WO2021101001A1 - Collaborative coexistence management framework for industrial wireless sensor network and manufacturing environment management method using same - Google Patents

Collaborative coexistence management framework for industrial wireless sensor network and manufacturing environment management method using same Download PDF

Info

Publication number
WO2021101001A1
WO2021101001A1 PCT/KR2020/007804 KR2020007804W WO2021101001A1 WO 2021101001 A1 WO2021101001 A1 WO 2021101001A1 KR 2020007804 W KR2020007804 W KR 2020007804W WO 2021101001 A1 WO2021101001 A1 WO 2021101001A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
gateway
central control
control unit
management framework
Prior art date
Application number
PCT/KR2020/007804
Other languages
French (fr)
Korean (ko)
Inventor
홍승호
우맹맹
장시옹펑
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Publication of WO2021101001A1 publication Critical patent/WO2021101001A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/74Admission control; Resource allocation measures in reaction to resource unavailability
    • H04L47/748Negotiation of resources, e.g. modification of a request
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to a cooperative coexistence management framework, and in detail, an industrial wireless sensor network that controls the activation of coexisting heterogeneous industrial wireless sensor networks (IWSNs) while ensuring respective real-time communication requirements. It relates to a coexistence management framework for collaboration and a management method using the same.
  • IWSNs industrial wireless sensor networks
  • Cognitive Radio is a technology in which a wireless communication device observes the surrounding spectrum and communicates using a frequency band that is not used temporally or spatially so as not to cause an interference signal to an existing frequency user.
  • the conventional cooperative spectrum detection method focused on coexistence management of the same type IWSN within the frequency domain, and it is difficult to increase the cost and meet the actual requirements due to the need to additionally mount an advanced detection device in the central detection device. Occurs.
  • each frequency hopping technique can be applied to bypass interference, there is a problem in that high radio traffic such as message collision, packet delay, and loss occurs when each operates independently without separate adjustment.
  • the conventional industrial wireless network for coexistence is mainly used for coexistence management of the same type IWSN, not used for coexistence management of heterogeneous IWSNs, and there is also a problem that the cost of the factory automation system using heterogeneous IWSN devices increases. .
  • the present invention was invented to solve the above problems, and an object of the present invention is a cooperative coexistence management framework for an industrial wireless sensor network that can minimize cost by accepting heterogeneity between heterogeneous industrial wireless sensor networks, and It is to provide a management method using this.
  • another object of the present invention is a cooperative coexistence management framework for an industrial wireless sensor network capable of transmitting data at an appropriate time without mutual interference by adjusting the activation of coexisting industrial wireless sensor networks according to respective requirements. And it is to provide a management method using the same.
  • another object of the present invention is a cooperative coexistence management framework for industrial wireless sensor networks that can guarantee real-time communication demands of different types of industrial wireless sensor networks while allocating common media resources between coexisting networks, and management using the same. Is to provide a way.
  • the cooperative coexistence management framework includes: a communication management unit configured to monitor a manufacturing environment by having a gateway unit composed of at least two or more heterogeneous networks; And a central control unit for managing the communication management unit through a joint scheduling algorithm.
  • the gateway unit may include a network management unit that communicates with the central control unit through wired or wireless access; And a node unit including at least one node.
  • the gateway unit is characterized in that it includes at least two or more wireless networks among Wireless HART, ISA 100.11a, and WIA-PA.
  • the gateway unit is characterized in that it monitors the manufacturing environment by periodically generating time-domain-based data.
  • the gateway unit is characterized in that it monitors the manufacturing environment by generating aperiodic data.
  • the aperiodic data includes at least one of an alarm notification, system configuration data, and file data.
  • the joint scheduling algorithm is configured such that the central control unit calculates a resource allocation result in the communication management unit based on a requirement of the communication management unit and transmits the calculated resource allocation result to the communication management unit. do.
  • the joint scheduling algorithm is characterized in that it includes input of at least one of a node set, a maximum allowed message delay, and a slot allocated to aperiodic data.
  • the co-scheduling algorithm outputs at least one of an Integrated Superframe Duration (ISD), a transition period (T max ) of ISD, and First Data Transmission Instant (FDTI) in which the active and inactive periods of the gateway unit are set. It characterized in that it includes.
  • ISD Integrated Superframe Duration
  • T max transition period
  • FDTI First Data Transmission Instant
  • the ISD is characterized in that it is composed of a slot allocated to periodic data and a slot allocated to aperiodic data.
  • a manufacturing environment management method using a cooperative coexistence management framework includes the steps of, by a central control unit of the cooperative coexistence management framework, collecting requirements from a plurality of gateway units composed of at least two heterogeneous networks; Deriving, by the central control unit, a result of resource allocation of the gateway unit; And transmitting, by the central control unit, a result of resource allocation to the gateway unit.
  • the step of deriving the resource allocation result of the gateway unit by the central control unit is characterized in that an Integrated Superframe Duration (ISD) in which an active period and an inactive period of the gateway unit are set is generated.
  • ISD Integrated Superframe Duration
  • the ISD is composed of a slot allocated to a node of periodic data and a slot allocated to a node of aperiodic data, and a specific node is assigned to a slot allocated to the node of periodic data.
  • a manufacturing environment management method using a cooperative coexistence management framework includes the steps of, by a central control unit of the cooperative coexistence management framework, collecting requirements from a plurality of gateway units composed of at least two heterogeneous networks; Determining, by the central control unit, the number of slots to which a node generating periodic data is allocated using a joint scheduling algorithm; Determining, by the central control unit, the number of slots to which a node generating aperiodic data is allocated using the joint scheduling algorithm; Deriving, by the central control unit, a result of resource allocation of the gateway unit; And transmitting, by the central control unit, a result of resource allocation to the gateway unit.
  • any one of the plurality of gateway units is activated according to a result of the resource allocation, the remaining gateway units are deactivated.
  • the step of deriving the resource allocation result of the gateway unit by the central control unit generates an ISD (Integrated Superframe Duration) in which the active period and the inactive period of the gateway unit are set, and the determined periodic period in the active period of the gateway unit. It is characterized in that a specific node is allocated to a slot to which a node generating data is allocated.
  • ISD Integrated Superframe Duration
  • the cooperative coexistence management framework for an industrial wireless sensor network and a management method using the same according to the present invention has an effect of minimizing cost by accommodating heterogeneity between heterogeneous industrial wireless sensor networks.
  • the coexistence management framework for industrial wireless sensor networks and a management method using the same adjusts the activation of coexisting heterogeneous industrial wireless sensor networks according to respective requirements, and provides data at an appropriate time without mutual interference. There is an effect that can be delivered.
  • the cooperative coexistence management framework for the industrial wireless sensor network and the management method using the same according to the present invention can guarantee real-time communication requirements of each heterogeneous industrial wireless sensor network while allocating common media resources between coexisting networks. It works.
  • FIG. 1 is a diagram showing a cooperative coexistence management framework for an industrial wireless sensor network according to the present invention.
  • FIG. 2 is a diagram showing an Integrated Superframe Duration (ISD) superframe structure included in a co-scheduling algorithm of a cooperative coexistence management framework for an industrial wireless sensor network according to the present invention.
  • ISD Integrated Superframe Duration
  • FIG. 3 is a diagram illustrating an example of time slot allocation in the ISD super frame structure according to FIG. 2.
  • 4 to 6 are graphs showing examples of real-time message delays of sample nodes existing in each gateway unit in the cooperative coexistence management framework according to FIG. 1.
  • FIG. 7 and 8 are block diagrams showing a manufacturing environment management method using a cooperative coexistence management framework according to the present invention.
  • Jet part and “Jet module” described in the specification mean a unit that processes at least one function or operation, which may be implemented by hardware or software, or a combination of hardware and software.
  • FIG. 1 is a diagram showing a cooperative coexistence management framework for an industrial wireless sensor network according to the present invention.
  • a coexistence management framework for an industrial wireless sensor network includes a central control unit 10 and a communication management unit 20, and the communication management unit 20 includes gateway units 30, 40, and 50).
  • the communication management unit 20 may monitor the manufacturing environment by having at least two gateway units 30, 40, 50 taking into account characteristics such as factory automation and process automation.
  • the gateway units 30, 40, and 50 are distributed to the first gateway unit 30, the second gateway unit 40, and the third gateway unit 50, and each gateway unit 30, 40, 50) may be composed of an industrial wireless sensor network (IWSN; Industrial Wireless Sensor Network, denoted as IWSN).
