WO2021102593A1 - System and method for determining and quantifying the concentration of an analyte, which comprises an optically active diamond-based sensor, a chamber accommodating the sensor, and means for inserting a sample; and use of said sensor - Google Patents

System and method for determining and quantifying the concentration of an analyte, which comprises an optically active diamond-based sensor, a chamber accommodating the sensor, and means for inserting a sample; and use of said sensor Download PDF

Info

Publication number
WO2021102593A1
WO2021102593A1 PCT/CL2019/050124 CL2019050124W WO2021102593A1 WO 2021102593 A1 WO2021102593 A1 WO 2021102593A1 CL 2019050124 W CL2019050124 W CL 2019050124W WO 2021102593 A1 WO2021102593 A1 WO 2021102593A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
sample
diamond
analyte
concentration
Prior art date
Application number
PCT/CL2019/050124
Other languages
Spanish (es)
French (fr)
Inventor
Enrique Javier MUÑOZ TAVERA
Ivan Alonso GONZALEZ PAVEZ
Jerónimo MAZE RIOS
Hossein TAVAKOLI DINANI
Vicente Andres SANTIBAÑEZ CISTERNAS
Raul Manuel GONZÁLEZ BROUWER
Original Assignee
Pontificia Universidad Catolica De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pontificia Universidad Catolica De Chile filed Critical Pontificia Universidad Catolica De Chile
Priority to PCT/CL2019/050124 priority Critical patent/WO2021102593A1/en
Publication of WO2021102593A1 publication Critical patent/WO2021102593A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/60Arrangements or instruments for measuring magnetic variables involving magnetic resonance using electron paramagnetic resonance

Definitions

  • the present invention relates to a system and method for determining and quantifying an analyte, wherein the measurement system comprises a diamond-based sensor having optically active color centers. Likewise, it refers to the use of said diamond-based sensor for the detection and quantification of an analyte that may correspond to an element, ion and / or chemical compound.
  • Highly sensitive chemical sensors that are capable of operating in extreme conditions and that also have the potential to be miniaturized are in high demand in the chemical, mining and gas extraction industries, where the high sensitivity of the sensors is crucial to detect small amounts of chemical elements that could alter the course of industrial processes or toxins that can be harmful to the environment or health.
  • the ability to miniaturize a sensor and work in conditions of high pressure, temperature or corrosive environments is highly desirable to access remote locations, mainly in industries that deal with the extraction of minerals, oil and gas, among others.
  • the present invention aims to solve this need through the development of a detection method that is based on recent scientific discoveries that show the ability of diamond to detect fluctuations in the electric field.
  • This method is highly sensitive since it is based on the monitoring of coherent properties of molecules inside the diamond that are in turn affected by fluctuations in the electric field produced by chemical reactions.
  • the sensor presents noble characteristics, such as high resistance to high pressures, high temperatures and chemical resistance to corrosive environments, which makes it ideal for working in a wide range of environmental conditions.
  • Nanodiamonds like diamonds, are made up of carbon atoms located in a crystal lattice. Nanodiamonds sometimes have impurities on their surface. This modification in the surface structure produces changes in the optical properties (absorption and emission of radiation).
  • Nanodiamonds with color centers or optically active molecules can detect the presence of reactants in a chemical reaction by measuring the electronic noise they generate.
  • the color centers are associated with an electronic spin whose dynamics at a very low magnetic field is affected exclusively by fluctuations in the electric field and which can be optically observed through the fluorescence associated with these color centers.
  • Nitrogen-Vacancy centers are point defects in diamonds composed of an impurity atom (nitrogen) and a vacancy in the carbon crystal lattice that is characteristic of diamonds. These defects are fluorescent, that is, they emit light at a very particular wavelength.
  • the inventors have generated stable NV centers at shallow depth (1-10 nm) below the diamond surface by the nitrogen ion beam implantation technique. These centers are sensitive to fields external to the diamond, and in turn, they are stable enough to be used as sensors.
  • Patent application WO2018155504 discloses a diamond magnetic sensor comprising a diamond having at least one nitrogen vacancy center (NV) close to the diamond surface, a microwave generator that irradiates the diamond with microwaves, a light generator of excitation that irradiates the NV center in the diamond with excitation light, and a fluorescence detector that receives fluorescent light generated by the NV center in the diamond.
  • the diamond magnetic sensor further comprises a pattern measurement device, which measures the patterns of time variation in the intensity of the magnetic field from changes in fluorescence intensity detected by the fluorescence detector.
  • nanoscale diamond color centers containing nitrogen-vacancy (NV) centers has also been established.
  • the present invention relates to a system and method for determining and quantifying an analyte (chemical compound, element or ion).
  • This system comprises a cell containing a diamond-based sensor that has optically active color centers close to the surface at a distance between 2-8 nanometers.
  • Figure 1 Confocal image of one of the NV implantation areas in the diamond.
  • Figure 2 Photographs of the camera that houses the diamond sensor.
  • Figure 3 Scheme of the system according to the present invention.
  • Figure 4 Scheme of the steps of the measurement method according to the present invention.
  • Figure 5 Illustration of the Flow Chamber housing the diamond-based sensor and sensor image.
  • Figure 6 Photograph of one embodiment of the system according to the present invention.
  • Figure 7 Photograph of an embodiment of the system according to the present invention.
  • Figure 8 Fluorescence signals associated with different magnetic resonances in the presence of magnetic fields.
  • Figure 9 Graph of the calibration curve obtained for the determination of copper.
  • Figure 10 Graph of the sample reading on the calibration curve.
  • Diamond with color centers close to the surface is prepared using the nitrogen ion beam implantation technique.
  • This implantation consists of accelerating nitrogen ions (isotope 15) with energies between 0.7 keV and 10 keV and doses between 10 and 10 ions per square centimeter, the latter allowing to control the number of color centers generated.
  • the NV centers generated are stable and lie at a depth between 1 and 10 nm relative to the diamond surface.
  • Figure 1 shows the image taken by confocal microscopy of one of the implantation areas.
  • the energies used between 0.7 keV and 10 keV produced color centers between 10 nm and 1 nm in depth with respect to the diamond surface.
  • the dose number of ions per square centimeter implanted was also varied to control the number of color centers.
  • the optical properties of the sensor are obtained by Ramsey resonance spectroscopy, which is similar to that used in clinical resonators, but in this case it is applied on the electronic spins of the diamond and not on the nuclear spins.
  • the experimental setup has a microwave generator with frequencies around 3 gigahertz and with a bandwidth of about 500 megahertz, to achieve resonance between the electronic spins and the microwave radiation.
  • the sample composed of electrical charges with Random movements, causes an electrical noise that is proportional to the concentration of charges in the solution that is detectable by the color centers.
  • the sensitivity of the sensor is controlled by a coil that generates an external magnetic field.
  • the sensor reaches its maximum sensitivity when the coil and power supply system cancels the magnetic field produced by the earth. Since this field (magnitude and direction) depends on the place where the measurement is taken. Calibration must be done during sensor power-up.
  • a microfluidic system was designed and developed that allows the entry of a solution to be measured and the application of microwave radiation to carry out the measurement protocol. In turn, this microfluidic system aims to keep the flow constant.
  • This system uses 50 mL motorized syringes. The flow can be varied between 0 and 50 mL / s.
  • the system consists of two inlets for the solution and one outlet that allows connection to the diamond-based sensor.
  • the chamber has a space that allows solutions to enter and mix, which in turn allows an electrode to be placed for pH detection for sensor calibration purposes.
  • Pieces of material resistant enough to prevent corrosion caused by the solutions that are added and the temperature differences that can be reached were designed and manufactured (see Figure 2).
  • the material used corresponds to a low fluorescence plastic material (Permanox®).
  • control software was developed in order to measure and manipulate different variables such as pH, internal diameter of an injection system based on motorized syringes (int. Diameter), added volume (volume), addition speed ( rate), among others.
