WO2021101266A1 - Power system - Google Patents

Power system Download PDF

Info

Publication number
WO2021101266A1
WO2021101266A1 PCT/KR2020/016369 KR2020016369W WO2021101266A1 WO 2021101266 A1 WO2021101266 A1 WO 2021101266A1 KR 2020016369 W KR2020016369 W KR 2020016369W WO 2021101266 A1 WO2021101266 A1 WO 2021101266A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
switch
unit
load
converter
Prior art date
Application number
PCT/KR2020/016369
Other languages
French (fr)
Korean (ko)
Inventor
박정언
Original Assignee
한국항공우주연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190149249A external-priority patent/KR102309852B1/en
Priority claimed from KR1020190159830A external-priority patent/KR102333360B1/en
Priority claimed from KR1020190164625A external-priority patent/KR102295755B1/en
Priority claimed from KR1020190164657A external-priority patent/KR102295757B1/en
Application filed by 한국항공우주연구원 filed Critical 한국항공우주연구원
Publication of WO2021101266A1 publication Critical patent/WO2021101266A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a power system that delivers power generated by a power source to a load.
  • a solar power generation system refers to a power system that converts light energy into electrical energy using a solar panel and delivers the converted electrical energy to a load.
  • a solar power generation system converts light energy into electrical energy using a solar panel and delivers the converted electrical energy to a load.
  • the power generated varies depending on the temperature of the solar panel and the amount of insolation incident on the solar panel. Accordingly, through the control of tracking the maximum power point in the PV curve of the photovoltaic panel that changes according to the temperature of the photovoltaic panel and the amount of insolation incident on the photovoltaic panel, that is, the maximum power point tracking (MPPT) control. , So that the maximum power can be generated from the solar panel.
  • MPPT maximum power point tracking
  • the control unit transfers the power generated from the solar panel to the load the power transfer efficiency to the load is high only when the control unit controls the converter MPPT, and the control unit must not control the converter MPPT. In each case, the efficiency of power transfer to the load is high. Accordingly, there is a need to provide a power system that allows the controller to operate in a case where the converter is controlled by MPPT and a case where MPPT is not controlled.
  • An object of the present invention is to provide a power system capable of improving power transfer efficiency from the power supply to the load by changing the transmission path of the power in real time in delivering the power generated by the power supply to the load.
  • a power system includes a power supply unit for generating power; A boost converter unit for boosting an input voltage by power generated from the power unit and transferring it to a load; And a control unit configured to form a first power transfer path or a second power transfer path for transferring the power from the power supply unit to the load by controlling the boost converter unit, wherein the first power transfer path is formed by the control unit.
  • the input voltage is boosted by the boost converter unit, the input voltage is transferred to the load, and the second power transmission path is formed by the control unit, the input voltage is boosted by the boost converter unit. It can be delivered to the load without going through the process of being.
  • the boost converter unit may include an inductor having one end connected to the power supply unit and charged by a current output from the power supply unit; A reverse current prevention element preventing reverse current from flowing from the load to the inductor; And a converter switch having one end connected between the other end of the inductor and the reverse current preventing element, and the other end connected to the ground.
  • the control unit calculates a magnitude of first power when power is transmitted to the load through the first power transmission path, and second power when power is transmitted to the load through the second power transmission path A magnitude of is calculated, and the converter switch is controlled according to a result of comparing the magnitude of the first power and the magnitude of the second power, and as a result of the comparison, the magnitude of the first power is greater than the magnitude of the second power.
  • the converter switch is turned on and off according to the duty ratio determined by the MPPT (Maximum Power Point Tracking) algorithm to form the first power transfer path.
  • the second power transmission path may be formed by controlling the converter switch to be turned off.
  • a power system includes a power supply unit for generating power; A switching unit for selecting a power transmission path through which the power generated by the power unit is transmitted to the load; A boost converter unit that boosts an input voltage by power generated from the power unit and transfers it to the load; And a control unit for controlling a switching operation of the switching unit, wherein the switching unit includes a first switch and a second switch, and the control unit controls the first switch and the second switch in a first switching mode.
  • a first power transmission path through which power is transmitted from a power supply to the load through the boost converter is formed, and the first switch and the second switch are controlled in a second switching mode, so that the load is not passed through the boost converter from the power supply.
  • a second power transfer path through which power is transferred may be formed.
  • the boost converter unit may include an inductor whose one end is connected to or disconnected from the power supply unit according to a switching operation of the switching unit; A converter switch connected to the other end of the inductor or connected to the power supply according to a switching operation of the switching unit; And a reverse current preventing element for preventing reverse current from flowing from the load to the inductor.
  • the first switch has one end connected to the power supply, the other end connected to one end or an open terminal of the inductor according to a switching operation controlled by the control unit, and the second switch has one end connected to the converter switch and the It is connected to the reverse current prevention element, and the other end may be connected to the power supply unit or the other end of the inductor according to a switching operation controlled by the control unit.
  • the control unit calculates a magnitude of first power when power is delivered to the load through the first power transfer path, and a magnitude of second power when power is delivered to the load through the second power transfer path And comparing the magnitude of the first power and the magnitude of the second power. As a result of the comparison, when the first power is greater than or equal to the second power, the other end of the first switch is connected to the inductor. When the first switching mode is connected to one end and the other end of the second switch is connected to the other end of the inductor, and as a result of the comparison, when the first power is less than the second power, the first switch is The second switching mode may be controlled in which the other end is connected to the open terminal and the other end of the second switch is connected to the power supply.
  • control unit When controlling the switching unit in the first switching mode, the control unit controls the boost converter unit in MPPT, and when controlling the switching unit in the second switching mode, the control unit controls the converter switch without MPPT controlling the boost converter unit. It can be turned off.
  • a power system includes a power supply unit for generating power; A switching unit for selecting a power transmission path through which the power generated by the power unit is transmitted to the load; A buck converter unit stepping down an input voltage due to power generated from the power supply unit and transferring it to the load; And a control unit for controlling a switching operation of the switching unit, wherein the switching unit includes a first switch, a second switch, and a third switch, and the control unit includes the first switch, the second switch, and the third switch.
  • a first power transmission path through which electric power is transmitted from the power supply unit to the load through the buck converter unit is formed, and the first switch, the second switch, and the third switch are set in a second switching mode.
  • the buck converter unit includes: a converter switch whose one end is connected to or disconnected from the power supply unit according to a switching operation of the switching unit; A reverse current prevention element having one end connected to the ground or connected to the power supply according to a switching operation of the switching unit, and the other end connected to the other end of the converter switch; And an inductor having one end connected to the other end of the converter switch and the other end connected to the load.
  • the first switch has one end connected to the ground, the other end connected to one end of the reverse current preventing element or turned off according to a switching operation of the switching unit controlled by the control unit
  • the second switch has one end connected to the It is connected to a power supply, and the other end is connected to one end of the converter switch or to one end of the reverse current preventing element according to a switching operation of the switching unit controlled by the control unit
  • the third switch has one end of the inductor. It is connected to the other end, and the other end may be turned off according to a switching operation of the switching unit controlled by the control unit, or may be connected to the other end of the converter switch.
  • the control unit calculates a magnitude of first power when power is delivered to the load through the first power transfer path, and a magnitude of second power when power is delivered to the load through the second power transfer path And comparing the magnitude of the first power and the magnitude of the second power, and as a result of the comparison, when the magnitude of the first power is greater than or equal to the magnitude of the second power, the other end of the first switch Is connected to one end of the reverse current preventing element, the other end of the second switch is connected to one end of the converter switch, and the first switching mode is controlled to turn off the other end of the third switch, and the comparison result, When the magnitude of the first power is smaller than the magnitude of the second power, the other end of the first switch is turned off, the other end of the second switch is connected to one end of the reverse current preventing element, and the third switch It is possible to control the second switching mode in which the other end is connected to the other end of the converter switch.
  • control unit When controlling the switching unit in the first switching mode, the control unit may MPPT control the buck converter unit, and when controlling the switching unit in the second switching mode, the buck converter unit may not MPPT control.
  • a power system includes a power supply unit for generating power; A buck-boost converter unit for boosting or stepping down an input voltage by power generated from the power supply unit and transferring it to a load; And a control unit for controlling the buck-boost converter unit to form a first power transfer path, a second power transfer path, or a third power transfer path for transferring power from the power supply unit to the load, wherein the control unit 1
  • the input voltage is transferred to the load through a process of boosting by the buck-boost converter unit, and when the second power transmission path is formed by the control unit, the input voltage
  • the third power transmission path is formed by the control unit, the input voltage is boosted and stepped down by the buck-boost converter unit when the voltage is stepped down by the buck-boost converter unit and transferred to the load. It can be delivered to the load without going through the process of being.
  • the buck-boost converter unit may include an inductor charged by a current output from the power supply unit; A first converter switch provided between one end of the inductor and the power supply unit; A second converter switch provided between the other end of the inductor and the load; A third converter switch provided between one end of the inductor and a ground; And a fourth converter switch provided between the other end of the inductor and the ground.
  • the control unit calculates a magnitude of first power when power is transmitted to the load through the first power transmission path, and third power when power is transmitted to the load through the third power transmission path And control the first converter switch, the second converter switch, the third converter switch, and the fourth converter switch according to a result of comparing the magnitude of the first power and the magnitude of the third power. And, as a result of the comparison, when the magnitude of the first power is greater than or equal to the magnitude of the third power, the buck-boost converter unit controls the MPPT to form the first power transfer path, and as a result of the comparison, the When the magnitude of the first power is smaller than the magnitude of the third power, the buck-boost converter unit may form the third power transmission path without MPPT control.
  • the first converter switch When the comparison result shows that the first power is greater than or equal to the third power, the first converter switch is turned on and the third power transfer path is formed. The converter switch is turned off, and the on-off operation of the second converter switch and the fourth converter switch is alternately controlled according to a duty ratio according to the MPPT algorithm to boost the input voltage, and as a result of the comparison, the first power is When the magnitude is smaller than the magnitude of the third power, the first converter switch and the second converter switch are turned on to form the third power transmission path, and the third converter switch and the fourth converter switch Can be turned off.
  • the control unit calculates the magnitude of the second power when power is transferred to the load through the second power transfer path, and the third power when power is transferred to the load through the third power transfer path. And controlling the first converter switch, the second converter switch, the third converter switch, and the fourth converter switch according to a result of comparing the magnitude of the second power and the magnitude of the third power. And, as a result of the comparison, when the magnitude of the second power is greater than or equal to the magnitude of the third power, the buck-boost converter unit controls the MPPT to form the second power transfer path, and the comparison result, the When the magnitude of the second power is smaller than the magnitude of the third power, the buck-boost converter unit may form the third power transmission path without MPPT control.
  • the control unit in the comparison result, when the magnitude of the second power is greater than or equal to the magnitude of the third power, to form the second power transmission path, the second converter switch is turned on and the fourth The converter switch is turned off, and the on-off operation of the first converter switch and the third converter switch is alternately controlled according to a duty ratio according to the MPPT algorithm to step down the input voltage, and as a result of the comparison, the second power is
  • the magnitude is smaller than the magnitude of the third power
  • the first converter switch and the second converter switch are turned on, and the third converter switch and the fourth converter switch Can be turned off.
  • the power system according to the first embodiment of the present invention has higher power transfer efficiency to the load by changing the control method of the converter switch provided inside the boost converter without adding a separate element to the existing power system. It is configured so that the route can be selected in real time. According to the power system according to the first embodiment of the present invention, the efficiency of power transfer from the power supply unit to the load can be improved.
  • a switching element is provided in a path through which power is transmitted, a path having higher power transfer efficiency to a load according to the switching operation of the switching element It is configured to be able to select in real time. According to the power system according to the second and third embodiments of the present invention, the efficiency of power transfer from the power supply to the load can be improved.
  • the power system according to the fourth embodiment of the present invention transfers power to the load by changing the control method of a plurality of converter switches provided inside the buck-boost converter without adding additional elements to the existing power system. It is configured so that a route with higher efficiency can be selected in real time. According to the power system according to the fourth embodiment of the present invention, the efficiency of power transfer from the power source to the load can be improved.
  • 1A is a diagram illustrating a PV curve of a solar panel that changes according to the temperature of the solar panel when the amount of insolation incident on the solar panel is 1 kW/m 2.
  • 1B is a diagram showing a P-V curve of a solar panel that changes according to the amount of insolation incident on the solar panel when the temperature of the solar panel is 25°C.
  • FIG. 2 is a diagram showing power transfer efficiency of a converter used in a solar power generation system according to a load factor.
  • FIG. 3 is a diagram showing power delivered to a load when MPPT control is used and power delivered to a load when MPPT control is not used.
  • FIG. 4 is a diagram showing a power system according to a first embodiment of the present invention.
  • 5A is a diagram illustrating a case in which a first power transmission path is formed in the power system of FIG. 4.
  • 5B is a diagram illustrating a case in which a second power transmission path is formed in the power system of FIG. 4.
  • FIG. 6 is a flowchart illustrating a method of controlling the power system of FIG. 4.
  • FIG. 7 is a diagram showing a power system according to a second embodiment of the present invention.
  • FIG. 8A is a diagram illustrating an equivalent circuit when the power system of FIG. 7 operates in a first switching mode.
  • 8B is a diagram illustrating an equivalent circuit when the power system of FIG. 7 operates in a second switching mode.
  • FIG. 9 is a diagram showing a power system according to a third embodiment of the present invention.
  • 10A is a diagram illustrating an equivalent circuit when the power system of FIG. 9 operates in a first switching mode.
  • 10B is a diagram illustrating an equivalent circuit when the power system of FIG. 9 operates in a second switching mode.
  • FIG. 11 is a diagram showing a power system according to a fourth embodiment of the present invention.
  • 12A is a diagram illustrating a case in which a first power transmission path is formed in the power system of FIG. 11.
  • 12B is a diagram illustrating a case in which a second power transmission path is formed in the power system of FIG. 11.
  • 12C is a diagram illustrating a case in which a third power transmission path is formed in the power system of FIG. 11.
  • 13A is a flowchart illustrating a method of controlling the power system of FIG. 11.
  • 13B is another flowchart illustrating a method of controlling the power system of FIG. 11.
  • FIG. 1A is a view showing a PV curve of a solar panel that changes according to the temperature of the solar panel when the solar radiation incident on the solar panel is 1kW/m 2
  • FIG. 1B is a diagram showing the PV curve of the solar panel when the temperature of the solar panel is 25°C. At this time, it is a diagram showing the PV curve of the solar panel that changes according to the amount of insolation incident on the solar panel.
  • the x-axis represents an output voltage of a solar panel and an input voltage of a converter to be described later.
  • the y-axis represents power generated by the solar panel.
  • the controller unit controls the MPPT of the converter connected to the output terminal of the solar panel, so that the output voltage of the solar panel (or the input voltage of the converter) matches the output voltage corresponding to the maximum power point of the P-V curve.
  • the MPPT control is a control that matches the output voltage of the solar panel (or the input voltage of the converter) with the output voltage corresponding to the maximum power point of the PV curve in order to generate the maximum power from the solar panel.
  • a P&O (Perturbation and Obsevation, post-perturbation estimation) method is generally used as a method for controlling MPPT.
  • the P&O method is a method of following the maximum power point by comparing the previous output power with the current output power while periodically increasing or decreasing the output voltage of the solar panel.
  • the controller MPPT controls the converter so that the output voltage of the solar panel (or the input voltage of the converter) follows the maximum power point of the P-V curve, as shown in the dotted line shown in FIGS. 1A and 1B. That is, the control unit MPPT controls the converter so that the output voltage of the solar panel (or the input voltage of the converter) becomes the same as the voltage corresponding to the maximum power point of the PV curve, thereby generating the maximum power in the solar panel.
  • various MPPT algorithms such as InCond (Incremental Conductance) method are known, and of course, any one of these various MPPT algorithms may be used for MPPT control mentioned below.
  • FIG. 2 is a diagram showing power transfer efficiency of a converter used in a solar power generation system according to a load factor. Referring to FIG. 2, it can be seen that the converter used in the solar power generation system has a high power transfer efficiency of about 95% or more at a load ratio of 60% or more, but the power transfer efficiency is less than 95% at a load ratio of less than 60%.
  • FIG. 3 is a diagram showing power delivered to a load when MPPT control is used and power delivered to a load when MPPT control is not used. More specifically, FIG. 3 shows that when the amount of irradiation incident on the solar panel is 1000W/m 2 and the temperature of the solar panel is 25 ⁇ C and 75 ⁇ C, respectively, the controller MPPT controls the converter to generate it in the solar panel.
  • This is a graph that analyzes the case of transmitting the power to the load and the case of transmitting the power output from the solar panel to the load without the controller controlling the MPPT of the converter through simulation. A region in which more power is transmitted to the load when the controller does not MPPT the converter than when the controller MPPT controls the converter is shown in shades in FIG. 3.
  • the output voltage of the solar panel (or the input voltage of the converter) is variable so that the solar panel always generates maximum power regardless of the load voltage. Accordingly, the power delivered to the load in the period in which the load voltage is 240V ⁇ 320V is about 6750W or about 5380W regardless of the load voltage.
  • the controller MPPT controls the converter. Compared to the case, when the controller does not MPPT the converter, it can be seen that the maximum power of about 220W is further delivered to the load.
  • the control unit transfers power generated from the solar panel to the load
  • the power transfer efficiency to the load is relatively high only when the control unit controls the converter MPPT, and the control unit does not control the converter MPPT. It can be seen that there are cases in which the power transfer efficiency to the load is relatively high.
  • the amount of power transferred to the load was compared only when the amount of insolation incident on the solar panel is 1000W/m 2 and the temperature of the solar panel is 25°C and 75°C, respectively.
  • the insolation and temperature are values that continuously change throughout the day (generally, insolation is about 0 to 1500 W/m 2 , and the temperature varies in the range of about -20 to 80 °C). Therefore, in addition to the shaded portions in FIG. 3, when the controller does not MPPT the converter, compared to the case where the controller MPPT controls the converter, the number of load voltage intervals in which more power can be delivered to the load is Can exist.
  • FIG. 4 is a diagram showing a power system according to a first embodiment of the present invention.
  • the power system 1000a includes a power supply unit 110, a boost converter unit 120, and a control unit 130.
  • the power supply unit 110 is a component that generates power, and may be a solar panel that converts light energy into electrical energy.
  • the solar panel is a combination of solar cell modules capable of converting sunlight into direct current power and outputting it. Can be configured.
  • the solar cell module may be made of a series connection or parallel connection of solar cell cells, or a combination of series-parallel connection.
  • FIG. 4 illustrates a battery for storing DC power as an example of the load 10a, but it may correspond to the load 10a as long as it is a device receiving the DC power.
  • the boost converter unit 120 may receive an input voltage due to power generated from the power supply unit 110, boost the input voltage, and transfer the voltage to the load 10a.
  • the input voltage refers to a voltage constituting power generated from the power supply unit 110 and a voltage applied to the input terminal of the boost converter unit 120.
  • the boost converter unit 120 may include an inductor 121, a converter switch 122, and a reverse current prevention element 123.
  • the input current is a current constituting power generated from the power supply unit 110 and refers to a current flowing from the power supply unit 110 to the boost converter unit 120.
  • the reverse current prevention element 123 is configured to prevent a reverse current from flowing from the load 10a to the inductor 121.
  • various devices such as diodes and FETs may be used.
  • the converter switch 122 is a device that determines whether to conduct current through conduction (on state) or non-conduction (off state), and, for example, a semiconductor switch, a metal oxide semiconductor field effect transistor (MOSFET) may be used. However, it is not limited thereto.
  • MOSFET metal oxide semiconductor field effect transistor
  • the control unit 130 is a component that controls the boost converter unit 120, and specifically, the input voltage output from the power supply unit 110 by MPPT control of the boost converter unit 120 is boosted by the boost converter unit 120.
  • a first power transmission path that is transmitted to the load 10a through the process may be formed.
  • control unit 130 does not control the boost converter unit 120 to MPPT, but controls the converter switch 122 to be off, so that the input voltage output from the power supply unit 110 is boosted by the boost converter unit 120 It is possible to form a second power transmission path that is transmitted to the load 10a without passing through.
  • control unit 130 calculates the magnitude of the first power (P1) in the case of transmitting power to the load 10a through the first power transfer path, and provides power to the load 10a through the second power transfer path.
  • the magnitude of the second power (P2) in the case of transmitting is calculated.
  • the controller 130 compares the calculated magnitudes P1 and P2 of the first power and the second power, and controls the converter switch 122 of the boost converter 120 according to the comparison result.
  • the controller 130 controls on and off the converter switch 122 according to the duty ratio determined by the MPPT algorithm to control the first power. If a power transmission path is formed and the comparison result is that the magnitude of the first power (P1) is smaller than the magnitude of the second power (P2), the converter switch 122 is turned off without MPPT control to transmit the second power. Form a path
  • the first power is power transferred from the power supply 110 to the load 10a when the control unit 130 controls the boost converter unit 120 to MPPT
  • the second power is the control unit 130 This is the power transferred from the power supply unit 110 to the load 10a when 120 is not controlled by MPPT.
  • the first power level P1 may be calculated by the control unit 130 using the MPPT algorithm by receiving values of the open-circuit voltage V1 and the short-circuit current I1 of the output terminal of the power supply unit 110.
  • the second power level P2 is determined by the power supply unit 110 It can be calculated by calculating the value of the power output from.
  • the magnitude P2 of the second power may be calculated by the controller 130 receiving the current voltage V2 of the load 10a and the current flowing through the load 10a.
  • the controller 130 compares the magnitude of the first power (P1) and the magnitude of the second power (P2), and 2 Since it is configured to select a path having a higher power transfer efficiency to the load 10a among the power transfer paths in real time, the power transfer efficiency of the load 10a can be maximized.
  • the power system 1000a may further include an input side storage unit 140 that stores an input voltage by power generated from the power supply unit 110.
  • the input-side storage unit 140 may be connected between the power supply unit 110 and the boost converter unit 120.
  • the input-side storage unit 140 serves to supply a stable DC voltage to the boost converter unit 120 when noise or voltage fluctuates in the input voltage output from the power supply unit 110, and the input-side storage unit 140 As the furnace, a capacitor may be used.
  • the power system 1000a may further include an output side storage unit 150 that stores the voltage boosted by the boost converter unit 120.
  • the output-side storage unit 150 is connected between the boost converter unit 120 and the load 10a.
  • the output-side storage unit 150 serves to rectify a voltage to supply a DC voltage to the load 10a, and a capacitor may be used as the output-side storage unit 150.
  • FIG. 5A is a diagram illustrating a case where a first power transmission path is formed in the power system of FIG. 4, and FIG. 5B is a diagram illustrating a case where a second power transmission path is formed in the power system of FIG. 4.
  • first power transfer path and the second power transfer path will be described in more detail with reference to FIGS. 5A and 5B.
  • the controller 130 when the magnitude of the first power P1 is greater than or equal to the magnitude of the second power P2, the controller 130 forms a first power transmission path.
  • the boost converter unit 130 When the magnitude of the first power (P1) is greater than or equal to the magnitude of the second power (P2), it means that more power is transmitted to the load 10a when the boost converter unit 130 is MPPT-controlled. 130) forms a first power transmission path in a manner of controlling the on/off of the converter switch 122 using the duty ratio determined according to the MPPT algorithm.
  • the controller 130 when the magnitude P1 of the first power is smaller than the magnitude P2 of the second power, the controller 130 forms a second power transmission path.
  • the boost converter unit 120 When the magnitude of the first power P1 is smaller than the magnitude of the second power P2, it means that more power is transmitted to the load 10a when the boost converter unit 120 is not MPPT controlled. 130) turns off the converter switch 122 without controlling the boost converter unit 120 by MPPT.
  • the converter switch 122 When the converter switch 122 is turned off, the input voltage is not boosted by the boost converter unit 120, so the current voltage of the load 10a is applied to the power supply unit 110.
  • that the voltage of the load 10a is applied to the power supply unit 110 means that a voltage equal to the difference between the voltage of the load 10a and the voltage across the reverse current prevention element 123 is applied across the power supply unit 110. That is, the current output from the power supply unit 110 flows in the solid line direction of FIG. 5B and is transferred to the load 10a as it is only through the inductor 121 and the reverse current prevention element 123.
  • the inductor 121 since a DC voltage is applied to the inductor 121, the inductor 121 operates like a short circuit, and thus, core loss due to the inductor 121 does not occur.
  • the reverse current prevention element 123 when a diode is used as the reverse current prevention element 123, the anode of the diode is connected to the other end of the inductor 121 and the converter switch 122, and the cathode of the diode is connected to the load 10a, Reverse current does not flow from the load 10a to the inductor 121. Since the voltage drop of the diode is about 0.7V, which is a very small value, most (99% or more) of the power generated by the power supply unit 110 may be delivered to the load 10a.
  • a FET may be used as the reverse current prevention element 123, and in this case, the controller 130 may control the FET to be turned on and off.
  • the control unit 130 By controlling the FET to be turned on and off by the control unit 130, it is possible to prevent a reverse current from flowing from the load 10a to the inductor 121.
  • the diode has a voltage drop even in a small amount, whereas the voltage drop theoretically does not exist in the ON state of the FET, and thus power transfer efficiency to the load 10a may be higher than when a diode is used.
  • FIG. 6 is a flowchart illustrating a method of controlling the power system of FIG. 4.
  • the method of controlling the power system of FIG. 4 may be performed by the control unit 130 described above.
  • the control method of the power system according to the first embodiment of the present invention includes a first power level P1 and a second power when the control unit 130 transfers power to the load 10a through the first power transfer path.
  • the step of calculating the magnitude P2 of the second power when power is delivered to the load 10a through the power transfer path may be performed (S110).
  • the first power is power transferred from the power supply unit 110 to the load 10a when the control unit 130 controls the boost converter unit 120 to MPPT
  • the second power is the control unit 130 This is the power transferred from the power supply unit 110 to the load 10a when the boost converter unit 120 is not MPPT controlled.
  • the first power level P1 may be calculated by the control unit 130 using the MPPT algorithm by receiving values of the open-circuit voltage V1 and the short-circuit current I1 of the output terminal of the power supply unit 110.
  • the second power level P2 is determined by the power supply unit 110 It can be calculated by calculating the value of the power output from.
  • the magnitude P2 of the second power may be calculated by the controller 130 receiving the current voltage V2 of the load 10a and the current flowing through the load 10a.
  • one solar cell of the same model as the solar cell constituting a solar panel is separately provided for sensing and calculation purposes, not for power generation purposes, and the current of the one solar cell at the corresponding temperature and insolation And/or after sensing the voltage, the magnitude of the first power P1 may be calculated by calculating the power of the entire solar panel.
  • a method of calculating the magnitude of the first power P1 and the magnitude of the second power P2 is not limited, and it should be understood that all other computation methods are included.
  • the controller 130 compares the magnitude of the first power (P1) and the magnitude of the second power (P2) (S120), and thereafter, according to the comparison result, the controller 130 determines the boost converter unit 120 Controls the converter switch 122 included in) (S130).
  • the controller 130 forms a first power transmission path.
  • a first power transmission path is formed by controlling the on/off of the converter switch 122 using the duty ratio determined according to the MPPT algorithm (S131).
  • the controller 130 When the magnitude P1 of the first power is smaller than the magnitude P2 of the second power, the controller 130 forms a second power transmission path.
  • the converter switch 122 when the converter switch 122 is turned off, the input voltage is not boosted by the boost converter unit 120, so the current voltage of the load 10a is applied to the power supply unit 110.
  • that the voltage of the load 10a is applied to the power supply unit 110 means that a voltage equal to the difference between the voltage of the load 10a and the voltage across the reverse current prevention element 123 is applied across the power supply unit 110. That is, the current output from the power supply unit 110 is transmitted to the load 10a as it is through only the inductor 121 and the reverse current prevention element 123.
  • the load among the paths in which MPPT control is performed and the paths in which MPPT control is not performed can be delivered to the load by selecting a path with higher power transfer efficiency to the road in real time.
  • power can be delivered to a load with higher efficiency compared to a conventional power system using only MPPT control.
  • FIG. 7 is a diagram showing a power system according to a second embodiment of the present invention.
  • a power system 1000b includes a power supply unit 210, a switching unit 220, a boost converter unit 230, and a control unit 240.
  • the power supply unit 210 is a component that generates power, and may be a solar panel that converts light energy into electrical energy.
  • the solar panel is a combination of solar cell modules that can convert sunlight into DC power and output it. Can be configured.
  • the solar cell module may be made of a series connection or parallel connection of solar cells, or a combination of series-parallel connection.
  • the switching unit 220 includes a first switch 221 and a second switch 222 as a configuration capable of selecting a power transmission path when the power generated by the power supply unit 210 is transferred to the load 10b.
  • the first switch 221 and the second switch 222 may be any device having a function of switching a path through which a current flows.
  • FIG. 7 illustrates a battery for storing DC power as an example of the load 10b, but it may correspond to the load 10b as long as it is a device receiving the DC power.
  • the boost converter unit 230 may receive an input voltage by power generated from the power supply unit 210, boost the input voltage, and transfer the voltage to the load 10b.
  • the input voltage refers to a voltage constituting power generated from the power supply unit 210 and a voltage applied to the input terminal of the boost converter unit 230.
  • the boost converter unit 230 may include an inductor 231, a converter switch 232, and a reverse current prevention element 233.
  • One end and the other end of the inductor 231 are connected to the switching unit 220.
  • One end of the inductor 231 is connected to or disconnected from the power supply 210 according to the switching operation of the switching unit 220, and the other end of the inductor 231 is connected to the power supply 210 according to the switching operation of the switching unit 220. Or connected to the converter switch 232.
  • the converter switch 232 is connected to the other end of the inductor 231 or to the power supply 210 according to the switching operation of the switching unit 220.
  • the converter switch 232 is a device that determines whether to conduct current through conduction (on state) or non-conduction (off state), and, for example, a MOSFET, which is a semiconductor switch, may be used, but is not limited thereto.
  • the reverse current prevention element 233 is configured to prevent a reverse current from flowing from the load 10b to the inductor 231.
  • Various devices such as diodes and FETs may be used as the reverse current prevention device 233.
  • a specific circuit structure in which the first switch 221 and the second switch 222 of the switching unit 220 are connected is as follows.
  • the first switch 221 has one end connected to the power supply 210 and the other end connected to one end of the inductor 231 or connected to an open terminal according to a switching operation of the first switch 221.
  • that the other end of the first switch 221 is connected to the open terminal means that no element is electrically connected to the other end of the first switch 221.
  • the second switch 222 is provided so that one end is connected to one end of the converter switch 232 and the reverse current prevention element 233, and the other end is connected to the other end of the power supply unit 210 or the inductor 231 according to the switching operation. .
  • the control unit 240 is a component that controls the MPPT control of the boost converter unit 230 and the switching operation of the switching unit 220. More specifically, the control unit 240 controls the first switch 221 and the second switch 222 in the first switching mode to power the load 10b from the power supply unit 210 through the boost converter unit 230. This can form a first power transfer path to be transferred.
  • the power is transmitted through the boost converter unit 230, since power is transferred from the power supply unit 210 to the load 10b, the voltage output from the power supply unit 210 is variable by the boost converter unit 230. It means going through the process of becoming.
  • control unit 240 controls the first switch 221 and the second switch 222 in a second switching mode, so that power is transferred from the power supply unit 210 to the load 10b without passing through the boost converter unit 230.
  • a second power transmission path to be transmitted may be formed.
  • the power is transmitted without passing through the boost converter unit 230, since power is transferred from the power supply unit 210 to the load 10b, the voltage output from the power supply unit 210 is transmitted by the boost converter unit 230. It means that it doesn't go through the process of being variable.
  • control unit 240 calculates the magnitude of the first power when power is delivered to the load 10b through the first power transfer path, and transfers power to the load 10b through the second power transfer path. The magnitude of the second power in the case is calculated. Thereafter, the control unit 240 compares the calculated magnitudes of the first power and the second power, and controls the switching operation of the switching unit 220 according to the comparison result.
  • the control unit 240 controls the first switch 221 and the second switch 222 in a first switching mode, and the If the comparison result shows that the first power is smaller than the second power, the first switch 221 and the second switch 222 are controlled in the second switching mode.
  • the first power is the power transferred from the power supply 210 to the load 10b when the control unit 240 controls the boost converter unit 230 to MPPT
  • the second power is the control unit 240 is the boost converter unit ( When the MPPT control 230) is not performed, this is the power transferred from the power supply unit 210 to the load 10b.
  • the magnitude of the first power may be calculated by the control unit 240 using the MPPT algorithm by receiving values of the open-circuit voltage V1 and the short-circuit current I1 of the output terminal of the power supply unit 210.
  • the magnitude of the second power is output from the power supply 210 when the control unit 240 receives the current voltage V2 of the load 10b and the current voltage V2 of the load 10b is applied to the power supply 210. It can be calculated by calculating the power value. Alternatively, the magnitude of the second power may be calculated by the controller 240 receiving the current voltage V2 of the load 10b and the current flowing through the load 10b.
  • the controller 240 compares the magnitude of the first power and the magnitude of the second power, and according to the comparison result, a load among the first power transfer path and the second power transfer path Since it is configured to select a path having a higher power transfer efficiency to (10b) in real time, the power transfer efficiency to the load (10b) can be maximized.
  • the power system 1000b may further include an input side storage unit 250 that stores an input voltage by power generated from the power supply unit 210.
  • the input-side storage unit 250 may be connected between the power supply unit 210 and the boost converter unit 230.
  • the input-side storage unit 250 serves to supply a stable DC voltage to the boost converter unit 230 when noise or voltage fluctuates in the input voltage output from the power supply unit 210, and the input-side storage unit 250 As the furnace, a capacitor may be used.
  • the power system 1000b may further include an output side storage unit 260 that stores the voltage boosted by the boost converter unit 230.
  • the output-side storage unit 260 is connected between the boost converter unit 230 and the load 10b.
  • the output-side storage unit 260 serves to rectify a voltage to supply a DC voltage to the load 10b, and a capacitor may be used as the output-side storage unit 260.
  • FIG. 8A is a diagram illustrating an equivalent circuit when the power system of FIG. 7 operates in a first switching mode
  • FIG. 8B is a diagram illustrating an equivalent circuit when the power system of FIG. 7 operates in a second switching mode.
  • first switching mode and the second switching mode will be described in more detail with reference to FIGS. 8A and 8B.
  • power generated by the power supply unit 210 is transmitted to a first power transmission path, which is a path transmitted to the load 10b through the boost converter unit 230.
  • the control unit 240 tracks the maximum power by controlling the boost converter unit 230 by MPPT control, varying the voltage output from the power supply unit 210 and transmitting it to the load 10b.
  • the other end of the first switch 221 is connected to one end of the inductor 231 .
  • the control unit 240 connects the other end of the first switch 221 to one end of the inductor 231 so that the current output from the power supply unit 210 flows to the inductor 231 and charges the inductor 231.
  • the control unit 240 connects the other end of the switch 222 to the other end of the inductor 231 so that the inductor 231 is connected to the converter switch 232 and the reverse current prevention element 233.
  • the voltage output from the power supply unit 210 is variable so as to transmit the maximum power to the load 10b by the MPPT control of the control unit 240, the maximum power followed by the MPPT control will be delivered to the load 10b. I can.
  • power generated by the power supply unit 210 is transmitted to the load 10b through only the reverse current prevention element 233.
  • the control unit 240 controls the boost converter unit 230 to be transferred to the load 10b without changing the voltage generated by the power supply unit 210 by turning off the converter switch 232 without performing MPPT control.
  • the power transmitted from the power supply unit 210 to the load 10b is transmitted through the second power transmission path without passing through the boost converter unit 230.
  • the second switching mode forming the second power transmission path when the magnitude of the first power is smaller than the magnitude of the second power, the other end of the first switch 221 is connected to the open terminal, and the second switch 222 The other end of) is a mode connected to the power supply 210.
  • the control unit 240 connects the other end of the first switch 221 to the open terminal to cut off the circuit line connected from the power supply 210 to the inductor 231 located at the input terminal of the boost converter unit 230, and The other end of the switch 222 is connected to the power supply unit 210, and the power unit 210 is connected to the converter switch 232 and the reverse current prevention element 233.
  • the controller 240 turns off the converter switch 232.
  • the current voltage of the load 10b is applied to the power supply unit 210.
  • that the voltage of the load 10b is applied to the power supply 210 means that a voltage equal to the voltage difference between the voltage of the load 10b and the voltage across the reverse current prevention element 233 is applied to the power supply 210, and at this time, the power supply unit The current output from 210 is transferred to the load 10b as it is through only the reverse current prevention element 233.
  • the reverse current prevention element 233 when a diode is used as the reverse current prevention element 233, the anode of the diode is connected to the other end of the inductor 231 and the converter switch 232, and the cathode of the diode is connected to the load 10b, Reverse current does not flow from the load 10b to the inductor 231. Since the voltage drop of the diode is about 0.7V, which is a very small value, most (99% or more) of the power generated by the power supply 210 may be transferred to the load 10b.
  • a FET may be used as the reverse current prevention element 233.
  • the controller 240 may control the FET on and off, and the inductor 231 in the load 10b by the on/off control of the FET. It can prevent reverse current from flowing in the) direction.
  • the diode does not have a voltage drop theoretically when the FET is turned on, compared to a small amount of a voltage drop in the diode, power transfer efficiency to the load 10b may be higher than when a diode is used.
  • the second embodiment of the present invention by changing the structure of adding only a two poles switch element without adding a resistor, an inductor or a capacitor, power is transferred among the paths in which MPPT control is performed and the paths in which MPPT control is not performed. You can choose a path with higher efficiency to deliver power to the load. Therefore, there is an effect that power can be delivered to the load with higher efficiency than when performing only MPPT control.
  • FIG. 9 is a diagram showing a power system according to a third embodiment of the present invention.
  • a power system 1000c includes a power supply unit 310, a switching unit 320, a buck converter unit 330, and a control unit 340.
  • the power supply unit 310 is a component that generates power, and may be a solar panel that converts light energy into electrical energy.
  • the solar panel is a combination of solar cell modules that can convert sunlight into DC power and output it. Can be configured.
  • the solar cell module may be made of a series connection or parallel connection of solar cells, or a combination of series-parallel connection.
  • the switching unit 320 is a configuration capable of selecting a power transmission path when the power generated by the power supply unit 310 is transferred to the load 10c, and includes a first switch 321, a second switch 322, and a second switch. It includes three switches 323.
  • the first switch 321, the second switch 322, and the third switch 323 may be any element having a function of switching a path through which current flows.
  • FIG. 9 illustrates a battery for storing DC power as an example of the load 10c, but it may correspond to the load 10c as long as it is a device receiving the DC power.
  • the buck converter unit 330 may receive an input voltage due to power generated from the power supply unit 310, step down the input voltage, and transfer the voltage to the load 10c.
  • the input voltage refers to a voltage constituting power generated from the power supply unit 310 and a voltage applied to the input terminal of the buck converter unit 330.
  • the buck converter unit 330 may include a converter switch 331, a reverse current prevention element 332, and an inductor 333.
  • the converter switch 331 has one end and the other end connected to the switching unit 320.
  • One end of the converter switch 331 is connected to or disconnected from the power supply 310 according to the switching operation of the switching unit 320, and the other end of the converter switch 331 prevents reverse current according to the switching operation of the switching unit 320 It may be connected only to the device 332 or may be connected to the other end of the reverse current prevention device 332 and the inductor 333 together.
  • the converter switch 331 is a device that determines whether to conduct current through conduction (on state) or non-conduction (off state), and, for example, a MOSFET, which is a semiconductor switch, may be used, but is not limited thereto.
  • One end of the reverse current preventing element 332 is connected to the ground or connected to the power supply 310 according to the switching operation of the switching unit 320, and the other end of the reverse current preventing element 332 is connected to the other end of the converter switch 331. Connected. Various devices such as diodes and FETs may be used as the reverse current prevention device 332.
  • One end of the inductor 333 is connected to the other end of the converter switch 331, and the other end of the inductor 333 is connected to the load 10c.
  • a specific circuit in which the first switch 321, the second switch 322, and the third switch 323 of the switching unit 320 are connected is as follows.
  • One end of the first switch 321 is connected to the ground, and the other end is provided to be connected to one end of the reverse current preventing element 332 or turned off according to a switching operation controlled by the controller 340.
  • that the other end of the first switch 321 is turned off means that no circuit elements are electrically connected to the other end of the first switch 321.
  • the second switch 322 has one end connected to the power supply 310 and the other end connected to one end of the converter switch 331 or the reverse current prevention element 332 according to a switching operation controlled by the controller 340. It is prepared to be connected to one end.
  • the third switch 323 has one end connected to the other end of the inductor 333, and the other end is provided to be turned off according to a switching operation controlled by the controller 340 or connected to the other end of the converter switch 331.
  • that the other end of the third switch 323 is turned off means that no circuit elements are electrically connected to the other end of the third switch 323.
  • the other end of the converter switch 331 is a point where the reverse current prevention element 332 and the inductor 333 are connected.
  • the control unit 340 is a component that controls the MPPT control of the buck converter unit 330 and the switching operation of the switching unit 320. More specifically, the control unit 340 controls the first switch 321, the second switch 322, and the third switch 323 in a first switching mode, and controls the buck converter unit 330 from the power supply unit 310. A first power transfer path through which power is transferred to the load 10c may be formed.
  • control unit controls the first switch 321, the second switch 322, and the third switch 323 in the second switching mode, so that the load 10c from the power supply unit 310 without passing through the buck converter unit 330 ) May form a second power transfer path through which power is transferred.
  • the power is transmitted without passing through the buck converter unit 330 is that since power is transferred from the power supply unit 310 to the load 10c, the voltage output from the power supply unit 310 is transmitted by the buck converter unit 330. It means not going through the process of being forced to go through.
  • control unit 340 calculates the magnitude of the first power (P1) in the case of transmitting power to the load 10c through the first power transfer path, and transmits power to the load 10c through the second power transfer path.
  • the magnitude of the second power (P2) in the case of transmitting is calculated.
  • the controller 340 compares the calculated magnitude P1 of the first power and the magnitude P2 of the second power, and controls the switching operation of the switching unit 320 according to the comparison result.
  • the comparison result is the case where the magnitude of the first power (P1) is greater than or equal to the magnitude of the second power (P2), the first switch 321, the second switch 322, and the 3 If the switch 323 is controlled in the first switching mode, and the comparison result is a case where the magnitude of the first power (P1) is less than the magnitude of the second power (P2), the first switch 321 and the second switch Control 322 and the third switch 323 in the second switching mode.
  • the first power is power transferred from the power supply unit 310 to the load 10c when the control unit 340 controls the buck converter unit 330 MPPT
  • the second power is the control unit 340 When MPPT control 330 is not performed, this is the power transferred from the power supply unit 310 to the load 10c.
  • the first power level P1 may be calculated by the control unit 340 using the MPPT algorithm by receiving values of the open-circuit voltage V1 and the short-circuit current I1 of the output terminal of the power supply unit 310.
  • the second power level P2 is determined by the power supply unit 310. It can be calculated by calculating the value of the power output from. Alternatively, the magnitude P2 of the second power may be calculated by the controller 340 receiving the current voltage V2 of the load 10c and the current I2 flowing through the load 10c.
  • the control unit 340 compares the magnitude of the first power (P1) and the magnitude of the second power (P2), and 2 Since it is configured to select a path having a higher power transfer efficiency to the load 10c among the power transfer paths in real time, the power transfer efficiency to the load 10c can be maximized.
  • the power system 1000c may further include an input side storage unit 350 that stores an input voltage by power generated from the power supply unit 310.
  • the input-side storage unit 350 may be connected between the power supply unit 310 and the buck converter unit 330.
  • the input-side storage unit 350 serves to supply a stable DC voltage to the buck converter unit 330 when noise or voltage fluctuates in the input voltage output from the power supply unit 310, and the input-side storage unit 350 As the furnace, a capacitor may be used.
  • the power system 1000c may further include an output side storage unit 360 that stores a voltage stepped down by the buck converter unit 330.
  • the output-side storage unit 360 may be connected between the buck converter unit 330 and the load 10c.
  • the output-side storage unit 360 serves to rectify a voltage to supply a DC voltage to the load 10c, and a capacitor may be used as the output-side storage unit 360.
  • FIG. 10A is a diagram illustrating an equivalent circuit when the power system of FIG. 9 operates in a first switching mode
  • FIG. 10B is a diagram illustrating an equivalent circuit when the power system of FIG. 9 operates in a second switching mode.
  • first switching mode and the second switching mode will be described in more detail with reference to FIGS. 10A and 10B.
  • power generated by the power supply unit 310 is transmitted to a first power transmission path transmitted to the load 10c through the buck converter unit 330.
  • the control unit 340 follows the maximum power by controlling the buck converter unit 330 by MPPT control, stepping down the voltage output from the power supply unit 310 and transferring the voltage to the load 10c.
  • the other end of the first switch 321 is This mode is connected to one end of the reverse current prevention element 332, the other end of the second switch 322 is connected to one end of the converter switch 331, and the other end of the third switch 323 is turned off.
  • the controller 340 connects the other end of the first switch 321 to one end of the reverse current preventing element 332 so that one end of the reverse current preventing element 332 is connected to the ground, and The other end is connected to one end of the converter switch 331 so that the power supply 310 is connected to the converter switch 331, and the other end of the third switch 323 is turned off so that the converter switch 331 is directly transferred to the load 10c. It blocks the bypass path to which it is connected.
  • the MPPT control is performed by the control unit 340 controlling the on/off of the converter switch 331 according to the duty ratio determined by the MPPT algorithm.
  • the control unit 340 turns on the converter switch 331, an input current flows in the dotted line direction of FIG. 10A, energy is charged to the inductor 333, and power is transferred to the load 10c.
  • the input current is a current constituting power generated from the power supply unit 310 and refers to a current flowing from the power supply unit 310 to the buck converter unit 330.
  • the controller 340 turns off the converter switch 331, current flows in the solid line direction of FIG. 10B, and energy stored in the inductor 333 is released. In this way, when the on-off operation of the converter switch 331 is alternately repeated, the input voltage output from the power supply unit 310 is stepped down and transmitted to the load 10c.
  • power generated by the power supply unit 310 is transmitted to the load 10c through only the reverse current prevention element 332.
  • the control unit 340 does not MPPT control the buck converter unit 330, and controls the voltage generated by the power supply unit 310 to be transmitted to the load 10c without being stepped down. In this case, the power transmitted from the power supply unit 310 to the load 10c is transmitted through the second power transmission path without passing through the buck converter unit 330.
  • the second switching mode forming the second power transmission path when the magnitude of the first power is smaller than the magnitude of the second power, the other end of the first switch 321 is turned off, and the second switch ( In this mode, the other end of 322 is connected to one end of the reverse current prevention element 332 and the other end of the third switch 323 is connected to the other end of the converter switch 331.
  • the control unit 340 When the magnitude of the first power (P1) is smaller than the magnitude of the second power (P2), it means that more power is transmitted to the load 10c when the buck converter unit 330 is not MPPT controlled.
  • the 340 does not MPPT control the buck converter unit 330.
  • the control unit 340 turns off the other end of the first switch 321 and at the same time, the other end of the second switch 322 is connected to one end of the reverse current prevention element 332 to prevent a reverse current from the power supply unit 310 ( 332), let the current flow directly.
  • the control unit 340 connects the other end of the third switch 323 to the other end of the converter switch 331, thereby bypassing the inductor 333 from the converter switch 331 and directly connected to the load 10c.
  • the current voltage of the load 10c is applied to the power supply unit 310.
  • that the voltage of the load 10c is applied to the power supply 310 means that a voltage equal to the voltage difference between the voltage of the load 10c and the voltage across the reverse current prevention element 332 is applied to the power supply 310, at this time
  • the current output from the power supply 310 flows in the direction of an arrow in FIG. 10B and is transferred to the load 10c as it is only through the reverse current prevention element 332.
  • the voltage drop of the diode is about 0.7V, which is a very small value, so most (99% or more) of the power generated by the power supply 310 is applied to the load 10c. Can be delivered.
  • a field effect transistor may be used as the reverse current prevention element 332.
  • the control unit 340 can control the FET on and off, and the reverse current is reduced by the on/off control of the FET. You can prevent it from flowing.
  • the diode does not theoretically have a voltage drop when the FET is turned on, whereas the diode has a voltage drop even if it is a small amount, so power transfer efficiency to the load 10c may be higher than when a diode is used.
  • a bypass path can be formed so that the current output from the power supply unit 310 does not pass through the inductor 333 when operating in the second switching mode. Therefore, a ripple phenomenon that may be caused by the inductor 333 can be prevented in advance.
  • the first power transmission path refers to all paths that can be transmitted while being MPPT controlled because power output from the power supply unit 310 is transmitted to the load 10c, and the second power transmission path is performed by the power supply unit 310. Since the output power is transmitted to the load 10c, it means all paths that are transmitted without MPPT control.
  • the switching unit 320 may have various circuit structures to form the first power transmission path and the second power transmission path.
  • the third embodiment of the present invention by changing the structure of adding only the switch element without adding a resistor, an inductor, or a capacitor, a path having higher power transfer efficiency among the paths in which MPPT control is performed and the paths in which MPPT control is not performed is provided You can choose to deliver power to the load. Therefore, there is an effect that power can be delivered to the load with higher efficiency than when performing only MPPT control.
  • FIG. 11 is a diagram showing a power system according to a fourth embodiment of the present invention.
  • a power system 1000d includes a power supply unit 410, a buck-boost converter unit 420, and a control unit 430.
  • the power supply unit 410 is a component that generates power, and may be a solar panel that converts light energy into electrical energy.
  • the solar panel is a combination of solar cell modules that can convert sunlight into DC power and output it. Can be configured.
  • the solar cell module may be made of a series connection or parallel connection of solar cells, or a combination of series-parallel connection.
  • FIG. 11 illustrates a battery for storing DC power as an example of the load 10d, but it may correspond to the load 10d as long as it is a device receiving the DC power.
  • the buck-boost converter unit 420 may receive an input voltage by power generated from the power supply unit 410, and may boost or decrease the input voltage to transfer the voltage to the load 10d.
  • the input voltage refers to a voltage constituting power generated from the power supply unit 410 and a voltage applied to the input terminal of the buck-boost converter unit 420.
  • the buck-boost converter unit 420 may include an inductor 421 and a plurality of converter switches S1 to S4.
  • an inductor 421 and a plurality of converter switches S1 to S4 may form an H-bridge.
  • the input current refers to a current constituting power generated from the power supply unit 410 and a current flowing from the power supply unit 410 to the buck-boost converter unit 420.
  • the first converter switch S1 is provided between one end of the inductor 421 and the power supply unit 410, and the second converter switch S2 is connected to the other end of the inductor 421. It is provided between the loads 10d.
  • the third converter switch S3 is provided between one end of the inductor 421 and the ground, and the fourth converter switch S4 is provided between the other end of the inductor 421 and the ground.
  • Each of the converter switches S1 to S4 is a device that determines whether to conduct current through conduction (on state) or non-conduction (off state), and, for example, a semiconductor switch MOSFET may be used, but is not limited thereto. Does not.
  • the buck-boost converter unit 420 may operate as a boost converter that boosts the input voltage depending on how the plurality of converter switches S1 to S4 are controlled, or as a buck converter that steps down the input voltage. It can also work.
  • the buck-boost converter unit 420 is connected to the second converter switch S2.
  • the fourth converter switch S4 may operate as a boost converter in which an input voltage is boosted by an on/off alternating operation.
  • the buck-boost converter unit 420 operates in a state in which the second converter switch S2 is always on and the fourth converter switch S4 is always off, the first converter switch S1 and the third It can also operate as a buck converter in which the input voltage is stepped down by an on/off alternating operation of the converter switch S3.
  • the control unit 430 is a component that controls the buck-boost converter unit 420, and specifically controls the buck-boost converter unit 420 by MPPT control so that the input voltage output from the power supply unit 410 is the buck-boost converter unit 420 ) To form a first power transfer path that is transferred to the load 10d through a process of boosting.
  • control unit 430 MPPT controls the buck-boost converter unit 420 to transfer the input voltage output from the power supply unit 410 to the load 10d through a step-down process by the buck-boost converter unit 420 It is possible to form a second power transmission path.
  • control unit 430 does not MPPT control the buck-boost converter unit 420, and the input voltage output from the power supply unit 410 is boosted and stepped down by the buck-boost converter unit 420 without going through the load. It is possible to form a third power transmission path delivered to (10d).
  • control unit 430 calculates the magnitude P1 of the first power in the case of transmitting power to the load 10d through the first power transfer path, and the load 10d through the third power transfer path. In the case of transferring power to, the magnitude of the third power (P3) may be calculated. Thereafter, the controller 430 compares the calculated magnitude P1 of the first power and the magnitude P3 of the third power, and according to the comparison result, a plurality of converter switches of the buck-boost converter unit 420 ( On/off of S1 ⁇ S4) can be controlled.
  • the first power is power transferred from the power supply unit 410 to the load 10d when the control unit 430 controls the MPPT while operating the buck-boost converter unit 420 as a boost converter
  • the third power is the control unit ( When 430 does not MPPT control the buck-boost converter unit 420, this is the power transferred from the power supply unit 410 to the load 10d.
  • the first power level P1 may be calculated by the control unit 430 using the MPPT algorithm by receiving values of the open-circuit voltage V1 and the short-circuit current I1 of the output terminal of the power supply unit 410.
  • the third power level P3 may be calculated by receiving the current voltage V2 of the load 10d and the current I2 flowing through the load 10d by the control unit 430.
  • the controller 430 compares the magnitude of the first power (P1) and the magnitude of the third power (P3), and according to the comparison result, the first power transfer path and the third power Since it is configured to select a path having a higher power transfer efficiency to the load 10d among the transfer paths in real time, the power transfer efficiency to the load 10d can be maximized.
  • the control unit 430 calculates the magnitude of the second power (P2) in the case of transmitting power to the load 10d through the second power transfer path, and transmits power to the load 10d through the third power transfer path. It is possible to calculate the magnitude P3 of the third power in the case of delivering. Thereafter, the control unit 430 compares the calculated magnitude P2 of the second power and the magnitude P3 of the third power, and according to the comparison result, a plurality of converter switches of the buck-boost converter unit 420 ( S1 ⁇ S4) can be controlled.
  • the second power is power transferred from the power supply unit 410 to the load 10d when the control unit 430 controls the MPPT while operating the buck-boost converter unit 420 as a buck converter
  • the third power is the control unit ( When 430 does not MPPT control the buck-boost converter unit 420, this is the power transferred from the power supply unit 410 to the load 10d.
  • the second power level P2 may be calculated by the control unit 430 using the MPPT algorithm by receiving values of the open-circuit voltage V1 and the short-circuit current I1 of the output terminal of the power supply unit 410.
  • the third power level P3 may be calculated by receiving the current voltage V2 of the load 10d and the current I2 flowing through the load 10d by the control unit 430.
  • the controller 430 compares the magnitude of the second power (P2) and the magnitude of the third power (P3), and Since it is configured to select a path having a higher power transfer efficiency to the load 10d among the 3 power transfer paths in real time, the power transfer efficiency to the load 10d can be maximized.
  • the power system 1000d may further include an input side storage unit 440 for storing an input voltage by power generated from the power supply unit 410.
  • the input-side storage unit 440 may be connected between the power supply unit 410 and the buck-boost converter unit 420.
  • the input-side storage unit 440 serves to supply a stable DC voltage to the buck-boost converter unit 420 when noise or voltage fluctuates in the input-side voltage output from the power supply unit 410, and the input-side storage unit ( As 440), a capacitor may be used.
  • the power system 1000d may further include an output side storage unit 450 that stores a voltage boosted or stepped down by the buck-boost converter unit 420.
  • the output-side storage unit 450 may be connected between the buck-boost converter unit 420 and the load 10d.
  • the output-side storage unit 450 serves to rectify a voltage to supply a DC voltage to the load 10d, and a capacitor may be used as the output-side storage unit 450.
  • FIG. 12A is a diagram illustrating a case in which a first power transmission path is formed in the power system of FIG. 11
  • FIG. 12B is a diagram illustrating a case in which a second power transmission path is formed in the power system of FIG. 11
  • FIG. 12C is A diagram showing a case in which a third power transmission path is formed in the power system of 11.
  • the first power transmission path is the power formed when the input voltage output from the power supply unit 410 is boosted by the buck-boost converter unit 420 and is transferred to the load 10d. It is a delivery path. That is, at this time, the buck-boost converter unit 420 operates as a boost converter.
  • the controller 430 forms a first power transmission path when the first power level P1 is greater than or equal to the third power level P3.
  • the magnitude of the first power (P1) is greater than or equal to the magnitude of the third power (P3) means that more power is delivered to the load (10d) when the buck-boost converter unit 420 is MPPT controlled. Therefore, the control unit 430 boosts the voltage output from the power supply unit 410 while MPPT control of the buck-boost converter unit 420 and transfers it to the load 10d.
  • control unit 430 sets the second converter switch S2 and the fourth converter switch S4 to the duty according to the MPPT algorithm in a state in which the first converter switch S1 is turned on and the third converter switch S3 is turned off. On/off control is performed alternately according to the ratio.
  • the input voltage output from the power supply unit 410 is boosted to deliver the maximum power to the load 10d by the MPPT control of the control unit 430, the maximum power followed by the MPPT control will be delivered to the load 10d. I can.
  • the second power transmission path is formed when the input voltage output from the power supply unit 410 is stepped down by the buck-boost converter unit 420 and is transferred to the load 10d. It is a power transmission path. That is, at this time, the buck-boost converter unit 420 operates as a buck converter.
  • the controller 430 forms a second power transmission path when the magnitude of the second power P2 is greater than or equal to the magnitude of the third power P3.
  • that the magnitude of the second power (P2) is greater than or equal to the magnitude of the third power (P3) means that more power is delivered to the load (10d) when the buck-boost converter unit 420 is MPPT controlled. Therefore, while controlling the buck-boost converter unit 420 to MPPT, the control unit 430 steps down the voltage output from the power supply unit 410 and transfers it to the load 10d.
  • the control unit 430 sets the duty of the first converter switch S1 and the third converter switch S3 according to the MPPT algorithm. On/off control is performed alternately according to the ratio.
  • the inductor 421 is charged with energy while the input current flows in the dotted line direction of FIG. 12B. Electric power is delivered to the load 10d. Thereafter, while the first converter switch S1 is turned off and the third converter switch S3 is turned on, a current flows in the solid line direction of FIG. 12B to discharge energy stored in the inductor 421. As the on-off operation of the first converter switch S1 and the third converter switch S3 is alternately repeated, the input voltage output from the power supply unit 410 is stepped down and transmitted to the load 10d.
  • the input voltage output from the power supply unit 410 is stepped down so that the maximum power can be delivered to the load 10d by the MPPT control of the control unit 430, so that the maximum power followed by the MPPT control will be delivered to the load 10d. I can.
  • the third power transfer path is to be transferred to the load 10d without going through the process of boosting and stepping down the input voltage output from the power supply unit 410 by the buck-boost converter unit 420. It is the power transmission path that is formed when. That is, at this time, the buck-boost converter unit 420 does not operate as a converter.
  • the control unit 430 provides the third power when the first power P1 is smaller than the third power P3 or the second power P2 is smaller than the third power P3. It forms a delivery path.
  • the control unit 430 does not MPPT the buck-boost converter unit 420 but controls the buck-boost converter unit 420 so that the voltage output from the power supply unit 410 is transmitted to the load 10d as it is.
  • control unit 430 turns on the first converter switch S1 and the second converter switch S2, and turns off the third converter switch S3 and the fourth converter switch S4.
  • the current load 10d voltage is applied to the power supply unit 410, and the power is directly transmitted without switching loss, core loss, and/or conduction loss by the buck-boost converter unit 420. It is supplied to the load 10d.
  • the inductor 421 operates like a short circuit, and thus, core loss due to the inductor 421 does not occur.
  • the voltage of the load 10d is applied to the power supply unit 410 means that the value of the voltage of the load 10d is applied to the power supply unit 410 as it is. That is, the current output from the power supply unit 410 flows in the solid line direction of FIG. 12C and is transmitted to the load 10d as it is only through the inductor 421.
  • 13A is a flowchart illustrating a method of controlling the power system of FIG. 11.
  • the control method of the power system according to the fourth embodiment of the present invention may be performed by the controller 430.
  • control unit 430 transmits power to the load 10d through the first power transfer path and the first power amount P1 when power is transferred to the load 10d through the first power transfer path.
  • the magnitude P3 of the third power in the case is calculated (S411).
  • the first power transfer path is a power transfer path formed when the input voltage output from the power supply unit 10 is boosted by the buck-boost converter unit 420 and is transferred to the load 10d. That is, at this time, the buck-boost converter unit 420 operates as a boost converter.
  • the first power is power transferred from the power supply unit 410 to the load 10d when the control unit 430 controls the MPPT while operating the buck-boost converter unit 420 as a boost converter, and the third power When the control unit 430 does not MPPT control the buck-boost converter unit 420, is power transferred from the power supply unit 410 to the load 10d.
  • the first power level P1 may be calculated by the control unit 430 using the MPPT algorithm by receiving values of the open-circuit voltage V1 and the short-circuit current I1 of the output terminal of the power supply unit 410.
  • the third power level P3 may be calculated by receiving the current voltage V2 of the load 10d and the current I2 flowing through the load 10d by the control unit 430.
  • one solar cell of the same model as the solar cell constituting a solar panel is separately provided for sensing and calculation purposes, not for power generation purposes, and the current of the one solar cell at the corresponding temperature and insolation And/or after sensing the voltage, the magnitude of the first power P1 may be calculated by calculating the power of the entire solar panel.
  • a method of calculating the magnitude of the first power P1 and the magnitude of the third power P3 is not limited, and it should be understood that all other computation methods are included.
  • the controller 430 compares the magnitude of the first power (P1) and the magnitude of the third power (P3) (S412), and then, according to the comparison result, the controller 430 performs a first converter switch ( S1), the second converter switch S2, the third converter switch S3, and the fourth converter switch S4 are controlled (S413).
  • the controller 430 performs the step of forming a first power transmission path (S413-1).
  • the control unit 430 boosts the voltage output from the power supply unit 410 while MPPT control of the buck-boost converter unit 420 and transfers it to the load 10d.
  • control unit 430 sets the second converter switch S2 and the fourth converter switch S4 to the duty according to the MPPT algorithm in a state in which the first converter switch S1 is turned on and the third converter switch S3 is turned off. On/off control is performed alternately according to the ratio.
  • the controller 430 When the magnitude of the first power P1 is smaller than the magnitude of the third power P3, the controller 430 performs the step of forming a third power transmission path (S413-2).
  • the control unit 430 does not MPPT the buck-boost converter unit 420 but controls the buck-boost converter unit 420 so that the voltage output from the power supply unit 410 is transmitted to the load 10d as it is.
  • control unit 430 turns on the first converter switch S1 and the second converter switch S2, and turns off the third converter switch S3 and the fourth converter switch S4.
  • the current load 10d voltage is applied to the power supply unit 410, and the power is directly transmitted without switching loss, core loss, and/or conduction loss by the buck-boost converter unit 420. It is supplied to the load 10d.
  • the inductor 421 since a DC voltage is applied to the inductor 421, the inductor 421 operates like a short circuit, and thus, core loss due to the inductor 421 does not occur.
  • the voltage of the load 10d is applied to the power supply unit 410 means that the value of the voltage of the load 10d is applied to the power supply unit 410 as it is. That is, the current output from the power supply unit 410 is transferred to the load 10d as it is through only the inductor 421.
  • FIG. 13B is another flowchart illustrating a method of controlling the power system of FIG. 11.
  • Another embodiment of the control method of the power system according to the fourth embodiment of the present invention may also be performed by the controller 430.
  • control unit 430 transmits power to the load 10d through the second power transfer path and the second power amount P2 when power is transferred to the load 10d through the second power transfer path.
  • the magnitude P3 of the third power in the case is calculated (S421).
  • the second power transfer path is a power transfer path formed when the input voltage output from the power supply unit 10 is stepped down by the buck-boost converter unit 420 and is transferred to the load 10d. That is, at this time, the buck-boost converter unit 420 operates as a buck converter.
  • the second power is power transferred from the power supply unit 410 to the load 10d when the control unit 430 controls the MPPT while operating the buck-boost converter unit 420 as a buck converter
  • the third power is the control unit ( When 430 does not MPPT control the buck-boost converter unit 420, this is the power transferred from the power supply unit 410 to the load 10d.
  • the second power level P2 may be calculated by the control unit 430 using the MPPT algorithm by receiving values of the open-circuit voltage V1 and the short-circuit current I1 of the output terminal of the power supply unit 410.
  • the third power level P3 may be calculated by receiving the current voltage V2 of the load 10d and the current I2 flowing through the load 10d by the control unit 430.
  • the controller 430 compares the magnitude of the second power (P2) and the magnitude of the third power (P3) (S422), and then, according to the comparison result, the controller 430 performs a first converter switch ( S1), the second converter switch S2, the third converter switch S3, and the fourth converter switch S4 are controlled (S423).
  • the controller 430 performs the step of forming a second power transmission path (S423-1).
  • the control unit 430 MPPT controls the buck-boost converter unit 420 to step down the voltage output from the power supply unit 410 and transfer it to the load 10d.
  • the control unit 430 sets the duty of the first converter switch S1 and the third converter switch S3 according to the MPPT algorithm. On/off control is performed alternately according to the ratio.
  • the controller 430 When the magnitude of the second power P2 is smaller than the magnitude of the third power P3, the controller 430 performs a step of forming a third power transmission path (S423-2).
  • That the second power P2 is smaller than the third power P3 means that more power is delivered to the load 10d when the buck-boost converter unit 420 is not MPPT controlled. . Accordingly, the control unit 430 does not MPPT the buck-boost converter unit 420 but controls the buck-boost converter unit 420 so that the voltage output from the power supply unit 410 is transmitted to the load 10d as it is.
  • control unit 430 turns on the first converter switch S1 and the second converter switch S2, and turns off the third converter switch S3 and the fourth converter switch S4.
  • the current load 10d voltage is applied to the power supply unit 410, and the power is directly transmitted without switching loss, core loss, and/or conduction loss by the buck-boost converter unit 420. It is supplied to the load 10d.
  • the inductor 421 since a DC voltage is applied to the inductor 421, the inductor 421 operates like a short circuit, and thus, core loss due to the inductor 421 does not occur.
  • the voltage of the load 10d is applied to the power supply unit 410 means that the value of the voltage of the load 10d is applied to the power supply unit 410 as it is. That is, the current output from the power supply unit 410 is transferred to the load 10d as it is through only the inductor 421.
  • the control method of the first converter switch S1, the second converter switch S2, the third converter switch S3, and the fourth converter switch S4 is a path for transferring power to the load 10d by MPPT control or In order to select a path for transmitting power to the load 10d without performing MPPT control, it can be controlled in various ways other than the above-described control method, and the fourth embodiment of the present invention includes all of these various control methods. .
  • MPPT is achieved by changing only the control method of the converter switches S1 to S4 of the buck-boost converter unit 420 without adding additional elements to the existing power system circuit structure.
  • a path having higher power transfer efficiency to the load 10d may be selected to deliver power to the load. Therefore, there is an effect that power is delivered to the load with higher efficiency than when only MPPT control is performed.
  • a FET is generally used as the converter switches S1 to S4.
  • a diode Since power loss is less than when using a DC-DC converter with a device, the power transfer efficiency can be higher.