  • IWSN Industrial Wireless Sensor Network
  • the IWSNs constituting each of the gateway units 30, 40, and 50 may include different types of IWSNs for each plant level, such as a cross plant and wireless communication of sensors/drivers within the plant.
  • the first gateway unit 30 is a wireless HART network
  • the second gateway unit 40 is an ISA 100.11a network
  • the third gateway unit 50 is WIA- Includes the PA network.
  • IWSNs constituting each of the gateway units 30, 40, 50 include Wireless HART, ISA 100.11a, and WIA-PA in the present invention, but are not limited thereto, and 802.11-based Wi-Fi technology and 802.15.4 There may be various technologies based on.
  • the ISWN constituting the gateway units 30, 40, 50 may include WIA-FA, Bluetooth, GSM, GPRS, UMTS, LET, EDGE, ZigBee, and the like.
  • the gateway unit (30, 40, 50) includes a network management unit (31, 41, 51) and a node unit (32, 42, 52), specifically, the first network management unit 31, the second network management unit 41 And a third network management unit 51, a first node unit 32, a second node unit 42, and a third node unit 52.
  • the gateway units 30, 40, and 50 may periodically generate time-domain-based data to monitor the state of vibration, temperature, gas, and machinery in the industrial site.
  • the gateway units 30, 40, and 50 may generate aperiodic data including at least one of alarm notification, system configuration data, and file data.
  • the first network management unit 31, the second network management unit 41, and the third network management unit 51 can communicate with the central control unit 10 through wired or wireless access, and each gateway unit 30, 40, 50
  • the first node part 32, the second node part 42, and the third node part 52 residing in the IWSN may form a star topology common to each IWSN type.
  • the central control unit 10 can manage the communication management unit 20 through a joint scheduling algorithm (CSA; Collaborative Scheduling Algorithm), and the central control unit 10 exists in each of the gateway units 30, 40, 50. It is possible to communicate with the network management units 31, 41, and 51 through wired or wireless access.
  • CSA Joint scheduling algorithm
  • the joint scheduling algorithm may collect the requirements of the communication management unit 20 from the central control unit 10 and transmit the calculated resource allocation result to the communication management unit 20 again.
  • the joint scheduling algorithm includes at least one input of a node set, a maximum allowed message delay, and a time slot allocated to aperiodic data, and may include an output of at least one of ISD, Tmax, and FDTI.
  • ISD is a basic unit for resource allocation of the central control unit
  • T max transitional period
  • FDTI is the It may be defined as a first data transmission instant.
  • the joint scheduling algorithm may be described in more detail with an Integrated Superframe Duration (ISD) superframe structure as a basic unit in FIGS. 2 and 3.
  • ISD Integrated Superframe Duration
  • FIG. 2 is a diagram showing the structure of an Integrated Superframe Duration (ISD) superframe, which is a basic unit of a cooperative coexistence management framework for an industrial wireless sensor network according to the present invention
  • FIG. 3 is a time of the ISD superframe unit structure according to FIG. It is a diagram showing an example of slot allocation.
  • FIG. 3 is a diagram for explaining allocation of a first ISD time slot in a transition period (T max ) of the ISD super frame structure according to FIG. 2.
  • the joint scheduling algorithm is an algorithm in which the central control unit 10 collects the requirements of the communication management unit 20 and transmits the calculated resource allocation result to the communication management unit 20 again.
  • the manufacturing environment can be monitored with the structure as a basic unit.
  • the ISD super frame structure 200 of FIG. 2 includes at least one ISD unit structure 60, and the central control unit 10 can perform the cooperative coexistence management framework by periodically repeating the ISD unit structure 60. have.
  • one ISD unit structure 60 includes a first gateway unit active period 63, a second gateway unit active period 64, and a third gateway unit active period 65.
  • one gateway unit may be activated only during an inactive period or a dormant period of another gateway unit, so that a portion where the activity periods overlap with each other may not exist.
  • the ISD unit structure 60 may be allocated to two sections.
  • the ISD unit structure 60 is divided into and assigned to the first gateway unit active period 63, the second gateway unit active period 64, and the third gateway unit active period 65, so that the active period of each period.
  • An example of scheduling in which only the gateway units 30, 40, and 50 corresponding to is activated is shown.
  • FIG. 2 is a diagram illustrating the active periods 63, 64, 65 and inactive periods of each gateway unit in one ISD.
  • the first gateway unit active period 63 is a Wireless HART and a second gateway unit active period ( 64) describes ISA 100.11a and the third gateway unit active period 65 as a WIA-PA network, but is not limited thereto, and WIA-FA, Bluetooth, GSM, GPRS, UMTS, LET, EDGE and ZigBee technologies, etc. Can include.
  • T max is an example of the first ISD super frame structure time slot allocation in the transition period (T max ) of the ISD super frame structure according to FIG. 2, periodic data in the allocated active period slots of each gateway unit 30, 40, 50 Indicates the number of allocations of nodes that generate (TSPD; Time Slots for Periodic Data) and aperiodic data (TSAD; Time Slots for Aperiodic Data).
  • TSPD Time Slots for Periodic Data
  • TSAD Time Slots for Aperiodic Data
  • the number of allocated slots for periodic data (TSPD) and aperiodic data (TSAD) nodes can be autonomously adjusted within a range not exceeding the maximum length, and when the number of nodes generating periodic data (TSPD) is reduced, the network The effect of blocking wireless traffic can be improved.
  • 4 to 6 are graphs showing examples of real-time message delays of sample nodes existing in each gateway unit in the cooperative coexistence management framework according to FIG. 1.
  • the gateway part of FIG. 4 is a graph showing a wireless HART network
  • the gateway part of FIG. 5 is an ISA 100.11a network
  • the gateway part of FIG. 6 shows an example of a real-time message delay of a sample node selected from a WIA-PA network.
  • FIG. 7 and 8 are block diagrams illustrating a manufacturing environment management method using a cooperative coexistence management framework according to the present invention.
  • the central control unit collects the requirements of the communication management unit (S700), and the central control unit derives the resource allocation result of the communication management unit using a joint scheduling algorithm. (S710) and the central control unit transmitting the resource allocation result to the communication management unit (S720).
  • the central control unit 10 collects the requirements by focusing on the time domain of each gateway unit 30, 40, and 50 without violating the delay requirements.
  • the step of deriving the resource allocation result of the communication management unit 20 using the joint scheduling algorithm in the central control unit 10 includes periodic data (TSPD) and aperiodic data (TSAD) in the active period slot.
  • TSPD periodic data
  • TSAD aperiodic data
  • the result allocated by the central control unit 10 is transmitted to the first gateway unit 30 existing in the communication management unit 20.
  • the result can be transmitted to the second gateway unit 40 and the third gateway unit 50, and the resource allocation result is the number of nodes that generate periodic data or aperiodic data within the active period or active period of each network It may include.
  • FIG. 8 shows the number of slots allocated to the nodes of periodic data and aperiodic data by applying the joint scheduling algorithm in step S710 of deriving a resource allocation result of the communication management unit by using the joint scheduling algorithm in the central control unit of FIG. 7.
  • This is a manufacturing environment management method using a cooperative coexistence management framework further including determining steps S810 and S820.
  • the central control unit collects the requirements of the communication management unit (S800), and the central control unit is allocated to a node of periodic data using a joint scheduling algorithm. Determining the number of slots (S810), determining the number of slots allocated to nodes of aperiodic data using a joint scheduling algorithm in the central control unit (S820), deriving the resource allocation result of the communication management unit in the central control unit And a step (S830) of transmitting the resource allocation result to the communication management unit by the central control unit (S830).
  • Steps S810 and S820 may be described through a specific example of FIG. 3, the order of steps S810 and S820 may be changed to steps S820 and S810, and steps S810 and S820 may be selectively applied to only one step regardless of the order. have.
  • the present invention provides a framework and method for managing coexistence of heterogeneous industrial wireless sensor networks located together in the same geographic area (eg, industrial plant) and sharing a common frequency domain.
  • the present invention has proposed a joint scheduling algorithm (CSA) in terms of a central control point with a central control unit for coordinating the activation of each network.
  • the central control unit allocates the active period of each network and activates the network only during the active period, guaranteeing the real-time communication requirements of heterogeneous industrial wireless sensor networks existing in the industrial environment, while ensuring the real-time communication requirements of the time domain medium in a centralized manner.
  • CSA joint scheduling algorithm
  • the central control unit according to the present invention can be expanded to an industrial management center, and operation performance can be improved by adjusting the work of a plurality of factories.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • Medical Informatics (AREA)
  • Marketing (AREA)
  • General Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Computing Systems (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to a collaborative coexistence management framework and, more specifically, to a collaborative coexistence management framework for an industrial wireless sensor network (IWSN) that coordinates activation of coexisting heterogeneous IWSNs while ensuring respective real-time communication requirements thereof, and a management method using same. To this end, the collaborative coexistence management framework, according to the present invention, comprises: a communication management unit for monitoring a manufacturing environment by having a gateway unit composed of at least two heterogeneous networks; and a central control unit for managing the communication management unit through a co-scheduling algorithm.