  • Analyte measurement method The sample to be analyzed that comprises the analyte to be determined must be previously diluted depending on its initial concentration. Then a syringe is entered which is activated by the flow controller that allows the sample to circulate through the Flow Chamber where the diamond is found, as shown in Figure 3. The sample, when interacting with the diamond, changes its properties. optics that are measured by laser excitation and the recording of luminosity by means of a Fluorescence Detector. These optical properties are compared to a calibration curve that has been previously obtained. This comparison allows to know the concentration of the element to be measured in the sample.
  • the measurement of the analyte (chemical compound, element or ion) present in a sample is carried out through the following steps:
  • the diamond-based chemical reaction sensor consists of the reading of electronic noise that is associated with the presence of electrical charges present in a solution. To use the sensor, it must be calibrated for each analyte to be studied.
  • This first stage consists of determining the magnetic field associated with the longest coherence time of the optically active diamond.
  • the longest coherence time occurs when the applied magnetic field cancels the earth's magnetic field present in the place where the measurement is made, because the optically active diamond has an anisotropic response to the magnetic field. The value of this magnetic field must be obtained each time the Flow Chamber (and therefore the diamond) is used or moved.
  • This stage consists of calibrating the sensor with respect to a specific sample. For this, three measurements of the coherence time and / or Rabi frequency are taken: the first measurement is carried out in the presence of a solution at neutral pH (deionized water); the second and third measurements of the coherence time and / or frequency of Rabi are carried out with known standard samples with two different concentrations to associate each C1 and C2 concentration to the TI and T2 coherence times. In this way, a linear calibration curve is obtained that will be used in the next stage.
  • This stage consists of measuring the coherence time and / or frequency of Rab ⁇ with a solution containing the analyte to be quantified. This time and / or frequency is interpolated to the calibration curve and then the value of the analyte concentration in the solution is determined.
  • the system by which the above-described method can be carried out comprises a cell containing the described diamond-based sensor, in addition to a microwave generator to achieve resonance between the electronic spins and the microwave radiation.
  • the sample composed of charged species with random Brownian motion, causes a magnetic noise that is proportional to the concentration of these charges in the solution.
  • Figure 5 shows the Flow Chamber where the diamond that has been implanted with nitrogen atoms to make it optically active is housed.
  • the image shows a zone of implantation of 5 keV of energy that has been obtained by means of a confocal microscope.
  • the implantation size is only 25 Dm in diameter.
  • Figure 6 shows the objective lens and the flow chamber connected to a syringe containing the fluid to be analyzed.
  • Figure 7 shows the most relevant parts of the system according to the present invention: the excitation with a green laser of 532 nm and 1 Watt of power and the fluorescence detector capable of detecting individual photons. The counts of this detector reach several million photons detected per second.
  • the present invention is directed to a system for the determination and quantification of the concentration of an analyte in a sample that contains it, comprising:
  • optically active color centers correspond to nitrogen ion implantations.
  • the color centers are produced by the nitrogen ion beam implantation technique which consists of accelerating nitrogen ions with energies between 0.7 and 10 KeV.
  • the implants have a depth between 10 nm and 1 nm.
  • the implantations are carried out at doses between 10 9 and 10 12 ions / cm 2 .
  • the means that allow the entry and exit of the sample correspond to a microfluidic circuit that allows working with a minimum amount of sample.
  • the chamber has a space that allows the solutions to enter and mix.
  • the chamber allows an electrode to be placed for pH detection for sensor calibration purposes. Even more preferably, the chamber further allows to place an electrode for pH detection for sensor calibration purposes.
  • the chamber and means are made of a corrosion resistant material.
  • the present invention is also directed to a method for the determination and quantification of the concentration of an analyte present in a sample that contains it, which is carried out in the system described above, which comprises the following steps:
  • the first measurement is carried out in the presence of a solution at neutral pH.
  • the neutral pH solution is water.
  • stage II in stage II at least two remaining measurements are carried out with calibration standards of known concentration of the analyte to be determined in stage III, at which the coherence time and / or frequency of Rab ⁇ are measured. and the respective concentration is associated to them to obtain a calibration curve.
  • stage III the coherence time and / or Rab ⁇ frequency of the sample is measured, which is interpolated in the calibration curve and the sample concentration is obtained.
  • analyte corresponds to an element, ion and / or chemical compound.
  • the present invention refers to the use of the sensor described above for the determination and quantification of the concentration of an analyte by means of the fluorescence of a diamond with optically active color centers.
  • the analyte to be measured is selected from metals, pesticides, pH, fuels, pollutants, among others.
  • an optically active zone was selected that has been produced with an implantation energy of 5 keV and a dose of 10 14 ions per square centimeter. This generated in the confocal setup illustrated in Figure 5 a fluorescence intensity of approximately 4 million counts per second.
  • Ramsey spectroscopy was performed as a function of the applied magnetic field with a current generator that takes the values -10 and 0 mA.
  • a Rabi spectroscopy was performed as a function of the temporal width of the microwave disturbance.
  • Figure 8 shows the fluorescence signals associated with 7 magnetic resonances in the presence of magnetic fields generated by a coil system. Each curve is associated with the current of a current source used to power the coil system. As can be seen, the maximum sensitivity was obtained for -8 mA, which is where the maximum coherence time is observed. Therefore, to obtain the maximum sensitivity of the sensor, it is necessary to operate at this current in the power source.
  • a calibration curve was generated that measures the optical properties of the sensor for two known concentrations of copper. Specifically, the optical properties of the sensor are obtained by Ramsey resonance spectroscopy applied on the electronic spins of the diamond.
  • Table 1 Figure 9 shows a calibration curve obtained.
  • a control sample of copper was prepared with a concentration of 50 mg / L, which is within the prepared calibration curve, and the Rabi frequency was measured in duplicate.
  • the sensor gave a value of 13.81 MHz, which when interpolated in the calibration curve resulted in a copper concentration value of 48.96 mg / L, so the error with respect to the theoretical value was 2.1 % ( Figure 10).
  • the developed system and in particular the chemical sensor, allow the determination and quantification of the concentration of reactants by means of the fluorescence of a diamond.
  • the sensor allows monitoring the concentration of analytes (elements, ions or chemical compounds) by measuring the fluctuations in the electric field that these generate.
  • the proposed system allows its use in a multiplicity of industries.
  • the sensor in chemical measurements under extreme conditions, can be used in optimizing the extraction of fuels such as gas and oil.
  • fuels such as gas and oil.
  • environmental monitoring it will be useful in detecting heavy metals such as arsenic, lead and cadmium in lakes, seas and rivers and where conditions of high temperatures and pressures are present.
  • the developed system allows to generate measurements with greater accuracy and precision in the study of chemical reactions on a nano-metric scale in different environments such as: surface reactions, industrial catalysis, biocatalysis (food), pharmaceuticals and analytical chemistry.
  • the system and method of the present invention will make it possible to positively impact the increase in copper grade in concentrates and the recovery of elements of interest such as valuable metals (Cu, Mo, Re, U, Ge) , and in the control of impurities.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present invention relates to a system for determining and quantifying the concentration of an analyte in a sample, which comprises: a diamond-based sensor containing optically active colour centres close to the surface; a chamber or cell accommodating the diamond; and means for inserting the sample into the system. The invention also relates to a method for measuring an analyte in a sample containing same, which is carried out in the developed system; and to the use of the sensor.