Abstract

A power system according to an embodiment of the present invention is formed such that a path having a higher power transmission efficiency to a load can be selected in real time by means of changing a control method of a converter switch provided inside a boost converter, even without adding a separate device to an existing power system. The power system according to an embodiment of the present invention has an enhanced power transmission efficiency from a power source unit to a load.

Description

전력 시스템Power system
본 발명은 전원부에서 생성되는 전력을 부하에 전달하는 전력 시스템에 관한 것이다.The present invention relates to a power system that delivers power generated by a power source to a load.
일반적으로, 태양광 발전 시스템이라 함은 태양광 패널을 이용하여 빛 에너지를 전기 에너지로 변환시키고, 변환된 전기 에너지를 부하에 전달하는 전력 시스템을 말한다. 지구 온난화 해소 및 화석 연료 고갈에 대한 대안으로서, 태양광 발전 시스템의 연구 및 개발은 지속적이고 적극적으로 이루어지고 있다.In general, a solar power generation system refers to a power system that converts light energy into electrical energy using a solar panel and delivers the converted electrical energy to a load. As an alternative to resolving global warming and depleting fossil fuels, research and development of solar power generation systems is continuously and actively conducted.
태양광 발전 시스템에서 사용되는 태양광 패널은 태양광 패널의 온도와 태양광 패널에 입사되는 일사량에 따라 생성되는 전력이 변한다. 이에 따라, 태양광 패널의 온도와 태양광 패널에 입사되는 일사량에 따라 변하는 태양광 패널의 P-V 곡선에서 최대 전력점을 추종하는 제어, 즉 최대 전력점 추종(MPPT;Maximum Power Point Tracking) 제어를 통해, 태양광 패널에서 최대 전력이 생성될 수 있도록 한다. 다만, 후술하는 바와 같이, 태양광 패널에서 생성되는 전력을 제어부가 부하에 전달함에 있어서, 제어부가 컨버터를 MPPT 제어해야만 부하로의 전력 전달 효율이 높은 경우와, 제어부가 컨버터를 MPPT 제어하지 않아야만 부하로의 전력 전달 효율이 높은 경우가 각각 있다. 이에 따라, 제어부가 컨버터를 MPPT 제어하는 경우와 MPPT 제어하지 않는 경우로 구분하여 동작할 수 있도록 하는 전력 시스템이 마련될 필요가 있다.In the solar panel used in the solar power generation system, the power generated varies depending on the temperature of the solar panel and the amount of insolation incident on the solar panel. Accordingly, through the control of tracking the maximum power point in the PV curve of the photovoltaic panel that changes according to the temperature of the photovoltaic panel and the amount of insolation incident on the photovoltaic panel, that is, the maximum power point tracking (MPPT) control. , So that the maximum power can be generated from the solar panel. However, as will be described later, when the control unit transfers the power generated from the solar panel to the load, the power transfer efficiency to the load is high only when the control unit controls the converter MPPT, and the control unit must not control the converter MPPT. In each case, the efficiency of power transfer to the load is high. Accordingly, there is a need to provide a power system that allows the controller to operate in a case where the converter is controlled by MPPT and a case where MPPT is not controlled.
본 발명은 전원부에서 생성되는 전력을 부하에 전달함에 있어서, 상기 전력의 전달 경로를 실시간으로 변경함으로써, 전원부에서 부하로의 전력 전달 효율을 향상시킬 수 있는 전력 시스템을 제공하는 것에 그 목적이 있다.An object of the present invention is to provide a power system capable of improving power transfer efficiency from the power supply to the load by changing the transmission path of the power in real time in delivering the power generated by the power supply to the load.
상기와 같은 목적을 달성하기 위하여, 본 발명의 제1 실시예에 따른 전력 시스템은, 전력을 생성하는 전원부; 상기 전원부로부터 생성되는 전력에 의한 입력 전압을 승압하여 부하에 전달하는 부스트 컨버터부; 및 상기 부스트 컨버터부를 제어하여 상기 전원부로부터 상기 부하로 상기 전력을 전달하는 제1 전력 전달 경로 또는 제2 전력 전달 경로를 형성하는 제어부;를 포함하고, 상기 제어부에 의해 상기 제1 전력 전달 경로가 형성되는 경우, 상기 입력 전압이 상기 부스트 컨버터부에 의해 승압되는 과정을 거쳐 상기 부하로 전달되고, 상기 제어부에 의해 상기 제2 전력 전달 경로가 형성되는 경우, 상기 입력 전압이 상기 부스트 컨버터부에 의해 승압되는 과정을 거치지 않고 상기 부하로 전달될 수 있다.In order to achieve the above object, a power system according to a first embodiment of the present invention includes a power supply unit for generating power; A boost converter unit for boosting an input voltage by power generated from the power unit and transferring it to a load; And a control unit configured to form a first power transfer path or a second power transfer path for transferring the power from the power supply unit to the load by controlling the boost converter unit, wherein the first power transfer path is formed by the control unit. When the input voltage is boosted by the boost converter unit, the input voltage is transferred to the load, and the second power transmission path is formed by the control unit, the input voltage is boosted by the boost converter unit. It can be delivered to the load without going through the process of being.
상기 부스트 컨버터부는, 일단이 상기 전원부에 연결되어 상기 전원부로부터 출력되는 전류에 의해 충전되는 인덕터; 상기 부하에서 상기 인덕터 방향으로 역전류가 흐르는 것을 방지하는 역전류 방지 소자; 및 일단은 상기 인덕터의 타단과 상기 역전류 방지 소자 사이에 연결되고, 타단은 접지에 연결되는 컨버터 스위치;를 포함할 수 있다.The boost converter unit may include an inductor having one end connected to the power supply unit and charged by a current output from the power supply unit; A reverse current prevention element preventing reverse current from flowing from the load to the inductor; And a converter switch having one end connected between the other end of the inductor and the reverse current preventing element, and the other end connected to the ground.
상기 제어부는, 상기 제1 전력 전달 경로를 통해 상기 부하에 전력을 전달하는 경우의 제1 전력의 크기를 연산하고, 상기 제2 전력 전달 경로를 통해 상기 부하에 전력을 전달하는 경우의 제2 전력의 크기를 연산하며, 상기 제1 전력의 크기 및 상기 제2 전력의 크기를 비교한 결과에 따라 상기 컨버터 스위치를 제어하고, 상기 비교 결과, 상기 제1 전력의 크기가 상기 제2 전력의 크기보다 크거나 같은 경우 MPPT(Maximum Power Point Tracking) 알고리즘에 의해 결정되는 듀티비에 따라 상기 컨버터 스위치를 온오프 제어하여 상기 제1 전력 전달 경로를 형성하고, 상기 비교 결과, 상기 제1 전력의 크기가 상기 제2 전력의 크기보다 작은 경우 상기 컨버터 스위치를 오프로 제어하여 상기 제2 전력 전달경로를 형성할 수 있다.The control unit calculates a magnitude of first power when power is transmitted to the load through the first power transmission path, and second power when power is transmitted to the load through the second power transmission path A magnitude of is calculated, and the converter switch is controlled according to a result of comparing the magnitude of the first power and the magnitude of the second power, and as a result of the comparison, the magnitude of the first power is greater than the magnitude of the second power. When greater than or equal to, the converter switch is turned on and off according to the duty ratio determined by the MPPT (Maximum Power Point Tracking) algorithm to form the first power transfer path. When it is smaller than the magnitude of the second power, the second power transmission path may be formed by controlling the converter switch to be turned off.
상기와 같은 목적을 달성하기 위하여, 본 발명의 제2 실시예에 따른 전력 시스템은, 전력을 생성하는 전원부; 상기 전원부에 의해 생성되는 전력이 부하로 전달되는 전력 전달 경로를 선택하는 스위칭부; 상기 전원부로부터 생성되는 전력에 의한 입력 전압을 승압하여 상기 부하에 전달하는 부스트 컨버터부; 및 상기 스위칭부의 스위칭 동작을 제어하는 제어부;를 포함하며, 상기 스위칭부는 제1 스위치 및 제2 스위치를 포함하고, 상기 제어부는, 상기 제1 스위치 및 제2 스위치를 제1 스위칭 모드로 제어하여 상기 전원부로부터 상기 부스트 컨버터부를 통하여 상기 부하로 전력이 전달되는 제1 전력 전달 경로를 형성하고, 상기 제1 스위치 및 제2 스위치를 제2 스위칭 모드로 제어하여 상기 전원부로부터 상기 부스트 컨버터부를 통하지 않고 상기 부하로 전력이 전달되는 제2 전력 전달 경로를 형성할 수 있다.In order to achieve the above object, a power system according to a second embodiment of the present invention includes a power supply unit for generating power; A switching unit for selecting a power transmission path through which the power generated by the power unit is transmitted to the load; A boost converter unit that boosts an input voltage by power generated from the power unit and transfers it to the load; And a control unit for controlling a switching operation of the switching unit, wherein the switching unit includes a first switch and a second switch, and the control unit controls the first switch and the second switch in a first switching mode. A first power transmission path through which power is transmitted from a power supply to the load through the boost converter is formed, and the first switch and the second switch are controlled in a second switching mode, so that the load is not passed through the boost converter from the power supply. A second power transfer path through which power is transferred may be formed.
상기 부스트 컨버터부는, 일단이 상기 스위칭부의 스위칭 동작에 따라 상기 전원부에 연결되거나 연결 해제되는 인덕터; 상기 스위칭부의 스위칭 동작에 따라 상기 인덕터의 타단에 연결되거나 상기 전원부에 연결되는 컨버터 스위치; 및 상기 부하에서 상기 인덕터 방향으로 역전류가 흐르는 것을 방지하는 역전류 방지 소자;를 포함할 수 있다.The boost converter unit may include an inductor whose one end is connected to or disconnected from the power supply unit according to a switching operation of the switching unit; A converter switch connected to the other end of the inductor or connected to the power supply according to a switching operation of the switching unit; And a reverse current preventing element for preventing reverse current from flowing from the load to the inductor.
상기 제1 스위치는, 일단이 상기 전원부에 연결되고, 타단은 상기 제어부에 의해 제어되는 스위칭 동작에 따라 상기 인덕터의 일단 또는 개방 단자에 연결되며, 상기 제2 스위치는, 일단이 상기 컨버터 스위치 및 상기 역전류 방지 소자에 연결되고, 타단은 상기 제어부에 의해 제어되는 스위칭 동작에 따라 상기 전원부 또는 상기 인덕터의 타단에 연결될 수 있다.The first switch has one end connected to the power supply, the other end connected to one end or an open terminal of the inductor according to a switching operation controlled by the control unit, and the second switch has one end connected to the converter switch and the It is connected to the reverse current prevention element, and the other end may be connected to the power supply unit or the other end of the inductor according to a switching operation controlled by the control unit.
상기 제어부는, 상기 제1 전력 전달 경로로 상기 부하에 전력을 전달하는 경우의 제1 전력의 크기를 연산하고, 상기 제2 전력 전달 경로로 상기 부하에 전력을 전달하는 경우의 제2 전력의 크기를 연산하며, 상기 제1 전력의 크기 및 상기 제2 전력의 크기를 비교하고, 상기 비교 결과, 상기 제1 전력이 상기 제2 전력보다 크거나 같은 경우, 상기 제1 스위치의 타단을 상기 인덕터의 일단에 연결하고, 상기 제2 스위치의 타단을 상기 인덕터의 타단에 연결하는 상기 제1 스위칭 모드로 제어하고, 상기 비교 결과, 상기 제1 전력이 상기 제2 전력보다 작은 경우, 상기 제1 스위치의 타단을 상기 개방단자에 연결하고, 상기 제2 스위치의 타단을 상기 전원부에 연결하는 상기 제2 스위칭 모드로 제어할 수 있다.The control unit calculates a magnitude of first power when power is delivered to the load through the first power transfer path, and a magnitude of second power when power is delivered to the load through the second power transfer path And comparing the magnitude of the first power and the magnitude of the second power. As a result of the comparison, when the first power is greater than or equal to the second power, the other end of the first switch is connected to the inductor. When the first switching mode is connected to one end and the other end of the second switch is connected to the other end of the inductor, and as a result of the comparison, when the first power is less than the second power, the first switch is The second switching mode may be controlled in which the other end is connected to the open terminal and the other end of the second switch is connected to the power supply.
상기 제어부는, 상기 스위칭부를 상기 제1 스위칭 모드로 제어하는 경우, 상기 부스트 컨버터부를 MPPT 제어하며, 상기 스위칭부를 상기 제2 스위칭 모드로 제어하는 경우, 상기 부스트 컨버터부를 MPPT 제어하지 않고 상기 컨버터 스위치를 오프로 동작시킬 수 있다.When controlling the switching unit in the first switching mode, the control unit controls the boost converter unit in MPPT, and when controlling the switching unit in the second switching mode, the control unit controls the converter switch without MPPT controlling the boost converter unit. It can be turned off.
상기와 같은 목적을 달성하기 위하여, 본 발명의 제3 실시예에 따른 전력 시스템은, 전력을 생성하는 전원부; 상기 전원부에 의해 생성되는 전력이 부하로 전달되는 전력 전달 경로를 선택하는 스위칭부; 상기 전원부로부터 생성되는 전력에 의한 입력 전압을 강압하여 상기 부하에 전달하는 벅 컨버터부; 및 상기 스위칭부의 스위칭 동작을 제어하는 제어부;를 포함하며, 상기 스위칭부는 제1 스위치, 제2 스위치 및 제3 스위치를 포함하고, 상기 제어부는, 상기 제1 스위치, 제2 스위치 및 제3 스위치를 제1 스위칭 모드로 제어하여, 상기 전원부로부터 상기 벅 컨버터부를 통하여 상기 부하로 전력이 전달되는 제1 전력 전달 경로를 형성하고, 상기 제1 스위치, 제2 스위치 및 제3 스위치를 제2 스위칭 모드로 제어하여, 상기 전원부로부터 상기 벅 컨버터부를 통하지 않고 상기 부하로 전력이 전달되는 제2 전력 전달 경로를 형성할 수 있다.In order to achieve the above object, a power system according to a third embodiment of the present invention includes a power supply unit for generating power; A switching unit for selecting a power transmission path through which the power generated by the power unit is transmitted to the load; A buck converter unit stepping down an input voltage due to power generated from the power supply unit and transferring it to the load; And a control unit for controlling a switching operation of the switching unit, wherein the switching unit includes a first switch, a second switch, and a third switch, and the control unit includes the first switch, the second switch, and the third switch. By controlling in a first switching mode, a first power transmission path through which electric power is transmitted from the power supply unit to the load through the buck converter unit is formed, and the first switch, the second switch, and the third switch are set in a second switching mode. By controlling, it is possible to form a second power transmission path through which power is transmitted from the power supply unit to the load without passing through the buck converter unit.
상기 벅 컨버터부는, 일단이 상기 스위칭부의 스위칭 동작에 따라 상기 전원부에 연결되거나 연결 해제되는 컨버터 스위치; 일단은 상기 스위칭부의 스위칭 동작에 따라 접지에 연결되거나 상기 전원부에 연결되고, 타단은 상기 컨버터 스위치의 타단에 연결되는 역전류 방지 소자; 및 일단은 상기 컨버터 스위치의 타단에 연결되고 타단은 상기 부하에 연결되는 인덕터;를 포함할 수 있다.The buck converter unit includes: a converter switch whose one end is connected to or disconnected from the power supply unit according to a switching operation of the switching unit; A reverse current prevention element having one end connected to the ground or connected to the power supply according to a switching operation of the switching unit, and the other end connected to the other end of the converter switch; And an inductor having one end connected to the other end of the converter switch and the other end connected to the load.
상기 제1 스위치는, 일단이 접지에 연결되며, 타단은 상기 제어부에 의해 제어되는 상기 스위칭부의 스위칭 동작에 따라 상기 역전류 방지 소자의 일단에 연결되거나 오프되고, 상기 제2 스위치는, 일단이 상기 전원부에 연결되며, 타단은 상기 제어부에 의해 제어되는 상기 스위칭부의 스위칭 동작에 따라 상기 컨버터 스위치의 일단에 연결되거나 상기 역전류 방지 소자의 일단에 연결되고, 상기 제3 스위치는, 일단이 상기 인덕터의 타단에 연결되며, 타단은 상기 제어부에 의해 제어되는 상기 스위칭부의 스위칭 동작에 따라 오프되거나 상기 컨버터 스위치의 타단에 연결될 수 있다.The first switch has one end connected to the ground, the other end connected to one end of the reverse current preventing element or turned off according to a switching operation of the switching unit controlled by the control unit, and the second switch has one end connected to the It is connected to a power supply, and the other end is connected to one end of the converter switch or to one end of the reverse current preventing element according to a switching operation of the switching unit controlled by the control unit, and the third switch has one end of the inductor. It is connected to the other end, and the other end may be turned off according to a switching operation of the switching unit controlled by the control unit, or may be connected to the other end of the converter switch.
상기 제어부는, 상기 제1 전력 전달 경로로 상기 부하에 전력을 전달하는 경우의 제1 전력의 크기를 연산하고, 상기 제2 전력 전달 경로로 상기 부하에 전력을 전달하는 경우의 제2 전력의 크기를 연산하며, 상기 제1 전력의 크기 및 상기 제2 전력의 크기를 비교하고, 상기 비교 결과, 상기 제1 전력의 크기가 상기 제2 전력의 크기보다 크거나 같은 경우, 상기 제1 스위치의 타단을 상기 역전류 방지 소자의 일단에 연결하고, 상기 제2 스위치의 타단을 상기 컨버터 스위치의 일단에 연결하며, 상기 제3 스위치의 타단을 오프시키는 상기 제1 스위칭 모드로 제어하고, 상기 비교 결과, 상기 제1 전력의 크기가 상기 제2 전력의 크기보다 작은 경우, 상기 제1 스위치의 타단을 오프시키고, 상기 제2 스위치의 타단을 상기 역전류 방지 소자의 일단에 연결하며, 상기 제3 스위치의 타단을 상기 컨버터 스위치의 타단에 연결하는 상기 제2 스위칭 모드로 제어할 수 있다.The control unit calculates a magnitude of first power when power is delivered to the load through the first power transfer path, and a magnitude of second power when power is delivered to the load through the second power transfer path And comparing the magnitude of the first power and the magnitude of the second power, and as a result of the comparison, when the magnitude of the first power is greater than or equal to the magnitude of the second power, the other end of the first switch Is connected to one end of the reverse current preventing element, the other end of the second switch is connected to one end of the converter switch, and the first switching mode is controlled to turn off the other end of the third switch, and the comparison result, When the magnitude of the first power is smaller than the magnitude of the second power, the other end of the first switch is turned off, the other end of the second switch is connected to one end of the reverse current preventing element, and the third switch It is possible to control the second switching mode in which the other end is connected to the other end of the converter switch.
상기 제어부는, 상기 스위칭부를 상기 제1 스위칭 모드로 제어하는 경우, 상기 벅 컨버터부를 MPPT 제어하며, 상기 스위칭부를 상기 제2 스위칭 모드로 제어하는 경우, 상기 벅 컨버터부를 MPPT 제어하지 않을 수 있다.When controlling the switching unit in the first switching mode, the control unit may MPPT control the buck converter unit, and when controlling the switching unit in the second switching mode, the buck converter unit may not MPPT control.
상기와 같은 목적을 달성하기 위하여, 본 발명의 제4 실시예에 따른 전력 시스템은, 전력을 생성하는 전원부; 상기 전원부로부터 생성되는 전력에 의한 입력 전압을 승압 또는 강압하여 부하에 전달하는 벅-부스트 컨버터부; 및 상기 벅-부스트 컨버터부를 제어하여 상기 전원부로부터 상기 부하로 전력을 전달하는 제1 전력 전달 경로, 제2 전력 전달 경로 또는 제3 전력 전달 경로를 형성하는 제어부를 포함하고, 상기 제어부에 의해 상기 제1 전력 전달 경로가 형성되는 경우, 상기 입력 전압이 상기 벅-부스트 컨버터부에 의해 승압되는 과정을 거쳐 상기 부하로 전달되고, 상기 제어부에 의해 상기 제2 전력 전달 경로가 형성되는 경우, 상기 입력 전압이 상기 벅-부스트 컨버터부에 의해 강압되는 과정을 거쳐 상기 부하로 전달되며, 상기 제어부에 의해 상기 제3 전력 전달 경로가 형성되는 경우, 상기 입력 전압이 상기 벅-부스트 컨버터부에 의해 승압 및 강압되는 과정을 거치지 않고 상기 부하로 전달될 수 있다.In order to achieve the above object, a power system according to a fourth embodiment of the present invention includes a power supply unit for generating power; A buck-boost converter unit for boosting or stepping down an input voltage by power generated from the power supply unit and transferring it to a load; And a control unit for controlling the buck-boost converter unit to form a first power transfer path, a second power transfer path, or a third power transfer path for transferring power from the power supply unit to the load, wherein the control unit 1 When the power transmission path is formed, the input voltage is transferred to the load through a process of boosting by the buck-boost converter unit, and when the second power transmission path is formed by the control unit, the input voltage When the third power transmission path is formed by the control unit, the input voltage is boosted and stepped down by the buck-boost converter unit when the voltage is stepped down by the buck-boost converter unit and transferred to the load. It can be delivered to the load without going through the process of being.
상기 벅-부스트 컨버터부는, 상기 전원부로부터 출력되는 전류에 의해 충전되는 인덕터; 상기 인덕터의 일단과 상기 전원부 사이에 마련되는 제1 컨버터 스위치; 상기 인덕터의 타단과 상기 부하 사이에 마련되는 제2 컨버터 스위치; 상기 인덕터의 일단과 접지 사이에 마련되는 제3 컨버터 스위치; 및 상기 인덕터의 타단과 접지 사이에 마련되는 제4 컨버터 스위치;를 포함할 수 있다.The buck-boost converter unit may include an inductor charged by a current output from the power supply unit; A first converter switch provided between one end of the inductor and the power supply unit; A second converter switch provided between the other end of the inductor and the load; A third converter switch provided between one end of the inductor and a ground; And a fourth converter switch provided between the other end of the inductor and the ground.
상기 제어부는, 상기 제1 전력 전달 경로를 통해 상기 부하에 전력을 전달하는 경우의 제1 전력의 크기를 연산하고, 상기 제3 전력 전달 경로를 통해 상기 부하에 전력을 전달하는 경우의 제3 전력의 크기를 연산하며, 상기 제1 전력의 크기 및 상기 제3 전력의 크기를 비교한 결과에 따라 상기 제1 컨버터 스위치, 상기 제2 컨버터 스위치, 상기 제3 컨버터 스위치 및 상기 제4 컨버터 스위치를 제어하고, 상기 비교 결과, 상기 제1 전력의 크기가 상기 제3 전력의 크기보다 크거나 같은 경우에는, 상기 벅-부스트 컨버터부를 MPPT 제어하여 상기 제1 전력 전달 경로를 형성하고, 상기 비교 결과, 상기 제1 전력의 크기가 상기 제3 전력의 크기보다 작은 경우에는, 상기 벅-부스트 컨버터부를 MPPT 제어하지 않고 상기 제3 전력 전달 경로를 형성할 수 있다.The control unit calculates a magnitude of first power when power is transmitted to the load through the first power transmission path, and third power when power is transmitted to the load through the third power transmission path And control the first converter switch, the second converter switch, the third converter switch, and the fourth converter switch according to a result of comparing the magnitude of the first power and the magnitude of the third power. And, as a result of the comparison, when the magnitude of the first power is greater than or equal to the magnitude of the third power, the buck-boost converter unit controls the MPPT to form the first power transfer path, and as a result of the comparison, the When the magnitude of the first power is smaller than the magnitude of the third power, the buck-boost converter unit may form the third power transmission path without MPPT control.
상기 제어부는, 상기 비교 결과, 상기 제1 전력의 크기가 상기 제3 전력의 크기보다 크거나 같은 경우에는, 상기 제1 전력 전달 경로를 형성하기 위해, 상기 제1 컨버터 스위치는 온시키고 상기 제3 컨버터 스위치는 오프시키며, 상기 제2 컨버터 스위치와 상기 제4 컨버터 스위치의 온오프 동작을 MPPT 알고리즘에 의한 듀티비에 따라 교번으로 제어하여 상기 입력 전압을 승압하고, 상기 비교 결과, 상기 제1 전력의 크기가 상기 제3 전력의 크기보다 작은 경우에는, 상기 제3 전력 전달 경로를 형성하기 위해, 상기 제1 컨버터 스위치 및 상기 제2 컨버터 스위치를 온시키고, 상기 제3 컨버터 스위치 및 상기 제4 컨버터 스위치를 오프시킬 수 있다.When the comparison result shows that the first power is greater than or equal to the third power, the first converter switch is turned on and the third power transfer path is formed. The converter switch is turned off, and the on-off operation of the second converter switch and the fourth converter switch is alternately controlled according to a duty ratio according to the MPPT algorithm to boost the input voltage, and as a result of the comparison, the first power is When the magnitude is smaller than the magnitude of the third power, the first converter switch and the second converter switch are turned on to form the third power transmission path, and the third converter switch and the fourth converter switch Can be turned off.
상기 제어부는, 상기 제2 전력 전달 경로를 통해 상기 부하에 전력을 전달하는 경우의 제2 전력의 크기를 연산하고, 상기 제3 전력 전달 경로를 통해 상기 부하에 전력을 전달하는 경우의 제3 전력의 크기를 연산하며, 상기 제2 전력의 크기 및 상기 제3 전력의 크기를 비교한 결과에 따라 상기 제1 컨버터 스위치, 상기 제2 컨버터 스위치, 상기 제3 컨버터 스위치 및 상기 제4 컨버터 스위치를 제어하고, 상기 비교 결과, 상기 제2 전력의 크기가 상기 제3 전력의 크기보다 크거나 같은 경우에는, 상기 벅-부스트 컨버터부를 MPPT 제어하여 상기 제2 전력 전달 경로를 형성하고, 상기 비교 결과, 상기 제2 전력의 크기가 상기 제3 전력의 크기보다 작은 경우에는, 상기 벅-부스트 컨버터부를 MPPT 제어하지 않고 상기 제3 전력 전달 경로를 형성할 수 있다.The control unit calculates the magnitude of the second power when power is transferred to the load through the second power transfer path, and the third power when power is transferred to the load through the third power transfer path. And controlling the first converter switch, the second converter switch, the third converter switch, and the fourth converter switch according to a result of comparing the magnitude of the second power and the magnitude of the third power. And, as a result of the comparison, when the magnitude of the second power is greater than or equal to the magnitude of the third power, the buck-boost converter unit controls the MPPT to form the second power transfer path, and the comparison result, the When the magnitude of the second power is smaller than the magnitude of the third power, the buck-boost converter unit may form the third power transmission path without MPPT control.
상기 제어부는, 상기 비교 결과, 상기 제2 전력의 크기가 상기 제3 전력의 크기보다 크거나 같은 경우에는, 상기 제2 전력 전달 경로를 형성하기 위해, 상기 제2 컨버터 스위치는 온시키고 상기 제4 컨버터 스위치는 오프시키며, 상기 제1 컨버터 스위치와 상기 제3 컨버터 스위치의 온오프 동작을 MPPT 알고리즘에 의한 듀티비에 따라 교번으로 제어하여 상기 입력 전압을 강압하고, 상기 비교 결과, 상기 제2 전력의 크기가 상기 제3 전력의 크기보다 작은 경우에, 상기 제3 전력 전달 경로를 형성하기 위해, 상기 제1 컨버터 스위치 및 상기 제2 컨버터 스위치를 온시키고, 상기 제3 컨버터 스위치 및 상기 제4 컨버터 스위치를 오프시킬 수 있다.The control unit, in the comparison result, when the magnitude of the second power is greater than or equal to the magnitude of the third power, to form the second power transmission path, the second converter switch is turned on and the fourth The converter switch is turned off, and the on-off operation of the first converter switch and the third converter switch is alternately controlled according to a duty ratio according to the MPPT algorithm to step down the input voltage, and as a result of the comparison, the second power is When the magnitude is smaller than the magnitude of the third power, in order to form the third power transmission path, the first converter switch and the second converter switch are turned on, and the third converter switch and the fourth converter switch Can be turned off.
본 발명의 제1 실시예에 따른 전력 시스템은, 기존의 전력 시스템에 별도의 소자를 추가하지 않고도, 부스트 컨버터 내부에 마련되는 컨버터 스위치의 제어 방법을 변경함에 따라 부하로의 전력 전달 효율이 더 높은 경로를 실시간으로 선택할 수 있도록 구성되어 있다. 이러한 본 발명의 제1 실시예에 따른 전력 시스템에 의하면, 전원부에서 부하로의 전력 전달 효율이 향상될 수 있게 된다.The power system according to the first embodiment of the present invention has higher power transfer efficiency to the load by changing the control method of the converter switch provided inside the boost converter without adding a separate element to the existing power system. It is configured so that the route can be selected in real time. According to the power system according to the first embodiment of the present invention, the efficiency of power transfer from the power supply unit to the load can be improved.
본 발명의 제2 실시예 및 제3 실시예에 따른 전력 시스템은, 전력이 전달되는 경로에 스위칭 소자가 구비되어 있기 때문에, 상기 스위칭 소자의 스위칭 동작에 따라 부하로의 전력 전달 효율이 더 높은 경로를 실시간으로 선택할 수 있도록 구성되어 있다. 이러한 본 발명의 제2 실시예 및 제3 실시예에 따른 전력 시스템에 의하면, 전원부에서 부하로의 전력 전달 효율이 향상될 수 있게 된다.In the power system according to the second and third embodiments of the present invention, since a switching element is provided in a path through which power is transmitted, a path having higher power transfer efficiency to a load according to the switching operation of the switching element It is configured to be able to select in real time. According to the power system according to the second and third embodiments of the present invention, the efficiency of power transfer from the power supply to the load can be improved.
본 발명의 제4 실시예에 따른 전력 시스템은, 기존의 전력 시스템에 별도의 소자를 추가하지 않고도, 벅-부스트 컨버터 내부에 마련되는 복수의 컨버터 스위치들의 제어 방법을 변경함에 따라 부하로의 전력 전달 효율이 더 높은 경로를 실시간으로 선택할 수 있도록 구성되어 있다. 이러한 본 발명의 제4 실시예에 따른 전력 시스템에 의하면, 전원부에서 부하로의 전력 전달 효율이 향상될 수 있게 된다.The power system according to the fourth embodiment of the present invention transfers power to the load by changing the control method of a plurality of converter switches provided inside the buck-boost converter without adding additional elements to the existing power system. It is configured so that a route with higher efficiency can be selected in real time. According to the power system according to the fourth embodiment of the present invention, the efficiency of power transfer from the power source to the load can be improved.
도 1a는 태양광 패널에 입사되는 일사량이 1kW/m 2일 때, 태양광 패널의 온도에 따라 변하는 태양광 패널의 P-V 곡선을 나타낸 도면이다. 1A is a diagram illustrating a PV curve of a solar panel that changes according to the temperature of the solar panel when the amount of insolation incident on the solar panel is 1 kW/m 2.
도 1b는 태양광 패널의 온도가 25°C일 때, 태양광 패널에 입사되는 일사량에 따라 변하는 태양광 패널의 P-V 곡선을 나타낸 도면이다. 1B is a diagram showing a P-V curve of a solar panel that changes according to the amount of insolation incident on the solar panel when the temperature of the solar panel is 25°C.
도 2는 태양광 발전 시스템에서 사용되는 컨버터의 전력 전달 효율을 부하율에 따라 나타낸 도면이다.2 is a diagram showing power transfer efficiency of a converter used in a solar power generation system according to a load factor.
도 3은 MPPT 제어에 의할 때 부하에 전달되는 전력과, MPPT 제어에 의하지 않을 때 부하에 전달되는 전력을 나타낸 도면이다.FIG. 3 is a diagram showing power delivered to a load when MPPT control is used and power delivered to a load when MPPT control is not used.
도 4는 본 발명의 제1 실시예에 따른 전력 시스템을 나타낸 도면이다.4 is a diagram showing a power system according to a first embodiment of the present invention.
도 5a는 도 4의 전력 시스템에서 제1 전력 전달 경로가 형성되는 경우를 나타낸 도면이다.5A is a diagram illustrating a case in which a first power transmission path is formed in the power system of FIG. 4.
도 5b는 도 4의 전력 시스템에서 제2 전력 전달 경로가 형성되는 경우를 나타낸 도면이다.5B is a diagram illustrating a case in which a second power transmission path is formed in the power system of FIG. 4.
도 6은 도 4의 전력 시스템을 제어하는 방법을 나타낸 흐름도이다.6 is a flowchart illustrating a method of controlling the power system of FIG. 4.
도 7은 본 발명의 제2 실시예에 따른 전력 시스템을 나타낸 도면이다.7 is a diagram showing a power system according to a second embodiment of the present invention.
도 8a는 도 7의 전력 시스템이 제1 스위칭 모드로 동작할 때의 등가회로를 나타낸 도면이다.8A is a diagram illustrating an equivalent circuit when the power system of FIG. 7 operates in a first switching mode.
도 8b는 도 7의 전력 시스템이 제2 스위칭 모드로 동작할 때의 등가회로를 나타낸 도면이다.8B is a diagram illustrating an equivalent circuit when the power system of FIG. 7 operates in a second switching mode.
도 9는 본 발명의 제3 실시예에 따른 전력 시스템을 나타낸 도면이다.9 is a diagram showing a power system according to a third embodiment of the present invention.
도 10a는 도 9의 전력 시스템이 제1 스위칭 모드로 동작할 때의 등가회로를 나타낸 도면이다.10A is a diagram illustrating an equivalent circuit when the power system of FIG. 9 operates in a first switching mode.
도 10b는 도 9의 전력 시스템이 제2 스위칭 모드로 동작할 때의 등가회로를 나타낸 도면이다.10B is a diagram illustrating an equivalent circuit when the power system of FIG. 9 operates in a second switching mode.
도 11은 본 발명의 제4 실시예에 따른 전력 시스템을 나타낸 도면이다.11 is a diagram showing a power system according to a fourth embodiment of the present invention.
도 12a는 도 11의 전력 시스템에서 제1 전력 전달 경로가 형성되는 경우를 나타낸 도면이다.12A is a diagram illustrating a case in which a first power transmission path is formed in the power system of FIG. 11.
도 12b는 도 11의 전력 시스템에서 제2 전력 전달 경로가 형성되는 경우를 나타낸 도면이다.12B is a diagram illustrating a case in which a second power transmission path is formed in the power system of FIG. 11.
도 12c는 도 11의 전력 시스템에서 제3 전력 전달 경로가 형성되는 경우를 나타낸 도면이다.12C is a diagram illustrating a case in which a third power transmission path is formed in the power system of FIG. 11.
도 13a는 도 11의 전력 시스템을 제어하는 방법을 나타낸 흐름도이다.13A is a flowchart illustrating a method of controlling the power system of FIG. 11.
도 13b는 도 11의 전력 시스템을 제어하는 방법을 나타낸 또 다른 흐름도이다.13B is another flowchart illustrating a method of controlling the power system of FIG. 11.
이하, 첨부한 도면들을 참조하여 본 발명에 따른 전력 시스템에 대해 상세하게 설명한다. 첨부한 도면들은 통상의 기술자에게 본 발명의 기술적 사상이 충분히 전달될 수 있도록 하기 위하여 어디까지나 예시적으로 제공되는 것으로서, 본 발명은 이하 제시되는 도면들로 한정되지 않고 다른 형태로 얼마든지 구체화될 수 있다. 또한, 명세서에 기재된 용어 '…부', '모듈' 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나, 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.Hereinafter, a power system according to the present invention will be described in detail with reference to the accompanying drawings. The accompanying drawings are provided by way of example only in order to sufficiently convey the technical idea of the present invention to those skilled in the art, and the present invention is not limited to the drawings presented below and may be embodied in any other form. have. In addition, the term'… Terms such as'sub' and'module' mean a unit that processes at least one function or operation, which may be implemented as hardware or software, or a combination of hardware and software.
도 1a는 태양광 패널에 입사되는 일사량이 1kW/m 2일 때, 태양광 패널의 온도에 따라 변하는 태양광 패널의 P-V 곡선을 나타낸 도면이고, 도 1b는 태양광 패널의 온도가 25°C일 때, 태양광 패널에 입사되는 일사량에 따라 변하는 태양광 패널의 P-V 곡선을 나타낸 도면이다.1A is a view showing a PV curve of a solar panel that changes according to the temperature of the solar panel when the solar radiation incident on the solar panel is 1kW/m 2 , and FIG. 1B is a diagram showing the PV curve of the solar panel when the temperature of the solar panel is 25°C. At this time, it is a diagram showing the PV curve of the solar panel that changes according to the amount of insolation incident on the solar panel.
도 1a 및 도 1b에서 x축은 태양광 패널의 출력 전압이자, 후술하는 컨버터의 입력 전압을 나타낸다. 도 1a 및 도 1b에서 y축은 태양광 패널에서 생성되는 전력을 나타낸다.In FIGS. 1A and 1B, the x-axis represents an output voltage of a solar panel and an input voltage of a converter to be described later. In FIGS. 1A and 1B, the y-axis represents power generated by the solar panel.
