WO2021101326A1 - Wireless charging device and transportation means comprising same - Google Patents

Wireless charging device and transportation means comprising same Download PDF

Info

Publication number
WO2021101326A1
WO2021101326A1 PCT/KR2020/016497 KR2020016497W WO2021101326A1 WO 2021101326 A1 WO2021101326 A1 WO 2021101326A1 KR 2020016497 W KR2020016497 W KR 2020016497W WO 2021101326 A1 WO2021101326 A1 WO 2021101326A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive wire
wireless charging
charging device
magnetic
cooler
Prior art date
Application number
PCT/KR2020/016497
Other languages
French (fr)
Korean (ko)
Inventor
김태경
김나영
최종학
이승환
Original Assignee
에스케이씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨 주식회사 filed Critical 에스케이씨 주식회사
Publication of WO2021101326A1 publication Critical patent/WO2021101326A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/085Cooling by ambient air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the embodiment relates to a wireless charging device and a moving means including the same. More specifically, the embodiment relates to a wireless charging device with improved charging efficiency by applying a heat dissipation structure and a moving means such as an electric vehicle including the same.
  • the wireless power transmission power is wirelessly transmitted through space using an electromagnetic field resonance structure such as inductive coupling, capacitive coupling, or an antenna without physical contact between a transmitter supplying power and a receiver receiving power.
  • an electromagnetic field resonance structure such as inductive coupling, capacitive coupling, or an antenna without physical contact between a transmitter supplying power and a receiver receiving power.
  • the wireless power transmission is suitable for portable communication devices, electric vehicles, etc. that require a large-capacity battery, and since the contact point is not exposed, there is little risk of a short circuit, and a wired charging failure phenomenon can be prevented.
  • Patent Document 1 Korean Patent Application Publication No. 2011-0042403
  • a magnetic part 300 ′ is disposed adjacent to the coil part 200 ′ to improve wireless charging efficiency, and a shield part for electromagnetic shielding ( 400 ′) is disposed to be spaced apart from the magnetic part 300 ′ by a predetermined distance.
  • the wireless charging device generates heat due to the resistance of the coil unit and the magnetic loss of the magnetic unit during the wireless charging operation.
  • the magnetic part in the wireless charging device generates heat near the coil part with high electromagnetic wave energy density, and the generated heat changes the magnetic properties of the magnetic part, causing impedance mismatch between the transmitter and the receiver, reducing charging efficiency.
  • the fever worsened again.
  • a wireless charging device since such a wireless charging device is installed under the electric vehicle, it is difficult to implement a heat dissipation structure because it employs a sealed structure for dustproof, waterproof, and shock absorption.
  • the object of the embodiment is to provide a wireless charging device and a moving means including the same with effective heat dissipation.
  • the coil unit including a first conductive wire; A shield part disposed on the coil part; A magnetic portion disposed between the coil portion and the shield portion; And a second conductive wire connected to the first conductive wire.
  • a moving means including a wireless charging device, the wireless charging device comprising: a housing; A coil unit disposed in the housing and including a first conductive wire; A shield part disposed on the coil part; A magnetic portion disposed between the coil portion and the shield portion; A cooler disposed outside the housing; And a second conductive wire connected to the cooler, wherein the second conductive wire is connected to the first conductive wire.
  • the wireless charging device may effectively discharge heat from the coil unit through the conductive wire extending from the coil unit.
  • the wireless charging device may transfer heat generated from the coil unit to the cooler through a conductive wire extending from the coil unit, and as the cooler, an air conditioner that is basically provided in a moving means such as a vehicle, etc.
  • a moving means such as a vehicle
  • the wireless charging device can be usefully used in a mobile means such as an electric vehicle that requires a large amount of power transmission between a transmitter and a receiver.
  • FIG. 1 is an exploded perspective view of a wireless charging device according to an embodiment.
  • FIG. 2A is a cross-sectional view of a wireless charging device according to an embodiment.
  • 2B is an external observation of a wireless charging device according to an embodiment.
  • FIG. 3 shows a wireless charging device applied to an electric vehicle.
  • FIG. 4 is an exploded perspective view of a conventional wireless charging device.
  • FIG. 5 shows a moving means to which a wireless charging device is applied as a receiver.
  • one component is formed above or below another component, in which one component is directly above or below another component, or indirectly through another component. It includes all that are formed by.
  • FIG. 1 is an exploded perspective view of a wireless charging device according to an embodiment.
  • a wireless charging device 10 includes: a coil unit including a first conductive wire 210; A shield part 400 disposed on the coil part; A magnetic part 300 disposed between the coil part and the shield part 400; And a second conductive wire 220 connected to the first conductive wire 210.
  • the coil part includes a first conductive wire.
  • the first conductive wire includes a conductive material.
  • the first conductive wire may include a conductive metal.
  • the first conductive wire may include at least one metal selected from the group consisting of copper, nickel, gold, silver, zinc, and tin.
  • the first conductive wire may have an insulating sheath.
  • the insulating shell may include an insulating polymer resin.
  • the insulating shell may include polyvinyl chloride (PVC) resin, polyethylene (PE) resin, Teflon resin, silicone resin, polyurethane resin, and the like.
  • the diameter of the first conductive wire may be, for example, in the range of 1 mm to 10 mm, in the range of 1 mm to 5 mm, or in the range of 1 mm to 3 mm.
  • the first conductive wire may be wound in a flat coil shape.
  • the planar coil may include a planar spiral coil.
  • the planar shape of the coil may be a circular shape, an oval shape, a polygonal shape, or a polygonal shape having rounded corners, but is not particularly limited.
  • the outer diameter of the flat coil may be 5 cm to 100 cm, 10 cm to 50 cm, 10 cm to 30 cm, 20 cm to 80 cm, or 50 cm to 100 cm.
  • the planar coil may have an outer diameter of 10 cm to 50 cm.
  • the inner diameter of the flat coil may be 0.5 cm to 30 cm, 1 cm to 20 cm, or 2 cm to 15 cm.
  • the number of windings of the flat coil may be 5 to 50 times, 10 to 30 times, 5 to 30 times, 15 to 50 times, or 20 to 50 times.
  • the planar coil may be formed by winding the first conductive wire 10 to 30 times.
  • the spacing between the first conductive wires in the planar coil shape may be 0.1 cm to 1 cm, 0.1 cm to 0.5 cm, or 0.5 cm to 1 cm.
  • the first conductive wire is connected to the second conductive wire. That is, the first conductive wire of the coil unit may be extended by the second conductive wire.
  • the second conductive wire may transfer heat generated from the first conductive wire to the outside.
  • the second conductive wire 220 may be connected to an external cooler 15. Accordingly, heat generated from the coil unit can be easily discharged to the outside.
  • the second conductive wire may include a conductive material.
  • the second conductive wire may include a conductive metal.
  • the second conductive wire may include at least one metal selected from the group consisting of copper, nickel, gold, silver, zinc, and tin.
  • the second conductive wire may be formed of the same or different material as the first conductive wire.
  • the second conductive wire may be made of the same material as the first conductive wire. Accordingly, the second conductive wire and the first conductive wire may be integrally formed with each other.
  • the second conductive wire may be formed of a different material than the first conductive wire.
  • the second conductive wire may include a conductive material different from a material constituting the first conductive wire.
  • the second conductive wire may be bonded to the first conductive wire.
  • the bonding may be melt bonding or bonding using a thermally conductive adhesive.
  • the thermally conductive adhesive may include a thermally conductive material such as metal, carbon, ceramic, etc., and may be, for example, an adhesive resin in which thermally conductive particles are dispersed.
  • the shield part is disposed on the coil part.
  • the shield unit suppresses electromagnetic interference (EMI) that may occur due to leakage of electromagnetic waves to the outside through electromagnetic wave shielding.
  • EMI electromagnetic interference
  • the shield part may be disposed to be spaced apart from the coil part by a predetermined distance.
  • the separation distance between the shield part and the coil part may be 10 mm or more or 15 mm or more, and specifically 10 mm to 30 mm, or 10 mm to 20 mm.
  • the material of the shield part may be, for example, metal, and accordingly, the shield part may be a metal plate, but is not particularly limited.
  • the material of the shield unit may be aluminum, and other metal or alloy material having electromagnetic wave shielding ability may be used.
  • the thickness of the shield portion may be 0.2 mm to 10 mm, 0.5 mm to 5 mm, or 1 mm to 3 mm.
  • an area of the shield part may be 200 cm 2 or more, 400 cm 2 or more, or 600 cm 2 or more.
  • the magnetic part is disposed between the coil part and the shield part.
  • the magnetic part may be disposed to be spaced apart from the shield part by a predetermined distance.
  • a separation distance between the magnetic part and the shield part may be 3 mm or more, 5 mm or more, 3 mm to 10 mm, or 4 mm to 7 mm.
  • the magnetic part may be disposed to be spaced apart from the coil part by a predetermined distance.
  • the separation distance between the magnetic part and the coil part may be 0.2 mm or more, 0.5 mm or more, 0.2 mm to 3 mm, or 0.5 mm to 1.5 mm.
  • the magnetic part may be a polymer type magnetic material including a binder resin and magnetic powder.
  • the magnetic part may include a metallic magnetic material, for example, a nanocrystalline magnetic material.
  • the magnetic part may be a composite of the polymeric magnetic material and the nanocrystalline magnetic material.
  • the magnetic part may include a polymer magnetic material, and specifically may include a binder resin and magnetic powder dispersed in the binder resin.
  • magnetic powders are bonded to each other by the binder resin, so that defects may be reduced over a large area and damage due to impact may be reduced.
  • the magnetic powder may be an oxide-based magnetic powder such as ferrite (Ni-Zn-based, Mg-Zn-based, Mn-Zn-based ferrite, etc.); Metallic magnetic powder such as permalloy, sanddust, and nanocrystalline magnetic material; Or it may be a mixture of these powders. More specifically, the magnetic powder may be sandblast particles having an Fe-Si-Al alloy composition.
  • the magnetic powder may have a composition represented by Formula 1 below.
  • X is Al, Cr, Ni, Cu, or a combination thereof
  • Y is Mn, B, Co, Mo, or a combination thereof
  • the average particle diameter of the magnetic powder may be in the range of about 3 nm to about 1 mm, about 1 ⁇ m to 300 ⁇ m, about 1 ⁇ m to 50 ⁇ m, or about 1 ⁇ m to 10 ⁇ m.
  • the polymeric magnetic material may contain the magnetic powder in an amount of 50% by weight or more, 70% by weight or more, or 85% by weight or more.
  • the polymeric magnetic material contains 50% to 99% by weight, 70% to 95% by weight, 70% to 90% by weight, 75% to 90% by weight, 75% to 95% by weight of the magnetic powder. It may be included in an amount of wt%, 80 wt% to 95 wt%, or 80 wt% to 90 wt%.
  • the binder resin may be a curable resin.
  • the binder resin may include a photocurable resin, a thermosetting resin, and/or a high heat-resistant thermoplastic resin, and preferably a thermosetting resin.
  • a resin capable of being cured and exhibiting adhesiveness as described above it includes at least one functional group or moiety capable of curing by heat such as a glycidyl group, an isocyanate group, a hydroxyl group, a carboxyl group or an amide group; Or it contains one or more functional groups or moieties that can be cured by active energy such as an epoxide group, a cyclic ether group, a sulfide group, an acetal group or a lactone group. You can use the resin.
  • a functional group or moiety may be, for example, an isocyanate group, a hydroxyl group or a carboxyl group.
  • the curable resin may be a polyurethane resin, an acrylic resin, a polyester resin, an isocyanate resin, or an epoxy resin having at least one or more functional groups or moieties as described above, but is not limited thereto.
  • the binder resin may include a polyurethane-based resin, an isocyanate-based curing agent, and an epoxy-based resin.
  • the polymeric magnetic material may contain the binder resin in an amount of 5% to 40% by weight, 5% to 20% by weight, 5% to 15% by weight, or 7% to 15% by weight.
  • the high molecular weight magnetic body is, based on its weight, as the binder resin, 6% to 12% by weight of a polyurethane-based resin, 0.5% to 2% by weight of a isocyanate-based curing agent, and 0.3% to 1.5% by weight % Epoxy resin.
  • the polymeric magnetic material can be prepared by a sheeting process such as mixing magnetic powder and a polymeric resin composition into a slurry, molding into a sheet, and curing.
  • a sheeting process such as mixing magnetic powder and a polymeric resin composition into a slurry, molding into a sheet, and curing.
  • Blocks can be manufactured by molding using a mold.
  • a conventional sheeting or blocking method may be applied to the manufacturing method.
  • the magnetic part may include a nanocrystalline magnetic material.
  • the coil unit's quality factor Q factor: Ls/Rs
  • Ls coil unit's inductance
  • the nanocrystalline magnetic material may be an Fe-based nanocrystalline magnetic material, specifically, a Fe-Si-Al-based nanocrystalline magnetic material, a Fe-Si-Cr-based nanocrystalline magnetic material, or a Fe-Si-B It may be a Cu-Nb-based nanocrystalline magnetic material.