Description

SISTEMA Y MÉTODO PARA LA DETERMINACIÓN Y CUANTIFICACIÓN DE LA CONCENTRACIÓN DE UN ANALITO QUE COMPRENDE UN SENSOR BASADO EN DIAMANTE ÓPTICAMENTE ACTIVO, UNA CÁMARA QUE ALOJA A DICHO SENSOR Y MEDIOS PARA HACER INGRESAR LA MUESTRA; Y USO DE DICHO SENSOR SYSTEM AND METHOD FOR THE DETERMINATION AND QUANTIFICATION OF THE CONCENTRATION OF AN ANALYTE THAT INCLUDES AN OPTICALLY ACTIVE DIAMOND-BASED SENSOR, A CAMERA HOUSING SAID SENSOR AND MEANS TO ENTER THE SAMPLE; AND USE OF SUCH SENSOR
MEMORIA DESCRIPTIVA CAMPO DE LA INVENCIÓN DESCRIPTIVE MEMORY FIELD OF THE INVENTION
La presente invención se refiere a un sistema y método de determinación y cuantificación de un analito, en donde el sistema de medición comprende un sensor basado en diamante que tiene centros de color ópticamente activos. Asimismo, se refiere al uso de dicho sensor basado en diamante para la detección y cuantificación de un analito que puede corresponder a un elemento, ion y/o compuesto químico. The present invention relates to a system and method for determining and quantifying an analyte, wherein the measurement system comprises a diamond-based sensor having optically active color centers. Likewise, it refers to the use of said diamond-based sensor for the detection and quantification of an analyte that may correspond to an element, ion and / or chemical compound.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Los sensores químicos de alta sensibilidad que sean capaces de operar en condiciones extremas y que además tengan el potencial de ser miniaturizados son altamente demandados en la industria química, minera y de extracción de gases, en donde la alta sensibilidad de los sensores es crucial para detectar pequeñas cantidades de elementos químicos que podrían alterar el curso de procesos industriales o toxinas que pueden ser perjudiciales para el medio ambiente o la salud. La capacidad de miniaturizar un sensor y trabajar en condiciones de alta presión, temperatura o ambientes corrosivos es muy deseable para acceder a lugares remotos, principalmente en industrias que se ocupan de la extracción de minerales, petróleo y gas, entre otros. Highly sensitive chemical sensors that are capable of operating in extreme conditions and that also have the potential to be miniaturized are in high demand in the chemical, mining and gas extraction industries, where the high sensitivity of the sensors is crucial to detect small amounts of chemical elements that could alter the course of industrial processes or toxins that can be harmful to the environment or health. The ability to miniaturize a sensor and work in conditions of high pressure, temperature or corrosive environments is highly desirable to access remote locations, mainly in industries that deal with the extraction of minerals, oil and gas, among others.
La presente invención pretende dar solución a esta necesidad por medio del desarrollo de un método de detección que se basa en recientes descubrimientos científicos que muestran la capacidad del diamante de detectar fluctuaciones de campo eléctrico. Este método es altamente sensible ya que se basa en el monitoreo de propiedades coherentes de moléculas al interior del diamante que son afectadas a su vez por las fluctuaciones de campo eléctrico producido por las reacciones químicas. Por otro lado, al estar constituido por diamante, el sensor presenta características nobles, tales como alta resistencia a presiones elevadas, a temperatura elevadas y resistencia química a ambientes corrosivos, lo cual lo hace ideal para trabajar en una amplia gama de condiciones ambientales. The present invention aims to solve this need through the development of a detection method that is based on recent scientific discoveries that show the ability of diamond to detect fluctuations in the electric field. This method is highly sensitive since it is based on the monitoring of coherent properties of molecules inside the diamond that are in turn affected by fluctuations in the electric field produced by chemical reactions. On the other hand, being made of diamond, the sensor presents noble characteristics, such as high resistance to high pressures, high temperatures and chemical resistance to corrosive environments, which makes it ideal for working in a wide range of environmental conditions.
Nanodiamantes Nanodiamonds
Los nanodiamantes, al igual que los diamantes, están compuestos por átomos de carbono ubicados en una red cristalina. En algunas ocasiones los nanodiamantes presentan impurezas en su superficie. Esta modificación en la estructura superficial produce cambios en las propiedades ópticas (absorción y emisión de la radiación). Nanodiamonds, like diamonds, are made up of carbon atoms located in a crystal lattice. Nanodiamonds sometimes have impurities on their surface. This modification in the surface structure produces changes in the optical properties (absorption and emission of radiation).
Los nanodiamantes con centros de color o moléculas ópticamente activas pueden detectar la presencia de reactantes en una reacción química mediante la medición del ruido electrónico que los mismos generan. Los centros de color tienen asociado un espín electrónico cuya dinámica a muy bajo campo magnético se ve afectada exclusivamente por fluctuaciones de campo eléctrico y que es posible observar ópticamente mediante la fluorescencia asociada a estos centros de color. Nanodiamonds with color centers or optically active molecules can detect the presence of reactants in a chemical reaction by measuring the electronic noise they generate. The color centers are associated with an electronic spin whose dynamics at a very low magnetic field is affected exclusively by fluctuations in the electric field and which can be optically observed through the fluorescence associated with these color centers.
En particular, los centros Nitrógeno- Vacancia (NV centers) son defectos puntuales en diamantes compuestos por un átomo de impureza (nitrógeno) y una vacancia en la red cristalina de carbono que es característica de los diamantes. Estos defectos son fluorescentes, es decir, emiten luz a una longitud de onda muy particular. In particular, Nitrogen-Vacancy centers (NV centers) are point defects in diamonds composed of an impurity atom (nitrogen) and a vacancy in the carbon crystal lattice that is characteristic of diamonds. These defects are fluorescent, that is, they emit light at a very particular wavelength.
Los inventores han generado centros NV estables a poca profundidad (1-10 nm) bajo la superficie del diamante mediante la técnica de implantación por haces de iones de nitrógeno. Estos centros son sensibles a campos externos al diamante, y a su vez, son lo suficientemente estables para ser usados como sensores. The inventors have generated stable NV centers at shallow depth (1-10 nm) below the diamond surface by the nitrogen ion beam implantation technique. These centers are sensitive to fields external to the diamond, and in turn, they are stable enough to be used as sensors.
DESCRIPCIÓN DEL ARTE PREVIO Existe literatura respecto a los sensores basados en diamante con centros NV, y a las posibles aplicaciones de los mismos. DESCRIPTION OF PRIOR ART There is literature regarding diamond-based sensors with NV centers, and their possible applications.
La solicitud de patente WO2018155504 divulga un sensor magnético de diamante que comprende un diamante que tiene al menos un centro de vacantes de nitrógeno (NV) próximo a la superficie del diamante, un generador de microondas que irradia el diamante con microondas, un generador de luz de excitación que irradia el centro NV en el diamante con luz de excitación, y un detector de fluorescencia que recibe luz fluorescente generada por el centro NV en el diamante. El sensor magnético de diamante comprende además un dispositivo de medición de patrones, que mide los patrones de variación del tiempo en la intensidad del campo magnético a partir de los cambios en la intensidad de la fluorescencia detectados por el detector de fluorescencia. Patent application WO2018155504 discloses a diamond magnetic sensor comprising a diamond having at least one nitrogen vacancy center (NV) close to the diamond surface, a microwave generator that irradiates the diamond with microwaves, a light generator of excitation that irradiates the NV center in the diamond with excitation light, and a fluorescence detector that receives fluorescent light generated by the NV center in the diamond. The diamond magnetic sensor further comprises a pattern measurement device, which measures the patterns of time variation in the intensity of the magnetic field from changes in fluorescence intensity detected by the fluorescence detector.
La Tesis doctoral titulada “Fluorescent nanodiamonds as a sensor and life Science probe” (Torsten Rendler, 2018, Universidad de Stuttgart) divulga el desarrollo de una nueva plataforma modular de sensores híbridos, utilizando NV para medir la concentración de productos químicos. La relaxometría TI se aplica a los complejos de detección gadolinio, Gd (III) cercanos a la NV. La ruptura de los complejos Gd (III) se activa por cambios en el pH o por la presencia de algún agente reductor. La modificación resultante en TI se utiliza como medida para determinar estas cantidades. Se indica que la señal de fluorescencia de los sensores específicos puede ser utilizada para codificar información sobre el medio ambiente local, demostrándose sensibilidad a la viscosidad, pH, temperatura, o a compuestos químicos individuales. Como estos sensores están típicamente en el orden de algunos nanómetros, es posible un monitoreo altamente localizado de una cantidad deseada. Siguiendo este enfoque, se indica que se ha desarrollado un gran número de sistemas de tamaño molecular utilizando diferentes tipos de estrategias: por ejemplo, mediante el seguimiento de los cambios en los tiempos de vida de la fluorescencia, los espectros de fotoluminiscencia (PL) o la intensidad global de las emisiones. Se indica que por lo tanto, es un gran desafío diseñar un sensor que responda selectivamente a una cantidad deseada y que, como el caso de los sensores orgánicos, no se degrade con el tiempo. The doctoral thesis entitled “Fluorescent nanodiamonds as a sensor and life Science probe” (Torsten Rendler, 2018, University of Stuttgart) discloses the development of a new modular hybrid sensor platform, using NV to measure the concentration of chemicals. TI relaxometry is applied to gadolinium, Gd (III) detection complexes close to NV. The breakdown of the Gd (III) complexes is activated by changes in pH or by the presence of some reducing agent. The resulting change in TI is used as a measure to determine these amounts. It is indicated that the fluorescence signal from specific sensors can be used to encode information about the local environment, demonstrating sensitivity to viscosity, pH, temperature, or individual chemical compounds. As these sensors are typically on the order of a few nanometers, highly localized monitoring of a desired quantity is possible. Following this approach, it is indicated that a large number of molecular size systems have been developed using different types of strategies: for example, by monitoring changes in fluorescence lifetime, photoluminescence (PL) spectra or the global intensity of emissions. It is indicated that therefore it is a great challenge to design a sensor that selectively responds to a desired quantity and that, like organic sensors, does not degrade over time.