도 1a 및 도 1b에 도시된 바와 같이, 태양광 패널의 온도와 태양광 패널에 입사되는 일사량에 따라 태양광 패널에서 생성되는 전력이 변한다. 태양광 패널에서 최대 전력이 생성되기 위해서는, 태양광 패널의 출력 전압(또는, 컨버터의 입력 전압)이 P-V 곡선의 최대 전력점에 해당하는 출력 전압과 동일해야 한다. 이를 위해, 태양광 패널의 출력단에 연결되는 컨버터부를 제어부가 MPPT 제어하여, 태양광 패널의 출력 전압(또는, 컨버터의 입력 전압)이 P-V 곡선의 최대 전력점에 해당하는 출력 전압과 일치시킨다. 여기서, MPPT 제어란 태양광 패널에서 최대 전력이 생성될 수 있도록 하기 위해, 태양광 패널의 출력 전압(또는, 컨버터의 입력 전압)을 P-V 곡선의 최대 전력점에 해당하는 출력 전압과 일치시키는 제어를 말한다.As shown in FIGS. 1A and 1B, power generated by the solar panel varies according to the temperature of the solar panel and the amount of insolation incident on the solar panel. In order to generate the maximum power from the solar panel, the output voltage of the solar panel (or the input voltage of the converter) must be the same as the output voltage corresponding to the maximum power point of the P-V curve. To this end, the controller unit controls the MPPT of the converter connected to the output terminal of the solar panel, so that the output voltage of the solar panel (or the input voltage of the converter) matches the output voltage corresponding to the maximum power point of the P-V curve. Here, the MPPT control is a control that matches the output voltage of the solar panel (or the input voltage of the converter) with the output voltage corresponding to the maximum power point of the PV curve in order to generate the maximum power from the solar panel. Say.
MPPT 제어를 위한 방법으로서, P&O(Perturbation and Obsevation, 섭동후 추정) 방법이 일반적으로 사용되고 있다. P&O 방법은 태양광 패널의 출력 전압을 주기적으로 증가 또는 감소시키면서, 이전의 출력 전력과 현재의 출력 전력을 비교하여 최대 전력점을 추종하는 방법이다.As a method for controlling MPPT, a P&O (Perturbation and Obsevation, post-perturbation estimation) method is generally used. The P&O method is a method of following the maximum power point by comparing the previous output power with the current output power while periodically increasing or decreasing the output voltage of the solar panel.
P&O 방법에 의하면, 제어부는 도 1a 및 도 1b에 도시된 점선과 같이 태양광 패널의 출력 전압(또는, 컨버터의 입력 전압)이 P-V 곡선의 최대 전력점을 추종하도록 컨버터를 MPPT 제어한다. 즉, 제어부는 태양광 패널의 출력 전압(또는, 컨버터의 입력 전압)이 P-V 곡선의 최대 전력점에 해당하는 전압과 동일해지도록 컨버터를 MPPT 제어하며, 이에 의해 태양광 패널에서는 최대 전력이 생성될 수 있게 된다. 다만, 상술한 P&O 방법 외에도 InCond(Incremental Conductance) 방법 등 다양한 MPPT 알고리즘이 공지되어 있으며, 이하에서 언급하는 MPPT 제어에는 이러한 다양한 MPPT 알고리즘 중 어느 하나가 사용될 수 있음은 물론이다.According to the P&O method, the controller MPPT controls the converter so that the output voltage of the solar panel (or the input voltage of the converter) follows the maximum power point of the P-V curve, as shown in the dotted line shown in FIGS. 1A and 1B. That is, the control unit MPPT controls the converter so that the output voltage of the solar panel (or the input voltage of the converter) becomes the same as the voltage corresponding to the maximum power point of the PV curve, thereby generating the maximum power in the solar panel. You will be able to. However, in addition to the above-described P&O method, various MPPT algorithms such as InCond (Incremental Conductance) method are known, and of course, any one of these various MPPT algorithms may be used for MPPT control mentioned below.
도 2는 태양광 발전 시스템에서 사용되는 컨버터의 전력 전달 효율을 부하율에 따라 나타낸 도면이다. 도 2를 참조하면, 태양광 발전 시스템에서 사용되는 컨버터는, 60% 이상의 부하율에서는 약 95% 이상의 높은 전력 전달 효율을 갖지만, 60%보다 작은 부하율에서는 전력 전달 효율이 95% 미만임을 알 수 있다.2 is a diagram showing power transfer efficiency of a converter used in a solar power generation system according to a load factor. Referring to FIG. 2, it can be seen that the converter used in the solar power generation system has a high power transfer efficiency of about 95% or more at a load ratio of 60% or more, but the power transfer efficiency is less than 95% at a load ratio of less than 60%.
한편, 제어부가 태양광 패널에서 생성되는 전력을 부하에 전달함에 있어서, 제어부가 컨버터를 MPPT 제어하는 경우에 비해, 제어부가 컨버터를 MPPT 제어하지 않는 경우에 오히려 더 많은 전력이 부하에 전달될 수도 있다.On the other hand, when the controller transfers power generated from the solar panel to the load, more power may be delivered to the load when the controller does not MPPT the converter compared to when the controller MPPT controls the converter. .
도 3은 MPPT 제어에 의할 때 부하에 전달되는 전력과, MPPT 제어에 의하지 않을 때 부하에 전달되는 전력을 나타낸 도면이다. 보다 구체적으로, 도 3은 태양광 패널에 입사되는 일사량이 1000W/m 2이고, 태양광 패널의 온도가 각각 25˚C 및 75˚C 일 때, 제어부가 컨버터를 MPPT 제어하여 태양광 패널에서 생성되는 전력을 부하에 전달하는 경우와, 제어부가 컨버터를 MPPT 제어하지 않고 태양광 패널에서 출력되는 전력을 부하에 전달하는 경우를 시뮬레이션을 통해 분석한 그래프이다. 제어부가 컨버터를 MPPT 제어할 때보다, 제어부가 컨버터를 MPPT 제어하지 않을 때 부하로 더 많은 전력이 전달되는 영역이 도 3에 음영으로 표시되어 있다.FIG. 3 is a diagram showing power delivered to a load when MPPT control is used and power delivered to a load when MPPT control is not used. More specifically, FIG. 3 shows that when the amount of irradiation incident on the solar panel is 1000W/m 2 and the temperature of the solar panel is 25˚C and 75˚C, respectively, the controller MPPT controls the converter to generate it in the solar panel. This is a graph that analyzes the case of transmitting the power to the load and the case of transmitting the power output from the solar panel to the load without the controller controlling the MPPT of the converter through simulation. A region in which more power is transmitted to the load when the controller does not MPPT the converter than when the controller MPPT controls the converter is shown in shades in FIG. 3.
제어부가 컨버터를 MPPT 제어할 경우에는, 부하 전압과 무관하게 태양광 패널이 항상 최대 전력을 생성할 수 있도록 태양광 패널의 출력 전압(또는, 컨버터의 입력 전압)이 가변된다. 이에 따라, 부하 전압이 240V ~ 320V인 구간에서 부하에 전달되는 전력은, 부하 전압과 무관하게 약 6750W 또는 약 5380W가 된다.When the controller MPPT controls the converter, the output voltage of the solar panel (or the input voltage of the converter) is variable so that the solar panel always generates maximum power regardless of the load voltage. Accordingly, the power delivered to the load in the period in which the load voltage is 240V ~ 320V is about 6750W or about 5380W regardless of the load voltage.
도 3에 의하면, 태양광 패널에 입사되는 일사량이 1000W/m 2이고, 태양광 패널의 온도가 25˚C일 때, 부하 전압이 270V ~ 315V인 구간에서는, 제어부가 컨버터를 MPPT 제어하는 경우에 비해, 제어부가 컨버터를 MPPT 제어하지 않는 경우에, 최대 약 300W의 전력이 부하에 더 전달된다는 것을 알 수 있다.According to FIG. 3, when the amount of irradiation incident on the solar panel is 1000 W/m 2 , the temperature of the solar panel is 25° C., and the load voltage is 270 V to 315 V, the controller controls the converter MPPT. In contrast, when the controller does not MPPT the converter, it can be seen that the maximum power of about 300W is further delivered to the load.
또한, 도 3에 의하면, 태양광 패널에 입사되는 일사량이 1000W/m 2이고, 태양광 패널의 온도가 75˚C일 때, 부하 전압이 240V ~ 255V인 구간에서는, 제어부가 컨버터를 MPPT 제어하는 경우에 비해, 제어부가 컨버터를 MPPT 제어하지 않는 경우에, 최대 약 220W의 전력이 부하에 더 전달된다는 것을 알 수 있다.In addition, according to FIG. 3, when the amount of irradiation incident on the solar panel is 1000 W/m 2 and the temperature of the solar panel is 75° C., in the section where the load voltage is 240 V to 255 V, the controller MPPT controls the converter. Compared to the case, when the controller does not MPPT the converter, it can be seen that the maximum power of about 220W is further delivered to the load.
이와 같이 도 3에 의하면, 태양광 패널에서 생성되는 전력을 제어부가 부하에 전달함에 있어서, 제어부가 컨버터를 MPPT 제어해야만 부하로의 전력 전달 효율이 상대적으로 높은 경우와, 제어부가 컨버터를 MPPT 제어하지 않아야만 부하로의 전력 전달 효율이 상대적으로 높은 경우가 각각 존재한다는 것을 알 수 있다.As described above, according to FIG. 3, when the control unit transfers power generated from the solar panel to the load, the power transfer efficiency to the load is relatively high only when the control unit controls the converter MPPT, and the control unit does not control the converter MPPT. It can be seen that there are cases in which the power transfer efficiency to the load is relatively high.
도 3에서는 태양광 패널에 입사되는 일사량이 1000W/m 2이고, 태양광 패널의 온도가 각각 25˚C와 75˚C 일 경우에 대해서만 부하로의 전력 전달량을 비교하였다. 다만, 상기 일사량과 온도는 하루 중에도 계속해서 변하는 값(일반적으로, 일사량은 약 0 ~ 1500 W/m 2, 온도는 약 -20 ~ 80˚C 정도 범위에서 변함)이다. 따라서, 도 3에서 음영으로 표시한 부분 외에도, 제어부가 컨버터를 MPPT 제어하는 경우에 비해, 제어부가 컨버터를 MPPT 제어하지 않는 경우에, 부하로 더 많은 전력이 전달될 수 있는 부하 전압 구간이 얼마든지 존재할 수 있다.In FIG. 3, the amount of power transferred to the load was compared only when the amount of insolation incident on the solar panel is 1000W/m 2 and the temperature of the solar panel is 25°C and 75°C, respectively. However, the insolation and temperature are values that continuously change throughout the day (generally, insolation is about 0 to 1500 W/m 2 , and the temperature varies in the range of about -20 to 80 °C). Therefore, in addition to the shaded portions in FIG. 3, when the controller does not MPPT the converter, compared to the case where the controller MPPT controls the converter, the number of load voltage intervals in which more power can be delivered to the load is Can exist.
도 4는 본 발명의 제1 실시예에 따른 전력 시스템을 나타낸 도면이다.4 is a diagram showing a power system according to a first embodiment of the present invention.
도 4를 참조하면, 본 발명의 제1 실시예에 따른 전력 시스템(1000a)은 전원부(110), 부스트 컨버터부(120) 및 제어부(130)를 포함한다.Referring to FIG. 4, the power system 1000a according to the first embodiment of the present invention includes a power supply unit 110, a boost converter unit 120, and a control unit 130.
전원부(110)는 전력을 생성하는 구성으로서, 빛 에너지를 전기 에너지로 변환하는 태양광 패널일 수 있으며, 이때 태양광 패널은 태양광을 직류 전력으로 변환하여 출력할 수 있는 태양전지 모듈의 조합으로 구성될 수 있다. 상기 태양전지 모듈은 태양전지 셀의 직렬 연결 또는 병렬 연결로 이루어지거나, 직병렬 연결의 조합으로 이루어질 수 있다.The power supply unit 110 is a component that generates power, and may be a solar panel that converts light energy into electrical energy. In this case, the solar panel is a combination of solar cell modules capable of converting sunlight into direct current power and outputting it. Can be configured. The solar cell module may be made of a series connection or parallel connection of solar cell cells, or a combination of series-parallel connection.
도 4에는 부하(10a)의 예시로서 직류 전력을 저장하기 위한 배터리가 도시되어 있으나, 이외에도 상기 직류 전력을 공급받는 소자이기만 하면 부하(10a)에 해당될 수 있다.4 illustrates a battery for storing DC power as an example of the load 10a, but it may correspond to the load 10a as long as it is a device receiving the DC power.
부스트 컨버터부(120)는 전원부(110)로부터 생성되는 전력에 의한 입력 전압을 전달받고, 상기 입력 전압을 승압하여 부하(10a)에 전달할 수 있다. 여기서, 상기 입력 전압은 전원부(110)로부터 생성되는 전력을 구성하는 전압이자, 부스트 컨버터부(120)의 입력단에 인가되는 전압을 의미한다. 부스트 컨버터부(120)는 인덕터(121), 컨버터 스위치(122) 및 역전류 방지 소자(123)를 포함할 수 있다.The boost converter unit 120 may receive an input voltage due to power generated from the power supply unit 110, boost the input voltage, and transfer the voltage to the load 10a. Here, the input voltage refers to a voltage constituting power generated from the power supply unit 110 and a voltage applied to the input terminal of the boost converter unit 120. The boost converter unit 120 may include an inductor 121, a converter switch 122, and a reverse current prevention element 123.
인덕터(121)의 일단은 전원부(110)에 연결되고, 인덕터(121)의 타단은 컨버터 스위치(122)에 연결되며, 인덕터(121)에는 전원부(110)로부터 출력되는 입력 전류에 의해 전기 에너지가 충전된다. 여기서, 상기 입력 전류는 전원부(110)로부터 생성되는 전력을 구성하는 전류이자, 전원부(110)에서 부스트 컨버터부(120)로 흐르는 전류를 의미한다.One end of the inductor 121 is connected to the power supply unit 110, the other end of the inductor 121 is connected to the converter switch 122, and electrical energy is supplied to the inductor 121 by the input current output from the power supply unit 110. Is charged. Here, the input current is a current constituting power generated from the power supply unit 110 and refers to a current flowing from the power supply unit 110 to the boost converter unit 120.
역전류 방지 소자(123)는 상기 부하(10a)에서 인덕터(121) 방향으로 역전류가 흐르는 것을 방지하기 위한 구성이다. 역전류 방지 소자(123)로는 다이오드, FET 등의 다양한 소자가 사용될 수 있다.The reverse current prevention element 123 is configured to prevent a reverse current from flowing from the load 10a to the inductor 121. As the reverse current prevention device 123, various devices such as diodes and FETs may be used.
컨버터 스위치(122)의 일단은 인덕터(121)의 타단과 역전류 방지 소자(123)의 사이에 연결되고, 타단은 접지에 연결된다. 컨버터 스위치(122)는 도통(온 상태) 또는 비도통(오프 상태)이 되어 전류를 흐르게 할 것인지 여부를 결정하는 소자로서, 예를 들어 반도체 스위치인 MOSFET(Metal Oxide Semiconductor Field Effect transistor)이 사용될 수 있으나 이에 한정되지는 않는다.One end of the converter switch 122 is connected between the other end of the inductor 121 and the reverse current prevention element 123, and the other end is connected to the ground. The converter switch 122 is a device that determines whether to conduct current through conduction (on state) or non-conduction (off state), and, for example, a semiconductor switch, a metal oxide semiconductor field effect transistor (MOSFET) may be used. However, it is not limited thereto.
제어부(130)는 부스트 컨버터부(120)를 제어하는 구성으로서, 구체적으로 부스트 컨버터부(120)를 MPPT 제어하여 전원부(110)로부터 출력되는 입력 전압이 상기 부스트 컨버터부(120)에 의해 승압되는 과정을 거쳐 부하(10a)로 전달되는 제1 전력 전달 경로를 형성할 수 있다.The control unit 130 is a component that controls the boost converter unit 120, and specifically, the input voltage output from the power supply unit 110 by MPPT control of the boost converter unit 120 is boosted by the boost converter unit 120. A first power transmission path that is transmitted to the load 10a through the process may be formed.
또는, 제어부(130)는 부스트 컨버터부(120)를 MPPT 제어하지 않고, 컨버터 스위치(122)를 오프로 제어하여 전원부(110)로부터 출력되는 입력 전압이 부스트 컨버터부(120)에 의해 승압되는 과정을 거치지 않고 부하(10a)로 전달되는 제2 전력 전달 경로를 형성할 수 있다.Alternatively, the control unit 130 does not control the boost converter unit 120 to MPPT, but controls the converter switch 122 to be off, so that the input voltage output from the power supply unit 110 is boosted by the boost converter unit 120 It is possible to form a second power transmission path that is transmitted to the load 10a without passing through.
또한, 제어부(130)는 상기 제1 전력 전달 경로로 부하(10a)에 전력을 전달하는 경우의 제1 전력의 크기(P1)를 연산하고, 상기 제2 전력 전달 경로로 부하(10a)에 전력을 전달하는 경우의 제2 전력의 크기(P2)를 연산한다. 이후, 제어부(130)는 연산된 제1 전력 및 제2 전력의 크기(P1, P2)를 비교하고, 상기 비교 결과에 따라 부스트 컨버터부(120)의 컨버터 스위치(122)를 제어한다.In addition, the control unit 130 calculates the magnitude of the first power (P1) in the case of transmitting power to the load 10a through the first power transfer path, and provides power to the load 10a through the second power transfer path. The magnitude of the second power (P2) in the case of transmitting is calculated. Thereafter, the controller 130 compares the calculated magnitudes P1 and P2 of the first power and the second power, and controls the converter switch 122 of the boost converter 120 according to the comparison result.
이때 제어부(130)는, 상기 비교 결과가 제1 전력이 제2 전력보다 크기가 크거나 같은 경우라면, MPPT 알고리즘에 의해 결정되는 듀티비에 따라 컨버터 스위치(122)를 온오프 제어하여 상기 제1 전력 전달 경로를 형성하고, 상기 비교 결과가 제1 전력의 크기(P1)가 제2 전력의 크기(P2)보다 작은 경우라면, 컨버터 스위치(122)를 MPPT 제어하지 않고 오프시켜 상기 제2 전력 전달 경로를 형성한다.At this time, if the comparison result is that the first power is greater than or equal to the second power, the controller 130 controls on and off the converter switch 122 according to the duty ratio determined by the MPPT algorithm to control the first power. If a power transmission path is formed and the comparison result is that the magnitude of the first power (P1) is smaller than the magnitude of the second power (P2), the converter switch 122 is turned off without MPPT control to transmit the second power. Form a path
여기서, 제1 전력은 제어부(130)가 부스트 컨버터부(120)를 MPPT 제어하는 경우에 전원부(110)로부터 부하(10a)로 전달되는 전력이고, 제2 전력은 제어부(130)가 부스트 컨버터부(120)를 MPPT 제어하지 않는 경우에 전원부(110)로부터 부하(10a)로 전달되는 전력이다.Here, the first power is power transferred from the power supply 110 to the load 10a when the control unit 130 controls the boost converter unit 120 to MPPT, and the second power is the control unit 130 This is the power transferred from the power supply unit 110 to the load 10a when 120 is not controlled by MPPT.
제1 전력의 크기(P1)는 제어부(130)가 전원부(110) 출력단의 개방 전압(V1) 및 단락 전류(I1)의 값을 전달받아 MPPT 알고리즘을 이용하여 연산할 수 있다.The first power level P1 may be calculated by the control unit 130 using the MPPT algorithm by receiving values of the open-circuit voltage V1 and the short-circuit current I1 of the output terminal of the power supply unit 110.
제2 전력의 크기(P2)는 제어부(130)가 부하(10a)의 현재 전압(V2)을 전달받아, 부하(10a)의 현재 전압(V2)이 전원부(110)에 적용될 때 전원부(110)에서 출력되는 전력의 값을 연산하여 구할 수 있다. 또는, 제2 전력의 크기(P2)는 제어부(130)가 부하(10a)의 현재 전압(V2)과 부하(10a)에 현재 흐르는 전류를 전달받아 연산할 수 있다.When the control unit 130 receives the current voltage V2 of the load 10a and the current voltage V2 of the load 10a is applied to the power supply unit 110, the second power level P2 is determined by the power supply unit 110 It can be calculated by calculating the value of the power output from. Alternatively, the magnitude P2 of the second power may be calculated by the controller 130 receiving the current voltage V2 of the load 10a and the current flowing through the load 10a.
본 발명의 제1 실시예에 따르면, 제어부(130)가 상기 제1 전력의 크기(P1) 및 상기 제2 전력의 크기(P2)를 비교하고, 상기 비교 결과에 따라 제1 전력 전달 경로와 제2 전력 전달 경로 중 부하(10a)로의 전력 전달 효율이 더 높은 경로를 실시간으로 선택하도록 구성되어 있기 때문에, 부하(10a)의 전력 전달 효율이 극대화될 수 있다.According to the first embodiment of the present invention, the controller 130 compares the magnitude of the first power (P1) and the magnitude of the second power (P2), and 2 Since it is configured to select a path having a higher power transfer efficiency to the load 10a among the power transfer paths in real time, the power transfer efficiency of the load 10a can be maximized.
본 발명의 제1 실시예에 따른 전력 시스템(1000a)은 전원부(110)로부터 생성되는 전력에 의한 입력 전압을 저장하는 입력측 저장부(140)를 더 포함할 수 있다. 이때 입력측 저장부(140)는 전원부(110)와 부스트 컨버터부(120) 사이에 연결될 수 있다. 입력측 저장부(140)는 전원부(110)로부터 출력되는 입력 전압에 노이즈가 끼거나 전압이 흔들릴 때, 부스트 컨버터부(120)에 안정된 직류 전압이 공급되도록 하는 역할을 하며, 입력측 저장부(140)로는 커패시터가 사용될 수 있다.The power system 1000a according to the first embodiment of the present invention may further include an input side storage unit 140 that stores an input voltage by power generated from the power supply unit 110. In this case, the input-side storage unit 140 may be connected between the power supply unit 110 and the boost converter unit 120. The input-side storage unit 140 serves to supply a stable DC voltage to the boost converter unit 120 when noise or voltage fluctuates in the input voltage output from the power supply unit 110, and the input-side storage unit 140 As the furnace, a capacitor may be used.
또한, 본 발명의 제1 실시예에 따른 전력 시스템(1000a)은 부스트 컨버터부(120)에 의해 승압된 전압을 저장하는 출력측 저장부(150)를 더 포함할 수 있다. 이때 출력측 저장부(150)는 부스트 컨버터부(120)와 부하(10a) 사이에 연결된다. 출력측 저장부(150)는 부하(10a)에 직류 전압을 공급하도록 전압을 정류시켜주는 역할을 하며, 출력측 저장부(150)로는 커패시터가 사용될 수 있다.In addition, the power system 1000a according to the first embodiment of the present invention may further include an output side storage unit 150 that stores the voltage boosted by the boost converter unit 120. At this time, the output-side storage unit 150 is connected between the boost converter unit 120 and the load 10a. The output-side storage unit 150 serves to rectify a voltage to supply a DC voltage to the load 10a, and a capacitor may be used as the output-side storage unit 150.
도 5a는 도 4의 전력 시스템에서 제1 전력 전달 경로가 형성되는 경우를 나타낸 도면이고, 도 5b는 도 4의 전력 시스템에서 제2 전력 전달 경로가 형성되는 경우를 나타낸 도면이다. 이하에서는 도 5a 및 도 5b를 더 참조하여, 상기 제1 전력 전달 경로 및 제2 전력 전달 경로에 대해 보다 구체적으로 설명한다. 5A is a diagram illustrating a case where a first power transmission path is formed in the power system of FIG. 4, and FIG. 5B is a diagram illustrating a case where a second power transmission path is formed in the power system of FIG. 4. Hereinafter, the first power transfer path and the second power transfer path will be described in more detail with reference to FIGS. 5A and 5B.
우선, 도 5a를 참조하면, 제1 전력의 크기(P1)가 제2 전력의 크기(P2)보다 크거나 같은 경우에, 제어부(130)는 제1 전력 전달 경로를 형성한다.First, referring to FIG. 5A, when the magnitude of the first power P1 is greater than or equal to the magnitude of the second power P2, the controller 130 forms a first power transmission path.
제1 전력의 크기(P1)가 제2 전력의 크기(P2)보다 크거나 같다는 것은, 부스트 컨버터부(130)가 MPPT 제어될 때 부하(10a)에 더 많은 전력이 전달된다는 의미이므로, 제어부(130)는 MPPT 알고리즘에 따라 결정되는 듀티비를 이용하여 컨버터 스위치(122)의 온오프를 제어하는 방식으로 제1 전력 전달 경로를 형성한다.When the magnitude of the first power (P1) is greater than or equal to the magnitude of the second power (P2), it means that more power is transmitted to the load 10a when the boost converter unit 130 is MPPT-controlled. 130) forms a first power transmission path in a manner of controlling the on/off of the converter switch 122 using the duty ratio determined according to the MPPT algorithm.
컨버터 스위치(122)가 온으로 동작하는 동안 도 5a의 실선 방향으로 입력 전류가 흘러 인덕터(121)에 에너지가 충전되고, 컨버터 스위치(122)가 오프로 동작하는 동안 도 5a의 점선 방향으로 입력 전류가 흘러 인덕터(121)에 충전된 에너지와 전원부(110)로부터 출력되는 입력 전류가 동시에 부하(10a)로 흘러 들어가면서 입력 전압이 승압된다.While the converter switch 122 is turned on, an input current flows in the solid line direction of FIG. 5A to charge energy in the inductor 121, and the input current in the dotted line direction of FIG. 5A while the converter switch 122 is operated off. As the flow flows, the energy charged in the inductor 121 and the input current output from the power supply unit 110 flow into the load 10a at the same time, thereby boosting the input voltage.
이때 전원부(110)에서 출력되는 입력 전압은 제어부(130)의 MPPT 제어에 의해 부하(10a)에 최대 전력이 전달될 수 있도록 승압되므로, 부하(10a)에는 MPPT 제어에 의해 추종된 최대 전력이 전달될 수 있다.At this time, since the input voltage output from the power supply unit 110 is boosted so that the maximum power can be delivered to the load 10a by the MPPT control of the control unit 130, the maximum power followed by the MPPT control is transmitted to the load 10a. Can be.
다음으로, 도 5b를 참조하면, 제1 전력의 크기(P1)가 제2 전력의 크기(P2)보다 작은 경우에, 제어부(130)는 제2 전력 전달 경로를 형성한다.Next, referring to FIG. 5B, when the magnitude P1 of the first power is smaller than the magnitude P2 of the second power, the controller 130 forms a second power transmission path.
제1 전력의 크기(P1)가 제2 전력의 크기(P2)보다 작다는 것은, 부스트 컨버터부(120)가 MPPT 제어되지 않을 때 부하(10a)에 더 많은 전력이 전달된다는 의미이므로, 제어부(130)는 부스트 컨버터부(120)를 MPPT 제어하지 않고 컨버터 스위치(122)를 오프시킨다. 컨버터 스위치(122)가 오프되면 입력 전압이 부스트 컨버터부(120)에 의해 승압되는 과정을 거치지 않게 되므로, 현재의 부하(10a) 전압이 전원부(110)에 적용된다. 여기서, 부하(10a) 전압이 전원부(110)에 적용된다는 것은 부하(10a) 전압과 역전류 방지 소자(123) 양단의 전압 차이만큼의 전압이 전원부(110) 양단에 걸린다는 것을 의미한다. 즉, 전원부(110)에서 출력되는 전류는 도 5b의 실선 방향으로 흐르면서 인덕터(121)와 역전류 방지 소자(123)만을 거쳐 그대로 부하(10a)에 전달된다.When the magnitude of the first power P1 is smaller than the magnitude of the second power P2, it means that more power is transmitted to the load 10a when the boost converter unit 120 is not MPPT controlled. 130) turns off the converter switch 122 without controlling the boost converter unit 120 by MPPT. When the converter switch 122 is turned off, the input voltage is not boosted by the boost converter unit 120, so the current voltage of the load 10a is applied to the power supply unit 110. Here, that the voltage of the load 10a is applied to the power supply unit 110 means that a voltage equal to the difference between the voltage of the load 10a and the voltage across the reverse current prevention element 123 is applied across the power supply unit 110. That is, the current output from the power supply unit 110 flows in the solid line direction of FIG. 5B and is transferred to the load 10a as it is only through the inductor 121 and the reverse current prevention element 123.
이때 인덕터(121)에는 직류 전압이 걸리기 때문에, 인덕터(121)는 단락회로처럼 동작하게 되며, 이에 따라 인덕터(121)에 의한 코어 손실은 발생하지 않는다.At this time, since a DC voltage is applied to the inductor 121, the inductor 121 operates like a short circuit, and thus, core loss due to the inductor 121 does not occur.
한편, 역전류 방지 소자(123)로서 다이오드가 사용되는 경우, 상기 다이오드의 애노드는 인덕터(121)의 타단 및 컨버터 스위치(122)에 연결되고, 상기 다이오드의 캐소드는 부하(10a)에 연결되어, 부하(10a)에서 인덕터(121) 방향으로 역전류가 흐르지 않게 된다. 다이오드의 전압 강하는 약 0.7V로서 매우 작은 값이므로, 전원부(110)에 의해 생성되는 전력의 대부분(99% 이상)이 부하(10a)에 전달될 수 있다.Meanwhile, when a diode is used as the reverse current prevention element 123, the anode of the diode is connected to the other end of the inductor 121 and the converter switch 122, and the cathode of the diode is connected to the load 10a, Reverse current does not flow from the load 10a to the inductor 121. Since the voltage drop of the diode is about 0.7V, which is a very small value, most (99% or more) of the power generated by the power supply unit 110 may be delivered to the load 10a.
또는, 역전류 방지 소자(123)로서 FET가 사용될 수도 있으며, 이 경우 제어부(130)는 FET를 온오프 제어할 수 있다. 제어부(130)가 FET를 온오프 제어하는 것에 의해 부하(10a)에서 인덕터(121) 방향으로 역전류가 흐르는 것을 방지할 수 있다. 그뿐 아니라, 다이오드는 적은 양이라도 전압 강하가 존재하는 것에 비해, FET의 온 상태에서는 이론적으로 전압 강하가 존재하지 않으므로, 다이오드를 사용할 때보다 부하(10a)로의 전력 전달 효율이 더 높아질 수 있다.Alternatively, a FET may be used as the reverse current prevention element 123, and in this case, the controller 130 may control the FET to be turned on and off. By controlling the FET to be turned on and off by the control unit 130, it is possible to prevent a reverse current from flowing from the load 10a to the inductor 121. In addition, the diode has a voltage drop even in a small amount, whereas the voltage drop theoretically does not exist in the ON state of the FET, and thus power transfer efficiency to the load 10a may be higher than when a diode is used.
도 6은 도 4의 전력 시스템을 제어하는 방법을 나타낸 흐름도이다. 도 4의 전력 시스템을 제어하는 방법은, 앞서 설명한 제어부(130)에 의해 수행될 수 있다.6 is a flowchart illustrating a method of controlling the power system of FIG. 4. The method of controlling the power system of FIG. 4 may be performed by the control unit 130 described above.
본 발명의 제1 실시예에 따른 전력 시스템의 제어 방법은, 제어부(130)가 제1 전력 전달 경로를 통해 부하(10a)에 전력을 전달하는 경우의 제1 전력의 크기(P1) 및 제2 전력 전달 경로를 통해 부하(10a)에 전력을 전달하는 경우의 제2 전력의 크기(P2)를 연산하는 단계가 먼저 이루어질 수 있다(S110).The control method of the power system according to the first embodiment of the present invention includes a first power level P1 and a second power when the control unit 130 transfers power to the load 10a through the first power transfer path. The step of calculating the magnitude P2 of the second power when power is delivered to the load 10a through the power transfer path may be performed (S110).
상술한 바와 같이, 제1 전력은 제어부(130)가 부스트 컨버터부(120)를 MPPT 제어하는 경우에 전원부(110)로부터 부하(10a)로 전달되는 전력이고, 제2 전력은 제어부(130)가 부스트 컨버터부(120)를 MPPT 제어하지 않는 경우에 전원부(110)로부터 부하(10a)로 전달되는 전력이다.As described above, the first power is power transferred from the power supply unit 110 to the load 10a when the control unit 130 controls the boost converter unit 120 to MPPT, and the second power is the control unit 130 This is the power transferred from the power supply unit 110 to the load 10a when the boost converter unit 120 is not MPPT controlled.
제1 전력의 크기(P1)는 제어부(130)가 전원부(110) 출력단의 개방 전압(V1) 및 단락 전류(I1)의 값을 전달받아 MPPT 알고리즘을 이용하여 연산할 수 있다.The first power level P1 may be calculated by the control unit 130 using the MPPT algorithm by receiving values of the open-circuit voltage V1 and the short-circuit current I1 of the output terminal of the power supply unit 110.
제2 전력의 크기(P2)는 제어부(130)가 부하(10a)의 현재 전압(V2)을 전달받아, 부하(10a)의 현재 전압(V2)이 전원부(110)에 적용될 때 전원부(110)에서 출력되는 전력의 값을 연산하여 구할 수 있다. 또는, 제2 전력의 크기(P2)는 제어부(130)가 부하(10a)의 현재 전압(V2)과 부하(10a)에 현재 흐르는 전류를 전달받아 연산할 수 있다.When the control unit 130 receives the current voltage V2 of the load 10a and the current voltage V2 of the load 10a is applied to the power supply unit 110, the second power level P2 is determined by the power supply unit 110 It can be calculated by calculating the value of the power output from. Alternatively, the magnitude P2 of the second power may be calculated by the controller 130 receiving the current voltage V2 of the load 10a and the current flowing through the load 10a.
다만, 이와 같이 직접적으로 전원부(110) 출력단의 전압과 부하(10a)의 전압, 그리고 전류 센싱을 통해 제1 전력의 크기(P1)와 제2 전력의 크기(P2)를 연산할 수도 있지만, 다른 방법을 통해 제1 전력의 크기(P1)와 제2 전력의 크기(P2)를 연산할 수도 있다.However, it is also possible to directly calculate the magnitude of the first power (P1) and the magnitude of the second power (P2) through sensing the voltage of the output terminal of the power supply unit 110, the voltage of the load 10a, and the current. Through the method, the magnitude of the first power (P1) and the magnitude of the second power (P2) may be calculated.
예를 들어, 태양광 패널을 구성하는 태양전지 셀과 동일한 모델의 1개의 태양전지 셀을 전력 생성 목적이 아닌 센싱 및 연산 목적으로 따로 구비하고, 해당 온도 및 일사량에서 상기 1개의 태양전지 셀의 전류 및/또는 전압을 센싱한 후, 태양광 패널 전체의 전력을 연산하는 방식으로 제1 전력의 크기(P1)를 연산할 수도 있다.For example, one solar cell of the same model as the solar cell constituting a solar panel is separately provided for sensing and calculation purposes, not for power generation purposes, and the current of the one solar cell at the corresponding temperature and insolation And/or after sensing the voltage, the magnitude of the first power P1 may be calculated by calculating the power of the entire solar panel.
따라서, 제1 전력의 크기(P1) 및 제2 전력의 크기(P2)를 연산하는 방법은 한정되지 않으며, 여타의 연산 방식을 모두 포함하는 것으로 이해되어야 할 것이다.Accordingly, a method of calculating the magnitude of the first power P1 and the magnitude of the second power P2 is not limited, and it should be understood that all other computation methods are included.
다음으로, 제어부(130)는 상기 제1 전력의 크기(P1) 및 상기 제2 전력의 크기(P2)를 비교하고(S120), 이후 상기 비교 결과에 따라 제어부(130)는 부스트 컨버터부(120)에 포함된 컨버터 스위치(122)를 제어한다(S130).Next, the controller 130 compares the magnitude of the first power (P1) and the magnitude of the second power (P2) (S120), and thereafter, according to the comparison result, the controller 130 determines the boost converter unit 120 Controls the converter switch 122 included in) (S130).
보다 구체적으로, 제1 전력의 크기(P1)가 제2 전력의 크기(P2)보다 크거나 같은 경우에, 제어부(130)는 제1 전력 전달 경로를 형성한다.More specifically, when the magnitude of the first power P1 is greater than or equal to the magnitude of the second power P2, the controller 130 forms a first power transmission path.
제1 전력의 크기(P1)가 제2 전력의 크기(P2)보다 크거나 같다는 것은, 부스트 컨버터부(130)가 MPPT 제어될 때 부하(10a)에 더 많은 전력이 전달된다는 의미이므로, 제어부(130)는 MPPT 알고리즘에 따라 결정되는 듀티비를 이용하여 컨버터 스위치(122)의 온오프를 제어하여 제1 전력 전달 경로를 형성하는 단계(S131)를 수행한다.When the magnitude of the first power (P1) is greater than or equal to the magnitude of the second power (P2), it means that more power is transmitted to the load 10a when the boost converter unit 130 is MPPT-controlled. In step 130), a first power transmission path is formed by controlling the on/off of the converter switch 122 using the duty ratio determined according to the MPPT algorithm (S131).
이때 전원부(110)에서 출력되는 입력 전압은, 제어부(130)의 MPPT 제어에 의해 부하(10a)에 최대 전력을 전달할 수 있도록 승압되므로, 부하(10a)에는 MPPT 제어에 의해 추종된 최대 전력이 전달될 수 있다.At this time, since the input voltage output from the power supply unit 110 is boosted to deliver the maximum power to the load 10a by the MPPT control of the control unit 130, the maximum power followed by the MPPT control is transmitted to the load 10a. Can be.
앞서도 언급한 바 있으나, MPPT 알고리즘으로는 P&O 방법, InCond 방법 등 다양한 알고리즘이 공지되어 있으며, 본 발명의 제1 실시예에 따른 전력 시스템의 제어 방법에서 언급하고 있는 MPPT 제어를 위해 이러한 다양한 MPPT 알고리즘 중 어느 하나가 사용될 수 있다.Although mentioned above, various algorithms such as the P&O method and the InCond method are known as the MPPT algorithm, and among these various MPPT algorithms for MPPT control mentioned in the power system control method according to the first embodiment of the present invention Either can be used.
제1 전력의 크기(P1)가 제2 전력의 크기(P2)보다 작은 경우에는, 제어부(130)는 제2 전력 전달 경로를 형성한다.When the magnitude P1 of the first power is smaller than the magnitude P2 of the second power, the controller 130 forms a second power transmission path.