  • the nanocrystalline magnetic material may be a Fe-Si-B-Cu-Nb-based nanocrystalline magnetic material, in which case, Fe is 70 element% to 85 element%, and the sum of Si and B is 10 element% To 29 element%, and the sum of Cu and Nb may be 1 element% to 5 element% (here, the element% means the percentage of the number of specific elements relative to the total number of elements).
  • the Fe-Si-B-Cu-Nb-based alloy can be easily formed into a nanocrystalline magnetic material by heat treatment.
  • the nanocrystalline magnetic material is prepared by, for example, a rapid cooling solidification method (RSP) by melt spinning of an Fe-based alloy, and no magnetic field for 30 minutes to 2 hours at a temperature range of 300° C. to 700° C. to obtain a desired magnetic permeability. It can be manufactured by performing heat treatment.
  • RSP rapid cooling solidification method
  • the heat treatment temperature is less than 300°C, nanocrystals are not sufficiently formed, so that the desired permeability is not obtained, and the heat treatment time may take a long time, and if the heat treatment temperature exceeds 700°C, the permeability may be significantly lowered by superheat treatment.
  • the heat treatment temperature is low, it takes a long treatment time, and on the contrary, if the heat treatment temperature is high, the treatment time is preferably shortened.
  • the nanocrystalline magnetic material is difficult to make a thick thickness in the manufacturing process, and may be formed as a thin film sheet having a thickness of, for example, 15 ⁇ m to 35 ⁇ m. Therefore, it is possible to form a magnetic portion by stacking several such thin-film sheets. In this case, an adhesive layer such as an adhesive tape may be inserted between the thin film sheets.
  • the nanocrystalline magnetic material may be crushed by a pressure roll or the like at the rear end of the manufacturing process to form a plurality of cracks in the thin film sheet, thereby manufacturing a plurality of nanocrystalline fine pieces.
  • the magnetic portion may be a magnetic sheet, a magnetic sheet stack, or a magnetic block.
  • the magnetic part may have a large area, and specifically, may have an area of 200 cm 2 or more, 400 cm 2 or more, or 600 cm 2 or more. In addition, the magnetic part may have an area of 10,000 cm 2 or less.
  • the large-area magnetic unit may be configured by combining a plurality of unit magnetic bodies, and in this case, the area of the unit magnetic body may be 60 cm 2 or more, 90 cm 2 , or 95 cm 2 to 900 cm 2 .
  • the thickness of the magnetic sheet may be 15 ⁇ m or more, 50 ⁇ m or more, 80 ⁇ m or more, 15 ⁇ m to 150 ⁇ m, 15 ⁇ m to 35 ⁇ m, or 85 ⁇ m to 150 ⁇ m.
  • Such a magnetic sheet may be manufactured by a method of manufacturing a conventional film or sheet.
  • the stacked body of the magnetic sheet may be a stack of 20 or more magnetic sheets, or 50 or more magnetic sheets.
  • the stacked body of the magnetic sheet may be a stack of 150 or less, or 100 or less magnetic sheets.
  • the thickness of the magnetic block may be 1 mm or more, 2 mm or more, 3 mm or more, or 4 mm or more. In addition, the thickness of the magnetic block may be 6 mm or less.
  • the magnetic unit may have a certain level of magnetic characteristics in the vicinity of a standard frequency for wireless charging of an electric vehicle.
  • the standard frequency of wireless charging of the electric vehicle may be less than 100 kHz, for example, 79 kHz to 90 kHz, specifically 81 kHz to 90 kHz, and more specifically about 85 kHz, which may be used in mobile electronic devices such as mobile phones. It is a band that is distinct from the applied frequency.
  • the magnetic permeability at a frequency of 85 kHz may vary depending on the material, but may be 5 or more, for example, 5 to 150,000, and may be 5 to 300, 500 to 3,500, or 10,000 to 150,000, depending on the specific material.
  • the investment loss at the frequency of 85 kHz of the magnetic part may vary depending on the material, but may be 0 or more, for example, 0 to 50,000, and 0 to 1,000, 1 to 100, 100 to 1,000, or 5,000 to Can be 50,000.
  • the magnetic part when the magnetic part is a polymer magnetic block containing magnetic powder and a binder resin, the magnetic permeability may be 5 to 130, 15 to 80, or 10 to 50 at a frequency of 85 kHz, and the investment loss is 0 to 20 , 0 to 15, or may be 0 to 5.
  • the magnetic permeability may be 1,000 to 5,000, or 2,000 to 4,000 at a frequency of 85 kHz, and the investment loss may be 0 to 1,000, 0 to 100, or 0 to 50. have.
  • the magnetic permeability at a frequency of 85 kHz may be 500 to 3,000, or 10,000 to 150,000, and the investment loss may be 100 to 1,000, or 8,000 to 50,000.
  • the magnetic part may include a polymer type magnetic material, and the polymer type magnetic material may be elongated at a predetermined ratio.
  • the elongation rate of the polymer magnetic material may be 0.5% or more.
  • the elongation property is difficult to obtain in a ceramic-based magnetic material to which a polymer is not applied, and damage can be reduced even if a large-area magnetic portion is distorted by an impact.
  • the elongation rate of the polymer magnetic material may be 0.5% or more, 1% or more, or 2.5% or more.
  • the elongation is preferably 10% or less.
  • the magnetic part Since the magnetic part has superior impact resistance compared to a general sintered ferrite magnetic body, there is little change in characteristics according to the impact of the wireless charging device using the magnetic part.
  • the rate of change in properties before and after impact (%) can be calculated by the following equation.
  • Characteristic change rate (%)
  • the inductance change rate in the wireless charging device using the magnetic portion before and after the impact may be less than 5% or 3% or less. More specifically, the inductance change rate may be 0% to 3%, 0.001% to 2%, or 0.01% to 1.5%.
  • the rate of change of the quality factor (Q factor) in the wireless charging device using the magnetic part before and after the impact is 0% to 5%, 0.001% to 4%, Alternatively, it may be 0.01% to 2.5%.
  • the resistance change rate in the wireless charging device using the magnetic part before and after the impact is 0% to 2.8%, 0.001% to 1.8%, or 0.1% to 1.0 It can be %.
  • the rate of change in charging efficiency in the wireless charging device using the magnetic part before and after the impact is 0% to 6.8%, 0.001% to 5.8%, or 0.01% to It could be 3.4%.
  • the performance of the wireless charging device can be well maintained at a certain level even in an environment where actual shock or vibration is repeatedly applied.
  • the wireless charging device may further include a cooler connected to the second conductive wire.
  • FIG. 2A is a cross-sectional view of a wireless charging device according to an embodiment
  • FIG. 2B is an external observation of a wireless charging device according to an embodiment.
  • a wireless charging device 10 includes: a coil unit including a first conductive wire 210; A shield part 400 disposed on the coil part; A magnetic part 300 disposed between the coil part and the shield part 400; A second conductive wire 220 connected to the first conductive wire 210; And a cooler 15 connected to the second conductive wire 220.
  • the second conductive wire may transfer heat generated from the first conductive wire to the outside. Specifically, the second conductive wire may transfer heat generated from the first conductive wire to the cooler.
  • the cooler may employ a method and structure for effectively cooling the second conductive wire.
  • the cooler may cool the second conductive wire by air cooling or water cooling.
  • the cooler may be connected to the second conductive wire while having a sealed structure for waterproofing and dustproofing.
  • the second conductive wire may at least partially contact the cooler.
  • the length of the contact portion may be 3 cm to 100 cm. When it is within the above range, it may be advantageous in terms of effective coil cooling. More specifically, the length of the contact portion may be 3 cm to 50 cm, 3 cm to 30 cm, 3 cm to 10 cm, 50 cm to 100 cm, or 20 cm to 80 cm.
  • the wireless charging device may further include a housing accommodating the above-described components.
  • the housing allows constituent elements such as the coil part, the shield part, and the magnetic part to be properly arranged and assembled.
  • the material and structure of the housing may employ a material and structure of a conventional housing used in a wireless charging device, and may be appropriately designed according to the components included therein.
  • a wireless charging device 10 includes a housing 600; A coil unit disposed in the housing 600 and including a first conductive wire 210; A shield part 400 disposed on the coil part; A magnetic part 300 disposed between the coil part and the shield part 400; A cooler 15 disposed outside the housing 600; And a second conductive wire 220 connected to the cooler 15, and the second conductive wire 220 is connected to the first conductive wire 210.
  • the wireless charging device 10 may further include a support part 100 supporting the coil part.
  • the material and structure of the support part may be a material and structure of a conventional support part used in a wireless charging device.
  • the support part may have a flat plate structure or a structure in which grooves are formed along the shape of the coil part to fix the coil part.
  • the wireless charging device may further include a spacer for securing a space between the shield part and the magnetic part.
  • the material and structure of the spacer may be a material and structure of a conventional spacer used in a wireless charging device.
  • FIG 3 shows a wireless charging device applied to a mobile means such as an electric vehicle.
  • the wireless charging device 10 may be provided under the moving means 1.
  • a moving means includes a wireless charging device, wherein the wireless charging device includes a housing; A coil unit disposed in the housing and including a first conductive wire; A shield part disposed on the coil part; A magnetic portion disposed between the coil portion and the shield portion; A cooler disposed outside the housing; And a second conductive wire connected to the cooler, and the second conductive wire is connected to the first conductive wire.
  • a cooling facility basically provided in the moving means may be used.
  • the cooler may include an automobile air conditioner.
  • a moving means 1 specifically an air conditioner provided inside an electric vehicle, is used as the cooler 15, and a second conductive wire extending from the coil portion of the wireless charging device 10 It can be connected to 220. Accordingly, even if a separate cooler is not manufactured, effective heat dissipation may be possible.
  • the moving means may further include a battery receiving power from the wireless charging device.
  • the wireless charging device may receive power wirelessly and transmit it to the battery, and the battery may supply power to a drive system of the moving means.
  • the battery may be charged by power delivered from the wireless charging device or other additional wired charging device.
  • the moving means may further include a signal transmitter for transmitting information on charging to a transmitter of a wireless charging system for a moving means.
  • Information on such charging may include charging efficiency such as charging speed, charging status, and the like.
  • FIG. 5 shows a moving means to which a wireless charging device is applied, specifically an electric vehicle, and may be wirelessly charged in a parking area equipped with a wireless charging system for an electric vehicle by providing a wireless charging device at the bottom.
  • the moving means 1 includes a wireless charging device according to the embodiment as a receiver 21.
  • the wireless charging device serves as a wireless charging receiver 21 of the moving means 1 and can receive power from the wireless charging transmitter 22.
  • the magnetic powder slurry prepared above was coated on a carrier film by a comma coater, and dried at a temperature of about 110° C. to form a polymer-type magnetic body.
  • the polymeric magnetic material was compression-cured by a hot press process for about 60 minutes at a temperature of about 170° C. and a pressure of about 9 Mpa to obtain a sheet.
  • the magnetic powder content in the sheet thus prepared was about 90% by weight, and the thickness of one sheet was about 100 ⁇ m. 40 to 50 sheets were stacked to obtain a magnetic portion having a thickness of about 4.8 mm.
  • a PC-95 ferrite magnetic sheet (thickness 5 mm) manufactured by TDK was used as a comparative example.
  • the elongation rate was measured using a UTM device (INSTRON 5982, INSTRON) on the magnetic part sample before impact by the method of ASTM D412 Type C.
  • Characteristic change rate (%)
  • SAE J2954 WPT1 Z2 Class standard TEST standard coil and frame are applied, and magnetic parts, spacers and aluminum plates are stacked to manufacture a receiving device (35.5 cm x 35.5 cm) and a transmitting device (67.48 cm x 59.1 cm). Measured at the kHz frequency.
  • Inductance and resistance were measured using an LCR meter (IM3533, HIOKI).
  • the quality factor (Q factor) was calculated by the equation of inductance x frequency x 2 ⁇ /resistance.
  • Charging efficiency was measured under conditions of output power of 1000W and frequency of 85 kHz.
  • the elongation of the ferrite sheet of Comparative Example was 0%, while the magnetic portion of Preparation Example 1 was measured to have an elongation of 3%.
  • the magnetic portion of Preparation Example 1 was not only excellent in inductance, quality factor, and resistance of the device using the device before impact, but also the rate of change of the characteristics after impact was measured in the range of 0 to 1%.
  • the ferrite sheet of the comparative example was measured to have a high rate of change in inductance, quality factor, and resistance of the device using the same after impact, and in particular, the rate of change (reduction rate) of charging efficiency was measured as high as 3%. From this, it was confirmed that the magnetic part of Preparation Example 1 compared to the conventional ferrite sheet is suitable for a wireless charging device in an environment where an impact is easily applied during a driving process such as an electric vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A wireless charging device according to an embodiment can effectively exhaust heat, generated in a coil part, through a conductive wire extending from the coil part. Therefore, the wireless charging device can be effectively used for a transportation means, such as an electric vehicle, which requires high-capacity power transmission between a transmitter and a receiver.