Además de sensores orgánicos e inorgánicos, también se ha establecido la detección de los centros de color de diamantes en nanoescala que contengan centros nitrógeno-vacante (NV).In addition to organic and inorganic sensors, the detection of nanoscale diamond color centers containing nitrogen-vacancy (NV) centers has also been established.
No obstante lo anterior, en el arte previo aún no se ha descrito métodos y/o sistemas para la determinación de un analito específico, sino que principalmente se divulga que los sensores basados en diamante presentan un futuro muy promisorio en términos de sensibilidad y selectividad. Notwithstanding the foregoing, methods and / or systems for the determination of a specific analyte have not yet been described in the prior art, but it is mainly disclosed that diamond-based sensors have a very promising future in terms of sensitivity and selectivity.
Por lo tanto, existe la fuerte necesidad de desarrollar sistemas y métodos que comprendan este tipo de sensores que permitan la cuantificación de analitos que sean de importancia en aplicaciones de la industria. Therefore, there is a strong need to develop systems and methods that include this type of sensors that allow the quantification of analytes that are of importance in industrial applications.
RESUMEN DE LA INVENCIÓN SUMMARY OF THE INVENTION
La presente invención se refiere a un sistema y método de determinación y cuantificación de un analito (compuesto químico, elemento o ion). Este sistema comprende una celda que contiene a un sensor basado en diamante que tiene centros de color ópticamente activos próximos a la superficie a una distancia entre 2-8 nanómetros. The present invention relates to a system and method for determining and quantifying an analyte (chemical compound, element or ion). This system comprises a cell containing a diamond-based sensor that has optically active color centers close to the surface at a distance between 2-8 nanometers.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1: Imagen confocal de una de las zonas de implantación NV en el diamante. Figura 2: Fotografías de la cámara que aloja al sensor de diamante. Figura 3: Esquema del sistema según la presente invención. Figura 4: Esquema de las etapas del método de medición según la presente invención. Figura 5: Ilustración de la Cámara de Flujo que aloja al sensor basado en diamante e imagen del sensor. Figure 1: Confocal image of one of the NV implantation areas in the diamond. Figure 2: Photographs of the camera that houses the diamond sensor. Figure 3: Scheme of the system according to the present invention. Figure 4: Scheme of the steps of the measurement method according to the present invention. Figure 5: Illustration of the Flow Chamber housing the diamond-based sensor and sensor image.
Figura 6: Fotografía de una modalidad del sistema según la presente invención. Figura 7 : Fotografía de una modalidad del sistema según la presente invención. Figura 8: Señales de fluorescencia asociadas a diferentes resonancias magnéticas en presencia de campos magnéticos. Figure 6: Photograph of one embodiment of the system according to the present invention. Figure 7: Photograph of an embodiment of the system according to the present invention. Figure 8: Fluorescence signals associated with different magnetic resonances in the presence of magnetic fields.
Figura 9: Gráfico de la curva de calibración obtenida para la determinación de cobre. Figure 9: Graph of the calibration curve obtained for the determination of copper.
Figura 10: Gráfico de la lectura de la muestra en la curva de calibración. Figure 10: Graph of the sample reading on the calibration curve.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Sensor basado diamante con centros Nitrógeno-Vacancia DETAILED DESCRIPTION OF THE INVENTION Diamond based sensor with Nitrogen-Vacuum centers
El diamante con centros de color cercanos a la superficie se prepara mediante la técnica de implantación de haces de iones de nitrógeno. Esta implantación consiste en acelerar iones nitrógeno (isótopo 15) con energías entre 0,7 keV y 10 keV y dosis entre 10 y 10 iones por centímetro cuadrado, esta última permite controlar el número de centros de color generados. Los centros NV generados son estables y se encuentran a una profundidad ente 1 y 10 nm respecto a la superficie del diamante. Diamond with color centers close to the surface is prepared using the nitrogen ion beam implantation technique. This implantation consists of accelerating nitrogen ions (isotope 15) with energies between 0.7 keV and 10 keV and doses between 10 and 10 ions per square centimeter, the latter allowing to control the number of color centers generated. The NV centers generated are stable and lie at a depth between 1 and 10 nm relative to the diamond surface.
Estos centros son sensibles a campos externos al diamante, y a su vez, suficientemente estables para ser usados como sensores. These centers are sensitive to fields external to the diamond, and in turn, stable enough to be used as sensors.
Se realizaron pruebas de resonancia magnética electrónica a campos débiles, para verificar la presencia de los defectos ópticamente activos debido a la implantación. La Figura 1 muestra la imagen tomada por microscopía confocal de una de las zonas de implantación. Electronic magnetic resonance imaging tests were performed at weak fields to verify the presence of optically active defects due to implantation. Figure 1 shows the image taken by confocal microscopy of one of the implantation areas.
Las energías utilizadas entre 0,7 keV y 10 keV produjeron centros de color entre 10 nm y 1 nm de profundidad respecto de la superficie del diamante. También se varió la dosis (número de iones por centímetro cuadrado implantados) para controlar el número de centros de color. The energies used between 0.7 keV and 10 keV produced color centers between 10 nm and 1 nm in depth with respect to the diamond surface. The dose (number of ions per square centimeter implanted) was also varied to control the number of color centers.
Las propiedades ópticas del sensor son obtenidas mediante la espectroscopia de resonancia Ramsey que es similar a la utilizada en resonadores clínicos, pero en este caso se aplica sobre los espines electrónicos del diamante y no sobre los espines nucleares. Para este objetivo, el montaje experimental dispone de un generador de microonda con frecuencias alrededor de los 3 gigahertz y con un ancho de banda de unos 500 megahertz, para lograr la resonancia entre los espines electrónicos y la radiación de microonda. La muestra, compuesta por cargas eléctricas con movimientos aleatorios, provoca un ruido eléctrico que es proporcional a la concentración de las cargas en la solución que es detectable por los centros de color. The optical properties of the sensor are obtained by Ramsey resonance spectroscopy, which is similar to that used in clinical resonators, but in this case it is applied on the electronic spins of the diamond and not on the nuclear spins. For this purpose, the experimental setup has a microwave generator with frequencies around 3 gigahertz and with a bandwidth of about 500 megahertz, to achieve resonance between the electronic spins and the microwave radiation. The sample, composed of electrical charges with Random movements, causes an electrical noise that is proportional to the concentration of charges in the solution that is detectable by the color centers.
La sensibilidad del sensor se controla mediante una bobina que genera un campo magnético externo. El sensor alcanza su máxima sensibilidad cuando el sistema de bobina y fuente de poder cancela el campo magnético producido por la tierra. Ya que este campo (magnitud y dirección) depende del lugar en donde se tome la medida. La calibración debe realizarse durante el encendido del sensor. The sensitivity of the sensor is controlled by a coil that generates an external magnetic field. The sensor reaches its maximum sensitivity when the coil and power supply system cancels the magnetic field produced by the earth. Since this field (magnitude and direction) depends on the place where the measurement is taken. Calibration must be done during sensor power-up.
Cámara y Circuito microfluídica Microfluidic Chamber and Circuit
Se diseñó y elaboró un sistema de microfluídica que permite el ingreso de una solución a medir y la aplicación de radiación de microonda para poder efectuar el protocolo de medición. A su vez, este sistema de microfluido tiene como objetivo mantener el flujo constante. Este sistema utiliza jeringas motorizadas de 50 mL. El flujo se puede variar entre 0 y 50 mL/s. A microfluidic system was designed and developed that allows the entry of a solution to be measured and the application of microwave radiation to carry out the measurement protocol. In turn, this microfluidic system aims to keep the flow constant. This system uses 50 mL motorized syringes. The flow can be varied between 0 and 50 mL / s.
El sistema consta de dos entradas para la solución y una de salida que permite la conexión con el sensor basado en diamante. La cámara posee un espacio que permite la entrada y mezcla de las soluciones, la que a su vez, permite colocar un electrodo para la detección de pH para efectos de calibración del sensor. The system consists of two inlets for the solution and one outlet that allows connection to the diamond-based sensor. The chamber has a space that allows solutions to enter and mix, which in turn allows an electrode to be placed for pH detection for sensor calibration purposes.
Se diseñaron y elaboraron piezas de material lo suficientemente resistente para impedir la corrosión producto de las soluciones que se agregan y las diferencias de temperaturas que se pueden alcanzar (ver Figura 2). El material empleado corresponde a un material plástico de baja fluorescencia (Permanox®). Pieces of material resistant enough to prevent corrosion caused by the solutions that are added and the temperature differences that can be reached were designed and manufactured (see Figure 2). The material used corresponds to a low fluorescence plastic material (Permanox®).
Adicionalmente, se desarrolló un software de control con el objetivo de medir y la manipular distintas variables como pH, diámetro interno de un sistema de inyección basado en jeringas motorizadas (int. diameter), volumen que se adiciona (volume), velocidad de adición (rate), entre otras. Additionally, a control software was developed in order to measure and manipulate different variables such as pH, internal diameter of an injection system based on motorized syringes (int. Diameter), added volume (volume), addition speed ( rate), among others.