제1 전력의 크기(P1)가 제2 전력의 크기(P2)보다 작다는 것은, 부스트 컨버터부(120)가 MPPT 제어되지 않을 때 부하(10a)에 더 많은 전력이 전달된다는 의미이므로, 제어부(130)는 부스트 컨버터부(120)를 MPPT 제어하지 않고 컨버터 스위치(122)를 오프로 제어하여 제2 전력 전달 경로를 형성하는 단계(S132)를 수행한다. When the magnitude of the first power P1 is smaller than the magnitude of the second power P2, it means that more power is transmitted to the load 10a when the boost converter unit 120 is not MPPT controlled. In operation S132, the boost converter 120 is not controlled by MPPT, but the converter switch 122 is turned off to form a second power transmission path (S132).
이때 컨버터 스위치(122)가 오프되면 입력 전압이 부스트 컨버터부(120)에 의해 승압되는 과정을 거치지 않게 되므로, 현재의 부하(10a) 전압이 전원부(110)에 적용된다. 여기서, 부하(10a) 전압이 전원부(110)에 적용된다는 것은 부하(10a) 전압과 역전류 방지 소자(123) 양단의 전압 차이만큼의 전압이 전원부(110) 양단에 걸린다는 것을 의미한다. 즉, 전원부(110)에서 출력되는 전류는 인덕터(121)와 역전류 방지 소자(123)만을 거쳐 그대로 부하(10a)에 전달된다.At this time, when the converter switch 122 is turned off, the input voltage is not boosted by the boost converter unit 120, so the current voltage of the load 10a is applied to the power supply unit 110. Here, that the voltage of the load 10a is applied to the power supply unit 110 means that a voltage equal to the difference between the voltage of the load 10a and the voltage across the reverse current prevention element 123 is applied across the power supply unit 110. That is, the current output from the power supply unit 110 is transmitted to the load 10a as it is through only the inductor 121 and the reverse current prevention element 123.
본 발명의 제1 실시예에 의하면, 기존의 전력 시스템에 별도의 소자를 추가하지 않고도, 부스트 컨버터부의 컨버터 스위치의 제어 방법만을 변경함으로써, MPPT 제어가 이루어지는 경로와 MPPT 제어가 이루어지지 않는 경로 중 부하로의 전력 전달 효율이 더 높은 경로를 실시간으로 선택하여 부하에 전력을 전달할 수 있다. 이러한 본 발명의 제1 실시예에 따른 전력 시스템에 의하면, MPPT 제어만을 사용하는 종래의 전력 시스템에 비해 더 높은 효율로 부하에 전력을 전달할 수 있게 된다.According to the first embodiment of the present invention, by changing only the control method of the converter switch of the boost converter unit without adding a separate element to the existing power system, the load among the paths in which MPPT control is performed and the paths in which MPPT control is not performed. Power can be delivered to the load by selecting a path with higher power transfer efficiency to the road in real time. According to the power system according to the first embodiment of the present invention, power can be delivered to a load with higher efficiency compared to a conventional power system using only MPPT control.
도 7은 본 발명의 제2 실시예에 따른 전력 시스템을 나타낸 도면이다.7 is a diagram showing a power system according to a second embodiment of the present invention.
도 7을 참조하면, 본 발명의 제2 실시예에 따른 전력 시스템(1000b)은 전원부(210), 스위칭부(220), 부스트 컨버터부(230) 및 제어부(240)를 포함한다.Referring to FIG. 7, a power system 1000b according to a second embodiment of the present invention includes a power supply unit 210, a switching unit 220, a boost converter unit 230, and a control unit 240.
전원부(210)는 전력을 생성하는 구성으로서, 빛 에너지를 전기 에너지로 변환하는 태양광 패널일 수 있으며, 이때 태양광 패널은 태양광을 직류 전원으로 변환하여 출력할 수 있는 태양전지 모듈의 조합으로 구성될 수 있다. 상기 태양전지 모듈은 태양전지의 직렬 연결 또는 병렬 연결로 이루어지거나, 직병렬 연결의 조합으로 이루어질 수 있다.The power supply unit 210 is a component that generates power, and may be a solar panel that converts light energy into electrical energy. In this case, the solar panel is a combination of solar cell modules that can convert sunlight into DC power and output it. Can be configured. The solar cell module may be made of a series connection or parallel connection of solar cells, or a combination of series-parallel connection.
스위칭부(220)는 전원부(210)에 의해 생성되는 전력이 부하(10b)로 전달될 때의 전력 전달 경로를 선택할 수 있는 구성으로서 제1 스위치(221) 및 제2 스위치(222)를 포함한다. 여기서, 제1 스위치(221) 및 제2 스위치(222)는 전류가 흐르는 경로를 전환하는 기능을 가지는 소자라면 어느 것이든 사용 가능하다.The switching unit 220 includes a first switch 221 and a second switch 222 as a configuration capable of selecting a power transmission path when the power generated by the power supply unit 210 is transferred to the load 10b. . Here, the first switch 221 and the second switch 222 may be any device having a function of switching a path through which a current flows.
도 7에는 부하(10b)의 예시로서 직류 전력을 저장하기 위한 배터리가 도시되어 있으나, 이외에도 상기 직류 전력을 공급받는 소자이기만 하면 부하(10b)에 해당될 수 있다.7 illustrates a battery for storing DC power as an example of the load 10b, but it may correspond to the load 10b as long as it is a device receiving the DC power.
부스트 컨버터부(230)는 전원부(210)로부터 생성되는 전력에 의한 입력 전압을 전달받고, 상기 입력 전압을 승압하여 부하(10b)에 전달할 수 있다. 여기서, 상기 입력 전압은 전원부(210)로부터 생성되는 전력을 구성하는 전압이자, 부스트 컨버터부(230)의 입력단에 인가되는 전압을 의미한다. 부스트 컨버터부(230)는 인덕터(231), 컨버터 스위치(232) 및 역전류 방지 소자(233)를 포함할 수 있다.The boost converter unit 230 may receive an input voltage by power generated from the power supply unit 210, boost the input voltage, and transfer the voltage to the load 10b. Here, the input voltage refers to a voltage constituting power generated from the power supply unit 210 and a voltage applied to the input terminal of the boost converter unit 230. The boost converter unit 230 may include an inductor 231, a converter switch 232, and a reverse current prevention element 233.
인덕터(231)는 일단과 타단이 스위칭부(220)에 연결된다. 인덕터(231)의 일단은 스위칭부(220)의 스위칭 동작에 따라 전원부(210)에 연결되거나 연결 해제되고, 인덕터(231)의 타단은 스위칭부(220)의 스위칭 동작에 따라 전원부(210)에 연결되거나 컨버터 스위치(232)에 연결된다.One end and the other end of the inductor 231 are connected to the switching unit 220. One end of the inductor 231 is connected to or disconnected from the power supply 210 according to the switching operation of the switching unit 220, and the other end of the inductor 231 is connected to the power supply 210 according to the switching operation of the switching unit 220. Or connected to the converter switch 232.
컨버터 스위치(232)는 스위칭부(220)의 스위칭 동작에 따라 인덕터(231)의 타단에 연결되거나 전원부(210)에 연결된다. 컨버터 스위치(232)는 도통(온 상태) 또는 비도통(오프 상태)이 되어 전류를 흐르게 할 것인지 여부를 결정하는 소자로서, 예를 들어 반도체 스위치인 MOSFET이 사용될 수 있으나 이에 한정되지는 않는다.The converter switch 232 is connected to the other end of the inductor 231 or to the power supply 210 according to the switching operation of the switching unit 220. The converter switch 232 is a device that determines whether to conduct current through conduction (on state) or non-conduction (off state), and, for example, a MOSFET, which is a semiconductor switch, may be used, but is not limited thereto.
역전류 방지 소자(233)는 부하(10b)에서 인덕터(231) 방향으로 역전류가 흐르는 것을 방지하기 위한 구성이다. 역전류 방지 소자(233)로는 다이오드, FET 등의 다양한 소자가 사용될 수 있다.The reverse current prevention element 233 is configured to prevent a reverse current from flowing from the load 10b to the inductor 231. Various devices such as diodes and FETs may be used as the reverse current prevention device 233.
한편, 본 발명의 제2 실시예에 따른 전력 시스템에 있어서, 스위칭부(220)의 제1 스위치(221) 및 제2 스위치(222)가 연결되는 구체적인 회로 구조는 다음과 같다.Meanwhile, in the power system according to the second embodiment of the present invention, a specific circuit structure in which the first switch 221 and the second switch 222 of the switching unit 220 are connected is as follows.
제1 스위치(221)는 일단이 전원부(210)에 연결되어 있고, 타단이 제1 스위치(221)의 스위칭 동작에 따라 인덕터(231)의 일단에 연결되거나 또는 개방단자에 연결되도록 마련된다. 여기서, 제1 스위치(221)의 타단이 개방단자에 연결된다는 것은, 제1 스위치(221)의 타단에 어떠한 소자도 전기적으로 연결되지 않는 것을 의미한다.The first switch 221 has one end connected to the power supply 210 and the other end connected to one end of the inductor 231 or connected to an open terminal according to a switching operation of the first switch 221. Here, that the other end of the first switch 221 is connected to the open terminal means that no element is electrically connected to the other end of the first switch 221.
제2 스위치(222)는 일단이 컨버터 스위치(232) 및 역전류 방지 소자(233)의 일단에 연결되고, 타단이 스위칭 동작에 따라 전원부(210) 또는 인덕터(231)의 타단에 연결되도록 마련된다.The second switch 222 is provided so that one end is connected to one end of the converter switch 232 and the reverse current prevention element 233, and the other end is connected to the other end of the power supply unit 210 or the inductor 231 according to the switching operation. .
제어부(240)는 부스트 컨버터부(230)의 MPPT 제어 및 스위칭부(220)의 스위칭 동작을 제어하는 구성이다. 보다 구체적으로, 제어부(240)는 제1 스위치(221) 및 제2 스위치(222)를 제1 스위칭 모드로 제어하여, 전원부(210)로부터 부스트 컨버터부(230)를 통하여 부하(10b)로 전력이 전달되는 제1 전력 전달 경로를 형성할 수 있다.The control unit 240 is a component that controls the MPPT control of the boost converter unit 230 and the switching operation of the switching unit 220. More specifically, the control unit 240 controls the first switch 221 and the second switch 222 in the first switching mode to power the load 10b from the power supply unit 210 through the boost converter unit 230. This can form a first power transfer path to be transferred.
여기서, 부스트 컨버터부(230)를 통하여 전력이 전달된다는 것은, 전원부(210)로부터 부하(10b)로 전력이 전달됨에 있어서, 전원부(210)에서 출력되는 전압이 부스트 컨버터부(230)에 의해 가변되는 과정을 거치게 된다는 것을 의미한다.Here, the power is transmitted through the boost converter unit 230, since power is transferred from the power supply unit 210 to the load 10b, the voltage output from the power supply unit 210 is variable by the boost converter unit 230. It means going through the process of becoming.
또한, 제어부(240)는 제1 스위치(221) 및 제2 스위치(222)를 제2 스위칭 모드로 제어하여, 부스트 컨버터부(230)를 통하지 않고 전원부(210)로부터 부하(10b)로 전력이 전달되는 제2 전력 전달 경로를 형성할 수 있다.In addition, the control unit 240 controls the first switch 221 and the second switch 222 in a second switching mode, so that power is transferred from the power supply unit 210 to the load 10b without passing through the boost converter unit 230. A second power transmission path to be transmitted may be formed.
여기서, 부스트 컨버터부(230)를 통하지 않고 전력이 전달된다는 것은, 전원부(210)로부터 부하(10b)로 전력이 전달됨에 있어서, 전원부(210)에서 출력되는 전압이 부스트 컨버터부(230)에 의해 가변되는 과정을 거치지 않는다는 것을 의미한다.Here, that the power is transmitted without passing through the boost converter unit 230, since power is transferred from the power supply unit 210 to the load 10b, the voltage output from the power supply unit 210 is transmitted by the boost converter unit 230. It means that it doesn't go through the process of being variable.
또한, 제어부(240)는 상기 제1 전력 전달 경로로 부하(10b)에 전력을 전달하는 경우의 제1 전력의 크기를 연산하고, 상기 제2 전력 전달 경로로 부하(10b)에 전력을 전달하는 경우의 제2 전력의 크기를 연산한다. 이후, 제어부(240)는 연산된 제1 전력 및 제2 전력의 크기를 비교하고, 상기 비교 결과에 따라 스위칭부(220)의 스위칭 동작을 제어한다.In addition, the control unit 240 calculates the magnitude of the first power when power is delivered to the load 10b through the first power transfer path, and transfers power to the load 10b through the second power transfer path. The magnitude of the second power in the case is calculated. Thereafter, the control unit 240 compares the calculated magnitudes of the first power and the second power, and controls the switching operation of the switching unit 220 according to the comparison result.
이때 제어부(240)는, 상기 비교 결과가 제1 전력이 제2 전력보다 크기가 크거나 같은 경우라면, 제1 스위치(221) 및 제2 스위치(222)를 제1 스위칭 모드로 제어하고, 상기 비교 결과가 제1 전력이 제2 전력보다 크기가 작은 경우라면, 제1 스위치(221) 및 제2 스위치(222)를 제2 스위칭 모드로 제어한다.At this time, if the comparison result is that the first power is greater than or equal to the second power, the control unit 240 controls the first switch 221 and the second switch 222 in a first switching mode, and the If the comparison result shows that the first power is smaller than the second power, the first switch 221 and the second switch 222 are controlled in the second switching mode.
여기서, 제1 전력은 제어부(240)가 부스트 컨버터부(230)를 MPPT 제어하는 경우 전원부(210)로부터 부하(10b)로 전달되는 전력이고, 제2 전력은 제어부(240)가 부스트 컨버터부(230)를 MPPT 제어하지 않는 경우 전원부(210)로부터 부하(10b)로 전달되는 전력이다.Here, the first power is the power transferred from the power supply 210 to the load 10b when the control unit 240 controls the boost converter unit 230 to MPPT, and the second power is the control unit 240 is the boost converter unit ( When the MPPT control 230) is not performed, this is the power transferred from the power supply unit 210 to the load 10b.
제1 전력의 크기는 제어부(240)가 전원부(210) 출력단의 개방 전압(V1) 및 단락 전류(I1)의 값을 전달받아 MPPT 알고리즘을 이용하여 연산할 수 있다.The magnitude of the first power may be calculated by the control unit 240 using the MPPT algorithm by receiving values of the open-circuit voltage V1 and the short-circuit current I1 of the output terminal of the power supply unit 210.
제2 전력의 크기는 제어부(240)가 부하(10b)의 현재 전압(V2)을 전달받아, 부하(10b)의 현재 전압(V2)이 전원부(210)에 적용될 때 전원부(210)에서 출력되는 전력의 값을 연산하여 구할 수 있다. 또는, 제2 전력의 크기는 제어부(240)가 부하(10b)의 현재 전압(V2)과 부하(10b)에 현재 흐르는 전류를 전달받아 연산할 수 있다.The magnitude of the second power is output from the power supply 210 when the control unit 240 receives the current voltage V2 of the load 10b and the current voltage V2 of the load 10b is applied to the power supply 210. It can be calculated by calculating the power value. Alternatively, the magnitude of the second power may be calculated by the controller 240 receiving the current voltage V2 of the load 10b and the current flowing through the load 10b.
본 발명의 제2 실시예에 따르면, 제어부(240)가 상기 제1 전력의 크기 및 상기 제2 전력의 크기를 비교하고, 상기 비교 결과에 따라 제1 전력 전달 경로와 제2 전력 전달 경로 중 부하(10b)로의 전력 전달 효율이 더 높은 경로를 실시간으로 선택하도록 구성되어 있기 때문에, 부하(10b)로의 전력 전달 효율이 극대화될 수 있다.According to the second embodiment of the present invention, the controller 240 compares the magnitude of the first power and the magnitude of the second power, and according to the comparison result, a load among the first power transfer path and the second power transfer path Since it is configured to select a path having a higher power transfer efficiency to (10b) in real time, the power transfer efficiency to the load (10b) can be maximized.
본 발명의 제2 실시예에 따른 전력 시스템(1000b)은 전원부(210)로부터 생성되는 전력에 의한 입력 전압을 저장하는 입력측 저장부(250)를 더 포함할 수 있다. 이때 입력측 저장부(250)는 전원부(210)와 부스트 컨버터부(230) 사이에 연결될 수 있다. 입력측 저장부(250)는 전원부(210)로부터 출력되는 입력 전압에 노이즈가 끼거나 전압이 흔들릴 때, 부스트 컨버터부(230)에 안정된 직류 전압이 공급되도록 하는 역할을 하며, 입력측 저장부(250)로는 커패시터가 사용될 수 있다.The power system 1000b according to the second embodiment of the present invention may further include an input side storage unit 250 that stores an input voltage by power generated from the power supply unit 210. In this case, the input-side storage unit 250 may be connected between the power supply unit 210 and the boost converter unit 230. The input-side storage unit 250 serves to supply a stable DC voltage to the boost converter unit 230 when noise or voltage fluctuates in the input voltage output from the power supply unit 210, and the input-side storage unit 250 As the furnace, a capacitor may be used.
또한, 본 발명의 제2 실시예에 따른 전력 시스템(1000b)은 부스트 컨버터부(230)에 의해 승압된 전압을 저장하는 출력측 저장부(260)를 더 포함할 수 있다. 이때 출력측 저장부(260)는 부스트 컨버터부(230)와 부하(10b) 사이에 연결된다. 출력측 저장부(260)는 부하(10b)에 직류 전압을 공급하도록 전압을 정류시켜주는 역할을 하며, 출력측 저장부(260)로는 커패시터가 사용될 수 있다.In addition, the power system 1000b according to the second embodiment of the present invention may further include an output side storage unit 260 that stores the voltage boosted by the boost converter unit 230. At this time, the output-side storage unit 260 is connected between the boost converter unit 230 and the load 10b. The output-side storage unit 260 serves to rectify a voltage to supply a DC voltage to the load 10b, and a capacitor may be used as the output-side storage unit 260.
도 8a는 도 7의 전력 시스템이 제1 스위칭 모드로 동작할 때의 등가회로를 나타낸 도면이고, 도 8b는 도 7의 전력 시스템이 제2 스위칭 모드로 동작할 때의 등가회로를 나타낸 도면이다. 이하에서는 도 8a 및 도 8b를 더 참조하여, 상기 제1 스위칭 모드 및 제2 스위칭 모드에 대해 보다 구체적으로 설명한다.FIG. 8A is a diagram illustrating an equivalent circuit when the power system of FIG. 7 operates in a first switching mode, and FIG. 8B is a diagram illustrating an equivalent circuit when the power system of FIG. 7 operates in a second switching mode. Hereinafter, the first switching mode and the second switching mode will be described in more detail with reference to FIGS. 8A and 8B.
먼저, 도 8a를 참조하면, 전원부(210)에서 생성되는 전력은 부스트 컨버터부(230)를 통해 부하(10b)에 전달되는 경로인 제1 전력 전달 경로로 전달된다. 제어부(240)는 부스트 컨버터부(230)를 MPPT 제어하면서 전원부(210)에서 출력되는 전압을 가변하여 부하(10b)에 전달하는 방식으로 최대 전력을 추종한다.First, referring to FIG. 8A, power generated by the power supply unit 210 is transmitted to a first power transmission path, which is a path transmitted to the load 10b through the boost converter unit 230. The control unit 240 tracks the maximum power by controlling the boost converter unit 230 by MPPT control, varying the voltage output from the power supply unit 210 and transmitting it to the load 10b.
상기 제1 전력 전달 경로를 형성하는 제1 스위칭 모드는, 제1 전력의 크기가 제2 전력의 크기보다 크거나 같은 경우에 제1 스위치(221)의 타단이 인덕터(231)의 일단에 연결되고, 제2 스위치(222)의 타단이 인덕터(231)의 타단에 연결된 모드이다.In the first switching mode forming the first power transmission path, when the magnitude of the first power is greater than or equal to the magnitude of the second power, the other end of the first switch 221 is connected to one end of the inductor 231 , This is a mode in which the other end of the second switch 222 is connected to the other end of the inductor 231.
제1 전력이 제2 전력보다 크거나 같다는 것은, 부스트 컨버터부(230)가 MPPT 제어될 때 부하(10b)에 더 많은 전력이 전달된다는 의미이므로, 제어부(240)는 부스트 컨버터부(230)를 MPPT 제어한다. 이때 제어부(240)는 제1 스위치(221)의 타단을 인덕터(231)의 일단에 연결하여 전원부(210)에서 출력되는 전류가 인덕터(231)로 흘러 인덕터(231)를 충전시키도록 하고, 제2 스위치(222)의 타단을 인덕터(231)의 타단에 연결하여 인덕터(231)가 컨버터 스위치(232) 및 역전류 방지 소자(233)와 연결되도록 한다.When the first power is greater than or equal to the second power, it means that more power is transmitted to the load 10b when the boost converter unit 230 is MPPT controlled. MPPT control. At this time, the control unit 240 connects the other end of the first switch 221 to one end of the inductor 231 so that the current output from the power supply unit 210 flows to the inductor 231 and charges the inductor 231. 2 Connect the other end of the switch 222 to the other end of the inductor 231 so that the inductor 231 is connected to the converter switch 232 and the reverse current prevention element 233.
이때 전원부(210)에서 출력되는 전압은, 제어부(240)의 MPPT 제어에 의해 부하(10b)에 최대 전력을 전달할 수 있도록 가변되므로, 부하(10b)에는 MPPT 제어에 의해 추종된 최대 전력이 전달될 수 있다.At this time, since the voltage output from the power supply unit 210 is variable so as to transmit the maximum power to the load 10b by the MPPT control of the control unit 240, the maximum power followed by the MPPT control will be delivered to the load 10b. I can.
다음으로, 도 8b를 참조하면, 전원부(210)에서 생성되는 전력은 역전류 방지 소자(233)만을 거쳐 부하(10b)에 전달된다. 제어부(240)는 부스트 컨버터부(230)를 MPPT 제어를 하지 않고, 컨버터 스위치(232)를 오프시켜 전원부(210)에서 생성되는 전압이 가변되지 않고 부하(10b)에 전달되도록 제어한다. 이때 전원부(210)로부터 부하(10b)로 전달되는 전력은 부스트 컨버터부(230)를 통하지 않고 제2 전력 전달 경로로 전달된다.Next, referring to FIG. 8B, power generated by the power supply unit 210 is transmitted to the load 10b through only the reverse current prevention element 233. The control unit 240 controls the boost converter unit 230 to be transferred to the load 10b without changing the voltage generated by the power supply unit 210 by turning off the converter switch 232 without performing MPPT control. In this case, the power transmitted from the power supply unit 210 to the load 10b is transmitted through the second power transmission path without passing through the boost converter unit 230.
상기 제2 전력 전달 경로를 형성하는 제2 스위칭 모드는, 제1 전력의 크기가 제2 전력의 크기보다 작은 경우에 제1 스위치(221)의 타단이 개방단자에 연결되고, 제2 스위치(222)의 타단이 전원부(210)에 연결된 모드이다.In the second switching mode forming the second power transmission path, when the magnitude of the first power is smaller than the magnitude of the second power, the other end of the first switch 221 is connected to the open terminal, and the second switch 222 The other end of) is a mode connected to the power supply 210.
제1 전력이 제2 전력보다 작다는 것은, 부스트 컨버터부(230)가 MPPT 제어되지 않을 때 부하(10b)에 더 많은 전력이 전달된다는 의미이므로, 제어부(240)는 부스트 컨버터부(230)를 MPPT 제어하지 않는다. 이때 제어부(240)는 제1 스위치(221)의 타단을 개방단자에 연결하여 전원부(210)로부터 부스트 컨버터부(230)의 입력단에 위치한 인덕터(231)로 연결되는 회로라인을 차단시키고, 제2 스위치(222)의 타단을 전원부(210)에 연결하여 전원부(210)를 컨버터 스위치(232) 및 역전류 방지 소자(233)에 연결한다.When the first power is less than the second power, it means that more power is transmitted to the load 10b when the boost converter unit 230 is not MPPT controlled. MPPT is not controlled. At this time, the control unit 240 connects the other end of the first switch 221 to the open terminal to cut off the circuit line connected from the power supply 210 to the inductor 231 located at the input terminal of the boost converter unit 230, and The other end of the switch 222 is connected to the power supply unit 210, and the power unit 210 is connected to the converter switch 232 and the reverse current prevention element 233.
이때 제어부(240)는 컨버터 스위치(232)를 오프시킨다. 컨버터 스위치(232)가 오프되면 현재의 부하(10b) 전압이 전원부(210)에 적용된다. 여기서, 부하(10b) 전압이 전원부(210)에 적용된다는 것은 부하(10b) 전압과 역전류 방지 소자(233) 양단의 전압 차이만큼의 전압이 전원부(210)에 걸린다는 것을 의미하고, 이때 전원부(210)에서 출력되는 전류는 역전류 방지 소자(233)만을 거쳐 그대로 부하(10b)에 전달된다.At this time, the controller 240 turns off the converter switch 232. When the converter switch 232 is turned off, the current voltage of the load 10b is applied to the power supply unit 210. Here, that the voltage of the load 10b is applied to the power supply 210 means that a voltage equal to the voltage difference between the voltage of the load 10b and the voltage across the reverse current prevention element 233 is applied to the power supply 210, and at this time, the power supply unit The current output from 210 is transferred to the load 10b as it is through only the reverse current prevention element 233.
한편, 역전류 방지 소자(233)로서 다이오드가 사용되는 경우, 상기 다이오드의 애노드는 인덕터(231)의 타단 및 컨버터 스위치(232)에 연결되고, 상기 다이오드의 캐소드는 부하(10b)에 연결되어, 부하(10b)에서 인덕터(231) 방향으로 역전류가 흐르지 않는다. 다이오드의 전압 강하는 약 0.7V로서 매우 작은 값이므로, 전원부(210)에 의해 생성되는 전력의 대부분(99% 이상)이 부하(10b)에 전달될 수 있다.Meanwhile, when a diode is used as the reverse current prevention element 233, the anode of the diode is connected to the other end of the inductor 231 and the converter switch 232, and the cathode of the diode is connected to the load 10b, Reverse current does not flow from the load 10b to the inductor 231. Since the voltage drop of the diode is about 0.7V, which is a very small value, most (99% or more) of the power generated by the power supply 210 may be transferred to the load 10b.
또는, 역전류 방지 소자(233)로서 FET가 사용될 수도 있는데, FET가 사용되는 경우 제어부(240)는 FET를 온오프 제어할 수 있고, FET의 온오프 제어에 의해 부하(10b)에서 인덕터(231) 방향으로 역전류가 흐르는 것을 방지할 수 있다. 그뿐 아니라, 다이오드는 적은 양이라도 전압 강하가 존재하는 것에 비해 FET의 온 상태에서는 이론적으로 전압 강하가 존재하지 않으므로, 다이오드를 사용할 때보다 부하(10b)로의 전력 전달 효율이 더 높아질 수 있다.Alternatively, a FET may be used as the reverse current prevention element 233. When the FET is used, the controller 240 may control the FET on and off, and the inductor 231 in the load 10b by the on/off control of the FET. It can prevent reverse current from flowing in the) direction. In addition, since the diode does not have a voltage drop theoretically when the FET is turned on, compared to a small amount of a voltage drop in the diode, power transfer efficiency to the load 10b may be higher than when a diode is used.
한편, 단순히 컨버터 스위치(232)를 오프 상태로 유지하는 것만으로도 MPPT 제어를 하지 않고 부하(10b)로 전력을 전달할 수 있지만, 본 발명의 제2 실시예와 같이 스위칭부(220)를 구비하면 제2 스위칭 모드로 동작 시 전원부(210)에서 출력되는 전류가 인덕터(231)를 거치지 않도록 바이패스 경로를 형성할 수 있으므로, 인덕터(231)에 의해 발생할 수도 있는 리플 현상을 미연에 방지할 수 있다.On the other hand, simply by keeping the converter switch 232 in the off state, power can be delivered to the load 10b without performing MPPT control, but if the switching unit 220 is provided as in the second embodiment of the present invention When operating in the second switching mode, a bypass path can be formed so that the current output from the power supply unit 210 does not pass through the inductor 231, so that a ripple phenomenon that may be caused by the inductor 231 can be prevented in advance. .
본 발명의 제2 실시예에 의하면, 저항, 인덕터 또는 커패시터의 추가 없이 이극 스위치(two poles switch) 소자만을 추가하는 구조 변경에 의해, MPPT 제어가 이루어지는 경로와 MPPT 제어가 이루어지지 않는 경로 중 전력 전달 효율이 더 높은 경로를 선택하여 부하에 전력을 전달할 수 있다. 따라서, MPPT 제어만을 할 때보다 더 높은 효율로 부하에 전력이 전달될 수 있는 효과가 있다.According to the second embodiment of the present invention, by changing the structure of adding only a two poles switch element without adding a resistor, an inductor or a capacitor, power is transferred among the paths in which MPPT control is performed and the paths in which MPPT control is not performed. You can choose a path with higher efficiency to deliver power to the load. Therefore, there is an effect that power can be delivered to the load with higher efficiency than when performing only MPPT control.
도 9는 본 발명의 제3 실시예에 따른 전력 시스템을 나타낸 도면이다.9 is a diagram showing a power system according to a third embodiment of the present invention.
도 9를 참조하면, 본 발명의 제3 실시예에 따른 전력 시스템(1000c)은 전원부(310), 스위칭부(320), 벅 컨버터부(330) 및 제어부(340)를 포함한다.Referring to FIG. 9, a power system 1000c according to a third embodiment of the present invention includes a power supply unit 310, a switching unit 320, a buck converter unit 330, and a control unit 340.
전원부(310)는 전력을 생성하는 구성으로서, 빛 에너지를 전기 에너지로 변환하는 태양광 패널일 수 있고, 이때 태양광 패널은 태양광을 직류 전원으로 변환하여 출력할 수 있는 태양전지 모듈의 조합으로 구성될 수 있다. 상기 태양전지 모듈은 태양전지의 직렬 연결 또는 병렬 연결로 이루어지거나, 직병렬 연결의 조합으로 이루어질 수 있다.The power supply unit 310 is a component that generates power, and may be a solar panel that converts light energy into electrical energy. In this case, the solar panel is a combination of solar cell modules that can convert sunlight into DC power and output it. Can be configured. The solar cell module may be made of a series connection or parallel connection of solar cells, or a combination of series-parallel connection.
스위칭부(320)는 전원부(310)에 의해 생성되는 전력이 부하(10c)로 전달될 때의 전력 전달 경로를 선택할 수 있는 구성으로서, 제1 스위치(321), 제2 스위치(322) 및 제3 스위치(323)를 포함한다. 여기서, 제1 스위치(321), 제2 스위치(322) 및 제3 스위치(323)는 전류가 흐르는 경로를 전환하는 기능을 갖는 소자라면 어느 것이든 사용 가능하다.The switching unit 320 is a configuration capable of selecting a power transmission path when the power generated by the power supply unit 310 is transferred to the load 10c, and includes a first switch 321, a second switch 322, and a second switch. It includes three switches 323. Here, the first switch 321, the second switch 322, and the third switch 323 may be any element having a function of switching a path through which current flows.
도 9에는 부하(10c)의 예시로서 직류 전력을 저장하기 위한 배터리가 도시되어 있으나, 이외에도 상기 직류 전력을 공급받는 소자이기만 하면 부하(10c)에 해당될 수 있다.9 illustrates a battery for storing DC power as an example of the load 10c, but it may correspond to the load 10c as long as it is a device receiving the DC power.
벅 컨버터부(330)는 전원부(310)로부터 생성되는 전력에 의한 입력 전압을 전달받고, 상기 입력 전압을 강압하여 부하(10c)에 전달할 수 있다. 여기서, 상기 입력 전압은 전원부(310)로부터 생성되는 전력을 구성하는 전압이자, 벅 컨버터부(330)의 입력단에 인가되는 전압을 의미한다. 벅 컨버터부(330)는 컨버터 스위치(331), 역전류 방지 소자(332) 및 인덕터(333)를 포함할 수 있다.The buck converter unit 330 may receive an input voltage due to power generated from the power supply unit 310, step down the input voltage, and transfer the voltage to the load 10c. Here, the input voltage refers to a voltage constituting power generated from the power supply unit 310 and a voltage applied to the input terminal of the buck converter unit 330. The buck converter unit 330 may include a converter switch 331, a reverse current prevention element 332, and an inductor 333.
컨버터 스위치(331)는 일단과 타단이 스위칭부(320)에 연결된다. 컨버터 스위치(331)의 일단은 스위칭부(320)의 스위칭 동작에 따라 전원부(310)에 연결되거나 연결 해제되고, 컨버터 스위치(331)의 타단은 스위칭부(320)의 스위칭 동작에 따라 역전류 방지 소자(332)에만 연결되거나, 역전류 방지 소자(332) 및 인덕터(333)의 타단에 함께 연결될 수 있다.The converter switch 331 has one end and the other end connected to the switching unit 320. One end of the converter switch 331 is connected to or disconnected from the power supply 310 according to the switching operation of the switching unit 320, and the other end of the converter switch 331 prevents reverse current according to the switching operation of the switching unit 320 It may be connected only to the device 332 or may be connected to the other end of the reverse current prevention device 332 and the inductor 333 together.
컨버터 스위치(331)는 도통(온 상태) 또는 비도통(오프 상태)이 되어 전류를 흐르게 할 것인지 여부를 결정하는 소자로서, 예를 들어 반도체 스위치인 MOSFET이 사용될 수 있으나 이에 한정되지는 않는다.The converter switch 331 is a device that determines whether to conduct current through conduction (on state) or non-conduction (off state), and, for example, a MOSFET, which is a semiconductor switch, may be used, but is not limited thereto.
역전류 방지 소자(332)의 일단은 스위칭부(320)의 스위칭 동작에 따라 접지에 연결되거나 전원부(310)에 연결되고, 역전류 방지 소자(332)의 타단은 컨버터 스위치(331)의 타단에 연결된다. 역전류 방지 소자(332)로는 다이오드, FET 등의 다양한 소자가 사용될 수 있다.One end of the reverse current preventing element 332 is connected to the ground or connected to the power supply 310 according to the switching operation of the switching unit 320, and the other end of the reverse current preventing element 332 is connected to the other end of the converter switch 331. Connected. Various devices such as diodes and FETs may be used as the reverse current prevention device 332.
인덕터(333)의 일단은 컨버터 스위치(331)의 타단에 연결되고, 인덕터(333)의 타단은 부하(10c)에 연결된다.One end of the inductor 333 is connected to the other end of the converter switch 331, and the other end of the inductor 333 is connected to the load 10c.
한편, 본 발명의 제3 실시예에 따른 전력 시스템(1000c)에 있어서, 스위칭부(320)의 제1 스위치(321), 제2 스위치(322) 및 제3 스위치(323)가 연결되는 구체적인 회로 구조는 다음과 같다.Meanwhile, in the power system 1000c according to the third embodiment of the present invention, a specific circuit in which the first switch 321, the second switch 322, and the third switch 323 of the switching unit 320 are connected. The structure is as follows.
제1 스위치(321)는 일단이 접지에 연결되어 있고, 타단이 제어부(340)에 의해 제어되는 스위칭 동작에 따라 역전류 방지 소자(332)의 일단에 연결되거나 오프되도록 마련된다. 여기서, 제1 스위치(321)의 타단이 오프된다는 것은, 제1 스위치(321)의 타단에 어떠한 회로 소자도 전기적으로 연결되지 않는다는 것을 의미한다.One end of the first switch 321 is connected to the ground, and the other end is provided to be connected to one end of the reverse current preventing element 332 or turned off according to a switching operation controlled by the controller 340. Here, that the other end of the first switch 321 is turned off means that no circuit elements are electrically connected to the other end of the first switch 321.
제2 스위치(322)는 일단이 전원부(310)에 연결되어 있고, 타단이 제어부(340)에 의해 제어되는 스위칭 동작에 따라 컨버터 스위치(331)의 일단에 연결되거나 역전류 방지 소자(332)의 일단에 연결되도록 마련된다.The second switch 322 has one end connected to the power supply 310 and the other end connected to one end of the converter switch 331 or the reverse current prevention element 332 according to a switching operation controlled by the controller 340. It is prepared to be connected to one end.
제3 스위치(323)는 일단이 인덕터(333)의 타단에 연결되어 있고, 타단이 제어부(340)에 의해 제어되는 스위칭 동작에 따라 오프되거나 컨버터 스위치(331)의 타단에 연결되도록 마련된다. 여기서, 제3 스위치(323)의 타단이 오프된다는 것은, 제3 스위치(323)의 타단에 어떠한 회로 소자도 전기적으로 연결되지 않는 것을 의미하는 것이다.The third switch 323 has one end connected to the other end of the inductor 333, and the other end is provided to be turned off according to a switching operation controlled by the controller 340 or connected to the other end of the converter switch 331. Here, that the other end of the third switch 323 is turned off means that no circuit elements are electrically connected to the other end of the third switch 323.
또한, 여기서 컨버터 스위치(331)의 타단은, 역전류 방지 소자(332) 및 인덕터(333)가 연결되는 지점이다.In addition, the other end of the converter switch 331 is a point where the reverse current prevention element 332 and the inductor 333 are connected.
제어부(340)는 벅 컨버터부(330)의 MPPT 제어 및 스위칭부(320)의 스위칭 동작을 제어하는 구성이다. 보다 구체적으로, 제어부(340)는 제1 스위치(321), 제2 스위치(322) 및 제3 스위치(323)를 제1 스위칭 모드로 제어하여, 전원부(310)로부터 벅 컨버터부(330)를 통하여 부하(10c)로 전력이 전달되는 제1 전력 전달 경로를 형성할 수 있다.The control unit 340 is a component that controls the MPPT control of the buck converter unit 330 and the switching operation of the switching unit 320. More specifically, the control unit 340 controls the first switch 321, the second switch 322, and the third switch 323 in a first switching mode, and controls the buck converter unit 330 from the power supply unit 310. A first power transfer path through which power is transferred to the load 10c may be formed.