Description

산업용 무선 센서 네트워크를 위한 협업 공존 관리 프레임워크 및 이를 이용한 제조환경 관리 방법Collaborative coexistence management framework for industrial wireless sensor network and manufacturing environment management method using the same
본 발명은 협업 공존 관리 프레임워크에 관한 것으로, 상세하게는 각각의 실시간 통신 요구사항을 보장하면서 공존하는 이종의 산업용 무선 센서 네트워크(IWSN; Industrial Wireless Sensor Network)의 활성화를 조정하는 산업용 무선 센서 네트워크를 위한 협업 공존 관리 프레임워크 및 이를 이용한 관리 방법에 관한 것이다.The present invention relates to a cooperative coexistence management framework, and in detail, an industrial wireless sensor network that controls the activation of coexisting heterogeneous industrial wireless sensor networks (IWSNs) while ensuring respective real-time communication requirements. It relates to a coexistence management framework for collaboration and a management method using the same.
여러 공급 업체의 산업용 무선장치는 동일한 지리적 영역에 배치되어 공통의 전송 매체를 공유하는 산업 제조 환경에 존재한다. 이러한 복잡한 제조 환경에서 이종의 산업용 무선 센서 네트워크의 공존을 가능하게 하는 매체 자원 공유 메커니즘의 필요성이 증대되었다.Industrial radios from multiple vendors exist in industrial manufacturing environments that are located in the same geographic area and share a common transmission medium. In such a complex manufacturing environment, the need for a media resource sharing mechanism that enables the coexistence of heterogeneous industrial wireless sensor networks has increased.
인지 무선(Cognitive Radio)은 무선 통신 기기가 주변의 스펙트럼을 관찰하여 기존의 주파수 사용자에게 간섭 신호를 일으키지 않도록 시간적 또는 공간적으로 사용되지 않는 주파수대역을 활용하여 통신하는 기술이다.Cognitive Radio is a technology in which a wireless communication device observes the surrounding spectrum and communicates using a frequency band that is not used temporally or spatially so as not to cause an interference signal to an existing frequency user.
종래에는 이와 같은 인지 무선(Cognitive Radio) 및 산업용 무선 네트워크를 결합하여 융합 센터(중앙 감지 장치)에서 감지 결과를 수집하고, 총 감지 오류율을 최소화 하기 위한 중앙 집중식 결정을 내리는 협조 스펙트럼 감지 방식을 사용하였다. Conventionally, cognitive radio and industrial wireless networks were combined to collect detection results at a fusion center (central sensing device), and a cooperative spectrum detection method was used to make a centralized decision to minimize the total detection error rate. .
그러나, 종래의 협조 스펙트럼 감지 방식은 주파수 도메인 내에서 동종 IWSN의 공존 관리를 중점적으로 수행하였으며, 중앙 감지 장치에 고급 감지 장치의 추가 장착이 필요하여 비용의 증가 및 실제 요구사항을 충족하기 어려운 문제점이 발생한다.However, the conventional cooperative spectrum detection method focused on coexistence management of the same type IWSN within the frequency domain, and it is difficult to increase the cost and meet the actual requirements due to the need to additionally mount an advanced detection device in the central detection device. Occurs.
또한, 간섭을 우회하기 위하여 각각의 주파수 호핑 기술을 적용할 수 있으나, 별도의 조정 없이 각각 독립적으로 작동하는 경우 메시지 충돌, 패킷 지연 및 손실 등의 높은 무선 트래픽이 발생한다는 문제점이 있다.In addition, although each frequency hopping technique can be applied to bypass interference, there is a problem in that high radio traffic such as message collision, packet delay, and loss occurs when each operates independently without separate adjustment.
마지막으로, 종래의 공존을 위한 산업용 무선 네트워크는 주로 동종 IWSN의 공존 관리에 사용되어 이종 IWSN의 공존 관리에 사용되지 않았으며, 이종의 IWSN 장치를 이용한 공장 자동화 시스템의 비용이 증가한다는 문제점도 발생한다.Lastly, the conventional industrial wireless network for coexistence is mainly used for coexistence management of the same type IWSN, not used for coexistence management of heterogeneous IWSNs, and there is also a problem that the cost of the factory automation system using heterogeneous IWSN devices increases. .
본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 본 발명의 목적은 이종의 산업용 무선 센서 네트워크 사이의 이질성을 수용함으로써 비용을 최소화할 수 있는 산업용 무선 센서 네트워크를 위한 협업 공존 관리 프레임워크 및 이를 이용한 관리 방법을 제공하는 것이다.The present invention was invented to solve the above problems, and an object of the present invention is a cooperative coexistence management framework for an industrial wireless sensor network that can minimize cost by accepting heterogeneity between heterogeneous industrial wireless sensor networks, and It is to provide a management method using this.
또한, 본 발명의 다른 목적은 각각의 요구사항에 따라 공존하는 이종의 산업용 무선 센서 네트워크의 활성화를 조정하여 서로의 간섭 없이 적절한 시간에 데이터를 전달할 수 있는 산업용 무선 센서 네트워크를 위한 협업 공존 관리 프레임워크 및 이를 이용한 관리 방법을 제공하는 것이다.In addition, another object of the present invention is a cooperative coexistence management framework for an industrial wireless sensor network capable of transmitting data at an appropriate time without mutual interference by adjusting the activation of coexisting industrial wireless sensor networks according to respective requirements. And it is to provide a management method using the same.
또한, 본 발명의 다른 목적은 공존하는 네트워크 사이에 공통 매체 자원을 할당하면서 각 이종의 산업용 무선 센서 네트워크의 실시간 통신 요구를 보장할 수 있는 산업용 무선 센서 네트워크를 위한 협업 공존 관리 프레임워크 및 이를 이용한 관리 방법을 제공하는 것이다.In addition, another object of the present invention is a cooperative coexistence management framework for industrial wireless sensor networks that can guarantee real-time communication demands of different types of industrial wireless sensor networks while allocating common media resources between coexisting networks, and management using the same. Is to provide a way.
이를 위하여, 본 발명에 따른 협업 공존 관리 프레임워크는 적어도 두 개 이상의 이종의 네트워크로 구성된 게이트웨이부를 구비하여 제조환경을 모니터링 하는 통신 관리부; 및 공동 스케줄링 알고리즘을 통하여 상기 통신 관리부를 관리하는 중앙 제어부를 포함한다. To this end, the cooperative coexistence management framework according to the present invention includes: a communication management unit configured to monitor a manufacturing environment by having a gateway unit composed of at least two or more heterogeneous networks; And a central control unit for managing the communication management unit through a joint scheduling algorithm.
실시 예에 있어서, 상기 게이트웨이부는 상기 중앙 제어부와 유선 또는 무선 액세스로 통신하는 네트워크 관리부; 및 적어도 하나 이상의 노드를 구비하는 노드부를 포함하는 것을 특징으로 한다.In an embodiment, the gateway unit may include a network management unit that communicates with the central control unit through wired or wireless access; And a node unit including at least one node.
실시 예에 있어서, 상기 게이트웨이부는 Wireless HART, ISA 100.11a 및 WIA-PA 중 적어도 두 개 이상의 무선 네트워크를 포함하는 것을 특징으로 한다.In an embodiment, the gateway unit is characterized in that it includes at least two or more wireless networks among Wireless HART, ISA 100.11a, and WIA-PA.
실시 예에 있어서, 상기 게이트웨이부는 시간 영역 기반의 데이터를 주기적으로 생성하여 제조환경을 모니터링 하는 것을 특징으로 한다.In an embodiment, the gateway unit is characterized in that it monitors the manufacturing environment by periodically generating time-domain-based data.
실시 예에 있어서, 상기 게이트웨이부는 비주기적 데이터를 생성하여 제조환경을 모니터링 하는 것을 특징으로 한다.In an embodiment, the gateway unit is characterized in that it monitors the manufacturing environment by generating aperiodic data.
실시 예에 있어서, 상기 비주기적 데이터는 경보 알림, 시스템 구성 데이터 및 파일 데이터 중 적어도 하나 이상을 포함하는 것을 특징으로 한다.In an embodiment, the aperiodic data includes at least one of an alarm notification, system configuration data, and file data.
실시 예에 있어서, 상기 공동 스케줄링 알고리즘은 상기 중앙 제어부가 상기 통신 관리부의 요구사항에 근거하여 상기 통신 관리부 내의 자원 할당 결과를 산출하고 그 산출한 자원 할당 결과를 상기 통신 관리부로 전송하도록 구성된 것을 특징으로 한다.In an embodiment, the joint scheduling algorithm is configured such that the central control unit calculates a resource allocation result in the communication management unit based on a requirement of the communication management unit and transmits the calculated resource allocation result to the communication management unit. do.
실시 예에 있어서, 상기 공동 스케줄링 알고리즘은 노드 집합, 최대 허용 메시지 지연 및 비주기적 데이터에 할당된 슬롯 중 적어도 하나 이상의 입력을 포함하는 것을 특징으로 한다.In an embodiment, the joint scheduling algorithm is characterized in that it includes input of at least one of a node set, a maximum allowed message delay, and a slot allocated to aperiodic data.
실시 예에 있어서, 상기 공동 스케줄링 알고리즘은 상기 게이트웨어부의 활성 기간 및 비활성 기간을 설정한ISD(Integrated Superframe Duration), ISD의 과도기(T max), FDTI(First Data Transmission Instant) 중 적어도 하나 이상의 출력을 포함하는 것을 특징으로 한다.In an embodiment, the co-scheduling algorithm outputs at least one of an Integrated Superframe Duration (ISD), a transition period (T max ) of ISD, and First Data Transmission Instant (FDTI) in which the active and inactive periods of the gateway unit are set. It characterized in that it includes.
실시 예에 있어서, 상기 ISD는 주기적 데이터에 할당된 슬롯과 비주기적 데이터에 할당된 슬롯으로 구성되어 것을 특징으로 한다.In an embodiment, the ISD is characterized in that it is composed of a slot allocated to periodic data and a slot allocated to aperiodic data.
또한, 협업 공존 관리 프레임워크를 이용한 제조환경 관리 방법은 상기 협업 공존 관리 프레임워크의 중앙 제어부가 적어도 2개 이상의 이종의 네트워크로 구성된 복수의 게이트웨이부로부터 요구사항을 수집하는 단계; 상기 중앙 제어부가 상기 게이트웨이부의 자원할당 결과를 도출하는 단계; 및 상기 중앙 제어부가 자원할당 결과를 상기 게이트웨이부로 전송하는 단계를 포함한다.In addition, a manufacturing environment management method using a cooperative coexistence management framework includes the steps of, by a central control unit of the cooperative coexistence management framework, collecting requirements from a plurality of gateway units composed of at least two heterogeneous networks; Deriving, by the central control unit, a result of resource allocation of the gateway unit; And transmitting, by the central control unit, a result of resource allocation to the gateway unit.