Description

무선충전 장치 및 이를 포함하는 이동 수단Wireless charging device and moving means including same
구현예는 무선충전 장치 및 이를 포함하는 이동 수단에 관한 것이다. 보다 구체적으로, 구현예는 방열 구조를 적용하여 충전 효율이 향상된 무선충전 장치 및 이를 포함하는 전기 자동차와 같은 이동 수단에 관한 것이다. The embodiment relates to a wireless charging device and a moving means including the same. More specifically, the embodiment relates to a wireless charging device with improved charging efficiency by applying a heat dissipation structure and a moving means such as an electric vehicle including the same.
오늘날 정보통신 분야는 매우 빠른 속도로 발전하고 있으며, 전기, 전자, 통신, 반도체 등이 종합적으로 조합된 다양한 기술들이 지속적으로 개발되고 있다. 또한, 전자기기의 모바일화 경향이 증대함에 따라 통신분야에서도 무선 통신 및 무선 전력 전송 기술에 대한 연구가 활발히 진행되고 있다. 특히, 전자기기 등에 무선으로 전력을 전송하는 방안에 관한 연구가 활발히 진행되고 있다.Today, the field of information and communication is developing at a very fast pace, and various technologies in which electricity, electronics, communication, semiconductors, etc. are comprehensively combined are continuously being developed. In addition, as the tendency of electronic devices to become mobile is increasing, research on wireless communication and wireless power transmission technology is being actively conducted in the communication field. In particular, research on a method of wirelessly transmitting power to electronic devices and the like has been actively conducted.
상기 무선 전력 전송은 전력을 공급하는 송신기와 전력을 공급받는 수신기 간에 물리적인 접촉 없이 유도 결합(inductive coupling), 용량 결합(capacitive coupling) 또는 안테나 등의 전자기장 공진 구조를 이용하여 공간을 통해 전력을 무선으로 전송하는 것이다. 상기 무선 전력 전송은 대용량의 배터리가 요구되는 휴대용 통신기기, 전기 자동차 등에 적합하며 접점이 노출되지 않아 누전 등의 위험이 거의 없으며 유선 방식의 충전 불량 현상을 막을 수 있다.In the wireless power transmission, power is wirelessly transmitted through space using an electromagnetic field resonance structure such as inductive coupling, capacitive coupling, or an antenna without physical contact between a transmitter supplying power and a receiver receiving power. To transfer. The wireless power transmission is suitable for portable communication devices, electric vehicles, etc. that require a large-capacity battery, and since the contact point is not exposed, there is little risk of a short circuit, and a wired charging failure phenomenon can be prevented.
한편, 최근 들어 전기 자동차에 대한 관심이 급증하면서 충전 인프라 구축에 대한 관심이 증대되고 있다. 이미 가정용 충전기를 이용한 전기 자동차 충전을 비롯하여 배터리 교체, 급속 충전 장치, 무선충전 장치 등 다양한 충전 방식이 등장하였고, 새로운 충전 사업 비즈니스 모델도 나타나기 시작했다(대한민국 공개특허 제 2011-0042403 호 참조). 또한, 유럽에서는 시험 운행중인 전기차와 충전소가 눈에 띄기 시작했고, 일본에서는 자동차 제조 업체와 전력 회사들이 주도하여 전기 자동차 및 충전소를 시범적으로 운영하고 있다.Meanwhile, as interest in electric vehicles has recently increased, interest in building a charging infrastructure is increasing. Various charging methods such as battery replacement, rapid charging device, and wireless charging device have already appeared, including charging electric vehicles using household chargers, and a new charging business business model has also begun to appear (see Korean Patent Laid-Open Patent No. 2011-0042403). In addition, in Europe, electric vehicles and charging stations in test operation have begun to stand out, and in Japan, electric vehicles and charging stations are being piloted, led by automobile manufacturers and power companies.
[선행기술문헌][Prior technical literature]
(특허문헌 1) 한국 공개특허공보 제2011-0042403호(Patent Document 1) Korean Patent Application Publication No. 2011-0042403
전기 자동차 등에 사용되는 종래의 무선충전 장치는, 도 4를 참조하여, 무선충전 효율 향상을 위해 코일부(200')에 인접하여 자성부(300')가 배치되고, 전자기 차폐를 위한 쉴드부(400')가 자성부(300')와 일정 간격 이격하여 배치된다.In a conventional wireless charging device used in an electric vehicle, referring to FIG. 4, a magnetic part 300 ′ is disposed adjacent to the coil part 200 ′ to improve wireless charging efficiency, and a shield part for electromagnetic shielding ( 400 ′) is disposed to be spaced apart from the magnetic part 300 ′ by a predetermined distance.
무선충전 장치는 무선충전 동작 중에 코일부의 저항과 자성부의 자기 손실에 의해 열을 발생한다. 특히 무선충전 장치 내의 자성부는 전자기파 에너지 밀도가 높은 코일부와 가까운 부분에서 열을 발생하고, 발생한 열은 자성부의 자기 특성을 변화시켜 송신기와 수신기 간의 임피던스 불일치를 유발하여, 충전 효율이 저하되고 이로 인해 다시 발열이 심화되는 문제가 있었다. 그러나 이러한 무선충전 장치는 전기 자동차의 하부에 설치되기 때문에, 방진 및 방수와 충격 흡수를 위해 밀폐 구조를 채용하므로 방열 구조를 구현하는데 어려움이 있었다.The wireless charging device generates heat due to the resistance of the coil unit and the magnetic loss of the magnetic unit during the wireless charging operation. In particular, the magnetic part in the wireless charging device generates heat near the coil part with high electromagnetic wave energy density, and the generated heat changes the magnetic properties of the magnetic part, causing impedance mismatch between the transmitter and the receiver, reducing charging efficiency. There was a problem that the fever worsened again. However, since such a wireless charging device is installed under the electric vehicle, it is difficult to implement a heat dissipation structure because it employs a sealed structure for dustproof, waterproof, and shock absorption.
이에 본 발명자들이 연구한 결과, 코일부로부터 연장된 전도성 와이어를 통해, 코일부에서 발생하는 열을 효과적으로 열을 배출할 수 있음을 발견하였다.Accordingly, as a result of research by the present inventors, it has been found that heat generated in the coil unit can be effectively discharged through a conductive wire extending from the coil unit.
따라서 구현예의 과제는, 방열이 효과적인 무선충전 장치 및 이를 포함하는 이동 수단을 제공하는 것이다.Therefore, the object of the embodiment is to provide a wireless charging device and a moving means including the same with effective heat dissipation.
일 구현예에 따르면, 제 1 전도성 와이어를 포함하는 코일부; 상기 코일부 상에 배치된 쉴드부; 상기 코일부와 상기 쉴드부 사이에 배치된 자성부; 및 상기 제 1 전도성 와이어에 연결된 제 2 전도성 와이어를 포함하는, 무선충전 장치가 제공된다.According to one embodiment, the coil unit including a first conductive wire; A shield part disposed on the coil part; A magnetic portion disposed between the coil portion and the shield portion; And a second conductive wire connected to the first conductive wire.
다른 구현예에 따르면, 무선충전 장치를 포함하는 이동 수단으로서, 상기 무선충전 장치가 하우징; 상기 하우징 내에 배치되고 제 1 전도성 와이어를 포함하는 코일부; 상기 코일부 상에 배치된 쉴드부; 상기 코일부와 상기 쉴드부 사이에 배치된 자성부; 상기 하우징의 외부에 배치된 냉각기; 및 상기 냉각기와 연결된 제 2 전도성 와이어를 포함하고, 상기 제 2 전도성 와이어가 상기 제 1 전도성 와이어에 연결된, 이동 수단이 제공된다.According to another embodiment, there is provided a moving means including a wireless charging device, the wireless charging device comprising: a housing; A coil unit disposed in the housing and including a first conductive wire; A shield part disposed on the coil part; A magnetic portion disposed between the coil portion and the shield portion; A cooler disposed outside the housing; And a second conductive wire connected to the cooler, wherein the second conductive wire is connected to the first conductive wire.
상기 구현예에 따른 무선충전 장치는 코일부로부터 연장된 전도성 와이어를 통해, 코일부에서 발생하는 열을 효과적으로 열을 배출할 수 있다.The wireless charging device according to the embodiment may effectively discharge heat from the coil unit through the conductive wire extending from the coil unit.
구체적인 구현예에 따르면, 상기 무선충전 장치는 코일부로부터 연장된 전도성 와이어를 통해, 코일부에서 발생하는 열을 상기 냉각기로 전달할 수 있고, 상기 냉각기로서 자동차와 같은 이동 수단에 기본적으로 구비되는 에어컨 등의 냉각 설비를 이용함으로써, 별도의 냉각기를 제작하지 않더라도, 효과적인 방열이 가능할 수 있다.According to a specific embodiment, the wireless charging device may transfer heat generated from the coil unit to the cooler through a conductive wire extending from the coil unit, and as the cooler, an air conditioner that is basically provided in a moving means such as a vehicle, etc. By using the cooling facility of, effective heat dissipation may be possible even if a separate cooler is not manufactured.
따라서 상기 무선충전 장치는 송신기와 수신기 간의 대용량의 전력 전송을 요구하는 전기 자동차와 같은 이동 수단에 유용하게 사용될 수 있다.Accordingly, the wireless charging device can be usefully used in a mobile means such as an electric vehicle that requires a large amount of power transmission between a transmitter and a receiver.
도 1은 일 구현예에 따른 무선충전 장치의 분해사시도를 나타낸 것이다.1 is an exploded perspective view of a wireless charging device according to an embodiment.
도 2a는 일 구현예에 따른 무선충전 장치의 단면도를 나타낸 것이다.2A is a cross-sectional view of a wireless charging device according to an embodiment.
도 2b는 일 구현예에 따른 무선충전 장치를 외부에서 관찰한 것이다.2B is an external observation of a wireless charging device according to an embodiment.
도 3은 전기 자동차에 적용된 무선충전 장치를 나타낸 것이다.3 shows a wireless charging device applied to an electric vehicle.
도 4는 종래의 무선충전 장치의 분해사시도를 나타낸 것이다.4 is an exploded perspective view of a conventional wireless charging device.
도 5는 무선충전 장치가 수신기로 적용된 이동 수단을 도시한 것이다.5 shows a moving means to which a wireless charging device is applied as a receiver.
<부호의 설명><Explanation of code>
1: 이동 수단, 1: means of transportation,
10: 일 구현예에 따른 무선충전 장치,10: wireless charging device according to an embodiment,
10': 종래기술에 따른 무선충전 장치,10': wireless charging device according to the prior art,
15: 냉각기,15: cooler,
21: 수신기, 22: 송신기,21: receiver, 22: transmitter,
100, 100': 지지부, 200': 코일부,100, 100': support, 200': coil,
210: 제 1 전도성 와이어, 220: 제 2 전도성 와이어,210: first conductive wire, 220: second conductive wire,
300, 300': 자성부, 400, 400': 쉴드부,300, 300': magnetic part, 400, 400': shield part,
600: 하우징.600: housing.
이하의 구현예의 설명에 있어서, 하나의 구성요소가 다른 구성요소의 상 또는 하에 형성되는 것으로 기재되는 것은, 하나의 구성요소가 다른 구성요소의 상 또는 하에 직접, 또는 또 다른 구성요소를 개재하여 간접적으로 형성되는 것을 모두 포함한다. In the description of the following embodiments, it is described that one component is formed above or below another component, in which one component is directly above or below another component, or indirectly through another component. It includes all that are formed by.
또한 각 구성요소의 상/하에 대한 기준은 도면을 기준으로 설명한다. 도면에서의 각 구성요소들의 크기는 설명을 위하여 과장될 수 있으며, 실제로 적용되는 크기와 다를 수 있다.In addition, standards for the top/bottom of each component will be described based on the drawings. The size of each component in the drawings may be exaggerated for description, and may be different from the size that is actually applied.
본 명세서에서 어떤 구성요소를 "포함"한다는 것은, 특별히 반대되는 기재가 없는 한, 그 외 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있음을 의미한다. In the present specification, "including" a certain element means that other elements may not be excluded, and other elements may be further included, unless otherwise specified.
또한, 본 명세서에 기재된 구성요소의 특성 값, 치수 등을 나타내는 모든 수치 범위는 특별한 기재가 없는 한 모든 경우에 "약"이라는 용어로 수식되는 것으로 이해하여야 한다.In addition, all numerical ranges representing characteristic values, dimensions, and the like of components described in the present specification are to be understood as being modified by the term "about" in all cases unless otherwise specified.
본 명세서에서 단수 표현은 특별한 설명이 없으면 문맥상 해석되는 단수 또는 복수를 포함하는 의미로 해석되어야 한다.In the present specification, unless otherwise specified, the singular expression should be interpreted as a meaning including the singular or plural interpreted in context.
무선충전 장치Wireless charging device
도 1은 일 구현예에 따른 무선충전 장치의 분해사시도를 나타낸 것이다.1 is an exploded perspective view of a wireless charging device according to an embodiment.