Método de medición del analito La muestra a analizar que comprende el analito a determinar se debe diluir previamente dependiendo de su concentración inicial. Luego se ingresa a una jeringa la cual es accionada por el controlador de flujo que permite que la muestra circule por la Cámara de Flujo en donde se encuentra el diamante como se muestra en la Figura 3. La muestra al interactuar con el diamante cambia sus propiedades ópticas que son medidas mediante la excitación láser y el registro de la luminosidad mediante un Detector de Fluorescencia. Estas propiedades ópticas son comparadas con una curva de calibración que se ha obtenido previamente. Esta comparación permite conocer la concentración del elemento a medir en la muestra. Analyte measurement method The sample to be analyzed that comprises the analyte to be determined must be previously diluted depending on its initial concentration. Then a syringe is entered which is activated by the flow controller that allows the sample to circulate through the Flow Chamber where the diamond is found, as shown in Figure 3. The sample, when interacting with the diamond, changes its properties. optics that are measured by laser excitation and the recording of luminosity by means of a Fluorescence Detector. These optical properties are compared to a calibration curve that has been previously obtained. This comparison allows to know the concentration of the element to be measured in the sample.
La medición del analito (compuesto químico, elemento o ion) presente en una muestra se realiza por medio de las siguientes etapas: The measurement of the analyte (chemical compound, element or ion) present in a sample is carried out through the following steps:
I. Calibración del sensor I. Sensor calibration
El sensor de reacciones químicas basado en diamante consiste en la lectura de ruido electrónico que está asociado a la presencia de cargas eléctricas presentes en una solución. Para hacer uso del sensor se debe calibrar para cada analito a estudiar. The diamond-based chemical reaction sensor consists of the reading of electronic noise that is associated with the presence of electrical charges present in a solution. To use the sensor, it must be calibrated for each analyte to be studied.
Esta primera etapa consiste en la determinación del campo magnético asociado al mayor tiempo de coherencia del diamante ópticamente activo. El mayor tiempo de coherencia ocurre cuando el campo magnético aplicado cancela el campo magnético terrestre presente en el lugar en donde se efectúa la medida, debido a que el diamante ópticamente activo posee una respuesta anisotrópica al campo magnético. El valor de este campo magnético debe obtenerse cada vez que la Cámara de Flujo (y por ende el diamante) es utilizada o movida. This first stage consists of determining the magnetic field associated with the longest coherence time of the optically active diamond. The longest coherence time occurs when the applied magnetic field cancels the earth's magnetic field present in the place where the measurement is made, because the optically active diamond has an anisotropic response to the magnetic field. The value of this magnetic field must be obtained each time the Flow Chamber (and therefore the diamond) is used or moved.
II. Calibración de la muestra II. Sample calibration
Esta etapa consiste en la calibración del sensor respecto a una muestra específica. Para esto se toman tres medidas del tiempo de coherencia y/o frecuencia de Rabi: la primera medida se realiza en presencia de una solución a pH neutro (agua desionizada); la segunda y tercera medida del tiempo de coherencia y/o frecuencia de Rabi se efectúan con muestras estándares conocidas con dos concentraciones distintas para asociar cada concentración C1 y C2 a los tiempos de coherencia TI y T2. De esta manera se obtiene una curva de calibración lineal que se utilizará en la siguiente etapa. This stage consists of calibrating the sensor with respect to a specific sample. For this, three measurements of the coherence time and / or Rabi frequency are taken: the first measurement is carried out in the presence of a solution at neutral pH (deionized water); the second and third measurements of the coherence time and / or frequency of Rabi are carried out with known standard samples with two different concentrations to associate each C1 and C2 concentration to the TI and T2 coherence times. In this way, a linear calibration curve is obtained that will be used in the next stage.
III. Medida de la muestra específica III. Specific sample measurement
Esta etapa consiste en la medición del tiempo de coherencia y/o frecuencia de Rabí con una solución que contiene el analito a cuantificar. Este tiempo y/o frecuencia se interpola a la curva de calibración y luego se determina el valor de la concentración de analito en la solución. This stage consists of measuring the coherence time and / or frequency of Rabí with a solution containing the analyte to be quantified. This time and / or frequency is interpolated to the calibration curve and then the value of the analyte concentration in the solution is determined.
Las etapas I, II y III se resumen en el esquema de la Figura 4. Stages I, II and III are summarized in the scheme of Figure 4.
Sistema para la determinación del analito System for the determination of the analyte
El sistema mediante el cual se puede realizar el método descrito anteriormente comprende una celda que contiene al sensor basado en diamante descrito, además de un generador de microonda para lograr la resonancia entre los espines electrónicos y la radiación de microonda. La muestra, compuesta por especies cargadas con movimiento Browniano aleatorio, provoca un ruido magnético que es proporcional a la concentración de dichas cargas en la solución. The system by which the above-described method can be carried out comprises a cell containing the described diamond-based sensor, in addition to a microwave generator to achieve resonance between the electronic spins and the microwave radiation. The sample, composed of charged species with random Brownian motion, causes a magnetic noise that is proportional to the concentration of these charges in the solution.
La Figura 5 muestra la Cámara de Flujo en donde se alberga el diamante que se ha implantado con átomos de nitrógeno para hacerlo ópticamente activo. La imagen muestra una zona de implantación de 5 keV de energía que ha sido obtenida mediante un microscopio confocal. El tamaño de la implantación es de tan solo 25 Dm de diámetro. Figure 5 shows the Flow Chamber where the diamond that has been implanted with nitrogen atoms to make it optically active is housed. The image shows a zone of implantation of 5 keV of energy that has been obtained by means of a confocal microscope. The implantation size is only 25 Dm in diameter.
La Figura 6 muestra el lente objetivo y la cámara de flujo conectada a una jeringa que contiene el fluido a analizar. Figure 6 shows the objective lens and the flow chamber connected to a syringe containing the fluid to be analyzed.
La Figura 7 muestra las partes más relevantes del sistema de acuerdo a la presente invención: la excitación con un láser verde de 532 nm y 1 Watt de potencia y el detector de fluorescencia capaz de detectar fotones individuales. Las cuentas de este detector alcanzan varios millones de fotones detectados por segundo. Figure 7 shows the most relevant parts of the system according to the present invention: the excitation with a green laser of 532 nm and 1 Watt of power and the fluorescence detector capable of detecting individual photons. The counts of this detector reach several million photons detected per second.
MODALIDADES PREFERIDAS DE LA INVENCIÓN La presente invención se dirige a un sistema para la determinación y cuantificación de la concentración de un analito en una muestra que lo contiene, que comprende: PREFERRED MODALITIES OF THE INVENTION The present invention is directed to a system for the determination and quantification of the concentration of an analyte in a sample that contains it, comprising:
• un sensor de diamante que contiene centros de color ópticamente activos cercanos a la superficie; · una cámara o celda que aloja a dicho sensor; y • a diamond sensor containing optically active color centers close to the surface; · A chamber or cell that houses said sensor; Y
• medios para hacer ingresar la muestra al sistema. • means of getting the sample into the system.
En donde los centros de color ópticamente activos corresponden a implantaciones de iones nitrógeno. Wherein the optically active color centers correspond to nitrogen ion implantations.
En una modalidad de la invención los centros de color se producen mediante la técnica de implantación de haces de iones nitrógeno que consiste en acelerar iones nitrógeno con energías entre 0,7 y 10 KeV. In one embodiment of the invention, the color centers are produced by the nitrogen ion beam implantation technique which consists of accelerating nitrogen ions with energies between 0.7 and 10 KeV.
En una modalidad preferida de la invención las implantaciones tienen una profundidad entre 10 nm y 1 nm. In a preferred embodiment of the invention the implants have a depth between 10 nm and 1 nm.
En una modalidad más preferida de la invención las implantaciones se realizan en dosis entre 109 y 1012 iones/cm2. In a more preferred embodiment of the invention the implantations are carried out at doses between 10 9 and 10 12 ions / cm 2 .
En otra modalidad de la invención los medios que permiten el ingreso y salida de la muestra corresponden a un circuito microfluídica que permite trabajar con una cantidad mínima de muestra. In another embodiment of the invention, the means that allow the entry and exit of the sample correspond to a microfluidic circuit that allows working with a minimum amount of sample.
En una modalidad preferida de la invención la cámara posee un espacio que permite la entrada y mezcla de las soluciones la cámara permite colocar un electrodo para la detección de pH para efectos de calibración del sensor. Aún más preferentemente, la cámara además permite colocar un electrodo para la detección de pH para efectos de calibración del sensor. In a preferred embodiment of the invention, the chamber has a space that allows the solutions to enter and mix. The chamber allows an electrode to be placed for pH detection for sensor calibration purposes. Even more preferably, the chamber further allows to place an electrode for pH detection for sensor calibration purposes.
En una modalidad de la invención, la cámara y los medios están fabricados de un material resistente a la corrosión. La presente invención también se dirige a un método para la determinación y cuantificación de la concentración de un analito presente en una muestra que lo contiene, el cual se realiza en el sistema descrito anteriormente, que comprende las siguientes etapas: In one embodiment of the invention, the chamber and means are made of a corrosion resistant material. The present invention is also directed to a method for the determination and quantification of the concentration of an analyte present in a sample that contains it, which is carried out in the system described above, which comprises the following steps:
I. calibrar el sensor mediante la determinación del ruido de campo eléctrico asociado al tiempo de coherencia y/o frecuencia de Rabí del sensor de diamante ópticamente activo; I. calibrating the sensor by determining the electric field noise associated with the coherence time and / or Rabbi frequency of the optically active diamond sensor;
II. calibrar la muestra específica a medir mediante la determinación de al menos tres medidas del tiempo de coherencia y/o frecuencia de Rabí; y II. calibrating the specific sample to be measured by determining at least three measures of coherence time and / or Rabbi frequency; Y
III. medición de la muestra mediante la determinación del tiempo de coherencia y/o frecuencia de Rabí de la muestra con el analito a cuantificar. III. Measurement of the sample by determining the coherence time and / or Rabí frequency of the sample with the analyte to be quantified.