실시 예에 있어서, 상기 중앙 제어부가 상기 게이트웨이부의 자원할당 결과를 도출하는 단계는 상기 게이트웨이부의 활성 기간 및 비활성 기간을 설정한ISD(Integrated Superframe Duration)를 생성하는 것을 특징으로 한다.In an embodiment, the step of deriving the resource allocation result of the gateway unit by the central control unit is characterized in that an Integrated Superframe Duration (ISD) in which an active period and an inactive period of the gateway unit are set is generated.
실시 예에 있어서, 상기 ISD는 주기적 데이터의 노드에 할당된 슬롯과 비주기적 데이터의 노드에 할당된 슬롯으로 구성되어 상기 주기적 데이터의 노드에 할당된 슬롯에 특정 노드가 지정되어 있는 것을 특징으로 한다.In an embodiment, the ISD is composed of a slot allocated to a node of periodic data and a slot allocated to a node of aperiodic data, and a specific node is assigned to a slot allocated to the node of periodic data.
또한, 협업 공존 관리 프레임워크를 이용한 제조환경 관리 방법은 상기 협업 공존 관리 프레임워크의 중앙 제어부가 적어도 2개 이상의 이종의 네트워크로 구성된 복수의 게이트웨이부로부터 요구사항을 수집하는 단계; 상기 중앙 제어부가 공동 스케줄링 알고리즘을 이용하여 주기적 데이터를 생성하는 노드가 할당되는 슬롯의 수를 결정하는 단계; 상기 중앙 제어부가 상기 공동 스케줄링 알고리즘을 이용하여 비주기적 데이터를 생성하는 노드가 할당되는 슬롯의 수를 결정하는 단계; 상기 중앙 제어부가 상기 게이트웨이부의 자원할당 결과를 도출하는 단계; 및 상기 중앙 제어부가 자원할당 결과를 상기 게이트웨이부로 전송하는 단계를 포함한다.In addition, a manufacturing environment management method using a cooperative coexistence management framework includes the steps of, by a central control unit of the cooperative coexistence management framework, collecting requirements from a plurality of gateway units composed of at least two heterogeneous networks; Determining, by the central control unit, the number of slots to which a node generating periodic data is allocated using a joint scheduling algorithm; Determining, by the central control unit, the number of slots to which a node generating aperiodic data is allocated using the joint scheduling algorithm; Deriving, by the central control unit, a result of resource allocation of the gateway unit; And transmitting, by the central control unit, a result of resource allocation to the gateway unit.
실시 예에 있어서, 상기 자원할당 결과에 따라 상기 복수의 게이트웨이부 중에서 어느 하나의 게이트웨이부가 활성화하면 나머지 게이트웨이부는 비활성화하는 것을 특징으로 한다.In an embodiment, when any one of the plurality of gateway units is activated according to a result of the resource allocation, the remaining gateway units are deactivated.
실시 예에 있어서, 상기 중앙 제어부가 상기 게이트웨이부의 자원할당 결과를 도출하는 단계는 상기 게이트웨이부의 활성 기간 및 비활성 기간을 설정한ISD(Integrated Superframe Duration)를 생성하고, 상기 게이트웨이부의 활성 기간에서 상기 결정한 주기적 데이터를 생성하는 노드가 할당되는 슬롯에 특정 노드를 할당하는 것을 특징으로 한다.In an embodiment, the step of deriving the resource allocation result of the gateway unit by the central control unit generates an ISD (Integrated Superframe Duration) in which the active period and the inactive period of the gateway unit are set, and the determined periodic period in the active period of the gateway unit. It is characterized in that a specific node is allocated to a slot to which a node generating data is allocated.
상술한 바와 같이, 본 발명에 의한 산업용 무선 센서 네트워크를 위한 협업 공존 관리 프레임워크 및 이를 이용한 관리 방법은 이종의 산업용 무선 센서 네트워크 사이의 이질성을 수용함으로써 비용을 최소화할 수 있는 효과가 있다.As described above, the cooperative coexistence management framework for an industrial wireless sensor network and a management method using the same according to the present invention has an effect of minimizing cost by accommodating heterogeneity between heterogeneous industrial wireless sensor networks.
또한, 본 발명에 의한 산업용 무선 센서 네트워크를 위한 협업 공존 관리 프레임워크 및 이를 이용한 관리 방법은 각각의 요구사항에 따라 공존하는 이종의 산업용 무선 센서 네트워크의 활성화를 조정하여 서로의 간섭 없이 적절한 시간에 데이터를 전달할 수 있는 효과가 있다.In addition, the coexistence management framework for industrial wireless sensor networks and a management method using the same according to the present invention adjusts the activation of coexisting heterogeneous industrial wireless sensor networks according to respective requirements, and provides data at an appropriate time without mutual interference. There is an effect that can be delivered.
또한, 본 발명에 의한 산업용 무선 센서 네트워크를 위한 협업 공존 관리 프레임워크 및 이를 이용한 관리 방법은 공존하는 네트워크 사이에 공통 매체 자원을 할당하면서 각 이종의 산업용 무선 센서 네트워크의 실시간 통신 요구를 보장할 수 있는 효과가 있다.In addition, the cooperative coexistence management framework for the industrial wireless sensor network and the management method using the same according to the present invention can guarantee real-time communication requirements of each heterogeneous industrial wireless sensor network while allocating common media resources between coexisting networks. It works.
도 1은 본 발명에 따른 산업용 무선 센서 네트워크를 위한 협업 공존 관리 프레임워크를 나타낸 도면.1 is a diagram showing a cooperative coexistence management framework for an industrial wireless sensor network according to the present invention.
도 2는 본 발명에 따른 산업용 무선 센서 네트워크를 위한 협업 공존 관리 프레임워크의 공동 스케줄링 알고리즘에 포함되는 ISD(Integrated Superframe Duration) 슈퍼 프레임 구조를 나타내는 도면.2 is a diagram showing an Integrated Superframe Duration (ISD) superframe structure included in a co-scheduling algorithm of a cooperative coexistence management framework for an industrial wireless sensor network according to the present invention.
도 3은 도 2에 따른 ISD 슈퍼 프레임 구조의 시간 슬롯 할당 예를 나타내는 도면.3 is a diagram illustrating an example of time slot allocation in the ISD super frame structure according to FIG. 2.
도 4 내지 도 6은 도 1에 따른 협업 공존 관리 프레임워크에서 각 게이트웨이부의 존재하는 샘플 노드의 실시간 메시지 지연 예를 나타낸 그래프.4 to 6 are graphs showing examples of real-time message delays of sample nodes existing in each gateway unit in the cooperative coexistence management framework according to FIG. 1.
도 7 및 도 8은 본 발명에 따른 협업 공존 관리 프레임워크를 이용한 제조환경 관리 방법을 나타내는 블록도.7 and 8 are block diagrams showing a manufacturing environment management method using a cooperative coexistence management framework according to the present invention.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art may easily implement the present invention.
그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.However, the present invention may be implemented in various different forms and is not limited to the embodiments described herein. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and similar reference numerals are attached to similar parts throughout the specification.
명세서 전체에서 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.When a part of the specification "includes" a certain component, it means that other components may be further included rather than excluding other components unless specifically stated to the contrary.
또한, 명세서에 기재된 "쪋부", "쪋모듈" 의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.In addition, the terms "Jet part" and "Jet module" described in the specification mean a unit that processes at least one function or operation, which may be implemented by hardware or software, or a combination of hardware and software.
도 1은 본 발명에 따른 산업용 무선 센서 네트워크를 위한 협업 공존 관리 프레임워크를 나타낸 도면이다.1 is a diagram showing a cooperative coexistence management framework for an industrial wireless sensor network according to the present invention.
도 1을 참조하면, 본 발명에 따른 산업용 무선 센서 네트워크를 위한 협업 공존 관리 프레임워크는 중앙 제어부(10) 및 통신 관리부(20)를 포함하며, 통신 관리부(20)는 게이트웨이부(30, 40, 50)를 포함한다.Referring to FIG. 1, a coexistence management framework for an industrial wireless sensor network according to the present invention includes a central control unit 10 and a communication management unit 20, and the communication management unit 20 includes gateway units 30, 40, and 50).
먼저, 통신 관리부(20)는 공장 자동화, 프로세스 자동화 등의 특성을 고려하는 적어도 두 개 이상의 게이트웨이부(30, 40, 50)를 구비하여 제조환경을 모니터링 할 수 있다. 구체적으로, 도 1에서 게이트웨이부(30, 40, 50)는 제 1게이트웨이부(30), 제 2게이트웨이부(40) 및 제 3게이트웨이부(50)로 분산되어 있으며, 각 게이트웨이부(30, 40, 50)는 산업용 무선 센서 네트워크(IWSN; Industrial Wireless Sensor Network, IWSN으로 표기)로 구성될 수 있다. 각 게이트웨이부(30, 40, 50)를 구성하고 있는 IWSN은 크로스 플랜트, 플랜트 내의 센서/구동기 무선 통신 등 공장 계층별로 각각 다른 이종의 IWSN을 포함할 수 있다.First, the communication management unit 20 may monitor the manufacturing environment by having at least two gateway units 30, 40, 50 taking into account characteristics such as factory automation and process automation. Specifically, in FIG. 1, the gateway units 30, 40, and 50 are distributed to the first gateway unit 30, the second gateway unit 40, and the third gateway unit 50, and each gateway unit 30, 40, 50) may be composed of an industrial wireless sensor network (IWSN; Industrial Wireless Sensor Network, denoted as IWSN). The IWSNs constituting each of the gateway units 30, 40, and 50 may include different types of IWSNs for each plant level, such as a cross plant and wireless communication of sensors/drivers within the plant.