도 1을 참조하여, 일 구현예에 따른 무선충전 장치(10)는, 제 1 전도성 와이어(210)를 포함하는 코일부; 상기 코일부 상에 배치된 쉴드부(400); 상기 코일부와 상기 쉴드부(400) 사이에 배치된 자성부(300); 및 상기 제 1 전도성 와이어(210)에 연결된 제 2 전도성 와이어(220)를 포함한다.Referring to FIG. 1, a wireless charging device 10 according to an embodiment includes: a coil unit including a first conductive wire 210; A shield part 400 disposed on the coil part; A magnetic part 300 disposed between the coil part and the shield part 400; And a second conductive wire 220 connected to the first conductive wire 210.
이하 상기 무선충전 장치의 각 구성요소별로 구체적으로 설명한다.Hereinafter, each component of the wireless charging device will be described in detail.
제 1 전도성 와이어First conductive wire
상기 코일부는 제 1 전도성 와이어를 포함한다.The coil part includes a first conductive wire.
상기 제 1 전도성 와이어는 전도성 물질을 포함한다. 예를 들어, 상기 제 1 전도성 와이어는 전도성 금속을 포함할 수 있다. 구체적으로, 상기 제 1 전도성 와이어는 구리, 니켈, 금, 은, 아연 및 주석으로 이루어진 군으로부터 선택되는 1종 이상의 금속을 포함할 수 있다.The first conductive wire includes a conductive material. For example, the first conductive wire may include a conductive metal. Specifically, the first conductive wire may include at least one metal selected from the group consisting of copper, nickel, gold, silver, zinc, and tin.
또한, 상기 제 1 전도성 와이어는 절연성 외피를 구비할 수 있다. 예를 들어, 상기 절연성 외피는 절연성 고분자 수지를 포함할 수 있다. 구체적으로, 상기 절연성 외피는 폴리염화비닐(PVC) 수지, 폴리에틸렌(PE) 수지, 테프론 수지, 실리콘 수지, 폴리우레탄 수지 등을 포함할 수 있다.In addition, the first conductive wire may have an insulating sheath. For example, the insulating shell may include an insulating polymer resin. Specifically, the insulating shell may include polyvinyl chloride (PVC) resin, polyethylene (PE) resin, Teflon resin, silicone resin, polyurethane resin, and the like.
상기 제 1 전도성 와이어의 직경은 예를 들어 1 mm 내지 10 mm 범위, 1 mm 내지 5 mm 범위, 또는 1 mm 내지 3 mm 범위일 수 있다.The diameter of the first conductive wire may be, for example, in the range of 1 mm to 10 mm, in the range of 1 mm to 5 mm, or in the range of 1 mm to 3 mm.
상기 제 1 전도성 와이어는 평면 코일 형태로 감길 수 있다. 구체적으로 상기 평면 코일은 평면 나선 코일(planar spiral coil)을 포함할 수 있다. 또한 상기 코일의 평면 형태는 원형, 타원형, 다각형, 또는 모서리가 둥근 다각형의 형태일 수 있으나, 특별히 한정되지 않는다.The first conductive wire may be wound in a flat coil shape. Specifically, the planar coil may include a planar spiral coil. In addition, the planar shape of the coil may be a circular shape, an oval shape, a polygonal shape, or a polygonal shape having rounded corners, but is not particularly limited.
상기 평면 코일의 외경은 5 cm 내지 100 cm, 10 cm 내지 50 cm, 10 cm 내지 30 cm, 20 cm 내지 80 cm, 또는 50 cm 내지 100 cm일 수 있다. 구체적인 일례로서, 상기 평면 코일은 10 cm 내지 50 cm의 외경을 가질 수 있다. The outer diameter of the flat coil may be 5 cm to 100 cm, 10 cm to 50 cm, 10 cm to 30 cm, 20 cm to 80 cm, or 50 cm to 100 cm. As a specific example, the planar coil may have an outer diameter of 10 cm to 50 cm.
또한, 상기 평면 코일의 내경은 0.5 cm 내지 30 cm, 1 cm 내지 20 cm, 또는, 2 cm 내지 15 cm일 수 있다.In addition, the inner diameter of the flat coil may be 0.5 cm to 30 cm, 1 cm to 20 cm, or 2 cm to 15 cm.
상기 평면 코일의 감긴 횟수는 5회 내지 50회, 10회 내지 30회, 5회 내지 30회, 15회 내지 50회, 또는 20회 내지 50회일 수 있다. 구체적인 일례로서, 상기 평면 코일은 상기 제 1 전도성 와이어를 10회 내지 30회 감아 형성된 것일 수 있다.The number of windings of the flat coil may be 5 to 50 times, 10 to 30 times, 5 to 30 times, 15 to 50 times, or 20 to 50 times. As a specific example, the planar coil may be formed by winding the first conductive wire 10 to 30 times.
또한 상기 평면 코일 형태 내에서 상기 제 1 전도성 와이어 간의 간격은 0.1 cm 내지 1 cm, 0.1 cm 내지 0.5 cm, 또는 0.5 cm 내지 1 cm일 수 있다.In addition, the spacing between the first conductive wires in the planar coil shape may be 0.1 cm to 1 cm, 0.1 cm to 0.5 cm, or 0.5 cm to 1 cm.
상기와 같은 바람직한 평면 코일 치수 및 규격 범위 내일 때, 전기 자동차와 같은 대용량 전력 전송을 요구하는 분야에 적합할 수 있다.When it is within the above-described desirable planar coil dimensions and specifications, it may be suitable for a field requiring large-capacity power transmission, such as an electric vehicle.
제 2 전도성 와이어Second conductive wire
상기 제 1 전도성 와이어는 제 2 전도성 와이어와 연결된다. 즉 상기 코일부의 제 1 전도성 와이어는 상기 제 2 전도성 와이어에 의해 연장될 수 있다. 상기 제 2 전도성 와이어는 상기 제 1 전도성 와이어에서 발생하는 열을 외부로 전달할 수 있다.The first conductive wire is connected to the second conductive wire. That is, the first conductive wire of the coil unit may be extended by the second conductive wire. The second conductive wire may transfer heat generated from the first conductive wire to the outside.
도 1을 참조하여, 상기 제 2 전도성 와이어(220)는 외부의 냉각기(15)에 연결될 수 있다. 이에 따라 코일부에서 발생하는 열을 외부로 쉽게 배출할 수 있다.Referring to FIG. 1, the second conductive wire 220 may be connected to an external cooler 15. Accordingly, heat generated from the coil unit can be easily discharged to the outside.
상기 제 2 전도성 와이어는 전도성 물질을 포함할 수 있다. 예를 들어, 상기 제 2 전도성 와이어는 전도성 금속을 포함할 수 있다. 구체적으로, 상기 제 2 전도성 와이어는 구리, 니켈, 금, 은, 아연 및 주석으로 이루어진 군으로부터 선택되는 1종 이상의 금속을 포함할 수 있다.The second conductive wire may include a conductive material. For example, the second conductive wire may include a conductive metal. Specifically, the second conductive wire may include at least one metal selected from the group consisting of copper, nickel, gold, silver, zinc, and tin.
상기 제 2 전도성 와이어는 상기 제 1 전도성 와이어와 동일하거나 또는 다른 소재로 구성될 수 있다.The second conductive wire may be formed of the same or different material as the first conductive wire.
일례로서, 상기 제 2 전도성 와이어는 상기 제 1 전도성 와이어와 동일한 소재로 구성될 수 있다. 이에 따라, 상기 제 2 전도성 와이어와 상기 제 1 전도성 와이어가 서로 일체로 형성된 것일 수 있다.As an example, the second conductive wire may be made of the same material as the first conductive wire. Accordingly, the second conductive wire and the first conductive wire may be integrally formed with each other.
다른 예로서, 상기 제 2 전도성 와이어는 상기 제 1 전도성 와이어와 다른 소재로 구성될 수 있다. 구체적으로, 상기 제 2 전도성 와이어는 상기 제 1 전도성 와이어를 구성하는 소재와 다른 전도성 물질을 포함할 수 있다. As another example, the second conductive wire may be formed of a different material than the first conductive wire. Specifically, the second conductive wire may include a conductive material different from a material constituting the first conductive wire.
이 경우, 상기 제 2 전도성 와이어는 상기 제 1 전도성 와이어와 접합될 수 있다. 상기 접합은 용융 접합 또는 열전도성 접착제에 의한 접합일 수 있다. 상기 열전도성 접착제는 금속계, 카본계, 세라믹계 등의 열전도성 소재를 포함할 수 있으며, 예를 들어, 열전도성 입자가 분산된 접착제 수지일 수 있다.In this case, the second conductive wire may be bonded to the first conductive wire. The bonding may be melt bonding or bonding using a thermally conductive adhesive. The thermally conductive adhesive may include a thermally conductive material such as metal, carbon, ceramic, etc., and may be, for example, an adhesive resin in which thermally conductive particles are dispersed.
쉴드부Shield part
상기 쉴드부는 상기 코일부 상에 배치된다.The shield part is disposed on the coil part.
상기 쉴드부는 전자파 차폐를 통해 외부로 전자파가 누설되어 발생될 수 있는 전자기 간섭(EMI, electromagnetic interference)을 억제한다. The shield unit suppresses electromagnetic interference (EMI) that may occur due to leakage of electromagnetic waves to the outside through electromagnetic wave shielding.
상기 쉴드부는 상기 코일부와 일정 간격 이격되어 배치될 수 있다. 예를 들어, 상기 쉴드부와 상기 코일부의 이격 거리는 10 mm 이상 또는 15 mm 이상일 수 있고, 구체적으로 10 mm 내지 30 mm, 또는 10 mm 내지 20 mm일 수 있다.The shield part may be disposed to be spaced apart from the coil part by a predetermined distance. For example, the separation distance between the shield part and the coil part may be 10 mm or more or 15 mm or more, and specifically 10 mm to 30 mm, or 10 mm to 20 mm.
상기 쉴드부의 소재는 예를 들어 금속일 수 있고, 이에 따라 상기 쉴드부는 금속판일 수 있으나 특별히 한정되지 않는다.The material of the shield part may be, for example, metal, and accordingly, the shield part may be a metal plate, but is not particularly limited.
구체적인 일례로서 상기 쉴드부의 소재는 알루미늄일 수 있으며, 그 외 전자파 차폐능을 갖는 금속 또는 합금 소재가 사용될 수 있다.As a specific example, the material of the shield unit may be aluminum, and other metal or alloy material having electromagnetic wave shielding ability may be used.
상기 쉴드부의 두께는 0.2 mm 내지 10 mm, 0.5 mm 내지 5 mm, 또는 1 mm 내지 3 mm일 수 있다. 또한 상기 쉴드부의 면적은 200 cm2 이상, 400 cm2 이상, 또는 600 cm2 이상일 수 있다.The thickness of the shield portion may be 0.2 mm to 10 mm, 0.5 mm to 5 mm, or 1 mm to 3 mm. In addition, an area of the shield part may be 200 cm 2 or more, 400 cm 2 or more, or 600 cm 2 or more.
자성부Magnetic part
상기 자성부는 상기 코일부와 상기 쉴드부 사이에 배치된다.The magnetic part is disposed between the coil part and the shield part.
상기 자성부는 상기 쉴드부와 일정 간격 이격되어 배치될 수 있다. 예를 들어, 상기 자성부와 상기 쉴드부의 이격 거리는 3 mm 이상, 5 mm 이상, 3 mm 내지 10 mm, 또는 4 mm 내지 7 mm일 수 있다.The magnetic part may be disposed to be spaced apart from the shield part by a predetermined distance. For example, a separation distance between the magnetic part and the shield part may be 3 mm or more, 5 mm or more, 3 mm to 10 mm, or 4 mm to 7 mm.
또한 상기 자성부는 상기 코일부와 일정 간격 이격되어 배치될 수 있다. 예를 들어, 상기 자성부와 상기 코일부의 이격 거리는 0.2 mm 이상, 0.5 mm 이상, 0.2 mm 내지 3 mm, 또는 0.5 mm 내지 1.5 mm일 수 있다.In addition, the magnetic part may be disposed to be spaced apart from the coil part by a predetermined distance. For example, the separation distance between the magnetic part and the coil part may be 0.2 mm or more, 0.5 mm or more, 0.2 mm to 3 mm, or 0.5 mm to 1.5 mm.
상기 자성부는 바인더 수지 및 자성 분말을 포함하는 고분자형 자성체일 수 있다. 또는 상기 자성부는 금속계 자성체, 예를 들어 나노결정성(nanocrystalline) 자성체를 포함할 수 있다. 또는 상기 자성부는 상기 고분자형 자성체 및 상기 나노결정성 자성체의 복합체일 수 있다.The magnetic part may be a polymer type magnetic material including a binder resin and magnetic powder. Alternatively, the magnetic part may include a metallic magnetic material, for example, a nanocrystalline magnetic material. Alternatively, the magnetic part may be a composite of the polymeric magnetic material and the nanocrystalline magnetic material.
고분자형 자성체High molecular weight magnetic material
상기 자성부는 고분자형 자성체를 포함할 수 있고, 구체적으로 바인더 수지 및 상기 바인더 수지 내에 분산된 자성 분말을 포함할 수 있다.The magnetic part may include a polymer magnetic material, and specifically may include a binder resin and magnetic powder dispersed in the binder resin.
이에 따라, 상기 고분자형 자성체는 바인더 수지에 의해 자성 분말들이 서로 결합됨으로써, 넓은 면적에서 전체적으로 결함이 적으면서 충격에 의해 손상이 적을 수 있다.Accordingly, in the polymer-type magnetic material, magnetic powders are bonded to each other by the binder resin, so that defects may be reduced over a large area and damage due to impact may be reduced.
상기 자성 분말은 페라이트(Ni-Zn계, Mg-Zn계, Mn-Zn계 페라이트 등)와 같은 산화물계 자성 분말; 퍼말로이(permalloy), 샌더스트(sendust), 나노결정성(nanocrystalline) 자성체와 같은 금속계 자성 분말; 또는 이들의 혼합 분말일 수 있다. 보다 구체적으로, 상기 자성 분말은 Fe-Si-Al 합금 조성을 갖는 샌더스트 입자일 수 있다.The magnetic powder may be an oxide-based magnetic powder such as ferrite (Ni-Zn-based, Mg-Zn-based, Mn-Zn-based ferrite, etc.); Metallic magnetic powder such as permalloy, sanddust, and nanocrystalline magnetic material; Or it may be a mixture of these powders. More specifically, the magnetic powder may be sandblast particles having an Fe-Si-Al alloy composition.
일례로서, 상기 자성 분말은 하기 화학식 1의 조성을 가질 수 있다.As an example, the magnetic powder may have a composition represented by Formula 1 below.
