WO2021100877A1 - Bone treatment sheet and method for treating animal bone - Google Patents

Bone treatment sheet and method for treating animal bone Download PDF

Info

Publication number
WO2021100877A1
WO2021100877A1 PCT/JP2020/043521 JP2020043521W WO2021100877A1 WO 2021100877 A1 WO2021100877 A1 WO 2021100877A1 JP 2020043521 W JP2020043521 W JP 2020043521W WO 2021100877 A1 WO2021100877 A1 WO 2021100877A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
treatment sheet
bone treatment
damaged
sheet
Prior art date
Application number
PCT/JP2020/043521
Other languages
French (fr)
Japanese (ja)
Inventor
橋元 伸晃
水野 潤
関 康弘
Original Assignee
公立大学法人公立諏訪東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人公立諏訪東京理科大学 filed Critical 公立大学法人公立諏訪東京理科大学
Priority to JP2021558482A priority Critical patent/JP7541749B2/en
Publication of WO2021100877A1 publication Critical patent/WO2021100877A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body

Definitions

  • the present invention relates to a bone treatment sheet and a method for treating animal bone.
  • Patent Document 1 As a treatment method when a long bone is damaged, a method of covering the damaged part with a sheet is known (see, for example, Patent Document 1).
  • a sheet made of a medical metal material for example, titanium or titanium alloy
  • a filler for example, a bone filling material composed of autologous bone granules and allogeneic bone granules
  • the sheet itself does not have the effect of actively promoting bone healing.
  • the present invention has been made in view of the above-mentioned problems, and is a bone treatment sheet capable of promoting bone healing as compared with a conventional sheet (a sheet in which a nanoscale structure is not formed) and the present invention. It is an object of the present invention to provide a bone treatment method using the bone treatment sheet of.
  • the bone treatment sheet of the present invention is a bone treatment sheet for use in bone treatment by arranging it so as to cover the damaged portion of the damaged bone, and a nanoscale uneven structure is formed at least in a part thereof. It is characterized by being done.
  • the nanoscale uneven structure affects the proliferation and differentiation of cells, so that the bone healing is promoted as compared with the conventional sheet (sheet in which the nanoscale structure is not formed). It becomes a possible bone treatment sheet.
  • the bone treatment sheet of the present invention has a holding portion for holding the bone healing promoting substance, and the holding portion has a porous structure capable of accommodating the bone healing promoting substance, and the porous structure is formed. It is preferable that the nanoscale uneven structure is formed on at least a part of the wall surface of the constituent pores.
  • the bone treatment sheet of [2] above since it has a holding portion that holds a bone healing promoting substance that is a physiologically active substance that promotes bone healing, the bone healing promoting substance held by the holding portion is a damaged portion of the bone.
  • the bone treatment sheet of the above [2] When used to contact or invade bone, it is possible to promote the proliferation and differentiation of cells (particularly, cells that are the source of bone and blood vessels around bone). Therefore, according to the bone treatment sheet of the above [2], it is possible to enhance the healing power of the bone itself. Further, according to the bone treatment sheet of the above [2], it is possible to firmly fix the bone treatment sheet and the bone at an early stage through cell proliferation and differentiation, and as a result, the bone is damaged during the healing period. It is possible to suppress the displacement and expansion of the damaged part of the bone. Therefore, the bone treatment sheet of the above [2] is a bone treatment sheet capable of promoting bone healing as compared with the conventional sheet.
  • the bone treatment sheet of the above [2] by appropriately setting the structure and physical properties of the holding portion, it is possible to adjust the release condition of the bone healing promoting substance and appropriately promote the bone healing. It will be possible.
  • the bone healing promoting substance can be continuously released (exuded) continuously for a long period of time, and the bone healing promoting substance is rapidly released. It can also be done.
  • the "easiness of detachment of the bone healing promoting substance” can also be referred to as "retaining power to the bone healing promoting substance” or "affinity between the holding portion and the bone healing promoting substance”.
  • the holding portion since the holding portion has a porous structure capable of accommodating the bone healing promoting substance, it is possible to stably hold the bone healing promoting substance. Further, by adopting the configuration as described in [2] above, when the bone healing promoting substance is liquid, the holding portion and the bone healing promoting substance are brought into contact with each other so that the holding portion absorbs the bone healing promoting substance. By a simple method, the bone healing promoting substance can be retained in the holding portion.
  • nanoscale uneven structure does not need to have periodicity as described later.
  • uneven structure having no periodicity for example, a structure composed of random point-shaped unevenness can be mentioned.
  • bone includes the bones of animals such as dogs, cats, and birds, and the bones of humans.
  • the holding portion is arranged at a portion corresponding to the damaged portion of the damaged bone (bone assuming treatment), that is, a portion to be brought into contact with the damaged portion.
  • the "bone healing promoting substance” in the present specification means a physiologically active substance related to promoting bone healing.
  • the bone healing promoting substance may be a pure substance or a mixture.
  • Bone healing-promoting substances may also be used in combination with other substances such as substances for dissolving or dispersing bone healing-promoting substances, substances for assisting the promotion of bone healing, and substances for suppressing alteration of bone healing-promoting substances. Good.
  • the "retaining portion" in the present specification refers to a part of a bone treatment sheet having a structure that easily retains a bone healing promoting substance from some viewpoint (for example, from the viewpoint of surface structure and affinity).
  • the holding portion may be one that holds the bone healing promoting substance inside, or may be one that holds the bone healing promoting substance on the surface.
  • porous structure capable of accommodating a bone healing promoting substance examples include a sponge-like structure and a structure containing a large amount of inorganic substances having pores.
  • the bone treatment sheet according to the present invention may be left in the body even after the bone is healed, or may be removed from the body after the bone is healed.
  • the holding portion contains a scaffolding material that serves as a scaffold for bone healing.
  • the holding portion serves as a scaffold for reconstructing the surface structure of the bone as it is, and it is possible to achieve early healing and strength improvement of the bone.
  • the bone treatment sheet of the present invention it is preferable to further have a scaffolding material-containing portion containing a scaffolding material that serves as a scaffolding for bone healing.
  • the scaffolding material-containing portion serves as a scaffold for reconstructing the surface structure of the bone, and it is possible to achieve early healing and strength improvement of the bone.
  • the scaffolding material-containing portion can be particularly preferably used when the holding portion does not contain the scaffolding material.
  • the scaffolding material-containing portion may or may not have the ability to retain the bone healing promoting substance.
  • the holding portion is configured to be able to penetrate the inside of the damaged portion when placed on the damaged bone.
  • the holding portion has a protruding portion corresponding to the damaged portion.
  • the "protruding portion in the holding portion” in the present specification means a portion of the holding portion that protrudes in the thickness direction of the bone treatment sheet.
  • the holding portion holds the bone healing promoting substance.
  • the bone treatment sheet in which the bone healing promoting substance is held in the holding portion is preferably stored in an environment (for example, a low temperature environment) in which deterioration of the bone healing promoting substance can be suppressed. Further, although it depends on the constituent materials of the bone treatment sheet and the type of the bone healing promoting substance, the bone treatment sheet is dried or frozen in a state where the bone healing promoting substance is held in the holding portion. May be possible for long-term storage.
  • the holding portion holds at least one of bone formation factors, platelet-rich plasmas and blood vessel increasing factors as a bone healing promoting substance.
  • bone formation factors, platelet-rich plasmas, and blood vessel-increasing factors are substances that are highly related to bone healing, it is possible to further promote bone healing by adopting the above configuration. ..
  • the "bone-forming factors” in the present specification refer to proteins and polypeptides used for signal transduction in the living body, which can promote bone formation.
  • platelet-rich plasma refers to a blood-derived substance that is obtained by centrifugation of blood and is rich in growth factors and the like.
  • blood vessel increasing factor refers to a protein or polypeptide used for signal transduction in a living body that can promote the formation of blood vessels or granulation tissue. Since bone healing in the living body proceeds integrally with healing of living tissue in the vicinity of the injured site, promotion of angioplasty and the like by angiogenic factors is considered to indirectly promote bone healing.
  • the holding portion holds platelet-rich plasma (Platelet-Rich Plasma) as the bone healing promoting substance.
  • the "platelet-rich plasma” in the present specification is obtained by centrifuging blood and collecting plasma having a specific gravity within a predetermined range, and is plasma containing a large amount of platelets.
  • the bone treatment sheet of the present invention preferably has biodegradability.
  • the bone treatment sheet can be absorbed without performing surgery for taking out the bone treatment sheet. Is possible.
  • biodegradable refers to the property that at least a part of the substance is decomposed in the living body so that it can be absorbed by the living body and the structure is different from the original structure when left in the living body. In the bone treatment sheet of the present invention, only a part thereof may be decomposed in the living body. Further, in the present specification, “biodegradability” is a concept including the property of forming biological tissues (for example, bones and blood vessels) based on the shape of the original structure, so-called “absorption-replacement property”. Use.
  • the bone treatment sheet of the present invention is a bone treatment sheet for use in bone treatment by arranging the bone treatment sheet on the outer surface of the damaged portion, and at least a portion corresponding to the damaged portion. It is characterized in that a nano-periodic structure composed of a nano-scale concavo-convex structure having periodicity is partially formed.
  • the bone treatment sheet of [8] above since the nano-periodic structure is formed in at least a part of the portion corresponding to the damaged portion, the nano-periodic structure is brought into contact with the damaged portion of the bone or a portion in the vicinity thereof. By using this, it becomes possible to promote the proliferation and differentiation of bone cells (particularly osteoblasts). Therefore, according to the bone treatment sheet of the above [8], it is possible to increase the strength of the bone by firmly fixing the bone treatment sheet and the bone at an early stage. Further, according to the bone treatment sheet of the above [8], it is possible to enhance the healing power of the bone itself because it promotes the proliferation and differentiation of cells. Therefore, the bone treatment sheet of the above [8] is a bone treatment sheet capable of promoting bone healing as compared with the conventional sheet.
  • nano-periodic structure in the bone treatment sheet of the present invention will be described.
  • the inventors of the present invention have focused on a nanoscale structure in which the same structure repeats at regular intervals, that is, a “nanoperiodic structure which is a nanoscale uneven structure having periodicity”. I came.
  • the bone marrow stromal cells when bone marrow stromal cells are cultured on the surface of the substrate by forming a normalized nanostructure (nano-periodic structure) on the surface of the substrate, the bone marrow stromal cells can be proliferated along the direction in which the grooves are continuous. It has been confirmed by experiments conducted by the inventors of the present invention that it is possible.
  • the "location corresponding to the damaged portion” means a portion that should be brought into contact with the damaged portion of the damaged bone (bone that is supposed to be treated) when the bone treatment sheet is used.
  • the “nanoscale” means a size (a size of about 1 nm to 1000 nm) that is appropriate to be expressed in nanometer units.
  • the “nanoscale concavo-convex structure” means that any of the basic units of the structure, such as the width, height, and diameter of the concavo-convex, is within the range of 1 nm to 1000 nm. Therefore, the “nano-periodic structure” in the present specification means a nano-scale periodic structure in which the period of the unevenness of the nano-scale uneven structure is in the range of 1 nm to 1000 nm.
  • the nanoperiodic structure preferably has an uneven width, height, and diameter in the range of 20 nm to 600 nm, and a period in the range of 20 nm to 600 nm. Further, it is more preferable that the width, height and diameter of the unevenness are in the range of 50 nm to 500 nm and the period is in the range of 50 nm to 500 nm. Further, it is more preferable that the width, height and diameter of the unevenness are in the range of 80 nm to 300 nm and the period is in the range of 80 nm to 300 nm. Further, it is more preferable that the width, height and diameter of the unevenness are in the range of 100 nm to 200 nm and the period is in the range of 100 nm to 200 nm.
  • the bone treatment sheet of the present invention may have nano-periodic structures at a plurality of independent locations.
  • the bone treatment sheet of the present invention may have a plurality of types of nanoperiodic structures.
  • the bone treatment sheet of the present invention may have a nano-scale uneven structure having no periodicity in addition to the nano-periodic structure.
  • a randomly arranged dot-shaped uneven structure can be mentioned.
  • the nanoperiodic structure is composed of a plurality of band-shaped recesses or a plurality of band-shaped protrusions that do not come into contact with each other.
  • the "belt-shaped recess” means a recess that is continuous without branching when viewed in a plan view.
  • the band-shaped recess can also be expressed as a groove-shaped structure.
  • the "belt-shaped convex portion” means a continuous convex portion without branching when viewed in a plan view.
  • the band-shaped convex portion can also be expressed as a ridge-shaped structure. Whether a certain structure is composed of concave portions or convex portions is mainly a matter of how to set the reference height. Therefore, in reality, it can be said that the nanoperiodic structure is composed of a plurality of band-shaped concave portions and at the same time is composed of a plurality of band-shaped convex portions (see the eleventh embodiment described later).
  • not in contact with each other means that the band-shaped concave portions do not intersect or merge with each other with respect to the plurality of band-shaped concave portions, and the band-shaped convex portions intersect with each other with respect to the plurality of band-shaped convex portions. It means not to join.
  • the nanoperiodic structure often looks like a stripe when viewed in a plan view (see FIG. 16C described later).
  • the bone treatment sheet of the present invention is provided with a caution indication indicating the position where the nanoperiodic structure is formed.
  • the caution display for displaying the position it is possible to clarify the position where the nanoperiodic structure is formed by colors, patterns, figures, characters, three-dimensional shapes, and the like.
  • the caution indication may be attached to the place where the nano-periodic structure is formed, or may be attached to the place where the nano-periodic structure is not formed. Further, the caution indication may be attached to all the places where the nano-periodic structure is formed or the places where the nano-periodic structure is not formed, or may be attached only to a part of the place.
  • the main structure constituting the main shape of the bone treatment sheet is made of stainless steel.
  • Such a bone treatment sheet has an excellent balance between strength and cost as compared with a bone treatment sheet made of other materials that can be used in vivo, and can actively promote bone healing. It becomes a treatment sheet.
  • the "main structure” in the present specification refers to a structure that constitutes the main shape (sheet-like shape) of the bone treatment sheet.
  • the "main structure constituting the main shape” means the main structure constituting the main shape. It can be said that the main structure of the bone treatment sheet is a structure that bears the mechanical strength of the bone treatment sheet.
  • stainless steel include medical (low nickel) SUS316 series stainless steel.
  • the main structure constituting the main shape of the bone treatment sheet is made of magnesium or a magnesium alloy.
  • Some magnesium and magnesium alloys have the property of being easily decomposed and absorbed in the human body. Therefore, the above-mentioned bone treatment sheet has sufficient initial strength, can be expected to be decomposed and absorbed by the living body, and can positively promote bone healing. It becomes.
  • Magnesium alloy is an alloy of magnesium and elements other than magnesium.
  • Examples of magnesium alloys that can be suitably used in the present invention include Mg—Ca—Zn-based alloys.
  • the main structure constituting the main shape of the bone treatment sheet is made of titanium or a titanium alloy.
  • Such a bone treatment sheet is a bone treatment sheet that has high strength and low toxicity, and can actively promote bone healing.
  • the main structure constituting the main shape of the bone treatment sheet is made of a non-metallic material containing collagen as a main component.
  • Such a bone treatment sheet is a bone treatment sheet that can be expected to be rapidly decomposed and absorbed by the living body and can actively promote bone healing.
  • the "main component" in the constituent material means the component having the largest mass ratio among the components constituting the constituent material. However, when determining which component is the main component of the constituent material, water is excluded from the components of the constituent material for evaluation.
  • non-metallic material means a material that does not contain a substance having metallic properties as a main component. Therefore, the non-metallic material may contain a component containing a metallic element.
  • type I collagen molecule and type II collagen molecule can be used.
  • V-type, XI-type, IX-type, XII-type, and XIV-type collagen molecules can also be used.
  • the non-metal material according to the above [20] does not contain unintended impurities (heavy metals and the like) as much as possible.
  • the non-metallic material may contain a component or the like that contributes to promotion of bone healing or the like.
  • the main structure of the bone treatment sheet is made of a non-metallic material containing collagen as a main component, it is sufficient that a nanoperiodic structure is formed on the surface of the bone treatment sheet when it is brought into contact with the bone.
  • the main structure constituting the main shape of the bone treatment sheet is made of a non-metallic material containing agarose or cellulose as a main component.
  • the non-metal materials described above do not contain unintended impurities (heavy metals and the like) as much as possible.
  • the non-metallic material may contain a component or the like that contributes to promotion of bone healing or the like.
  • the main structure of the bone treatment sheet is made of a non-metallic material containing agarose or cellulose as a main component, it is sufficient that a nanoperiodic structure is formed on the surface of the bone treatment sheet when it is brought into contact with bone.
  • the bone treatment sheet of the present invention it is preferable to further include a coating film covering at least a part of the main structure.
  • the nanoperiodic structure may be formed only on the surface of the main structure or only the surface of the coating film, or the main structure and the coating film. It may be formed on both surfaces of and.
  • the coating film is made of a material that rapidly separates from the main structure in the living body, such as when the coating film is made of a liquid or gel-like substance or is made of a highly water-soluble or biodegradable substance.
  • the nanoperiodic structure may be embedded under the coating film.
  • Examples of materials constituting the coating film include metals, non-metallic inorganic substances (ceramics, etc., particularly those composed of hydroxyapatite and tricalcium phosphate), collagen, agarose, cellulose and synthetic polymer substances, and these. Can be mentioned as a composite material in which the above is combined.
  • a cellulose lactic acid polymer, a lactic acid-glycolic acid polymer, a lactone polymer, a dioxanone polymer and a polyethylene glycol polymer can be preferably used.
  • lactic acid polymers, lactic acid-glycolic acid polymers, lactone-based polymers, dioxanone-based polymers, and polyethylene glycol-based polymers have high biodegradability, and therefore, they are particularly preferably used when it is desired to increase the biodegradability of bone treatment sheets. Can be done.
  • the thickness is preferably in the range of 0.05 ⁇ m to 500 ⁇ m.
  • the thickness of the bone treatment sheet is more preferably in the range of 0.08 ⁇ m to 100 ⁇ m, and even more preferably in the range of 0.1 ⁇ m to 50 ⁇ m.
  • the nano-periodic structure includes a concave portion or a convex portion that intersects the damaged portion when it is arranged on the outer surface of the damaged portion.
  • intersecting the damaged part with respect to the concave portion or the convex portion means that the concave portion or the convex portion straddles the damaged portion of the bone.
  • the "concave or convex portion that intersects the damaged portion when placed on the outer surface of the damaged portion” may include a band-shaped concave portion and a band-shaped convex portion.
  • recesses and protrusions that intersect the damaged area when placed on the outer surface of the damaged area may intersect or merge with each other if they intersect the damaged area of the bone when placed on the outer surface of the damaged area. You may be.
  • body fluids and the like containing substances useful for bone healing can easily reach the damaged part of the bone, so that the healing of the bone can be further promoted.
  • the shape, size, formation position, and number of formations of the "opening that is a through hole” can be appropriately determined according to the shape of the bone to be used for the bone treatment sheet, the state of damage, and the like. For example, when a filler containing a granular bone filling material is used for the damaged part of the bone, the opening having a shape and size that can prevent the bone filling material from spilling out from the opening is formed. It is preferable to use the formed bone treatment sheet.
  • the bone treatment sheet of the present invention preferably has a fixing structure for fixing the bone treatment sheet to the damaged bone.
  • the fixation structure has a structure including an extension portion extending from any part of the bone treatment sheet and a fixing hole through which the extension portion can pass. It is preferable to have.
  • the bone treatment sheet is wrapped around the bone with a simple structure that can be integrally molded with the important part (the part where the nano-periodic structure is formed) of the bone treatment sheet. It is possible to construct a fixed structure that can be used when arranging in this way.
  • a plurality of the fixing holes are formed along the extending direction of the extending portion.
  • the method for treating an animal bone of the present invention includes a preparatory step for preparing the bone treatment sheet according to any one of the above, and the bone treatment sheet so as to cover at least a part of the damaged portion in the damaged bone. Including a placement step of placing on the surface of the damaged bone.
  • animal bone treatment method in this specification does not include the "human bone treatment method”.
  • animal bone treatment method of the present invention is essentially a bone treatment method, substantially the same method as the animal bone treatment method of the present invention is applied to the human bone treatment method. It is also possible.
  • the bone treatment sheet according to any one of the above [2] to [6] is prepared in the preparation step, and bone healing is performed in the placement step. It is preferable that the bone treatment sheet holding the accelerator is placed on the surface of the damaged bone so as to cover at least a part of the damaged part in the damaged bone.
  • the bone treatment method for animals according to [12] uses the bone treatment sheet according to any one of [2] to [6] above, as compared with the conventional method for treating animal bones using a sheet, It is a method of treating bone in animals that can promote bone healing.
  • any method can be used as a method of invading at least a part of the holding portion inside the damaged portion as long as the effect of the invention is not impaired.
  • the bone treatment sheet itself is flexible, simply placing (for example, wrapping) the bone treatment sheet on the bone with appropriate tension will cause the holding part to penetrate inside the damaged area. be able to.
  • an external force for example, pressing or winding a wire or thread
  • the damage is caused. It is possible to reliably penetrate the holding portion into the inside of the portion.
  • a bone treatment sheet having a structure (for example, a protruding portion) corresponding to the damaged part as described in the above [5] is used, the inside of the damaged part is simply placed at an appropriate position. Can invade the holding part.
  • bone fixtures used by attaching to the bone for the treatment of fractures and the like can be widely used.
  • Specific examples of the fixture include screws, pins, wires, staples and plates.
  • the fixture in the present invention may be left in the body after the bone has healed, or may be removed from the body after the bone has healed. Further, after the bone is healed, the bone treatment sheet may be left in the body and the fixture may be removed from the body.
  • the bone treatment sheet according to any one of the above [11] to [13] is prepared in the preparation step, and the bone is prepared in the placement step. It is preferred that the bone treatment sheet be placed on the surface of the damaged bone so that the nanoperiodic structure of the treatment sheet is in contact with the damaged bone.
  • the bone treatment method for animals according to [15] uses the bone treatment sheet according to any one of [11] to [13] above, bone healing is performed as compared with conventional animal bone treatment methods. It is a method of treating animal bone that can be promoted.
  • the damaged bone is a bone with a defect
  • a filler is used in the portion where the defect has occurred between the preparation step and the placement step.
  • the placement step it is preferable to arrange the bone treatment sheet so as to cover at least a part of the portion filled with the filler.
  • the figure shown for demonstrating the bone to be treated (damaged bone B1).
  • FIG. 5 is a cross-sectional view of the bone treatment sheets 7, 8 and 7a according to the tenth embodiment.
  • FIG. 1 is a diagram shown for explaining the bone treatment sheet 1 according to the first embodiment.
  • 1 (a) is a plan view of the bone treatment sheet 1
  • FIG. 1 (b) is a cross-sectional view of A1-A1 of FIG. 1 (a)
  • FIG. 1 (c) is M1 of FIG. 1 (a).
  • FIG. 1 (d) is an enlarged figure which shows the part shown by M2 of FIG. 1 (b).
  • a code is displayed for only one pore P1 and the code is omitted for the other pores P1.
  • FIG. 1 (c) a code is displayed for only one pore P1 and the code is omitted for the other pores P1.
  • FIG. 1D the reference numerals are displayed only for one pore P2, and the reference numerals are omitted for the other pores P2.
  • FIG. 1C and FIG. 1D in order to make the drawing easy to understand, the pores in which the nanoscale uneven structure is formed on the wall surface are designated by P1 and the nanoscale uneven structure is attached. The illustration of itself is omitted.
  • FIG. 2 is a diagram shown for explaining the bone to be treated (damaged bone B1).
  • FIG. 2A is a plan view of the damaged bone B1
  • FIG. 2B is a cross-sectional view taken along the line A2-A2 of FIG. 2A.
  • FIG. 3 is a diagram shown for explaining a bone treatment method according to the first embodiment.
  • FIG. 3 is a diagram shown for explaining a bone treatment method according to the first embodiment.
  • FIG. 3A is a plan view showing a state after performing the arrangement step (described later), and FIG. 3B is a cross-sectional view of FIG. 3A (cross-sectional view corresponding to FIG. 2A).
  • FIG. 3A the cross section of the bone treatment sheet 1, the contour of the bone B1, and the damaged portion D1 are indicated by broken lines in order to make it easy to understand the position of the damaged portion D1 and the like.
  • the bone treatment sheet, the contour of the bone, and the damaged part are indicated by broken lines as necessary.
  • the bone treatment sheet 1 is a bone treatment sheet for use in the treatment of bone B1 by arranging it so as to cover the damaged portion D1 of the damaged bone B1 (see FIG. 3).
  • the bone treatment sheet 1 has a main structure 10 having a sheet-like shape and a holding portion 11 that holds a bone healing promoting substance (see FIG. 1).
  • the holding portion 11 exists at a position corresponding to the damaged portion D1 of the damaged bone B1.
  • the holding portion 11 in the bone treatment sheet 1 is arranged on the entire surface of one side of the main structure 10 (see FIG. 1 (b)).
  • the bone treatment sheet 1 is preferably biodegradable.
  • the “damaged bone” and the “bone to be treated” in the description of one bone treatment sheet are the same, and these bones have the same reference numerals (if the first embodiment).
  • the description and illustration will be given with a reference numeral (B1).
  • the shapes of the bones and injuries described in the drawings are schematic views, and these do not limit the bones and injuries to which the bone treatment sheet and the treatment method of the present invention are applied.
  • the damaged bone B1 bone to be treated
  • the bone treatment sheet 1 according to the first embodiment is a method for treating human bone. It can also be used as a method for treating animal bones. The same applies to each bone treatment sheet described in each embodiment described later.
  • the holding portion 11 has a porous structure capable of accommodating a bone healing promoting substance.
  • a holding portion 11 for example, one having a sponge-like structure can be preferably used.
  • a biodegradable material containing collagen or a composite material of collagen and a non-metallic inorganic substance (ceramic having biocompatibility) as a main component can be preferably used.
  • the holding portion 11 is preferably made of sponge-like collagen or a collagen-non-metallic inorganic substance complex having a porous structure.
  • the collagen constituting the holding portion 11 for example, one containing a type I collagen molecule or a type II collagen molecule as a main component can be used. Further, for example, V-type, XI-type, IX-type, XII-type, and XIV-type collagen molecules can also be used. In addition, when collagen can be used as a material for components other than the holding portion described later, basically, the above collagen can be preferably used.
  • biocompatible non-metallic inorganic substance examples include hydroxyapatite and calcium phosphates (salts of calcium ions such as tricalcium phosphate and octacalcium phosphate and phosphate ions or diphosphate ions). It can.
  • hydroxyapatite and calcium phosphates salts of calcium ions such as tricalcium phosphate and octacalcium phosphate and phosphate ions or diphosphate ions.
  • the above-mentioned hydroxyapatite and calcium phosphates can be preferably used.
  • the holding portion 11 preferably contains a scaffolding material that serves as a scaffolding for bone healing.
  • the holding portion 11 may be entirely composed of a material that also serves as a scaffolding material, or may be composed of a mixture of an essential material as the holding portion and the scaffolding material.
  • the scaffold material particles, powders, and porous bodies made of a biocompatible non-metallic inorganic substance (for example, hydroxyapatite or calcium phosphate) or a composite material of the non-metallic inorganic substance and an organic substance such as collagen are preferable. Can be used for.
  • the holding portion 11 may contain a bone healing promoting substance on its surface by something like a mere uneven structure.
  • Such an uneven structure can be formed not only by surface processing such as cutting, but also by, for example, surface etching (for example, plasma etching).
  • the holding portion 11 holds the bone healing promoting substance.
  • the holding portion 11 does not hold the bone healing promoting substance, it is necessary to have the holding portion 11 hold the bone healing promoting substance before use.
  • the holding portion 11 holds at least one of bone-forming factors, platelet-rich plasmas, and blood vessel-increasing factors as a bone healing promoting substance. It is more preferable that the holding unit 11 holds platelet-rich plasma (Platelet-Rich Plasma). In this case, it is preferable to use platelet-rich plasma obtained from the blood of the subject to be treated.
  • the holding portion 11 may also hold components (solvents, additives, etc.) other than the bone healing promoting substance.
  • bone morphogenetic factors include bone morphogenetic protein-2 (BMP-2), bone morphogenetic protein-4 (BMP-4), bone morphogenetic protein-6 (BMP-6), and bone morphogenetic protein-7 (BMP).
  • BMP-2 bone morphogenetic protein-2
  • BMP-4 bone morphogenetic protein-4
  • BMP-6 bone morphogenetic protein-6
  • BMP-7 bone morphogenetic protein-7
  • TGF- ⁇ transforming growth factor beta
  • FGF fibroblast growth factor
  • IGF-1 insulin-like growth factor
  • osteocalcin can be mentioned.
  • platelet-rich plasmas include platelet-rich plasma (Platelet-Rich Plasma, PRP), PRGF (Plasma Rich in Growth Factors), PRF (Platelet-Rich Fiber), and A-PRF (Advanced Plate). CGF (Concentrated Growth Factors) can be mentioned.
  • the holding portion 11 holds platelet-rich plasma (platelet-rich plasma).
  • BafA Bartonella angular factor A
  • BafA is an angiogenic factor (angiogenic factor) found in pathogens (Bartonella Hensere and Bartonella quintana) classified in the genus Bartonella.
  • a nanoscale uneven structure is formed on at least a part of the wall surface of the pore P1 in the holding portion 11.
  • the pores P1 in which the nanoscale uneven structure is formed on the wall surface are pores that are open on the surface of the holding portion 11. Since these pores are exposed on the surface, it is relatively easy to later form a nanoscale concavo-convex structure on the wall surface. It is preferable that a nanoscale uneven structure is formed on the wall surface even in the pores that are not directly opened on the surface of the holding portion 11 as shown by the reference numeral P2 in FIG. 1 (d).
  • the nanoscale uneven structure on the wall surface of the pore P1 can be formed by, for example, an appropriate surface treatment (for example, plasma etching). Further, it is considered that the nanoscale uneven structure can be formed depending on the conditions for forming the holding portion (for example, the type of solvent used and the heat treatment conditions). For example, by processing by an isotropic etching processing method including plasma etching, not only the depth direction of the pores (in the case of plasma etching, the irradiation direction of plasma) but also the side of the pores (other than the irradiation direction). (Direction) can also be etched, and a nanoscale concavo-convex structure can be easily formed on the side wall surface of the pores.
  • an appropriate surface treatment for example, plasma etching
  • the nanoscale uneven structure can be formed depending on the conditions for forming the holding portion (for example, the type of solvent used and the heat treatment conditions). For example, by processing by an isotropic etching processing method including plasma etching, not only the depth direction of
  • the main structure 10 may be capable of retaining a bone healing promoting substance.
  • the main structure 10 in the bone treatment sheet 1 may be entirely made of a single material or may be made of a plurality of materials.
  • a structure made of a single-layer thin film can be exemplified.
  • the main structure composed of a plurality of materials include a multi-layer structure and a structure in which a plurality of types of powdery substances are fixed in a mixed state (for example, a powder solidified with a binder). ..
  • any material can be used as long as it is made of a material that can be used in a living body, depending on the intended use.
  • a material containing a biocompatible polymer substance or a non-metallic inorganic substance as a main component can be used.
  • the main structure 10 has biodegradability.
  • the biocompatible polymer substance include collagen, polylactic acid, agarose and cellulose.
  • a composite material of a polymer substance and a non-metallic inorganic substance for example, an artificial bone material composed of a composite of hydroxyapatite and collagen
  • an artificial bone material composed of a composite of hydroxyapatite and collagen can also be used.
  • a material containing a metal as a main component can also be used.
  • a metal for example, magnesium, magnesium alloy, titanium, titanium alloy and stainless steel for medical use can be preferably used.
  • the biodegradability of the bone treatment sheet 1 can be enhanced by making the main structure 10 made of magnesium or a magnesium alloy.
  • magnesium alloys that can be suitably used in the present invention include Mg—Ca—Zn-based alloys.
  • Titanium and titanium alloys are characterized by high strength and low toxicity, and stainless steel is characterized by high strength and low cost.
  • stainless steels that can be suitably used in the present invention include low nickel SUS316 series stainless steels.
  • a coating film may be formed on the surface of the main structure 10. With such a configuration, it has excellent properties (for example, excellent strength, high biocompatibility, ease of production, low production cost, etc.) that are difficult to obtain only with the main structure 10 at a high level. It is possible to obtain the property). Further, by using the coating film, there is a possibility that even a metal having low biocompatibility can be used as a constituent material of the main structure of the bone treatment sheet. Examples of the material of the coating film include metals, non-metallic inorganic substances (particularly hydroxyapatite and calcium phosphates), collagen, agarose, cellulose and synthetic polymer substances, and composite materials combining these.
  • a cellulose lactic acid polymer, a lactic acid-glycolic acid polymer, a lactone polymer, a dioxanone polymer and a polyethylene glycol polymer can be preferably used.
  • lactic acid polymer, lactic acid-glycolic acid polymer, lactone polymer, dioxanone polymer and polyethylene glycol polymer have high biodegradability, they are particularly preferably used when it is desired to increase the biodegradability of the bone treatment sheet 1. be able to.