여기서, 벅 컨버터부(330)를 통하여 전력이 전달된다는 것은, 전원부(310)로부터 부하(10c)로 전력이 전달됨에 있어서, 전원부(310)에서 출력되는 전압이 벅 컨버터부(330)에 의해 강압되는 과정을 거치게 된다는 것을 의미한다.Here, power is transmitted through the buck converter unit 330, since power is transferred from the power supply unit 310 to the load 10c, the voltage output from the power supply unit 310 is stepped down by the buck converter unit 330. It means going through the process of becoming.
또한, 제어부는 제1 스위치(321), 제2 스위치(322) 및 제3 스위치(323)를 제2 스위칭 모드로 제어하여, 벅 컨버터부(330)를 통하지 않고 전원부(310)로부터 부하(10c)로 전력이 전달되는 제2 전력 전달 경로를 형성할 수 있다.In addition, the control unit controls the first switch 321, the second switch 322, and the third switch 323 in the second switching mode, so that the load 10c from the power supply unit 310 without passing through the buck converter unit 330 ) May form a second power transfer path through which power is transferred.
여기서, 벅 컨버터부(330)를 통하지 않고 전력이 전달된다는 것은, 전원부(310)로부터 부하(10c)로 전력이 전달됨에 있어서, 전원부(310)에서 출력되는 전압이 벅 컨버터부(330)에 의해 강압되는 과정을 거치지 않는다는 것을 의미한다.Here, that the power is transmitted without passing through the buck converter unit 330 is that since power is transferred from the power supply unit 310 to the load 10c, the voltage output from the power supply unit 310 is transmitted by the buck converter unit 330. It means not going through the process of being forced to go through.
또한, 제어부(340)는 상기 제1 전력 전달 경로로 부하(10c)에 전력을 전달하는 경우의 제1 전력의 크기(P1)를 연산하고, 상기 제2 전력 전달 경로로 부하(10c)에 전력을 전달하는 경우의 제2 전력의 크기(P2)를 연산한다. 이후, 제어부(340)는 연산된 제1 전력의 크기(P1) 및 제2 전력의 크기(P2)를 비교하고, 상기 비교 결과에 따라 스위칭부(320)의 스위칭 동작을 제어한다.In addition, the control unit 340 calculates the magnitude of the first power (P1) in the case of transmitting power to the load 10c through the first power transfer path, and transmits power to the load 10c through the second power transfer path. The magnitude of the second power (P2) in the case of transmitting is calculated. Thereafter, the controller 340 compares the calculated magnitude P1 of the first power and the magnitude P2 of the second power, and controls the switching operation of the switching unit 320 according to the comparison result.
이때 제어부(340)는, 상기 비교 결과가 제1 전력의 크기(P1)가 제2 전력의 크기(P2)보다 크거나 같은 경우라면, 제1 스위치(321), 제2 스위치(322) 및 제3 스위치(323)를 제1 스위칭 모드로 제어하고, 상기 비교 결과가 제1 전력의 크기(P1)가 제2 전력의 크기(P2)보다 작은 경우라면, 제1 스위치(321), 제2 스위치(322) 및 제3 스위치(323)를 제2 스위칭 모드로 제어한다.At this time, if the comparison result is the case where the magnitude of the first power (P1) is greater than or equal to the magnitude of the second power (P2), the first switch 321, the second switch 322, and the 3 If the switch 323 is controlled in the first switching mode, and the comparison result is a case where the magnitude of the first power (P1) is less than the magnitude of the second power (P2), the first switch 321 and the second switch Control 322 and the third switch 323 in the second switching mode.
여기서, 제1 전력은 제어부(340)가 벅 컨버터부(330)를 MPPT 제어하는 경우 전원부(310)로부터 부하(10c)로 전달되는 전력이고, 제2 전력은 제어부(340)가 벅 컨버터부(330)를 MPPT 제어하지 않는 경우 전원부(310)로부터 부하(10c)로 전달되는 전력이다.Here, the first power is power transferred from the power supply unit 310 to the load 10c when the control unit 340 controls the buck converter unit 330 MPPT, and the second power is the control unit 340 When MPPT control 330 is not performed, this is the power transferred from the power supply unit 310 to the load 10c.
제1 전력의 크기(P1)는 제어부(340)가 전원부(310) 출력단의 개방 전압(V1) 및 단락 전류(I1)의 값을 전달받아 MPPT 알고리즘을 이용하여 연산할 수 있다.The first power level P1 may be calculated by the control unit 340 using the MPPT algorithm by receiving values of the open-circuit voltage V1 and the short-circuit current I1 of the output terminal of the power supply unit 310.
제2 전력의 크기(P2)는 제어부(340)가 부하(10c)의 현재 전압(V2)을 전달받아, 부하(10c)의 현재 전압(V2)이 전원부(310)에 적용될 때 전원부(310)에서 출력되는 전력의 값을 연산하여 구할 수 있다. 또는, 제2 전력의 크기(P2)는 제어부(340)가 부하(10c)의 현재 전압(V2)과 부하(10c)에 현재 흐르는 전류(I2)를 전달받아 연산할 수 있다.When the control unit 340 receives the current voltage V2 of the load 10c and the current voltage V2 of the load 10c is applied to the power supply 310, the second power level P2 is determined by the power supply unit 310. It can be calculated by calculating the value of the power output from. Alternatively, the magnitude P2 of the second power may be calculated by the controller 340 receiving the current voltage V2 of the load 10c and the current I2 flowing through the load 10c.
본 발명의 제3 실시예에 따르면, 제어부(340)가 상기 제1 전력의 크기(P1) 및 상기 제2 전력의 크기(P2)를 비교하고, 상기 비교 결과에 따라 제1 전력 전달 경로와 제2 전력 전달 경로 중 부하(10c)로의 전력 전달 효율이 더 높은 경로를 실시간으로 선택하도록 구성되어 있기 때문에, 부하(10c)로의 전력 전달 효율이 극대화될 수 있다.According to the third embodiment of the present invention, the control unit 340 compares the magnitude of the first power (P1) and the magnitude of the second power (P2), and 2 Since it is configured to select a path having a higher power transfer efficiency to the load 10c among the power transfer paths in real time, the power transfer efficiency to the load 10c can be maximized.
본 발명의 제3 실시예에 따른 전력 시스템(1000c)은 전원부(310)로부터 생성되는 전력에 의한 입력 전압을 저장하는 입력측 저장부(350)를 더 포함할 수 있다. 이때 입력측 저장부(350)는 전원부(310)와 벅 컨버터부(330) 사이에 연결될 수 있다. 입력측 저장부(350)는 전원부(310)로부터 출력되는 입력 전압에 노이즈가 끼거나 전압이 흔들릴 때, 벅 컨버터부(330)에 안정된 직류 전압이 공급되도록 하는 역할을 하며, 입력측 저장부(350)로는 커패시터가 사용될 수 있다.The power system 1000c according to the third embodiment of the present invention may further include an input side storage unit 350 that stores an input voltage by power generated from the power supply unit 310. In this case, the input-side storage unit 350 may be connected between the power supply unit 310 and the buck converter unit 330. The input-side storage unit 350 serves to supply a stable DC voltage to the buck converter unit 330 when noise or voltage fluctuates in the input voltage output from the power supply unit 310, and the input-side storage unit 350 As the furnace, a capacitor may be used.
또한, 본 발명의 제3 실시예에 따른 전력 시스템(1000c)은, 벅 컨버터부(330)에 의해 강압된 전압을 저장하는 출력측 저장부(360)를 더 포함할 수 있다. 이때 출력측 저장부(360)는 벅 컨버터부(330)와 부하(10c) 사이에 연결될 수 있다. 출력측 저장부(360)는 부하(10c)에 직류 전압을 공급하도록 전압을 정류시켜주는 역할을 하며, 출력측 저장부(360)로는 커패시터가 사용될 수 있다.In addition, the power system 1000c according to the third embodiment of the present invention may further include an output side storage unit 360 that stores a voltage stepped down by the buck converter unit 330. In this case, the output-side storage unit 360 may be connected between the buck converter unit 330 and the load 10c. The output-side storage unit 360 serves to rectify a voltage to supply a DC voltage to the load 10c, and a capacitor may be used as the output-side storage unit 360.
도 10a는 도 9의 전력 시스템이 제1 스위칭 모드로 동작할 때의 등가회로를 나타낸 도면이고, 도 10b는 도 9의 전력 시스템이 제2 스위칭 모드로 동작할 때의 등가회로를 나타낸 도면이다. 이하에서는 도 10a 및 도 10b를 더 참조하여, 제1 스위칭 모드 및 제2 스위칭 모드에 대해 보다 구체적으로 설명한다. 10A is a diagram illustrating an equivalent circuit when the power system of FIG. 9 operates in a first switching mode, and FIG. 10B is a diagram illustrating an equivalent circuit when the power system of FIG. 9 operates in a second switching mode. Hereinafter, the first switching mode and the second switching mode will be described in more detail with reference to FIGS. 10A and 10B.
먼저, 도 10a를 참조하면, 전원부(310)에서 생성되는 전력은 벅 컨버터부(330)를 통하여 부하(10c)에 전달되는 제1 전력 전달 경로로 전달된다. 제어부(340)는 벅 컨버터부(330)를 MPPT 제어하면서 전원부(310)에서 출력되는 전압을 강압하여 부하(10c)에 전달하는 방식으로 최대 전력을 추종한다.First, referring to FIG. 10A, power generated by the power supply unit 310 is transmitted to a first power transmission path transmitted to the load 10c through the buck converter unit 330. The control unit 340 follows the maximum power by controlling the buck converter unit 330 by MPPT control, stepping down the voltage output from the power supply unit 310 and transferring the voltage to the load 10c.
구체적으로, 상기 제1 전력 전달 경로를 형성하는 제1 스위칭 모드는, 제1 전력의 크기(P1)가 제2 전력의 크기(P2)보다 크거나 같은 경우에 제1 스위치(321)의 타단이 역전류 방지 소자(332)의 일단에 연결되고, 제2 스위치(322)의 타단이 컨버터 스위치(331)의 일단에 연결되며, 제3 스위치(323)의 타단이 오프된 모드이다.Specifically, in the first switching mode forming the first power transmission path, when the magnitude of the first power (P1) is greater than or equal to the magnitude of the second power (P2), the other end of the first switch 321 is This mode is connected to one end of the reverse current prevention element 332, the other end of the second switch 322 is connected to one end of the converter switch 331, and the other end of the third switch 323 is turned off.
제1 전력의 크기(P1)가 제2 전력의 크기(P2)보다 크거나 같다는 것은, 벅 컨버터부(330)가 MPPT 제어될 때 부하(10c)에 더 많은 전력이 전달된다는 의미이므로, 제어부(340)는 벅 컨버터부(330)를 MPPT 제어한다. 이때 제어부(340)는 제1 스위치(321)의 타단을 역전류 방지 소자(332)의 일단에 연결하여 역전류 방지 소자(332)의 일단이 접지에 연결되도록 하고, 제2 스위치(322)의 타단을 컨버터 스위치(331)의 일단에 연결하여 전원부(310)가 컨버터 스위치(331)와 연결되도록 하며, 제3 스위치(323)의 타단을 오프시켜 컨버터 스위치(331)가 부하(10c)로 직접 연결되는 바이패스 경로를 차단시킨다.When the magnitude of the first power (P1) is greater than or equal to the magnitude of the second power (P2), it means that more power is delivered to the load 10c when the buck converter unit 330 is MPPT controlled. The 340 MPPT controls the buck converter unit 330. At this time, the controller 340 connects the other end of the first switch 321 to one end of the reverse current preventing element 332 so that one end of the reverse current preventing element 332 is connected to the ground, and The other end is connected to one end of the converter switch 331 so that the power supply 310 is connected to the converter switch 331, and the other end of the third switch 323 is turned off so that the converter switch 331 is directly transferred to the load 10c. It blocks the bypass path to which it is connected.
이때 전원부(310)에서 출력되는 전압은, 제어부(340)의 MPPT 제어에 의해 부하(10c)에 최대 전력을 전달할 수 있도록 강압되므로, 부하(10c)에는 MPPT 제어에 의해 추종된 최대 전력이 전달될 수 있다.At this time, since the voltage output from the power supply 310 is stepped down so as to deliver the maximum power to the load 10c by the MPPT control of the control unit 340, the maximum power followed by the MPPT control will be delivered to the load 10c. I can.
여기서, MPPT 제어는 MPPT 알고리즘에 의해 정해지는 듀티비에 따라 제어부(340)가 컨버터 스위치(331)의 온오프를 제어하여 이루어진다.Here, the MPPT control is performed by the control unit 340 controlling the on/off of the converter switch 331 according to the duty ratio determined by the MPPT algorithm.
보다 구체적으로는, 제어부(340)가 컨버터 스위치(331)를 온시키는 동안 도 10a의 점선 방향으로 입력 전류가 흐르면서 인덕터(333)에 에너지가 충전되는 동시에 부하(10c)에 전력이 전달된다. 여기서, 상기 입력 전류는 전원부(310)로부터 생성되는 전력을 구성하는 전류이자, 전원부(310)에서 벅 컨버터부(330)로 흐르는 전류를 의미한다. 이후 제어부(340)가 컨버터 스위치(331)를 오프시키면 도 10b의 실선 방향으로 전류가 흘러 인덕터(333)에 저장된 에너지가 방출된다. 이와 같이 컨버터 스위치(331)의 온오프 동작이 교번으로 반복될 경우, 전원부(310)에서 출력되는 입력 전압은 강압되어 부하(10c)로 전달된다.More specifically, while the control unit 340 turns on the converter switch 331, an input current flows in the dotted line direction of FIG. 10A, energy is charged to the inductor 333, and power is transferred to the load 10c. Here, the input current is a current constituting power generated from the power supply unit 310 and refers to a current flowing from the power supply unit 310 to the buck converter unit 330. Thereafter, when the controller 340 turns off the converter switch 331, current flows in the solid line direction of FIG. 10B, and energy stored in the inductor 333 is released. In this way, when the on-off operation of the converter switch 331 is alternately repeated, the input voltage output from the power supply unit 310 is stepped down and transmitted to the load 10c.
다음으로, 도 10b를 참조하면, 전원부(310)에서 생성되는 전력은 역전류 방지 소자(332)만을 거쳐 부하(10c)에 전달된다. 제어부(340)는 벅 컨버터부(330)를 MPPT 제어하지 않으며, 전원부(310)에서 생성되는 전압이 강압되지 않고 부하(10c)에 전달되도록 제어한다. 이때 전원부(310)로부터 부하(10c)로 전달되는 전력은 벅 컨버터부(330)를 통하지 않고 제2 전력 전달 경로로 전달된다.Next, referring to FIG. 10B, power generated by the power supply unit 310 is transmitted to the load 10c through only the reverse current prevention element 332. The control unit 340 does not MPPT control the buck converter unit 330, and controls the voltage generated by the power supply unit 310 to be transmitted to the load 10c without being stepped down. In this case, the power transmitted from the power supply unit 310 to the load 10c is transmitted through the second power transmission path without passing through the buck converter unit 330.
구체적으로, 상기 제2 전력 전달 경로를 형성하는 제2 스위칭 모드는, 제1 전력의 크기가 제2 전력의 크기보다 작은 경우에, 제1 스위치(321)의 타단이 오프되고, 제2 스위치(322)의 타단이 역전류 방지 소자(332)의 일단에 연결되며, 제3 스위치(323)의 타단이 컨버터 스위치(331)의 타단에 연결된 모드이다.Specifically, in the second switching mode forming the second power transmission path, when the magnitude of the first power is smaller than the magnitude of the second power, the other end of the first switch 321 is turned off, and the second switch ( In this mode, the other end of 322 is connected to one end of the reverse current prevention element 332 and the other end of the third switch 323 is connected to the other end of the converter switch 331.
제1 전력의 크기(P1)가 제2 전력의 크기(P2)보다 작다는 것은, 벅 컨버터부(330)가 MPPT 제어되지 않을 때 부하(10c)에 더 많은 전력이 전달된다는 의미이므로, 제어부(340)는 벅 컨버터부(330)를 MPPT 제어하지 않는다. 이때 제어부(340)는 제1 스위치(321)의 타단을 오프시키는 동시에, 제2 스위치(322)의 타단은 역전류 방지 소자(332)의 일단에 연결하여 전원부(310)로부터 역전류 방지 소자(332)로 곧바로 전류가 흐르도록 한다. 또한, 제어부(340)는 제3 스위치(323)의 타단을 컨버터 스위치(331)의 타단에 연결함으로써, 컨버터 스위치(331)로부터 인덕터(333)를 우회하여 부하(10c)로 직접 연결되는 바이패스 경로를 형성한다.When the magnitude of the first power (P1) is smaller than the magnitude of the second power (P2), it means that more power is transmitted to the load 10c when the buck converter unit 330 is not MPPT controlled. The 340 does not MPPT control the buck converter unit 330. At this time, the control unit 340 turns off the other end of the first switch 321 and at the same time, the other end of the second switch 322 is connected to one end of the reverse current prevention element 332 to prevent a reverse current from the power supply unit 310 ( 332), let the current flow directly. In addition, the control unit 340 connects the other end of the third switch 323 to the other end of the converter switch 331, thereby bypassing the inductor 333 from the converter switch 331 and directly connected to the load 10c. Form a path
상기 제2 전력 전달 경로가 형성되면 현재의 부하(10c) 전압이 전원부(310)에 적용된다. 여기서, 부하(10c) 전압이 전원부(310)에 적용된다는 것은, 부하(10c) 전압과 역전류 방지 소자(332) 양단의 전압 차이만큼의 전압이 전원부(310)에 걸린다는 것을 의미하며, 이때 전원부(310)에서 출력되는 전류는 도 10b의 화살표 방향으로 흘러 역전류 방지 소자(332)만을 거쳐 그대로 부하(10c)에 전달된다.When the second power transmission path is formed, the current voltage of the load 10c is applied to the power supply unit 310. Here, that the voltage of the load 10c is applied to the power supply 310 means that a voltage equal to the voltage difference between the voltage of the load 10c and the voltage across the reverse current prevention element 332 is applied to the power supply 310, at this time The current output from the power supply 310 flows in the direction of an arrow in FIG. 10B and is transferred to the load 10c as it is only through the reverse current prevention element 332.
역전류 방지 소자(332)로서 다이오드가 사용되는 경우, 다이오드의 전압 강하는 약 0.7V로서 매우 작은 값이므로, 전원부(310)에 의해 생성되는 전력의 대부분(99% 이상)이 부하(10c)에 전달될 수 있다.When a diode is used as the reverse current prevention element 332, the voltage drop of the diode is about 0.7V, which is a very small value, so most (99% or more) of the power generated by the power supply 310 is applied to the load 10c. Can be delivered.
또는, 역전류 방지 소자(332)로서 FET(Field effect transistor)가 사용될 수도 있는데, FET가 사용되는 경우 제어부(340)가 FET를 온오프 제어할 수 있고, FET의 온오프 제어에 의해 역전류가 흐르는 것을 방지할 수 있다. 그뿐 아니라, 다이오드는 적은 양이라도 전압 강하가 존재하는 것에 비해 FET의 온 상태에서는 이론적으로 전압 강하가 존재하지 않으므로 다이오드를 사용할 때보다 부하(10c)로의 전력 전달 효율이 더 높아질 수 있다.Alternatively, a field effect transistor (FET) may be used as the reverse current prevention element 332. When the FET is used, the control unit 340 can control the FET on and off, and the reverse current is reduced by the on/off control of the FET. You can prevent it from flowing. In addition, the diode does not theoretically have a voltage drop when the FET is turned on, whereas the diode has a voltage drop even if it is a small amount, so power transfer efficiency to the load 10c may be higher than when a diode is used.
한편, 도 10a를 참조하면, 본 발명과 같이 스위칭부(320)를 제어하지 않고, 단순히 컨버터 스위치(331)를 온 상태로 유지하는 것만으로도 MPPT 제어를 하지 않고 부하(10c)로 전력을 전달할 수 있다는 것을 알 수 있다.On the other hand, referring to Figure 10a, without controlling the switching unit 320 as in the present invention, simply by keeping the converter switch 331 in the on state, without MPPT control, power is delivered to the load (10c). You can see that you can.
다만, 본 발명의 제3 실시예와 같이 스위칭부(320)를 구비하면, 제2 스위칭 모드로 동작 시 전원부(310)에서 출력되는 전류가 인덕터(333)를 거치지 않도록 바이패스 경로를 형성할 수 있으므로, 인덕터(333)에 의해 발생할 수도 있는 리플 현상을 미연에 방지할 수 있다.However, if the switching unit 320 is provided as in the third embodiment of the present invention, a bypass path can be formed so that the current output from the power supply unit 310 does not pass through the inductor 333 when operating in the second switching mode. Therefore, a ripple phenomenon that may be caused by the inductor 333 can be prevented in advance.
한편, 제1 전력 전달 경로는 전원부(310)에서 출력되는 전력이 부하(10c)로 전달됨에 있어서 MPPT 제어되면서 전달될 수 있는 모든 경로를 의미하는 것이고, 제2 전력 전달 경로는 전원부(310)에서 출력되는 전력이 부하(10c)로 전달됨에 있어서 MPPT 제어되지 않고 전달되는 모든 경로를 의미하는 것이다. 그리고 스위칭부(320)는 상기 제1 전력 전달 경로 및 제2 전력 전달 경로를 형성하기 위해 다양한 회로구조를 가질 수 있다.Meanwhile, the first power transmission path refers to all paths that can be transmitted while being MPPT controlled because power output from the power supply unit 310 is transmitted to the load 10c, and the second power transmission path is performed by the power supply unit 310. Since the output power is transmitted to the load 10c, it means all paths that are transmitted without MPPT control. In addition, the switching unit 320 may have various circuit structures to form the first power transmission path and the second power transmission path.
본 발명의 제3 실시예에 의하면, 저항, 인덕터 또는 커패시터의 추가 없이 스위치 소자만을 추가하는 구조 변경에 의해, MPPT 제어가 이루어지는 경로와 MPPT 제어가 이루어지지 않는 경로 중 전력 전달 효율이 더 높은 경로를 선택하여 부하에 전력을 전달할 수 있다. 따라서, MPPT 제어만을 할 때보다 더 높은 효율로 부하에 전력이 전달될 수 있는 효과가 있다.According to the third embodiment of the present invention, by changing the structure of adding only the switch element without adding a resistor, an inductor, or a capacitor, a path having higher power transfer efficiency among the paths in which MPPT control is performed and the paths in which MPPT control is not performed is provided You can choose to deliver power to the load. Therefore, there is an effect that power can be delivered to the load with higher efficiency than when performing only MPPT control.
도 11은 본 발명의 제4 실시예에 따른 전력 시스템을 나타낸 도면이다.11 is a diagram showing a power system according to a fourth embodiment of the present invention.
도 11을 참조하면, 본 발명의 제4 실시예에 따른 전력 시스템(1000d)은 전원부(410), 벅-부스트 컨버터부(420) 및 제어부(430)를 포함한다.Referring to FIG. 11, a power system 1000d according to a fourth embodiment of the present invention includes a power supply unit 410, a buck-boost converter unit 420, and a control unit 430.
전원부(410)는 전력을 생성하는 구성으로서, 빛 에너지를 전기 에너지로 변환하는 태양광 패널일 수 있고, 이때 태양광 패널은 태양광을 직류 전원으로 변환하여 출력할 수 있는 태양전지 모듈의 조합으로 구성될 수 있다. 상기 태양전지 모듈은 태양전지의 직렬 연결 또는 병렬 연결로 이루어지거나, 직병렬 연결의 조합으로 이루어질 수 있다.The power supply unit 410 is a component that generates power, and may be a solar panel that converts light energy into electrical energy. In this case, the solar panel is a combination of solar cell modules that can convert sunlight into DC power and output it. Can be configured. The solar cell module may be made of a series connection or parallel connection of solar cells, or a combination of series-parallel connection.
도 11에는 부하(10d)의 예시로서 직류 전력을 저장하기 위한 배터리가 도시되어 있으나, 이외에도 상기 직류 전력을 공급받는 소자이기만 하면 부하(10d)에 해당될 수 있다.11 illustrates a battery for storing DC power as an example of the load 10d, but it may correspond to the load 10d as long as it is a device receiving the DC power.
벅-부스트 컨버터부(420)는 전원부(410)로부터 생성되는 전력에 의한 입력 전압을 전달받고, 상기 입력 전압을 승압 또는 강압하여 부하(10d)에 전달할 수 있다. 여기서, 상기 입력 전압은 전원부(410)로부터 생성되는 전력을 구성하는 전압이자, 벅-부스트 컨버터부(420)의 입력단에 인가되는 전압을 의미한다. 벅-부스트 컨버터부(420)는 인덕터(421)와 복수의 컨버터 스위치들(S1~S4)을 포함할 수 있다.The buck-boost converter unit 420 may receive an input voltage by power generated from the power supply unit 410, and may boost or decrease the input voltage to transfer the voltage to the load 10d. Here, the input voltage refers to a voltage constituting power generated from the power supply unit 410 and a voltage applied to the input terminal of the buck-boost converter unit 420. The buck-boost converter unit 420 may include an inductor 421 and a plurality of converter switches S1 to S4.
벅-부스트 컨버터부(420)는 인덕터(421)와 복수의 컨버터 스위치들(S1~S4)이 H-브리지를 형성할 수 있다.In the buck-boost converter unit 420, an inductor 421 and a plurality of converter switches S1 to S4 may form an H-bridge.
인덕터(421)에는 전원부(410)로부터 출력되는 입력 전류에 의해 전기 에너지가 충전될 수 있다. 여기서, 상기 입력 전류는 전원부(410)로부터 생성되는 전력을 구성하는 전류이자, 전원부(410)에서 벅-부스트 컨버터부(420)로 흐르는 전류를 의미한다.Electrical energy may be charged in the inductor 421 by an input current output from the power supply unit 410. Here, the input current refers to a current constituting power generated from the power supply unit 410 and a current flowing from the power supply unit 410 to the buck-boost converter unit 420.
복수의 컨버터 스위치들(S1~S4) 중 제1 컨버터 스위치(S1)는 인덕터(421)의 일단과 전원부(410) 사이에 마련되고, 제2 컨버터 스위치(S2)는 인덕터(421)의 타단과 부하(10d) 사이에 마련된다. 또한, 제3 컨버터 스위치(S3)는 인덕터(421)의 일단과 접지 사이에 마련되며, 제4 컨버터 스위치(S4)는 인덕터(421)의 타단과 접지 사이에 마련된다.Among the plurality of converter switches S1 to S4, the first converter switch S1 is provided between one end of the inductor 421 and the power supply unit 410, and the second converter switch S2 is connected to the other end of the inductor 421. It is provided between the loads 10d. In addition, the third converter switch S3 is provided between one end of the inductor 421 and the ground, and the fourth converter switch S4 is provided between the other end of the inductor 421 and the ground.
각각의 컨버터 스위치(S1~S4)는 도통(온 상태) 또는 비도통(오프 상태)이 되어 전류를 흐르게 할 것인지 여부를 결정하는 소자로서, 예를 들어 반도체 스위치인 MOSFET이 사용될 수 있으나 이에 한정되지는 않는다.Each of the converter switches S1 to S4 is a device that determines whether to conduct current through conduction (on state) or non-conduction (off state), and, for example, a semiconductor switch MOSFET may be used, but is not limited thereto. Does not.
한편, 벅-부스트 컨버터부(420)는, 상기 복수의 컨버터 스위치들(S1~S4)을 어떻게 제어하느냐에 따라, 입력 전압을 승압시키는 부스트 컨버터로서 동작할 수도 있고, 입력 전압을 강압시키는 벅 컨버터로서 동작할 수도 있다.Meanwhile, the buck-boost converter unit 420 may operate as a boost converter that boosts the input voltage depending on how the plurality of converter switches S1 to S4 are controlled, or as a buck converter that steps down the input voltage. It can also work.
예를 들어, 벅-부스트 컨버터부(420)는 제1 컨버터 스위치(S1)가 항상 온으로 동작하고 제3 컨버터 스위치(S3)가 항상 오프로 동작하는 상태에서, 제2 컨버터 스위치(S2)와 제4 컨버터 스위치(S4)의 온오프 교번동작에 의해 입력 전압이 승압되는 부스트 컨버터로서 동작할 수 있다.For example, in a state in which the first converter switch S1 is always on and the third converter switch S3 is always off, the buck-boost converter unit 420 is connected to the second converter switch S2. The fourth converter switch S4 may operate as a boost converter in which an input voltage is boosted by an on/off alternating operation.
또는, 벅-부스트 컨버터부(420)는 제2 컨버터 스위치(S2)가 항상 온으로 동작하고 제4 컨버터 스위치(S4)가 항상 오프로 동작하는 상태에서, 제1 컨버터 스위치(S1)와 제3 컨버터 스위치(S3)의 온오프 교번동작에 의해 입력 전압이 강압되는 벅 컨버터로서 동작할 수도 있다.Alternatively, the buck-boost converter unit 420 operates in a state in which the second converter switch S2 is always on and the fourth converter switch S4 is always off, the first converter switch S1 and the third It can also operate as a buck converter in which the input voltage is stepped down by an on/off alternating operation of the converter switch S3.
제어부(430)는 벅-부스트 컨버터부(420)를 제어하는 구성으로서, 구체적으로 벅-부스트 컨버터부(420)를 MPPT 제어하여 전원부(410)로부터 출력되는 입력 전압이 벅-부스트 컨버터부(420)에 의해 승압되는 과정을 거쳐 부하(10d)로 전달되는 제1 전력 전달 경로를 형성할 수 있다.The control unit 430 is a component that controls the buck-boost converter unit 420, and specifically controls the buck-boost converter unit 420 by MPPT control so that the input voltage output from the power supply unit 410 is the buck-boost converter unit 420 ) To form a first power transfer path that is transferred to the load 10d through a process of boosting.
또는, 제어부(430)는 벅-부스트 컨버터부(420)를 MPPT 제어하여 전원부(410)로부터 출력되는 입력 전압이 벅-부스트 컨버터부(420)에 의해 강압되는 과정을 거쳐 부하(10d)로 전달되는 제2 전력 전달 경로를 형성할 수 있다.Alternatively, the control unit 430 MPPT controls the buck-boost converter unit 420 to transfer the input voltage output from the power supply unit 410 to the load 10d through a step-down process by the buck-boost converter unit 420 It is possible to form a second power transmission path.
또는, 제어부(430)는 벅-부스트 컨버터부(420)를 MPPT 제어하지 않고, 전원부(410)로부터 출력되는 입력 전압이 벅-부스트 컨버터부(420)에 의해 승압 및 강압되는 과정을 거치지 않고 부하(10d)로 전달되는 제3 전력 전달 경로를 형성할 수 있다.Alternatively, the control unit 430 does not MPPT control the buck-boost converter unit 420, and the input voltage output from the power supply unit 410 is boosted and stepped down by the buck-boost converter unit 420 without going through the load. It is possible to form a third power transmission path delivered to (10d).
보다 구체적으로, 제어부(430)는 상기 제1 전력 전달 경로로 부하(10d)에 전력을 전달하는 경우의 제1 전력의 크기(P1)를 연산하고, 상기 제3 전력 전달 경로로 부하(10d)에 전력을 전달하는 경우의 제3 전력의 크기(P3)를 연산할 수 있다. 이후, 제어부(430)는 연산된 제1 전력의 크기(P1) 및 제3 전력의 크기(P3)를 비교하고, 상기 비교 결과에 따라 벅-부스트 컨버터부(420)의 복수의 컨버터 스위치들(S1~S4)의 온오프를 제어할 수 있다.More specifically, the control unit 430 calculates the magnitude P1 of the first power in the case of transmitting power to the load 10d through the first power transfer path, and the load 10d through the third power transfer path. In the case of transferring power to, the magnitude of the third power (P3) may be calculated. Thereafter, the controller 430 compares the calculated magnitude P1 of the first power and the magnitude P3 of the third power, and according to the comparison result, a plurality of converter switches of the buck-boost converter unit 420 ( On/off of S1~S4) can be controlled.
여기서, 제1 전력은 제어부(430)가 벅-부스트 컨버터부(420)를 부스트 컨버터로 동작시키면서 MPPT 제어하는 경우 전원부(410)로부터 부하(10d)로 전달되는 전력이고, 제3 전력은 제어부(430)가 벅-부스트 컨버터부(420)를 MPPT 제어하지 않는 경우 전원부(410)로부터 부하(10d)로 전달되는 전력이다.Here, the first power is power transferred from the power supply unit 410 to the load 10d when the control unit 430 controls the MPPT while operating the buck-boost converter unit 420 as a boost converter, and the third power is the control unit ( When 430 does not MPPT control the buck-boost converter unit 420, this is the power transferred from the power supply unit 410 to the load 10d.
제1 전력의 크기(P1)는 제어부(430)가 전원부(410) 출력단의 개방 전압(V1) 및 단락 전류(I1)의 값을 전달받아 MPPT 알고리즘을 이용하여 연산할 수 있다.The first power level P1 may be calculated by the control unit 430 using the MPPT algorithm by receiving values of the open-circuit voltage V1 and the short-circuit current I1 of the output terminal of the power supply unit 410.
제3 전력의 크기(P3)는 제어부(430)가 부하(10d)의 현재 전압(V2) 및 부하(10d)에 현재 흐르는 전류(I2)를 전달받아 연산할 수 있다.The third power level P3 may be calculated by receiving the current voltage V2 of the load 10d and the current I2 flowing through the load 10d by the control unit 430.
본 발명의 제4 실시예에 따르면, 제어부(430)가 제1 전력의 크기(P1) 및 제3 전력의 크기(P3)를 비교하고, 상기 비교 결과에 따라 제1 전력 전달 경로와 제3 전력 전달 경로 중 부하(10d)로의 전력 전달 효율이 더 높은 경로를 실시간으로 선택하도록 구성되어 있기 때문에, 부하(10d)로의 전력 전달 효율이 극대화될 수 있다.According to the fourth embodiment of the present invention, the controller 430 compares the magnitude of the first power (P1) and the magnitude of the third power (P3), and according to the comparison result, the first power transfer path and the third power Since it is configured to select a path having a higher power transfer efficiency to the load 10d among the transfer paths in real time, the power transfer efficiency to the load 10d can be maximized.
한편, 제어부(430)는 상기 제2 전력 전달 경로로 부하(10d)에 전력을 전달하는 경우의 제2 전력의 크기(P2)를 연산하고, 상기 제3 전력 전달 경로로 부하(10d)에 전력을 전달하는 경우의 제3 전력의 크기(P3)를 연산할 수 있다. 이후, 제어부(430)는 연산된 제2 전력의 크기(P2) 및 제3 전력의 크기(P3)를 비교하고, 상기 비교 결과에 따라 벅-부스트 컨버터부(420)의 복수의 컨버터 스위치들(S1~S4)을 제어할 수 있다.On the other hand, the control unit 430 calculates the magnitude of the second power (P2) in the case of transmitting power to the load 10d through the second power transfer path, and transmits power to the load 10d through the third power transfer path. It is possible to calculate the magnitude P3 of the third power in the case of delivering. Thereafter, the control unit 430 compares the calculated magnitude P2 of the second power and the magnitude P3 of the third power, and according to the comparison result, a plurality of converter switches of the buck-boost converter unit 420 ( S1~S4) can be controlled.
여기서, 제2 전력은 제어부(430)가 벅-부스트 컨버터부(420)를 벅 컨버터로 동작시키면서 MPPT 제어하는 경우 전원부(410)로부터 부하(10d)로 전달되는 전력이고, 제3 전력은 제어부(430)가 벅-부스트 컨버터부(420)를 MPPT 제어하지 않는 경우 전원부(410)로부터 부하(10d)로 전달되는 전력이다.Here, the second power is power transferred from the power supply unit 410 to the load 10d when the control unit 430 controls the MPPT while operating the buck-boost converter unit 420 as a buck converter, and the third power is the control unit ( When 430 does not MPPT control the buck-boost converter unit 420, this is the power transferred from the power supply unit 410 to the load 10d.
제2 전력의 크기(P2)는 제어부(430)가 전원부(410) 출력단의 개방 전압(V1) 및 단락 전류(I1)의 값을 전달받아 MPPT 알고리즘을 이용하여 연산할 수 있다.The second power level P2 may be calculated by the control unit 430 using the MPPT algorithm by receiving values of the open-circuit voltage V1 and the short-circuit current I1 of the output terminal of the power supply unit 410.
제3 전력의 크기(P3)는 제어부(430)가 부하(10d)의 현재 전압(V2) 및 부하(10d)에 현재 흐르는 전류(I2)를 전달받아 연산할 수 있다.The third power level P3 may be calculated by receiving the current voltage V2 of the load 10d and the current I2 flowing through the load 10d by the control unit 430.
이와 같이 본 발명의 제4 실시예에 따르면, 제어부(430)가 제2 전력의 크기(P2) 및 제3 전력의 크기(P3)를 비교하고, 상기 비교 결과에 따라 제2 전력 전달 경로와 제3 전력 전달 경로 중 부하(10d)로의 전력 전달 효율이 더 높은 경로를 실시간으로 선택하도록 구성되어 있기 때문에, 부하(10d)로의 전력 전달 효율이 극대화될 수 있다.As described above, according to the fourth embodiment of the present invention, the controller 430 compares the magnitude of the second power (P2) and the magnitude of the third power (P3), and Since it is configured to select a path having a higher power transfer efficiency to the load 10d among the 3 power transfer paths in real time, the power transfer efficiency to the load 10d can be maximized.
본 발명의 제4 실시예에 따른 전력 시스템(1000d)은 전원부(410)로부터 생성되는 전력에 의한 입력 전압을 저장하는 입력측 저장부(440)를 더 포함할 수 있다. 이때 입력측 저장부(440)는 전원부(410)와 벅-부스트 컨버터부(420) 사이에 연결 될 수 있다. 입력측 저장부(440)는 전원부(410)로부터 출력되는 입력측 전압에 노이즈가 끼거나 전압이 흔들릴 때, 벅-부스트 컨버터부(420)에 안정된 직류 전압이 공급되도록 하는 역할을 하며, 입력측 저장부(440)로는 커패시터가 사용될 수 있다.The power system 1000d according to the fourth embodiment of the present invention may further include an input side storage unit 440 for storing an input voltage by power generated from the power supply unit 410. In this case, the input-side storage unit 440 may be connected between the power supply unit 410 and the buck-boost converter unit 420. The input-side storage unit 440 serves to supply a stable DC voltage to the buck-boost converter unit 420 when noise or voltage fluctuates in the input-side voltage output from the power supply unit 410, and the input-side storage unit ( As 440), a capacitor may be used.