En una modalidad de la invención, en la etapa II la primera medida se realiza en presencia de una solución a pH neutro. En donde opcionalmente, la solución a pH neutro es agua. In one embodiment of the invention, in stage II the first measurement is carried out in the presence of a solution at neutral pH. Where optionally, the neutral pH solution is water.
En otra modalidad de la invención, en la etapa II al menos dos mediciones restantes se realizan con estándares de calibración de concentración conocida del analito a determinar en la etapa III, a las cuales se les mide el tiempo de coherencia y/o frecuencia de Rabí y se les asocia la concentración respectiva para obtener una curva de calibración. En donde en la etapa III se mide el tiempo de coherencia y/o frecuencia de Rabí de la muestra el cual se interpola en la curva de calibración y se obtiene la concentración de la muestra. In another embodiment of the invention, in stage II at least two remaining measurements are carried out with calibration standards of known concentration of the analyte to be determined in stage III, at which the coherence time and / or frequency of Rabí are measured. and the respective concentration is associated to them to obtain a calibration curve. Wherein in stage III the coherence time and / or Rabí frequency of the sample is measured, which is interpolated in the calibration curve and the sample concentration is obtained.
En donde porque el analito corresponde a un elemento, ion y/o compuesto químico. Where because the analyte corresponds to an element, ion and / or chemical compound.
Por último, la presente invención se refiere al uso del sensor descrito anteriormente para la para la determinación y cuantificación de la concentración de un analito mediante la fluorescencia de un diamante con centros de color ópticamente activos. En donde el analito a medir se selecciona de metales, pesticidas, pH, combustibles, elementos contaminantes, entre otros. Finally, the present invention refers to the use of the sensor described above for the determination and quantification of the concentration of an analyte by means of the fluorescence of a diamond with optically active color centers. Where the analyte to be measured is selected from metals, pesticides, pH, fuels, pollutants, among others.
EJEMPLO DE APLICACIÓN EXAMPLE OF APPLICATION
Mediante el método y sistema de la presente invención se determinó la concentración de cobre presente en una muestra. I. Calibración del sensor By means of the method and system of the present invention, the concentration of copper present in a sample was determined. I. Sensor calibration
Primero se seleccionó una zona ópticamente activa que ha sido producida con una energía de implantación de 5 keV y una dosis de 1014 iones por centímetro cuadrado. Esto generó en el montaje confocal ilustrado en la Figura 5 una intensidad de fluorescencia de aproximadamente 4 millones de cuentas por segundo. First, an optically active zone was selected that has been produced with an implantation energy of 5 keV and a dose of 10 14 ions per square centimeter. This generated in the confocal setup illustrated in Figure 5 a fluorescence intensity of approximately 4 million counts per second.
Para observar el tiempo de coherencia se realizó la espectroscopia Ramsey en función del campo magnético aplicado con un generador de corriente que toma los valores -10 y 0 mA. Para observar la frecuencia de Rabi se realizó una espectroscopia Rabi en función del ancho temporal de la perturbación de microonda. To observe the coherence time, Ramsey spectroscopy was performed as a function of the applied magnetic field with a current generator that takes the values -10 and 0 mA. To observe the frequency of Rabi, a Rabi spectroscopy was performed as a function of the temporal width of the microwave disturbance.
La Figura 8 muestra las señales de fluorescencia asociadas a 7 resonancias magnéticas en presencia de campos magnéticos generados por un sistema de bobina. Cada curva está asociada a la corriente de una fuente de corriente utilizada para alimentar el sistema de bobinas. Tal como se puede observar, la máxima sensibilidad se obtuvo para -8 mA, que es en donde se observa el máximo tiempo de coherencia. Por lo tanto, para obtener la máxima sensibilidad del sensor se debe operar a esta corriente en la fuente de poder. Figure 8 shows the fluorescence signals associated with 7 magnetic resonances in the presence of magnetic fields generated by a coil system. Each curve is associated with the current of a current source used to power the coil system. As can be seen, the maximum sensitivity was obtained for -8 mA, which is where the maximum coherence time is observed. Therefore, to obtain the maximum sensitivity of the sensor, it is necessary to operate at this current in the power source.
II. Calibración de la muestra II. Sample calibration
Se generó una curva de calibración que mide las propiedades ópticas del sensor para dos concentraciones conocidas de cobre. Específicamente, las propiedades ópticas del sensor se obtienen mediante la espectroscopia de resonancia Ramsey aplicada sobre los espines electrónicos del diamante. A calibration curve was generated that measures the optical properties of the sensor for two known concentrations of copper. Specifically, the optical properties of the sensor are obtained by Ramsey resonance spectroscopy applied on the electronic spins of the diamond.
A partir de una solución estándar de cobre se prepararon dos muestras de concentraciones conocidas correspondientes a 1 mg/L y 100 mg/L. Estos valores definen el rango deben elegirse de tal manera que los valores medidas de la muestra a determinar esté dentro del rango definido por ambos puntos. Estas concentraciones constituyen las muestras estándar para calibrar el sensor. El promedio de lecturas en duplicado de las frecuencias de Rabi en MHz obtenidas se muestran en la Tabla 1. Two samples of known concentrations corresponding to 1 mg / L and 100 mg / L were prepared from a standard copper solution. These values define the range must be chosen in such a way that the measured values of the sample to be determined are within the range defined by both points. These concentrations constitute the standard samples to calibrate the sensor. The average of duplicate readings of the Rabi frequencies in MHz obtained are shown in Table 1.
Tabla 1
Figure imgf000013_0001
La Figura 9 muestra una curva de calibración obtenida.
Table 1
Figure imgf000013_0001
Figure 9 shows a calibration curve obtained.
III. Medida de la muestra específica III. Specific sample measurement
Se preparó una muestra control de cobre con una concentración de 50 mg/L, la cual está dentro de la curva de calibración preparada y se midió la frecuencia de Rabi en duplicado. A control sample of copper was prepared with a concentration of 50 mg / L, which is within the prepared calibration curve, and the Rabi frequency was measured in duplicate.
El sensor arrojó un valor 13,81 MHz, el cual al interpolarlo en la curva de calibración resultó en un valor de concentración de cobre de 48,96 mg/L, por lo que el error respecto al valor teórico fue de un 2,1% (Figura 10). The sensor gave a value of 13.81 MHz, which when interpolated in the calibration curve resulted in a copper concentration value of 48.96 mg / L, so the error with respect to the theoretical value was 2.1 % (Figure 10).
CONCLUSIONES CONCLUSIONS
El sistema desarrollado, y en particular el sensor químico permiten la determinación y cuantificación de la concentración de reactantes mediante la fluorescencia de un diamante. El sensor permite monitorear la concentración de analitos (elementos, iones o compuestos químicos) mediante la medición de las fluctuaciones de campo eléctrico que estos generan. The developed system, and in particular the chemical sensor, allow the determination and quantification of the concentration of reactants by means of the fluorescence of a diamond. The sensor allows monitoring the concentration of analytes (elements, ions or chemical compounds) by measuring the fluctuations in the electric field that these generate.
Dada la versatilidad del sistema propuesto que comprende el sensor desarrollado permite su uso en una multiplicidad de industrias. Por ejemplo, en las mediciones químicas bajo condiciones extremas, el sensor puede ser usado en la optimización de la extracción de combustibles como gas y petróleo. En el monitoreo ambiental, será de utilidad en la detección de metales pesados como arsénico, plomo y cadmio en lagos, mares y ríos y donde se presentan condiciones de altas temperaturas y presiones. En la optimización de procesos químicos industriales como parte del control de la cinética de reactores químicos industriales y en la certificación de alimentos como sensor de concentración de pesticidas. En resumen, el sistema desarrollado permite generar mediciones con mayor exactitud y precisión en el estudio de reacciones químicas a escala nano métrica en diferentes ambientes como: reacciones en superficies, catálisis industrial, biocatálisis (alimentos), farmacéuticas y química analítica. En el campo de la minería, el sistema y método de la presente invención permitirá impactar positivamente en el aumento de la ley de cobre en concentrados y de la recuperación de elementos de interés como metales valiosos (Cu, Mo, Re, U, Ge), y en el control de impurezas.Given the versatility of the proposed system that comprises the developed sensor, it allows its use in a multiplicity of industries. For example, in chemical measurements under extreme conditions, the sensor can be used in optimizing the extraction of fuels such as gas and oil. In environmental monitoring, it will be useful in detecting heavy metals such as arsenic, lead and cadmium in lakes, seas and rivers and where conditions of high temperatures and pressures are present. In the optimization of industrial chemical processes as part of the control of the kinetics of industrial chemical reactors and in the certification of food as pesticide concentration sensor. In summary, the developed system allows to generate measurements with greater accuracy and precision in the study of chemical reactions on a nano-metric scale in different environments such as: surface reactions, industrial catalysis, biocatalysis (food), pharmaceuticals and analytical chemistry. In the field of mining, the system and method of the present invention will make it possible to positively impact the increase in copper grade in concentrates and the recovery of elements of interest such as valuable metals (Cu, Mo, Re, U, Ge) , and in the control of impurities.
La especificación precedente se considera únicamente ilustrativa de los principios de la invención. El alcance de las reivindicaciones no debe estar limitado por las realizaciones a modo de ejemplo expuestas en la sección anterior, sino que se les debe dar la interpretación más amplia congruente con la memoria descriptiva como un todo. The foregoing specification is considered solely illustrative of the principles of the invention. The scope of the claims should not be limited by the exemplary embodiments set forth in the preceding section, but should be given the broadest interpretation consistent with the specification as a whole.