[화학식 1][Formula 1]
Fe1-a-b-c Sia Xb Yc Fe 1-abc Si a X b Y c
상기 식에서, X는 Al, Cr, Ni, Cu, 또는 이들의 조합이고; Y는 Mn, B, Co, Mo, 또는 이들의 조합이고; 0.01 ≤ a ≤ 0.2, 0.01 ≤ b ≤ 0.1, 및 0 ≤ c ≤ 0.05 이다.In the above formula, X is Al, Cr, Ni, Cu, or a combination thereof; Y is Mn, B, Co, Mo, or a combination thereof; 0.01 ≤ a ≤ 0.2, 0.01 ≤ b ≤ 0.1, and 0 ≤ c ≤ 0.05.
상기 자성 분말의 평균 입경은 약 3 nm 내지 약 1 mm, 약 1 ㎛ 내지 300 ㎛, 약 1 ㎛ 내지 50 ㎛ 또는 약 1 ㎛ 내지 10 ㎛의 범위일 수 있다. The average particle diameter of the magnetic powder may be in the range of about 3 nm to about 1 mm, about 1 µm to 300 µm, about 1 µm to 50 µm, or about 1 µm to 10 µm.
상기 고분자형 자성체는 상기 자성 분말을 50 중량% 이상, 70 중량% 이상, 또는 85 중량% 이상의 양으로 포함할 수 있다. The polymeric magnetic material may contain the magnetic powder in an amount of 50% by weight or more, 70% by weight or more, or 85% by weight or more.
예를 들어, 상기 고분자형 자성체는 상기 자성 분말을 50 중량% 내지 99 중량%, 70 중량% 내지 95 중량%, 70 중량% 내지 90 중량%, 75 중량% 내지 90 중량%, 75 중량% 내지 95 중량%, 80 중량% 내지 95 중량%, 또는 80 중량% 내지 90 중량%의 양으로 포함할 수 있다. For example, the polymeric magnetic material contains 50% to 99% by weight, 70% to 95% by weight, 70% to 90% by weight, 75% to 90% by weight, 75% to 95% by weight of the magnetic powder. It may be included in an amount of wt%, 80 wt% to 95 wt%, or 80 wt% to 90 wt%.
상기 바인더 수지는 경화성 수지일 수 있다. 구체적으로, 상기 바인더 수지는 광경화성 수지, 열경화성 수지 및/또는 고내열 열가소성 수지를 포함할 수 있으며, 바람직하게는 열경화성 수지를 포함할 수 있다.The binder resin may be a curable resin. Specifically, the binder resin may include a photocurable resin, a thermosetting resin, and/or a high heat-resistant thermoplastic resin, and preferably a thermosetting resin.
이와 같이 경화되어 접착성을 나타낼 수 있는 수지로서, 글리시딜기, 이소시아네이트기, 히드록실기, 카복실기 또는 아미드기 등과 같은 열에 의한 경화가 가능한 관능기 또는 부위를 하나 이상 포함하거나; 또는 에폭시드(epoxide)기, 고리형 에테르(cyclic ether)기, 설파이드(sulfide)기, 아세탈(acetal)기 또는 락톤(lactone)기 등과 같은 활성 에너지에 의해 경화가 가능한 관능기 또는 부위를 하나 이상 포함하는 수지를 사용할 수 있다. 이와 같은 관능기 또는 부위는 예를 들어 이소시아네이트기, 히드록실기 또는 카복실기일 수 있다.As a resin capable of being cured and exhibiting adhesiveness as described above, it includes at least one functional group or moiety capable of curing by heat such as a glycidyl group, an isocyanate group, a hydroxyl group, a carboxyl group or an amide group; Or it contains one or more functional groups or moieties that can be cured by active energy such as an epoxide group, a cyclic ether group, a sulfide group, an acetal group or a lactone group. You can use the resin. Such a functional group or moiety may be, for example, an isocyanate group, a hydroxyl group or a carboxyl group.
구체적으로, 상기 경화성 수지는, 상술한 바와 같은 관능기 또는 부위를 적어도 하나 이상 가지는 폴리우레탄 수지, 아크릴 수지, 폴리에스테르 수지, 이소시아네이트 수지 또는 에폭시 수지 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.Specifically, the curable resin may be a polyurethane resin, an acrylic resin, a polyester resin, an isocyanate resin, or an epoxy resin having at least one or more functional groups or moieties as described above, but is not limited thereto.
일례로서, 상기 바인더 수지는 폴리우레탄계 수지, 이소시아네이트계 경화제 및 에폭시계 수지를 포함할 수 있다. As an example, the binder resin may include a polyurethane-based resin, an isocyanate-based curing agent, and an epoxy-based resin.
상기 고분자형 자성체는 상기 바인더 수지를 5 중량% 내지 40 중량%, 5 중량% 내지 20 중량%, 5 중량% 내지 15 중량%, 또는 7 중량% 내지 15 중량%의 양으로 함유할 수 있다. The polymeric magnetic material may contain the binder resin in an amount of 5% to 40% by weight, 5% to 20% by weight, 5% to 15% by weight, or 7% to 15% by weight.
또한, 상기 고분자형 자성체는 이의 중량을 기준으로, 상기 바인더 수지로서, 6 중량% 내지 12 중량%의 폴리우레탄계 수지, 0.5 중량% 내지 2 중량%의 소시아네이트계 경화제, 및 0.3 중량% 내지 1.5 중량%의 에폭시계 수지를 포함할 수 있다.In addition, the high molecular weight magnetic body is, based on its weight, as the binder resin, 6% to 12% by weight of a polyurethane-based resin, 0.5% to 2% by weight of a isocyanate-based curing agent, and 0.3% to 1.5% by weight % Epoxy resin.
상기 고분자형 자성체는 자성 분말과 고분자 수지 조성물을 혼합하여 슬러리화한 후 시트 형상으로 성형하고 경화하는 등의 시트화 과정으로 제조할 수 있으나, 일정한 두께를 갖는 대면적의 고분자형 자성체를 제조하기 위해 몰드를 이용한 성형의 방식으로 블록을 제조할 수 있다. The polymeric magnetic material can be prepared by a sheeting process such as mixing magnetic powder and a polymeric resin composition into a slurry, molding into a sheet, and curing. However, in order to manufacture a large-area polymeric magnetic material having a certain thickness, Blocks can be manufactured by molding using a mold.
상기 제조의 방법에는 통상의 시트화 또는 블록화 방법이 적용될 수 있다.A conventional sheeting or blocking method may be applied to the manufacturing method.
나노결정성 자성체Nanocrystalline magnetic material
상기 자성부는 나노결정성 자성체를 포함할 수 있다.The magnetic part may include a nanocrystalline magnetic material.
상기 나노결정성 자성체를 적용 시에, 코일부와 거리가 멀어질수록 코일부의 인덕턴스(Ls)가 낮아지더라도 저항(Rs)이 더욱 낮아짐으로써 코일부의 품질계수(Q factor: Ls/Rs)가 높아져서 충전 효율이 향상되고 발열이 줄어들 수 있다.When the nanocrystalline magnetic material is applied, the coil unit's quality factor (Q factor: Ls/Rs) is lowered even though the coil unit's inductance (Ls) decreases as the distance from the coil unit increases. As is increased, charging efficiency can be improved and heat generation can be reduced.
예를 들어, 상기 나노결정성 자성체는 Fe계 나노결정성 자성체일 수 있고, 구체적으로 Fe-Si-Al계 나노결정성 자성체, Fe-Si-Cr계 나노결정성 자성체, 또는 Fe-Si-B-Cu-Nb계 나노결정성 자성체일 수 있다.For example, the nanocrystalline magnetic material may be an Fe-based nanocrystalline magnetic material, specifically, a Fe-Si-Al-based nanocrystalline magnetic material, a Fe-Si-Cr-based nanocrystalline magnetic material, or a Fe-Si-B It may be a Cu-Nb-based nanocrystalline magnetic material.
보다 구체적으로, 상기 나노결정성 자성체는 Fe-Si-B-Cu-Nb계 나노결정성 자성체일 수 있고, 이 경우, Fe가 70 원소% 내지 85 원소%, Si 및 B의 합이 10 원소% 내지 29 원소%, Cu와 Nb의 합이 1 원소% 내지 5 원소%일 수 있다(여기서 원소%란 총 원소의 갯수에 대한 특정 원소의 갯수의 백분율을 의미한다). 상기 조성 범위에서 Fe-Si-B-Cu-Nb계 합금이 열처리에 의해 나노결정성 자성체로 쉽게 형성될 수 있다.More specifically, the nanocrystalline magnetic material may be a Fe-Si-B-Cu-Nb-based nanocrystalline magnetic material, in which case, Fe is 70 element% to 85 element%, and the sum of Si and B is 10 element% To 29 element%, and the sum of Cu and Nb may be 1 element% to 5 element% (here, the element% means the percentage of the number of specific elements relative to the total number of elements). In the above composition range, the Fe-Si-B-Cu-Nb-based alloy can be easily formed into a nanocrystalline magnetic material by heat treatment.
상기 나노결정성 자성체는, 예를 들어 Fe계 합금을 멜트 스피닝에 의한 급냉응고법(RSP)으로 제조하며, 원하는 투자율을 얻을 수 있도록 300℃ 내지 700℃의 온도 범위에서 30분 내지 2시간 동안 무자장 열처리를 행하여 제조될 수 있다.The nanocrystalline magnetic material is prepared by, for example, a rapid cooling solidification method (RSP) by melt spinning of an Fe-based alloy, and no magnetic field for 30 minutes to 2 hours at a temperature range of 300° C. to 700° C. to obtain a desired magnetic permeability. It can be manufactured by performing heat treatment.
만약 열처리 온도가 300℃ 미만인 경우 나노결정이 충분히 생성되지 않아 원하는 투자율이 얻어지지 않으며 열처리 시간이 길게 소요될 수 있고, 700℃를 초과하는 경우는 과열처리에 의해 투자율이 현저하게 낮아질 수 있다. 또한, 열처리 온도가 낮으면 처리시간이 길게 소요되고, 반대로 열처리 온도가 높으면 처리시간은 단축되는 것이 바람직하다. If the heat treatment temperature is less than 300°C, nanocrystals are not sufficiently formed, so that the desired permeability is not obtained, and the heat treatment time may take a long time, and if the heat treatment temperature exceeds 700°C, the permeability may be significantly lowered by superheat treatment. In addition, when the heat treatment temperature is low, it takes a long treatment time, and on the contrary, if the heat treatment temperature is high, the treatment time is preferably shortened.
한편 상기 나노결정성 자성체는 제조 공정상 두꺼운 두께를 만들기 어려우며 예를 들어 15 ㎛ 내지 35 ㎛ 두께의 박막 시트로 형성될 수 있다. 따라서 이러한 박막 시트를 여러 장 적층하여 자성부를 형성할 수 있다. 이때 상기 박막 시트 사이에는 접착 테이프와 같은 접착제층이 삽입될 수 있다. 또한 상기 나노결정성 자성체는 제조 공정 후단에 가압 롤 등에 의해 파쇄하여 박막 시트에 다수의 크랙을 형성함으로써, 복수 개의 나노결정성 미세 조각들을 포함하도록 제조할 수 있다.Meanwhile, the nanocrystalline magnetic material is difficult to make a thick thickness in the manufacturing process, and may be formed as a thin film sheet having a thickness of, for example, 15 µm to 35 µm. Therefore, it is possible to form a magnetic portion by stacking several such thin-film sheets. In this case, an adhesive layer such as an adhesive tape may be inserted between the thin film sheets. In addition, the nanocrystalline magnetic material may be crushed by a pressure roll or the like at the rear end of the manufacturing process to form a plurality of cracks in the thin film sheet, thereby manufacturing a plurality of nanocrystalline fine pieces.
자성부의 면적 및 두께Area and thickness of magnetic part
상기 자성부는 자성 시트, 자성 시트 적층체, 또는 자성 블록일 수 있다.The magnetic portion may be a magnetic sheet, a magnetic sheet stack, or a magnetic block.
상기 자성부는 대면적을 가질 수 있고, 구체적으로 200 cm2 이상, 400 cm2 이상, 또는 600 cm2 이상의 면적을 가질 수 있다. 또한, 상기 자성부는 10,000 cm2 이하의 면적을 가질 수 있다.The magnetic part may have a large area, and specifically, may have an area of 200 cm 2 or more, 400 cm 2 or more, or 600 cm 2 or more. In addition, the magnetic part may have an area of 10,000 cm 2 or less.
상기 대면적의 자성부는 다수의 단위 자성체가 조합되어 구성될 수 있으며, 이때, 상기 단위 자성체의 면적은 60 cm2 이상, 90 cm2, 또는 95 cm2 내지 900 cm2일 수 있다.The large-area magnetic unit may be configured by combining a plurality of unit magnetic bodies, and in this case, the area of the unit magnetic body may be 60 cm 2 or more, 90 cm 2 , or 95 cm 2 to 900 cm 2 .
상기 자성 시트의 두께는 15 ㎛ 이상, 50 ㎛ 이상, 80 ㎛ 이상, 15 ㎛ 내지 150 ㎛, 15 ㎛ 내지 35 ㎛, 또는 85 ㎛ 내지 150 ㎛일 수 있다. 이러한 자성 시트는 통상의 필름 또는 시트를 제조하는 방법으로 제조될 수 있다.The thickness of the magnetic sheet may be 15 µm or more, 50 µm or more, 80 µm or more, 15 µm to 150 µm, 15 µm to 35 µm, or 85 µm to 150 µm. Such a magnetic sheet may be manufactured by a method of manufacturing a conventional film or sheet.
상기 자성 시트의 적층체는 상기 자성 시트가 20장 이상, 또는 50장 이상 적층된 것일 수 있다. 또한 상기 자성 시트의 적층체는 상기 자성 시트가 150장 이하, 또는 100장 이하로 적층된 것일 수 있다.The stacked body of the magnetic sheet may be a stack of 20 or more magnetic sheets, or 50 or more magnetic sheets. In addition, the stacked body of the magnetic sheet may be a stack of 150 or less, or 100 or less magnetic sheets.
상기 자성 블록의 두께는 1 mm 이상, 2 mm 이상, 3 mm 이상, 또는 4 mm 이상일 수 있다. 또한, 상기 자성 블록의 두께는 6 mm 이하일 수 있다. The thickness of the magnetic block may be 1 mm or more, 2 mm or more, 3 mm or more, or 4 mm or more. In addition, the thickness of the magnetic block may be 6 mm or less.
자성부의 자성 특성Magnetic properties of the magnetic part
상기 자성부는 전기 자동차의 무선충전 표준 주파수 근방에서 일정 수준의 자성 특성을 가질 수 있다. The magnetic unit may have a certain level of magnetic characteristics in the vicinity of a standard frequency for wireless charging of an electric vehicle.
상기 전기 자동차의 무선충전 표준 주파수는 100 kHz 미만일 수 있고, 예를 들어 79 kHz 내지 90 kHz, 구체적으로 81 kHz 내지 90 kHz, 보다 구체적으로 약 85 kHz일 수 있으며, 이는 휴대폰과 같은 모바일 전자기기에 적용하는 주파수와 구별되는 대역이다.The standard frequency of wireless charging of the electric vehicle may be less than 100 kHz, for example, 79 kHz to 90 kHz, specifically 81 kHz to 90 kHz, and more specifically about 85 kHz, which may be used in mobile electronic devices such as mobile phones. It is a band that is distinct from the applied frequency.