  • the bone treatment sheet 1 is provided with a caution display indicating the position of the holding portion 11.
  • the caution indication on the bone treatment sheet 1 is made by color (for example, color coding with paint), and specifically, the color is different between the position where the holding portion 11 is present and the position where the holding portion 11 is not present.
  • the front and back sides have different colors.
  • the caution display may be a pattern, a figure, a character, a three-dimensional shape, or the like, in addition to the color.
  • the caution indicator may be attached at a position where the holding portion exists, or conversely, may be attached at a position where the holding portion does not exist. Further, the caution indication may be attached to all the positions where the holding portion exists or the positions where the holding portion does not exist, or may be attached only to a part of the positions.
  • the thickness of the bone treatment sheet 1 depends on the size of the treatment target, but can be, for example, in the range of 0.05 ⁇ m to 50 mm.
  • the thickness of the bone treatment sheet 1 is more preferably in the range of 0.08 ⁇ m to 5 mm, and even more preferably in the range of 0.1 ⁇ m to 3 mm.
  • the thickness of the bone treatment sheet 1 is preferably 100 ⁇ m or less.
  • the animal bone treatment method according to the first embodiment includes a preparatory step for preparing the bone treatment sheet 1 (see FIG. 1) according to the first embodiment and a bone treatment sheet 1 holding a bone healing promoting substance. It includes a placement step (see FIG. 3) of placing on the surface of the injured bone B1 so as to cover at least a portion of the injured site D1 in the injured bone B1.
  • the bone treatment sheet 1 already described is prepared (for example, the purchased or manufactured one is ready to be used (for example, the bone healing promoting substance is held in the holding portion and can be used immediately). Since it is a process of keeping it at hand as a state), detailed explanation and illustration will be omitted.
  • the damaged bone B1 in the first embodiment is a fractured bone, and the damaged portion D1 is a fractured portion due to the fracture (see FIG. 2).
  • Bone B1 has cortical bone Ba and cancellous bone Bb (see FIG. 2B).
  • the bone treatment sheet 1 is wrapped around the surface of the damaged bone B1.
  • an inclusion tool (described later) or an inclusion such as a bioadhesive may be used, if necessary.
  • the bone treatment sheet 1 since the nanoscale uneven structure affects the proliferation and differentiation of cells, the bone is compared with the conventional sheet (sheet in which the nanoscale structure is not formed). It is possible to promote the healing of bones.
  • the bone healing promoting substance held by the holding portion 11 is bone.
  • the bone treatment sheet 1 according to the first embodiment it is possible to enhance the healing power of the bone itself.
  • the bone treatment sheet 1 according to the first embodiment it is possible to firmly fix the bone treatment sheet 1 and the bone B1 at an early stage through cell proliferation and differentiation, and as a result, during the healing period. It is possible to suppress the displacement and expansion of the damaged part of the damaged bone in. Therefore, the bone treatment sheet 1 according to the first embodiment is a bone treatment sheet capable of promoting bone healing as compared with the conventional sheet.
  • the degree of release of the bone healing promoting substance is adjusted to appropriately promote the bone healing. It becomes possible.
  • the holding portion 11 since the holding portion 11 has a porous structure capable of accommodating the bone healing promoting substance, the bone healing promoting substance can be stably held. .. Further, according to the bone treatment sheet 1 according to the first embodiment, when the bone healing promoting substance is in a liquid state, the holding portion 11 and the bone healing promoting substance are brought into contact with each other and the holding portion 11 absorbs the bone healing promoting substance. By a simple method of causing the bone to heal, the bone healing promoting substance can be retained in the holding portion 11.
  • the nanoscale uneven structure formed in the porous structure makes it possible to activate the proliferation and differentiation of cells inside and outside the holding portion 11.
  • the holding portion 11 is biodegradable, a combination of a porous structure and a nanoscale uneven structure is used. Is considered to promote decomposition and replacement of the holding portion 11.
  • the holding portion 11 when the holding portion 11 contains a scaffolding material that serves as a scaffold for bone healing, the holding portion 11 directly serves as a scaffold for reconstructing the surface structure of the bone, and the bone It is possible to achieve early healing and improvement of strength.
  • the bone treatment sheet 1 when the bone healing promoting substance is held in the holding portion 11, it takes time and effort to prepare the bone healing promoting substance separately from the bone treatment sheet 1. It becomes possible to use without.
  • the holding portion 11 is at least one of bone formation factors, platelet-rich plasmas and blood vessel-increasing factors as a bone healing promoting substance, for example, polyplatelets.
  • a bone healing promoting substance for example, polyplatelets.
  • the bone treatment sheet 1 according to the first embodiment since it has biodegradability, even if it is inconvenient to leave the bone treatment sheet 1 in the living body even after healing, it can be taken out. It is possible to absorb the bone treatment sheet 1 without performing surgery or the like.
  • the method for treating an animal bone according to the first embodiment is such that the preparatory step for preparing the bone treatment sheet 1 according to the first embodiment and the bone treatment sheet 1 cover at least a part of the damaged portion D1 in the damaged bone B1. Including a placement step of arranging the damaged bone B1 on the surface (because the bone treatment sheet 1 according to the first embodiment is used), the bone healing is promoted as compared with the conventional animal bone treatment method. It is a possible method of treating animal bones.
  • the animal bone treatment method according to the first embodiment uses the bone treatment sheet 1 according to the first embodiment, it is possible to promote bone healing as compared with the animal bone treatment method using the conventional sheet. It is a possible method of treating animal bones.
  • the bone treatment sheet of the present invention can also be used for a human bone treatment method, substantially the same method as the animal bone treatment method according to the first embodiment is applied to the human bone treatment method. It is also possible to do. This also applies to each embodiment described later.
  • FIG. 4 is a diagram shown for explaining the bone treatment sheet 1a and the bone treatment method according to the second embodiment.
  • FIG. 4A is a plan view showing a state after the arrangement step is performed
  • FIG. 4B is a cross-sectional view of FIG. 4A (cross-sectional view corresponding to FIG. 3B).
  • the bone treatment sheet 1a according to the second embodiment basically has the same configuration as the bone treatment sheet 1 according to the first embodiment, but is smaller than the bone treatment sheet 1 according to the first embodiment. Therefore, in the animal bone treatment method according to the second embodiment, the bone treatment sheet 1a is arranged so as to be placed on the bone B1 instead of being wrapped around the bone B1 in the arrangement step (see FIG. 4).
  • the bone treatment sheet 1a may be originally smaller than the bone treatment sheet 1, but may be a bone treatment sheet 1 cut to an appropriate size.
  • the bone treatment sheet 1a according to the second embodiment is different from that of the bone treatment sheet 1 according to the first embodiment, since it has a holding portion 11, the bone treatment sheet 1a according to the first embodiment is the same as the conventional bone treatment sheet 1 according to the first embodiment. It is a bone treatment sheet that can promote bone healing compared to the sheet. Further, the bone treatment sheet 1a according to the second embodiment has a corresponding effect among the effects of the bone treatment sheet 1 according to the first embodiment.
  • the method for arranging the bone treatment sheet 1a in the placement step is different from the method for treating the bones for animals according to the first embodiment, but the bone treatment sheet 1a according to the second embodiment is used. Therefore, it is an animal bone treatment method capable of promoting bone healing as compared with an animal bone treatment method using a conventional sheet.
  • the embodiment described in the first embodiment can be applied as it is in the second embodiment.
  • FIG. 5 is a diagram shown for explaining a bone treatment method according to the third embodiment.
  • FIG. 5A is a plan view showing a state after the fixing step is performed
  • FIG. 5B is a sectional view taken along line A3-A3 of FIG. 5A.
  • the bone treatment sheet 1a is displayed in a large size while ignoring the pressure and the like caused by the fixture 100. Therefore, in FIG. 5B, a gap is formed between the fixture 100 and the bone B1.
  • the bone treatment sheet 1a and the fixture 100 may be arranged so that a gap is not formed between the fixture 100 and the bone B1.
  • the method for treating animal bones according to the third embodiment is basically the same as the method for treating animal bones according to the second embodiment, but the second embodiment further includes a fixing step after the placement step. It is different from the animal bone treatment method according to the above. Since the preparation step and the placement step in the animal bone treatment method according to the third embodiment are the same steps as the preparation step and the placement step in the animal bone treatment method according to the second embodiment, the description thereof will be omitted. ..
  • the fixing step according to the third embodiment is a step of fixing the bone treatment sheet 1a to the damaged bone B1 by using the fixture 100 (see FIG. 5).
  • the fixture 100 is a plate for bone fixation.
  • a mounting hole (not shown) is formed in the plate-shaped main body 110, and by passing the fastener 120 (for example, a screw for fixing the bone) through the mounting hole, the bone is formed. It can be fixed to B1.
  • the fixture 100 fixes the bone treatment sheet 1a to the bone B1 by applying pressure to the bone treatment sheet 1a.
  • the position where the bone treatment sheet 1a is fixed by the fixture 100 is merely an example.
  • the bone treatment sheet 1a is hidden under the fixture 100, but the bone treatment sheet 1a may be exposed on the outside of the fixture 100.
  • a bone treatment sheet larger than the bone treatment sheet 1a for example, a bone treatment sheet 1 according to the first embodiment, can be used together with the fixture 100.
  • the animal bone treatment method according to the third embodiment is different from the animal bone treatment method according to the second embodiment in that the fixation step is further included after the placement step, but the animal bone treatment method according to the second embodiment. Since the bone treatment sheet 1a is used in the same manner as the method, it is an animal bone treatment method capable of promoting bone healing as compared with the animal bone treatment method using the conventional sheet.
  • the bone treatment sheet 1a is further fixed to the damaged bone B1 by using the fixture 100 after the placement step, the bone treatment sheet It is possible to increase the adhesion between 1a and the bone B1. Further, according to the animal bone treatment method according to the third embodiment, it is possible to suppress the misalignment and peeling of the bone treatment sheet 1a. Furthermore, according to the method for treating animal bones according to the third embodiment, it is possible to increase the strength of bone B1 during healing.
  • the embodiment described in the first or second embodiment can be applied as it is in the third embodiment.
  • FIG. 6 is a view (plan view) shown for explaining the bone to be treated (damaged bone B2).
  • FIG. 7 is a diagram shown for explaining the bone treatment method according to the fourth embodiment.
  • FIG. 7A is a plan view showing a state after the arrangement step is performed
  • FIG. 7B is a sectional view taken along the line A4-A4 of FIG. 7A.
  • the filler S is indicated by a broken line in addition to the contour of the bone B2 and the damaged portion D2. In each drawing described later, the filler is also indicated by a broken line as necessary.
  • the animal bone treatment method according to the fourth embodiment is basically the same as the animal bone treatment method according to the first embodiment, but the animal bone according to the first embodiment is used in that a filler is used. It is different from the case of the treatment method of.
  • the damaged bone B2 in the fourth embodiment is a bone having a defect at the damaged portion D2 (see FIG. 6).
  • the method for treating an animal bone according to the fourth embodiment includes a filling step of filling the inside of the damaged portion D2 with the filler S between the preparation step and the placement step. Further, in the arrangement step in the fourth embodiment, the bone treatment sheet 1 is arranged so as to cover at least a part (all in the fourth embodiment) of the portion filled with the filler S (see FIG. 7).
  • the filler S contains, for example, a granular or block-shaped bone filling material (aggregate).
  • Materials constituting the bone filling material include autologous bone, allogeneic bone, non-metallic inorganic substances (for example, hydroxyapatite and calcium phosphates), polymer substances (for example, collagen), and polymer substances and non-metallic inorganic substances.
  • the filler may contain an additive or the like (for example, a bone healing promoting substance) in addition to the bone filling material.
  • a nanoscale uneven structure or a nanoperiodic structure may be formed on the surface of the bone filling material.
  • the bone treatment sheet 1 may be partially wound around the damaged portion D2 (for example, wound about half a circumference), and then the filling material S may be filled. In this case, in the subsequent placement step, the bone treatment sheet 1 is completely wrapped around the bone B2.
  • the animal bone treatment method according to the fourth embodiment is different from the animal bone treatment method according to the first embodiment in that a filler is used, but is the same as the animal bone treatment method according to the first embodiment. Since the bone treatment sheet 1 is used for the bone treatment sheet 1, it is an animal bone treatment method capable of promoting bone healing as compared with the conventional animal bone treatment method.
  • the animal bone treatment method according to the fourth embodiment it is possible to suppress the spillage of the filler S. Further, according to the animal bone treatment method according to the fourth embodiment, it is possible to promote bone healing from the outside of the defect.
  • the embodiment described in the first or second embodiment can be applied as it is in the fourth embodiment.
  • FIG. 8 is a diagram shown for explaining the bone treatment sheet 2 and the bone treatment method according to the fifth embodiment.
  • FIG. 8 (a) is a cross-sectional view of the bone treatment sheet 2 (cross-sectional view corresponding to FIG. 1 (b))
  • FIG. 8 (b) is a plan view showing a state after performing the arrangement step.
  • 8 (c) is a cross-sectional view of FIG. 8 (b) (a cross-sectional view corresponding to FIG. 7 (b)).
  • the bone treatment sheet 2 according to the fifth embodiment basically has the same configuration as the bone treatment sheet 1 according to the first embodiment, but the bone treatment sheet 1 according to the first embodiment further has a scaffolding material-containing portion. Is different.
  • the bone treatment sheet 2 has a scaffolding material-containing portion 20 containing a scaffolding material that serves as a scaffolding for bone healing (see FIG. 8).
  • the scaffolding material-containing portion 20 is arranged in layers on the surface of the bone treatment sheet 2. Further, the scaffolding material-containing portion 20 is arranged outside the holding portion 11 (the side closer to the center of the bone B2 during use) (see FIGS. 8 (b) and 8 (c)).
  • the scaffolding material-containing portion 20 preferably has a structure that allows the bone healing promoting substance to pass directly or indirectly.
  • the scaffold material particles, powders, and porous bodies made of a biocompatible non-metallic inorganic substance (for example, hydroxyapatite or calcium phosphate) or a composite material of the non-metallic inorganic substance and an organic substance such as collagen are preferable. Can be used for.
  • the bone treatment sheet 2 according to the fifth embodiment is different from the bone treatment sheet 1 according to the first embodiment in that it further has a scaffolding material-containing portion, but since it has a holding portion 11, the bone treatment sheet 1 according to the first embodiment has. Similarly, it becomes a bone treatment sheet capable of promoting bone healing. Further, the bone treatment sheet 2 according to the fifth embodiment has a corresponding effect among the effects of the bone treatment sheet 1 according to the first embodiment.
  • the scaffold material-containing portion 20 containing the scaffold material serving as a scaffold for bone healing is further provided, the scaffold material-containing portion 20 is a scaffold for reconstructing the surface structure of the bone B2. Therefore, it becomes possible to achieve early healing and strength improvement of bone B2.
  • the embodiments described in the first, second, and fourth embodiments can be applied as they are in the fifth embodiment.
  • FIG. 9 is a diagram shown for explaining the bone treatment method according to the sixth embodiment. It can be said that FIG. 9 is a plan view showing a state after the arrangement process is performed.
  • the animal bone treatment method according to the sixth embodiment is basically the same as the animal bone treatment method according to the fourth embodiment, but the holding portion in the bone treatment sheet is inside the damaged portion in the placement step. It differs from the animal bone treatment method according to the fourth embodiment in that at least a part of the above is invaded.
  • the bone treatment sheet 1 according to the sixth embodiment is the same as the bone treatment sheet 1 according to the first embodiment.
  • the bone treatment sheet 1 needs to have a structure that can withstand the placement step (described later) in the sixth embodiment. That is, the holding portion 11 in the first embodiment is configured so that at least a part of the holding portion 11 can enter the inside of the damaged portion D2 when placed on the damaged bone B2. Therefore, in order to avoid breakage during arrangement, the holding portion 11 in the sixth embodiment is preferably made of a material having sufficient flexibility or fluidity. From the above viewpoint, it is preferable that the holding portion 11 is made of sponge-like collagen or a collagen-non-metallic inorganic substance complex having a porous structure.
  • the portion of the bone treatment sheet 1 covering the damaged portion D2 is pressed from the outside.
  • the holding portion can be penetrated into the damaged portion.
  • inward pressure such as by wrapping a wire or thread (not shown) around the portion where the bone treatment sheet 1 covers the damaged portion D2, the holding portion penetrates into the damaged portion. Can be made to.
  • the bone treatment sheet 1 according to the sixth embodiment Since the bone treatment sheet 1 according to the sixth embodiment has the holding portion 11, it is a bone treatment sheet capable of promoting bone healing like the bone treatment sheet 1 according to the first embodiment. Further, the bone treatment sheet 1 according to the sixth embodiment has a corresponding effect among the effects of the bone treatment sheet 1 according to the first embodiment.
  • the holding portion 11 since at least a part of the holding portion 11 is configured to be able to enter the inside of the damaged portion D2 when placed on the damaged bone B2, the holding portion 11 is held.
  • the bone healing promoting substance held in the portion 11 can be introduced into the damaged portion D2.
  • the animal bone treatment method according to the sixth embodiment is different from the animal bone treatment method according to the fourth embodiment in that at least a part of the holding portion of the bone treatment sheet is invaded inside the damaged portion in the placement step.
  • the bone treatment sheet 1 is used in the same manner as the animal bone treatment method according to the fourth embodiment, the animal can promote bone healing as compared with the conventional animal bone treatment method. It is a bone treatment method.
  • a part of the holding portion 11 in the bone treatment sheet 1 is allowed to penetrate into the damaged portion D2, so that the holding portion 11 is held. It becomes possible to introduce the bone healing promoting substance in the state of being in the damaged part D2.
  • the embodiments described in the first, second, and fourth embodiments can be applied as they are in the sixth embodiment.
  • FIG. 10 is a diagram shown for explaining the bone treatment sheet 3 and the bone treatment method according to the seventh embodiment.
  • 10 (a) is a plan view of the bone treatment sheet 3
  • FIG. 10 (b) is a sectional view taken along the line A5-A5 of FIG. 10 (a)
  • FIG. It is a top view which shows.
  • the bone treatment sheet 3 according to the seventh embodiment basically has the same configuration as the bone treatment sheet 1 according to the first embodiment, but the bone treatment sheet 1 according to the first embodiment has a holding portion having a protruding portion. Is different.
  • the holding portion 31 in the bone treatment sheet 3 has a protruding portion 32 corresponding to the damaged portion D2 (see FIGS. 10 (a) and 10 (b)).
  • the protruding portion 32 can also be said to be a portion where the holding portion 31 is locally thickened.
  • the holding portion 31 has the same configuration as the holding portion 11 in the first embodiment except that it has a protruding portion 32.
  • the animal bone treatment method according to the seventh embodiment is basically the same as the animal bone treatment method according to the fourth embodiment, but in the placement step, the bone treatment sheet is placed inside the damaged portion. It differs from the animal bone treatment method according to the fourth embodiment in that at least a part of the holding portion is invaded.
  • the bone treatment sheet 3 is wrapped around the bone B2 so that the protruding portion 32 of the bone treatment sheet 3 enters the damaged portion D2. Since the bone treatment sheet 3 has a protruding portion 32, pressing or winding a wire or the like is not essential in the arrangement step in the seventh embodiment.
  • the bone treatment sheet 3 according to the seventh embodiment is different from the bone treatment sheet 1 according to the first embodiment in that the holding portion has a protruding portion, but since it has the holding portion 31, the bone treatment sheet 1 according to the first embodiment. Similarly, it becomes a bone treatment sheet capable of promoting bone healing. Further, the bone treatment sheet 1 according to the seventh embodiment has a corresponding effect among the effects of the bone treatment sheet 1 according to the first embodiment.
  • the holding portion 31 since at least a part of the holding portion 31 is configured to be able to enter the inside of the damaged portion D2 when placed on the damaged bone B2, the holding portion 31 is held.
  • the bone healing promoting substance held in the portion 31 can be introduced into the damaged portion D2.
  • the holding portion 31 since the holding portion 31 has a protruding portion 32 corresponding to the damaged portion D2, the bone healing promoting substance in the state of being held by the holding portion 31 is transferred to the damaged portion D2. It is possible to make it easier to introduce inside.
  • the animal bone treatment method according to the seventh embodiment is different from the animal bone treatment method according to the fourth embodiment in that at least a part of the holding portion of the bone treatment sheet is invaded inside the damaged portion in the placement step.
  • the bone treatment sheet 4 since the bone treatment sheet 4 is used, it is an animal bone treatment method capable of promoting bone healing as compared with the conventional animal bone treatment method.
  • a part of the holding portion 31 in the bone treatment sheet 1 is invaded inside the damaged portion D2, so that the holding portion 31 heals the bone. It is possible to introduce the bone healing promoting substance into the damaged part D2 while retaining the promoting substance.
  • the embodiments described in the first, second, and fourth embodiments can be applied as they are in the seventh embodiment.
  • FIG. 11 is a diagram shown for explaining the bone treatment sheet 4 according to the eighth embodiment.
  • 11 (a) is a plan view of the bone treatment sheet 4
  • FIG. 11 (b) is a cross-sectional view taken along the line A6-A6 of FIG. 11 (a).
  • FIG. 11 and FIG. 12 which will be described later, the reference numerals are displayed only in one opening 40, and the reference numerals are omitted for the other openings 40.
  • FIG. 12 is a diagram shown for explaining a method of treating bone according to the eighth embodiment. 12 (a) is a plan view showing a state after carrying out the arrangement step, and FIG. 12 (b) is a sectional view taken along the line A7-A7 of FIG. 12 (a).
  • the bone treatment sheet 4 according to the eighth embodiment basically has the same configuration as the bone treatment sheet 1 according to the first embodiment, but the first embodiment is in that an opening 40 which is a through hole is formed. It is different from the bone treatment sheet 1 (see FIGS. 11 and 12).
  • the opening 40 in the bone treatment sheet 4 has a square shape (square shape) when viewed in a plan view.
  • the number, size and shape of the openings 40 can be arbitrarily determined according to various circumstances.
  • the size of the opening 40 can be determined according to the size and shape of the bone filling material contained in the filler S.
  • the maximum width of the opening 40 can be set to about 0.5 mm in order to suppress the outflow of the bone filling material.
  • the distance between the openings 40 in this case can be, for example, about 1 mm to 1.25 mm.
  • the bone treatment sheet 4 according to the eighth embodiment is different from the bone treatment sheet 1 according to the first embodiment in that an opening 40 is formed, but has a holding portion 11, so that the bone treatment sheet 4 according to the first embodiment has a holding portion 11. Similar to No. 1, it becomes a bone treatment sheet capable of promoting bone healing. Further, the bone treatment sheet 4 according to the eighth embodiment has a corresponding effect among the effects of the bone treatment sheet 1 according to the first embodiment.
  • the bone treatment sheet 4 according to the eighth embodiment it is possible to make it easier for a body fluid or the like containing a substance useful for bone healing to reach the damaged portion D2 of the bone B2.
  • the embodiments described in the first, second, and fourth embodiments can be applied as they are in the eighth embodiment.
  • FIG. 13 is a diagram shown for explaining the bone treatment sheet 5 according to the ninth embodiment.
  • 13 (a) is a plan view of the bone treatment sheet 5
  • FIG. 13 (b) is a cross-sectional view taken along the line A8-A8 of FIG. 13 (a).
  • the reference numerals are displayed only in one fixing hole 52 per group (one row), and the reference numerals are omitted for the other fixing holes 52.
  • FIG. 14 is a diagram shown for explaining a method of treating bone according to the ninth embodiment.
  • 14 (a) is a plan view showing a state after carrying out the arrangement step
  • FIG. 14 (b) is a cross-sectional view taken along the line A9-A9 of FIG. 14 (a).
  • the bone treatment sheet 5 according to the ninth embodiment basically has the same configuration as the bone treatment sheet 1 according to the first embodiment, but has a fixing structure for fixing the bone treatment sheet 5 to the damaged bone B2. It differs from the bone treatment sheet 1 according to the first embodiment in that it (see FIG. 14).
  • the fixation structure in the ninth embodiment includes an extension portion 50 extending from any part of the bone treatment sheet 5 and a fixing hole 52 through which the extension portion 50 can pass.
  • the extending portion 50 extends from the end of the holding portion 11, and the fixing hole 52 is formed near the end opposite to the end on which the extending portion 50 extends.
  • the holding portion 11 is not arranged in the extending portion 50.
  • the holding portion 11 may also be arranged on the extending portion 50.
  • a plurality of fixing holes 52 are formed so as to line up along the extending direction of the corresponding extending portion 50.
  • the extension portion 50 is pulled out from the fixing hole 52 and passed through, and then the extension portion 50 is folded back to form the bone B2.
  • the bone treatment sheet 5 can be fixed.
  • the extending portion 50 may be cut so as to have an appropriate length after being folded back.
  • the bone treatment sheet 5 according to the ninth embodiment is different from the bone treatment sheet 1 according to the first embodiment in that it has a fixed structure, but since it has a holding portion 11, it is similar to the bone treatment sheet 1 according to the first embodiment. , It becomes a bone treatment sheet that can promote bone healing. Further, the bone treatment sheet 5 according to the ninth embodiment has a corresponding effect among the effects of the bone treatment sheet 1 according to the first embodiment.
  • the bone treatment sheet 5 since the bone treatment sheet 5 has a fixing structure for fixing the bone treatment sheet 5 to the damaged bone B2, a member (fixing tool or the like) for fixing the bone treatment sheet 5 is provided. It is not necessary to separately prepare the bone treatment sheet 5, and it is possible to reduce the time and effort required to fix the bone treatment sheet 5 to the bone B2.
  • the embodiments described in the first, second, and fourth embodiments can be applied as they are in the ninth embodiment.
  • FIG. 15 is a cross-sectional view of the bone treatment sheets 7, 8 and 7a according to the tenth embodiment.
  • 15 (a) is a cross-sectional view of the bone treatment sheet 7
  • FIG. 15 (b) is a cross-sectional view of the bone treatment sheet 8
  • FIG. 15 (c) is a cross-sectional view of the bone treatment sheet 7a.
  • 15 (a) to 15 (c) are cross-sectional views corresponding to FIG. 1 (b).
  • the bone treatment sheets 7 and 8 according to the tenth embodiment basically have the same configuration as the bone treatment sheet 1 according to the first embodiment, but the holding portion also serves as the main structure at least in part (from only the holding portion). It is different from the bone treatment sheet 1 according to the first embodiment in that (there is a portion).
  • the entire bone treatment sheet 7 is composed of the holding portion 81 (see FIG. 15A).
  • the holding portion 91 also serves as the main structure near the center of the bone treatment sheet 8, and the main structure 90 (having the same structure as the main structure 10 in the first embodiment) is the holding portion 91. It is arranged on the outside (see FIG. 15B).
  • the holding portions 81 and 91 are required to have higher strength than the holding portions 11 in the first embodiment.
  • the bone treatment sheet 7a according to the tenth embodiment has the scaffolding material-containing portion 20 like the bone treatment sheet 2 according to the fifth embodiment (see FIG. 15C).
  • the bone treatment sheets 7 and 8 according to the eleventh embodiment may have the same additional features as the bone treatment sheets having the holding portion and the main structure described above.
  • the bone treatment sheets 7, 8 and 7a according to the tenth embodiment are different from the bone treatment sheet 1 according to the first embodiment in that the holding portion also serves as the main structure in at least a part, but have the holding portions 81 and 91. Similar to the bone treatment sheet 1 according to the first embodiment, the bone treatment sheet is capable of promoting bone healing. Further, the bone treatment sheets 7, 8 and 7a according to the tenth embodiment also have the corresponding effects among the effects of the bone treatment sheet 1 according to the first embodiment.
  • the embodiment described in the first or fifth embodiment can be applied as it is in the tenth embodiment.
  • FIG. 16 is a diagram shown for explaining the bone treatment sheet 201 according to the eleventh embodiment.
  • 16 (a) is a plan view of the bone treatment sheet 201
  • FIG. 16 (b) is a sectional view taken along line A15-A15 of FIG. 16 (a)
  • FIG. 16 (c) is A14 of FIG. 16 (a).
  • FIG. 16 (d) is an enlarged figure which shows the part shown by A16 of FIG. 16 (b).
  • the double-headed arrow in FIG. 16A indicates the direction in which the plurality of strip-shaped concave portions S1 or the plurality of strip-shaped convex portions S2 in the nanoperiodic structure are continuous.
  • the double-headed arrow in the figure described later is the same as the double-headed arrow in FIG. 16A.
  • FIG. 17 is a diagram shown for explaining a bone treatment method according to the eleventh embodiment.
  • FIG. 17A is a plan view showing a state after the arrangement step is performed
  • FIG. 17B is a cross-sectional view taken along the line A17-A17 of FIG. 17A.
  • the bone treatment sheet 201 is a bone treatment sheet for use in bone treatment by arranging it on the outer surface of the damaged portion D1 of the damaged bone B1.
  • the bone treatment sheet 201 has a nano-periodic structure having a periodic nano-scale uneven structure formed at a portion corresponding to the damaged portion D1.
  • a nanoperiodic structure is formed on one surface 212 of the main structure 210 that constitutes the main shape of the bone treatment sheet 201. Further, no nanoperiodic structure is formed on the other surface 214 of the bone treatment sheet 201.
  • the nanoperiodic structure of the bone treatment sheet 201 is composed of a plurality of band-shaped recesses S1 that do not come into contact with each other. It can also be said that the nanoperiodic structure is composed of a plurality of strip-shaped convex portions S2 that do not come into contact with each other.
  • the width of the band-shaped concave portion S1 and the band-shaped convex portion S2 and the depth of the band-shaped concave portion S1 are arbitrary values as long as they are nanoscale, depending on the application of the bone treatment sheet 201 and the like. be able to.
  • the nanoperiodic structure in the bone treatment sheet 201 includes a concave portion or a convex portion that intersects the damaged portion D1 when arranged on the outer surface of the damaged portion D1.
  • the strip-shaped concave portion S1 and the strip-shaped convex portion S2 are concave portions and convex portions that intersect with the damaged portion D1 when arranged on the outer surface of the damaged portion D1.
  • the nano-periodic structure can be formed by any method that can form a nano-scale structure. Examples of methods capable of forming a nanoperiodic structure include cutting with a cutting tool or laser, pressing with a die (for example, press molding), and etching with ions or a chemical solution.
  • a caution indication is attached to indicate the position where the nanoperiodic structure is formed.
  • the caution indication on the bone treatment sheet 201 is made by color, and specifically, the color is different between the portion where the nanoperiodic structure is formed (surface 212) and the portion where the nanoperiodic structure is not formed. Note that the caution indication by color can be attached by using, for example, a paint.
  • the nanoperiodic structure is formed on the entire surface 212, the entire surface 212 has a different color from other parts (for example, the surface 214).
  • the thickness of the bone treatment sheet 201 is, for example, in the range of 0.05 ⁇ m to 500 ⁇ m.
  • the main structure 210 constituting the main shape of the bone treatment sheet 201 any material can be used as long as it is made of a material that can be used in vivo.
  • the main structure 210 is preferably made of, for example, stainless steel. It is also preferable that the main structure 210 is made of, for example, magnesium or a magnesium alloy. It is also preferable that the main structure 210 is made of, for example, titanium or a titanium alloy. It is also preferable that the main structure 210 is made of a non-metallic material containing collagen as a main component. Further, it is also preferable that the main structure 210 is made of a non-metallic material containing agarose or cellulose as a main component.
  • the bone treatment method according to the eleventh embodiment is an animal bone treatment method, the same method can be applied to a human bone treatment method.
  • the method for treating bone according to the eleventh embodiment includes a preparatory step for preparing the bone treatment sheet 201 according to the eleventh embodiment and the bone treatment sheet 201 so that the nanoperiodic structure of the bone treatment sheet 201 comes into contact with the bone B1 to be treated. Includes a placement step (see FIG. 17) of placing the bone B1 to be treated.
  • the bone treatment sheet 201 is placed on the surface of the bone B1 to be treated so that the nanoperiodic structure of the bone treatment sheet 201 is in contact with the bone B1 to be treated. Since the nanoperiodic structure of the bone treatment sheet 201 is formed on the surface 212, the surface 212 is brought into contact with the bone B1 to be treated.
  • the size may be just right by cutting the bone treatment sheet 201 or the like.
  • the bone treatment sheet 201 is arranged so as to wrap around the bone B1 exactly once, but the present invention is not limited to this.
  • the bone treatment sheet 201 may be placed so as to cover only a part of the periphery of the bone B1.
  • the bone treatment sheet 201 can be fixed to the bone by any means.
  • the fixing may be performed by using a fixture such as a screw or a wire, or may be performed by using an inclusion such as an adhesive. Further, when a sufficient fixing force can be obtained only by arranging the bone treatment sheet 201, it is not necessary to use a fixture or inclusions.
  • the bone treatment sheet 201 according to the eleventh embodiment since the nanoscale uneven structure affects the proliferation and differentiation of cells, the bone is compared with the conventional sheet (the sheet on which the nanoscale structure is not formed). It is possible to promote the healing of bones.