Claims

REIVINDICACIONES
1. Sistema para la determinación y cuantificación de la concentración de un analito presente en una muestra que lo contiene, CARACTERIZADO porque comprende: 1. System for the determination and quantification of the concentration of an analyte present in a sample that contains it, CHARACTERIZED because it comprises:
• un sensor basado en diamante que contiene centros de color ópticamente activos cercanos a la superficie; • a diamond-based sensor containing optically active color centers close to the surface;
• una cámara o celda que aloja a dicho sensor; y • a chamber or cell that houses said sensor; Y
• medios para hacer ingresar la muestra al sistema. • means of getting the sample into the system.
2. El sistema de acuerdo a la reivindicación 1, CARACTERIZADO porque los centros de color ópticamente activos corresponden a implantaciones de iones nitrógeno. 2. The system according to claim 1, CHARACTERIZED in that the optically active color centers correspond to nitrogen ion implantations.
3. El sistema de acuerdo a la reivindicación 2, CARACTERIZADO porque los centros de color se producen mediante la técnica de implantación de haces de iones nitrógeno que consiste en acelerar iones nitrógeno con energías entre 0,7 y 10 KeV. 3. The system according to claim 2, CHARACTERIZED in that the color centers are produced by the nitrogen ion beam implantation technique that consists of accelerating nitrogen ions with energies between 0.7 and 10 KeV.
4. El sistema de acuerdo a la reivindicación 2, CARACTERIZADO porque las implantaciones tienen una profundidad entre 10 nm y 1 nm. 4. The system according to claim 2, CHARACTERIZED in that the implants have a depth between 10 nm and 1 nm.
5. El sistema de acuerdo a la reivindicación 3, CARACTERIZADO porque las implantaciones se realizan en dosis entre 109 y 1012 iones/cm 2. 5. The system according to claim 3, CHARACTERIZED in that the implantations are carried out at doses between 109 and 1012 ions / cm 2.
6. El sistema de acuerdo a la reivindicación 1, CARACTERIZADO porque los medios que permiten el ingreso y salida de la muestra corresponde a un circuito microfluídica que permite trabajar con una cantidad mínima de muestra. 6. The system according to claim 1, CHARACTERIZED in that the means that allow the entry and exit of the sample corresponds to a microfluidic circuit that allows working with a minimum amount of sample.
1 1
7. El sistema de acuerdo a la reivindicación 1, CARACTERIZADO porque consta de al menos dos entradas para la solución y al menos una de salida que permite la conexión con el sensor basado en diamante. 7. The system according to claim 1, CHARACTERIZED in that it consists of at least two inlets for the solution and at least one outlet that allows connection with the diamond-based sensor.
8. El sistema de acuerdo a la reivindicación 1, CARACTERIZADO porque la cámara posee un espacio que permite la entrada y mezcla de las soluciones. 8. The system according to claim 1, CHARACTERIZED in that the chamber has a space that allows the entry and mixing of solutions.
9. El sistema de acuerdo a la reivindicación 1, CARACTERIZADO porque la cámara permite colocar un electrodo para la detección de pH para efectos de calibración del sensor. 9. The system according to claim 1, CHARACTERIZED in that the chamber allows an electrode to be placed for pH detection for sensor calibration purposes.
10. El sistema de acuerdo a la reivindicación 1, CARACTERIZADO porque la cámara y los medios están fabricados de un material resistente a la corrosión. 10. The system according to claim 1, CHARACTERIZED in that the chamber and the means are made of a material resistant to corrosion.
11. Método de determinación y cuantificación de la concentración de un analito presente en una muestra que lo contiene, el cual se realiza en el sistema de acuerdo a la reivindicación 1, CARACTERIZADO porque comprende las siguientes etapas: 11. Method for determining and quantifying the concentration of an analyte present in a sample that contains it, which is carried out in the system according to claim 1, CHARACTERIZED because it comprises the following steps:
I. calibrar el sensor basado en diamante, que contiene centros de color ópticamente activos cercanos a la superficie, mediante la determinación del ruido de campo eléctrico asociado al tiempo de coherencia y/o frecuencia de Rabí de dicho sensor;I. calibrate the diamond-based sensor, which contains optically active color centers close to the surface, by determining the electric field noise associated with the coherence time and / or Rabí frequency of said sensor;
II. calibrar la muestra específica a medir mediante la determinación de al menos tres medidas del tiempo de coherencia y/o frecuencia de Rabí; y II. calibrating the specific sample to be measured by determining at least three measures of coherence time and / or Rabbi frequency; Y
III. medición de la muestra mediante la determinación del tiempo de coherencia y/o frecuencia de Rabí de la muestra con el analito a cuantificar. III. Measurement of the sample by determining the coherence time and / or Rabí frequency of the sample with the analyte to be quantified.
12. El método de acuerdo a la reivindicación 11, CARACTERIZADO porque en la etapa II la primera medida se realiza en presencia de una solución a pH neutro. 12. The method according to claim 11, CHARACTERIZED in that in stage II the first measurement is carried out in the presence of a solution at neutral pH.
2 two
13. El método de acuerdo a la reivindicación 12, CARACTERIZADO porque la solución a pH neutro es agua. 13. The method according to claim 12, CHARACTERIZED in that the solution at neutral pH is water.
14. El método de acuerdo a la reivindicación 11, CARACTERIZADO porque en la etapa II al menos dos mediciones restantes se realizan con estándares de calibración de concentración conocida del analito a determinar en la etapa III, a las cuales se les mide el tiempo de coherencia y/o frecuencia de Rabí y se les asocia la concentración respectiva para obtener una curva de calibración. 14. The method according to claim 11, CHARACTERIZED because in stage II at least two remaining measurements are performed with calibration standards of known concentration of the analyte to be determined in stage III, at which the coherence time is measured. and / or Rabí frequency and the respective concentration is associated with them to obtain a calibration curve.
15. El método de acuerdo a la reivindicación 11, CARACTERIZADO porque en la etapa III se mide el tiempo de coherencia y/o frecuencia de Rabí de la muestra el cual se interpola en la curva de calibración y se obtiene la concentración de la muestra. 15. The method according to claim 11, CHARACTERIZED in that in stage III the coherence time and / or Rabí frequency of the sample is measured, which is interpolated in the calibration curve and the sample concentration is obtained.
16. El método de acuerdo a la reivindicación 11, CARACTERIZADO porque el analito corresponde a un elemento, ion y/o compuesto químico. 16. The method according to claim 11, CHARACTERIZED in that the analyte corresponds to an element, ion and / or chemical compound.
17. Uso de un sensor químico basado en diamante, CARACTERIZADO porque sirve para la determinación y cuantificación de la concentración de un analito mediante la fluorescencia de un diamante con centros de color ópticamente activos. 17. Use of a chemical sensor based on diamond, CHARACTERIZED because it serves for the determination and quantification of the concentration of an analyte through the fluorescence of a diamond with optically active color centers.
18. El uso de acuerdo a la reivindicación 17, CARACTERIZADO porque el analito a medir se selecciona de metales, pesticidas, pH, combustibles, elementos contaminantes, entre otros. 18. The use according to claim 17, CHARACTERIZED in that the analyte to be measured is selected from metals, pesticides, pH, fuels, pollutants, among others.
3 3
PCT/CL2019/050124 2019-11-29 2019-11-29 System and method for determining and quantifying the concentration of an analyte, which comprises an optically active diamond-based sensor, a chamber accommodating the sensor, and means for inserting a sample; and use of said sensor WO2021102593A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2019/050124 WO2021102593A1 (en) 2019-11-29 2019-11-29 System and method for determining and quantifying the concentration of an analyte, which comprises an optically active diamond-based sensor, a chamber accommodating the sensor, and means for inserting a sample; and use of said sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2019/050124 WO2021102593A1 (en) 2019-11-29 2019-11-29 System and method for determining and quantifying the concentration of an analyte, which comprises an optically active diamond-based sensor, a chamber accommodating the sensor, and means for inserting a sample; and use of said sensor