상기 자성부의 85 kHz의 주파수에서 투자율은 소재에 따라 달라질 수 있으나 5 이상, 예를 들어 5 내지 150,000일 수 있으며, 구체적인 소재에 따라 5 내지 300, 500 내지 3,500, 또는 10,000 내지 150,000일 수 있다. 또한 상기 자성부의 85 kHz의 주파수에서 투자손실은 소재에 따라 달라질 수 있으나 0 이상, 예를 들어 0 내지 50,000일 수 있으며, 구체적인 소재에 따라 0 내지 1,000, 1 내지 100, 100 내지 1,000, 또는 5,000 내지 50,000일 수 있다. The magnetic permeability at a frequency of 85 kHz may vary depending on the material, but may be 5 or more, for example, 5 to 150,000, and may be 5 to 300, 500 to 3,500, or 10,000 to 150,000, depending on the specific material. In addition, the investment loss at the frequency of 85 kHz of the magnetic part may vary depending on the material, but may be 0 or more, for example, 0 to 50,000, and 0 to 1,000, 1 to 100, 100 to 1,000, or 5,000 to Can be 50,000.
일례로서, 상기 자성부가 자성 분말 및 바인더 수지를 포함하는 고분자형 자성 블록일 경우, 85 kHz의 주파수에서 투자율은 5 내지 130, 15 내지 80, 또는 10 내지 50일 수 있고, 투자손실은 0 내지 20, 0 내지 15, 또는 0 내지 5일 수 있다.As an example, when the magnetic part is a polymer magnetic block containing magnetic powder and a binder resin, the magnetic permeability may be 5 to 130, 15 to 80, or 10 to 50 at a frequency of 85 kHz, and the investment loss is 0 to 20 , 0 to 15, or may be 0 to 5.
다른 예로서, 상기 자성부가 소결 페라이트계 자성체일 경우, 85 kHz의 주파수에서 투자율은 1,000 내지 5,000, 또는 2,000 내지 4,000일 수 있고, 투자손실은 0 내지 1,000, 0 내지 100, 또는 0 내지 50일 수 있다.As another example, when the magnetic part is a sintered ferritic magnetic material, the magnetic permeability may be 1,000 to 5,000, or 2,000 to 4,000 at a frequency of 85 kHz, and the investment loss may be 0 to 1,000, 0 to 100, or 0 to 50. have.
또 다른 예로서, 상기 자성부가 나노결정성 자성체일 경우, 85 kHz의 주파수에서 투자율은 500 내지 3,000, 또는 10,000 내지 150,000일 수 있고, 투자손실은 100 내지 1,000, 또는 8,000 내지 50,000일 수 있다.As another example, when the magnetic part is a nanocrystalline magnetic material, the magnetic permeability at a frequency of 85 kHz may be 500 to 3,000, or 10,000 to 150,000, and the investment loss may be 100 to 1,000, or 8,000 to 50,000.
자성부의 특성Characteristics of the magnetic part
일례로서 상기 자성부는 고분자형 자성체를 포함할 수 있고, 상기 고분자형 자성체는 일정 비율로 신장될 수 있다. 예를 들어 상기 고분자형 자성체의 신장율은 0.5% 이상일 수 있다. 상기 신장 특성은 고분자를 적용하지 않는 세라믹계 자성체에서는 얻기 어려운 것으로, 대면적의 자성부가 충격에 의해 뒤틀림 등이 발생하더라도 손상을 줄여줄 수 있다. 구체적으로, 상기 고분자형 자성체의 신장율은 0.5% 이상, 1% 이상, 또는 2.5% 이상일 수 있다. 상기 신장율의 상한에는 특별한 제한이 없으나, 신장율 향상을 위해 고분자 수지의 함량이 많아지는 경우, 자성부의 인턱턴스 등의 특성이 떨어질 수 있으므로, 상기 신장율은 10% 이하인 것이 좋다.As an example, the magnetic part may include a polymer type magnetic material, and the polymer type magnetic material may be elongated at a predetermined ratio. For example, the elongation rate of the polymer magnetic material may be 0.5% or more. The elongation property is difficult to obtain in a ceramic-based magnetic material to which a polymer is not applied, and damage can be reduced even if a large-area magnetic portion is distorted by an impact. Specifically, the elongation rate of the polymer magnetic material may be 0.5% or more, 1% or more, or 2.5% or more. There is no particular limitation on the upper limit of the elongation, but when the content of the polymer resin is increased to improve the elongation, since properties such as inductance of the magnetic portion may be deteriorated, the elongation is preferably 10% or less.
상기 자성부는 일반적인 소결 페라이트 자성체와 비교하여 내충격성이 월등하게 우수하므로, 이를 이용한 무선충전 장치의 충격에 따른 특성 변화가 적다.Since the magnetic part has superior impact resistance compared to a general sintered ferrite magnetic body, there is little change in characteristics according to the impact of the wireless charging device using the magnetic part.
본 명세서에서 충격 전후의 특성 변화율(%)은 아래 식으로 계산될 수 있다.In the present specification, the rate of change in properties before and after impact (%) can be calculated by the following equation.
특성 변화율(%)=|충격 전 특성 값-충격 후 특성 값|/충격 전 특성 값×100Characteristic change rate (%)=|characteristic value before impact-characteristic value after impact|/characteristic value before impact×100
예를 들어, 상기 자성부를 1 m의 높이에서 자유 낙하시켜 충격을 인가 시에, 충격 전과 후의 자성부를 이용한 무선충전 장치에서의 인덕턴스 변화율이 5% 미만, 또는 3% 이하일 수 있다. 보다 구체적으로, 상기 인덕턴스 변화율은 0% 내지 3%, 0.001% 내지 2%, 또는 0.01% 내지 1.5%일 수 있다. For example, when an impact is applied by free-falling the magnetic portion from a height of 1 m, the inductance change rate in the wireless charging device using the magnetic portion before and after the impact may be less than 5% or 3% or less. More specifically, the inductance change rate may be 0% to 3%, 0.001% to 2%, or 0.01% to 1.5%.
또한, 상기 자성부를 1 m의 높이에서 자유 낙하시켜 충격을 인가 시에, 충격 전과 후의 자성부를 이용한 무선충전 장치에서의 품질계수(Q factor) 변화율이 0% 내지 5%, 0.001% 내지 4%, 또는 0.01% 내지 2.5%일 수 있다. In addition, when applying an impact by free-falling the magnetic part from a height of 1 m, the rate of change of the quality factor (Q factor) in the wireless charging device using the magnetic part before and after the impact is 0% to 5%, 0.001% to 4%, Alternatively, it may be 0.01% to 2.5%.
또한, 상기 자성부를 1 m의 높이에서 자유 낙하시켜 충격을 인가 시에, 충격 전과 후의 자성부를 이용한 무선충전 장치에서의 저항 변화율이 0% 내지 2.8%, 0.001% 내지 1.8%, 또는 0.1% 내지 1.0%일 수 있다. In addition, when the magnetic part freely falls from a height of 1 m to apply an impact, the resistance change rate in the wireless charging device using the magnetic part before and after the impact is 0% to 2.8%, 0.001% to 1.8%, or 0.1% to 1.0 It can be %.
또한, 상기 자성부를 1 m의 높이에서 자유 낙하시켜 충격을 인가 시에, 충격 전과 후의 자성부를 이용한 무선충전 장치에서의 충전효율 변화율이 0% 내지 6.8%, 0.001% 내지 5.8%, 또는 0.01% 내지 3.4%일 수 있다.In addition, when the magnetic part freely falls from a height of 1 m to apply an impact, the rate of change in charging efficiency in the wireless charging device using the magnetic part before and after the impact is 0% to 6.8%, 0.001% to 5.8%, or 0.01% to It could be 3.4%.
상기 범위 내일 때, 실제 충격이나 진동이 반복적으로 가해지는 환경에서도 무선충전 장치의 성능이 일정 수준으로 잘 유지될 수 있다.When within the above range, the performance of the wireless charging device can be well maintained at a certain level even in an environment where actual shock or vibration is repeatedly applied.
냉각기cooler
상기 무선충전 장치는 상기 제 2 전도성 와이어와 연결된 냉각기를 더 포함할 수 있다.The wireless charging device may further include a cooler connected to the second conductive wire.
도 2a는 일 구현예에 따른 무선충전 장치의 단면도를 나타낸 것이고, 도 2b는 일 구현예에 따른 무선충전 장치를 외부에서 관찰한 것이다.2A is a cross-sectional view of a wireless charging device according to an embodiment, and FIG. 2B is an external observation of a wireless charging device according to an embodiment.
도 2a 및 2b를 참조하여, 일 구현예에 따른 무선충전 장치(10)는, 제 1 전도성 와이어(210)를 포함하는 코일부; 상기 코일부 상에 배치된 쉴드부(400); 상기 코일부와 상기 쉴드부(400) 사이에 배치된 자성부(300); 상기 제 1 전도성 와이어(210)와 연결된 제 2 전도성 와이어(220); 및 상기 제 2 전도성 와이어(220)와 연결된 냉각기(15)를 포함한다. 2A and 2B, a wireless charging device 10 according to an embodiment includes: a coil unit including a first conductive wire 210; A shield part 400 disposed on the coil part; A magnetic part 300 disposed between the coil part and the shield part 400; A second conductive wire 220 connected to the first conductive wire 210; And a cooler 15 connected to the second conductive wire 220.
상기 제 2 전도성 와이어는 상기 제 1 전도성 와이어에서 발생하는 열을 외부로 전달할 수 있다. 구체적으로, 상기 제 2 전도성 와이어는 상기 제 1 전도성 와이어에서 발생하는 열을 상기 냉각기로 전달할 수 있다.The second conductive wire may transfer heat generated from the first conductive wire to the outside. Specifically, the second conductive wire may transfer heat generated from the first conductive wire to the cooler.
상기 냉각기는 상기 제 2 전도성 와이어를 효과적으로 냉각시키기 위한 방식 및 구조를 채용할 수 있다. 예를 들어, 상기 냉각기는 공냉식 또는 수냉식으로 상기 제 2 전도성 와이어를 냉각시킬 수 있다.The cooler may employ a method and structure for effectively cooling the second conductive wire. For example, the cooler may cool the second conductive wire by air cooling or water cooling.
상기 냉각기는 방수 및 방진을 위해 밀폐된 구조를 가지면서, 상기 제 2 전도성 와이어와 연결될 수 있다.The cooler may be connected to the second conductive wire while having a sealed structure for waterproofing and dustproofing.
상기 제 2 전도성 와이어는 상기 냉각기와 적어도 일 부분 접촉할 수 있다. 예를 들어, 상기 접촉 부분의 길이는 3 cm 내지 100 cm일 수 있다. 상기 범위 내일 때, 효과적인 코일 냉각 면에서 유리할 수 있다. 보다 구체적으로, 상기 접촉 부분의 길이는 3 cm 내지 50 cm, 3 cm 내지 30 cm, 3 cm 내지 10 cm, 50 cm 내지 100 cm, 또는 20 cm 내지 80 cm일 수 있다.The second conductive wire may at least partially contact the cooler. For example, the length of the contact portion may be 3 cm to 100 cm. When it is within the above range, it may be advantageous in terms of effective coil cooling. More specifically, the length of the contact portion may be 3 cm to 50 cm, 3 cm to 30 cm, 3 cm to 10 cm, 50 cm to 100 cm, or 20 cm to 80 cm.
하우징housing
상기 구현예에 따른 무선충전 장치는 전술한 구성 요소들을 수용하는 하우징을 더 포함할 수 있다.The wireless charging device according to the above embodiment may further include a housing accommodating the above-described components.
상기 하우징은 상기 코일부, 쉴드부, 자성부 등의 구성 요소가 적절하게 배치되어 조립될 수 있게 한다. 상기 하우징의 재질 및 구조는 무선충전 장치에 사용되는 통상적인 하우징의 재질 및 구조를 채용할 수 있으며, 그 내부에 포함되는 구성 요소에 따라 적절히 설계될 수 있다.The housing allows constituent elements such as the coil part, the shield part, and the magnetic part to be properly arranged and assembled. The material and structure of the housing may employ a material and structure of a conventional housing used in a wireless charging device, and may be appropriately designed according to the components included therein.
도 2a 및 2b를 참조하여, 일 구현예에 따른 무선충전 장치(10)는, 하우징(600); 상기 하우징(600) 내에 배치되고 제 1 전도성 와이어(210)를 포함하는 코일부; 상기 코일부 상에 배치된 쉴드부(400); 상기 코일부와 상기 쉴드부(400) 사이에 배치된 자성부(300); 상기 하우징(600)의 외부에 배치된 냉각기(15); 및 상기 냉각기(15)와 연결된 제 2 전도성 와이어(220)를 포함하고, 상기 제 2 전도성 와이어(220)가 상기 제 1 전도성 와이어(210)에 연결된다.2A and 2B, a wireless charging device 10 according to an embodiment includes a housing 600; A coil unit disposed in the housing 600 and including a first conductive wire 210; A shield part 400 disposed on the coil part; A magnetic part 300 disposed between the coil part and the shield part 400; A cooler 15 disposed outside the housing 600; And a second conductive wire 220 connected to the cooler 15, and the second conductive wire 220 is connected to the first conductive wire 210.
지지부Support
상기 무선충전 장치(10)는 상기 코일부를 지지하는 지지부(100)를 더 포함할 수 있다. 상기 지지부의 재질 및 구조는 무선충전 장치에 사용되는 통상적인 지지부의 재질 및 구조를 채용할 수 있다. 상기 지지부는 평판 구조 또는 코일부를 고정시킬 수 있도록 코일부 형태를 따라 홈이 파여진 구조를 가질 수 있다. The wireless charging device 10 may further include a support part 100 supporting the coil part. The material and structure of the support part may be a material and structure of a conventional support part used in a wireless charging device. The support part may have a flat plate structure or a structure in which grooves are formed along the shape of the coil part to fix the coil part.
스페이서Spacer