또한, 본 발명의 제4 실시예에 따른 전력 시스템(1000d)은 벅-부스트 컨버터부(420)에 의해 승압 또는 강압된 전압을 저장하는 출력측 저장부(450)를 더 포함할 수 있다. 이때 출력측 저장부(450)는 벅-부스트 컨버터부(420)와 부하(10d) 사이에 연결될 수 있다. 출력측 저장부(450)는 부하(10d)에 직류 전압을 공급하도록 전압을 정류시켜주는 역할을 하며, 출력측 저장부(450)로는 커패시터가 사용될 수 있다.In addition, the power system 1000d according to the fourth embodiment of the present invention may further include an output side storage unit 450 that stores a voltage boosted or stepped down by the buck-boost converter unit 420. In this case, the output-side storage unit 450 may be connected between the buck-boost converter unit 420 and the load 10d. The output-side storage unit 450 serves to rectify a voltage to supply a DC voltage to the load 10d, and a capacitor may be used as the output-side storage unit 450.
도 12a는 도 11의 전력 시스템에서 제1 전력 전달 경로가 형성되는 경우를 나타낸 도면이고, 도 12b는 도 11의 전력 시스템에서 제2 전력 전달 경로가 형성되는 경우를 나타낸 도면이며, 도 12c는 도 11의 전력 시스템에서 제3 전력 전달 경로가 형성되는 경우를 나타낸 도면이다. 이하에서는 도 12a, 도 12b 및 도 12c를 더 참조하여, 본 발명의 제4 실시예에 따른 전력 시스템(1000d)의 동작 과정에 대해 보다 구체적으로 설명한다.FIG. 12A is a diagram illustrating a case in which a first power transmission path is formed in the power system of FIG. 11, FIG. 12B is a diagram illustrating a case in which a second power transmission path is formed in the power system of FIG. 11, and FIG. 12C is A diagram showing a case in which a third power transmission path is formed in the power system of 11. Hereinafter, an operation process of the power system 1000d according to the fourth embodiment of the present invention will be described in more detail with reference to FIGS. 12A, 12B, and 12C.
먼저, 도 12a를 참조하면, 제1 전력 전달 경로는 전원부(410)로부터 출력되는 입력 전압이 벅-부스트 컨버터부(420)에 의해 승압되는 과정을 거쳐 부하(10d)로 전달될 때 형성되는 전력 전달 경로이다. 즉, 이때 벅-부스트 컨버터부(420)는 부스트 컨버터로서 동작한다.First, referring to FIG. 12A, the first power transmission path is the power formed when the input voltage output from the power supply unit 410 is boosted by the buck-boost converter unit 420 and is transferred to the load 10d. It is a delivery path. That is, at this time, the buck-boost converter unit 420 operates as a boost converter.
제어부(430)는 제1 전력의 크기(P1)가 제3 전력의 크기(P3)보다 크거나 같은 경우에 제1 전력 전달 경로를 형성한다. 여기서, 제1 전력의 크기(P1)가 제3 전력의 크기(P3)보다 크거나 같다는 것은, 벅-부스트 컨버터부(420)가 MPPT 제어될 때 부하(10d)에 더 많은 전력이 전달된다는 의미이므로, 제어부(430)는 벅-부스트 컨버터부(420)를 MPPT 제어하면서 전원부(410)에서 출력되는 전압을 승압하여 부하(10d)에 전달한다.The controller 430 forms a first power transmission path when the first power level P1 is greater than or equal to the third power level P3. Here, that the magnitude of the first power (P1) is greater than or equal to the magnitude of the third power (P3) means that more power is delivered to the load (10d) when the buck-boost converter unit 420 is MPPT controlled. Therefore, the control unit 430 boosts the voltage output from the power supply unit 410 while MPPT control of the buck-boost converter unit 420 and transfers it to the load 10d.
이때 제어부(430)는 제1 컨버터 스위치(S1)를 온시키고 제3 컨버터 스위치(S3)를 오프시킨 상태에서, 제2 컨버터 스위치(S2)와 제4 컨버터 스위치(S4)를 MPPT 알고리즘에 의한 듀티비에 따라 교번으로 온오프 제어한다.At this time, the control unit 430 sets the second converter switch S2 and the fourth converter switch S4 to the duty according to the MPPT algorithm in a state in which the first converter switch S1 is turned on and the third converter switch S3 is turned off. On/off control is performed alternately according to the ratio.
보다 구체적으로는, 제2 컨버터 스위치(S2)가 오프로 동작하고 제4 컨버터 스위치(S4)가 온으로 동작하는 동안 도 5a의 점선 방향으로 입력 전류가 흘러 인덕터(421)에 에너지가 충전되고, 제2 컨버터 스위치(S2)가 온으로 동작하고 제4 컨버터 스위치(S4)가 오프로 동작하는 동안 도 5a의 실선 방향으로 입력 전류가 흘러 인덕터(421)에 충전된 에너지와 전원부(410)로부터 출력되는 입력 전류가 동시에 부하(10d)로 전달되면서 입력 전압이 승압된다.More specifically, while the second converter switch S2 is operated in OFF and the fourth converter switch S4 is operated in ON, an input current flows in the dotted line direction of FIG. 5A to charge energy in the inductor 421, While the second converter switch (S2) is operating in ON and the fourth converter switch (S4) is operating in off state, the input current flows in the direction of the solid line in FIG. As the input current is simultaneously transferred to the load 10d, the input voltage is boosted.
전원부(410)에서 출력되는 입력 전압은, 제어부(430)의 MPPT 제어에 의해 부하(10d)에 최대 전력을 전달할 수 있도록 승압되므로, 부하(10d)에는 MPPT 제어에 의해 추종된 최대 전력이 전달될 수 있다.Since the input voltage output from the power supply unit 410 is boosted to deliver the maximum power to the load 10d by the MPPT control of the control unit 430, the maximum power followed by the MPPT control will be delivered to the load 10d. I can.
다음으로, 도 12b를 참조하면, 제2 전력 전달 경로는 전원부(410)로부터 출력되는 입력 전압이 벅-부스트 컨버터부(420)에 의해 강압되는 과정을 거쳐 부하(10d)로 전달될 때 형성되는 전력 전달 경로이다. 즉, 이때 벅-부스트 컨버터부(420)는 벅 컨버터로서 동작한다.Next, referring to FIG. 12B, the second power transmission path is formed when the input voltage output from the power supply unit 410 is stepped down by the buck-boost converter unit 420 and is transferred to the load 10d. It is a power transmission path. That is, at this time, the buck-boost converter unit 420 operates as a buck converter.
제어부(430)는 제2 전력의 크기(P2)가 제3 전력의 크기(P3)보다 크거나 같은 경우에 제2 전력 전달 경로를 형성한다. 여기서, 제2 전력의 크기(P2)가 제3 전력의 크기(P3)보다 크거나 같다는 것은, 벅-부스트 컨버터부(420)가 MPPT 제어될 때 부하(10d)에 더 많은 전력이 전달된다는 의미이므로, 제어부(430)는 벅-부스트 컨버터부(420)를 MPPT 제어하면서 전원부(410)에서 출력되는 전압을 강압하여 부하(10d)에 전달한다.The controller 430 forms a second power transmission path when the magnitude of the second power P2 is greater than or equal to the magnitude of the third power P3. Here, that the magnitude of the second power (P2) is greater than or equal to the magnitude of the third power (P3) means that more power is delivered to the load (10d) when the buck-boost converter unit 420 is MPPT controlled. Therefore, while controlling the buck-boost converter unit 420 to MPPT, the control unit 430 steps down the voltage output from the power supply unit 410 and transfers it to the load 10d.
이때 제어부(430)는 제2 컨버터 스위치(S2)를 온시키고 제4 컨버터 스위치(S4)를 오프시킨 상태에서, 제1 컨버터 스위치(S1)와 제3 컨버터 스위치(S3)를 MPPT 알고리즘에 의한 듀티비에 따라 교번으로 온오프 제어한다.At this time, in a state in which the second converter switch S2 is turned on and the fourth converter switch S4 is turned off, the control unit 430 sets the duty of the first converter switch S1 and the third converter switch S3 according to the MPPT algorithm. On/off control is performed alternately according to the ratio.
보다 구체적으로는, 제1 컨버터 스위치(S1)가 온으로 동작하고 제3 컨버터 스위치(S3)가 오프로 동작하는 동안에는 도 12b의 점선 방향으로 입력 전류가 흐르면서 인덕터(421)에 에너지가 충전되는 동시에 부하(10d)에 전력이 전달된다. 이후 제1 컨버터 스위치(S1)가 오프로 동작하고 제3 컨버터 스위치(S3)가 온으로 동작하는 동안에는 도 12b의 실선 방향으로 전류가 흘러 인덕터(421)에 저장된 에너지가 방출된다. 상기 제1 컨버터 스위치(S1)와 제3 컨버터 스위치(S3)의 온오프 동작이 교번으로 반복되면서 전원부(410)에서 출력되는 입력 전압은 강압되어 부하(10d)로 전달된다.More specifically, while the first converter switch S1 is on and the third converter switch S3 is off, the inductor 421 is charged with energy while the input current flows in the dotted line direction of FIG. 12B. Electric power is delivered to the load 10d. Thereafter, while the first converter switch S1 is turned off and the third converter switch S3 is turned on, a current flows in the solid line direction of FIG. 12B to discharge energy stored in the inductor 421. As the on-off operation of the first converter switch S1 and the third converter switch S3 is alternately repeated, the input voltage output from the power supply unit 410 is stepped down and transmitted to the load 10d.
전원부(410)에서 출력되는 입력 전압은, 제어부(430)의 MPPT 제어에 의해 부하(10d)에 최대 전력을 전달할 수 있도록 강압되므로, 부하(10d)에는 MPPT 제어에 의해 추종된 최대 전력이 전달될 수 있다.The input voltage output from the power supply unit 410 is stepped down so that the maximum power can be delivered to the load 10d by the MPPT control of the control unit 430, so that the maximum power followed by the MPPT control will be delivered to the load 10d. I can.
다음으로, 도 12c를 참조하면, 제3 전력 전달 경로는 전원부(410)로부터 출력되는 입력 전압이 벅-부스트 컨버터부(420)에 의해 승압 및 강압되는 과정을 거치지 않고 부하(10d)로 전달될 때 형성되는 전력 전달 경로이다. 즉, 이때 벅-부스트 컨버터부(420)는 컨버터로서 동작하지 않는다.Next, referring to FIG. 12C, the third power transfer path is to be transferred to the load 10d without going through the process of boosting and stepping down the input voltage output from the power supply unit 410 by the buck-boost converter unit 420. It is the power transmission path that is formed when. That is, at this time, the buck-boost converter unit 420 does not operate as a converter.
제어부(430)는 제1 전력의 크기(P1)가 제3 전력의 크기(P3)보다 작은 경우 또는 제2 전력의 크기(P2)가 제3 전력의 크기(P3)보다 작은 경우에 제3 전력 전달 경로를 형성한다. 여기서, 제1 전력의 크기(P1) 또는 제2 전력의 크기(P2)가 제3 전력의 크기(P3)보다 작다는 것은, 벅-부스트 컨버터부(420)가 MPPT 제어되지 않을 때 부하(10d)에 더 많은 전력이 전달된다는 것을 의미한다. 따라서, 제어부(430)는 벅-부스트 컨버터부(420)를 MPPT 제어하지 않고, 전원부(410)에서 출력되는 전압이 그대로 부하(10d)에 전달되도록 벅-부스트 컨버터부(420)를 제어한다.The control unit 430 provides the third power when the first power P1 is smaller than the third power P3 or the second power P2 is smaller than the third power P3. It forms a delivery path. Here, when the magnitude of the first power (P1) or the magnitude of the second power (P2) is smaller than the magnitude of the third power (P3), the load 10d when the buck-boost converter unit 420 is not MPPT controlled. ) Means more power is delivered. Accordingly, the control unit 430 does not MPPT the buck-boost converter unit 420 but controls the buck-boost converter unit 420 so that the voltage output from the power supply unit 410 is transmitted to the load 10d as it is.
이때 제어부(430)는 제1 컨버터 스위치(S1)와 제2 컨버터 스위치(S2)는 온시키고, 제3 컨버터 스위치(S3)와 제4 컨버터 스위치(S4)는 오프시킨다.At this time, the control unit 430 turns on the first converter switch S1 and the second converter switch S2, and turns off the third converter switch S3 and the fourth converter switch S4.
제3 전력 전달 경로를 형성하는 경우, 현재의 부하(10d) 전압이 전원부(410)에 적용되면서 벅-부스트 컨버터부(420)에 의한 스위칭 손실, 코어 손실 및/또는 도통 손실 없이 직접적으로 전력이 부하(10d)에 공급된다. 참고로, 제3 전력 전달 경로가 형성될 경우, 인덕터(421)에는 직류 전압이 걸리기 때문에 인덕터(421)는 단락회로처럼 동작하게 되며, 이에 따라 인덕터(421)에 의한 코어 손실은 발생하지 않는다. 여기서, 부하(10d) 전압이 전원부(410)에 적용된다는 것은, 부하(10d) 전압의 값이 그대로 전원부(410)에 걸린다는 것을 의미한다. 즉, 전원부(410)에서 출력되는 전류는 도 12c의 실선 방향으로 흐르면서 인덕터(421)만을 거쳐 그대로 부하(10d)에 전달된다.In the case of forming the third power transmission path, the current load 10d voltage is applied to the power supply unit 410, and the power is directly transmitted without switching loss, core loss, and/or conduction loss by the buck-boost converter unit 420. It is supplied to the load 10d. For reference, when the third power transmission path is formed, since a DC voltage is applied to the inductor 421, the inductor 421 operates like a short circuit, and thus, core loss due to the inductor 421 does not occur. Here, that the voltage of the load 10d is applied to the power supply unit 410 means that the value of the voltage of the load 10d is applied to the power supply unit 410 as it is. That is, the current output from the power supply unit 410 flows in the solid line direction of FIG. 12C and is transmitted to the load 10d as it is only through the inductor 421.
도 13a는 도 11의 전력 시스템을 제어하는 방법을 나타낸 흐름도이다.13A is a flowchart illustrating a method of controlling the power system of FIG. 11.
본 발명의 제4 실시예에 따른 전력 시스템의 제어 방법은 제어부(430)에 의해 수행될 수 있다.The control method of the power system according to the fourth embodiment of the present invention may be performed by the controller 430.
먼저, 제어부(430)는 제1 전력 전달 경로를 통해 부하(10d)에 전력을 전달하는 경우의 제1 전력의 크기(P1) 및 제3 전력 전달 경로를 통해 부하(10d)에 전력을 전달하는 경우의 제3 전력의 크기(P3)를 연산한다(S411).First, the control unit 430 transmits power to the load 10d through the first power transfer path and the first power amount P1 when power is transferred to the load 10d through the first power transfer path. The magnitude P3 of the third power in the case is calculated (S411).
이때 제1 전력 전달 경로는 전원부(10)로부터 출력되는 입력 전압이 벅-부스트 컨버터부(420)에 의해 승압되는 과정을 거쳐 부하(10d)로 전달될 때 형성되는 전력 전달 경로이다. 즉, 이때 벅-부스트 컨버터부(420)는 부스트 컨버터로서 동작한다.In this case, the first power transfer path is a power transfer path formed when the input voltage output from the power supply unit 10 is boosted by the buck-boost converter unit 420 and is transferred to the load 10d. That is, at this time, the buck-boost converter unit 420 operates as a boost converter.
상술한 바와 같이, 제1 전력은 제어부(430)가 벅-부스트 컨버터부(420)를 부스트 컨버터로 동작시키면서 MPPT 제어하는 경우 전원부(410)로부터 부하(10d)로 전달되는 전력이고, 제3 전력은 제어부(430)가 벅-부스트 컨버터부(420)를 MPPT 제어하지 않는 경우 전원부(410)로부터 부하(10d)로 전달되는 전력이다.As described above, the first power is power transferred from the power supply unit 410 to the load 10d when the control unit 430 controls the MPPT while operating the buck-boost converter unit 420 as a boost converter, and the third power When the control unit 430 does not MPPT control the buck-boost converter unit 420, is power transferred from the power supply unit 410 to the load 10d.
제1 전력의 크기(P1)는 제어부(430)가 전원부(410) 출력단의 개방 전압(V1) 및 단락 전류(I1)의 값을 전달받아 MPPT 알고리즘을 이용하여 연산할 수 있다.The first power level P1 may be calculated by the control unit 430 using the MPPT algorithm by receiving values of the open-circuit voltage V1 and the short-circuit current I1 of the output terminal of the power supply unit 410.
제3 전력의 크기(P3)는 제어부(430)가 부하(10d)의 현재 전압(V2) 및 부하(10d)에 현재 흐르는 전류(I2)를 전달받아 연산할 수 있다.The third power level P3 may be calculated by receiving the current voltage V2 of the load 10d and the current I2 flowing through the load 10d by the control unit 430.
다만, 이와 같이 직접적으로 전원부(410) 출력단의 전압과 부하(10d)의 전압, 그리고 전류 센싱을 통해 제1 전력의 크기(P1)와 제3 전력의 크기(P3)를 연산할 수도 있지만, 다른 방법을 통해 제1 전력의 크기(P1)와 제3 전력의 크기(P3)를 연산할 수도 있다.However, it is also possible to directly calculate the magnitude of the first power (P1) and the magnitude of the third power (P3) through sensing the voltage at the output terminal of the power supply unit 410, the voltage of the load 10d, and current. Through the method, the magnitude of the first power (P1) and the magnitude of the third power (P3) may be calculated.
예를 들어, 태양광 패널을 구성하는 태양전지 셀과 동일한 모델의 1개의 태양전지 셀을 전력 생성 목적이 아닌 센싱 및 연산 목적으로 따로 구비하고, 해당 온도 및 일사량에서 상기 1개의 태양전지 셀의 전류 및/또는 전압을 센싱한 후, 태양광 패널 전체의 전력을 연산하는 방식으로 제1 전력의 크기(P1)를 연산할 수도 있다.For example, one solar cell of the same model as the solar cell constituting a solar panel is separately provided for sensing and calculation purposes, not for power generation purposes, and the current of the one solar cell at the corresponding temperature and insolation And/or after sensing the voltage, the magnitude of the first power P1 may be calculated by calculating the power of the entire solar panel.
따라서, 제1 전력의 크기(P1) 및 제3 전력의 크기(P3)를 연산하는 방법은 한정되지 않으며, 여타의 연산 방식을 모두 포함하는 것으로 이해되어야 할 것이다.Accordingly, a method of calculating the magnitude of the first power P1 and the magnitude of the third power P3 is not limited, and it should be understood that all other computation methods are included.
다음으로, 제어부(430)는 상기 제1 전력의 크기(P1) 및 상기 제3 전력의 크기(P3)를 비교하고(S412), 이후 상기 비교 결과에 따라 제어부(430)는 제1 컨버터 스위치(S1), 제2 컨버터 스위치(S2), 제3 컨버터 스위치(S3) 및 제4 컨버터 스위치(S4)를 제어한다(S413)Next, the controller 430 compares the magnitude of the first power (P1) and the magnitude of the third power (P3) (S412), and then, according to the comparison result, the controller 430 performs a first converter switch ( S1), the second converter switch S2, the third converter switch S3, and the fourth converter switch S4 are controlled (S413).
구체적으로, 제1 전력의 크기(P1)가 제3 전력의 크기(P3)보다 크거나 같은 경우에, 제어부(430)는 제1 전력 전달 경로를 형성하는 단계를 수행한다(S413-1).Specifically, when the magnitude of the first power P1 is greater than or equal to the magnitude of the third power P3, the controller 430 performs the step of forming a first power transmission path (S413-1).
제1 전력의 크기(P1)가 제3 전력의 크기(P3)보다 크거나 같다는 것은, 벅-부스트 컨버터부(420)가 MPPT 제어될 때 부하(10d)에 더 많은 전력이 전달된다는 것을 의미한다. 따라서, 제어부(430)는 벅-부스트 컨버터부(420)를 MPPT 제어하면서 전원부(410)에서 출력되는 전압을 승압하여 부하(10d)에 전달한다.When the magnitude of the first power P1 is greater than or equal to the magnitude of the third power P3, it means that more power is delivered to the load 10d when the buck-boost converter unit 420 is MPPT controlled. . Accordingly, the control unit 430 boosts the voltage output from the power supply unit 410 while MPPT control of the buck-boost converter unit 420 and transfers it to the load 10d.
이때 제어부(430)는 제1 컨버터 스위치(S1)를 온시키고 제3 컨버터 스위치(S3)를 오프시킨 상태에서, 제2 컨버터 스위치(S2)와 제4 컨버터 스위치(S4)를 MPPT 알고리즘에 의한 듀티비에 따라 교번으로 온오프 제어한다.At this time, the control unit 430 sets the second converter switch S2 and the fourth converter switch S4 to the duty according to the MPPT algorithm in a state in which the first converter switch S1 is turned on and the third converter switch S3 is turned off. On/off control is performed alternately according to the ratio.
보다 구체적으로는, 제2 컨버터 스위치(S2)가 오프로 동작하고 제4 컨버터 스위치(S4)가 온으로 동작하는 동안 입력 전류가 인덕터(421)로 흘러 인덕터(421)에 에너지가 충전된다. 이후 제2 컨버터 스위치(S2)가 온으로 동작하고 제4 컨버터 스위치(S4)가 오프로 동작하는 동안 인덕터(421)에 충전된 에너지와 전원부(410)로부터 출력되는 입력 전류가 동시에 부하(10d)로 전달되면서 입력 전압이 승압된다.More specifically, while the second converter switch S2 is turned off and the fourth converter switch S4 is turned on, an input current flows through the inductor 421 to charge energy in the inductor 421. Thereafter, while the second converter switch S2 is turned on and the fourth converter switch S4 is turned off, the energy charged in the inductor 421 and the input current output from the power supply unit 410 are simultaneously applied to the load 10d. As it is transferred to, the input voltage is boosted.
이때 전원부(410)에서 출력되는 입력 전압은, 제어부(430)의 MPPT 제어에 의해 부하(10d)에 최대 전력을 전달할 수 있도록 승압되므로, 부하(10d)에는 MPPT 제어에 의해 추종된 최대 전력이 전달될 수 있다.At this time, since the input voltage output from the power supply unit 410 is boosted to deliver the maximum power to the load 10d by the MPPT control of the control unit 430, the maximum power followed by the MPPT control is transferred to the load 10d. Can be.
앞서도 언급한 바 있으나, MPPT 알고리즘으로는 P&O 방법, InCond 방법 등 다양한 알고리즘이 공지되어 있으며, 본 발명의 제4 실시예에 따른 전력 시스템의 제어 방법에서 언급하고 있는 MPPT 제어를 위해 이러한 다양한 MPPT 알고리즘 중 어느 하나가 사용될 수 있다.Although mentioned above, various algorithms such as the P&O method and the InCond method are known as the MPPT algorithm, and among these various MPPT algorithms for MPPT control mentioned in the power system control method according to the fourth embodiment of the present invention. Either can be used.
제1 전력의 크기(P1)가 제3 전력의 크기(P3)보다 작은 경우에는, 제어부(430)는 제3 전력 전달 경로를 형성하는 단계를 수행한다(S413-2).When the magnitude of the first power P1 is smaller than the magnitude of the third power P3, the controller 430 performs the step of forming a third power transmission path (S413-2).
제1 전력의 크기(P1)가 제3 전력의 크기(P3)보다 작다는 것은, 벅-부스트 컨버터부(420)가 MPPT 제어되지 않을 때 부하(10d)에 더 많은 전력이 전달된다는 것을 의미한다. 따라서, 제어부(430)는 벅-부스트 컨버터부(420)를 MPPT 제어하지 않고, 전원부(410)에서 출력되는 전압이 그대로 부하(10d)에 전달되도록 벅-부스트 컨버터부(420)를 제어한다.When the magnitude of the first power P1 is smaller than the magnitude of the third power P3, it means that more power is delivered to the load 10d when the buck-boost converter unit 420 is not MPPT controlled. . Accordingly, the control unit 430 does not MPPT the buck-boost converter unit 420 but controls the buck-boost converter unit 420 so that the voltage output from the power supply unit 410 is transmitted to the load 10d as it is.
이때 제어부(430)는 제1 컨버터 스위치(S1)와 제2 컨버터 스위치(S2)는 온시키고, 제3 컨버터 스위치(S3)와 제4 컨버터 스위치(S4)는 오프시킨다.At this time, the control unit 430 turns on the first converter switch S1 and the second converter switch S2, and turns off the third converter switch S3 and the fourth converter switch S4.
제3 전력 전달 경로를 형성하는 경우, 현재의 부하(10d) 전압이 전원부(410)에 적용되면서 벅-부스트 컨버터부(420)에 의한 스위칭 손실, 코어 손실 및/또는 도통 손실 없이 직접적으로 전력이 부하(10d)에 공급된다. 이때 인덕터(421)에는 직류 전압이 걸리기 때문에 인덕터(421)는 단락회로처럼 동작하게 되며, 이에 따라 인덕터(421)에 의한 코어 손실은 발생하지 않는다. 여기서, 부하(10d) 전압이 전원부(410)에 적용된다는 것은, 부하(10d) 전압의 값이 그대로 전원부(410)에 걸린다는 것을 의미한다. 즉, 전원부(410)에서 출력되는 전류는 인덕터(421)만을 거쳐 그대로 부하(10d)에 전달된다.In the case of forming the third power transmission path, the current load 10d voltage is applied to the power supply unit 410, and the power is directly transmitted without switching loss, core loss, and/or conduction loss by the buck-boost converter unit 420. It is supplied to the load 10d. At this time, since a DC voltage is applied to the inductor 421, the inductor 421 operates like a short circuit, and thus, core loss due to the inductor 421 does not occur. Here, that the voltage of the load 10d is applied to the power supply unit 410 means that the value of the voltage of the load 10d is applied to the power supply unit 410 as it is. That is, the current output from the power supply unit 410 is transferred to the load 10d as it is through only the inductor 421.
한편, 도 13b는 도 11의 전력 시스템을 제어하는 방법을 나타낸 또 다른 흐름도이다.Meanwhile, FIG. 13B is another flowchart illustrating a method of controlling the power system of FIG. 11.
본 발명의 제4 실시예에 따른 전력 시스템의 제어 방법의 다른 실시예 역시 제어부(430)에 의해 수행될 수 있다.Another embodiment of the control method of the power system according to the fourth embodiment of the present invention may also be performed by the controller 430.
먼저, 제어부(430)는 제2 전력 전달 경로를 통해 부하(10d)에 전력을 전달하는 경우의 제2 전력의 크기(P2) 및 제3 전력 전달 경로를 통해 부하(10d)에 전력을 전달하는 경우의 제3 전력의 크기(P3)를 연산한다(S421).First, the control unit 430 transmits power to the load 10d through the second power transfer path and the second power amount P2 when power is transferred to the load 10d through the second power transfer path. The magnitude P3 of the third power in the case is calculated (S421).
이때 제2 전력 전달 경로는 전원부(10)로부터 출력되는 입력 전압이 벅-부스트 컨버터부(420)에 의해 강압되는 과정을 거쳐 부하(10d)로 전달될 때 형성되는 전력 전달 경로이다. 즉, 이때 벅-부스트 컨버터부(420)는 벅 컨버터로서 동작한다.In this case, the second power transfer path is a power transfer path formed when the input voltage output from the power supply unit 10 is stepped down by the buck-boost converter unit 420 and is transferred to the load 10d. That is, at this time, the buck-boost converter unit 420 operates as a buck converter.
여기서, 제2 전력은 제어부(430)가 벅-부스트 컨버터부(420)를 벅 컨버터로 동작시키면서 MPPT 제어하는 경우 전원부(410)로부터 부하(10d)로 전달되는 전력이고, 제3 전력은 제어부(430)가 벅-부스트 컨버터부(420)를 MPPT 제어하지 않는 경우 전원부(410)로부터 부하(10d)로 전달되는 전력이다.Here, the second power is power transferred from the power supply unit 410 to the load 10d when the control unit 430 controls the MPPT while operating the buck-boost converter unit 420 as a buck converter, and the third power is the control unit ( When 430 does not MPPT control the buck-boost converter unit 420, this is the power transferred from the power supply unit 410 to the load 10d.
제2 전력의 크기(P2)는 제어부(430)가 전원부(410) 출력단의 개방 전압(V1) 및 단락 전류(I1)의 값을 전달받아 MPPT 알고리즘을 이용하여 연산할 수 있다.The second power level P2 may be calculated by the control unit 430 using the MPPT algorithm by receiving values of the open-circuit voltage V1 and the short-circuit current I1 of the output terminal of the power supply unit 410.
제3 전력의 크기(P3)는 제어부(430)가 부하(10d)의 현재 전압(V2) 및 부하(10d)에 현재 흐르는 전류(I2)를 전달받아 연산할 수 있다.The third power level P3 may be calculated by receiving the current voltage V2 of the load 10d and the current I2 flowing through the load 10d by the control unit 430.
다음으로, 제어부(430)는 상기 제2 전력의 크기(P2) 및 상기 제3 전력의 크기(P3)를 비교하고(S422), 이후 상기 비교 결과에 따라 제어부(430)는 제1 컨버터 스위치(S1), 제2 컨버터 스위치(S2), 제3 컨버터 스위치(S3) 및 제4 컨버터 스위치(S4)를 제어한다(S423).Next, the controller 430 compares the magnitude of the second power (P2) and the magnitude of the third power (P3) (S422), and then, according to the comparison result, the controller 430 performs a first converter switch ( S1), the second converter switch S2, the third converter switch S3, and the fourth converter switch S4 are controlled (S423).
구체적으로, 제2 전력의 크기(P2)가 제3 전력의 크기(P3)보다 크거나 같은 경우에, 제어부(430)는 제2 전력 전달 경로를 형성하는 단계를 수행한다(S423-1).Specifically, when the magnitude of the second power P2 is greater than or equal to the magnitude of the third power P3, the controller 430 performs the step of forming a second power transmission path (S423-1).
제2 전력의 크기(P2)가 제3 전력의 크기(P3)보다 크거나 같다는 것은, 벅-부스트 컨버터부(420)가 MPPT 제어될 때 부하(10d)에 더 많은 전력이 전달된다는 것을 의미한다. 따라서, 제어부(430)는 벅-부스트 컨버터부(420)를 MPPT 제어함으로써, 전원부(410)에서 출력되는 전압을 강압하여 부하(10d)에 전달한다.When the magnitude of the second power P2 is greater than or equal to the magnitude of the third power P3, it means that more power is delivered to the load 10d when the buck-boost converter unit 420 is MPPT controlled. . Accordingly, the control unit 430 MPPT controls the buck-boost converter unit 420 to step down the voltage output from the power supply unit 410 and transfer it to the load 10d.
이때 제어부(430)는 제2 컨버터 스위치(S2)를 온시키고 제4 컨버터 스위치(S4)를 오프시킨 상태에서, 제1 컨버터 스위치(S1)와 제3 컨버터 스위치(S3)를 MPPT 알고리즘에 의한 듀티비에 따라 교번으로 온오프 제어한다.At this time, in a state in which the second converter switch S2 is turned on and the fourth converter switch S4 is turned off, the control unit 430 sets the duty of the first converter switch S1 and the third converter switch S3 according to the MPPT algorithm. On/off control is performed alternately according to the ratio.
보다 구체적으로는, 제1 컨버터 스위치(S1)가 온으로 동작하고 제3 컨버터 스위치(S3)가 오프로 동작하는 동안에는 인덕터(421)에 에너지가 충전되는 동시에 부하(10d)에 전력이 전달되다가, 제1 컨버터 스위치(S1)가 오프로 동작하고 제3 컨버터 스위치(S3)가 온으로 동작하는 동안에는 인덕터(421)에 저장된 에너지가 방출된다. 제1 컨버터 스위치(S1)와 제3 컨버터 스위치(S3)의 온오프 동작이 교번으로 반복되면서 전원부(410)에서 출력되는 입력 전압은 강압되어 부하(10d)로 전달된다.More specifically, while the first converter switch S1 is on and the third converter switch S3 is off, energy is charged to the inductor 421 and power is transferred to the load 10d. Energy stored in the inductor 421 is discharged while the first converter switch S1 is turned off and the third converter switch S3 is turned on. As the on-off operation of the first converter switch S1 and the third converter switch S3 is alternately repeated, the input voltage output from the power supply unit 410 is stepped down and transmitted to the load 10d.
이때 전원부(410)에서 출력되는 입력 전압은, 제어부(430)의 MPPT 제어에 의해 부하(10d)에 최대 전력을 전달할 수 있도록 강압되므로, 부하(10d)에는 MPPT 제어에 의해 추종된 최대 전력이 전달될 수 있다.At this time, since the input voltage output from the power supply unit 410 is stepped down to deliver the maximum power to the load 10d by the MPPT control of the control unit 430, the maximum power followed by the MPPT control is transmitted to the load 10d. Can be.
제2 전력의 크기(P2)가 제3 전력의 크기(P3)보다 작은 경우에는, 제어부(430)가 제3 전력 전달 경로를 형성하는 단계를 수행한다(S423-2).When the magnitude of the second power P2 is smaller than the magnitude of the third power P3, the controller 430 performs a step of forming a third power transmission path (S423-2).
제2 전력의 크기(P2)가 제3 전력의 크기(P3)보다 작다는 것은, 벅-부스트 컨버터부(420)가 MPPT 제어되지 않을 때 부하(10d)에 더 많은 전력이 전달된다는 것을 의미한다. 따라서, 제어부(430)는 벅-부스트 컨버터부(420)를 MPPT 제어하지 않고, 전원부(410)에서 출력되는 전압이 그대로 부하(10d)에 전달되도록 벅-부스트 컨버터부(420)를 제어한다.That the second power P2 is smaller than the third power P3 means that more power is delivered to the load 10d when the buck-boost converter unit 420 is not MPPT controlled. . Accordingly, the control unit 430 does not MPPT the buck-boost converter unit 420 but controls the buck-boost converter unit 420 so that the voltage output from the power supply unit 410 is transmitted to the load 10d as it is.
이때 제어부(430)는 제1 컨버터 스위치(S1)와 제2 컨버터 스위치(S2)는 온시키고, 제3 컨버터 스위치(S3)와 제4 컨버터 스위치(S4)는 오프시킨다.At this time, the control unit 430 turns on the first converter switch S1 and the second converter switch S2, and turns off the third converter switch S3 and the fourth converter switch S4.
제3 전력 전달 경로를 형성하는 경우, 현재의 부하(10d) 전압이 전원부(410)에 적용되면서 벅-부스트 컨버터부(420)에 의한 스위칭 손실, 코어 손실 및/또는 도통 손실 없이 직접적으로 전력이 부하(10d)에 공급된다. 이때 인덕터(421)에는 직류 전압이 걸리기 때문에 인덕터(421)는 단락회로처럼 동작하게 되며, 이에 따라 인덕터(421)에 의한 코어 손실은 발생하지 않는다.In the case of forming the third power transmission path, the current load 10d voltage is applied to the power supply unit 410, and the power is directly transmitted without switching loss, core loss, and/or conduction loss by the buck-boost converter unit 420. It is supplied to the load 10d. At this time, since a DC voltage is applied to the inductor 421, the inductor 421 operates like a short circuit, and thus, core loss due to the inductor 421 does not occur.
한편, 부하(10d) 전압이 전원부(410)에 적용된다는 것은, 부하(10d) 전압의 값이 그대로 전원부(410)에 걸린다는 것을 의미한다. 즉, 전원부(410)에서 출력되는 전류는 인덕터(421)만을 거쳐 그대로 부하(10d)에 전달된다.Meanwhile, that the voltage of the load 10d is applied to the power supply unit 410 means that the value of the voltage of the load 10d is applied to the power supply unit 410 as it is. That is, the current output from the power supply unit 410 is transferred to the load 10d as it is through only the inductor 421.
제1 컨버터 스위치(S1), 제2 컨버터 스위치(S2), 제3 컨버터 스위치(S3) 및 제4 컨버터 스위치(S4)의 제어방법은 MPPT 제어에 의해 부하(10d)로 전력을 전달하는 경로 또는 MPPT 제어를 하지 않고 부하(10d)로 전력을 전달하는 경로를 선택하기 위해서라면 상술한 제어방법 이외의 다양한 방식으로 제어될 수 있고, 본 발명의 제4 실시예는 이러한 다양한 제어방법을 모두 포함한다.The control method of the first converter switch S1, the second converter switch S2, the third converter switch S3, and the fourth converter switch S4 is a path for transferring power to the load 10d by MPPT control or In order to select a path for transmitting power to the load 10d without performing MPPT control, it can be controlled in various ways other than the above-described control method, and the fourth embodiment of the present invention includes all of these various control methods. .
본 발명의 제4 실시예에 의하면, 기존의 전력 시스템 회로구조에 별도의 소자를 추가하지 않고도, 벅-부스트 컨버터부(420)의 컨버터 스위치들(S1~S4)의 제어 방법만을 변경함으로써, MPPT 제어가 이루어지는 경로와 MPPT 제어가 이루어지지 않는 경로 중 부하(10d)로의 전력 전달 효율이 더 높은 경로를 선택하여 부하에 전력을 전달할 수 있다. 따라서, MPPT 제어만을 할 때보다 더 높은 효율로 부하에 전력이 전달되는 효과가 있다.According to the fourth embodiment of the present invention, MPPT is achieved by changing only the control method of the converter switches S1 to S4 of the buck-boost converter unit 420 without adding additional elements to the existing power system circuit structure. Among the paths in which the control is performed and the paths in which MPPT control is not performed, a path having higher power transfer efficiency to the load 10d may be selected to deliver power to the load. Therefore, there is an effect that power is delivered to the load with higher efficiency than when only MPPT control is performed.
또한, 본 발명의 제4 실시예에 사용된 H-브리지 타입의 벅-부스트 컨버터의 경우에 컨버터 스위치들(S1~S4)로서 일반적으로 FET를 사용하는데, 제3 전력 전달 경로를 형성하는 경우 다이오드 소자가 포함된 DC-DC 컨버터를 사용할 때보다 전력 손실이 적으므로 전력 전달 효율이 더 높아질 수 있다.In addition, in the case of the H-bridge type buck-boost converter used in the fourth embodiment of the present invention, a FET is generally used as the converter switches S1 to S4. When forming the third power transfer path, a diode Since power loss is less than when using a DC-DC converter with a device, the power transfer efficiency can be higher.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것이 아니라 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 기술적 사상은 청구범위에 의해서만 파악되어야 하고, 이의 균등 또는 등가적 변형 모두는 본 발명의 기술적 사상의 범주에 속한다고 할 것이다.As described above, although the present invention has been described by limited embodiments and drawings, the present invention is not limited to the above-described embodiments, and various modifications and variations are made from these descriptions to those of ordinary skill in the field to which the present invention pertains. It is possible. Therefore, the technical idea of the present invention should be grasped only by the claims, and all equivalent or equivalent modifications thereof will be said to belong to the scope of the technical idea of the present invention.