  • the bone treatment sheet 201 according to the eleventh embodiment since the nano-periodic structure is formed at the portion corresponding to the damaged portion D1, the nano-periodic structure is brought into contact with the damaged portion D1 of the bone B1 or a portion in the vicinity thereof. By using this, it becomes possible to promote the proliferation and differentiation of bone cells (particularly osteoblasts). Therefore, according to the bone treatment sheet 201 according to the eleventh embodiment, the strength of the bone B1 can be increased by firmly fixing the bone treatment sheet 201 and the bone B1 at an early stage. Further, according to the bone treatment sheet 201 according to the eleventh embodiment, it is possible to enhance the healing power of the bone B1 itself because it promotes the proliferation and differentiation of cells. Therefore, the bone treatment sheet 201 according to the twelfth embodiment is a bone treatment sheet capable of promoting healing of bone B1 as compared with the conventional sheet.
  • the nanoperiodic structure is composed of a plurality of band-shaped recesses S1 or a plurality of band-shaped protrusions S2 that do not contact each other, cell proliferation and differentiation occur in the band-shaped recesses S1 and the band-shaped recesses S1. It becomes possible to control so that it occurs along the convex portion S2, and it becomes possible to control the direction of healing.
  • the bone treatment sheet 201 according to the eleventh embodiment since the caution indication indicating the position where the nano-periodic structure is formed is attached, it becomes easy to grasp the position where the nano-periodic structure is formed. , It is possible to suppress placement mistakes during use.
  • the bone treatment sheet 201 When the main structure of the bone treatment sheet 201 according to the eleventh embodiment is made of stainless steel, the bone treatment sheet 201 has a balance between strength and cost as compared with the bone treatment sheet made of other materials that can be used in vivo. It is an excellent bone treatment sheet that can positively promote the healing of bone B1.
  • the bone treatment sheet 201 When the main structure of the bone treatment sheet 201 according to the eleventh embodiment is made of magnesium or a magnesium alloy, the bone treatment sheet 201 has sufficient initial strength and can be expected to be decomposed and absorbed by a living body. , It becomes a bone treatment sheet capable of positively promoting the healing of bone B1.
  • the bone treatment sheet 201 When the main structure of the bone treatment sheet 201 according to the eleventh embodiment is made of titanium or a titanium alloy, the bone treatment sheet 201 has high strength and low toxicity, and can heal bone B1. It is a bone treatment sheet that can be actively promoted.
  • the bone treatment sheet 201 can be expected to be rapidly decomposed and absorbed by the living body, and can be expected to be rapidly decomposed and absorbed. It is a bone treatment sheet that can positively promote the healing of bone B1.
  • the main structure of the bone treatment sheet 201 according to the eleventh embodiment is made of a non-metallic material containing agarose or cellulose as a main component, it is made of a naturally occurring material that is not harmful to the living body and can heal bone B1. It is a bone treatment sheet that can be actively promoted.
  • the thickness is in the range of 0.05 ⁇ m to 500 ⁇ m, it is possible to sufficiently secure the strength and sufficiently secure the bendability. It is also possible to do.
  • the nanoperiodic structure includes a concave portion or a convex portion that intersects the damaged portion D1 when arranged on the outer surface of the damaged portion D1, the damaged portion of the bone B1 is included. It is considered that it becomes possible to promote the proliferation and differentiation of cells so as to fill D1, and as a result, it becomes possible to quickly heal the damage of bone B1.
  • the method for treating an animal bone according to the eleventh embodiment includes a preparatory step for preparing the bone treatment sheet 201 and a treatment target for the bone treatment sheet 201 so that the nanoperiodic structure of the bone treatment sheet 201 is in contact with the bone to be treated. Since it includes an arrangement step of arranging the bone B1 on the surface, it is an animal bone treatment method capable of promoting bone healing as compared with a conventional animal bone treatment method.
  • the bone treatment method according to the eleventh embodiment can also be applied to a human bone treatment method.
  • FIG. 18 is a diagram shown for explaining a method of treating bone according to the twelfth embodiment.
  • FIG. 18A is a plan view showing a state after performing the arrangement step
  • FIG. 18B is a cross-sectional view taken along the line A18-A18 of FIG. 18A.
  • the bone treatment method according to the twelfth embodiment is basically the same as the bone treatment method according to the eleventh embodiment, but the damage to the bone to be treated is different from the case of the bone treatment method according to the embodiment. ..
  • the bone B2 to be treated is a defective bone
  • the defective portion is the damaged portion D2.
  • the bone treatment method according to the twelfth embodiment further includes a filling step of filling the defective portion (damaged portion D2) with the filler S between the preparation step and the placement step, and the placement step includes a filling step.
  • the bone treatment sheet 201 is arranged so as to be in contact with the bone B2 to be treated and to cover the portion filled with the filler S.
  • the filler S the same filler as that described in the fourth embodiment can be used.
  • the bone treatment sheet 201 may be arranged so as to be partially wound (for example, wound about half a circumference) in the vicinity of the portion where the bone B1 is defective, and then the filling material S may be filled. In this case, the bone treatment sheet 201 is completely wrapped around the bone B in the placement step so as to be in the state shown in FIG.
  • the bone treatment method according to the twelfth embodiment is different from the case where the bone to be treated is the bone treatment method according to the eleventh embodiment, but the bone treatment method according to the twelfth embodiment prepares the bone treatment sheet 201.
  • the bone according to embodiment 12 includes a preparatory step and an arrangement step of arranging the bone treatment sheet 201 on the surface of the bone B2 to be treated so that the nanoperiodic structure of the bone treatment sheet 201 is in contact with the bone B2 to be treated. Similar to the treatment method of the above, it is a bone treatment method capable of promoting bone healing as compared with the conventional bone treatment method.
  • the bone treatment method according to the twelfth embodiment can also be applied to both the animal bone treatment method and the human bone treatment method.
  • the bone B2 to be treated is a bone having a defect, and the portion where the defect has occurred (damaged portion D2) between the preparation step and the placement step.
  • the bone treatment sheet 201 is placed so as to be in contact with the bone B2 to be treated and to cover the portion filled with the filling material S. It is possible to suppress the spillage of the substance constituting the material S, particularly the granular bone filling material.
  • FIG. 19 is a diagram shown for explaining the bone treatment sheet 202 according to the thirteenth embodiment.
  • 19 (a) is a plan view of the bone treatment sheet 202
  • FIG. 19 (b) is a cross-sectional view taken along the line A19-A19 of FIG. 19 (a).
  • the reference numerals are displayed only in one opening 226, and the reference numerals for the other openings 226 are omitted. Further, the number and size of the openings 226 shown in FIGS. 19 and 20 do not necessarily reflect the actual configuration of the bone treatment sheet of the present invention.
  • FIG. 20 is a diagram showing a state in which the bone treatment sheet 202 according to the thirteenth embodiment is fixed to the bone B2.
  • FIG. 20 (a) is a plan view showing a state after performing a step corresponding to the arrangement step in the bone treatment method according to the thirteenth embodiment
  • FIG. 20 (b) is a plan view showing the state after performing the step corresponding to the arrangement step
  • FIG. It is a sectional view.
  • the bone treatment sheet 202 according to the thirteenth embodiment basically has the same configuration as the bone treatment sheet 201 according to the eleventh embodiment, but the eleventh embodiment has an opening 226 which is a through hole. It is different from the bone treatment sheet 201.
  • a nanoperiodic structure is formed on one surface 222 of the main structure 220 that constitutes the main shape of the bone treatment sheet 202. Further, no nanoperiodic structure is formed on the other surface 224 of the bone treatment sheet 202.
  • the main structure 220, one surface 222 and the other surface 224 in the thirteenth embodiment have substantially the same configurations as the main structure 210, one surface 212 and the other surface 214 in the eleventh embodiment, respectively.
  • the opening 226 in the bone treatment sheet 202 has a quadrangular shape when viewed in a plan view.
  • the size of the opening 226 can be arbitrarily determined according to various circumstances, and for example, the size can be set according to the size and shape of the bone filling material contained in the filler S. For example, when the bone filling material has a particle size of 0.5 mm or more, the maximum width of the opening 226 can be set to about 0.5 mm. Further, in this case, the distance between the openings 226 can be, for example, about 1 mm to 1.25 mm.
  • the bone treatment sheet 202 according to the thirteenth embodiment is different from the bone treatment sheet 201 according to the twelfth embodiment in that an opening 226 which is a through hole is formed, but at the damaged portion D2 (the portion where the defect occurs). A nanoperiodic structure is formed at the corresponding location. Therefore, the bone treatment sheet 202 according to the thirteenth embodiment is a bone treatment sheet capable of promoting the healing of the bone B2, similarly to the bone treatment sheet 201 according to the eleventh embodiment.
  • the body fluid or the like containing a substance useful for healing the bone B2 easily reaches the damaged portion D2 of the bone B2, so that the healing of the bone B2 is further promoted. It becomes possible.
  • the bone treatment sheet 202 according to the thirteenth embodiment has substantially the same configuration as the bone treatment sheet 201 according to the eleventh embodiment except that the opening 226 which is a through hole is formed. , Among the effects of the bone treatment sheet 201 according to the eleventh embodiment, it also has a corresponding effect.
  • FIG. 21 is a diagram shown for explaining the bone treatment sheet 203 according to the fourteenth embodiment.
  • 21 (a) is a plan view of the bone treatment sheet 203
  • FIG. 21 (b) is a cross-sectional view taken along the line A21-A21 of FIG. 21 (a).
  • the reference numeral is displayed only in one opening 236, and the indication of the reference numeral for the other opening 236 is omitted.
  • the number and size of the openings 236 shown in FIGS. 21 and 22 do not necessarily reflect the actual configuration of the bone treatment sheet of the present invention.
  • FIG. 22 is a diagram showing a state in which the bone treatment sheet 203 according to the 14th embodiment is fixed to the bone B2.
  • FIG. 22 is a plan view showing a state after performing a step corresponding to the arrangement step in the bone treatment method according to the fourteenth embodiment
  • FIG. 22 (b) is a cross-sectional view taken along the line A22-A22 of FIG. 22 (a). is there.
  • the bone treatment sheet 203 according to the 14th embodiment basically has the same configuration as the bone treatment sheet 202 according to the 13th embodiment, but the shape of the opening is different from the bone treatment sheet 202 according to the 13th embodiment.
  • a nanoperiodic structure is formed on one surface 232 of the main structure 230 that constitutes the main shape of the bone treatment sheet 203. Further, no nanoperiodic structure is formed on the other surface 234 of the bone treatment sheet 203.
  • the main structure 230, one surface 232 and the other surface 234 in embodiment 14 have substantially the same configurations as the main structure 220, one surface 222 and the other surface 224 in embodiment 14, respectively.
  • the opening 236 of the bone treatment sheet 203 has a quadrangular shape when viewed in a plan view, but has a longer and narrower shape than the opening 226 of the bone treatment sheet 202 according to the thirteenth embodiment. It can also be said that the opening 236 has a so-called slit-like shape.
  • the size of the opening 236 can also be arbitrarily determined according to various circumstances, as in the case of the opening 226.
  • the bone treatment sheet 203 according to the 14th embodiment has a different opening shape from the bone treatment sheet 202 according to the 13th embodiment, but a nanoperiodic structure is formed at a portion corresponding to the damaged portion D2 (the portion where the defect has occurred). Has been done. Therefore, the bone treatment sheet 203 according to the 14th embodiment is a bone treatment sheet capable of promoting the healing of the bone B2, similarly to the bone treatment sheet 202 according to the 13th embodiment.
  • the bone treatment sheet 203 according to the 14th embodiment has substantially the same configuration as the bone treatment sheet 202 according to the 13th embodiment except for the shape of the opening, the bone treatment sheet 202 according to the 13th embodiment has. It also has the corresponding effect among the effects.
  • FIG. 23 is a diagram shown for explaining the bone treatment sheet 201a according to the fifteenth embodiment.
  • the code is displayed only in one fixing hole 218 per group, and the display of the code for the other fixing holes 218 is omitted.
  • the number and size of the extending portion 216 and the fixing hole 218 shown in FIGS. 23 and 24 do not necessarily reflect the actual configuration of the bone treatment sheet of the present invention.
  • FIG. 24 is a diagram showing a state in which the bone treatment sheet 201a according to the fifteenth embodiment is fixed to the bone B2.
  • FIG. 24 (a) is a plan view showing a state after performing a step corresponding to the placement step in the bone treatment method according to the fifteenth embodiment
  • FIG. 24 (b) is a plan view showing the state after performing the step corresponding to the arrangement step
  • FIG. It is a sectional view.
  • the bone treatment sheet 201a according to the 15th embodiment basically has the same configuration as the bone treatment sheet 201 according to the 11th embodiment, but the bone treatment sheet 201a is fixed to the damaged bone (bone assuming treatment) B2. It differs from the bone treatment sheet 201 according to the eleventh embodiment in that it has a fixed structure for the treatment.
  • the fixation structure in the fifteenth embodiment is a structure including an extension portion 216 extending from any portion of the bone treatment sheet 201a and a fixing hole 218 through which the extension portion 216 can pass.
  • the extension portion 216 extends from the end portion of the bone treatment sheet 201a, and the fixing hole 218 is formed near the end portion on the side opposite to the side where the extension portion 216 exists.
  • the nano-periodic structure is not formed in the extension portion 216 in the fifteenth embodiment, the nano-periodic structure may also be formed in the extension portion 216. As shown in FIG. 23, a plurality of fixing holes 218 are formed along the extending direction of the extending portion 216.
  • the fixation structure in the fifteenth embodiment is such that the bone treatment sheet 201a is wound around the bone B2 and then passed by pulling out the extension portion 216 from the fixation hole 218, and then the extension portion 216 is passed therethrough.
  • the bone treatment sheet 201a can be fixed to the damaged bone B2 by folding back.
  • the extension portion 216 may be cut so as to have an appropriate length after being folded back.
  • the bone treatment sheet 201a according to the 15th embodiment is different from the bone treatment sheet 201 according to the 12th embodiment in that it has the above-mentioned fixed structure, but the nanocycle is located at a portion corresponding to the damaged portion D2 (the portion where the defect has occurred).
  • the structure is formed. Therefore, the bone treatment sheet 201a according to the 15th embodiment is a bone treatment sheet capable of promoting the healing of the bone B2, similarly to the bone treatment sheet 201 according to the 12th embodiment.
  • the bone treatment sheet 201a since the bone treatment sheet 201a has a fixing structure for fixing the bone treatment sheet 201a to the damaged bone B2, it is necessary to separately prepare a member for fixing the bone treatment sheet 201a. It becomes possible to reduce the labor when fixing the bone treatment sheet 201a to the bone B2.
  • the fixation structure is for fixing that can pass the extension portion 216 extending from any part of the bone treatment sheet 201a and the extension portion 216. Since it has a structure including holes 218, it has a simple structure that can be integrally molded when forming the bone treatment sheet 201a, and is used when the bone treatment sheet 201a is wound around the bone B2. It is possible to construct a fixed structure that can be formed.
  • the bone treatment sheet 201a since a plurality of fixing holes 218 are formed along the extending direction of the extending portion 216, it is possible to correspond to bones of various thicknesses. It will be possible.
  • the bone treatment sheet 201a according to the fifteenth embodiment has substantially the same configuration as the bone treatment sheet 201 according to the eleventh embodiment except that it has a fixed structure
  • the bone treatment sheet 201 according to the eleventh embodiment has a substantially similar structure.
  • the effects of the sheet 201 it also has the corresponding effect.
  • FIG. 25 is a diagram showing a main structure 210 and a coating film 211 in the bone treatment sheet (not shown as a whole) according to the 16th embodiment.
  • FIG. 25 is a diagram corresponding to FIG. 16 (d) (a diagram showing an enlarged portion corresponding to the portion shown by A16 in FIG. 16 (a)).
  • the bone treatment sheet according to the 16th embodiment has basically the same configuration as the bone treatment sheet 201 according to the 11th embodiment, but includes a covering film 211 that covers at least a part of the main structure 210. It is different from the case of the bone treatment sheet 201 according to the above.
  • the covering film 211 may be arranged on the entire bone treatment sheet, or may be arranged only on a part of the bone treatment sheet.
  • the coating film 211 those made of various materials and thicknesses can be used depending on the use of the bone treatment sheet and the like.
  • the bone treatment sheet according to the 16th embodiment is different from the bone treatment sheet 201 according to the 11th embodiment in that it includes a covering film 211, but a nanoperiodic structure is formed at a portion corresponding to the damaged portion. Therefore, the bone treatment sheet according to the 16th embodiment is a bone treatment sheet capable of promoting bone healing, similarly to the bone treatment sheet 201 according to the 11th embodiment.
  • the bone treatment sheet according to the 16th embodiment further includes a covering film 211 that covers at least a part of the main structure 210, it is possible to obtain a bone treatment sheet having properties that are difficult to obtain from the main structure alone. Become.
  • the bone treatment sheet according to the 16th embodiment has substantially the same configuration as the bone treatment sheet 201 according to the 11th embodiment except that the covering film 211 is provided, the bone according to the 11th embodiment.
  • the effects of the treatment sheet 201 it also has the corresponding effect.
  • FIG. 26 is a diagram shown for explaining the bone treatment sheet 6 according to the seventeenth embodiment.
  • 26 (a) is a plan view of the bone treatment sheet 6
  • FIG. 26 (b) is a cross-sectional view of FIG. 26 (a) (a cross-sectional view corresponding to FIG. 1 (b))
  • FIG. 26 (c) Is an enlarged view showing a portion shown by A10 in FIG. 26 (a)
  • FIG. 26 (d) is an enlarged view showing a portion shown by A11 in FIG. 26 (b).
  • the bone treatment sheet 6 according to the 17th embodiment basically has the same structure as the bone treatment sheet 1 according to the 1st embodiment, but a nano-periodic structure having a periodic nanoscale uneven structure is formed. This is different from the bone treatment sheet 1 according to the first embodiment (see FIG. 26).
  • a nanoperiodic structure is formed on the surface of the holding portion 61. No nanoperiodic structure is formed on the surface of the main structure 10. A nanoperiodic structure may be formed on the surface of the main structure 10.
  • the nanoperiodic structure in the bone treatment sheet 6 can be formed by any method capable of forming a nanoscale structure. Examples of methods capable of forming a nanoperiodic structure include cutting with a cutting tool or laser, pressing with a die (for example, press molding), and etching with gas, ions, chemicals, or the like (including plasma etching).
  • the bone treatment sheet 6 according to the 17th embodiment is different from the bone treatment sheet 1 according to the first embodiment in that a nano-periodic structure is formed, but has a holding portion 61, so that the bone treatment sheet 6 according to the first embodiment has a holding portion 61. Similar to No. 1, it becomes a bone treatment sheet capable of promoting bone healing. Further, the bone treatment sheet 6 according to the 17th embodiment has a corresponding effect among the effects of the bone treatment sheet 1 according to the 1st embodiment.
  • bone cells particularly osteoblasts are also used in terms of surface shape. It becomes possible to promote the proliferation and differentiation of.
  • the embodiment described in the 1st embodiment can be applied as it is in the 17th embodiment.
  • FIG. 27 is a plan view of the bone treatment sheet 202a according to the first modification.
  • the opening may have a shape that looks circular when viewed in a plan view. Further, the shape may be other than a quadrangle or a circle. Further, the arrangement of the openings is not limited to the matrix-like arrangement, and may be, for example, a staggered arrangement.
  • FIG. 28 is a plan view of the bone treatment sheets 4a and 4b according to the modified example 2.
  • the opening may have a shape that looks circular when viewed in a plan view. Further, the shape may be other than a quadrangle or a circle.
  • the arrangement of the openings is not limited to the matrix-like arrangement, and may be, for example, a staggered arrangement. Further, even in a bone treatment sheet having a holding portion 11 as in the opening 40b shown in FIG. 28 (b), the opening may have a so-called slit-like shape.
  • the nanoperiodic structure in the present invention is not limited to the one composed of the band-shaped concave portion S1 or the band-shaped convex portion S2 described above.
  • the direction in which the band-shaped concave portion and the band-shaped convex portion are continuous may be different from the direction in the case of the band-shaped concave portion S1 or the band-shaped convex portion S2 described above.
  • the band-shaped concave portion and the band-shaped convex portion may have a structure having a bent shape or a meandering shape.
  • the nanoperiodic structure may be a structure including a lattice-shaped concave or convex portion or a structure including a circular unevenness.
  • the bone treatment sheet as described in the 13th to 15th embodiments can be applied to the bone treatment method according to the 11th embodiment. That is, the bone treatment sheet and the bone treatment method described by showing only one of the bone B1 and the bone B2 as the damaged bone in the above embodiment are basically applied to both the bone B1 and the bone B2. It is possible to do.
  • the bone treatment sheet 201a described in the 15th embodiment does not have an opening, but the present invention is not limited thereto.
  • An opening may be formed in a bone treatment sheet having a fixed structure such as the bone treatment sheet 201a.
  • the opening 40 in the eighth embodiment or the openings 40a and 40b in the modified example are formed.
  • the present invention is not limited thereto.
  • An opening may be formed in the bone treatment sheet having the holding portion.
  • the configuration including the coating film described in the 16th embodiment can also be applied to the bone treatment sheet as described in the other 16th embodiment.
  • the fixture 100 in the third embodiment is a plate for bone fixation, but the present invention is not limited thereto. Fixtures other than plates (eg, screws, pins, wires and staples) can also be used alone or in combination.
  • Bone healing in the present specification includes “fracture healing”.
  • the "bone treatment method” in the present specification includes a “fracture treatment method”.
  • the fractured bone B1 is the treatment target (the target using the bone treatment sheet) as in the first embodiment
  • the “bone healing” is the “fracture healing” and the “bone treatment”.
  • Method is "a method for treating bone fractures”.
  • a nanoscale uneven structure having no periodicity may be formed instead of the nanoperiodic structure.
  • Bone treatment sheet 10,90,210,220,230 ... Main structure , 11, 31, 61, 71, 81, 91 ... Holding part, 20 ... Scaffolding material containing part, 32 ... Protruding part, 40, 40a, 40b, 226, 226a, 236 ... Opening, 50, 216 ... Extension part , 52, 218 ... Fixing hole, 100 ... Fixing tool, 110 ... Main body, 120 ... Fastener, 211 ... Coating film, 212, 214, 222, 224, 232, 234 ... Surface, B1, B2 ...

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dermatology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Dentistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

A bone treatment sheet 1 according to the present invention is to be used for treating bones by being placed so as to cover a damaged part D1 of a damaged bone B1, and has a nano-scale projection-recess structure formed in at least a portion thereof. Conventional sheets that have been employed in the field of bone therapy are used for the purpose of simply retaining a filler disposed at a damaged part of a long bone, while the sheets themselves have had no active effect of promoting bone healing. The present invention provides: a bone treatment sheet that is capable of promoting bone healing; and a method for treating bones using said bone treatment sheet.

Description

骨治療シート及び動物の骨の治療方法Bone treatment sheet and animal bone treatment method
 本発明は、骨治療シート及び動物の骨の治療方法に関する。 The present invention relates to a bone treatment sheet and a method for treating animal bone.
 従来、長骨に損傷が発生した場合の治療方法として、損傷箇所をシートで覆う方法が知られている(例えば、特許文献1参照。)。 Conventionally, as a treatment method when a long bone is damaged, a method of covering the damaged part with a sheet is known (see, for example, Patent Document 1).
 強度及び安定性の観点から、上記治療方法においては医療用の金属材料(例えば、チタンやチタン合金)からなるシートが用いられる。このようなシートは生体にとって有害なものではないが、従来のシートは長骨の損傷箇所内に配置された充填材(例えば、自家骨粒・他家骨粒からなる骨補填材を含有するもの)の保持を目的として用いられるものであり、シートそのものは骨の治癒を積極的に促進させる効果を有しない。 From the viewpoint of strength and stability, a sheet made of a medical metal material (for example, titanium or titanium alloy) is used in the above treatment method. Although such a sheet is not harmful to the living body, the conventional sheet contains a filler (for example, a bone filling material composed of autologous bone granules and allogeneic bone granules) placed in the damaged part of the long bone. ) Is used for the purpose of retention, and the sheet itself does not have the effect of actively promoting bone healing.
 ところで、近年、物体の表面の物理的な構造が細胞に与える影響が注目されている。例えば、金属表面にナノスケールの構造(例えば、ナノスケールの凹凸構造)を形成することで、その表面上において細胞の増殖等を促進させることが可能であることがわかってきている(例えば、特許文献2参照。)。 By the way, in recent years, attention has been paid to the influence of the physical structure of the surface of an object on cells. For example, it has been found that by forming a nanoscale structure (for example, a nanoscale uneven structure) on a metal surface, it is possible to promote cell proliferation and the like on the surface (for example, a patent). See Reference 2.).
特開2011-212209号公報Japanese Unexamined Patent Publication No. 2011-212209 特開2010-227551号公報Japanese Unexamined Patent Publication No. 2010-227551 特表2004-526747号公報Japanese Patent Publication No. 2004-526747
 医療の現場においては、骨を早期に治癒させることが可能な治療用具が希求されている。上記したようなナノスケールの構造を上記したようなシートに応用することで、従来のシート(ナノスケールの構造が形成されていないシート)と比較して骨の治癒を促進させることが可能なシートを得ることが可能であると考えられるが、そのようなシートの具体的な構造及び使用方法については知られていない。 In the medical field, there is a demand for therapeutic tools that can heal bones at an early stage. By applying the nanoscale structure as described above to the sheet as described above, a sheet capable of promoting bone healing as compared with a conventional sheet (a sheet in which a nanoscale structure is not formed) can be promoted. However, the specific structure and usage of such sheets are not known.
 本発明は上記した課題に鑑みてなされたものであり、従来のシート(ナノスケールの構造が形成されていないシート)と比較して骨の治癒を促進させることが可能な骨治療シート及び本発明の骨治療シートを用いた骨の治療方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and is a bone treatment sheet capable of promoting bone healing as compared with a conventional sheet (a sheet in which a nanoscale structure is not formed) and the present invention. It is an object of the present invention to provide a bone treatment method using the bone treatment sheet of.
[1]本発明の骨治療シートは、損傷した骨の損傷箇所を覆うように配置することで骨の治療に用いるための骨治療シートであって、少なくとも一部にナノスケールの凹凸構造が形成されていることを特徴とする。 [1] The bone treatment sheet of the present invention is a bone treatment sheet for use in bone treatment by arranging it so as to cover the damaged portion of the damaged bone, and a nanoscale uneven structure is formed at least in a part thereof. It is characterized by being done.
 本発明の骨治療シートは、ナノスケールの凹凸構造が細胞の増殖や分化に影響を与えるため、従来のシート(ナノスケールの構造が形成されていないシート)と比較して骨の治癒を促進させることが可能な骨治療シートとなる。 In the bone treatment sheet of the present invention, the nanoscale uneven structure affects the proliferation and differentiation of cells, so that the bone healing is promoted as compared with the conventional sheet (sheet in which the nanoscale structure is not formed). It becomes a possible bone treatment sheet.
[2]本発明の骨治療シートにおいては、骨治癒促進物質を保持する保持部を有し、前記保持部は、前記骨治癒促進物質を収容可能な多孔質構造からなり、前記多孔質構造を構成する細孔の壁面の少なくとも一部には、前記ナノスケールの凹凸構造が形成されていることが好ましい。 [2] The bone treatment sheet of the present invention has a holding portion for holding the bone healing promoting substance, and the holding portion has a porous structure capable of accommodating the bone healing promoting substance, and the porous structure is formed. It is preferable that the nanoscale uneven structure is formed on at least a part of the wall surface of the constituent pores.
 ところで、医療の分野においては、生体由来の生理活性物質を用いて骨の治癒を促進させることについて、様々な研究がおこなわれてきた。例えば、骨細胞の増殖や分化を促進させる生理活性物質を用いることで、骨の治癒を早めることが可能となると考えられる。このような観点から、有用と考えられる生理活性物質(例えば、骨形成タンパク質類や多血小板血漿等)を骨の損傷箇所に導入することで骨の治癒を促進する試みがなされてきた(例えば、特許文献3及び非特許文献1,2参照。)。 By the way, in the medical field, various studies have been conducted on promoting bone healing by using bioactive substances derived from living organisms. For example, it is considered that bone healing can be accelerated by using a physiologically active substance that promotes the proliferation and differentiation of bone cells. From this point of view, attempts have been made to promote bone healing by introducing a physiologically active substance (for example, bone morphogenetic proteins, platelet-rich plasma, etc.) that is considered to be useful into the damaged part of the bone (for example,). See Patent Document 3 and Non-Patent Documents 1 and 2).
 上記[2]の骨治療シートによれば、骨の治癒を促進する生理活性物質である骨治癒促進物質を保持する保持部を有するため、保持部で保持した骨治癒促進物質が骨の損傷箇所に接触又は侵入するように使用することで、細胞(特に、骨や骨の周囲の血管のもととなる細胞)の増殖や分化を促進させることが可能となる。このため、上記[2]の骨治療シートによれば、骨自体の治癒力を高めることが可能となる。また、上記[2]の骨治療シートによれば、細胞の増殖や分化を介して骨治療シートと骨とを早期にかつ強固に固着させることが可能となり、その結果、治癒期間中における損傷した骨の損傷箇所のずれや拡大を抑制することが可能となる。したがって、上記[2]の骨治療シートは、従来のシートと比較して骨の治癒を促進させることが可能な骨治療シートとなる。 According to the bone treatment sheet of [2] above, since it has a holding portion that holds a bone healing promoting substance that is a physiologically active substance that promotes bone healing, the bone healing promoting substance held by the holding portion is a damaged portion of the bone. When used to contact or invade bone, it is possible to promote the proliferation and differentiation of cells (particularly, cells that are the source of bone and blood vessels around bone). Therefore, according to the bone treatment sheet of the above [2], it is possible to enhance the healing power of the bone itself. Further, according to the bone treatment sheet of the above [2], it is possible to firmly fix the bone treatment sheet and the bone at an early stage through cell proliferation and differentiation, and as a result, the bone is damaged during the healing period. It is possible to suppress the displacement and expansion of the damaged part of the bone. Therefore, the bone treatment sheet of the above [2] is a bone treatment sheet capable of promoting bone healing as compared with the conventional sheet.
 また、上記[2]の骨治療シートによれば、保持部の構造や物性を適切に設定することで、骨治癒促進物質の放出の具合を調節して骨の治癒を適切に促進させることが可能となる。例えば、上記[2]の骨治療シートによれば、骨治癒促進物質が長期に渡って継続的に放出され続ける(浸出し続ける)ようにすることもできるし、骨治癒促進物質が速やかに放出されるようにすることもできる。なお、「骨治癒促進物質の離脱しやすさ」は、「骨治癒促進物質に対する保持力」や「保持部と骨治癒促進物質との親和性」ということもできる。 Further, according to the bone treatment sheet of the above [2], by appropriately setting the structure and physical properties of the holding portion, it is possible to adjust the release condition of the bone healing promoting substance and appropriately promote the bone healing. It will be possible. For example, according to the bone treatment sheet of the above [2], the bone healing promoting substance can be continuously released (exuded) continuously for a long period of time, and the bone healing promoting substance is rapidly released. It can also be done. The "easiness of detachment of the bone healing promoting substance" can also be referred to as "retaining power to the bone healing promoting substance" or "affinity between the holding portion and the bone healing promoting substance".
 また、上記[2]の骨治療シートによれば、保持部は、前記骨治癒促進物質を収容可能な多孔質構造からなるため、骨治癒促進物質を安定して保持することが可能となる。また、上記[2]のような構成とすることにより、骨治癒促進物質が液状である場合には、保持部と骨治癒促進物質とを接触させて保持部に骨治癒促進物質を吸収させるという簡易な手法により、骨治癒促進物質を保持部に保持させることが可能となる。 Further, according to the bone treatment sheet of the above [2], since the holding portion has a porous structure capable of accommodating the bone healing promoting substance, it is possible to stably hold the bone healing promoting substance. Further, by adopting the configuration as described in [2] above, when the bone healing promoting substance is liquid, the holding portion and the bone healing promoting substance are brought into contact with each other so that the holding portion absorbs the bone healing promoting substance. By a simple method, the bone healing promoting substance can be retained in the holding portion.
 また、上記[2]の骨治療シートにおいては、前記多孔質構造を構成する細孔の壁面の少なくとも一部にはナノスケールの凹凸構造が形成されているため、保持部の内外において細胞の増殖や分化を活性化することが可能となる。 Further, in the bone treatment sheet of the above [2], since a nanoscale uneven structure is formed on at least a part of the wall surface of the pores constituting the porous structure, cell proliferation inside and outside the holding portion. And differentiation can be activated.
 なお、上記[2]でいう「ナノスケールの凹凸構造」は、後述するような周期性を有している必要はない。周期性を有しない凹凸構造としては、例えば、ランダムな点状の凹凸からなる構造を挙げることができる。 Note that the "nanoscale uneven structure" referred to in [2] above does not need to have periodicity as described later. As the uneven structure having no periodicity, for example, a structure composed of random point-shaped unevenness can be mentioned.