또한 상기 구현예에 따른 무선충전 장치는, 상기 쉴드부와 자성부 간의 공간을 확보하기 위한 스페이서를 더 포함할 수 있다. 상기 스페이서의 재질 및 구조는 무선충전 장치에 사용되는 통상적인 스페이서의 재질 및 구조를 채용할 수 있다.In addition, the wireless charging device according to the embodiment may further include a spacer for securing a space between the shield part and the magnetic part. The material and structure of the spacer may be a material and structure of a conventional spacer used in a wireless charging device.
전기 자동차Electric car
도 3은 전기 자동차와 같은 이동 수단에 적용된 무선충전 장치를 나타낸 것이다.3 shows a wireless charging device applied to a mobile means such as an electric vehicle.
상기 무선충전 장치(10)는 상기 이동 수단(1)의 하부에 구비될 수 있다.The wireless charging device 10 may be provided under the moving means 1.
일 구현예에 따른 이동 수단은 무선충전 장치를 포함하고, 상기 무선충전 장치가 하우징; 상기 하우징 내에 배치되고 제 1 전도성 와이어를 포함하는 코일부; 상기 코일부 상에 배치된 쉴드부; 상기 코일부와 상기 쉴드부 사이에 배치된 자성부; 상기 하우징의 외부에 배치된 냉각기; 및 상기 냉각기와 연결된 제 2 전도성 와이어를 포함하고, 상기 제 2 전도성 와이어가 상기 제 1 전도성 와이어에 연결된다.A moving means according to an embodiment includes a wireless charging device, wherein the wireless charging device includes a housing; A coil unit disposed in the housing and including a first conductive wire; A shield part disposed on the coil part; A magnetic portion disposed between the coil portion and the shield portion; A cooler disposed outside the housing; And a second conductive wire connected to the cooler, and the second conductive wire is connected to the first conductive wire.
상기 이동 수단에 포함되는 무선충전 장치의 각 구성요소들의 구성 및 특징은 앞서 설명한 바와 같다.The configuration and characteristics of each component of the wireless charging device included in the moving means are as described above.
상기 무선충전 장치의 냉각기로서 상기 이동 수단에 기본적으로 구비되는 냉각 설비를 이용할 수 있다.As a cooler of the wireless charging device, a cooling facility basically provided in the moving means may be used.
예를 들어, 상기 냉각기는 자동차 에어컨을 포함할 수 있다. 구체적으로, 도 3에서 보듯이, 이동 수단(1), 구체적으로 전기 자동차의 내부에 구비된 에어컨이 냉각기(15)로서 이용되고, 무선충전 장치(10)의 코일부로부터 연장된 제 2 전도성 와이어(220)와 연결될 수 있다. 이에 따라, 별도의 냉각기를 제작하지 않더라도, 효과적인 방열이 가능할 수 있다.For example, the cooler may include an automobile air conditioner. Specifically, as shown in FIG. 3, a moving means 1, specifically an air conditioner provided inside an electric vehicle, is used as the cooler 15, and a second conductive wire extending from the coil portion of the wireless charging device 10 It can be connected to 220. Accordingly, even if a separate cooler is not manufactured, effective heat dissipation may be possible.
상기 이동 수단은 상기 무선충전 장치로부터 전력을 전달받는 배터리를 더 포함할 수 있다. 상기 무선충전 장치는 무선으로 전력을 전송받아 상기 배터리에 전달하고, 상기 배터리는 상기 이동 수단의 구동계에 전력을 공급할 수 있다. 상기 배터리는 상기 무선충전 장치 또는 그 외 추가적인 유선충전 장치로부터 전달되는 전력에 의해 충전될 수 있다. The moving means may further include a battery receiving power from the wireless charging device. The wireless charging device may receive power wirelessly and transmit it to the battery, and the battery may supply power to a drive system of the moving means. The battery may be charged by power delivered from the wireless charging device or other additional wired charging device.
또한 상기 이동 수단은 충전에 대한 정보를 이동 수단용 무선 충전 시스템의 송신기에 전달하는 신호 전송기를 더 포함할 수 있다. 이러한 충전에 대한 정보는 충전 속도와 같은 충전 효율, 충전 상태 등일 수 있다. In addition, the moving means may further include a signal transmitter for transmitting information on charging to a transmitter of a wireless charging system for a moving means. Information on such charging may include charging efficiency such as charging speed, charging status, and the like.
도 5는 무선충전 장치가 적용된 이동 수단, 구체적으로 전기 자동차를 나타낸 것으로서, 하부에 무선충전 장치를 구비하여 전기 자동차용 무선 충전 시스템이 구비된 주차 구역에서 무선으로 충전될 수 있다. FIG. 5 shows a moving means to which a wireless charging device is applied, specifically an electric vehicle, and may be wirelessly charged in a parking area equipped with a wireless charging system for an electric vehicle by providing a wireless charging device at the bottom.
도 5를 참조하여, 일 구현예에 따른 이동 수단(1)은, 상기 구현예에 따른 무선충전 장치를 수신기(21)로 포함한다. 상기 무선충전 장치는 이동 수단(1)의 무선충전의 수신기(21)로 역할하고 무선충전의 송신기(22)로부터 전력을 공급받을 수 있다.Referring to FIG. 5, the moving means 1 according to an embodiment includes a wireless charging device according to the embodiment as a receiver 21. The wireless charging device serves as a wireless charging receiver 21 of the moving means 1 and can receive power from the wireless charging transmitter 22.
이하 상기 구현예에 따른 무선충전 장치에 사용되는 자성부의 제조예 및 이의 시험예가 기술되나, 구현 가능한 범위가 이들로 한정되는 것은 아니다.Hereinafter, an example of manufacturing a magnetic part used in the wireless charging device according to the embodiment and a test example thereof will be described, but the range that can be implemented is not limited thereto.
제조예 1: 자성부의 제조Preparation Example 1: Preparation of magnetic part
단계 1) 자성 분말 슬러리 제조Step 1) magnetic powder slurry preparation
42.8 중량부의 자성 분말, 15.4 중량부의 폴리우레탄계 수지 분산액(폴리우레탄계 수지 25 중량%, 2-부탄온 75중량%), 1.0 중량부의 이소시아네이트계 경화제 분산액(이소시아네이트계 경화제 62 중량%, n-부틸 아세테이트 25 중량%, 2-부탄온 13 중량%), 0.4 중량부의 에폭시계 수지 분산액(에폭시계 수지 70 중량%, n-부틸 아세테이트 3 중량%, 2-부탄온 15 중량%, 톨루엔 12 중량%), 및 40.5 중량부의 톨루엔을 플래너터리 믹서(planetary mixer)에서 약 40~50 rpm의 속도로 약 2시간 동안 혼합하여, 자성 분말 슬러리를 제조하였다.42.8 parts by weight of magnetic powder, 15.4 parts by weight of polyurethane-based resin dispersion (polyurethane-based resin 25% by weight, 2-butanone 75% by weight), 1.0 parts by weight of isocyanate-based curing agent dispersion (isocyanate-based curing agent 62% by weight, n-butyl acetate 25 Wt%, 2-butanone 13 wt%), 0.4 parts by weight of an epoxy resin dispersion (epoxy resin 70 wt%, n-butyl acetate 3 wt%, 2-butanone 15 wt%, toluene 12 wt%), and 40.5 parts by weight of toluene was mixed in a planetary mixer at a speed of about 40-50 rpm for about 2 hours to prepare a magnetic powder slurry.
단계 2) 자성 시트 적층체의 제조Step 2) Preparation of magnetic sheet laminate
앞서 제조된 자성 분말 슬러리를 캐리어 필름 상에 콤마 코터에 의해서 코팅하고, 약 110℃의 온도로 건조하여 고분자형 자성체를 형성하였다. 상기 고분자형 자성체를 약 170℃의 온도에서 약 9 Mpa의 압력으로 약 60분간 핫프레스 공정으로 압축 경화시켜 시트를 얻었다. 이렇게 제조된 시트 내의 자성 분말 함량은 약 90 중량%이었고, 시트 한 장의 두께는 약 100 ㎛이었다. 상기 시트를 40~50장 적층하여 약 4.8 mm 두께의 자성부를 얻었다.The magnetic powder slurry prepared above was coated on a carrier film by a comma coater, and dried at a temperature of about 110° C. to form a polymer-type magnetic body. The polymeric magnetic material was compression-cured by a hot press process for about 60 minutes at a temperature of about 170° C. and a pressure of about 9 Mpa to obtain a sheet. The magnetic powder content in the sheet thus prepared was about 90% by weight, and the thickness of one sheet was about 100 μm. 40 to 50 sheets were stacked to obtain a magnetic portion having a thickness of about 4.8 mm.
비교예Comparative example
비교예로서 TDK 사의 PC-95 페라이트 자성 시트(두께 5mm)를 사용하였다.As a comparative example, a PC-95 ferrite magnetic sheet (thickness 5 mm) manufactured by TDK was used.
시험예Test example
제조예 1 및 비교예의 자성부에 대해 아래의 방법으로 시험을 수행하였다. The test was performed on the magnetic parts of Preparation Example 1 and Comparative Example by the following method.
(1) 신장율(1) elongation
신장율은 ASTM D412 Type C의 방법으로 충격 전의 자성부 샘플에 대해, UTM 기기(INSTRON 5982, INSTRON사)를 이용하여 측정하였다.The elongation rate was measured using a UTM device (INSTRON 5982, INSTRON) on the magnetic part sample before impact by the method of ASTM D412 Type C.
(2) 충격 전/후 특성 변화(2) Change in characteristics before/after impact
자성부 샘플을 1m의 높이에서 자유 낙하하여 충격을 인가 시에, 충격 전과 후의 자성부 샘플을 이용한 장치의 전기적 특성을 아래 식에 의해 계산하였다.When applying an impact by free-falling the magnetic portion sample from a height of 1 m, the electrical characteristics of the device using the magnetic portion sample before and after the impact were calculated by the following equation.
특성 변화율(%)=|충격 전 특성 값-충격 후 특성 값|/충격 전 특성 값×100Characteristic change rate (%)=|characteristic value before impact-characteristic value after impact|/characteristic value before impact×100
전기적 특성은 SAE J2954 WPT1 Z2 Class standard TEST 규격 코일 및 프레임을 적용하고 자성부, 스페이서 및 알루미늄판을 쌓아 수신장치(35.5 cm x 35.5 cm) 및 송신장치(67.48 cm x 59.1 cm)를 제조하여, 85 kHz 주파수에서 측정하였다.For electrical characteristics, SAE J2954 WPT1 Z2 Class standard TEST standard coil and frame are applied, and magnetic parts, spacers and aluminum plates are stacked to manufacture a receiving device (35.5 cm x 35.5 cm) and a transmitting device (67.48 cm x 59.1 cm). Measured at the kHz frequency.
인덕턴스 및 저항은 LCR 미터(IM3533, HIOKI사)를 이용하여 측정하였다.Inductance and resistance were measured using an LCR meter (IM3533, HIOKI).
품질계수(Q Factor)는 인덕턴스×주파수×2π/저항의 식으로 계산되었다.The quality factor (Q factor) was calculated by the equation of inductance x frequency x 2π/resistance.
충전효율은 출력전력 1000W, 주파수 85 kHz의 조건에서 측정하였다.Charging efficiency was measured under conditions of output power of 1000W and frequency of 85 kHz.
그 결과를 하기 표 1 및 2에 나타내었다.The results are shown in Tables 1 and 2 below.
구 분division 충격인가Is it a shock 신장율(%)Elongation (%) 인덕턴스(μH)Inductance (μH) 품질계수Quality factor 저항(mΩ)Resistance (mΩ) 충전효율(%)Charging efficiency (%)
비교예Comparative example I'm 00 230230 481481 263263 9494
after -- 218218 414414 290290 9191
제조예 1Manufacturing Example 1 I'm 33 225225 444444 279279 9393
after -- 225225 442442 280280 9393
구 분division 신장율(%)Elongation (%) 인덕턴스변화율(%)Inductance change rate (%) 품질계수변화율(%)Quality factor change rate (%) 저항변화율(%)Resistance change rate (%) 충전효율변화율(%)Charging efficiency change rate (%)
비교예Comparative example 00 5.25.2 1414 10.310.3 33
제조예 1Manufacturing Example 1 33 00 0.360.36 0.360.36 00
상기 표에서 보듯이, 비교예의 페라이트 시트는 신장율이 0%인 반면, 제조예 1의 자성부는 신장율이 3%로 측정되었다. 또한 제조예 1의 자성부는 충격 전에 이를 이용한 장치의 인덕턴스, 품질계수 및 저항이 우수할 뿐만 아니라, 충격 후에 상기 특성들의 변화율이 0~1% 범위로 측정되었다. 반면, 비교예의 페라이트 시트는 충격 후에 이를 이용한 장치의 인덕턴스, 품질계수 및 저항의 변화율이 높게 측정되었으며, 특히 충전효율 변화율(감소율)이 3%로 높게 측정되었다. 이로부터 전기차와 같이 운행 과정에서 충격이 가해지기 쉬운 환경에서, 종래의 페라이트 시트 대비 제조예 1의 자성부가 무선충전 장치에 적합함을 확인할 수 있었다.As shown in the above table, the elongation of the ferrite sheet of Comparative Example was 0%, while the magnetic portion of Preparation Example 1 was measured to have an elongation of 3%. In addition, the magnetic portion of Preparation Example 1 was not only excellent in inductance, quality factor, and resistance of the device using the device before impact, but also the rate of change of the characteristics after impact was measured in the range of 0 to 1%. On the other hand, the ferrite sheet of the comparative example was measured to have a high rate of change in inductance, quality factor, and resistance of the device using the same after impact, and in particular, the rate of change (reduction rate) of charging efficiency was measured as high as 3%. From this, it was confirmed that the magnetic part of Preparation Example 1 compared to the conventional ferrite sheet is suitable for a wireless charging device in an environment where an impact is easily applied during a driving process such as an electric vehicle.