도 1에 따른 게이트웨이부(30, 40, 50)는 제 1게이트웨이부(30)는 Wireless HART 네트워크로, 제 2게이트웨이부(40)는 ISA 100.11a 네트워크 및 제 3게이트웨이부(50)는 WIA-PA 네트워크를 포함한다. In the gateway units 30, 40, 50 according to FIG. 1, the first gateway unit 30 is a wireless HART network, the second gateway unit 40 is an ISA 100.11a network and the third gateway unit 50 is WIA- Includes the PA network.
각 게이트웨이부(30, 40, 50)를 구성하는 IWSN은 본 발명에서 Wireless HART, ISA 100.11a, WIA-PA를 포함하고 있으나, 이에 한정된 것은 아니며 802.11을 기반으로 한 Wi-Fi 기술과 802.15.4를 기반으로 한 다양한 기술이 존재할 수 있다. 구체적으로, 게이트웨이부(30, 40, 50)를 구성하는 ISWN는 WIA-FA, Bluetooth, GSM, GPRS, UMTS, LET, EDGE 및 ZigBee 등을 포함하여 구성될 수 있다.IWSNs constituting each of the gateway units 30, 40, 50 include Wireless HART, ISA 100.11a, and WIA-PA in the present invention, but are not limited thereto, and 802.11-based Wi-Fi technology and 802.15.4 There may be various technologies based on. Specifically, the ISWN constituting the gateway units 30, 40, 50 may include WIA-FA, Bluetooth, GSM, GPRS, UMTS, LET, EDGE, ZigBee, and the like.
게이트웨이부(30, 40, 50)는 네트워크 관리부(31, 41, 51) 및 노드부(32, 42, 52)를 포함하고, 구체적으로 제 1네트워크 관리부(31), 제 2네트워크 관리부(41) 및 제 3네트워크 관리부(51)와 제 1노드부(32), 제 2노드부(42) 및 제 3노드부(52)로 정의될 수 있다. The gateway unit (30, 40, 50) includes a network management unit (31, 41, 51) and a node unit (32, 42, 52), specifically, the first network management unit 31, the second network management unit 41 And a third network management unit 51, a first node unit 32, a second node unit 42, and a third node unit 52.
게이트웨이부(30, 40, 50)는 시간 영역 기반의 데이터를 주기적으로 생성하여 산업현장 내의 진동, 온도, 가스 및 기계 등의 상태를 모니터링 할 수 있다. 또한, 게이트웨이부(30, 40, 50)는 경보 알림, 시스템 구성 데이터 및 파일 데이터 중 적어도 하나 이상을 포함하는 비주기적 데이터를 생성할 수 있다.The gateway units 30, 40, and 50 may periodically generate time-domain-based data to monitor the state of vibration, temperature, gas, and machinery in the industrial site. In addition, the gateway units 30, 40, and 50 may generate aperiodic data including at least one of alarm notification, system configuration data, and file data.
제 1네트워크 관리부(31), 제 2네트워크 관리부(41) 및 제 3네트워크 관리부(51)는 중앙 제어부(10)와 유선 또는 무선 액세스로 통신할 수 있으며, 각 게이트웨이부(30, 40, 50)에 상주하는 제 1노드부(32), 제 2노드부(42) 및 제 3노드부(52)는 각 IWSN 유형에 공통되는 스타 토폴로지를 형성할 수 있다.The first network management unit 31, the second network management unit 41, and the third network management unit 51 can communicate with the central control unit 10 through wired or wireless access, and each gateway unit 30, 40, 50 The first node part 32, the second node part 42, and the third node part 52 residing in the IWSN may form a star topology common to each IWSN type.
다음으로, 중앙 제어부(10)는 공동 스케줄링 알고리즘(CSA; Collaborative Scheduling Algorithm)을 통하여 통신 관리부(20)를 관리할 수 있으며, 중앙 제어부(10)는 각 게이트웨이부(30, 40, 50)에 존재하는 네트워크 관리부(31, 41, 51)와 유선 또는 무선 액세스로 통신할 수 있다.Next, the central control unit 10 can manage the communication management unit 20 through a joint scheduling algorithm (CSA; Collaborative Scheduling Algorithm), and the central control unit 10 exists in each of the gateway units 30, 40, 50. It is possible to communicate with the network management units 31, 41, and 51 through wired or wireless access.
여기에서, 공동 스케줄링 알고리즘은 중앙 제어부(10)에서 통신 관리부(20)의 요구사항을 수집하여 산출된 자원 할당 결과를 다시 통신 관리부(20)에 전송할 수 있다. 여기에서, 공동 스케줄링 알고리즘은 노드 집합, 최대 허용 메시지 지연, 비 주기적 데이터에 할당된 시간 슬롯 중 적어도 하나의 이상의 입력을 포함하고, ISD, Tmax, FDTI 중 적어도 하나 이상의 출력을 포함할 수 있다. 여기서 ISD는 중앙 제어부(10)의 자원 할당을 위한 기본 단위이며, T max(과도기)는 중앙 제어부(10)가 자원 할당의 스케줄링이 반복되는 기간을 조정할 수 있는 최대 기간이며, FDTI는 각 노드의 첫 번째 데이터 전송 순간(First Data Transmission Instant)으로 정의될 수 있다.Here, the joint scheduling algorithm may collect the requirements of the communication management unit 20 from the central control unit 10 and transmit the calculated resource allocation result to the communication management unit 20 again. Here, the joint scheduling algorithm includes at least one input of a node set, a maximum allowed message delay, and a time slot allocated to aperiodic data, and may include an output of at least one of ISD, Tmax, and FDTI. Here, ISD is a basic unit for resource allocation of the central control unit 10, T max (transitional period) is the maximum period in which the central control unit 10 can adjust the period in which the scheduling of resource allocation is repeated, and FDTI is the It may be defined as a first data transmission instant.
공동 스케줄링 알고리즘은 도 2 및 도 3에서 ISD(Integrated Superframe Duration) 슈퍼 프레임 구조를 기본단위로 하여 보다 구체적으로 설명될 수 있다.The joint scheduling algorithm may be described in more detail with an Integrated Superframe Duration (ISD) superframe structure as a basic unit in FIGS. 2 and 3.
도 2는 본 발명에 따른 산업용 무선 센서 네트워크를 위한 협업 공존 관리 프레임워크의 기본단위인 ISD(Integrated Superframe Duration) 슈퍼 프레임 구조를 나타내는 도면이며, 도 3은 도 2에 따른 ISD 슈퍼 프레임 단위 구조의 시간 슬롯 할당 예를 나타내는 도면이다. 구체적으로, 도 3은 도 2에 따른 ISD 슈퍼 프레임 구조의 과도기(T max)에서 첫 번째 ISD 시간 슬롯 할당을 설명하기 위한 도면이다. FIG. 2 is a diagram showing the structure of an Integrated Superframe Duration (ISD) superframe, which is a basic unit of a cooperative coexistence management framework for an industrial wireless sensor network according to the present invention, and FIG. 3 is a time of the ISD superframe unit structure according to FIG. It is a diagram showing an example of slot allocation. Specifically, FIG. 3 is a diagram for explaining allocation of a first ISD time slot in a transition period (T max ) of the ISD super frame structure according to FIG. 2.
도 2 및 도3은 도1을 참조하여 설명할 수 있다.2 and 3 can be described with reference to FIG. 1.
공동 스케줄링 알고리즘은 중앙 제어부(10)에서 통신 관리부(20)의 요구사항을 수집하여 산출된 자원 할당 결과를 다시 통신 관리부(20)에 전송하는 알고리즘으로, 도 2의 ISD(Integrated Superframe Duration) 슈퍼 프레임구조를 기본단위로 제조환경을 모니터링 할 수 있다.The joint scheduling algorithm is an algorithm in which the central control unit 10 collects the requirements of the communication management unit 20 and transmits the calculated resource allocation result to the communication management unit 20 again. The manufacturing environment can be monitored with the structure as a basic unit.
도 2의 ISD 슈퍼 프레임구조(200)는 적어도 하나 이상의 ISD 단위구조(60)를 포함하며, 중앙 제어부(10)는 ISD 단위구조(60)를 주기적으로 반복함으로써 협업 공존 관리 프레임워크를 수행할 수 있다. 또한, 하나의 ISD 단위구조(60)는 제 1게이트웨이부 활성 기간(63), 제 2게이트웨이부 활성 기간(64) 및 제 3게이트웨이부 활성 기간(65)를 포함한다. The ISD super frame structure 200 of FIG. 2 includes at least one ISD unit structure 60, and the central control unit 10 can perform the cooperative coexistence management framework by periodically repeating the ISD unit structure 60. have. In addition, one ISD unit structure 60 includes a first gateway unit active period 63, a second gateway unit active period 64, and a third gateway unit active period 65.
하나의 ISD 단위구조(60)에서 하나의 게이트웨이부는 다른 게이트웨이부의 비활성 기간 또는 휴면 기간에만 활성화 될 수 있어, 서로의 활동 기간이 겹치는 부분이 존재하지 않도록 스케줄링 될 수 있다. 또한, 게이트웨이부가 두 개인 경우에는 ISD 단위구조(60)는 두 개의 구간으로 할당될 수도 있다.In one ISD unit structure 60, one gateway unit may be activated only during an inactive period or a dormant period of another gateway unit, so that a portion where the activity periods overlap with each other may not exist. In addition, when there are two gateway units, the ISD unit structure 60 may be allocated to two sections.
구체적으로, ISD 단위구조(60)는 제1게이트웨이부 활성 기간(63), 제 2게이트웨이부 활성 기간(64) 및 제 3게이트웨이부 활성 기간(65)을 구분 지어 할당함으로써, 각 기간의 활성 기간에 해당되는 게이트웨이부(30, 40, 50)만 활성화되는 스케줄링의 예를 보여준다. Specifically, the ISD unit structure 60 is divided into and assigned to the first gateway unit active period 63, the second gateway unit active period 64, and the third gateway unit active period 65, so that the active period of each period. An example of scheduling in which only the gateway units 30, 40, and 50 corresponding to is activated is shown.
도 2는 하나의 ISD에서 각 게이트웨이부의 활성 기간(63, 64, 65) 및 비활성 기간을 예시적으로 표현한 도면으로, 제 1게이트웨이부 활성 기간(63)은 Wireless HART, 제 2게이트웨이부 활성 기간(64)은 ISA 100.11a, 제 3게이트웨이부 활성 기간(65)은 WIA-PA 네트워크로 설명하고 있으나, 이에 한정된 것은 아니며 WIA-FA, Bluetooth, GSM, GPRS, UMTS, LET, EDGE 및 ZigBee 기술 등을 포함할 수 있다. FIG. 2 is a diagram illustrating the active periods 63, 64, 65 and inactive periods of each gateway unit in one ISD. The first gateway unit active period 63 is a Wireless HART and a second gateway unit active period ( 64) describes ISA 100.11a and the third gateway unit active period 65 as a WIA-PA network, but is not limited thereto, and WIA-FA, Bluetooth, GSM, GPRS, UMTS, LET, EDGE and ZigBee technologies, etc. Can include.
도 3은 도 2에 따른 ISD 슈퍼 프레임 구조의 과도기(T max)에서 첫 번째 ISD 슈퍼 프레임 구조 시간 슬롯 할당의 일 예로, 각 게이트웨이부(30, 40, 50)의 할당된 활성 기간 슬롯에 주기적 데이터(TSPD; Time Slots for Periodic Data) 및 비주기적 데이터(TSAD; Time Slots for Aperiodic Data)를 생성하는 노드의 할당 수를 나타낸다. 3 is an example of the first ISD super frame structure time slot allocation in the transition period (T max ) of the ISD super frame structure according to FIG. 2, periodic data in the allocated active period slots of each gateway unit 30, 40, 50 Indicates the number of allocations of nodes that generate (TSPD; Time Slots for Periodic Data) and aperiodic data (TSAD; Time Slots for Aperiodic Data).