 本明細書においては、「骨」には犬、猫、鳥等の動物の骨や人間の骨が含まれる。本発明の骨治療シートにおいては、保持部は、損傷した骨(治療を想定する骨)の損傷箇所に対応する箇所、つまり、損傷箇所に接触させるべき箇所に配置されていることが好ましい。 In this specification, "bone" includes the bones of animals such as dogs, cats, and birds, and the bones of humans. In the bone treatment sheet of the present invention, it is preferable that the holding portion is arranged at a portion corresponding to the damaged portion of the damaged bone (bone assuming treatment), that is, a portion to be brought into contact with the damaged portion.
 本明細書における「骨治癒促進物質」とは、骨治癒促進に関連する生理活性物質のことをいう。骨治癒促進物質は純物質であってもよいし、混合物であってもよい。また、骨治癒促進物質は、骨治癒促進物質を溶解又は分散させるための物質、骨治癒の促進を補助する物質、骨治癒促進物質の変質を抑制する物質のような他の物質とともに用いてもよい。 The "bone healing promoting substance" in the present specification means a physiologically active substance related to promoting bone healing. The bone healing promoting substance may be a pure substance or a mixture. Bone healing-promoting substances may also be used in combination with other substances such as substances for dissolving or dispersing bone healing-promoting substances, substances for assisting the promotion of bone healing, and substances for suppressing alteration of bone healing-promoting substances. Good.
 本明細書における「保持部」とは、何らかの観点(例えば、表面構造や親和性の観点)から骨治癒促進物質を保持しやすい構造を有する骨治療シートの一部のことをいう。保持部は、骨治癒促進物質を内部に保持するものであってもよいし、骨治癒促進物質を表面に保持するものであってもよい。 The "retaining portion" in the present specification refers to a part of a bone treatment sheet having a structure that easily retains a bone healing promoting substance from some viewpoint (for example, from the viewpoint of surface structure and affinity). The holding portion may be one that holds the bone healing promoting substance inside, or may be one that holds the bone healing promoting substance on the surface.
 「骨治癒促進物質を収容可能な多孔質構造」としては、例えば、スポンジ状の構造及び細孔を有する無機質を多く含む構造を挙げることができる。本発明に係る骨治療シートは、骨治癒後も体内に残置するものであってもよいし、骨が治癒した後に体内から除去するものであってもよい。 Examples of the "porous structure capable of accommodating a bone healing promoting substance" include a sponge-like structure and a structure containing a large amount of inorganic substances having pores. The bone treatment sheet according to the present invention may be left in the body even after the bone is healed, or may be removed from the body after the bone is healed.
[3]本発明の骨治療シートにおいては、前記保持部は、骨治癒の足場となる足場材を含有することが好ましい。 [3] In the bone treatment sheet of the present invention, it is preferable that the holding portion contains a scaffolding material that serves as a scaffold for bone healing.
 このような構成とすることにより、保持部がそのまま骨の表面構造再建の足場となり、骨の早期治癒及び強度向上を図ることが可能となる。 With such a configuration, the holding portion serves as a scaffold for reconstructing the surface structure of the bone as it is, and it is possible to achieve early healing and strength improvement of the bone.
 本発明の骨治療シートにおいては、骨治癒の足場となる足場材を含有する足場材含有部をさらに有することが好ましい。 In the bone treatment sheet of the present invention, it is preferable to further have a scaffolding material-containing portion containing a scaffolding material that serves as a scaffolding for bone healing.
 このような構成とすることにより、足場材含有部が骨の表面構造再建の足場となり、骨の早期治癒及び強度向上を図ることが可能となる。なお、足場材含有部は、保持部が足場材を含有していない場合に特に好適に用いることができる。なお、足場材含有部は、骨治癒促進物質を保持する能力を有していてもよいし、有していなくてもよい。 With such a configuration, the scaffolding material-containing portion serves as a scaffold for reconstructing the surface structure of the bone, and it is possible to achieve early healing and strength improvement of the bone. The scaffolding material-containing portion can be particularly preferably used when the holding portion does not contain the scaffolding material. The scaffolding material-containing portion may or may not have the ability to retain the bone healing promoting substance.
[4]本発明の骨治療シートにおいては、前記保持部は、少なくとも一部が、前記損傷した骨に配置したときに前記損傷箇所の内部に侵入可能に構成されていることが好ましい。 [4] In the bone treatment sheet of the present invention, it is preferable that at least a part of the holding portion is configured to be able to penetrate the inside of the damaged portion when placed on the damaged bone.
 このような構成とすることにより、保持部に保持された状態の骨治癒促進物質を損傷箇所の内部に導入することが可能となる。 With such a configuration, it is possible to introduce the bone healing promoting substance held in the holding portion into the inside of the damaged part.
 上記のような構成とする場合には、様々な形状の損傷箇所に対応するため、保持部の材料として変形しやすい材料を採用することが好ましい(後述する実施形態1及び実施形態6参照。)。 In the case of the above configuration, it is preferable to use a material that is easily deformed as the material of the holding portion in order to deal with damaged parts having various shapes (see the first and sixth embodiments described later). ..
[5]本発明の骨治療シートにおいては、前記保持部は、前記損傷箇所に対応する突出部を有することが好ましい。 [5] In the bone treatment sheet of the present invention, it is preferable that the holding portion has a protruding portion corresponding to the damaged portion.
 このような構成とすることにより、保持部に保持された状態の骨治癒促進物質を損傷箇所の内部に導入しやすくすることが可能となる。 With such a configuration, it becomes possible to easily introduce the bone healing promoting substance held in the holding portion into the inside of the damaged part.
 本明細書における「保持部における突出部」とは、保持部における他の部分よりも骨治療シートの厚さ方向に突出している部分のことをいう。 The "protruding portion in the holding portion" in the present specification means a portion of the holding portion that protrudes in the thickness direction of the bone treatment sheet.
 本発明の骨治療シートにおいては、前記保持部が、前記骨治癒促進物質を保持していることが好ましい。 In the bone treatment sheet of the present invention, it is preferable that the holding portion holds the bone healing promoting substance.
 このような構成とすることにより、骨治癒促進物質を骨治療シートとは別に準備する手間をかけることなく使用することが可能となる。なお、保持部に骨治癒促進物質が保持されている状態の骨治療シートは、骨治癒促進物質の劣化を抑制可能な環境(例えば、低温環境)で保管することが好ましい。また、骨治療シートの構成材料や骨治癒促進物質の種類にもよるが、保持部に骨治癒促進物質が保持されている状態の骨治療シートを乾燥させ又は凍結させることにより、当該骨治療シートの長期保存が可能となる場合もある。 With such a configuration, it is possible to use the bone healing promoting substance without the trouble of preparing it separately from the bone treatment sheet. The bone treatment sheet in which the bone healing promoting substance is held in the holding portion is preferably stored in an environment (for example, a low temperature environment) in which deterioration of the bone healing promoting substance can be suppressed. Further, although it depends on the constituent materials of the bone treatment sheet and the type of the bone healing promoting substance, the bone treatment sheet is dried or frozen in a state where the bone healing promoting substance is held in the holding portion. May be possible for long-term storage.
 本発明の骨治療シートにおいては、前記保持部が、骨治癒促進物質として、骨形成因子類、多血小板血漿類及び血管増加因子類のうち少なくとも1つを保持していることが好ましい。 In the bone treatment sheet of the present invention, it is preferable that the holding portion holds at least one of bone formation factors, platelet-rich plasmas and blood vessel increasing factors as a bone healing promoting substance.
 骨形成因子類、多血小板血漿類及び血管増加因子類は骨治癒との関連性が高い物質であるため、上記のような構成とすることにより、骨の治癒を一層促進することが可能となる。 Since bone formation factors, platelet-rich plasmas, and blood vessel-increasing factors are substances that are highly related to bone healing, it is possible to further promote bone healing by adopting the above configuration. ..
 本明細書における「骨形成因子類」は、生体内のシグナル伝達に用いられるタンパク質やポリペプチドであって、骨形成を促進できるもののことをいう。本明細書における「多血小板血漿類」は、血液の遠心分離により得られる、成長因子等を豊富に含む血液由来物質のことをいう。本明細書における「血管増加因子類」とは、生体内のシグナル伝達に用いられるタンパク質やポリペプチドであって、血管や肉芽組織の形成を促進できるもののことをいう。なお、生体内での骨治癒は損傷箇所付近の生体組織の治癒と一体として進行するため、血管増加因子類による血管形成等の促進は、間接的に骨治癒も促進すると考えられる。 The "bone-forming factors" in the present specification refer to proteins and polypeptides used for signal transduction in the living body, which can promote bone formation. The term "platelet-rich plasma" as used herein refers to a blood-derived substance that is obtained by centrifugation of blood and is rich in growth factors and the like. As used herein, the term "blood vessel increasing factor" refers to a protein or polypeptide used for signal transduction in a living body that can promote the formation of blood vessels or granulation tissue. Since bone healing in the living body proceeds integrally with healing of living tissue in the vicinity of the injured site, promotion of angioplasty and the like by angiogenic factors is considered to indirectly promote bone healing.
[6]本発明の骨治療シートにおいては、前記保持部が、前記骨治癒促進物質として、多血小板血漿(Platelet-Rich Plasma)を保持していることが好ましい。 [6] In the bone treatment sheet of the present invention, it is preferable that the holding portion holds platelet-rich plasma (Platelet-Rich Plasma) as the bone healing promoting substance.
 このような構成とすることにより、骨の治癒を一層促進することが可能となる。 With such a configuration, it is possible to further promote bone healing.
 本明細書における「多血小板血漿」は、血液を遠心分離し、比重が所定の範囲である血漿を採取することで得られるものであり、血小板を多く含有する血漿である。 The "platelet-rich plasma" in the present specification is obtained by centrifuging blood and collecting plasma having a specific gravity within a predetermined range, and is plasma containing a large amount of platelets.
[7]本発明の骨治療シートにおいては、生分解性を有することが好ましい。 [7] The bone treatment sheet of the present invention preferably has biodegradability.
 このような構成とすることにより、骨治療シートを治癒後も生体内に残置することに不都合がある場合であっても、取り出しのための手術等を実施することなく骨治療シートを吸収させることが可能となる。 With such a configuration, even if it is inconvenient to leave the bone treatment sheet in the living body even after healing, the bone treatment sheet can be absorbed without performing surgery for taking out the bone treatment sheet. Is possible.
 本明細書における「生分解性」は、生体内において少なくとも一部が分解され、生体に吸収可能となり、生体内に放置したときに元の構造とは異なる構造となる性質をいう。本発明の骨治療シートにおいては、生体内において分解されるのは一部のみであってもよい。また、本明細書においては、「生分解性」は、元の構造の形状を基にして生体組織等(例えば、骨や血管)が形成される性質、いわゆる「吸収置換性」も含む概念として用いる。 The term "biodegradable" as used herein refers to the property that at least a part of the substance is decomposed in the living body so that it can be absorbed by the living body and the structure is different from the original structure when left in the living body. In the bone treatment sheet of the present invention, only a part thereof may be decomposed in the living body. Further, in the present specification, "biodegradability" is a concept including the property of forming biological tissues (for example, bones and blood vessels) based on the shape of the original structure, so-called "absorption-replacement property". Use.
[8]本発明の骨治療シートは、前記骨治療シートは、前記損傷箇所の外面に配置することで骨の治療に用いるための骨治療シートであって、前記損傷箇所に対応する箇所の少なくとも一部に、周期性を有するナノスケールの凹凸構造からなるナノ周期構造が形成されていることを特徴とする。 [8] The bone treatment sheet of the present invention is a bone treatment sheet for use in bone treatment by arranging the bone treatment sheet on the outer surface of the damaged portion, and at least a portion corresponding to the damaged portion. It is characterized in that a nano-periodic structure composed of a nano-scale concavo-convex structure having periodicity is partially formed.
 上記[8]の骨治療シートによれば、損傷箇所に対応する箇所の少なくとも一部にナノ周期構造が形成されているため、当該ナノ周期構造を骨の損傷箇所やその付近の箇所と接触させて使用することで、骨の細胞(特に骨芽細胞)の増殖や分化を促進させることが可能となる。このため、上記[8]の骨治療シートによれば、骨治療シートと骨とを早期にかつ強固に固着させることで骨の強度を高くすることが可能となる。また、上記[8]の骨治療シートによれば、細胞の増殖や分化を促進させることから、骨自体の治癒力を高めることも可能となる。したがって、上記[8]の骨治療シートは、従来のシートと比較して骨の治癒を促進させることが可能な骨治療シートとなる。 According to the bone treatment sheet of [8] above, since the nano-periodic structure is formed in at least a part of the portion corresponding to the damaged portion, the nano-periodic structure is brought into contact with the damaged portion of the bone or a portion in the vicinity thereof. By using this, it becomes possible to promote the proliferation and differentiation of bone cells (particularly osteoblasts). Therefore, according to the bone treatment sheet of the above [8], it is possible to increase the strength of the bone by firmly fixing the bone treatment sheet and the bone at an early stage. Further, according to the bone treatment sheet of the above [8], it is possible to enhance the healing power of the bone itself because it promotes the proliferation and differentiation of cells. Therefore, the bone treatment sheet of the above [8] is a bone treatment sheet capable of promoting bone healing as compared with the conventional sheet.
 ここで、本発明の骨治療シートにおける「ナノ周期構造」について説明する。本発明の発明者らは、ナノスケールの構造の中でも、一定の間隔で同じ構造が繰り返すもの、つまり、「周期性を有するナノスケールの凹凸構造であるナノ周期構造」に着目して研究をおこなってきた。 Here, the "nano-periodic structure" in the bone treatment sheet of the present invention will be described. The inventors of the present invention have focused on a nanoscale structure in which the same structure repeats at regular intervals, that is, a "nanoperiodic structure which is a nanoscale uneven structure having periodicity". I came.
 本発明の発明者らの研究により、固体表面にナノ周期構造を形成した場合、単に細胞の増殖や分化を促進させることが可能となるだけでなく、細胞の増殖に配向性をもたせることも可能となることが判明している(日本歯科医学会 平成29年8月31日 第33回「歯科医学を中心とした総合的な研究を推進する集い」での発表 「チタン表面の規格化ナノ構造形成による周辺細胞制御技術とこれを応用した次世代インプラントの開発」参照。)。 According to the research by the inventors of the present invention, when a nanoperiodic structure is formed on a solid surface, it is possible not only to promote cell proliferation and differentiation, but also to give orientation to cell proliferation. (Japanese Association for Dental Science, August 31, 2017, Announcement at the 33rd "Gathering to Promote Comprehensive Research Focusing on Dentistry" "Standardized Nanostructure of Titanium Surface" Peripheral cell control technology by formation and development of next-generation implants applying this technology ”.
 例えば、基材表面への規格化ナノ構造(ナノ周期構造)形成により、当該基材表面で骨髄間質細胞を培養した場合、溝が連続する方向に沿って骨髄間質細胞を増殖させることが可能であることが、本発明の発明者らがおこなった実験により確認できている。 For example, when bone marrow stromal cells are cultured on the surface of the substrate by forming a normalized nanostructure (nano-periodic structure) on the surface of the substrate, the bone marrow stromal cells can be proliferated along the direction in which the grooves are continuous. It has been confirmed by experiments conducted by the inventors of the present invention that it is possible.
 なお、固体表面における細胞の増殖に配向性をもたせることで、当該固体(人工物)と生体内の組織(特に骨)との間の細胞接着及び結合が強固となるという効果や、細胞の増殖及び分化を再現性が取れる形で制御することが可能となるという効果が得られると考えられ、それらを支持する実験結果も出つつある。 By giving orientation to cell proliferation on the solid surface, the effect of strengthening cell adhesion and binding between the solid (artificial object) and tissues (particularly bone) in the living body, and cell proliferation It is thought that the effect of being able to control the differentiation in a reproducible manner can be obtained, and experimental results supporting them are being produced.
 ナノスケールの構造が細胞に影響を与える具体的な原理については、未だ詳細には判明していない。しかしながら、ナノスケールの凹凸構造が細胞の増殖等を促進可能であること、及び、ナノ周期構造により細胞増殖の配向性を制御可能であることについては、上記のような実験結果等から支持されている。上記[8]に係る本発明は上記の研究結果を発展応用したものである。 The specific principle of how nanoscale structures affect cells has not yet been clarified in detail. However, the fact that the nanoscale uneven structure can promote cell proliferation and the like and that the orientation of cell proliferation can be controlled by the nanoperiodic structure are supported by the above experimental results and the like. There is. The present invention according to the above [8] is an advanced application of the above research results.
 本明細書においては、「損傷箇所に対応する箇所」とは、骨治療シートの使用時において損傷した骨(治療を想定する骨)の損傷箇所に接触させるべき箇所のことをいう。 In the present specification, the "location corresponding to the damaged portion" means a portion that should be brought into contact with the damaged portion of the damaged bone (bone that is supposed to be treated) when the bone treatment sheet is used.
 本明細書においては、「周期性を有する」とは、一定の間隔で同じ構造が繰り返すことをいう。また、本明細書においては、「ナノスケール」とは、ナノメートル単位であらわすことが適切な大きさ(1nm~1000nm程度の大きさ)のことをいう。また、本明細書においては、「ナノスケールの凹凸構造」とは、凹凸の幅、高さ、径等、当該構造の基本単位のいずれかが1nm~1000nmの範囲内にあることをいう。このため、本明細書における「ナノ周期構造」とは、ナノスケールの凹凸構造の凹凸等の周期が1nm~1000nmの範囲内のナノスケールの周期的な構造であることをいう。 In the present specification, "having periodicity" means that the same structure is repeated at regular intervals. Further, in the present specification, the “nanoscale” means a size (a size of about 1 nm to 1000 nm) that is appropriate to be expressed in nanometer units. Further, in the present specification, the "nanoscale concavo-convex structure" means that any of the basic units of the structure, such as the width, height, and diameter of the concavo-convex, is within the range of 1 nm to 1000 nm. Therefore, the “nano-periodic structure” in the present specification means a nano-scale periodic structure in which the period of the unevenness of the nano-scale uneven structure is in the range of 1 nm to 1000 nm.
 なお、ナノ周期構造は、凹凸の幅、高さ、径が20nm~600nmの範囲内にあり、周期が20nm~600nmの範囲内にあることが好ましい。また、凹凸の幅、高さ、径が50nm~500nmの範囲内にあり、周期が50nm~500nmの範囲内にあることが一層好ましい。また、凹凸の幅、高さ、径が80nm~300nmの範囲内にあり、周期が80nm~300nmの範囲内にあることがより一層好ましい。さらに、凹凸の幅、高さ、径が100nm~200nmの範囲内にあり、周期が100nm~200nmの範囲内にあることがさらに一層好ましい。 The nanoperiodic structure preferably has an uneven width, height, and diameter in the range of 20 nm to 600 nm, and a period in the range of 20 nm to 600 nm. Further, it is more preferable that the width, height and diameter of the unevenness are in the range of 50 nm to 500 nm and the period is in the range of 50 nm to 500 nm. Further, it is more preferable that the width, height and diameter of the unevenness are in the range of 80 nm to 300 nm and the period is in the range of 80 nm to 300 nm. Further, it is more preferable that the width, height and diameter of the unevenness are in the range of 100 nm to 200 nm and the period is in the range of 100 nm to 200 nm.
 なお、本発明の骨治療シートは、それぞれ独立した複数の箇所にナノ周期構造を有していてもよい。また、本発明の骨治療シートは、複数種類のナノ周期構造を有していてもよい。さらに、本発明の骨治療シートは、ナノ周期構造の他に周期性を有しないナノスケールの凹凸構造を有していてもよい。周期性を有しないナノスケールの凹凸構造の例としては、ランダムに配置された点状の凹凸構造を挙げることができる。 The bone treatment sheet of the present invention may have nano-periodic structures at a plurality of independent locations. In addition, the bone treatment sheet of the present invention may have a plurality of types of nanoperiodic structures. Further, the bone treatment sheet of the present invention may have a nano-scale uneven structure having no periodicity in addition to the nano-periodic structure. As an example of the nanoscale uneven structure having no periodicity, a randomly arranged dot-shaped uneven structure can be mentioned.
 本発明の骨治療シートにおいては、前記ナノ周期構造は、互いに接触しない複数の帯状凹部又は複数の帯状凸部からなることが好ましい。 In the bone treatment sheet of the present invention, it is preferable that the nanoperiodic structure is composed of a plurality of band-shaped recesses or a plurality of band-shaped protrusions that do not come into contact with each other.
 このような構成とすることにより、細胞の増殖や分化が帯状凹部や帯状凸部に沿って発生するように制御することが可能となるため、治癒の方向性を制御することが可能となる。 With such a configuration, it is possible to control the proliferation and differentiation of cells so as to occur along the band-shaped concave portion and the band-shaped convex portion, so that the direction of healing can be controlled.
 本明細書においては、「帯状凹部」とは、平面視したときに枝分かれせず連続する凹部のことをいう。帯状凹部は、溝状の構造と表現することもできる。また、本明細書においては、「帯状凸部」とは、平面視したときに枝分かれせず連続する凸部のことをいう。帯状凸部は、畝状の構造と表現することもできる。なお、ある構造が凹部からなるか凸部からなるかは、主に基準の高さをどのように設定するかの問題である。このため、実際には、ナノ周期構造が複数の帯状凹部からなるといえると同時に複数の帯状凸部からなるともいえる場合もある(後述する実施形態11参照。)。 In the present specification, the "belt-shaped recess" means a recess that is continuous without branching when viewed in a plan view. The band-shaped recess can also be expressed as a groove-shaped structure. Further, in the present specification, the "belt-shaped convex portion" means a continuous convex portion without branching when viewed in a plan view. The band-shaped convex portion can also be expressed as a ridge-shaped structure. Whether a certain structure is composed of concave portions or convex portions is mainly a matter of how to set the reference height. Therefore, in reality, it can be said that the nanoperiodic structure is composed of a plurality of band-shaped concave portions and at the same time is composed of a plurality of band-shaped convex portions (see the eleventh embodiment described later).
 本明細書においては、「互いに接触しない」とは、複数の帯状凹部に関しては帯状凹部同士が交差したり合流したりしないことをいい、複数の帯状凸部に関しては帯状凸部同士が交差したり合流したりしないことをいう。上記の場合においては、ナノ周期構造は、平面視したときに縞状にみえる構造となることが多い(後述する図16(c)参照。)。 In the present specification, "not in contact with each other" means that the band-shaped concave portions do not intersect or merge with each other with respect to the plurality of band-shaped concave portions, and the band-shaped convex portions intersect with each other with respect to the plurality of band-shaped convex portions. It means not to join. In the above case, the nanoperiodic structure often looks like a stripe when viewed in a plan view (see FIG. 16C described later).
 本発明の骨治療シートにおいては、前記ナノ周期構造が形成されている位置を表示する注意表示が付されていることが好ましい。 It is preferable that the bone treatment sheet of the present invention is provided with a caution indication indicating the position where the nanoperiodic structure is formed.
 このような構成とすることにより、ナノ周期構造が形成されている位置の把握が容易となるため、使用時における配置ミスを抑制することが可能となる。 With such a configuration, it becomes easy to grasp the position where the nanoperiodic structure is formed, so that it is possible to suppress an arrangement error during use.
 位置を表示する注意表示の例としては、色、模様、図形、文字、立体的形状等によりナノ周期構造が形成されている位置を明確化することを挙げることができる。注意表示はナノ周期構造が形成されている箇所に付されていてもよいし、ナノ周期構造が形成されていない箇所に付されていてもよい。また、注意表示はナノ周期構造が形成されている箇所又はナノ周期構造が形成されていない箇所の全てに付されていてもよいし、一部のみに付されていてもよい。 As an example of the caution display for displaying the position, it is possible to clarify the position where the nanoperiodic structure is formed by colors, patterns, figures, characters, three-dimensional shapes, and the like. The caution indication may be attached to the place where the nano-periodic structure is formed, or may be attached to the place where the nano-periodic structure is not formed. Further, the caution indication may be attached to all the places where the nano-periodic structure is formed or the places where the nano-periodic structure is not formed, or may be attached only to a part of the place.
 本発明の骨治療シートにおいては、前記骨治療シートの主要形状を構成する主構造がステンレス鋼からなることが好ましい。 In the bone treatment sheet of the present invention, it is preferable that the main structure constituting the main shape of the bone treatment sheet is made of stainless steel.
 このような骨治療シートは、生体内で使用できる他の材料からなる骨治療シートと比較して強度とコストとのバランスに優れ、かつ、骨の治癒を積極的に促進させることが可能な骨治療シートとなる。 Such a bone treatment sheet has an excellent balance between strength and cost as compared with a bone treatment sheet made of other materials that can be used in vivo, and can actively promote bone healing. It becomes a treatment sheet.
 本明細書における「主構造」とは、骨治療シートの主要形状(シート状の形状)を構成する構造のことをいう。「主要形状を構成する主構造」とは、主要形状を構成する主な構造のことをいう。骨治療シートにおける主構造は、骨治療シートの機械的強度を担う構造であるともいえる。ステンレス鋼としては、例として医療用(低ニッケル)のSUS316系ステンレス鋼を挙げることができる。 The "main structure" in the present specification refers to a structure that constitutes the main shape (sheet-like shape) of the bone treatment sheet. The "main structure constituting the main shape" means the main structure constituting the main shape. It can be said that the main structure of the bone treatment sheet is a structure that bears the mechanical strength of the bone treatment sheet. Examples of stainless steel include medical (low nickel) SUS316 series stainless steel.
 本発明の骨治療シートにおいては、前記骨治療シートの主要形状を構成する主構造がマグネシウム又はマグネシウム合金からなることも好ましい。 In the bone treatment sheet of the present invention, it is also preferable that the main structure constituting the main shape of the bone treatment sheet is made of magnesium or a magnesium alloy.
 マグネシウム及びマグネシウム合金には、人体内で分解・吸収されやすいという性質を有するものがある。このため、上記のような骨治療シートは、十分な初期強度を有し、生体により分解・吸収されることが期待でき、かつ、骨の治癒を積極的に促進させることが可能な骨治療シートとなる。 Some magnesium and magnesium alloys have the property of being easily decomposed and absorbed in the human body. Therefore, the above-mentioned bone treatment sheet has sufficient initial strength, can be expected to be decomposed and absorbed by the living body, and can positively promote bone healing. It becomes.
 マグネシウム合金はマグネシウムとマグネシウム以外の元素との合金である。本発明において好適に使用できると考えられるマグネシウム合金としては、Mg-Ca-Zn系合金を例示することができる。 Magnesium alloy is an alloy of magnesium and elements other than magnesium. Examples of magnesium alloys that can be suitably used in the present invention include Mg—Ca—Zn-based alloys.
 本発明の骨治療シートにおいては、前記骨治療シートの主要形状を構成する主構造がチタン又はチタン合金からなることも好ましい。 In the bone treatment sheet of the present invention, it is also preferable that the main structure constituting the main shape of the bone treatment sheet is made of titanium or a titanium alloy.
 このような骨治療シートは、高い強度を有しつつ毒性が低い性質も有し、かつ、骨の治癒を積極的に促進させることが可能な骨治療シートとなる。 Such a bone treatment sheet is a bone treatment sheet that has high strength and low toxicity, and can actively promote bone healing.
 本発明の骨治療シートにおいては、骨治療シートの主要形状を構成する主構造がコラーゲンを主成分とする非金属材料からなることも好ましい。 In the bone treatment sheet of the present invention, it is also preferable that the main structure constituting the main shape of the bone treatment sheet is made of a non-metallic material containing collagen as a main component.
 このような骨治療シートは、生体により速やかに分解・吸収されることが期待でき、かつ、骨の治癒を積極的に促進させることが可能な骨治療シートとなる。 Such a bone treatment sheet is a bone treatment sheet that can be expected to be rapidly decomposed and absorbed by the living body and can actively promote bone healing.
 本明細書においては、構成材料における「主成分」とは、当該構成材料を構成する成分
のうち、最も質量の割合が大きい成分のことをいう。ただし、構成材料の主成分がどの成分なのか決定するときには、当該構成材料の成分のうち水分は除外して評価する。
In the present specification, the "main component" in the constituent material means the component having the largest mass ratio among the components constituting the constituent material. However, when determining which component is the main component of the constituent material, water is excluded from the components of the constituent material for evaluation.
 本明細書においては、「非金属材料」とは、主成分として金属の性質を有する物質を含有しない材料のことをいう。このため、上記非金属材料は、金属元素を含む成分を含有していてもよい。 In the present specification, the "non-metallic material" means a material that does not contain a substance having metallic properties as a main component. Therefore, the non-metallic material may contain a component containing a metallic element.
 コラーゲンの主成分としては、例えば、I型コラーゲン分子、II型コラーゲン分子を用いることができる。また、例えば、V型、XI型、IX型、XII型、XIV型コラーゲン分子を用いることもできる。上記[20]に記載の非金属材料は、可能な限り意図しない不純物(重金属等)を含有しないことが好ましい。また、上記非金属材料は、骨の治癒の促進等に資する成分等を含有していてもよい。 As the main component of collagen, for example, type I collagen molecule and type II collagen molecule can be used. Further, for example, V-type, XI-type, IX-type, XII-type, and XIV-type collagen molecules can also be used. It is preferable that the non-metal material according to the above [20] does not contain unintended impurities (heavy metals and the like) as much as possible. In addition, the non-metallic material may contain a component or the like that contributes to promotion of bone healing or the like.
 なお、骨治療シートの主構造がコラーゲンを主成分とする非金属材料からなる場合には、骨と接触させるときに骨治療シートの表面にナノ周期構造が形成されていればよい。 When the main structure of the bone treatment sheet is made of a non-metallic material containing collagen as a main component, it is sufficient that a nanoperiodic structure is formed on the surface of the bone treatment sheet when it is brought into contact with the bone.
 本発明の骨治療シートにおいては、前記骨治療シートの主要形状を構成する主構造がアガロース又はセルロースを主成分とする非金属材料からなることも好ましい。 In the bone treatment sheet of the present invention, it is also preferable that the main structure constituting the main shape of the bone treatment sheet is made of a non-metallic material containing agarose or cellulose as a main component.
 このような構成とすることにより、天然に存在し生体に対する害がない材料からなり、かつ、骨の治癒を積極的に促進させることが可能な骨治療シートとなる。 With such a configuration, it becomes a bone treatment sheet that is made of a naturally occurring material that is not harmful to the living body and that can positively promote bone healing.
 アガロース及びセルロースとしては、一般的に市販されているものを用いることができる。上記に記載の非金属材料は、可能な限り意図しない不純物(重金属等)を含有しないことが好ましい。また、上記非金属材料は、骨の治癒の促進等に資する成分等を含有していてもよい。 As the agarose and cellulose, commercially available ones can be used. It is preferable that the non-metal materials described above do not contain unintended impurities (heavy metals and the like) as much as possible. In addition, the non-metallic material may contain a component or the like that contributes to promotion of bone healing or the like.
 なお、骨治療シートの主構造がアガロース又はセルロースを主成分とする非金属材料からなる場合には、骨と接触させるときに骨治療シートの表面にナノ周期構造が形成されていればよい。 When the main structure of the bone treatment sheet is made of a non-metallic material containing agarose or cellulose as a main component, it is sufficient that a nanoperiodic structure is formed on the surface of the bone treatment sheet when it is brought into contact with bone.
[9]本発明の骨治療シートにおいては、前記主構造の少なくとも一部を覆う被覆膜をさらに備えることが好ましい。 [9] In the bone treatment sheet of the present invention, it is preferable to further include a coating film covering at least a part of the main structure.
 このような構成とすることにより、主構造のみでは得ることが難しい性質(例えば、優れた強度、高い生体親和性、製造の容易さ、低い製造コスト等の優れた性質を高いレベルであわせ持つという性質)を有する骨治療シートとすることが可能となる。 With such a configuration, it is said that it has excellent properties (for example, excellent strength, high biocompatibility, ease of production, low production cost, etc.) that are difficult to obtain only from the main structure at a high level. It is possible to obtain a bone treatment sheet having (property).
 なお、骨治療シートが主構造及び被覆膜を備える場合には、ナノ周期構造は、主構造の表面のみ又は被覆膜の表面のみに形成されていてもよいし、主構造と被覆膜との両方の表面に形成されていてもよい。また、被覆膜が液状又はゲル状の物質からなる場合や水溶性又は生分解性が高い物質からなる場合のように、被覆膜が生体内において主構造から速やかに離脱する材質からなる場合には、骨治療シートの使用前(保存時)においては、ナノ周期構造が被覆膜の下に埋まっていてもよい。被覆膜を構成する材質の例としては、金属、非金属性無機物質(セラミック等。特に、ハイドロキシアパタイトやリン酸三カルシウムからなるもの。)、コラーゲン、アガロース、セルロース及び合成高分子物質並びにこれらを組み合わせた複合材料を挙げることができる。 When the bone treatment sheet includes the main structure and the coating film, the nanoperiodic structure may be formed only on the surface of the main structure or only the surface of the coating film, or the main structure and the coating film. It may be formed on both surfaces of and. In addition, when the coating film is made of a material that rapidly separates from the main structure in the living body, such as when the coating film is made of a liquid or gel-like substance or is made of a highly water-soluble or biodegradable substance. Before the use (during storage) of the bone treatment sheet, the nanoperiodic structure may be embedded under the coating film. Examples of materials constituting the coating film include metals, non-metallic inorganic substances (ceramics, etc., particularly those composed of hydroxyapatite and tricalcium phosphate), collagen, agarose, cellulose and synthetic polymer substances, and these. Can be mentioned as a composite material in which the above is combined.