Claims (12)

  1. 제 1 전도성 와이어를 포함하는 코일부;A coil unit including a first conductive wire;
    상기 코일부 상에 배치된 쉴드부;A shield part disposed on the coil part;
    상기 코일부와 상기 쉴드부 사이에 배치된 자성부; 및A magnetic portion disposed between the coil portion and the shield portion; And
    상기 제 1 전도성 와이어에 연결된 제 2 전도성 와이어를 포함하는,Including a second conductive wire connected to the first conductive wire,
    무선충전 장치.Wireless charging device.
     
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 전도성 와이어가 상기 제 1 전도성 와이어에서 발생하는 열을 외부로 전달하는, 무선충전 장치.The wireless charging device, wherein the second conductive wire transfers heat generated from the first conductive wire to the outside.
     
  3. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 전도성 와이어가 외부의 냉각기에 연결되는, 무선충전 장치.The second conductive wire is connected to an external cooler, wireless charging device.
     
  4. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 전도성 와이어와 상기 제 2 전도성 와이어가 서로 일체로 형성된 것인, 무선충전 장치.The first conductive wire and the second conductive wire is formed integrally with each other, wireless charging device.
     
  5. 제 1 항에 있어서,The method of claim 1,
    상기 자성부가 바인더 수지 및 상기 바인더 수지 내에 분산된 자성 분말을 포함하는, 무선충전 장치.The wireless charging device, wherein the magnetic portion comprises a binder resin and magnetic powder dispersed in the binder resin.
     
  6. 제 1 항에 있어서,The method of claim 1,
    상기 자성부가 나노결정성(nanocrystalline) 자성체를 포함하는, 무선충전 장치.The wireless charging device, wherein the magnetic portion includes a nanocrystalline magnetic material.
     
  7. 제 1 항에 있어서,The method of claim 1,
    상기 무선충전 장치가The wireless charging device
    상기 제 2 전도성 와이어와 연결된 냉각기를 더 포함하는, 무선충전 장치.A wireless charging device further comprising a cooler connected to the second conductive wire.
     
  8. 제 7 항에 있어서,The method of claim 7,
    상기 제 2 전도성 와이어가 상기 제 1 전도성 와이어에서 발생하는 열을 상기 냉각기로 전달하는, 무선충전 장치.The wireless charging device, wherein the second conductive wire transfers heat generated from the first conductive wire to the cooler.
     
  9. 제 7 항에 있어서,The method of claim 7,
    상기 냉각기가 공냉식 또는 수냉식으로 상기 제 2 전도성 와이어를 냉각시키는, 무선충전 장치.The wireless charging device for cooling the second conductive wire by the cooler air-cooled or water-cooled.
     
  10. 제 7 항에 있어서,The method of claim 7,
    상기 제 2 전도성 와이어가 상기 냉각기와 적어도 일 부분 접촉하고,The second conductive wire is in at least part contact with the cooler,
    상기 접촉 부분의 길이가 3 cm 내지 100 cm인, 무선충전 장치.The length of the contact portion is 3 cm to 100 cm, wireless charging device.
     
  11. 무선충전 장치를 포함하는 이동 수단으로서, As a moving means comprising a wireless charging device,
    상기 무선충전 장치가The wireless charging device
    하우징;housing;
    상기 하우징 내에 배치되고 제 1 전도성 와이어를 포함하는 코일부;A coil unit disposed in the housing and including a first conductive wire;
    상기 코일부 상에 배치된 쉴드부;A shield part disposed on the coil part;
    상기 코일부와 상기 쉴드부 사이에 배치된 자성부; A magnetic portion disposed between the coil portion and the shield portion;
    상기 하우징의 외부에 배치된 냉각기; 및A cooler disposed outside the housing; And
    상기 냉각기와 연결된 제 2 전도성 와이어를 포함하고,Including a second conductive wire connected to the cooler,
    상기 제 2 전도성 와이어가 상기 제 1 전도성 와이어에 연결된, 이동 수단.The means of transport, wherein the second conductive wire is connected to the first conductive wire.
     
  12. 제 11 항에 있어서,The method of claim 11,
    상기 이동 수단이 전기 자동차이고,The means of transportation is an electric vehicle,
    상기 냉각기가 자동차 에어컨을 포함하는, 이동 수단.The means of transportation, wherein the cooler comprises an automotive air conditioner.
PCT/KR2020/016497 2019-11-20 2020-11-20 Wireless charging device and transportation means comprising same WO2021101326A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190149596A KR20210061718A (en) 2019-11-20 2019-11-20 Wireless charging pad, wireless charging device, and electric vehicle comprising same
KR10-2019-0149596 2019-11-20

Publications (1)

Publication Number Publication Date
WO2021101326A1 true WO2021101326A1 (en) 2021-05-27

Family

ID=75981391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016497 WO2021101326A1 (en) 2019-11-20 2020-11-20 Wireless charging device and transportation means comprising same

Country Status (2)

Country Link
KR (1) KR20210061718A (en)
WO (1) WO2021101326A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120001496A1 (en) * 2010-06-30 2012-01-05 Panasonic Corporation Wireless power transfer system and power transmitting/receiving device with heat dissipation structure
US20150327405A1 (en) * 2013-02-08 2015-11-12 Ihi Corporation Heat-transfer device, power-supplying device, and wireless power-supplying system
KR20180063768A (en) * 2016-12-02 2018-06-12 삼성전기주식회사 Wireless power transmission module and electronic device having the same
US20180254136A1 (en) * 2015-08-25 2018-09-06 Ihi Corporation Coil device and coil system
KR101971884B1 (en) * 2018-11-14 2019-04-25 (주)그린파워 Cooling Pad and Electronic Vehicle using that

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110042403A (en) 2009-10-19 2011-04-27 김현민 Wireless charging system for electric car and charging method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120001496A1 (en) * 2010-06-30 2012-01-05 Panasonic Corporation Wireless power transfer system and power transmitting/receiving device with heat dissipation structure
US20150327405A1 (en) * 2013-02-08 2015-11-12 Ihi Corporation Heat-transfer device, power-supplying device, and wireless power-supplying system
US20180254136A1 (en) * 2015-08-25 2018-09-06 Ihi Corporation Coil device and coil system
KR20180063768A (en) * 2016-12-02 2018-06-12 삼성전기주식회사 Wireless power transmission module and electronic device having the same
KR101971884B1 (en) * 2018-11-14 2019-04-25 (주)그린파워 Cooling Pad and Electronic Vehicle using that

Also Published As

Publication number Publication date
KR20210061718A (en) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2013095036A1 (en) Magnetic field shielding sheet for a wireless charger, method for manufacturing same, and receiving apparatus for a wireless charger using the sheet
WO2017090977A1 (en) Magnetic field shielding unit and multi-functional complex module including same
WO2018164350A1 (en) Wireless power transmission device for vehicle
WO2017200310A1 (en) Wireless power transmission apparatus for vehicle
WO2017061773A1 (en) Magnetic sheet, module comprising same, and portable device comprising same
WO2017039420A1 (en) Magnetic shielding unit for wireless power transmission in magnetic resonance mode, and wireless power transmission module and electronic device comprising same
WO2017014430A1 (en) Wireless power transmission module
WO2015147449A1 (en) Electromagnetic wave shielding sheet and method for manufacturing same
WO2017204562A1 (en) Coil component
WO2018021623A1 (en) Complex sheet for wireless charging and method for fabricating the same
WO2018012668A1 (en) Composite substrate for antenna module formation, and method for manufacturing same
WO2017057972A1 (en) Magnetic shielding unit for magnetic security transmission, module comprising same, and portable device comprising same
WO2017061772A1 (en) Multifunctional hybrid module and portable device comprising same
WO2017014467A1 (en) Combination antenna module and portable electronic device including same
WO2020060035A1 (en) Magnetic field shielding sheet, method for manufacturing magnetic field shielding sheet, and antenna module using same
WO2021086125A1 (en) Wireless charging apparatus and mobile means comprising same
WO2018048281A1 (en) Magnetic sheet and wireless power receiving device comprising same
WO2021101326A1 (en) Wireless charging device and transportation means comprising same
WO2021085955A1 (en) Wireless charging device and moving means including same
WO2021101328A1 (en) Wireless charging device, and transportation means comprising same
WO2022164087A1 (en) Wireless charging apparatus and transportation means comprising same
WO2019231142A1 (en) Magnetic sheet and wireless power module comprising same
WO2022124558A1 (en) Wireless charging device and mobility means comprising same
WO2021153985A1 (en) Wireless charging apparatus and transportation means including same
WO2022244967A1 (en) Wireless charging apparatus for transportation means and magnetic composite used therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889144

Country of ref document: EP

Kind code of ref document: A1