여기에서, 주기적 데이터(TSPD) 및 비주기적 데이터(TSAD) 노드의 할당 슬롯 수는 최대 길이를 초과하지 않는 범위 내에서 자율적으로 조절할 수 있으며, 주기적 데이터(TSPD)의 생성 노드 수를 감소시키는 경우 네트워크 무선 트래픽을 차단하는 효과를 향상시킬 수 있다.Here, the number of allocated slots for periodic data (TSPD) and aperiodic data (TSAD) nodes can be autonomously adjusted within a range not exceeding the maximum length, and when the number of nodes generating periodic data (TSPD) is reduced, the network The effect of blocking wireless traffic can be improved.
도 4 내지 도 6은 도 1에 따른 협업 공존 관리 프레임워크에서 각 게이트웨이부의 존재하는 샘플 노드의 실시간 메시지 지연 예를 나타낸 그래프이다.4 to 6 are graphs showing examples of real-time message delays of sample nodes existing in each gateway unit in the cooperative coexistence management framework according to FIG. 1.
구체적으로, 도 4의 게이트웨이부는 Wireless HART 네트워크를, 도 5의 게이트웨이부는 ISA 100.11a 네트워크를, 도 6의 게이트웨이부는 WIA-PA 네트워크에서 선택된 샘플 노드의 실시간 메시지 지연 예를 나타낸 그래프이다. Specifically, the gateway part of FIG. 4 is a graph showing a wireless HART network, the gateway part of FIG. 5 is an ISA 100.11a network, and the gateway part of FIG. 6 shows an example of a real-time message delay of a sample node selected from a WIA-PA network.
도 3에 따른 IDS 슈퍼프레임 구조를 적용한 공동 스케줄링 알고리즘(CSA; Collaborative Scheduling Algorithm)에 따라 노드들을 적절하게 스케줄링 하였을 경우, 도 4 내지 도 6에 나타난 바와 같이 최대 허용 지연 이하로 제어되는 것을 확인할 수 있다.When nodes are properly scheduled according to the Collaborative Scheduling Algorithm (CSA) to which the IDS superframe structure according to FIG. 3 is applied, it can be confirmed that the control is controlled to less than the maximum allowable delay as shown in FIGS. 4 to 6. .
도 7 및 도 8은 본 발명에 따른 협업 공존 관리 프레임워크를 이용한 제조환경 관리 방법을 나타내는 블록도이다.7 and 8 are block diagrams illustrating a manufacturing environment management method using a cooperative coexistence management framework according to the present invention.
도 7 및 도 8은 도 1내지 도3을 참조하여 설명할 수 있다.7 and 8 may be described with reference to FIGS. 1 to 3.
도 7의 협업 공존 관리 프레임워크를 이용한 제조환경 관리 방법은 중앙 제어부에서 통신 관리부의 요구사항을 수집하는 단계(S700), 중앙 제어부에서 공동 스케줄링 알고리즘을 이용하여 통신 관리부의 자원할당 결과를 도출하는 단계(S710) 및 중앙 제어부가 자원할당 결과를 통신 관리부에 전송하는 단계(S720)를 포함한다.In the manufacturing environment management method using the cooperative coexistence management framework of FIG. 7, the central control unit collects the requirements of the communication management unit (S700), and the central control unit derives the resource allocation result of the communication management unit using a joint scheduling algorithm. (S710) and the central control unit transmitting the resource allocation result to the communication management unit (S720).
먼저, 중앙 제어부(10)에서 통신 관리부(20)의 요구사항을 수집하는 단계(S700)는 통신 관리부(20)에 존재하는 제 1게이트웨이부(30), 제 2게이트웨이부(40) 및 제 3게이트웨이부(50) 각각의 요구사항을 수집하는 단계이다. 여기에서, 중앙 제어부(10)는 지연 요구 사항을 위반하지 않으면서, 각 게이트웨이부(30, 40, 50)의 시간 영역에 초점을 맞추어 요구사항을 수집한다.First, in the step of collecting the requirements of the communication management unit 20 in the central control unit 10 (S700), the first gateway unit 30, the second gateway unit 40, and the third This is a step of collecting the requirements of each of the gateway units 50. Here, the central control unit 10 collects the requirements by focusing on the time domain of each gateway unit 30, 40, and 50 without violating the delay requirements.
다음으로, 중앙 제어부(10)에서 공동 스케줄링 알고리즘을 이용하여 통신 관리부(20)의 자원 할당 결과를 도출하는 단계는(S710)는 활성 기간 슬롯에 주기적 데이터(TSPD) 및 비주기적 데이터(TSAD)를 생성하는 노드의 할당 수를 생성할 수 있으며, 각각의 활성 기간을 조절할 수도 있다.Next, the step of deriving the resource allocation result of the communication management unit 20 using the joint scheduling algorithm in the central control unit 10 (S710) includes periodic data (TSPD) and aperiodic data (TSAD) in the active period slot. You can create the number of allocations of the nodes you create, and you can also adjust the active period of each.
마지막으로, 중앙 제어부(10)가 자원할당 결과를 통신 관리부(20)에 전송하는 단계(S720)는 중앙 제어부(10)에서 할당된 결과를 통신 관리부(20)에 존재하는 제 1게이트웨이부(30), 제 2게이트웨이부(40) 및 제 3게이트웨이부(50)에 결과를 전송할 수 있으며, 자원할당 결과는 각 네트워크의 활성 기간 또는 활성 기간 내의 주기적 데이터 또는 비주기적 데이터를 생성 하는 노드의 할당 수를 포함할 수 있다.Finally, in the step of transmitting the resource allocation result to the communication management unit 20 by the central control unit 10 (S720), the result allocated by the central control unit 10 is transmitted to the first gateway unit 30 existing in the communication management unit 20. ), the result can be transmitted to the second gateway unit 40 and the third gateway unit 50, and the resource allocation result is the number of nodes that generate periodic data or aperiodic data within the active period or active period of each network It may include.
도 8은 도 7의 중앙 제어부에서 공동 스케줄링 알고리즘을 이용하여 통신 관리부의 자원할당 결과를 도출하는 단계(S710)에서 공동 스케줄링 알고리즘을 적용하여 주기적 데이터 및 비주기적 데이터의 노드에 할당되는 슬롯의 수를 결정하는 단계(S810, S820)를 더 포함하는 협업 공존 관리 프레임워크를 이용한 제조환경 관리 방법이다.FIG. 8 shows the number of slots allocated to the nodes of periodic data and aperiodic data by applying the joint scheduling algorithm in step S710 of deriving a resource allocation result of the communication management unit by using the joint scheduling algorithm in the central control unit of FIG. 7. This is a manufacturing environment management method using a cooperative coexistence management framework further including determining steps S810 and S820.
도 8을 참조하면, 협업 공존 관리 프레임워크를 이용한 제조환경 관리 방법은 중앙 제어부에서 통신 관리부의 요구사항을 수집하는 단계(S800), 중앙 제어부에서 공동 스케줄링 알고리즘을 이용하여 주기적 데이터의 노드에 할당되는 슬롯의 수를 결정하는 단계(S810), 중앙 제어부에서 공동 스케줄링 알고리즘을 이용하여 비주기적 데이터의 노드에 할당되는 슬롯의 수를 결정하는 단계(S820), 중앙 제어부에서 통신 관리부의 자원할당 결과를 도출하는 단계(S830) 및 중앙 제어부가 자원할당 결과를 통신 관리부에 전송하는 단계(S830)를 포함한다.Referring to FIG. 8, in the manufacturing environment management method using the cooperative coexistence management framework, the central control unit collects the requirements of the communication management unit (S800), and the central control unit is allocated to a node of periodic data using a joint scheduling algorithm. Determining the number of slots (S810), determining the number of slots allocated to nodes of aperiodic data using a joint scheduling algorithm in the central control unit (S820), deriving the resource allocation result of the communication management unit in the central control unit And a step (S830) of transmitting the resource allocation result to the communication management unit by the central control unit (S830).
S810 및 S820 단계는 도 3의 구체적인 예를 통하여 설명될 수 있으며, S810 및 S820 단계는 S820 및 S810 단계로 순서가 바뀔 수 있으며, S810 및 S820 단계는 순서에 관계 없이 선택적으로 하나의 단계만 적용될 수도 있다. Steps S810 and S820 may be described through a specific example of FIG. 3, the order of steps S810 and S820 may be changed to steps S820 and S810, and steps S810 and S820 may be selectively applied to only one step regardless of the order. have.
본 발명은 동일한 지리적 영역(예를 들어, 산업 플랜트)에 함께 위치하고 공통 주파수 도메인을 공유하는 이종의 산업용 무선 센서 네트워크의 공존을 관리하는 프레임 워크 및 방법을 제공한다. 이 솔루션의 따라서, 본 발명은 각 네트워크의 활성화를 조정하기 위한 중앙 제어부를 구비하여 중앙 조정 포인트의 관점에서 공동 스케줄링 알고리즘(CSA)을 제안하였다. 중앙 제어부는 각 네트워크의 활성 기간을 할당하고, 해당 활성 기간에만 네트워크를 활성화하는 방법을 통하여 산업 환경에서 존재하는 이종의 산업용 무선 센서 네트워크의 실시간 통신 요구 사항을 보장하면서, 중앙 집중식 방식으로 시간 도메인 매체 자원을 할당함으로써 이질성을 수용하여 지출 비용을 최소화할 수 있다.The present invention provides a framework and method for managing coexistence of heterogeneous industrial wireless sensor networks located together in the same geographic area (eg, industrial plant) and sharing a common frequency domain. In accordance with this solution, the present invention has proposed a joint scheduling algorithm (CSA) in terms of a central control point with a central control unit for coordinating the activation of each network. The central control unit allocates the active period of each network and activates the network only during the active period, guaranteeing the real-time communication requirements of heterogeneous industrial wireless sensor networks existing in the industrial environment, while ensuring the real-time communication requirements of the time domain medium in a centralized manner. By allocating resources, we can accommodate heterogeneity and minimize expenditure costs.
향후 개발을 통하여 하나의 공장 근교에 다양한 분야의 공장이 세워진 대규모 산업 단지 환경에서 본 발명에 따른 중앙 제어부를 산업 관리 센터로 확장 시켜, 복수의 공장의 작업을 조정함으로써 운영 성능을 향상시킬 수 있다.In the environment of a large-scale industrial complex in which factories of various fields are built near one factory through future development, the central control unit according to the present invention can be expanded to an industrial management center, and operation performance can be improved by adjusting the work of a plurality of factories.