 被覆膜の材料としての合成高分子物質としては、セルロース乳酸ポリマー、乳酸-グリコール酸ポリマー、ラクトン系ポリマー、ジオキサノン系ポリマー及びポリエチレングリコール系ポリマーを好適に用いることができる。特に、乳酸ポリマー、乳酸-グリコール酸ポリマー、ラクトン系ポリマー、ジオキサノン系ポリマー及びポリエチレングリコール系ポリマーは高い生分解性を有するため、骨治療シートの生分解性を高くしたい場合には特に好適に用いることができる。 As the synthetic polymer substance as the material of the coating film, a cellulose lactic acid polymer, a lactic acid-glycolic acid polymer, a lactone polymer, a dioxanone polymer and a polyethylene glycol polymer can be preferably used. In particular, lactic acid polymers, lactic acid-glycolic acid polymers, lactone-based polymers, dioxanone-based polymers, and polyethylene glycol-based polymers have high biodegradability, and therefore, they are particularly preferably used when it is desired to increase the biodegradability of bone treatment sheets. Can be done.
 本発明の骨治療シートにおいては、厚さが0.05μm~500μmの範囲内にあることが好ましい。 In the bone treatment sheet of the present invention, the thickness is preferably in the range of 0.05 μm to 500 μm.
 このような構成とすることにより、強度を十分に確保することが可能となり、かつ、曲げやすさを十分に確保することも可能となる。なお、骨治療シートの厚さは、0.08μm~100μmの範囲内にあることが一層好ましく、0.1μm~50μmの範囲内にあることがより一層好ましいと考えられる。 With such a configuration, it is possible to secure sufficient strength and also to secure sufficient bendability. The thickness of the bone treatment sheet is more preferably in the range of 0.08 μm to 100 μm, and even more preferably in the range of 0.1 μm to 50 μm.
 本発明の骨治療シートにおいては、前記ナノ周期構造は、前記損傷箇所の外面に配置されたときに前記損傷箇所と交差する凹部又は凸部を含むことが好ましい。 In the bone treatment sheet of the present invention, it is preferable that the nano-periodic structure includes a concave portion or a convex portion that intersects the damaged portion when it is arranged on the outer surface of the damaged portion.
 このような構成とすることにより、骨の損傷箇所を埋めるように細胞の増殖や分化を促すことが可能となり、その結果、骨の損傷を速やかに治癒させることが可能となると考えられる。 With such a configuration, it is possible to promote cell proliferation and differentiation so as to fill the damaged part of the bone, and as a result, it is considered that the bone damage can be healed promptly.
 本明細書においては、凹部又は凸部について「損傷箇所と交差する」とは、凹部又は凸部が骨の損傷箇所をまたぐようになることをいう。 In the present specification, "intersecting the damaged part" with respect to the concave portion or the convex portion means that the concave portion or the convex portion straddles the damaged portion of the bone.
 なお、「損傷箇所の外面に配置されたときに損傷箇所と交差する凹部又は凸部」には、帯状凹部及び帯状凸部が含まれ得る。ただし、損傷箇所の外面に配置されたときに損傷箇所と交差する凹部や凸部は、損傷箇所の外面に配置されたとき骨の損傷箇所と交差するならば、互いに交差したり合流したりしていてもよい。 Note that the "concave or convex portion that intersects the damaged portion when placed on the outer surface of the damaged portion" may include a band-shaped concave portion and a band-shaped convex portion. However, recesses and protrusions that intersect the damaged area when placed on the outer surface of the damaged area may intersect or merge with each other if they intersect the damaged area of the bone when placed on the outer surface of the damaged area. You may be.
[10]本発明の骨治療シートにおいては、貫通孔である開口部が形成されていることが好ましい。 [10] In the bone treatment sheet of the present invention, it is preferable that an opening which is a through hole is formed.
 このような構成とすることにより、骨の治癒に有用な物質を含有する体液等が骨の損傷箇所に到達しやすくなるため、骨の治癒を一層促進させることが可能となる。 With such a configuration, body fluids and the like containing substances useful for bone healing can easily reach the damaged part of the bone, so that the healing of the bone can be further promoted.
 「貫通孔である開口部」の形状、大きさ、形成位置、形成数については、骨治療シートを用いる対象となる骨の形状や損傷の様子等に応じて適宜決定することができる。例えば、骨の損傷箇所に顆粒状の骨補填材を含有する充填材を用いる場合には、骨補填材が開口部からこぼれだすことを抑制することができる程度の形状及び大きさの開口部が形成された骨治療シートを用いることが好ましい。 The shape, size, formation position, and number of formations of the "opening that is a through hole" can be appropriately determined according to the shape of the bone to be used for the bone treatment sheet, the state of damage, and the like. For example, when a filler containing a granular bone filling material is used for the damaged part of the bone, the opening having a shape and size that can prevent the bone filling material from spilling out from the opening is formed. It is preferable to use the formed bone treatment sheet.
 本発明の骨治療シートにおいては、前記損傷した骨に前記骨治療シートを固定するための固定構造を有することが好ましい。 The bone treatment sheet of the present invention preferably has a fixing structure for fixing the bone treatment sheet to the damaged bone.
 このような構成とすることにより、骨治療シートを固定するための部材を別途準備する必要がなくなり、骨治療シートを骨に固定するときの手間を軽減することが可能となる。 With such a configuration, it is not necessary to separately prepare a member for fixing the bone treatment sheet, and it is possible to reduce the labor when fixing the bone treatment sheet to the bone.
 本発明の骨治療シートにおいては、前記固定構造は、前記骨治療シートのいずれかの箇所から延出する延出部と、前記延出部を通過させることができる固定用孔とを含む構造であることが好ましい。 In the bone treatment sheet of the present invention, the fixation structure has a structure including an extension portion extending from any part of the bone treatment sheet and a fixing hole through which the extension portion can pass. It is preferable to have.
 このような構成とすることにより、骨治療シートの重要部分(ナノ周期構造が形成されている部分)と一体として成形することが可能な程度の簡易な構造で、骨治療シートを骨に巻きつけるようにして配置するときに使用できる固定構造を構成することが可能となる。 With such a configuration, the bone treatment sheet is wrapped around the bone with a simple structure that can be integrally molded with the important part (the part where the nano-periodic structure is formed) of the bone treatment sheet. It is possible to construct a fixed structure that can be used when arranging in this way.
 本発明の骨治療シートにおいては、前記固定用孔は、前記延出部の延出方向に沿って複数形成されていることが好ましい。 In the bone treatment sheet of the present invention, it is preferable that a plurality of the fixing holes are formed along the extending direction of the extending portion.
 このような構成とすることにより、さまざまな太さの骨に対応することが可能となる。 With such a configuration, it is possible to handle bones of various thicknesses.
[11]本発明の動物の骨の治療方法は、上記のいずれかに記載の骨治療シートを準備する準備工程と、前記骨治療シートを、損傷した骨における損傷箇所の少なくとも一部を覆うように、前記損傷した骨の表面に配置する配置工程とを含むことを特徴とする。 [11] The method for treating an animal bone of the present invention includes a preparatory step for preparing the bone treatment sheet according to any one of the above, and the bone treatment sheet so as to cover at least a part of the damaged portion in the damaged bone. Including a placement step of placing on the surface of the damaged bone.
 このような方法とすることにより、従来の動物の骨の治療方法と比較して骨の治癒を促進させることが可能な動物の骨の治療方法となる。 By adopting such a method, it becomes an animal bone treatment method capable of promoting bone healing as compared with the conventional animal bone treatment method.
 なお、本明細書における「動物の骨の治療方法」は、「人間の骨の治療方法」を含まないものとする。ただし、本発明の動物の骨の治療方法は本質的には骨の治療方法であるため、本発明の動物の骨の治療方法と実質的に同様の方法を人間の骨の治療方法に応用することも可能である。 Note that the "animal bone treatment method" in this specification does not include the "human bone treatment method". However, since the animal bone treatment method of the present invention is essentially a bone treatment method, substantially the same method as the animal bone treatment method of the present invention is applied to the human bone treatment method. It is also possible.
[12]本発明の動物の骨の治療方法においては、前記準備工程においては、上記[2]~[6]のいずれかに記載の骨治療シートを準備し、前記配置工程においては、骨治癒促進物質を保持している前記骨治療シートを、前記損傷した骨における損傷箇所の少なくとも一部を覆うように、前記損傷した骨の表面に配置することが好ましい。 [12] In the method for treating animal bone of the present invention, the bone treatment sheet according to any one of the above [2] to [6] is prepared in the preparation step, and bone healing is performed in the placement step. It is preferable that the bone treatment sheet holding the accelerator is placed on the surface of the damaged bone so as to cover at least a part of the damaged part in the damaged bone.
 上記[12]の動物の骨の治療方法は、上記[2]~[6]のいずれかに記載の骨治療シートを用いるため、従来のシートを用いる動物の骨の治療方法と比較して、骨の治癒を促進させることが可能な動物の骨の治療方法となる。 Since the bone treatment method for animals according to [12] uses the bone treatment sheet according to any one of [2] to [6] above, as compared with the conventional method for treating animal bones using a sheet, It is a method of treating bone in animals that can promote bone healing.
[13]本発明の動物の骨の治療方法においては、前記配置工程においては、前記損傷箇所の内部に前記骨治療シートにおける保持部の一部を侵入させることが好ましい。 [13] In the method for treating animal bones of the present invention, it is preferable that a part of the holding portion of the bone treatment sheet penetrates into the damaged portion in the placement step.
 このような方法とすることにより、保持部に保持された状態の骨治癒促進物質を損傷箇所の内部に導入することが可能となる。 By using such a method, it is possible to introduce a bone healing promoting substance held in the holding portion into the inside of the damaged part.
 損傷箇所の内部に保持部の少なくとも一部を侵入させる方法は、発明の効果を損なわない限りにおいて、任意の方法を用いることができる。例えば、骨治療シート自体に柔軟性がある場合には、適度な張力をかけた状態で骨治療シートを骨に配置する(例えば、巻きつける)だけでも、損傷箇所の内部に保持部を侵入させることができる。また、骨治療シートを骨に配置した後、骨治療シートが損傷箇所を覆っている部分に外部から力をかける(例えば、押圧する、又は、ワイヤーや糸を巻きつける)ようにすれば、損傷箇所の内部に保持部を確実に侵入させることが可能となる。また、上記[5]に記載したような損傷箇所に対応する構造(例えば、突出部)を有する骨治療シートを用いる場合には、骨治療シートを適切な位置に配置するだけで損傷箇所の内部に保持部を侵入させることができる。 Any method can be used as a method of invading at least a part of the holding portion inside the damaged portion as long as the effect of the invention is not impaired. For example, if the bone treatment sheet itself is flexible, simply placing (for example, wrapping) the bone treatment sheet on the bone with appropriate tension will cause the holding part to penetrate inside the damaged area. be able to. In addition, after placing the bone treatment sheet on the bone, if an external force is applied (for example, pressing or winding a wire or thread) to the part where the bone treatment sheet covers the damaged part, the damage is caused. It is possible to reliably penetrate the holding portion into the inside of the portion. Further, when a bone treatment sheet having a structure (for example, a protruding portion) corresponding to the damaged part as described in the above [5] is used, the inside of the damaged part is simply placed at an appropriate position. Can invade the holding part.
 [14]本発明の動物の骨の治療方法においては、前記配置工程の後に、固定具を用いて、損傷した骨に前記骨治療シートを固定する固定工程をさらに含むことが好ましい。 [14] In the method for treating animal bone of the present invention, it is preferable to further include a fixing step of fixing the bone treatment sheet to the damaged bone by using a fixture after the placement step.
 このような方法とすることにより、骨治療シートと骨との密着性を高くすることが可能となる。また、上記のような方法とすることにより、骨治療シートの位置ずれや剥離を抑制することが可能となる。さらに、上記のような方法とすることにより、治癒途中の骨の強度を高くすることが可能となる。 By using such a method, it is possible to improve the adhesion between the bone treatment sheet and the bone. Further, by adopting the above method, it is possible to suppress the displacement and peeling of the bone treatment sheet. Further, by adopting the above method, it is possible to increase the strength of the bone during healing.
 本発明の動物の骨の治療方法における固定具としては、骨折等の治療のために骨に取り付けて用いる骨固定具の類を広く用いることができる。固定具の具体例としては、ネジ(スクリュー)、ピン、ワイヤー、ステープル及びプレートを挙げることができる。 As the fixture in the animal bone treatment method of the present invention, bone fixtures used by attaching to the bone for the treatment of fractures and the like can be widely used. Specific examples of the fixture include screws, pins, wires, staples and plates.
 本発明における固定具は、骨治癒後も体内に残置するものであってもよいし、骨が治癒した後に体内から除去するものであってもよい。また、骨治癒後において、骨治療シートは体内に残置し、固定具は体内から除去することとしてもよい。 The fixture in the present invention may be left in the body after the bone has healed, or may be removed from the body after the bone has healed. Further, after the bone is healed, the bone treatment sheet may be left in the body and the fixture may be removed from the body.
[15]本発明の動物の骨の治療方法においては、前記準備工程においては、上記[11]~[13]のいずれかに記載の骨治療シートを準備し、前記配置工程においては、前記骨治療シートのナノ周期構造が前記損傷した骨と接触するように前記骨治療シートを前記損傷した骨の表面に配置することが好ましい。 [15] In the method for treating animal bone of the present invention, the bone treatment sheet according to any one of the above [11] to [13] is prepared in the preparation step, and the bone is prepared in the placement step. It is preferred that the bone treatment sheet be placed on the surface of the damaged bone so that the nanoperiodic structure of the treatment sheet is in contact with the damaged bone.
 上記[15]の動物の骨の治療方法は、上記[11]~[13]のいずれかに記載の骨治療シートを用いるため、従来の動物の骨の治療方法と比較して骨の治癒を促進させることが可能な動物の骨の治療方法となる。 Since the bone treatment method for animals according to [15] uses the bone treatment sheet according to any one of [11] to [13] above, bone healing is performed as compared with conventional animal bone treatment methods. It is a method of treating animal bone that can be promoted.
[16]本発明の動物の骨の治療方法においては、前記損傷した骨は、欠損が生じた骨であり、前記準備工程と前記配置工程との間に、前記欠損が生じた部分に充填材を充填する充填工程をさらに含み、前記配置工程においては、前記充填材が充填された部分の少なくとも一部を覆うように前記骨治療シートを配置することが好ましい。 [16] In the method for treating animal bone of the present invention, the damaged bone is a bone with a defect, and a filler is used in the portion where the defect has occurred between the preparation step and the placement step. In the placement step, it is preferable to arrange the bone treatment sheet so as to cover at least a part of the portion filled with the filler.
 このような方法とすることにより、充填材を構成する物質、特に顆粒状の骨補填材のこぼれだしを抑制することが可能となる。また、上記のような方法とすることにより、骨治療シートの表面でも細胞の増殖や分化を促進し、欠損が生じた部分の外側からも骨の治癒を促進することが可能となる。 By using such a method, it is possible to suppress the spillage of substances constituting the filler, particularly the granular bone filling material. Further, by adopting the above method, it is possible to promote cell proliferation and differentiation even on the surface of the bone treatment sheet, and to promote bone healing from the outside of the defective portion.
実施形態1に係る骨治療シート1を説明するために示す図。The figure shown for demonstrating the bone treatment sheet 1 which concerns on Embodiment 1. 治療対象の骨(損傷した骨B1)を説明するために示す図。The figure shown for demonstrating the bone to be treated (damaged bone B1). 実施形態1に係る骨の治療方法を説明するために示す図。The figure which shows for demonstrating the bone treatment method which concerns on Embodiment 1. 実施形態2に係る骨治療シート1a及び骨の治療方法を説明するために示す図。The figure which shows for explaining the bone treatment sheet 1a and the bone treatment method which concerns on Embodiment 2. 実施形態3に係る骨の治療方法を説明するために示す図。The figure which shows for demonstrating the bone treatment method which concerns on Embodiment 3. 治療対象の骨(損傷した骨B2)を説明するために示す図。The figure shown for demonstrating the bone to be treated (damaged bone B2). 実施形態4に係る骨の治療方法を説明するために示す図。The figure which shows for demonstrating the bone treatment method which concerns on Embodiment 4. 実施形態5に係る骨治療シート2及び骨の治療方法を説明するために示す図。The figure which shows for explaining the bone treatment sheet 2 and the bone treatment method which concerns on Embodiment 5. 実施形態6に係る骨の治療方法を説明するために示す図。The figure shown for demonstrating the bone treatment method which concerns on Embodiment 6. 実施形態7に係る骨治療シート3及び骨の治療方法を説明するために示す図。The figure which shows for explaining the bone treatment sheet 3 and the bone treatment method which concerns on Embodiment 7. 実施形態8に係る骨治療シート4を説明するために示す図。The figure shown for demonstrating the bone treatment sheet 4 which concerns on Embodiment 8. 実施形態8に係る骨の治療方法を説明するために示す図。The figure which shows for demonstrating the bone treatment method which concerns on Embodiment 8. 実施形態9に係る骨治療シート5を説明するために示す図。The figure shown for demonstrating the bone treatment sheet 5 which concerns on Embodiment 9. 実施形態9に係る骨の治療方法を説明するために示す図。The figure which shows for demonstrating the bone treatment method which concerns on Embodiment 9. 実施形態10に係る骨治療シート7,8,7aの断面図。FIG. 5 is a cross-sectional view of the bone treatment sheets 7, 8 and 7a according to the tenth embodiment. 実施形態11に係る骨治療シート201を説明するために示す図。The figure which shows for explaining the bone treatment sheet 201 which concerns on Embodiment 11. 実施形態11に係る骨の治療方法を説明するために示す図。The figure shown for demonstrating the bone treatment method which concerns on Embodiment 11. 実施形態12に係る骨の治療方法を説明するために示す図。The figure shown for demonstrating the bone treatment method which concerns on Embodiment 12. 実施形態13に係る骨治療シート202を説明するために示す図。The figure shown for demonstrating the bone treatment sheet 202 which concerns on Embodiment 13. 実施形態13に係る骨治療シート202を骨Bに固定した状態を示す図。The figure which shows the state which fixed the bone treatment sheet 202 which concerns on Embodiment 13 to bone B. 実施形態14に係る骨治療シート203を説明するために示す図。The figure which shows for explaining the bone treatment sheet 203 which concerns on Embodiment 14. 実施形態14に係る骨治療シート203を骨Bに固定した状態を示す図。The figure which shows the state which fixed the bone treatment sheet 203 which concerns on Embodiment 14 to bone B. 実施形態15に係る骨治療シート201aを説明するために示す図。The figure which shows for explaining the bone treatment sheet 201a which concerns on embodiment 15. 実施形態15に係る骨治療シート201aを骨Bに固定した状態を示す図。The figure which shows the state which fixed the bone treatment sheet 201a which concerns on Embodiment 15 to bone B. 実施形態16に係る骨治療シート(全体を図示せず。)における主構造210及び被覆膜211を示す図。The figure which shows the main structure 210 and the coating film 211 in the bone treatment sheet (not shown as a whole) which concerns on Embodiment 16. 実施形態17に係る骨治療シート6を説明するために示す図。The figure shown for demonstrating the bone treatment sheet 6 which concerns on embodiment 17. 変形例1に係る骨治療シート202aの平面図。The plan view of the bone treatment sheet 202a which concerns on modification 1. FIG. 変形例2に係る骨治療シート4a,4bの平面図。Top view of the bone treatment sheets 4a and 4b according to the second modification.
 以下、本発明の骨治療シート及び骨の治療方法(動物の骨の治療方法)について、図に示す各実施形態に基づいて説明する。各図面は模式図であり、必ずしも実際の構造や構成を厳密に反映するものではない。以下に説明する各実施形態は、特許請求の範囲に係る発明を限定するものではない。また、各実施形態の中で説明されている諸要素及びその組み合わせの全てが本発明に必須であるとは限らない。以下の説明においては、実質的に同等とみなせる構成要素に関しては実施形態をまたいで同じ符号を用い、再度の説明を省略する場合がある。 Hereinafter, the bone treatment sheet and the bone treatment method (animal bone treatment method) of the present invention will be described based on each embodiment shown in the figure. Each drawing is a schematic view and does not necessarily accurately reflect the actual structure or configuration. Each embodiment described below does not limit the invention according to the claims. Moreover, not all of the elements and combinations thereof described in each embodiment are essential to the present invention. In the following description, the same reference numerals may be used across the embodiments for the components that can be regarded as substantially equivalent, and the description may be omitted again.
[実施形態1]
 図1は、実施形態1に係る骨治療シート1を説明するために示す図である。図1(a)は骨治療シート1の平面図であり、図1(b)は図1(a)のA1-A1断面図であり、図1(c)は図1(a)のM1で示す部分を拡大して示す図であり、図1(d)は図1(b)のM2で示す部分を拡大して示す図である。図1(c)においては、細孔P1については1つのみに符号を表示し、他の細孔P1への符号の表示を省略している。図1(d)においては、細孔P2については1つのみに符号を表示し、他の細孔P2への符号の表示を省略している。なお、図1(c)及び図1(d)においては、図面をわかりやすくするため、ナノスケールの凹凸構造が壁面に形成されている細孔についてP1という符号を付し、ナノスケールの凹凸構造自体の図示は省略している。
 図2は、治療対象の骨(損傷した骨B1)を説明するために示す図である。図2(a)は損傷した骨B1の平面図であり、図2(b)は図2(a)のA2-A2断面図である。
 図3は、実施形態1に係る骨の治療方法を説明するために示す図である。図3(a)は配置工程(後述)を実施したあとの様子を示す平面図であり、図3(b)は図3(a)の断面図(図2(a)に相当する断面図)である。図3(a)においては、損傷箇所D1の位置等をわかりやすくするため、骨治療シート1の断面、骨B1の輪郭及び損傷箇所D1を破線で表示している。なお、後述する各図面においても、必要に応じて骨治療シート、骨の輪郭及び損傷箇所を破線で表示している。
[Embodiment 1]
FIG. 1 is a diagram shown for explaining the bone treatment sheet 1 according to the first embodiment. 1 (a) is a plan view of the bone treatment sheet 1, FIG. 1 (b) is a cross-sectional view of A1-A1 of FIG. 1 (a), and FIG. 1 (c) is M1 of FIG. 1 (a). It is a figure which shows by enlarging the part shown, and FIG. 1 (d) is an enlarged figure which shows the part shown by M2 of FIG. 1 (b). In FIG. 1 (c), a code is displayed for only one pore P1 and the code is omitted for the other pores P1. In FIG. 1D, the reference numerals are displayed only for one pore P2, and the reference numerals are omitted for the other pores P2. In addition, in FIG. 1C and FIG. 1D, in order to make the drawing easy to understand, the pores in which the nanoscale uneven structure is formed on the wall surface are designated by P1 and the nanoscale uneven structure is attached. The illustration of itself is omitted.
FIG. 2 is a diagram shown for explaining the bone to be treated (damaged bone B1). FIG. 2A is a plan view of the damaged bone B1, and FIG. 2B is a cross-sectional view taken along the line A2-A2 of FIG. 2A.
FIG. 3 is a diagram shown for explaining a bone treatment method according to the first embodiment. FIG. 3A is a plan view showing a state after performing the arrangement step (described later), and FIG. 3B is a cross-sectional view of FIG. 3A (cross-sectional view corresponding to FIG. 2A). Is. In FIG. 3A, the cross section of the bone treatment sheet 1, the contour of the bone B1, and the damaged portion D1 are indicated by broken lines in order to make it easy to understand the position of the damaged portion D1 and the like. In each drawing described later, the bone treatment sheet, the contour of the bone, and the damaged part are indicated by broken lines as necessary.
 実施形態1に係る骨治療シート1は、損傷した骨B1の損傷箇所D1を覆うように配置することで骨B1の治療に用いるための骨治療シートである(図3参照。)。骨治療シート1は、シート状の形状からなる主構造10及び骨治癒促進物質を保持する保持部11を有する(図1参照。)。保持部11は、損傷した骨B1の損傷箇所D1に対応する位置に存在する。骨治療シート1における保持部11は、主構造10の片面全面に配置されている(図1(b)参照。)。骨治療シート1は、生分解性を有することが好ましい。 The bone treatment sheet 1 according to the first embodiment is a bone treatment sheet for use in the treatment of bone B1 by arranging it so as to cover the damaged portion D1 of the damaged bone B1 (see FIG. 3). The bone treatment sheet 1 has a main structure 10 having a sheet-like shape and a holding portion 11 that holds a bone healing promoting substance (see FIG. 1). The holding portion 11 exists at a position corresponding to the damaged portion D1 of the damaged bone B1. The holding portion 11 in the bone treatment sheet 1 is arranged on the entire surface of one side of the main structure 10 (see FIG. 1 (b)). The bone treatment sheet 1 is preferably biodegradable.
 本明細書の各実施形態においては、1つの骨治療シートの説明における「損傷した骨」と「治療対象の骨」とは同一であり、これらの骨には同じ符号(実施形態1であればB1という符号)を付して説明及び図示をおこなう。なお、各図面に記載した骨及び損傷の形状は模式図であり、これらは本発明の骨治療シート及び治療方法を適用する対象となる骨及び損傷を限定するものではない。なお、後述する治療方法の説明においては、損傷した骨B1(治療対象の骨)が動物の骨であるものとして説明するが、実施形態1に係る骨治療シート1は、人間の骨の治療方法に用いることも可能であるし、動物の骨の治療方法に用いることも可能である。後述する各実施形態において説明する各骨治療シートについても同様である。 In each embodiment of the present specification, the “damaged bone” and the “bone to be treated” in the description of one bone treatment sheet are the same, and these bones have the same reference numerals (if the first embodiment). The description and illustration will be given with a reference numeral (B1). The shapes of the bones and injuries described in the drawings are schematic views, and these do not limit the bones and injuries to which the bone treatment sheet and the treatment method of the present invention are applied. In the description of the treatment method described later, it is assumed that the damaged bone B1 (bone to be treated) is an animal bone, but the bone treatment sheet 1 according to the first embodiment is a method for treating human bone. It can also be used as a method for treating animal bones. The same applies to each bone treatment sheet described in each embodiment described later.
 まず、保持部11について説明する。保持部11は、骨治癒促進物質を収容可能な多孔質構造を有する。保持部11としては、例えば、スポンジ状の構造からなるものを好適に用いることができる。保持部11の材料としては、例えば、コラーゲンや、コラーゲンと非金属性無機物質(生体適合性を有するセラミック)との複合材料を主成分とする、生分解性のものを好適に用いることができる。保持部11は、スポンジ状のコラーゲンや、多孔質構造のコラーゲン・非金属性無機物質複合体からなることが好ましい。 First, the holding unit 11 will be described. The holding portion 11 has a porous structure capable of accommodating a bone healing promoting substance. As the holding portion 11, for example, one having a sponge-like structure can be preferably used. As the material of the holding portion 11, for example, a biodegradable material containing collagen or a composite material of collagen and a non-metallic inorganic substance (ceramic having biocompatibility) as a main component can be preferably used. .. The holding portion 11 is preferably made of sponge-like collagen or a collagen-non-metallic inorganic substance complex having a porous structure.
 保持部11を構成するコラーゲンとしては、例えば、I型コラーゲン分子、II型コラーゲン分子が主成分であるものを用いることができる。また、例えば、V型、XI型、IX型、XII型、XIV型コラーゲン分子を用いることもできる。なお、後述する保持部以外の構成要素においても、材料としてコラーゲンを用いることができる場合には、基本的には上記のコラーゲンを好適に用いることができる。 As the collagen constituting the holding portion 11, for example, one containing a type I collagen molecule or a type II collagen molecule as a main component can be used. Further, for example, V-type, XI-type, IX-type, XII-type, and XIV-type collagen molecules can also be used. In addition, when collagen can be used as a material for components other than the holding portion described later, basically, the above collagen can be preferably used.
 生体適合性を有する非金属性無機物質としては、ハイドロキシアパタイト及びリン酸カルシウム類(リン酸三カルシウム、リン酸八カルシウム等のカルシウムイオンとリン酸イオン又は二リン酸イオンとの塩)を例示することができる。後述する保持部以外の構成要素においても、材料として非金属性無機物質を用いることができる場合には、上記のハイドロキシアパタイト及びリン酸カルシウム類を好適に用いることができる。 Examples of the biocompatible non-metallic inorganic substance include hydroxyapatite and calcium phosphates (salts of calcium ions such as tricalcium phosphate and octacalcium phosphate and phosphate ions or diphosphate ions). it can. When a non-metallic inorganic substance can be used as a material for components other than the holding portion described later, the above-mentioned hydroxyapatite and calcium phosphates can be preferably used.
 保持部11は、骨治癒の足場となる足場材を含有することが好ましい。この場合、保持部11は、全体が足場材を兼ねる材料から構成されていてもよいし、保持部としての必須材料と足場材との混合物から構成されていてもよい。足場材としては、生体適合性を有する非金属性無機物質(例えば、ヒドロキシアパタイトやリン酸カルシウム類)や非金属性無機物質とコラーゲン等の有機物との複合材料からなる粒子、粉末、多孔質体を好適に用いることができる。 The holding portion 11 preferably contains a scaffolding material that serves as a scaffolding for bone healing. In this case, the holding portion 11 may be entirely composed of a material that also serves as a scaffolding material, or may be composed of a mixture of an essential material as the holding portion and the scaffolding material. As the scaffold material, particles, powders, and porous bodies made of a biocompatible non-metallic inorganic substance (for example, hydroxyapatite or calcium phosphate) or a composite material of the non-metallic inorganic substance and an organic substance such as collagen are preferable. Can be used for.
 なお、保持部11は、単なる凹凸構造のようなものにより、その表面に骨治癒促進物質を収容するものであってもよい。このような凹凸構造は、切削等による表面加工の他、例えば、表面のエッチング(例えば、プラズマエッチング)によって形成することもできる。 The holding portion 11 may contain a bone healing promoting substance on its surface by something like a mere uneven structure. Such an uneven structure can be formed not only by surface processing such as cutting, but also by, for example, surface etching (for example, plasma etching).
 骨治療シート1においては、保持部11が骨治癒促進物質を保持していることが好ましい。保持部11が骨治癒促進物質を保持していない場合には、使用前に、保持部11に骨治癒促進物質を保持させる必要がある。 In the bone treatment sheet 1, it is preferable that the holding portion 11 holds the bone healing promoting substance. When the holding portion 11 does not hold the bone healing promoting substance, it is necessary to have the holding portion 11 hold the bone healing promoting substance before use.
 骨治療シート1においては、保持部11が、骨治癒促進物質として、骨形成因子類、多血小板血漿類及び血管増加因子類のうち少なくとも1つを保持していることが好ましい。保持部11は、多血小板血漿(Platelet-Rich Plasma)を保持していることが一層好ましい。この場合、治療を受ける対象の血液から得た多血小板血漿を用いることが好ましい。なお、保持部11は、骨治癒促進物質以外の成分(溶媒や添加物等)も保持していてもよい。 In the bone treatment sheet 1, it is preferable that the holding portion 11 holds at least one of bone-forming factors, platelet-rich plasmas, and blood vessel-increasing factors as a bone healing promoting substance. It is more preferable that the holding unit 11 holds platelet-rich plasma (Platelet-Rich Plasma). In this case, it is preferable to use platelet-rich plasma obtained from the blood of the subject to be treated. The holding portion 11 may also hold components (solvents, additives, etc.) other than the bone healing promoting substance.
 骨形成因子類の具体例としては、骨形成タンパク質-2(BMP-2)、骨形成タンパク質-4(BMP-4)、骨形成タンパク質-6(BMP-6)、骨形成タンパク質-7(BMP-7)、形質転換成長因子ベータ(TGF-β)、線維芽細胞増殖因子(FGF)、インスリン様成長因子(IGF-1)及びオステオカルシンを挙げることができる。 Specific examples of bone morphogenetic factors include bone morphogenetic protein-2 (BMP-2), bone morphogenetic protein-4 (BMP-4), bone morphogenetic protein-6 (BMP-6), and bone morphogenetic protein-7 (BMP). -7), transforming growth factor beta (TGF-β), fibroblast growth factor (FGF), insulin-like growth factor (IGF-1) and osteocalcin can be mentioned.
 多血小板血漿類の具体例としては、多血小板血漿(Platelet-Rich Plasma、PRP)、PRGF(Plasma Rich in Growth Factors)、PRF(Platelet-Rich Fibrin)、A-PRF(Advanced Platelet-Rich Fibrin)及びCGF(Concentrated Growth Factors)を挙げることができる。骨治療シート1においては、保持部11が、多血小板血漿(platelet-rich plasma)を保持していることが好ましい。 Specific examples of platelet-rich plasmas include platelet-rich plasma (Platelet-Rich Plasma, PRP), PRGF (Plasma Rich in Growth Factors), PRF (Platelet-Rich Fiber), and A-PRF (Advanced Plate). CGF (Concentrated Growth Factors) can be mentioned. In the bone treatment sheet 1, it is preferable that the holding portion 11 holds platelet-rich plasma (platelet-rich plasma).