Claims (19)

  1. 전력을 생성하는 전원부;A power supply for generating electric power;
    상기 전원부로부터 생성되는 전력에 의한 입력 전압을 승압하여 부하에 전달하는 부스트 컨버터부; 및A boost converter unit for boosting an input voltage by power generated from the power unit and transferring it to a load; And
    상기 부스트 컨버터부를 제어하여 상기 전원부로부터 상기 부하로 상기 전력을 전달하는 제1 전력 전달 경로 또는 제2 전력 전달 경로를 형성하는 제어부;를 포함하고,A control unit for controlling the boost converter unit to form a first power transmission path or a second power transmission path for transferring the power from the power supply unit to the load; and
    상기 제어부에 의해 상기 제1 전력 전달 경로가 형성되는 경우, 상기 입력 전압이 상기 부스트 컨버터부에 의해 승압되는 과정을 거쳐 상기 부하로 전달되고, When the first power transmission path is formed by the control unit, the input voltage is transferred to the load through a process of boosting by the boost converter unit,
    상기 제어부에 의해 상기 제2 전력 전달 경로가 형성되는 경우, 상기 입력 전압이 상기 부스트 컨버터부에 의해 승압되는 과정을 거치지 않고 상기 부하로 전달되는 것을 특징으로 하는 전력 시스템.When the second power transmission path is formed by the control unit, the input voltage is transmitted to the load without going through a process of being boosted by the boost converter unit.
  2. 제1항에 있어서,The method of claim 1,
    상기 부스트 컨버터부는,The boost converter unit,
    일단이 상기 전원부에 연결되어 상기 전원부로부터 출력되는 전류에 의해 충전되는 인덕터;An inductor having one end connected to the power supply and charged by the current output from the power supply;
    상기 부하에서 상기 인덕터 방향으로 역전류가 흐르는 것을 방지하는 역전류 방지 소자; 및A reverse current prevention element preventing reverse current from flowing from the load to the inductor; And
    일단은 상기 인덕터의 타단과 상기 역전류 방지 소자 사이에 연결되고, 타단은 접지에 연결되는 컨버터 스위치;를 포함하는 전력 시스템. A converter switch having one end connected between the other end of the inductor and the reverse current preventing element, and the other end connected to the ground.
  3. 제2항에 있어서,The method of claim 2,
    상기 제어부는,The control unit,
    상기 제1 전력 전달 경로를 통해 상기 부하에 전력을 전달하는 경우의 제1 전력의 크기를 연산하고, 상기 제2 전력 전달 경로를 통해 상기 부하에 전력을 전달하는 경우의 제2 전력의 크기를 연산하며, 상기 제1 전력의 크기 및 상기 제2 전력의 크기를 비교한 결과에 따라 상기 컨버터 스위치를 제어하고,Calculate the magnitude of the first power when power is delivered to the load through the first power transfer path, and the magnitude of the second power when power is transferred to the load through the second power transfer path And controlling the converter switch according to a result of comparing the magnitude of the first power and the magnitude of the second power,
    상기 비교 결과, 상기 제1 전력의 크기가 상기 제2 전력의 크기보다 크거나 같은 경우 MPPT(Maximum Power Point Tracking) 알고리즘에 의해 결정되는 듀티비에 따라 상기 컨버터 스위치를 온오프 제어하여 상기 제1 전력 전달 경로를 형성하고,As a result of the comparison, when the magnitude of the first power is greater than or equal to the magnitude of the second power, the converter switch is turned on and off according to a duty ratio determined by a maximum power point tracking (MPPT) algorithm to control the first power. Form a delivery path,
    상기 비교 결과, 상기 제1 전력의 크기가 상기 제2 전력의 크기보다 작은 경우 상기 컨버터 스위치를 오프로 제어하여 상기 제2 전력 전달경로를 형성하는 것을 특징으로 하는 전력 시스템.As a result of the comparison, when the magnitude of the first power is smaller than the magnitude of the second power, the converter switch is turned off to form the second power transmission path.
  4. 전력을 생성하는 전원부;A power supply for generating electric power;
    상기 전원부에 의해 생성되는 전력이 부하로 전달되는 전력 전달 경로를 선택하는 스위칭부;A switching unit for selecting a power transmission path through which the power generated by the power unit is transmitted to the load;
    상기 전원부로부터 생성되는 전력에 의한 입력 전압을 승압하여 상기 부하에 전달하는 부스트 컨버터부; 및A boost converter unit that boosts an input voltage by power generated from the power unit and transfers it to the load; And
    상기 스위칭부의 스위칭 동작을 제어하는 제어부;를 포함하며,Includes; a control unit for controlling the switching operation of the switching unit,
    상기 스위칭부는 제1 스위치 및 제2 스위치를 포함하고,The switching unit includes a first switch and a second switch,
    상기 제어부는, The control unit,
    상기 제1 스위치 및 제2 스위치를 제1 스위칭 모드로 제어하여 상기 전원부로부터 상기 부스트 컨버터부를 통하여 상기 부하로 전력이 전달되는 제1 전력 전달 경로를 형성하고, Controlling the first switch and the second switch in a first switching mode to form a first power transfer path through which power is transferred from the power supply to the load through the boost converter,
    상기 제1 스위치 및 제2 스위치를 제2 스위칭 모드로 제어하여 상기 전원부로부터 상기 부스트 컨버터부를 통하지 않고 상기 부하로 전력이 전달되는 제2 전력 전달 경로를 형성하는 것을 특징으로 하는 전력 시스템.And controlling the first switch and the second switch in a second switching mode to form a second power transmission path through which power is transmitted from the power supply to the load without passing through the boost converter.
  5. 제4항에 있어서,The method of claim 4,
    상기 부스트 컨버터부는,The boost converter unit,
    일단이 상기 스위칭부의 스위칭 동작에 따라 상기 전원부에 연결되거나 연결 해제되는 인덕터;An inductor whose one end is connected to or disconnected from the power supply unit according to a switching operation of the switching unit;
    상기 스위칭부의 스위칭 동작에 따라 상기 인덕터의 타단에 연결되거나 상기 전원부에 연결되는 컨버터 스위치; 및A converter switch connected to the other end of the inductor or connected to the power supply according to a switching operation of the switching unit; And
    상기 부하에서 상기 인덕터 방향으로 역전류가 흐르는 것을 방지하는 역전류 방지 소자;를 포함하는 전력 시스템. And a reverse current prevention element for preventing reverse current from flowing from the load to the inductor.
  6. 제5항에 있어서,The method of claim 5,
    상기 제1 스위치는, 일단이 상기 전원부에 연결되고, 타단은 상기 제어부에 의해 제어되는 스위칭 동작에 따라 상기 인덕터의 일단 또는 개방 단자에 연결되며,The first switch has one end connected to the power supply, and the other end connected to one end or an open terminal of the inductor according to a switching operation controlled by the control unit,
    상기 제2 스위치는, 일단이 상기 컨버터 스위치 및 상기 역전류 방지 소자에 연결되고, 타단은 상기 제어부에 의해 제어되는 스위칭 동작에 따라 상기 전원부 또는 상기 인덕터의 타단에 연결되는 것을 특징으로 하는 전력 시스템.Wherein the second switch has one end connected to the converter switch and the reverse current preventing element, and the other end connected to the power supply unit or the other end of the inductor according to a switching operation controlled by the control unit.
  7. 제6항에 있어서,The method of claim 6,
    상기 제어부는,The control unit,
    상기 제1 전력 전달 경로로 상기 부하에 전력을 전달하는 경우의 제1 전력의 크기를 연산하고, 상기 제2 전력 전달 경로로 상기 부하에 전력을 전달하는 경우의 제2 전력의 크기를 연산하며, 상기 제1 전력의 크기 및 상기 제2 전력의 크기를 비교하고,Calculate a magnitude of first power when power is delivered to the load through the first power transfer path, and calculate a magnitude of second power when power is delivered to the load through the second power transfer path, Comparing the magnitude of the first power and the magnitude of the second power,
    상기 비교 결과, 상기 제1 전력이 상기 제2 전력보다 크거나 같은 경우, 상기 제1 스위치의 타단을 상기 인덕터의 일단에 연결하고, 상기 제2 스위치의 타단을 상기 인덕터의 타단에 연결하는 상기 제1 스위칭 모드로 제어하고,As a result of the comparison, when the first power is greater than or equal to the second power, the second end of the first switch is connected to one end of the inductor, and the other end of the second switch is connected to the other end of the inductor. 1 controlled by switching mode,
    상기 비교 결과, 상기 제1 전력이 상기 제2 전력보다 작은 경우, 상기 제1 스위치의 타단을 상기 개방단자에 연결하고, 상기 제2 스위치의 타단을 상기 전원부에 연결하는 상기 제2 스위칭 모드로 제어하는 것을 특징으로 하는 전력 시스템.As a result of the comparison, when the first power is less than the second power, the second switching mode is controlled in which the other end of the first switch is connected to the open terminal and the other end of the second switch is connected to the power supply. Power system, characterized in that.
  8. 제7항에 있어서,The method of claim 7,
    상기 제어부는,The control unit,
    상기 스위칭부를 상기 제1 스위칭 모드로 제어하는 경우, 상기 부스트 컨버터부를 MPPT 제어하며,When controlling the switching unit in the first switching mode, MPPT control of the boost converter unit,
    상기 스위칭부를 상기 제2 스위칭 모드로 제어하는 경우, 상기 부스트 컨버터부를 MPPT 제어하지 않고 상기 컨버터 스위치를 오프로 동작시키는 것을 특징으로 하는 전력 시스템.When controlling the switching unit in the second switching mode, the boost converter unit is operated to turn off the converter switch without MPPT control.
  9. 전력을 생성하는 전원부;A power supply for generating electric power;
    상기 전원부에 의해 생성되는 전력이 부하로 전달되는 전력 전달 경로를 선택하는 스위칭부;A switching unit for selecting a power transmission path through which the power generated by the power unit is transmitted to the load;
    상기 전원부로부터 생성되는 전력에 의한 입력 전압을 강압하여 상기 부하에 전달하는 벅 컨버터부; 및A buck converter unit stepping down an input voltage due to power generated from the power supply unit and transferring it to the load; And
    상기 스위칭부의 스위칭 동작을 제어하는 제어부;를 포함하며,Includes; a control unit for controlling the switching operation of the switching unit,
    상기 스위칭부는 제1 스위치, 제2 스위치 및 제3 스위치를 포함하고,The switching unit includes a first switch, a second switch and a third switch,
    상기 제어부는, The control unit,
    상기 제1 스위치, 제2 스위치 및 제3 스위치를 제1 스위칭 모드로 제어하여, 상기 전원부로부터 상기 벅 컨버터부를 통하여 상기 부하로 전력이 전달되는 제1 전력 전달 경로를 형성하고, Controlling the first switch, the second switch, and the third switch in a first switching mode to form a first power transfer path through which power is transferred from the power supply to the load through the buck converter,
    상기 제1 스위치, 제2 스위치 및 제3 스위치를 제2 스위칭 모드로 제어하여, 상기 전원부로부터 상기 벅 컨버터부를 통하지 않고 상기 부하로 전력이 전달되는 제2 전력 전달 경로를 형성하는 것을 특징으로 하는 전력 시스템.Power, characterized in that by controlling the first switch, the second switch, and the third switch in a second switching mode to form a second power transfer path through which power is transferred from the power supply to the load without passing through the buck converter. system.
  10. 제9항에 있어서,The method of claim 9,
    상기 벅 컨버터부는,The buck converter unit,
    일단이 상기 스위칭부의 스위칭 동작에 따라 상기 전원부에 연결되거나 연결 해제되는 컨버터 스위치;A converter switch whose one end is connected to or disconnected from the power supply according to a switching operation of the switching unit;
    일단은 상기 스위칭부의 스위칭 동작에 따라 접지에 연결되거나 상기 전원부에 연결되고, 타단은 상기 컨버터 스위치의 타단에 연결되는 역전류 방지 소자; 및A reverse current prevention element having one end connected to the ground or connected to the power supply according to a switching operation of the switching unit, and the other end connected to the other end of the converter switch; And
    일단은 상기 컨버터 스위치의 타단에 연결되고 타단은 상기 부하에 연결되는 인덕터;를 포함하는 전력 시스템. Power system comprising: an inductor having one end connected to the other end of the converter switch and the other end connected to the load.
  11. 제10항에 있어서,The method of claim 10,
    상기 제1 스위치는, 일단이 접지에 연결되며, 타단은 상기 제어부에 의해 제어되는 상기 스위칭부의 스위칭 동작에 따라 상기 역전류 방지 소자의 일단에 연결되거나 오프되고,The first switch, one end is connected to the ground, the other end is connected or turned off to one end of the reverse current preventing element according to a switching operation of the switching unit controlled by the control unit,
    상기 제2 스위치는, 일단이 상기 전원부에 연결되며, 타단은 상기 제어부에 의해 제어되는 상기 스위칭부의 스위칭 동작에 따라 상기 컨버터 스위치의 일단에 연결되거나 상기 역전류 방지 소자의 일단에 연결되고,The second switch, one end is connected to the power supply, the other end is connected to one end of the converter switch or connected to one end of the reverse current prevention element according to the switching operation of the switching unit controlled by the control unit,
    상기 제3 스위치는, 일단이 상기 인덕터의 타단에 연결되며, 타단은 상기 제어부에 의해 제어되는 상기 스위칭부의 스위칭 동작에 따라 오프되거나 상기 컨버터 스위치의 타단에 연결되는 것을 특징으로 하는 전력 시스템.Wherein the third switch has one end connected to the other end of the inductor, and the other end is turned off according to a switching operation of the switching unit controlled by the control unit or connected to the other end of the converter switch.
  12. 제11항에 있어서,The method of claim 11,
    상기 제어부는,The control unit,
    상기 제1 전력 전달 경로로 상기 부하에 전력을 전달하는 경우의 제1 전력의 크기를 연산하고, 상기 제2 전력 전달 경로로 상기 부하에 전력을 전달하는 경우의 제2 전력의 크기를 연산하며, 상기 제1 전력의 크기 및 상기 제2 전력의 크기를 비교하고,Calculate a magnitude of first power when power is delivered to the load through the first power transfer path, and calculate a magnitude of second power when power is delivered to the load through the second power transfer path, Comparing the magnitude of the first power and the magnitude of the second power,
    상기 비교 결과, 상기 제1 전력의 크기가 상기 제2 전력의 크기보다 크거나 같은 경우, 상기 제1 스위치의 타단을 상기 역전류 방지 소자의 일단에 연결하고, 상기 제2 스위치의 타단을 상기 컨버터 스위치의 일단에 연결하며, 상기 제3 스위치의 타단을 오프시키는 상기 제1 스위칭 모드로 제어하고,As a result of the comparison, when the magnitude of the first power is greater than or equal to the magnitude of the second power, the other end of the first switch is connected to one end of the reverse current preventing element, and the other end of the second switch is connected to the converter. Connected to one end of the switch and controlled in the first switching mode to turn off the other end of the third switch,
    상기 비교 결과, 상기 제1 전력의 크기가 상기 제2 전력의 크기보다 작은 경우, 상기 제1 스위치의 타단을 오프시키고, 상기 제2 스위치의 타단을 상기 역전류 방지 소자의 일단에 연결하며, 상기 제3 스위치의 타단을 상기 컨버터 스위치의 타단에 연결하는 상기 제2 스위칭 모드로 제어하는 것을 특징으로 하는 전력 시스템.As a result of the comparison, when the magnitude of the first power is smaller than the magnitude of the second power, the other end of the first switch is turned off, the other end of the second switch is connected to one end of the reverse current prevention element, and the And controlling the second switching mode in which the other end of the third switch is connected to the other end of the converter switch.
  13. 제12항에 있어서,The method of claim 12,
    상기 제어부는,The control unit,
    상기 스위칭부를 상기 제1 스위칭 모드로 제어하는 경우, 상기 벅 컨버터부를 MPPT 제어하며,When controlling the switching unit in the first switching mode, MPPT control of the buck converter unit,
    상기 스위칭부를 상기 제2 스위칭 모드로 제어하는 경우, 상기 벅 컨버터부를 MPPT 제어하지 않는 것을 특징으로 하는 전력 시스템.When controlling the switching unit in the second switching mode, the buck converter unit does not MPPT control.
  14. 전력을 생성하는 전원부;A power supply for generating electric power;
    상기 전원부로부터 생성되는 전력에 의한 입력 전압을 승압 또는 강압하여 부하에 전달하는 벅-부스트 컨버터부; 및A buck-boost converter unit for boosting or stepping down an input voltage by power generated from the power supply unit and transferring it to a load; And
    상기 벅-부스트 컨버터부를 제어하여 상기 전원부로부터 상기 부하로 전력을 전달하는 제1 전력 전달 경로, 제2 전력 전달 경로 또는 제3 전력 전달 경로를 형성하는 제어부를 포함하고,And a controller configured to form a first power transfer path, a second power transfer path, or a third power transfer path for transferring power from the power supply to the load by controlling the buck-boost converter,
    상기 제어부에 의해 상기 제1 전력 전달 경로가 형성되는 경우, 상기 입력 전압이 상기 벅-부스트 컨버터부에 의해 승압되는 과정을 거쳐 상기 부하로 전달되고,When the first power transmission path is formed by the controller, the input voltage is boosted by the buck-boost converter and transferred to the load,
    상기 제어부에 의해 상기 제2 전력 전달 경로가 형성되는 경우, 상기 입력 전압이 상기 벅-부스트 컨버터부에 의해 강압되는 과정을 거쳐 상기 부하로 전달되며, When the second power transmission path is formed by the control unit, the input voltage is transmitted to the load through a step-down process by the buck-boost converter unit,
    상기 제어부에 의해 상기 제3 전력 전달 경로가 형성되는 경우, 상기 입력 전압이 상기 벅-부스트 컨버터부에 의해 승압 및 강압되는 과정을 거치지 않고 상기 부하로 전달되는 것을 특징으로 하는 전력 시스템.When the third power transmission path is formed by the control unit, the input voltage is transmitted to the load without going through a process of stepping up and stepping down by the buck-boost converter unit.
  15. 제14항에 있어서,The method of claim 14,
    상기 벅-부스트 컨버터부는,The buck-boost converter unit,
    상기 전원부로부터 출력되는 전류에 의해 충전되는 인덕터;An inductor charged by the current output from the power supply unit;
    상기 인덕터의 일단과 상기 전원부 사이에 마련되는 제1 컨버터 스위치;A first converter switch provided between one end of the inductor and the power supply unit;
    상기 인덕터의 타단과 상기 부하 사이에 마련되는 제2 컨버터 스위치; A second converter switch provided between the other end of the inductor and the load;
    상기 인덕터의 일단과 접지 사이에 마련되는 제3 컨버터 스위치; 및 A third converter switch provided between one end of the inductor and a ground; And
    상기 인덕터의 타단과 접지 사이에 마련되는 제4 컨버터 스위치;를 포함하는 전력 시스템.And a fourth converter switch provided between the other end of the inductor and the ground.
  16. 제15항에 있어서,The method of claim 15,
    상기 제어부는,The control unit,
    상기 제1 전력 전달 경로를 통해 상기 부하에 전력을 전달하는 경우의 제1 전력의 크기를 연산하고, 상기 제3 전력 전달 경로를 통해 상기 부하에 전력을 전달하는 경우의 제3 전력의 크기를 연산하며, 상기 제1 전력의 크기 및 상기 제3 전력의 크기를 비교한 결과에 따라 상기 제1 컨버터 스위치, 상기 제2 컨버터 스위치, 상기 제3 컨버터 스위치 및 상기 제4 컨버터 스위치를 제어하고,Calculate the magnitude of first power when power is delivered to the load through the first power transfer path, and calculate the magnitude of third power when power is delivered to the load through the third power transfer path And controlling the first converter switch, the second converter switch, the third converter switch, and the fourth converter switch according to a result of comparing the magnitude of the first power and the magnitude of the third power,
    상기 비교 결과, 상기 제1 전력의 크기가 상기 제3 전력의 크기보다 크거나 같은 경우에는, 상기 벅-부스트 컨버터부를 MPPT 제어하여 상기 제1 전력 전달 경로를 형성하고,As a result of the comparison, when the magnitude of the first power is greater than or equal to the magnitude of the third power, the buck-boost converter unit controls the MPPT to form the first power transfer path,
    상기 비교 결과, 상기 제1 전력의 크기가 상기 제3 전력의 크기보다 작은 경우에는, 상기 벅-부스트 컨버터부를 MPPT 제어하지 않고 상기 제3 전력 전달 경로를 형성하는 것을 특징으로 하는 전력 시스템.As a result of the comparison, when the magnitude of the first power is smaller than the magnitude of the third power, the buck-boost converter unit forms the third power transmission path without MPPT control.
  17. 제16항에 있어서,The method of claim 16,
    상기 제어부는,The control unit,
    상기 비교 결과, 상기 제1 전력의 크기가 상기 제3 전력의 크기보다 크거나 같은 경우에는, 상기 제1 전력 전달 경로를 형성하기 위해, 상기 제1 컨버터 스위치는 온시키고 상기 제3 컨버터 스위치는 오프시키며, 상기 제2 컨버터 스위치와 상기 제4 컨버터 스위치의 온오프 동작을 MPPT 알고리즘에 의한 듀티비에 따라 교번으로 제어하여 상기 입력 전압을 승압하고,As a result of the comparison, when the magnitude of the first power is greater than or equal to the magnitude of the third power, the first converter switch is turned on and the third converter switch is turned off to form the first power transmission path. And boosting the input voltage by alternately controlling the on-off operation of the second converter switch and the fourth converter switch according to a duty ratio according to an MPPT algorithm,
    상기 비교 결과, 상기 제1 전력의 크기가 상기 제3 전력의 크기보다 작은 경우에는, 상기 제3 전력 전달 경로를 형성하기 위해, 상기 제1 컨버터 스위치 및 상기 제2 컨버터 스위치를 온시키고, 상기 제3 컨버터 스위치 및 상기 제4 컨버터 스위치를 오프시키는 것을 특징으로 하는 전력 시스템.As a result of the comparison, when the magnitude of the first power is smaller than the magnitude of the third power, in order to form the third power transmission path, the first converter switch and the second converter switch are turned on, and the The power system, characterized in that turning off the three converter switch and the fourth converter switch.
  18. 제15항에 있어서,The method of claim 15,
    상기 제어부는,The control unit,
    상기 제2 전력 전달 경로를 통해 상기 부하에 전력을 전달하는 경우의 제2 전력의 크기를 연산하고, 상기 제3 전력 전달 경로를 통해 상기 부하에 전력을 전달하는 경우의 제3 전력의 크기를 연산하며, 상기 제2 전력의 크기 및 상기 제3 전력의 크기를 비교한 결과에 따라 상기 제1 컨버터 스위치, 상기 제2 컨버터 스위치, 상기 제3 컨버터 스위치 및 상기 제4 컨버터 스위치를 제어하고,Calculate the magnitude of the second power when power is delivered to the load through the second power transfer path, and the magnitude of the third power when power is delivered to the load through the third power transfer path And controlling the first converter switch, the second converter switch, the third converter switch, and the fourth converter switch according to a result of comparing the magnitude of the second power and the magnitude of the third power,
    상기 비교 결과, 상기 제2 전력의 크기가 상기 제3 전력의 크기보다 크거나 같은 경우에는, 상기 벅-부스트 컨버터부를 MPPT 제어하여 상기 제2 전력 전달 경로를 형성하고,As a result of the comparison, when the magnitude of the second power is greater than or equal to the magnitude of the third power, the buck-boost converter unit controls the MPPT to form the second power transfer path,
    상기 비교 결과, 상기 제2 전력의 크기가 상기 제3 전력의 크기보다 작은 경우에는, 상기 벅-부스트 컨버터부를 MPPT 제어하지 않고 상기 제3 전력 전달 경로를 형성하는 것을 특징으로 하는 전력 시스템.As a result of the comparison, when the magnitude of the second power is smaller than the magnitude of the third power, the buck-boost converter unit forms the third power transmission path without MPPT control.
  19. 제18항에 있어서,The method of claim 18,
    상기 제어부는,The control unit,
    상기 비교 결과, 상기 제2 전력의 크기가 상기 제3 전력의 크기보다 크거나 같은 경우에는, 상기 제2 전력 전달 경로를 형성하기 위해, 상기 제2 컨버터 스위치는 온시키고 상기 제4 컨버터 스위치는 오프시키며, 상기 제1 컨버터 스위치와 상기 제3 컨버터 스위치의 온오프 동작을 MPPT 알고리즘에 의한 듀티비에 따라 교번으로 제어하여 상기 입력 전압을 강압하고,As a result of the comparison, when the magnitude of the second power is greater than or equal to the magnitude of the third power, the second converter switch is turned on and the fourth converter switch is turned off to form the second power transmission path. And, by alternately controlling the on-off operation of the first converter switch and the third converter switch according to a duty ratio according to the MPPT algorithm to step down the input voltage,
    상기 비교 결과, 상기 제2 전력의 크기가 상기 제3 전력의 크기보다 작은 경우에, 상기 제3 전력 전달 경로를 형성하기 위해, 상기 제1 컨버터 스위치 및 상기 제2 컨버터 스위치를 온시키고, 상기 제3 컨버터 스위치 및 상기 제4 컨버터 스위치를 오프시키는 것을 특징으로 하는 전력 시스템.As a result of the comparison, when the magnitude of the second power is smaller than the magnitude of the third power, in order to form the third power transmission path, the first converter switch and the second converter switch are turned on, and the second power The power system, characterized in that turning off the three converter switch and the fourth converter switch.
PCT/KR2020/016369 2019-11-20 2020-11-19 Power system WO2021101266A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2019-0149249 2019-11-20
KR1020190149249A KR102309852B1 (en) 2019-11-20 2019-11-20 Power System with Boost Converter
KR10-2019-0159830 2019-12-04
KR1020190159830A KR102333360B1 (en) 2019-12-04 2019-12-04 Power Generation System and control method with boost converter
KR1020190164625A KR102295755B1 (en) 2019-12-11 2019-12-11 Power System and control method with Buck-Boost Converter
KR10-2019-0164657 2019-12-11
KR1020190164657A KR102295757B1 (en) 2019-12-11 2019-12-11 Power System with Buck Converter
KR10-2019-0164625 2019-12-11