Publications (1)

Publication Number Publication Date
WO2021102593A1 true WO2021102593A1 (en) 2021-06-03

Family

ID=76129087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2019/050124 WO2021102593A1 (en) 2019-11-29 2019-11-29 System and method for determining and quantifying the concentration of an analyte, which comprises an optically active diamond-based sensor, a chamber accommodating the sensor, and means for inserting a sample; and use of said sensor

Country Status (1)

Country Link
WO (1) WO2021102593A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120019242A1 (en) * 2008-11-04 2012-01-26 The University Of Melbourne Method and apparatus for monitoring a property of a sample
WO2012034924A1 (en) * 2010-09-14 2012-03-22 Element Six Limited A microfluidic cell and a spin resonance device for use therewith
WO2018128543A1 (en) * 2017-01-06 2018-07-12 Rijksuniversiteit Groningen Instantaneous magnetic resonance spectroscopy of a sample
WO2019145407A1 (en) * 2018-01-26 2019-08-01 Element Six Technologies Limited Synthetic diamond material
WO2019173743A1 (en) * 2018-03-09 2019-09-12 Somalogic, Inc. Proteomic assay using quantum sensors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120019242A1 (en) * 2008-11-04 2012-01-26 The University Of Melbourne Method and apparatus for monitoring a property of a sample
WO2012034924A1 (en) * 2010-09-14 2012-03-22 Element Six Limited A microfluidic cell and a spin resonance device for use therewith
WO2018128543A1 (en) * 2017-01-06 2018-07-12 Rijksuniversiteit Groningen Instantaneous magnetic resonance spectroscopy of a sample
WO2019145407A1 (en) * 2018-01-26 2019-08-01 Element Six Technologies Limited Synthetic diamond material
WO2019173743A1 (en) * 2018-03-09 2019-09-12 Somalogic, Inc. Proteomic assay using quantum sensors

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KEHAYIAS, P. ET AL.: "Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip", NATURE COMMUNICATIONS, vol. 8, no. 188, 2017, XP055829774, DOI: 10.1038/s41467-017-00266-4 *
SCHIRHAGL, R ET AL.: "Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology", ANNU. REV. PHYS. CHEM., vol. 65, 2014, pages 83 - 105, XP055758070, DOI: 10.1146/annurev-physchem-040513-103659 *
STEINERT, S. ET AL.: "Magnetic spin imaging under ambient conditions with sub-cellular resolution", NATURE COMMUNICATIONS, vol. 4, no. 1607, 2013, XP055501085, DOI: 10.1038/ncomms2588 *
WU, Y. ET AL.: "Nanodiamonds for Biological Applications", PHYSICAL SCIENCES REVIEWS, vol. 2017, 4 January 2016 (2016-01-04), XP055829773, DOI: 10.1515/psr-2016-0104 *

Similar Documents

Publication Publication Date Title
Quintanilla et al. Guiding rules for selecting a nanothermometer
Cao et al. Poly (decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples
Sun et al. Temperature-sensitive luminescent nanoparticles and films based on a terbium (III) complex probe
Mandal et al. Fluorescence turn-on and turn-off sensing of pesticides by carbon dot-based sensor
Szmacinski et al. Lifetime-based sensing
Ergeneman et al. A magnetically controlled wireless optical oxygen sensor for intraocular measurements
US20150192596A1 (en) Systems and methods for detection of electric fields, ion exchange, and ph using spectral shift in diamond color centers
Quintanilla et al. Thermal monitoring during photothermia: hybrid probes for simultaneous plasmonic heating and near-infrared optical nanothermometry
Roy et al. Polymeric carbon dot/boehmite nanocomposite made portable sensing device (Kavach) for non-invasive and selective detection of Cr (VI) in wastewater and living cells
Zilberman et al. Microfluidic optoelectronic sensor based on a composite halochromic material for dissolved carbon dioxide detection
US9518928B2 (en) Optode for determining chemical parameters
WO2021102593A1 (en) System and method for determining and quantifying the concentration of an analyte, which comprises an optically active diamond-based sensor, a chamber accommodating the sensor, and means for inserting a sample; and use of said sensor
Ferris et al. An ionophore-based persistent luminescent ‘Glow Sensor’for sodium detection
US7749765B2 (en) Quantitative detection of lead in water
Blais et al. Luminance and brightness: application to lanthanide-based coordination polymers
Xiong et al. Recyclable fluorescent chemodosimeters based on 8-hydroxyquinoline derivatives for highly sensitive and selective detection of mercury (II) in aqueous media and test strips
Monson et al. Nonclassical kinetics of an elementary A+ B→ C reaction-diffusion system showing effects of a speckled initial reactant distribution and eventual self-segregation: Experiments
JP5867681B2 (en) Oxygen sensor based on the ratio method
Corbella Bagot et al. True FRET‐Based Sensing of pH via Separation of FRET and Photon Reabsorption
Adusumalli et al. 3, 5-Dihydroxy Benzoic Acid-Capped CaF2: Tb3+ Nanocrystals as Luminescent Probes for the WO42–Ion in Aqueous Solution
Totland et al. The use of surfactant-filled mesoporous silica as an immobilising medium for a fluorescence lifetime pH indicator, providing long-term calibration stability
ES2279692B1 (en) PORTABLE INSTRUMENT AND METHOD FOR THE MEASUREMENT OF GAS CONCENTRATION.
Costa-Fernández et al. Portable fibre optic oxygen sensor based on room-temperature phosphor escence lifetime
Eisermann et al. Dynamic self-assembly of ions with variable size and charge in solution
JP6842060B2 (en) Analytical method and analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953921

Country of ref document: EP

Kind code of ref document: A1