 血管増加因子類の具体例としては、Bartonella angiogenic factor A(BafA)を挙げることができる。BafAとは、バルトネラ属に分類される病原菌(バルトネラ・ヘンセレ及びバルトネラ・クインタナ)から発見された、血管増加因子(血管新生因子)である。 Specific examples of blood vessel-increasing factors include Bartonella angular factor A (BafA). BafA is an angiogenic factor (angiogenic factor) found in pathogens (Bartonella Hensere and Bartonella quintana) classified in the genus Bartonella.
 骨治療シート1においては、保持部11における細孔P1の壁面の少なくとも一部には、ナノスケールの凹凸構造が形成されている。ナノスケールの凹凸構造が壁面に形成されている細孔P1は、保持部11の表面に開口している細孔である。こういった細孔は表面に露出しているため、その壁面にナノスケールの凹凸構造を後から形成するのは比較的容易である。なお、図1(d)において符号P2で示すような、保持部11の表面に直接は開口していない細孔においても、壁面にナノスケールの凹凸構造が形成されていることが好ましい。 In the bone treatment sheet 1, a nanoscale uneven structure is formed on at least a part of the wall surface of the pore P1 in the holding portion 11. The pores P1 in which the nanoscale uneven structure is formed on the wall surface are pores that are open on the surface of the holding portion 11. Since these pores are exposed on the surface, it is relatively easy to later form a nanoscale concavo-convex structure on the wall surface. It is preferable that a nanoscale uneven structure is formed on the wall surface even in the pores that are not directly opened on the surface of the holding portion 11 as shown by the reference numeral P2 in FIG. 1 (d).
 細孔P1の壁面におけるナノスケールの凹凸構造は、例えば、適当な表面処理(例えば、プラズマエッチング)により形成することができる。また、ナノスケールの凹凸構造は、保持部を形成する際の条件(例えば、使用する溶媒の種類や熱処理条件)により形成することもできると考えられる。
 例えば、プラズマエッチングを含む等方性のエッチング加工方法で処理することで、細孔の深さ方向(プラズマエッチングであれば、プラズマの照射方向)のみならず、細孔の側方(照射方向以外の方向)もエッチングすることが可能となり、細孔の側方側の壁面にも容易にナノスケールの凹凸構造を形成することができる。
The nanoscale uneven structure on the wall surface of the pore P1 can be formed by, for example, an appropriate surface treatment (for example, plasma etching). Further, it is considered that the nanoscale uneven structure can be formed depending on the conditions for forming the holding portion (for example, the type of solvent used and the heat treatment conditions).
For example, by processing by an isotropic etching processing method including plasma etching, not only the depth direction of the pores (in the case of plasma etching, the irradiation direction of plasma) but also the side of the pores (other than the irradiation direction). (Direction) can also be etched, and a nanoscale concavo-convex structure can be easily formed on the side wall surface of the pores.
 次に、主構造10について説明する。なお、主構造は骨治癒促進物質を保持可能であってもよい。 Next, the main structure 10 will be described. The main structure may be capable of retaining a bone healing promoting substance.
 骨治療シート1における主構造10は、全体が単一の材料からなるものであってもよいし、複数の材料からなるものであってもよい。全体が単一の材料からなる主構造としては、単層の薄膜からなるものを例示することができる。複数の材料からなる主構造としては、多層構造のものや、複数種類の粉末状物質が混合された状態で固定されているもの(例えば、粉末をバインダーで固めたもの)を例示することができる。 The main structure 10 in the bone treatment sheet 1 may be entirely made of a single material or may be made of a plurality of materials. As the main structure made of a single material as a whole, a structure made of a single-layer thin film can be exemplified. Examples of the main structure composed of a plurality of materials include a multi-layer structure and a structure in which a plurality of types of powdery substances are fixed in a mixed state (for example, a powder solidified with a binder). ..
 主構造10としては、生体内で使用できる材料からなるものであれば、用途等にあわせて任意の材料からなるものを用いることができる。主構造10の材料としては、例えば、生体適合性を有する高分子物質又は非金属性無機物質を主成分とする材料を用いることができる。この場合、主構造10は、生分解性を有するものであることが一層好ましい。生体適合性を有する高分子物質としては、コラーゲン、ポリ乳酸、アガロース及びセルロースを例示することができる。また、主構造10の材料としては、高分子物質と非金属性無機物質との複合材料(例えば、ハイドロキシアパタイトとコラーゲンとの複合体からなる人工骨材料)を用いることもできる。 As the main structure 10, any material can be used as long as it is made of a material that can be used in a living body, depending on the intended use. As the material of the main structure 10, for example, a material containing a biocompatible polymer substance or a non-metallic inorganic substance as a main component can be used. In this case, it is more preferable that the main structure 10 has biodegradability. Examples of the biocompatible polymer substance include collagen, polylactic acid, agarose and cellulose. Further, as the material of the main structure 10, a composite material of a polymer substance and a non-metallic inorganic substance (for example, an artificial bone material composed of a composite of hydroxyapatite and collagen) can also be used.
 また、主構造10の材料としては、金属を主成分とする材料を用いることもできる。金属としては、例えば、マグネシウム、マグネシウム合金、チタン、チタン合金及び医療用のステンレス鋼を好適に用いることができる。 Further, as the material of the main structure 10, a material containing a metal as a main component can also be used. As the metal, for example, magnesium, magnesium alloy, titanium, titanium alloy and stainless steel for medical use can be preferably used.
 マグネシウム及びマグネシウム合金は人体内で分解・吸収されやすいため、主構造10をマグネシウム又はマグネシウム合金からなるものとすることで、骨治療シート1の生分解性を高くすることができる。本発明において好適に使用できると考えられるマグネシウム合金としては、Mg-Ca-Zn系合金を例示することができる。 Since magnesium and magnesium alloys are easily decomposed and absorbed in the human body, the biodegradability of the bone treatment sheet 1 can be enhanced by making the main structure 10 made of magnesium or a magnesium alloy. Examples of magnesium alloys that can be suitably used in the present invention include Mg—Ca—Zn-based alloys.
 チタン及びチタン合金には高い強度及び低毒性、ステンレス鋼には高い強度及び低コストという特徴がある。本発明において好適に使用できると考えられるステンレス鋼としては、低ニッケルのSUS316系ステンレス鋼を例示することができる。 Titanium and titanium alloys are characterized by high strength and low toxicity, and stainless steel is characterized by high strength and low cost. Examples of stainless steels that can be suitably used in the present invention include low nickel SUS316 series stainless steels.
 なお、主構造10の表面には、被覆膜(図示せず。)が形成されていてもよい。このような構成とすることにより、主構造10のみでは得ることが難しい性質(例えば、優れた強度、高い生体親和性、製造の容易さ、低い製造コスト等の優れた性質を高いレベルであわせ持つという性質)を得ることが可能となる。また、被覆膜を用いることで、生体適合性が高くない金属であっても、骨治療シートの主構造の構成材料として用いることができる可能性がある。被覆膜の材料としては、金属、非金属性無機物質(特に、ハイドロキシアパタイト及びリン酸カルシウム類)、コラーゲン、アガロース、セルロース及び合成高分子物質並びにこれらを組み合わせた複合材料を例示することができる。被覆膜の材料としての合成高分子物質としては、セルロース乳酸ポリマー、乳酸-グリコール酸ポリマー、ラクトン系ポリマー、ジオキサノン系ポリマー及びポリエチレングリコール系ポリマーを好適に用いることができる。特に、乳酸ポリマー、乳酸-グリコール酸ポリマー、ラクトン系ポリマー、ジオキサノン系ポリマー及びポリエチレングリコール系ポリマーは高い生分解性を有するため、骨治療シート1の生分解性を高くしたい場合には特に好適に用いることができる。 A coating film (not shown) may be formed on the surface of the main structure 10. With such a configuration, it has excellent properties (for example, excellent strength, high biocompatibility, ease of production, low production cost, etc.) that are difficult to obtain only with the main structure 10 at a high level. It is possible to obtain the property). Further, by using the coating film, there is a possibility that even a metal having low biocompatibility can be used as a constituent material of the main structure of the bone treatment sheet. Examples of the material of the coating film include metals, non-metallic inorganic substances (particularly hydroxyapatite and calcium phosphates), collagen, agarose, cellulose and synthetic polymer substances, and composite materials combining these. As the synthetic polymer substance as the material of the coating film, a cellulose lactic acid polymer, a lactic acid-glycolic acid polymer, a lactone polymer, a dioxanone polymer and a polyethylene glycol polymer can be preferably used. In particular, since lactic acid polymer, lactic acid-glycolic acid polymer, lactone polymer, dioxanone polymer and polyethylene glycol polymer have high biodegradability, they are particularly preferably used when it is desired to increase the biodegradability of the bone treatment sheet 1. be able to.
 骨治療シート1においては、保持部11の位置を表示する注意表示が付されている。骨治療シート1における注意表示は色(例えば、塗料による色分け)によりなされており、具体的には、保持部11が存在する位置と保持部11が存在しない位置とでは色が異なっている。骨治療シート1においては、主構造10の片面全体に保持部11が存在するため、表裏が異なる色となっている。 The bone treatment sheet 1 is provided with a caution display indicating the position of the holding portion 11. The caution indication on the bone treatment sheet 1 is made by color (for example, color coding with paint), and specifically, the color is different between the position where the holding portion 11 is present and the position where the holding portion 11 is not present. In the bone treatment sheet 1, since the holding portion 11 is present on the entire one side of the main structure 10, the front and back sides have different colors.
 なお、注意表示は、色の他に、模様、図形、文字、立体的形状等であってもよい。注意表示は保持部が存在する位置に付されていてもよいし、逆に保持部が存在しない位置に付されていてもよい。また、注意表示は保持部が存在する位置又は保持部が存在しない位置の全部に付されていてもよいし、一部のみに付されていてもよい。 Note that the caution display may be a pattern, a figure, a character, a three-dimensional shape, or the like, in addition to the color. The caution indicator may be attached at a position where the holding portion exists, or conversely, may be attached at a position where the holding portion does not exist. Further, the caution indication may be attached to all the positions where the holding portion exists or the positions where the holding portion does not exist, or may be attached only to a part of the positions.
 骨治療シート1の厚さは、治療対象の大きさにもよるが、例えば、0.05μm~50mmの範囲内とすることができる。骨治療シート1の厚さは、0.08μm~5mmの範囲内にあることが一層好ましく、0.1μm~3mmの範囲内にあることがより一層好ましい。なお、骨治療シート1の主構造10が金属からなる場合には、骨治療シート1の厚さが100μm以下であることが好ましい。 The thickness of the bone treatment sheet 1 depends on the size of the treatment target, but can be, for example, in the range of 0.05 μm to 50 mm. The thickness of the bone treatment sheet 1 is more preferably in the range of 0.08 μm to 5 mm, and even more preferably in the range of 0.1 μm to 3 mm. When the main structure 10 of the bone treatment sheet 1 is made of metal, the thickness of the bone treatment sheet 1 is preferably 100 μm or less.
 次に、実施形態1に係る骨の治療方法について説明する。実施形態1に係る動物の骨の治療方法は、実施形態1に係る骨治療シート1(図1参照。)を準備する準備工程と、骨治癒促進物質を保持している骨治療シート1を、損傷した骨B1における損傷箇所D1の少なくとも一部を覆うように、損傷した骨B1の表面に配置する配置工程(図3参照。)とを含む。なお、準備工程については、既に説明した骨治療シート1を準備する(例えば、購入又は製造したものを使用可能な状態(例えば、保持部に骨治癒促進物質が保持されており、すぐに使用できる状態)として手元に置く)工程であるため、詳しい説明及び図示は省略する。 Next, the bone treatment method according to the first embodiment will be described. The animal bone treatment method according to the first embodiment includes a preparatory step for preparing the bone treatment sheet 1 (see FIG. 1) according to the first embodiment and a bone treatment sheet 1 holding a bone healing promoting substance. It includes a placement step (see FIG. 3) of placing on the surface of the injured bone B1 so as to cover at least a portion of the injured site D1 in the injured bone B1. Regarding the preparation step, the bone treatment sheet 1 already described is prepared (for example, the purchased or manufactured one is ready to be used (for example, the bone healing promoting substance is held in the holding portion and can be used immediately). Since it is a process of keeping it at hand as a state), detailed explanation and illustration will be omitted.
 実施形態1における損傷した骨B1は骨折した骨であり、損傷箇所D1は骨折による破断箇所である(図2参照。)。なお、骨B1は、皮質骨Ba及び海綿骨Bbを有する(図2(b)参照。)。 The damaged bone B1 in the first embodiment is a fractured bone, and the damaged portion D1 is a fractured portion due to the fracture (see FIG. 2). Bone B1 has cortical bone Ba and cancellous bone Bb (see FIG. 2B).
 配置工程においては、骨治療シート1を損傷した骨B1の表面に巻きつける。骨治療シート1の配置にあたっては、必要に応じて固定具(後述)や、生体接着剤のような介在物を用いてもよい。 In the placement process, the bone treatment sheet 1 is wrapped around the surface of the damaged bone B1. When arranging the bone treatment sheet 1, an inclusion tool (described later) or an inclusion such as a bioadhesive may be used, if necessary.
 以下、実施形態1に係る骨治療シート1及び動物の骨の治療方法の効果を記載する。 Hereinafter, the effects of the bone treatment sheet 1 and the animal bone treatment method according to the first embodiment will be described.
 実施形態1に係る骨治療シート1によれば、ナノスケールの凹凸構造が細胞の増殖や分化に影響を与えるため、従来のシート(ナノスケールの構造が形成されていないシート)と比較して骨の治癒を促進させることが可能となる。 According to the bone treatment sheet 1 according to the first embodiment, since the nanoscale uneven structure affects the proliferation and differentiation of cells, the bone is compared with the conventional sheet (sheet in which the nanoscale structure is not formed). It is possible to promote the healing of bones.
 実施形態1に係る骨治療シート1によれば、骨の治癒を促進する生理活性物質である骨治癒促進物質を保持する保持部11を有するため、保持部11で保持した骨治癒促進物質が骨B1の損傷箇所D1に接触又は侵入するように使用することで、細胞(特に、骨や骨の周囲の血管のもととなる細胞)の増殖や分化を促進させることが可能となる。このため、実施形態1に係る骨治療シート1によれば、骨自体の治癒力を高めることが可能となる。また、実施形態1に係る骨治療シート1によれば、細胞の増殖や分化を介して骨治療シート1と骨B1とを早期にかつ強固に固着させることが可能となり、その結果、治癒期間中における損傷した骨の損傷箇所のずれや拡大を抑制することが可能となる。したがって、実施形態1に係る骨治療シート1は、従来のシートと比較して骨の治癒を促進させることが可能な骨治療シートとなる。 According to the bone treatment sheet 1 according to the first embodiment, since the holding portion 11 that holds the bone healing promoting substance that is a physiologically active substance that promotes bone healing is provided, the bone healing promoting substance held by the holding portion 11 is bone. When used so as to contact or invade the damaged portion D1 of B1, it is possible to promote the proliferation and differentiation of cells (particularly, cells that are the source of bone and blood vessels around bone). Therefore, according to the bone treatment sheet 1 according to the first embodiment, it is possible to enhance the healing power of the bone itself. Further, according to the bone treatment sheet 1 according to the first embodiment, it is possible to firmly fix the bone treatment sheet 1 and the bone B1 at an early stage through cell proliferation and differentiation, and as a result, during the healing period. It is possible to suppress the displacement and expansion of the damaged part of the damaged bone in. Therefore, the bone treatment sheet 1 according to the first embodiment is a bone treatment sheet capable of promoting bone healing as compared with the conventional sheet.
 また、実施形態1に係る骨治療シート1によれば、保持部11の構造や物性を適切に設定することで、骨治癒促進物質の放出の具合を調節して骨の治癒を適切に促進させることが可能となる。 Further, according to the bone treatment sheet 1 according to the first embodiment, by appropriately setting the structure and physical properties of the holding portion 11, the degree of release of the bone healing promoting substance is adjusted to appropriately promote the bone healing. It becomes possible.
 また、実施形態1に係る骨治療シート1によれば、保持部11は、骨治癒促進物質を収容可能な多孔質構造からなるため、骨治癒促進物質を安定して保持することが可能となる。また、実施形態1に係る骨治療シート1によれば、骨治癒促進物質が液状である場合には、保持部11と骨治癒促進物質とを接触させて保持部11に骨治癒促進物質を吸収させるという簡易な手法により、骨治癒促進物質を保持部11に保持させることが可能となる。 Further, according to the bone treatment sheet 1 according to the first embodiment, since the holding portion 11 has a porous structure capable of accommodating the bone healing promoting substance, the bone healing promoting substance can be stably held. .. Further, according to the bone treatment sheet 1 according to the first embodiment, when the bone healing promoting substance is in a liquid state, the holding portion 11 and the bone healing promoting substance are brought into contact with each other and the holding portion 11 absorbs the bone healing promoting substance. By a simple method of causing the bone to heal, the bone healing promoting substance can be retained in the holding portion 11.
 また、実施形態1に係る骨治療シート1によれば、多孔質構造に形成されたナノスケールの凹凸構造により、保持部11の内外において細胞の増殖や分化を活性化することが可能となる。 Further, according to the bone treatment sheet 1 according to the first embodiment, the nanoscale uneven structure formed in the porous structure makes it possible to activate the proliferation and differentiation of cells inside and outside the holding portion 11.
 なお、細胞の増殖や分化を活性化するという観点、及び、表面積が大きくなるという観点からは、保持部11が生分解性である場合には、多孔質構造とナノスケールの凹凸構造との組み合わせは、保持部11の分解や置換を促進すると考えられる。 From the viewpoint of activating cell proliferation and differentiation, and from the viewpoint of increasing the surface area, when the holding portion 11 is biodegradable, a combination of a porous structure and a nanoscale uneven structure is used. Is considered to promote decomposition and replacement of the holding portion 11.
 また、実施形態1に係る骨治療シート1によれば、保持部11が骨治癒の足場となる足場材を含有する場合には、保持部11がそのまま骨の表面構造再建の足場となり、骨の早期治癒及び強度向上を図ることが可能となる。 Further, according to the bone treatment sheet 1 according to the first embodiment, when the holding portion 11 contains a scaffolding material that serves as a scaffold for bone healing, the holding portion 11 directly serves as a scaffold for reconstructing the surface structure of the bone, and the bone It is possible to achieve early healing and improvement of strength.
 また、実施形態1に係る骨治療シート1によれば、保持部11に骨治癒促進物質が保持されている場合には、骨治癒促進物質を骨治療シート1とは別に準備する手間をかけることなく使用することが可能となる。 Further, according to the bone treatment sheet 1 according to the first embodiment, when the bone healing promoting substance is held in the holding portion 11, it takes time and effort to prepare the bone healing promoting substance separately from the bone treatment sheet 1. It becomes possible to use without.
 また、実施形態1に係る骨治療シート1によれば、保持部11が、骨治癒促進物質として、骨形成因子類、多血小板血漿類及び血管増加因子類のうち少なくとも1つ、例えば、多血小板血漿(Platelet-Rich Plasma)を保持している場合には、骨の治癒を一層促進することが可能となる。 Further, according to the bone treatment sheet 1 according to the first embodiment, the holding portion 11 is at least one of bone formation factors, platelet-rich plasmas and blood vessel-increasing factors as a bone healing promoting substance, for example, polyplatelets. When plasma (Platelet-Rich Plasma) is retained, bone healing can be further promoted.
 また、実施形態1に係る骨治療シート1によれば、生分解性を有するため、骨治療シート1を治癒後も生体内に残置することに不都合がある場合であっても、取り出しのための手術等を実施することなく骨治療シート1を吸収させることが可能となる。 Further, according to the bone treatment sheet 1 according to the first embodiment, since it has biodegradability, even if it is inconvenient to leave the bone treatment sheet 1 in the living body even after healing, it can be taken out. It is possible to absorb the bone treatment sheet 1 without performing surgery or the like.
 実施形態1に係る動物の骨の治療方法は、実施形態1に係る骨治療シート1を準備する準備工程と、骨治療シート1を、損傷した骨B1における損傷箇所D1の少なくとも一部を覆うように、損傷した骨B1の表面に配置する配置工程とを含むため(実施形態1に係る骨治療シート1を用いるため)、従来の動物の骨の治療方法と比較して骨の治癒を促進させることが可能な動物の骨の治療方法となる。 The method for treating an animal bone according to the first embodiment is such that the preparatory step for preparing the bone treatment sheet 1 according to the first embodiment and the bone treatment sheet 1 cover at least a part of the damaged portion D1 in the damaged bone B1. Including a placement step of arranging the damaged bone B1 on the surface (because the bone treatment sheet 1 according to the first embodiment is used), the bone healing is promoted as compared with the conventional animal bone treatment method. It is a possible method of treating animal bones.
 実施形態1に係る動物の骨の治療方法は、実施形態1に係る骨治療シート1を用いるため、従来のシートを用いる動物の骨の治療方法と比較して、骨の治癒を促進させることが可能な動物の骨の治療方法となる。 Since the animal bone treatment method according to the first embodiment uses the bone treatment sheet 1 according to the first embodiment, it is possible to promote bone healing as compared with the animal bone treatment method using the conventional sheet. It is a possible method of treating animal bones.
 なお、本発明の骨治療シートは人間の骨の治療方法に用いることもできるため、実施形態1に係る動物の骨の治療方法と実質的に同様の方法を、人間の骨の治療方法に応用することも可能である。これは、後述する各実施形態においても同様である。 Since the bone treatment sheet of the present invention can also be used for a human bone treatment method, substantially the same method as the animal bone treatment method according to the first embodiment is applied to the human bone treatment method. It is also possible to do. This also applies to each embodiment described later.
[実施形態2]
 図4は、実施形態2に係る骨治療シート1a及び骨の治療方法を説明するために示す図である。図4(a)は配置工程を実施したあとの様子を示す平面図であり、図4(b)は図4(a)の断面図(図3(b)に相当する断面図)である。
[Embodiment 2]
FIG. 4 is a diagram shown for explaining the bone treatment sheet 1a and the bone treatment method according to the second embodiment. FIG. 4A is a plan view showing a state after the arrangement step is performed, and FIG. 4B is a cross-sectional view of FIG. 4A (cross-sectional view corresponding to FIG. 3B).
 実施形態2に係る骨治療シート1aは、基本的には実施形態1に係る骨治療シート1と同様の構成を有するが、実施形態1に係る骨治療シート1よりも小さい。このため、実施形態2に係る動物の骨の治療方法においては、配置工程において骨治療シート1aを骨B1に巻きつけるのではなく、骨B1に乗せるように配置する(図4参照。)。骨治療シート1aは、もともと骨治療シート1よりも小さいものであってもよいが、骨治療シート1を適切な大きさとなるように切断したものであってもよい。 The bone treatment sheet 1a according to the second embodiment basically has the same configuration as the bone treatment sheet 1 according to the first embodiment, but is smaller than the bone treatment sheet 1 according to the first embodiment. Therefore, in the animal bone treatment method according to the second embodiment, the bone treatment sheet 1a is arranged so as to be placed on the bone B1 instead of being wrapped around the bone B1 in the arrangement step (see FIG. 4). The bone treatment sheet 1a may be originally smaller than the bone treatment sheet 1, but may be a bone treatment sheet 1 cut to an appropriate size.
 実施形態2に係る骨治療シート1aは、大きさが実施形態1に係る骨治療シート1とは異なるが、保持部11を有するため、実施形態1に係る骨治療シート1と同様に、従来のシートと比較して骨の治癒を促進させることが可能な骨治療シートとなる。また、実施形態2に係る骨治療シート1aは、実施形態1に係る骨治療シート1が有する効果のうち、該当する効果を有する。 Although the size of the bone treatment sheet 1a according to the second embodiment is different from that of the bone treatment sheet 1 according to the first embodiment, since it has a holding portion 11, the bone treatment sheet 1a according to the first embodiment is the same as the conventional bone treatment sheet 1 according to the first embodiment. It is a bone treatment sheet that can promote bone healing compared to the sheet. Further, the bone treatment sheet 1a according to the second embodiment has a corresponding effect among the effects of the bone treatment sheet 1 according to the first embodiment.
 実施形態2に係る動物の骨の治療方法は、配置工程における骨治療シート1aの配置方法が実施形態1に係る動物の骨の治療方法とは異なるが、実施形態2に係る骨治療シート1aを用いるため、従来のシートを用いる動物の骨の治療方法と比較して、骨の治癒を促進させることが可能な動物の骨の治療方法となる。 In the method for treating animal bones according to the second embodiment, the method for arranging the bone treatment sheet 1a in the placement step is different from the method for treating the bones for animals according to the first embodiment, but the bone treatment sheet 1a according to the second embodiment is used. Therefore, it is an animal bone treatment method capable of promoting bone healing as compared with an animal bone treatment method using a conventional sheet.
 なお、実施形態2で説明した内容以外の点については、実施形態2においても実施形態1で説明した態様がそのまま適用できる。 Regarding points other than the contents described in the second embodiment, the embodiment described in the first embodiment can be applied as it is in the second embodiment.
[実施形態3]
 図5は、実施形態3に係る骨の治療方法を説明するために示す図である。図5(a)はは固定工程を実施したあとの様子を示す平面図であり、図5(b)は図5(a)のA3-A3断面図である。なお、図5(b)においては、骨治療シート1aの位置や向きをわかりやすくするために、固定具100による圧力等を無視して骨治療シート1aを大きく表示している。このため、図5(b)においては、固定具100と骨B1との間に隙間が生じている。実際に骨の治療方法を実施する場合には、固定具100と骨B1との間に隙間が生じないように骨治療シート1a及び固定具100を配置してもよい。
[Embodiment 3]
FIG. 5 is a diagram shown for explaining a bone treatment method according to the third embodiment. FIG. 5A is a plan view showing a state after the fixing step is performed, and FIG. 5B is a sectional view taken along line A3-A3 of FIG. 5A. In FIG. 5B, in order to make the position and orientation of the bone treatment sheet 1a easy to understand, the bone treatment sheet 1a is displayed in a large size while ignoring the pressure and the like caused by the fixture 100. Therefore, in FIG. 5B, a gap is formed between the fixture 100 and the bone B1. When actually implementing the bone treatment method, the bone treatment sheet 1a and the fixture 100 may be arranged so that a gap is not formed between the fixture 100 and the bone B1.
 実施形態3に係る動物の骨の治療方法は、基本的には実施形態2に係る動物の骨の治療方法と同様の方法であるが、配置工程の後に固定工程をさらに含む点で実施形態2に係る動物の骨の治療方法とは異なる。なお、実施形態3に係る動物の骨の治療方法における準備工程及び配置工程は、実施形態2に係る動物の骨の治療方法における準備工程及び配置工程と同様の工程であるため、説明は省略する。 The method for treating animal bones according to the third embodiment is basically the same as the method for treating animal bones according to the second embodiment, but the second embodiment further includes a fixing step after the placement step. It is different from the animal bone treatment method according to the above. Since the preparation step and the placement step in the animal bone treatment method according to the third embodiment are the same steps as the preparation step and the placement step in the animal bone treatment method according to the second embodiment, the description thereof will be omitted. ..
 実施形態3に係る固定工程は、固定具100を用いて、損傷した骨B1に骨治療シート1aを固定する工程である(図5参照。)。固定具100は、骨固定用のプレートである。固定具100においては、板状の本体部110に取付孔(符号を図示せず)が形成されており、当該取付孔に留め具120(例えば、骨固定用のネジ)を通すことで、骨B1に固定することができる。 The fixing step according to the third embodiment is a step of fixing the bone treatment sheet 1a to the damaged bone B1 by using the fixture 100 (see FIG. 5). The fixture 100 is a plate for bone fixation. In the fixture 100, a mounting hole (not shown) is formed in the plate-shaped main body 110, and by passing the fastener 120 (for example, a screw for fixing the bone) through the mounting hole, the bone is formed. It can be fixed to B1.
 固定具100は、骨治療シート1aに圧力をかけることで、骨治療シート1aを骨B1に固定する。なお、固定具100によって骨治療シート1aが固定されている位置はあくまで例示である。例えば、実施形態3においては、骨治療シート1aは固定具100の下に隠れているが、固定具100の外側に骨治療シート1aが露出していてもよい。また、骨治療シート1aよりも大きな骨治療シート、例えば、実施形態1に係る骨治療シート1のようなものであっても、固定具100とともに用いることができる。 The fixture 100 fixes the bone treatment sheet 1a to the bone B1 by applying pressure to the bone treatment sheet 1a. The position where the bone treatment sheet 1a is fixed by the fixture 100 is merely an example. For example, in the third embodiment, the bone treatment sheet 1a is hidden under the fixture 100, but the bone treatment sheet 1a may be exposed on the outside of the fixture 100. Further, even a bone treatment sheet larger than the bone treatment sheet 1a, for example, a bone treatment sheet 1 according to the first embodiment, can be used together with the fixture 100.
 実施形態3に係る動物の骨の治療方法は、配置工程の後に固定工程をさらに含む点で実施形態2に係る動物の骨の治療方法とは異なるが、実施形態2に係る動物の骨の治療方法と同様に骨治療シート1aを用いるため、従来のシートを用いる動物の骨の治療方法と比較して、骨の治癒を促進させることが可能な動物の骨の治療方法となる。 The animal bone treatment method according to the third embodiment is different from the animal bone treatment method according to the second embodiment in that the fixation step is further included after the placement step, but the animal bone treatment method according to the second embodiment. Since the bone treatment sheet 1a is used in the same manner as the method, it is an animal bone treatment method capable of promoting bone healing as compared with the animal bone treatment method using the conventional sheet.
 また、実施形態3に係る動物の骨の治療方法によれば、配置工程の後に、固定具100を用いて損傷した骨B1に骨治療シート1aを固定する固定工程をさらに含むため、骨治療シート1aと骨B1との密着性を高くすることが可能となる。また、実施形態3に係る動物の骨の治療方法によれば、骨治療シート1aの位置ずれや剥離を抑制することが可能となる。さらに、実施形態3に係る動物の骨の治療方法によれば、治癒途中の骨B1の強度を高くすることが可能となる。 Further, according to the animal bone treatment method according to the third embodiment, since the bone treatment sheet 1a is further fixed to the damaged bone B1 by using the fixture 100 after the placement step, the bone treatment sheet It is possible to increase the adhesion between 1a and the bone B1. Further, according to the animal bone treatment method according to the third embodiment, it is possible to suppress the misalignment and peeling of the bone treatment sheet 1a. Furthermore, according to the method for treating animal bones according to the third embodiment, it is possible to increase the strength of bone B1 during healing.
 なお、実施形態3で説明した内容以外の点については、実施形態3においても実施形態1又は2で説明した態様がそのまま適用できる。 Regarding points other than the contents described in the third embodiment, the embodiment described in the first or second embodiment can be applied as it is in the third embodiment.
[実施形態4]
 図6は、治療対象の骨(損傷した骨B2)を説明するために示す図(平面図)である。
 図7は、実施形態4に係る骨の治療方法を説明するために示す図である。図7(a)は配置工程を実施したあとの様子を示す平面図であり、図7(b)は図7(a)のA4-A4断面図である。図7(a)においては、骨B2の輪郭、及び損傷箇所D2の他に、充填材Sを破線で表示する。なお、後述する各図面においても、必要に応じて充填材も破線で表示している。
[Embodiment 4]
FIG. 6 is a view (plan view) shown for explaining the bone to be treated (damaged bone B2).
FIG. 7 is a diagram shown for explaining the bone treatment method according to the fourth embodiment. FIG. 7A is a plan view showing a state after the arrangement step is performed, and FIG. 7B is a sectional view taken along the line A4-A4 of FIG. 7A. In FIG. 7A, the filler S is indicated by a broken line in addition to the contour of the bone B2 and the damaged portion D2. In each drawing described later, the filler is also indicated by a broken line as necessary.
 実施形態4に係る動物の骨の治療方法は、基本的には実施形態1に係る動物の骨の治療方法と同様の方法であるが、充填材を用いる点で実施形態1に係る動物の骨の治療方法の場合とは異なる。実施形態4における損傷した骨B2は、損傷箇所D2に欠損が生じている骨である(図6参照。)。実施形態4に係る動物の骨の治療方法は、準備工程と配置工程との間に、損傷箇所D2の内部に充填材Sを充填する充填工程を含む。また、実施形態4における配置工程においては、充填材Sが充填された箇所の少なくとも一部(実施形態4においては全部)を覆うように骨治療シート1を配置する(図7参照。)。 The animal bone treatment method according to the fourth embodiment is basically the same as the animal bone treatment method according to the first embodiment, but the animal bone according to the first embodiment is used in that a filler is used. It is different from the case of the treatment method of. The damaged bone B2 in the fourth embodiment is a bone having a defect at the damaged portion D2 (see FIG. 6). The method for treating an animal bone according to the fourth embodiment includes a filling step of filling the inside of the damaged portion D2 with the filler S between the preparation step and the placement step. Further, in the arrangement step in the fourth embodiment, the bone treatment sheet 1 is arranged so as to cover at least a part (all in the fourth embodiment) of the portion filled with the filler S (see FIG. 7).
