones Engineering Consultants Ltd. Systems and methods for early warning of seismic events
CN109061719A (zh) * 2018-07-05 2018-12-21 张崇耀 一种预测地震的方法

Similar Documents

Publication Publication Date Title
EP2917653B1 (en) A device and method for dynamically measuring an enviromental quality factor.
CN106053103B (zh) 节点动态数据采集与传播
EP2973108B1 (en) Automated combined display of measurement data
KR101874286B1 (ko) 전력설비 모니터링 및 진단 시스템
KR101218175B1 (ko) 지진 감시 시스템 및 이를 이용한 이벤트 유효성 검증 방법
US7450006B1 (en) Distributed perimeter security threat confirmation
US20190195845A1 (en) Atmospheric environment monitoring apparatus detecting failure of atmospheric environment sensor, and method for detecting failure of atmospheric environment sensor
KR102290850B1 (ko) 다중 센서 데이터 수집 전파 장치 및 안전 모니터링 시스템
US10097429B2 (en) System and method for applying aggregated cable test result data
US11106558B2 (en) Sensor opening test system, sensor opening test management terminal, sensor, sensor opening test method, and computer program
US20220034847A1 (en) Utility pole monitoring system and device
US20140058615A1 (en) Fleet anomaly detection system and method
WO2021102675A1 (zh) 一种基于网络进行联测的地震预测系统与方法
CN104618181A (zh) 一种基于nmap对电力系统内网操作系统进行检测的方法
JP4257305B2 (ja) 遠隔振動監視装置
KR102161751B1 (ko) 교량 조인트부 원격 위험 감지 시스템
WO2007117579A1 (en) Distributed perimeter security threat evaluation
KR20130059208A (ko) 냄새 감지 시스템 및 그 방법
CN106383030B (zh) 一种故障检测的方法及相关装置
US20120290247A1 (en) System and Method of Sensor Installation Validation
CN107314791A (zh) 一种户外水质监测系统
US20190113492A1 (en) Integration of calibration certificate in gas detection devices
JP2010276383A (ja) 緊急地震速報受信装置
KR20170034673A (ko) 센서 데이터 기록·감시·경보 시스템
JP2019117060A (ja) 監視装置、監視方法、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954545

Country of ref document: EP

Kind code of ref document: A1