Claims (17)

  1. 적어도 두 개 이상의 이종의 네트워크로 구성된 게이트웨이부를 구비하여 제조환경을 모니터링 하는 통신 관리부; 및 A communication management unit configured to monitor a manufacturing environment by having a gateway unit composed of at least two or more heterogeneous networks; And
    공동 스케줄링 알고리즘을 통하여 상기 통신 관리부를 관리하는 중앙 제어부를 포함하는 것을 특징으로 하는 협업 공존 관리 프레임워크.Collaborative coexistence management framework comprising a central control unit for managing the communication management unit through a joint scheduling algorithm.
  2. 제 1항에 있어서,The method of claim 1,
    상기 게이트웨이부는,The gateway unit,
    상기 중앙 제어부와 유선 또는 무선 액세스로 통신하는 네트워크 관리부; 및A network management unit communicating with the central control unit through wired or wireless access; And
    적어도 하나 이상의 노드를 구비하는 노드부를 포함하는 것을 특징으로 하는 협업 공존 관리 프레임워크.Collaborative coexistence management framework comprising a node unit having at least one node.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 게이트웨이부는,The gateway unit,
    Wireless HART, ISA 100.11a 및 WIA-PA 중 적어도 두 개 이상의 무선 네트워크를 포함하는 것을 특징으로 하는 협업 공존 관리 프레임워크.Wireless HART, ISA 100.11a and WIA-PA at least two of the wireless networks, characterized in that it comprises a co-existence management framework.
  4. 제 1항에 있어서,The method of claim 1,
    상기 게이트웨이부는,The gateway unit,
    시간 영역 기반의 데이터를 주기적으로 생성하여 제조환경을 모니터링 하는 것을 특징으로 하는 협업 공존 관리 프레임워크.Collaborative coexistence management framework, characterized in that it periodically generates time domain-based data to monitor the manufacturing environment.
  5. 제 1항에 있어서,The method of claim 1,
    상기 게이트웨이부는,The gateway unit,
    비주기적 데이터를 생성하여 제조환경을 모니터링 하는 것을 특징으로 하는 협업 공존 관리 프레임워크.Collaborative coexistence management framework, characterized in that it monitors the manufacturing environment by generating aperiodic data.
  6. 제 5항에 있어서,The method of claim 5,
    상기 비주기적 데이터는,The aperiodic data,
    경보 알림, 시스템 구성 데이터 및 파일 데이터 중 적어도 하나 이상을 포함하는 것을 특징으로 하는 협업 공존 관리 프레임워크.Collaborative coexistence management framework comprising at least one or more of alert notification, system configuration data, and file data.
  7. 제 1항에 있어서,The method of claim 1,
    상기 공동 스케줄링 알고리즘은,The joint scheduling algorithm,
    상기 중앙 제어부가 상기 통신 관리부의 요구사항에 근거하여 상기 통신 관리부 내의 자원 할당 결과를 산출하고 그 산출한 자원 할당 결과를 상기 통신 관리부로 전송하도록 구성된 것을 특징으로 하는 협업 공존 관리 프레임워크.And wherein the central control unit calculates a resource allocation result in the communication management unit based on a request of the communication management unit and transmits the calculated resource allocation result to the communication management unit.
  8. 제7항에 있어서,The method of claim 7,
    상기 공동 스케줄링 알고리즘은,The joint scheduling algorithm,
    노드 집합, 최대 허용 메시지 지연 및 비주기적 데이터에 할당된 슬롯 중 적어도 하나 이상의 입력을 포함하는 것을 특징으로 하는 협업 공존 관리 프레임워크.A cooperative coexistence management framework comprising input of at least one of a set of nodes, a maximum allowed message delay, and a slot allocated to aperiodic data.
  9. 제7항에 있어서,The method of claim 7,
    상기 공동 스케줄링 알고리즘은,The joint scheduling algorithm,
    상기 게이트웨어부의 활성 기간 및 비활성 기간을 설정한ISD(Integrated Superframe Duration), ISD의 과도기(T max), FDTI(First Data Transmission Instant) 중 적어도 하나 이상의 출력을 포함하는 것을 특징으로 하는 협업 공존 관리 프레임워크. Collaborative coexistence management frame comprising at least one output of an integrated superframe duration (ISD), a transition period (T max ) of the ISD, and a first data transmission instant (FDTI) in which the active period and the inactive period of the gateway unit are set. work.
  10. 제9항에 있어서,The method of claim 9,
    상기 ISD는 주기적 데이터에 할당된 슬롯과 비주기적 데이터에 할당된 슬롯으로 구성되어 것을 특징으로 하는 협업 공존 관리 프레임워크.The ISD is a cooperative coexistence management framework, characterized in that consisting of a slot allocated to periodic data and a slot allocated to aperiodic data.
  11. 협업 공존 관리 프레임워크를 이용한 제조환경 관리 방법에 있어서, In the manufacturing environment management method using the cooperative coexistence management framework,
    상기 협업 공존 관리 프레임워크의 중앙 제어부가 적어도 2개 이상의 이종의 네트워크로 구성된 복수의 게이트웨이부로부터 요구사항을 수집하는 단계;Collecting, by a central control unit of the cooperative coexistence management framework, requirements from a plurality of gateway units composed of at least two or more heterogeneous networks;
    상기 중앙 제어부가 상기 게이트웨이부의 자원할당 결과를 도출하는 단계; 및Deriving, by the central control unit, a resource allocation result of the gateway unit; And
    상기 중앙 제어부가 자원할당 결과를 상기 게이트웨이부로 전송하는 단계를 포함하는 방법.And transmitting, by the central control unit, a result of resource allocation to the gateway unit.
  12. 제 11항에 있어서,The method of claim 11,
    상기 중앙 제어부가 상기 게이트웨이부의 자원할당 결과를 도출하는 단계는,The step of the central control unit deriving the resource allocation result of the gateway unit,
    상기 게이트웨이부의 활성 기간 및 비활성 기간을 설정한 ISD(Integrated Superframe Duration)를 생성하는 것을 특징으로 하는 방법.And generating an Integrated Superframe Duration (ISD) in which an active period and an inactive period of the gateway unit are set.
  13. 제12항에 있어서,The method of claim 12,
    상기 ISD는 주기적 데이터의 노드에 할당된 슬롯과 비주기적 데이터의 노드에 할당된 슬롯으로 구성되어 상기 주기적 데이터의 노드에 할당된 슬롯에 특정 노드가 지정되어 있는 것을 특징으로 하는 방법.The ISD comprises a slot allocated to a node of periodic data and a slot allocated to a node of aperiodic data, and a specific node is assigned to a slot allocated to the node of periodic data.
  14. 협업 공존 관리 프레임워크를 이용한 제조환경 관리 방법에 있어서, In the manufacturing environment management method using the cooperative coexistence management framework,
    상기 협업 공존 관리 프레임워크의 중앙 제어부가 적어도 2개 이상의 이종의 네트워크로 구성된 복수의 게이트웨이부로부터 요구사항을 수집하는 단계;Collecting, by a central control unit of the cooperative coexistence management framework, requirements from a plurality of gateway units composed of at least two or more heterogeneous networks;
    상기 중앙 제어부가 공동 스케줄링 알고리즘을 이용하여 주기적 데이터를 생성하는 노드가 할당되는 슬롯의 수를 결정하는 단계;Determining, by the central control unit, the number of slots to which a node generating periodic data is allocated using a joint scheduling algorithm;
    상기 중앙 제어부가 상기 공동 스케줄링 알고리즘을 이용하여 비주기적 데이터를 생성하는 노드가 할당되는 슬롯의 수를 결정하는 단계;Determining, by the central control unit, the number of slots to which a node generating aperiodic data is allocated using the joint scheduling algorithm;
    상기 중앙 제어부가 상기 게이트웨이부의 자원할당 결과를 도출하는 단계; 및Deriving, by the central control unit, a result of resource allocation of the gateway unit; And
    상기 중앙 제어부가 자원할당 결과를 상기 게이트웨이부로 전송하는 단계를 포함하는 방법.And transmitting, by the central control unit, a result of resource allocation to the gateway unit.
  15. 제 14항에 있어서,The method of claim 14,
    상기 자원할당 결과에 따라 상기 복수의 게이트웨이부 중에서 어느 하나의 게이트웨이부가 활성화하면 나머지 게이트웨이부는 비활성화하는 것을 특징으로 하는 방법.And if any one of the plurality of gateway units is activated according to a result of the resource allocation, the remaining gateway units are deactivated.
  16. 제14항에 있어서,The method of claim 14,
    상기 중앙 제어부가 상기 게이트웨이부의 자원할당 결과를 도출하는 단계는, The step of the central control unit deriving the resource allocation result of the gateway unit,
    상기 게이트웨이부의 활성 기간 및 비활성 기간을 설정한 ISD(Integrated Superframe Duration)를 생성하고, 상기 게이트웨이부의 활성 기간에서 상기 결정한 주기적 데이터를 생성하는 노드가 할당되는 슬롯에 특정 노드를 할당하는 것을 특징으로 하는 방법.A method comprising: generating an Integrated Superframe Duration (ISD) in which the active period and the inactive period of the gateway unit are set, and allocating a specific node to a slot to which a node generating the determined periodic data is allocated in the active period of the gateway unit .
  17. 제 11항 내지 제 13항 중 어느 한 항에 의한 방법을 실행하기 위한 프로그램을 저장한 컴퓨터로 읽을 수 있는 기록매체.A computer-readable recording medium storing a program for executing the method according to any one of claims 11 to 13.
PCT/KR2020/007804 2019-11-18 2020-06-17 Collaborative coexistence management framework for industrial wireless sensor network and manufacturing environment management method using same WO2021101001A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0147896 2019-11-18
KR1020190147896A KR102212864B1 (en) 2019-11-18 2019-11-18 Collaborative coexistence management framework and industrial environment management method for industrial wireless sensor networks