Publications (1)

Publication Number Publication Date
WO2021101266A1 true WO2021101266A1 (en) 2021-05-27

Family

ID=75980969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016369 WO2021101266A1 (en) 2019-11-20 2020-11-19 Power system

Country Status (1)

Country Link
WO (1) WO2021101266A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109889A (en) * 2009-11-20 2011-06-02 Sony Corp Device and method for controlling energy storage
JP2011108234A (en) * 2010-11-05 2011-06-02 Omron Corp Voltage setting device, photovoltaic power generation system, and control method of voltage setting device
WO2012081116A1 (en) * 2010-12-16 2012-06-21 三菱電機株式会社 Photovoltaic power generation system
KR20180043724A (en) * 2016-10-20 2018-04-30 주식회사 실리콘마이터스 Buck boost converter and control method thereof
KR20180100763A (en) * 2017-03-02 2018-09-12 현대자동차주식회사 Solar cell system and control method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109889A (en) * 2009-11-20 2011-06-02 Sony Corp Device and method for controlling energy storage
JP2011108234A (en) * 2010-11-05 2011-06-02 Omron Corp Voltage setting device, photovoltaic power generation system, and control method of voltage setting device
WO2012081116A1 (en) * 2010-12-16 2012-06-21 三菱電機株式会社 Photovoltaic power generation system
KR20180043724A (en) * 2016-10-20 2018-04-30 주식회사 실리콘마이터스 Buck boost converter and control method thereof
KR20180100763A (en) * 2017-03-02 2018-09-12 현대자동차주식회사 Solar cell system and control method thereof

Similar Documents

Publication Publication Date Title
WO2017069555A1 (en) Power supply device and power supply system including the same
WO2018052163A1 (en) Pcs efficiency-considered microgrid operation device and operation method
WO2013100736A1 (en) Led luminescence apparatus
WO2014104776A1 (en) Led driving circuit for continuously driving led, led lighting device comprising same and driving method
WO2012081878A2 (en) Led lighting apparatus driven by alternating current
WO2018159910A1 (en) Uninterruptible power supply system comprising energy storage system
WO2019098709A1 (en) Photovoltaic module
WO2017131436A1 (en) Cleaner and control method therefor
WO2016093534A1 (en) Led drive circuit with improved flicker performance, and led lighting device comprising same
WO2010137921A2 (en) Led driver
WO2023063496A1 (en) Energy storage system
WO2019172643A1 (en) Power supply
CN107112767A (en) Charging control circuit, charging device, charging system and charge control method
WO2022119278A1 (en) Arrangement and method for discharging a dc link capacitor
WO2020055020A1 (en) Power supply device and power supply system
WO2023140566A1 (en) Serial-connection differential power conditioning system for photovoltaic module equipped with work condition circuit and bypass circuit
WO2020251273A1 (en) Monitoring device and solar system comprising same
WO2021101266A1 (en) Power system
WO2015060644A1 (en) Zvzcs switching converter using single winding transformer
WO2024043679A1 (en) Secondary battery charging system and method
WO2020116817A1 (en) Power conversion method
WO2021006601A1 (en) Power conversion device and photovoltaic module comprising same
WO2018199667A1 (en) Photovoltaic power generation system and control method therefor
WO2017171182A1 (en) Converter-driving device and converter-controlling device in wind power generation system and switching element module-driving device and switching element module-controlling device in wind power generation system
WO2018048233A1 (en) Photovoltaic module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890809

Country of ref document: EP

Kind code of ref document: A1