 充填材Sは、例えば、顆粒状又はブロック状の骨補填材(骨材)を含むものである。骨補填材を構成する材料としては、自家骨、他家骨、非金属性無機物質(例えば、ハイドロキシアパタイトやリン酸カルシウム類)、高分子物質(例えば、コラーゲン)及び高分子物質と非金属性無機物質との複合材料を例示することができる。また、充填材は、骨補填材の他に添加剤等(例えば、骨治癒促進物質)を含有していてもよい。また、骨補填材の表面には、ナノスケールの凹凸構造やナノ周期構造が形成されていてもよい。 The filler S contains, for example, a granular or block-shaped bone filling material (aggregate). Materials constituting the bone filling material include autologous bone, allogeneic bone, non-metallic inorganic substances (for example, hydroxyapatite and calcium phosphates), polymer substances (for example, collagen), and polymer substances and non-metallic inorganic substances. A composite material with and can be exemplified. Further, the filler may contain an additive or the like (for example, a bone healing promoting substance) in addition to the bone filling material. Further, a nanoscale uneven structure or a nanoperiodic structure may be formed on the surface of the bone filling material.
 充填工程においては、骨治療シート1を損傷箇所D2付近に部分的に巻き付け(例えば、半周ほど巻き付け)、その後充填材Sの充填を実施してもよい。この場合、その後の配置工程において、骨治療シート1を骨B2の周囲に完全に巻き付ける。 In the filling step, the bone treatment sheet 1 may be partially wound around the damaged portion D2 (for example, wound about half a circumference), and then the filling material S may be filled. In this case, in the subsequent placement step, the bone treatment sheet 1 is completely wrapped around the bone B2.
 実施形態4に係る動物の骨の治療方法は、充填材を用いる点で実施形態1に係る動物の骨の治療方法の場合とは異なるが、実施形態1に係る動物の骨の治療方法と同様に骨治療シート1を用いるため、従来の動物の骨の治療方法と比較して骨の治癒を促進させることが可能な動物の骨の治療方法となる。 The animal bone treatment method according to the fourth embodiment is different from the animal bone treatment method according to the first embodiment in that a filler is used, but is the same as the animal bone treatment method according to the first embodiment. Since the bone treatment sheet 1 is used for the bone treatment sheet 1, it is an animal bone treatment method capable of promoting bone healing as compared with the conventional animal bone treatment method.
 また、実施形態4に係る動物の骨の治療方法によれば、充填材Sのこぼれだしを抑制することが可能となる。また、実施形態4に係る動物の骨の治療方法によれば、欠損の外側からも骨の治癒を促進することが可能となる。 Further, according to the animal bone treatment method according to the fourth embodiment, it is possible to suppress the spillage of the filler S. Further, according to the animal bone treatment method according to the fourth embodiment, it is possible to promote bone healing from the outside of the defect.
 なお、実施形態4で説明した内容以外の点については、実施形態4においても実施形態1又は2で説明した態様がそのまま適用できる。 Regarding points other than the contents described in the fourth embodiment, the embodiment described in the first or second embodiment can be applied as it is in the fourth embodiment.
[実施形態5]
 図8は、実施形態5に係る骨治療シート2及び骨の治療方法を説明するために示す図である。図8(a)は骨治療シート2の断面図(図1(b)に相当する断面図)であり、図8(b)は配置工程を実施したあとの様子を示す平面図であり、図8(c)は図8(b)の断面図(図7(b)に相当する断面図。)である。
[Embodiment 5]
FIG. 8 is a diagram shown for explaining the bone treatment sheet 2 and the bone treatment method according to the fifth embodiment. FIG. 8 (a) is a cross-sectional view of the bone treatment sheet 2 (cross-sectional view corresponding to FIG. 1 (b)), and FIG. 8 (b) is a plan view showing a state after performing the arrangement step. 8 (c) is a cross-sectional view of FIG. 8 (b) (a cross-sectional view corresponding to FIG. 7 (b)).
 実施形態5に係る骨治療シート2は、基本的には実施形態1に係る骨治療シート1と同様の構成を有するが、足場材含有部をさらに有する点で実施形態1に係る骨治療シート1とは異なる。骨治療シート2は、主構造10及び保持部11の他に、骨治癒の足場となる足場材を含有する足場材含有部20を有する(図8参照。)。 The bone treatment sheet 2 according to the fifth embodiment basically has the same configuration as the bone treatment sheet 1 according to the first embodiment, but the bone treatment sheet 1 according to the first embodiment further has a scaffolding material-containing portion. Is different. In addition to the main structure 10 and the holding portion 11, the bone treatment sheet 2 has a scaffolding material-containing portion 20 containing a scaffolding material that serves as a scaffolding for bone healing (see FIG. 8).
 足場材含有部20は、骨治療シート2の表面に、層状に配置されている。また、足場材含有部20は、保持部11よりも外側(使用時に骨B2の中心に近くなる側)に配置されている(図8(b),(c)参照。)。足場材含有部20は、骨治癒促進物質を直接的に又は間接的に通過させることができる構造からなることが好ましい。足場材としては、生体適合性を有する非金属性無機物質(例えば、ヒドロキシアパタイトやリン酸カルシウム類)や非金属性無機物質とコラーゲン等の有機物との複合材料からなる粒子、粉末、多孔質体を好適に用いることができる。 The scaffolding material-containing portion 20 is arranged in layers on the surface of the bone treatment sheet 2. Further, the scaffolding material-containing portion 20 is arranged outside the holding portion 11 (the side closer to the center of the bone B2 during use) (see FIGS. 8 (b) and 8 (c)). The scaffolding material-containing portion 20 preferably has a structure that allows the bone healing promoting substance to pass directly or indirectly. As the scaffold material, particles, powders, and porous bodies made of a biocompatible non-metallic inorganic substance (for example, hydroxyapatite or calcium phosphate) or a composite material of the non-metallic inorganic substance and an organic substance such as collagen are preferable. Can be used for.
 実施形態5に係る骨治療シート2は、足場材含有部をさらに有する点で実施形態1に係る骨治療シート1とは異なるが、保持部11を有するため、実施形態1に係る骨治療シート1と同様に、骨の治癒を促進させることが可能な骨治療シートとなる。また、実施形態5に係る骨治療シート2は、実施形態1に係る骨治療シート1が有する効果のうち、該当する効果を有する。 The bone treatment sheet 2 according to the fifth embodiment is different from the bone treatment sheet 1 according to the first embodiment in that it further has a scaffolding material-containing portion, but since it has a holding portion 11, the bone treatment sheet 1 according to the first embodiment has. Similarly, it becomes a bone treatment sheet capable of promoting bone healing. Further, the bone treatment sheet 2 according to the fifth embodiment has a corresponding effect among the effects of the bone treatment sheet 1 according to the first embodiment.
 また、実施形態5に係る骨治療シート2によれば、骨治癒の足場となる足場材を含有する足場材含有部20をさらに有するため、足場材含有部20が骨B2の表面構造再建の足場となり、骨B2の早期治癒及び強度向上を図ることが可能となる。 Further, according to the bone treatment sheet 2 according to the fifth embodiment, since the scaffold material-containing portion 20 containing the scaffold material serving as a scaffold for bone healing is further provided, the scaffold material-containing portion 20 is a scaffold for reconstructing the surface structure of the bone B2. Therefore, it becomes possible to achieve early healing and strength improvement of bone B2.
 なお、実施形態5で説明した内容以外の点については、実施形態5においても実施形態1、2又は4で説明した態様がそのまま適用できる。 Regarding points other than the contents described in the fifth embodiment, the embodiments described in the first, second, and fourth embodiments can be applied as they are in the fifth embodiment.
[実施形態6]
 図9は、実施形態6に係る骨の治療方法を説明するために示す図である。図9は、配置工程を実施したあとの様子を示す平面図であるともいえる。
[Embodiment 6]
FIG. 9 is a diagram shown for explaining the bone treatment method according to the sixth embodiment. It can be said that FIG. 9 is a plan view showing a state after the arrangement process is performed.
 実施形態6に係る動物の骨の治療方法は、基本的には実施形態4に係る動物の骨の治療方法と同様の方法であるが、配置工程において損傷箇所の内部に骨治療シートにおける保持部の少なくとも一部を侵入させる点で実施形態4に係る動物の骨の治療方法とは異なる。 The animal bone treatment method according to the sixth embodiment is basically the same as the animal bone treatment method according to the fourth embodiment, but the holding portion in the bone treatment sheet is inside the damaged portion in the placement step. It differs from the animal bone treatment method according to the fourth embodiment in that at least a part of the above is invaded.
 実施形態6に係る骨治療シート1は、実施形態1に係る骨治療シート1と同様のものである。ただし、骨治療シート1は、実施形態6における配置工程(後述)に耐えられる構造を有している必要がある。つまり、実施形態1における保持部11は、少なくとも一部が、損傷した骨B2に配置したときに損傷箇所D2の内部に侵入可能に構成されている。
このため、配置時における破断等を避けるため、実施形態6における保持部11は、十分な柔軟性又は流動性を有する材料からなることが好ましい。上記のような観点からも、保持部11は、スポンジ状のコラーゲンや、多孔質構造のコラーゲン・非金属性無機物質複合体からなることが好ましい。
The bone treatment sheet 1 according to the sixth embodiment is the same as the bone treatment sheet 1 according to the first embodiment. However, the bone treatment sheet 1 needs to have a structure that can withstand the placement step (described later) in the sixth embodiment. That is, the holding portion 11 in the first embodiment is configured so that at least a part of the holding portion 11 can enter the inside of the damaged portion D2 when placed on the damaged bone B2.
Therefore, in order to avoid breakage during arrangement, the holding portion 11 in the sixth embodiment is preferably made of a material having sufficient flexibility or fluidity. From the above viewpoint, it is preferable that the holding portion 11 is made of sponge-like collagen or a collagen-non-metallic inorganic substance complex having a porous structure.
 実施形態6に係る動物の骨の治療方法における配置工程においては、例えば、骨治療シート1を骨B2に巻きつけた後、骨治療シート1が損傷箇所D2を覆っている部分を外部から押圧することで、損傷箇所の内部に保持部を侵入させることができる。また、骨治療シート1が損傷箇所D2を覆っている部分にワイヤーや糸(図示せず。)を巻きつける等して内向きの圧力をかけることによっても、損傷箇所の内部に保持部を侵入させることができる。 In the arrangement step in the animal bone treatment method according to the sixth embodiment, for example, after the bone treatment sheet 1 is wound around the bone B2, the portion of the bone treatment sheet 1 covering the damaged portion D2 is pressed from the outside. As a result, the holding portion can be penetrated into the damaged portion. Further, by applying inward pressure such as by wrapping a wire or thread (not shown) around the portion where the bone treatment sheet 1 covers the damaged portion D2, the holding portion penetrates into the damaged portion. Can be made to.
 実施形態6に係る骨治療シート1は、保持部11を有するため、実施形態1に係る骨治療シート1と同様に、骨の治癒を促進させることが可能な骨治療シートとなる。また、実施形態6に係る骨治療シート1は、実施形態1に係る骨治療シート1が有する効果のうち、該当する効果を有する。 Since the bone treatment sheet 1 according to the sixth embodiment has the holding portion 11, it is a bone treatment sheet capable of promoting bone healing like the bone treatment sheet 1 according to the first embodiment. Further, the bone treatment sheet 1 according to the sixth embodiment has a corresponding effect among the effects of the bone treatment sheet 1 according to the first embodiment.
 また、実施形態6に係る骨治療シート1によれば、保持部11は、少なくとも一部が、損傷した骨B2に配置したときに損傷箇所D2の内部に侵入可能に構成されているため、保持部11に保持された状態の骨治癒促進物質を損傷箇所D2の内部に導入することが可能となる。 Further, according to the bone treatment sheet 1 according to the sixth embodiment, since at least a part of the holding portion 11 is configured to be able to enter the inside of the damaged portion D2 when placed on the damaged bone B2, the holding portion 11 is held. The bone healing promoting substance held in the portion 11 can be introduced into the damaged portion D2.
 実施形態6に係る動物の骨の治療方法は、配置工程において損傷箇所の内部に骨治療シートにおける保持部の少なくとも一部を侵入させる点で実施形態4に係る動物の骨の治療方法の場合とは異なるが、実施形態4に係る動物の骨の治療方法と同様に骨治療シート1を用いるため、従来の動物の骨の治療方法と比較して骨の治癒を促進させることが可能な動物の骨の治療方法となる。 The animal bone treatment method according to the sixth embodiment is different from the animal bone treatment method according to the fourth embodiment in that at least a part of the holding portion of the bone treatment sheet is invaded inside the damaged portion in the placement step. However, since the bone treatment sheet 1 is used in the same manner as the animal bone treatment method according to the fourth embodiment, the animal can promote bone healing as compared with the conventional animal bone treatment method. It is a bone treatment method.
 また、実施形態6に係る動物の骨の治療方法によれば、配置工程においては、損傷箇所D2の内部に骨治療シート1における保持部11の一部を侵入させるため、保持部11に保持された状態の骨治癒促進物質を損傷箇所D2の内部に導入することが可能となる。 Further, according to the animal bone treatment method according to the sixth embodiment, in the placement step, a part of the holding portion 11 in the bone treatment sheet 1 is allowed to penetrate into the damaged portion D2, so that the holding portion 11 is held. It becomes possible to introduce the bone healing promoting substance in the state of being in the damaged part D2.
 なお、実施形態6で説明した内容以外の点については、実施形態6においても実施形態1、2又は4で説明した態様がそのまま適用できる。 Regarding points other than the contents described in the sixth embodiment, the embodiments described in the first, second, and fourth embodiments can be applied as they are in the sixth embodiment.
[実施形態7]
 図10は、実施形態7に係る骨治療シート3及び骨の治療方法を説明するために示す図である。図10(a)は骨治療シート3の平面図であり、図10(b)は図10(a)のA5-A5断面図であり、図10(c)は配置工程を実施したあとの様子を示す平面図である。
[Embodiment 7]
FIG. 10 is a diagram shown for explaining the bone treatment sheet 3 and the bone treatment method according to the seventh embodiment. 10 (a) is a plan view of the bone treatment sheet 3, FIG. 10 (b) is a sectional view taken along the line A5-A5 of FIG. 10 (a), and FIG. It is a top view which shows.
 実施形態7に係る骨治療シート3は、基本的には実施形態1に係る骨治療シート1と同様の構成を有するが、保持部が突出部を有する点で実施形態1に係る骨治療シート1とは異なる。骨治療シート3における保持部31は、損傷箇所D2に対応する突出部32を有する(図10(a)及び図10(b)参照。)。突出部32は、保持部31が局所的に厚くなっている部分ということもできる。保持部31は、突出部32を有すること以外については、実施形態1における保持部11と同様の構成を有する。 The bone treatment sheet 3 according to the seventh embodiment basically has the same configuration as the bone treatment sheet 1 according to the first embodiment, but the bone treatment sheet 1 according to the first embodiment has a holding portion having a protruding portion. Is different. The holding portion 31 in the bone treatment sheet 3 has a protruding portion 32 corresponding to the damaged portion D2 (see FIGS. 10 (a) and 10 (b)). The protruding portion 32 can also be said to be a portion where the holding portion 31 is locally thickened. The holding portion 31 has the same configuration as the holding portion 11 in the first embodiment except that it has a protruding portion 32.
 また、実施形態7に係る動物の骨の治療方法は、基本的には実施形態4に係る動物の骨の治療方法と同様の方法であるが、配置工程において損傷箇所の内部に骨治療シートにおける保持部の少なくとも一部を侵入させる点で実施形態4に係る動物の骨の治療方法とは異なる。 Further, the animal bone treatment method according to the seventh embodiment is basically the same as the animal bone treatment method according to the fourth embodiment, but in the placement step, the bone treatment sheet is placed inside the damaged portion. It differs from the animal bone treatment method according to the fourth embodiment in that at least a part of the holding portion is invaded.
 実施形態7に係る動物の骨の治療方法における配置工程においては、骨治療シート3の突出部32が損傷箇所D2に入り込むように、骨治療シート3を骨B2に巻きつける。なお、骨治療シート3には突出部32が存在するため、実施形態7における配置工程においては、押圧やワイヤー等の巻き付けは必須とはならない。 In the arrangement step in the animal bone treatment method according to the seventh embodiment, the bone treatment sheet 3 is wrapped around the bone B2 so that the protruding portion 32 of the bone treatment sheet 3 enters the damaged portion D2. Since the bone treatment sheet 3 has a protruding portion 32, pressing or winding a wire or the like is not essential in the arrangement step in the seventh embodiment.
 実施形態7に係る骨治療シート3は、保持部が突出部を有する点で実施形態1に係る骨治療シート1とは異なるが、保持部31を有するため、実施形態1に係る骨治療シート1と同様に、骨の治癒を促進させることが可能な骨治療シートとなる。また、実施形態7に係る骨治療シート1は、実施形態1に係る骨治療シート1が有する効果のうち、該当する効果を有する。 The bone treatment sheet 3 according to the seventh embodiment is different from the bone treatment sheet 1 according to the first embodiment in that the holding portion has a protruding portion, but since it has the holding portion 31, the bone treatment sheet 1 according to the first embodiment. Similarly, it becomes a bone treatment sheet capable of promoting bone healing. Further, the bone treatment sheet 1 according to the seventh embodiment has a corresponding effect among the effects of the bone treatment sheet 1 according to the first embodiment.
 また、実施形態7に係る骨治療シート3によれば、保持部31は、少なくとも一部が、損傷した骨B2に配置したときに損傷箇所D2の内部に侵入可能に構成されているため、保持部31に保持された状態の骨治癒促進物質を損傷箇所D2の内部に導入することが可能となる。 Further, according to the bone treatment sheet 3 according to the seventh embodiment, since at least a part of the holding portion 31 is configured to be able to enter the inside of the damaged portion D2 when placed on the damaged bone B2, the holding portion 31 is held. The bone healing promoting substance held in the portion 31 can be introduced into the damaged portion D2.
 また、実施形態7に係る骨治療シート1によれば、保持部31は、損傷箇所D2に対応する突出部32を有するため、保持部31に保持された状態の骨治癒促進物質を損傷箇所D2の内部に導入しやすくすることが可能となる。 Further, according to the bone treatment sheet 1 according to the seventh embodiment, since the holding portion 31 has a protruding portion 32 corresponding to the damaged portion D2, the bone healing promoting substance in the state of being held by the holding portion 31 is transferred to the damaged portion D2. It is possible to make it easier to introduce inside.
 実施形態7に係る動物の骨の治療方法は、配置工程において損傷箇所の内部に骨治療シートにおける保持部の少なくとも一部を侵入させる点で実施形態4に係る動物の骨の治療方法の場合とは異なるが、骨治療シート4を用いるため、従来の動物の骨の治療方法と比較して骨の治癒を促進させることが可能な動物の骨の治療方法となる。 The animal bone treatment method according to the seventh embodiment is different from the animal bone treatment method according to the fourth embodiment in that at least a part of the holding portion of the bone treatment sheet is invaded inside the damaged portion in the placement step. However, since the bone treatment sheet 4 is used, it is an animal bone treatment method capable of promoting bone healing as compared with the conventional animal bone treatment method.
 また、実施形態7に係る動物の骨の治療方法によれば、配置工程においては、損傷箇所D2の内部に骨治療シート1における保持部31の一部を侵入させるため、保持部31により骨治癒促進物質を保持したまま、骨治癒促進物質を損傷箇所D2の内部に導入することが可能となる。 Further, according to the method for treating an animal bone according to the seventh embodiment, in the placement step, a part of the holding portion 31 in the bone treatment sheet 1 is invaded inside the damaged portion D2, so that the holding portion 31 heals the bone. It is possible to introduce the bone healing promoting substance into the damaged part D2 while retaining the promoting substance.
 なお、実施形態7で説明した内容以外の点については、実施形態7においても実施形態1、2又は4で説明した態様がそのまま適用できる。 Regarding points other than the contents described in the seventh embodiment, the embodiments described in the first, second, and fourth embodiments can be applied as they are in the seventh embodiment.
[実施形態8]
 図11は、実施形態8に係る骨治療シート4を説明するために示す図である。図11(a)は骨治療シート4の平面図であり、図11(b)は図11(a)のA6-A6断面図である。図11及び後述する図12においては、1つの開口部40にのみ符号を表示し、他の開口部40については符号の表示を省略している。
 図12は、実施形態8に係る骨の治療方法を説明するために示す図である。図12(a)は配置工程を実施したあとの様子を示す平面図であり、図12(b)は図12(a)のA7-A7断面図である。
[Embodiment 8]
FIG. 11 is a diagram shown for explaining the bone treatment sheet 4 according to the eighth embodiment. 11 (a) is a plan view of the bone treatment sheet 4, and FIG. 11 (b) is a cross-sectional view taken along the line A6-A6 of FIG. 11 (a). In FIG. 11 and FIG. 12, which will be described later, the reference numerals are displayed only in one opening 40, and the reference numerals are omitted for the other openings 40.
FIG. 12 is a diagram shown for explaining a method of treating bone according to the eighth embodiment. 12 (a) is a plan view showing a state after carrying out the arrangement step, and FIG. 12 (b) is a sectional view taken along the line A7-A7 of FIG. 12 (a).
 実施形態8に係る骨治療シート4は、基本的には実施形態1に係る骨治療シート1と同様の構成を有するが、貫通孔である開口部40が形成されている点で実施形態1に係る骨治療シート1とは異なる(図11及び図12参照。)。 The bone treatment sheet 4 according to the eighth embodiment basically has the same configuration as the bone treatment sheet 1 according to the first embodiment, but the first embodiment is in that an opening 40 which is a through hole is formed. It is different from the bone treatment sheet 1 (see FIGS. 11 and 12).
 骨治療シート4における開口部40は、平面視したときに四角形状(正方形状)の形状からなる。開口部40の数、大きさ及び形状は、種々の事情に応じて任意に決定することができる。例えば、開口部40の大きさは、充填材Sが含有する骨補填材の大きさや形状に応じて決定することができる。例えば、骨補填材の粒径が0.5mm以上である場合には、骨補填材の流出を抑制するために、開口部40の最大幅を0.5mm程度とすることができる。また、この場合における開口部40同士の間隔は、例えば、1mm~1.25mm程度とすることができる。 The opening 40 in the bone treatment sheet 4 has a square shape (square shape) when viewed in a plan view. The number, size and shape of the openings 40 can be arbitrarily determined according to various circumstances. For example, the size of the opening 40 can be determined according to the size and shape of the bone filling material contained in the filler S. For example, when the particle size of the bone filling material is 0.5 mm or more, the maximum width of the opening 40 can be set to about 0.5 mm in order to suppress the outflow of the bone filling material. Further, the distance between the openings 40 in this case can be, for example, about 1 mm to 1.25 mm.
 実施形態8に係る骨治療シート4は、開口部40が形成されている点で実施形態1に係る骨治療シート1とは異なるが、保持部11を有するため、実施形態1に係る骨治療シート1と同様に、骨の治癒を促進させることが可能な骨治療シートとなる。また、実施形態8に係る骨治療シート4は、実施形態1に係る骨治療シート1が有する効果のうち、該当する効果を有する。 The bone treatment sheet 4 according to the eighth embodiment is different from the bone treatment sheet 1 according to the first embodiment in that an opening 40 is formed, but has a holding portion 11, so that the bone treatment sheet 4 according to the first embodiment has a holding portion 11. Similar to No. 1, it becomes a bone treatment sheet capable of promoting bone healing. Further, the bone treatment sheet 4 according to the eighth embodiment has a corresponding effect among the effects of the bone treatment sheet 1 according to the first embodiment.
 また、実施形態8に係る骨治療シート4によれば、骨の治癒に有用な物質を含有する体液等を、骨B2の損傷箇所D2に到達させやすくすることが可能となる。 Further, according to the bone treatment sheet 4 according to the eighth embodiment, it is possible to make it easier for a body fluid or the like containing a substance useful for bone healing to reach the damaged portion D2 of the bone B2.
 なお、実施形態8で説明した内容以外の点については、実施形態8においても実施形態1、2又は4で説明した態様がそのまま適用できる。 Regarding points other than the contents described in the eighth embodiment, the embodiments described in the first, second, and fourth embodiments can be applied as they are in the eighth embodiment.
[実施形態9]
 図13は、実施形態9に係る骨治療シート5を説明するために示す図である。図13(a)は骨治療シート5の平面図であり、図13(b)は図13(a)のA8-A8断面図である。図13及び後述する図14においては、1つのまとまり(1列)につき1つの固定用孔52にのみ符号を表示し、他の固定用孔52については符号の表示を省略している。
 図14は、実施形態9に係る骨の治療方法を説明するために示す図である。図14(a)は配置工程を実施したあとの様子を示す平面図であり、図14(b)は図14(a)のA9-A9断面図である。
[Embodiment 9]
FIG. 13 is a diagram shown for explaining the bone treatment sheet 5 according to the ninth embodiment. 13 (a) is a plan view of the bone treatment sheet 5, and FIG. 13 (b) is a cross-sectional view taken along the line A8-A8 of FIG. 13 (a). In FIG. 13 and FIG. 14 described later, the reference numerals are displayed only in one fixing hole 52 per group (one row), and the reference numerals are omitted for the other fixing holes 52.
FIG. 14 is a diagram shown for explaining a method of treating bone according to the ninth embodiment. 14 (a) is a plan view showing a state after carrying out the arrangement step, and FIG. 14 (b) is a cross-sectional view taken along the line A9-A9 of FIG. 14 (a).
 実施形態9に係る骨治療シート5は、基本的には実施形態1に係る骨治療シート1と同様の構成を有するが、損傷した骨B2に骨治療シート5を固定するための固定構造を有する点で実施形態1に係る骨治療シート1とは異なる(図14参照。)。 The bone treatment sheet 5 according to the ninth embodiment basically has the same configuration as the bone treatment sheet 1 according to the first embodiment, but has a fixing structure for fixing the bone treatment sheet 5 to the damaged bone B2. It differs from the bone treatment sheet 1 according to the first embodiment in that it (see FIG. 14).
 実施形態9における固定構造は、骨治療シート5のいずれかの箇所から延出する延出部50と、延出部50を通過させることができる固定用孔52とを含む。実施形態9においては、延出部50は保持部11の端から延出し、固定用孔52は延出部50が延出する端部とは反対側の端付近に形成されている。 The fixation structure in the ninth embodiment includes an extension portion 50 extending from any part of the bone treatment sheet 5 and a fixing hole 52 through which the extension portion 50 can pass. In the ninth embodiment, the extending portion 50 extends from the end of the holding portion 11, and the fixing hole 52 is formed near the end opposite to the end on which the extending portion 50 extends.
 実施形態9においては、延出部50には保持部11は配置されていない。なお、延出部50にも保持部11が配置されていてもよい。固定用孔52は、対応する延出部50の延出方向に沿って並ぶように、それぞれ複数形成されている。 In the ninth embodiment, the holding portion 11 is not arranged in the extending portion 50. The holding portion 11 may also be arranged on the extending portion 50. A plurality of fixing holes 52 are formed so as to line up along the extending direction of the corresponding extending portion 50.
 図14に示すように、骨治療シート5を骨B2に巻き付けた後、固定用孔52から延出部50を引き出すようにして通過させ、その後に延出部50を折り返すことで、骨B2に骨治療シート5を固定することができる。延出部50については、折り返した後に適切な長さとなるように切断してもよい。 As shown in FIG. 14, after the bone treatment sheet 5 is wound around the bone B2, the extension portion 50 is pulled out from the fixing hole 52 and passed through, and then the extension portion 50 is folded back to form the bone B2. The bone treatment sheet 5 can be fixed. The extending portion 50 may be cut so as to have an appropriate length after being folded back.
 実施形態9に係る骨治療シート5は、固定構造を有する点で実施形態1に係る骨治療シート1とは異なるが、保持部11を有するため、実施形態1に係る骨治療シート1と同様に、骨の治癒を促進させることが可能な骨治療シートとなる。また、実施形態9に係る骨治療シート5は、実施形態1に係る骨治療シート1が有する効果のうち、該当する効果を有する。 The bone treatment sheet 5 according to the ninth embodiment is different from the bone treatment sheet 1 according to the first embodiment in that it has a fixed structure, but since it has a holding portion 11, it is similar to the bone treatment sheet 1 according to the first embodiment. , It becomes a bone treatment sheet that can promote bone healing. Further, the bone treatment sheet 5 according to the ninth embodiment has a corresponding effect among the effects of the bone treatment sheet 1 according to the first embodiment.
 また、実施形態9に係る骨治療シート5によれば、損傷した骨B2に骨治療シート5を固定するための固定構造を有するため、骨治療シート5を固定するための部材(固定具等)を別途準備する必要がなくなり、骨治療シート5を骨B2に固定するときの手間を軽減することが可能となる。 Further, according to the bone treatment sheet 5 according to the ninth embodiment, since the bone treatment sheet 5 has a fixing structure for fixing the bone treatment sheet 5 to the damaged bone B2, a member (fixing tool or the like) for fixing the bone treatment sheet 5 is provided. It is not necessary to separately prepare the bone treatment sheet 5, and it is possible to reduce the time and effort required to fix the bone treatment sheet 5 to the bone B2.
 なお、実施形態9で説明した内容以外の点については、実施形態9においても実施形態1、2又は4で説明した態様がそのまま適用できる。 Regarding points other than the contents described in the ninth embodiment, the embodiments described in the first, second, and fourth embodiments can be applied as they are in the ninth embodiment.
[実施形態10]
 図15は、実施形態10に係る骨治療シート7,8,7aの断面図である。図15(a)は骨治療シート7の断面図であり、図15(b)は骨治療シート8の断面図であり、図15(c)は骨治療シート7aの断面図である。図15(a)~図15(c)は、図1(b)に相当する断面図である。
[Embodiment 10]
FIG. 15 is a cross-sectional view of the bone treatment sheets 7, 8 and 7a according to the tenth embodiment. 15 (a) is a cross-sectional view of the bone treatment sheet 7, FIG. 15 (b) is a cross-sectional view of the bone treatment sheet 8, and FIG. 15 (c) is a cross-sectional view of the bone treatment sheet 7a. 15 (a) to 15 (c) are cross-sectional views corresponding to FIG. 1 (b).
 実施形態10に係る骨治療シート7,8は、基本的には実施形態1に係る骨治療シート1と同様の構成を有するが、保持部が少なくとも一部において主構造を兼ねる(保持部のみからなる部分がある)点で実施形態1に係る骨治療シート1とは異なる。骨治療シート7においては、骨治療シート7の全体が保持部81からなる(図15(a)参照。)。骨治療シート8においては、保持部91は骨治療シート8の中央付近における主構造を兼ねており、主構造90(実施形態1における主構造10と同様の構成を有するもの)は保持部91の外側に配置されている(図15(b)参照。)。骨治療シート7,8の破断を抑制するため、保持部81,91には、実施形態1における保持部11よりも高い強度が求められる。 The bone treatment sheets 7 and 8 according to the tenth embodiment basically have the same configuration as the bone treatment sheet 1 according to the first embodiment, but the holding portion also serves as the main structure at least in part (from only the holding portion). It is different from the bone treatment sheet 1 according to the first embodiment in that (there is a portion). In the bone treatment sheet 7, the entire bone treatment sheet 7 is composed of the holding portion 81 (see FIG. 15A). In the bone treatment sheet 8, the holding portion 91 also serves as the main structure near the center of the bone treatment sheet 8, and the main structure 90 (having the same structure as the main structure 10 in the first embodiment) is the holding portion 91. It is arranged on the outside (see FIG. 15B). In order to suppress the breakage of the bone treatment sheets 7 and 8, the holding portions 81 and 91 are required to have higher strength than the holding portions 11 in the first embodiment.
 また、実施形態10に係る骨治療シート7aは、実施形態5に係る骨治療シート2のように足場材含有部20を有する(図15(c)参照。)。このように、実施形態11に係る骨治療シート7,8は、これまでに説明してきた保持部及び主構造を有する骨治療シートと同様の追加の特徴を有しうる。 Further, the bone treatment sheet 7a according to the tenth embodiment has the scaffolding material-containing portion 20 like the bone treatment sheet 2 according to the fifth embodiment (see FIG. 15C). As described above, the bone treatment sheets 7 and 8 according to the eleventh embodiment may have the same additional features as the bone treatment sheets having the holding portion and the main structure described above.
 実施形態10に係る骨治療シート7,8,7aは、保持部が少なくとも一部において主構造を兼ねる点で実施形態1に係る骨治療シート1とは異なるが、保持部81,91を有するため、実施形態1に係る骨治療シート1と同様に、骨の治癒を促進させることが可能な骨治療シートとなる。また、実施形態10に係る骨治療シート7,8,7aも、実施形態1に係る骨治療シート1が有する効果のうち、該当する効果を有する。 The bone treatment sheets 7, 8 and 7a according to the tenth embodiment are different from the bone treatment sheet 1 according to the first embodiment in that the holding portion also serves as the main structure in at least a part, but have the holding portions 81 and 91. Similar to the bone treatment sheet 1 according to the first embodiment, the bone treatment sheet is capable of promoting bone healing. Further, the bone treatment sheets 7, 8 and 7a according to the tenth embodiment also have the corresponding effects among the effects of the bone treatment sheet 1 according to the first embodiment.