Publications (1)

Publication Number Publication Date
WO2021101001A1 true WO2021101001A1 (en) 2021-05-27

Family

ID=74558848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/007804 WO2021101001A1 (en) 2019-11-18 2020-06-17 Collaborative coexistence management framework for industrial wireless sensor network and manufacturing environment management method using same

Country Status (2)

Country Link
KR (1) KR102212864B1 (en)
WO (1) WO2021101001A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110007209A (en) * 2008-04-28 2011-01-21 노키아 코포레이션 Method and apparatus for providing power saving using superframes
KR101255100B1 (en) * 2011-06-20 2013-04-18 네스트필드(주) Apparatus and method for allocating time slots to nodes without contention in wireless network
US9451468B2 (en) * 2008-12-23 2016-09-20 Abb Research Ltd. Multi-network manager, method and system
KR20180031573A (en) * 2016-09-19 2018-03-28 한양대학교 에리카산학협력단 Powerlink Wireless HART gateway for industrial automation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101866421B1 (en) 2017-12-07 2018-06-11 부산대학교 산학협력단 System and Method for Managing DSME Network Fluctuation at Industrial Wireless Sensor Network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110007209A (en) * 2008-04-28 2011-01-21 노키아 코포레이션 Method and apparatus for providing power saving using superframes
US9451468B2 (en) * 2008-12-23 2016-09-20 Abb Research Ltd. Multi-network manager, method and system
KR101255100B1 (en) * 2011-06-20 2013-04-18 네스트필드(주) Apparatus and method for allocating time slots to nodes without contention in wireless network
KR20180031573A (en) * 2016-09-19 2018-03-28 한양대학교 에리카산학협력단 Powerlink Wireless HART gateway for industrial automation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONG SEUNG HO; SUN JUNNAN; YU MENGMENG; ZHANG XIONGFENG; XU AIDONG: "Collaborative Coexistence Management Scheme for Industrial Wireless Sensor Networks", IEEE ACCESS, IEEE, USA, vol. 7, 1 January 1900 (1900-01-01), USA, pages 1617 - 1626, XP011695876, DOI: 10.1109/ACCESS.2018.2886365 *
KIM, JONG-BEOM ET AL.: "Implementation of Common Information Exchange Model based on AutomationML for Coexistence Management of Industrial Wireless Networks", THE TRANSACTIONS OF THE KOREAN INSTITUTE OF ELECTRICAL ENGINEERS INFORMATION AND CONTROL, 1 October 2017 (2017-10-01), KR, pages 97`98, XP009528100 *

Also Published As

Publication number Publication date
KR102212864B1 (en) 2021-02-05

Similar Documents

Publication Publication Date Title
Zheng et al. WirArb: A new MAC protocol for time critical industrial wireless sensor network applications
Thoppian et al. MAC-layer scheduling in cognitive radio based multi-hop wireless networks
JP5289980B2 (en) System, apparatus and method for a two-stage mechanism for silence period management in a spectrum agile wireless network
Chen et al. MAC protocol design and performance analysis for random access cognitive radio networks
Severino et al. Dynamic cluster scheduling for cluster-tree WSNs
KR100807529B1 (en) Method for real-time transmission of wireless fieldbus
CN101425820A (en) Tone based congnitive radio for opportunistic communications
Köstler et al. Towards an open source implementation of the IEEE 802.15. 4 DSME link layer
CN107948984B (en) Active and passive perception combination-based cognitive system suitable for self-organizing network
das Neves Valadão et al. Industrial wireless automation: Overview and evolution of WIA-PA
WO2021101001A1 (en) Collaborative coexistence management framework for industrial wireless sensor network and manufacturing environment management method using same
US10219233B2 (en) System and method for improved propagation of dynamic link information in a time synchronized channel hopping network
US9992777B2 (en) System and method for advising wireless computer networks on inter-network interferences
Caccamo et al. The capacity of implicit EDF in wireless sensor networks
Choudhury et al. Distributed beacon synchronization mechanism for 802.15. 4 cluster-tree topology
WO2017200131A1 (en) Wireless sensor network system capable of redistribution of access node and method therefor
KR102516948B1 (en) MEDIA ACCESS CONTROL METHOD FOR LoRa-BASED PRIVATE NETWORK OPERATION
Hong et al. Collaborative coexistence management scheme for industrial wireless sensor networks
WO2021167250A1 (en) Device and method for supporting tsc in wireless communication network
KR100446614B1 (en) Method and apparatus for controlling wireless data communication networks
Hassan et al. Wireless mediation for multi-hop networks in time critical industrial applications
Deruyck et al. Intelligent TDMA heuristic scheduling by taking into account physical layer interference for an industrial IoT environment
US7184705B2 (en) Distributed MAC in an uncoordinated radio environment
Meng et al. Multi-cell, multi-channel urllc with probabilistic per-packet real-time guarantee
WO2023157176A1 (en) Control system, control method, controller, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889136

Country of ref document: EP

Kind code of ref document: A1