 なお、実施形態10で説明した内容以外の点については、実施形態10においても実施形態1又は5で説明した態様がそのまま適用できる。 Regarding points other than the contents described in the tenth embodiment, the embodiment described in the first or fifth embodiment can be applied as it is in the tenth embodiment.
[実施形態11]
 図16は、実施形態11に係る骨治療シート201を説明するために示す図である。図16(a)は骨治療シート201の平面図であり、図16(b)は図16(a)のA15-A15断面図であり、図16(c)は図16(a)のA14で示す部分を拡大して示す図であり、図16(d)は図16(b)のA16で示す部分を拡大して示す図である。図16(a)における両矢印は、ナノ周期構造における複数の帯状凹部S1又は複数の帯状凸部S2が連続する方向を示すものである。後述する図における両矢印も、図16(a)における両矢印と同様のものである。
[Embodiment 11]
FIG. 16 is a diagram shown for explaining the bone treatment sheet 201 according to the eleventh embodiment. 16 (a) is a plan view of the bone treatment sheet 201, FIG. 16 (b) is a sectional view taken along line A15-A15 of FIG. 16 (a), and FIG. 16 (c) is A14 of FIG. 16 (a). It is a figure which shows by enlarging the part shown, and FIG. 16 (d) is an enlarged figure which shows the part shown by A16 of FIG. 16 (b). The double-headed arrow in FIG. 16A indicates the direction in which the plurality of strip-shaped concave portions S1 or the plurality of strip-shaped convex portions S2 in the nanoperiodic structure are continuous. The double-headed arrow in the figure described later is the same as the double-headed arrow in FIG. 16A.
 図17は、実施形態11に係る骨の治療方法を説明するために示す図である。図17(a)は配置工程を実施したあとの様子を示す平面図であり、図17(b)は図17(a)のA17-A17断面図である。 FIG. 17 is a diagram shown for explaining a bone treatment method according to the eleventh embodiment. FIG. 17A is a plan view showing a state after the arrangement step is performed, and FIG. 17B is a cross-sectional view taken along the line A17-A17 of FIG. 17A.
 実施形態11に係る骨治療シート201は、損傷した骨B1の損傷箇所D1の外面に配置することで骨の治療に用いるための骨治療シートである。骨治療シート201は、図17に示すように、損傷箇所D1に対応する箇所に、周期性を有するナノスケールの凹凸構造からなるナノ周期構造が形成されている。骨治療シート201においては、骨治療シート201の主要形状を構成する主構造210の一方の表面212にナノ周期構造が形成されている。また、骨治療シート201の他方の表面214にはナノ周期構造は形成されていない。 The bone treatment sheet 201 according to the eleventh embodiment is a bone treatment sheet for use in bone treatment by arranging it on the outer surface of the damaged portion D1 of the damaged bone B1. As shown in FIG. 17, the bone treatment sheet 201 has a nano-periodic structure having a periodic nano-scale uneven structure formed at a portion corresponding to the damaged portion D1. In the bone treatment sheet 201, a nanoperiodic structure is formed on one surface 212 of the main structure 210 that constitutes the main shape of the bone treatment sheet 201. Further, no nanoperiodic structure is formed on the other surface 214 of the bone treatment sheet 201.
 骨治療シート201におけるナノ周期構造は、図16(c)及び図16(d)に示すように、互いに接触しない複数の帯状凹部S1からなる。なお、ナノ周期構造は互いに接触しない複数の帯状凸部S2からなるということもできる。 As shown in FIGS. 16 (c) and 16 (d), the nanoperiodic structure of the bone treatment sheet 201 is composed of a plurality of band-shaped recesses S1 that do not come into contact with each other. It can also be said that the nanoperiodic structure is composed of a plurality of strip-shaped convex portions S2 that do not come into contact with each other.
 帯状凹部S1及び帯状凸部S2の幅や帯状凹部S1の深さ(帯状凸部S2の高さ)については、骨治療シート201の用途等に応じて、ナノスケールであれば任意の値を取ることができる。 The width of the band-shaped concave portion S1 and the band-shaped convex portion S2 and the depth of the band-shaped concave portion S1 (height of the band-shaped convex portion S2) are arbitrary values as long as they are nanoscale, depending on the application of the bone treatment sheet 201 and the like. be able to.
 また、骨治療シート201におけるナノ周期構造は、損傷箇所D1の外面に配置されたときに損傷箇所D1と交差する凹部又は凸部を含む。実施形態11においては、帯状凹部S1及び帯状凸部S2が、損傷箇所D1の外面に配置されたときに損傷箇所D1と交差する凹部及び凸部となる。 Further, the nanoperiodic structure in the bone treatment sheet 201 includes a concave portion or a convex portion that intersects the damaged portion D1 when arranged on the outer surface of the damaged portion D1. In the eleventh embodiment, the strip-shaped concave portion S1 and the strip-shaped convex portion S2 are concave portions and convex portions that intersect with the damaged portion D1 when arranged on the outer surface of the damaged portion D1.
 ナノ周期構造は、ナノスケールの構造を形成可能なあらゆる方法を用いて形成することが可能である。ナノ周期構造を形成可能な方法としては、刃物やレーザーによる切削、金型による押圧(例えば、プレス成型)及びイオンや薬液によるエッチングを例示することができる。 The nano-periodic structure can be formed by any method that can form a nano-scale structure. Examples of methods capable of forming a nanoperiodic structure include cutting with a cutting tool or laser, pressing with a die (for example, press molding), and etching with ions or a chemical solution.
 骨治療シート201においては、ナノ周期構造が形成されている位置を表示する注意表示が付されている。骨治療シート201における注意表示は色によりなされており、具体的には、ナノ周期構造が形成されている部分(表面212)とナノ周期構造が形成されてない部分とでは色が異なっている。なお、色による注意表示は、例えば、塗料を用いて付すことができる。骨治療シート201においては表面212全体にナノ周期構造が形成されているため、表面212全体が他の部分(例えば、表面214)とは異なる色となっている。 On the bone treatment sheet 201, a caution indication is attached to indicate the position where the nanoperiodic structure is formed. The caution indication on the bone treatment sheet 201 is made by color, and specifically, the color is different between the portion where the nanoperiodic structure is formed (surface 212) and the portion where the nanoperiodic structure is not formed. Note that the caution indication by color can be attached by using, for example, a paint. In the bone treatment sheet 201, since the nanoperiodic structure is formed on the entire surface 212, the entire surface 212 has a different color from other parts (for example, the surface 214).
 骨治療シート201の厚さは、例えば、0.05μm~500μmの範囲内にある。 The thickness of the bone treatment sheet 201 is, for example, in the range of 0.05 μm to 500 μm.
 骨治療シート201の主要形状を構成する主構造210としては、生体内で用いることができる材料からなるものであれば、用途等にあわせて任意の材料からなるものを用いることができる。主構造210は、例えば、ステンレス鋼からなることが好ましい。また、主構造210は、例えば、マグネシウム又はマグネシウム合金からなることも好ましい。また、主構造210は、例えば、チタン又はチタン合金からなることも好ましい。また、主構造210は、コラーゲンを主成分とする非金属材料からなることも好ましい。さらに、主構造210は、アガロース又はセルロースを主成分とする非金属材料からなることも好ましい。 As the main structure 210 constituting the main shape of the bone treatment sheet 201, any material can be used as long as it is made of a material that can be used in vivo. The main structure 210 is preferably made of, for example, stainless steel. It is also preferable that the main structure 210 is made of, for example, magnesium or a magnesium alloy. It is also preferable that the main structure 210 is made of, for example, titanium or a titanium alloy. It is also preferable that the main structure 210 is made of a non-metallic material containing collagen as a main component. Further, it is also preferable that the main structure 210 is made of a non-metallic material containing agarose or cellulose as a main component.
 次に、実施形態11に係る骨の治療方法について説明する。なお、実施形態11に係る骨の治療方法は動物の骨の治療方法であるが、同様の方法を人間の骨の治療方法に応用することも可能である。 Next, the bone treatment method according to the eleventh embodiment will be described. Although the bone treatment method according to the eleventh embodiment is an animal bone treatment method, the same method can be applied to a human bone treatment method.
 実施形態11に係る骨の治療方法は、実施形態11に係る骨治療シート201を準備する準備工程と、骨治療シート201のナノ周期構造が治療対象の骨B1と接触するように骨治療シート201を治療対象の骨B1の表面に配置する配置工程(図17参照。)とを含む。 The method for treating bone according to the eleventh embodiment includes a preparatory step for preparing the bone treatment sheet 201 according to the eleventh embodiment and the bone treatment sheet 201 so that the nanoperiodic structure of the bone treatment sheet 201 comes into contact with the bone B1 to be treated. Includes a placement step (see FIG. 17) of placing the bone B1 to be treated.
 配置工程においては、図17に示すように、骨治療シート201のナノ周期構造が治療対象の骨B1と接触するように骨治療シート201を治療対象の骨B1の表面に配置する。骨治療シート201のナノ周期構造は表面212に形成されているため、表面212が治療対象の骨B1と接触するようにする。 In the placement step, as shown in FIG. 17, the bone treatment sheet 201 is placed on the surface of the bone B1 to be treated so that the nanoperiodic structure of the bone treatment sheet 201 is in contact with the bone B1 to be treated. Since the nanoperiodic structure of the bone treatment sheet 201 is formed on the surface 212, the surface 212 is brought into contact with the bone B1 to be treated.
 配置工程においては、骨治療シート201を切断する等の手段により、ちょうどよい大きさとしてもよい。なお、図17においては、骨治療シート201は骨B1の周囲をちょうど一周巻くように配置されているが、本発明はこれに限定されるものではない。配置工程においては、骨治療シート201を、骨B1の周囲の一部のみを被覆するように配置してもよい。 In the placement step, the size may be just right by cutting the bone treatment sheet 201 or the like. In FIG. 17, the bone treatment sheet 201 is arranged so as to wrap around the bone B1 exactly once, but the present invention is not limited to this. In the placement step, the bone treatment sheet 201 may be placed so as to cover only a part of the periphery of the bone B1.
 配置工程においては、骨治療シート201は、任意の手段で骨に固定することができる。当該固定は、例えば、ネジやワイヤー等の固定具を用いておこなうこととしてもよいし、接着剤のような介在物を用いておこなうこととしてもよい。また、骨治療シート201を配置するだけで十分な固定力を得られる場合には、特に固定具や介在物を用いなくてもよい。 In the placement process, the bone treatment sheet 201 can be fixed to the bone by any means. The fixing may be performed by using a fixture such as a screw or a wire, or may be performed by using an inclusion such as an adhesive. Further, when a sufficient fixing force can be obtained only by arranging the bone treatment sheet 201, it is not necessary to use a fixture or inclusions.
 以下、実施形態11に係る骨治療シート201及び骨の治療方法の効果を記載する。 Hereinafter, the effects of the bone treatment sheet 201 and the bone treatment method according to the eleventh embodiment will be described.
 実施形態11に係る骨治療シート201によれば、ナノスケールの凹凸構造が細胞の増殖や分化に影響を与えるため、従来のシート(ナノスケールの構造が形成されていないシート)と比較して骨の治癒を促進させることが可能となる。 According to the bone treatment sheet 201 according to the eleventh embodiment, since the nanoscale uneven structure affects the proliferation and differentiation of cells, the bone is compared with the conventional sheet (the sheet on which the nanoscale structure is not formed). It is possible to promote the healing of bones.
 実施形態11に係る骨治療シート201によれば、損傷箇所D1に対応する箇所にナノ周期構造が形成されているため、当該ナノ周期構造を骨B1の損傷箇所D1やその付近の箇所と接触させて使用することで、骨の細胞(特に骨芽細胞)の増殖や分化を促進させることが可能となる。このため、実施形態11に係る骨治療シート201によれば、骨治療シート201と骨B1とを早期にかつ強固に固着させることで骨B1の強度を高くすることが可能となる。また、実施形態11に係る骨治療シート201によれば、細胞の増殖や分化を促進させることから、骨B1自体の治癒力を高めることも可能となる。したがって、実施形態12に係る骨治療シート201は、従来のシートと比較して骨B1の治癒を促進させることが可能な骨治療シートとなる。 According to the bone treatment sheet 201 according to the eleventh embodiment, since the nano-periodic structure is formed at the portion corresponding to the damaged portion D1, the nano-periodic structure is brought into contact with the damaged portion D1 of the bone B1 or a portion in the vicinity thereof. By using this, it becomes possible to promote the proliferation and differentiation of bone cells (particularly osteoblasts). Therefore, according to the bone treatment sheet 201 according to the eleventh embodiment, the strength of the bone B1 can be increased by firmly fixing the bone treatment sheet 201 and the bone B1 at an early stage. Further, according to the bone treatment sheet 201 according to the eleventh embodiment, it is possible to enhance the healing power of the bone B1 itself because it promotes the proliferation and differentiation of cells. Therefore, the bone treatment sheet 201 according to the twelfth embodiment is a bone treatment sheet capable of promoting healing of bone B1 as compared with the conventional sheet.
 また、実施形態11に係る骨治療シート201によれば、ナノ周期構造は、互いに接触しない複数の帯状凹部S1又は複数の帯状凸部S2からなるため、細胞の増殖や分化が帯状凹部S1や帯状凸部S2に沿って発生するように制御することが可能となり、治癒の方向性を制御することが可能となる。 Further, according to the bone treatment sheet 201 according to the eleventh embodiment, since the nanoperiodic structure is composed of a plurality of band-shaped recesses S1 or a plurality of band-shaped protrusions S2 that do not contact each other, cell proliferation and differentiation occur in the band-shaped recesses S1 and the band-shaped recesses S1. It becomes possible to control so that it occurs along the convex portion S2, and it becomes possible to control the direction of healing.
 また、実施形態11に係る骨治療シート201によれば、ナノ周期構造が形成されている位置を表示する注意表示が付されているため、ナノ周期構造が形成されている位置の把握が容易となり、使用時における配置ミスを抑制することが可能となる。 Further, according to the bone treatment sheet 201 according to the eleventh embodiment, since the caution indication indicating the position where the nano-periodic structure is formed is attached, it becomes easy to grasp the position where the nano-periodic structure is formed. , It is possible to suppress placement mistakes during use.
 実施形態11に係る骨治療シート201の主構造がステンレス鋼からなる場合には、骨治療シート201は、生体内で使用できる他の材料からなる骨治療シートと比較して強度とコストとのバランスに優れ、かつ、骨B1の治癒を積極的に促進させることが可能な骨治療シートとなる。 When the main structure of the bone treatment sheet 201 according to the eleventh embodiment is made of stainless steel, the bone treatment sheet 201 has a balance between strength and cost as compared with the bone treatment sheet made of other materials that can be used in vivo. It is an excellent bone treatment sheet that can positively promote the healing of bone B1.
 実施形態11に係る骨治療シート201の主構造がマグネシウム又はマグネシウム合金からなる場合には、骨治療シート201は、十分な初期強度を有し、生体により分解・吸収されることが期待でき、かつ、骨B1の治癒を積極的に促進させることが可能な骨治療シートとなる。 When the main structure of the bone treatment sheet 201 according to the eleventh embodiment is made of magnesium or a magnesium alloy, the bone treatment sheet 201 has sufficient initial strength and can be expected to be decomposed and absorbed by a living body. , It becomes a bone treatment sheet capable of positively promoting the healing of bone B1.
 実施形態11に係る骨治療シート201の主構造がチタン又はチタン合金からなる場合には、骨治療シート201は、高い強度を有しつつ毒性が低い性質も有し、かつ、骨B1の治癒を積極的に促進させることが可能な骨治療シートとなる。 When the main structure of the bone treatment sheet 201 according to the eleventh embodiment is made of titanium or a titanium alloy, the bone treatment sheet 201 has high strength and low toxicity, and can heal bone B1. It is a bone treatment sheet that can be actively promoted.
 実施形態11に係る骨治療シート201の主構造がコラーゲンを主成分とする非金属材料からなる場合には、骨治療シート201は、生体により速やかに分解・吸収されることが期待でき、かつ、骨B1の治癒を積極的に促進させることが可能な骨治療シートとなる。 When the main structure of the bone treatment sheet 201 according to the eleventh embodiment is made of a non-metallic material containing collagen as a main component, the bone treatment sheet 201 can be expected to be rapidly decomposed and absorbed by the living body, and can be expected to be rapidly decomposed and absorbed. It is a bone treatment sheet that can positively promote the healing of bone B1.
 実施形態11に係る骨治療シート201の主構造がアガロース又はセルロースを主成分とする非金属材料からなる場合には、天然に存在し生体に対する害がない材料からなり、かつ、骨B1の治癒を積極的に促進させることが可能な骨治療シートとなる。 When the main structure of the bone treatment sheet 201 according to the eleventh embodiment is made of a non-metallic material containing agarose or cellulose as a main component, it is made of a naturally occurring material that is not harmful to the living body and can heal bone B1. It is a bone treatment sheet that can be actively promoted.
 また、実施形態11に係る骨治療シート201によれば、厚さが0.05μm~500μmの範囲内にあるため、強度を十分に確保することが可能となり、かつ、曲げやすさを十分に確保することも可能となる。 Further, according to the bone treatment sheet 201 according to the eleventh embodiment, since the thickness is in the range of 0.05 μm to 500 μm, it is possible to sufficiently secure the strength and sufficiently secure the bendability. It is also possible to do.
 また、実施形態11に係る骨治療シート201によれば、ナノ周期構造は、損傷箇所D1の外面に配置されたときに損傷箇所D1と交差する凹部又は凸部を含むため、骨B1の損傷箇所D1を埋めるように細胞の増殖や分化を促すことが可能となり、その結果、骨B1の損傷を速やかに治癒させることが可能となると考えられる。 Further, according to the bone treatment sheet 201 according to the eleventh embodiment, since the nanoperiodic structure includes a concave portion or a convex portion that intersects the damaged portion D1 when arranged on the outer surface of the damaged portion D1, the damaged portion of the bone B1 is included. It is considered that it becomes possible to promote the proliferation and differentiation of cells so as to fill D1, and as a result, it becomes possible to quickly heal the damage of bone B1.
 実施形態11に係る動物の骨の治療方法は、骨治療シート201を準備する準備工程と、骨治療シート201のナノ周期構造が治療対象の骨と接触するように骨治療シート201を治療対象の骨B1の表面に配置する配置工程とを含むため、従来の動物の骨の治療方法と比較して骨の治癒を促進させることが可能な動物の骨の治療方法となる。なお、実施形態11に係る骨の治療方法は、人間の骨の治療方法に応用することも可能である。 The method for treating an animal bone according to the eleventh embodiment includes a preparatory step for preparing the bone treatment sheet 201 and a treatment target for the bone treatment sheet 201 so that the nanoperiodic structure of the bone treatment sheet 201 is in contact with the bone to be treated. Since it includes an arrangement step of arranging the bone B1 on the surface, it is an animal bone treatment method capable of promoting bone healing as compared with a conventional animal bone treatment method. The bone treatment method according to the eleventh embodiment can also be applied to a human bone treatment method.
[実施形態12]
 図18は、実施形態12に係る骨の治療方法を説明するために示す図である。図18(a)は配置工程を実施したあとの様子を示す平面図であり、図18(b)は図18(a)のA18-A18断面図である。
[Embodiment 12]
FIG. 18 is a diagram shown for explaining a method of treating bone according to the twelfth embodiment. FIG. 18A is a plan view showing a state after performing the arrangement step, and FIG. 18B is a cross-sectional view taken along the line A18-A18 of FIG. 18A.
 実施形態12に係る骨の治療方法は、基本的には実施形態11に係る骨の治療方法と同様であるが、治療対象の骨の損傷が実施形態に係る骨の治療方法の場合とは異なる。実施形態12においては、治療対象の骨B2は欠損が生じた骨であり、当該欠損が生じた部分が損傷箇所D2である。実施形態12に係る骨の治療方法においては、準備工程と配置工程との間に、欠損が生じた部分(損傷箇所D2)に充填材Sを充填する充填工程をさらに含み、配置工程においては、治療対象の骨B2と接し、かつ、充填材Sが充填された部分を覆うように骨治療シート201を配置する。充填材Sとしては、上記実施形態4で説明したものと同様のものを用いることができる。 The bone treatment method according to the twelfth embodiment is basically the same as the bone treatment method according to the eleventh embodiment, but the damage to the bone to be treated is different from the case of the bone treatment method according to the embodiment. .. In the twelfth embodiment, the bone B2 to be treated is a defective bone, and the defective portion is the damaged portion D2. The bone treatment method according to the twelfth embodiment further includes a filling step of filling the defective portion (damaged portion D2) with the filler S between the preparation step and the placement step, and the placement step includes a filling step. The bone treatment sheet 201 is arranged so as to be in contact with the bone B2 to be treated and to cover the portion filled with the filler S. As the filler S, the same filler as that described in the fourth embodiment can be used.
 充填工程においては、骨治療シート201を骨B1の欠損が生じた部分付近において部分的に巻き付ける(例えば、半周ほど巻き付ける)ように配置し、その後充填材Sの充填を実施してもよい。この場合、配置工程において骨治療シート201を骨Bの周囲に完全に巻き付け、図18に示すような状態となるようにする。 In the filling step, the bone treatment sheet 201 may be arranged so as to be partially wound (for example, wound about half a circumference) in the vicinity of the portion where the bone B1 is defective, and then the filling material S may be filled. In this case, the bone treatment sheet 201 is completely wrapped around the bone B in the placement step so as to be in the state shown in FIG.
 実施形態12に係る骨の治療方法は、治療対象の骨が実施形態11に係る骨の治療方法の場合とは異なるが、実施形態12に係る骨の治療方法は、骨治療シート201を準備する準備工程と骨治療シート201のナノ周期構造が治療対象の骨B2と接触するように骨治療シート201を治療対象の骨B2の表面に配置する配置工程とを含むため、実施形態12に係る骨の治療方法と同様に、従来の骨の治療方法と比較して骨の治癒を促進させることが可能な骨の治療方法となる。なお、実施形態12に係る骨の治療方法についても、動物の骨の治療方法と人間の骨の治療方法との両方に適用することが可能である。 The bone treatment method according to the twelfth embodiment is different from the case where the bone to be treated is the bone treatment method according to the eleventh embodiment, but the bone treatment method according to the twelfth embodiment prepares the bone treatment sheet 201. The bone according to embodiment 12 includes a preparatory step and an arrangement step of arranging the bone treatment sheet 201 on the surface of the bone B2 to be treated so that the nanoperiodic structure of the bone treatment sheet 201 is in contact with the bone B2 to be treated. Similar to the treatment method of the above, it is a bone treatment method capable of promoting bone healing as compared with the conventional bone treatment method. The bone treatment method according to the twelfth embodiment can also be applied to both the animal bone treatment method and the human bone treatment method.
 また、実施形態12に係る骨の治療方法によれば、治療対象の骨B2は、欠損が生じた骨であり、準備工程と配置工程との間に、欠損が生じた部分(損傷箇所D2)に充填材Sを充填する充填工程をさらに含み、配置工程においては、治療対象の骨B2と接し、かつ、充填材Sが充填された部分を覆うように骨治療シート201を配置するため、充填材Sを構成する物質、特に顆粒状の骨補填材のこぼれだしを抑制することが可能となる。また、実施形態12に係る骨の治療方法によれば、骨治療シート201の表面でも細胞の増殖や分化を促進して、欠損が生じた部分の外側からも骨B2の治癒を促進することが可能となる。 Further, according to the bone treatment method according to the twelfth embodiment, the bone B2 to be treated is a bone having a defect, and the portion where the defect has occurred (damaged portion D2) between the preparation step and the placement step. Further includes a filling step of filling the filling material S, and in the placement step, the bone treatment sheet 201 is placed so as to be in contact with the bone B2 to be treated and to cover the portion filled with the filling material S. It is possible to suppress the spillage of the substance constituting the material S, particularly the granular bone filling material. Further, according to the bone treatment method according to the twelfth embodiment, it is possible to promote cell proliferation and differentiation even on the surface of the bone treatment sheet 201 and promote healing of bone B2 from the outside of the defective portion. It will be possible.
[実施形態13]
 図19は、実施形態13に係る骨治療シート202を説明するために示す図である。図19(a)は骨治療シート202の平面図であり、図19(b)は図19(a)のA19-A19断面図である。なお、図19及び後述する図20においては、開口部226については、1つの開口部226にのみ符号を表示し、他の開口部226についての符号の表示は省略している。また、図19及び図20において示す開口部226の数及び大きさは、必ずしも本発明の骨治療シートの実際の構成を反映するものではない。
[Embodiment 13]
FIG. 19 is a diagram shown for explaining the bone treatment sheet 202 according to the thirteenth embodiment. 19 (a) is a plan view of the bone treatment sheet 202, and FIG. 19 (b) is a cross-sectional view taken along the line A19-A19 of FIG. 19 (a). In FIG. 19 and FIG. 20 described later, with respect to the opening 226, the reference numerals are displayed only in one opening 226, and the reference numerals for the other openings 226 are omitted. Further, the number and size of the openings 226 shown in FIGS. 19 and 20 do not necessarily reflect the actual configuration of the bone treatment sheet of the present invention.
 図20は、実施形態13に係る骨治療シート202を骨B2に固定した状態を示す図である。図20(a)は実施形態13に係る骨の治療方法における配置工程に相当する工程を実施したあとの様子を示す平面図であり、図20(b)は図20(a)のA20-A20断面図である。 FIG. 20 is a diagram showing a state in which the bone treatment sheet 202 according to the thirteenth embodiment is fixed to the bone B2. FIG. 20 (a) is a plan view showing a state after performing a step corresponding to the arrangement step in the bone treatment method according to the thirteenth embodiment, and FIG. 20 (b) is a plan view showing the state after performing the step corresponding to the arrangement step, and FIG. It is a sectional view.
 実施形態13に係る骨治療シート202は、基本的には実施形態11に係る骨治療シート201と同様の構成を有するが、貫通孔である開口部226が形成されている点で実施形態11に係る骨治療シート201とは異なる。なお、骨治療シート202においては、骨治療シート202の主要形状を構成する主構造220の一方の表面222にナノ周期構造が形成されている。また、骨治療シート202の他方の表面224にはナノ周期構造は形成されていない。実施形態13における主構造220、一方の表面222及び他方の表面224は、実施形態11における主構造210、一方の表面212及び他方の表面214と、それぞれ実質的に同様の構成を有する。 The bone treatment sheet 202 according to the thirteenth embodiment basically has the same configuration as the bone treatment sheet 201 according to the eleventh embodiment, but the eleventh embodiment has an opening 226 which is a through hole. It is different from the bone treatment sheet 201. In the bone treatment sheet 202, a nanoperiodic structure is formed on one surface 222 of the main structure 220 that constitutes the main shape of the bone treatment sheet 202. Further, no nanoperiodic structure is formed on the other surface 224 of the bone treatment sheet 202. The main structure 220, one surface 222 and the other surface 224 in the thirteenth embodiment have substantially the same configurations as the main structure 210, one surface 212 and the other surface 214 in the eleventh embodiment, respectively.
 骨治療シート202における開口部226は、平面視したときに四角形状の形状からなる。開口部226の大きさは種々の事情に応じて任意に決定することができるが、例えば、充填材Sが含有する骨補填材の大きさや形状に応じた大きさとすることができる。例えば、骨補填材が0.5mm以上の粒径を有するものである場合には、開口部226の最大幅を0.5mm程度とすることができる。また、この場合、開口部226同士の間隔は、例えば1mm~1.25mm程度とすることができる。 The opening 226 in the bone treatment sheet 202 has a quadrangular shape when viewed in a plan view. The size of the opening 226 can be arbitrarily determined according to various circumstances, and for example, the size can be set according to the size and shape of the bone filling material contained in the filler S. For example, when the bone filling material has a particle size of 0.5 mm or more, the maximum width of the opening 226 can be set to about 0.5 mm. Further, in this case, the distance between the openings 226 can be, for example, about 1 mm to 1.25 mm.
 実施形態13に係る骨治療シート202は、貫通孔である開口部226が形成されている点で実施形態12に係る骨治療シート201とは異なるが、損傷箇所D2(欠損が生じた部分)に対応する箇所にナノ周期構造が形成されている。このため、実施形態13に係る骨治療シート202は、実施形態11に係る骨治療シート201と同様に、骨B2の治癒を促進させることが可能な骨治療シートとなる。 The bone treatment sheet 202 according to the thirteenth embodiment is different from the bone treatment sheet 201 according to the twelfth embodiment in that an opening 226 which is a through hole is formed, but at the damaged portion D2 (the portion where the defect occurs). A nanoperiodic structure is formed at the corresponding location. Therefore, the bone treatment sheet 202 according to the thirteenth embodiment is a bone treatment sheet capable of promoting the healing of the bone B2, similarly to the bone treatment sheet 201 according to the eleventh embodiment.
 また、実施形態13に係る骨治療シート202によれば、骨B2の治癒に有用な物質を含有する体液等が骨B2の損傷箇所D2に到達しやすくなるため、骨B2の治癒を一層促進させることが可能となる。 Further, according to the bone treatment sheet 202 according to the thirteenth embodiment, the body fluid or the like containing a substance useful for healing the bone B2 easily reaches the damaged portion D2 of the bone B2, so that the healing of the bone B2 is further promoted. It becomes possible.
 なお、実施形態13に係る骨治療シート202は、貫通孔である開口部226が形成されている点以外の点においては実施形態11に係る骨治療シート201と実質的に同様の構成を有するため、実施形態11に係る骨治療シート201が有する効果のうち該当する効果も有する。 The bone treatment sheet 202 according to the thirteenth embodiment has substantially the same configuration as the bone treatment sheet 201 according to the eleventh embodiment except that the opening 226 which is a through hole is formed. , Among the effects of the bone treatment sheet 201 according to the eleventh embodiment, it also has a corresponding effect.
[実施形態14]
 図21は、実施形態14に係る骨治療シート203を説明するために示す図である。図21(a)は骨治療シート203の平面図であり、図21(b)は図21(a)のA21-A21断面図である。なお、図21及び後述する図22においては、開口部236については、1つの開口部236にのみ符号を表示し、他の開口部236についての符号の表示は省略している。また、図21及び図22において示す開口部236の数及び大きさは、必ずしも本発明の骨治療シートの実際の構成を反映するものではない。
[Embodiment 14]
FIG. 21 is a diagram shown for explaining the bone treatment sheet 203 according to the fourteenth embodiment. 21 (a) is a plan view of the bone treatment sheet 203, and FIG. 21 (b) is a cross-sectional view taken along the line A21-A21 of FIG. 21 (a). In addition, in FIG. 21 and FIG. 22 which will be described later, with respect to the opening 236, the reference numeral is displayed only in one opening 236, and the indication of the reference numeral for the other opening 236 is omitted. Further, the number and size of the openings 236 shown in FIGS. 21 and 22 do not necessarily reflect the actual configuration of the bone treatment sheet of the present invention.
 図22は、実施形態14に係る骨治療シート203を骨B2に固定した状態を示す図である。図22は実施形態14に係る骨の治療方法における配置工程に相当する工程を実施したあとの様子を示す平面図であり、図22(b)は図22(a)のA22-A22断面図である。 FIG. 22 is a diagram showing a state in which the bone treatment sheet 203 according to the 14th embodiment is fixed to the bone B2. FIG. 22 is a plan view showing a state after performing a step corresponding to the arrangement step in the bone treatment method according to the fourteenth embodiment, and FIG. 22 (b) is a cross-sectional view taken along the line A22-A22 of FIG. 22 (a). is there.
 実施形態14に係る骨治療シート203は、基本的には実施形態13に係る骨治療シート202と同様の構成を有するが、開口部の形状が実施形態13に係る骨治療シート202とは異なる。なお、骨治療シート203においては、骨治療シート203の主要形状を構成する主構造230の一方の表面232にナノ周期構造が形成されている。また、骨治療シート203の他方の表面234にはナノ周期構造は形成されていない。実施形態14における主構造230、一方の表面232及び他方の表面234は、実施形態14における主構造220、一方の表面222及び他方の表面224と、それぞれ実質的に同様の構成を有する。 The bone treatment sheet 203 according to the 14th embodiment basically has the same configuration as the bone treatment sheet 202 according to the 13th embodiment, but the shape of the opening is different from the bone treatment sheet 202 according to the 13th embodiment. In the bone treatment sheet 203, a nanoperiodic structure is formed on one surface 232 of the main structure 230 that constitutes the main shape of the bone treatment sheet 203. Further, no nanoperiodic structure is formed on the other surface 234 of the bone treatment sheet 203. The main structure 230, one surface 232 and the other surface 234 in embodiment 14 have substantially the same configurations as the main structure 220, one surface 222 and the other surface 224 in embodiment 14, respectively.
 骨治療シート203における開口部236は、平面視したときに四角形状の形状からなるが、実施形態13に係る骨治療シート202における開口部226よりも細長い形状からなる。開口部236は、いわゆるスリット状の形状からなるということもできる。開口部236の大きさも、開口部226の場合と同様に、種々の事情に応じて任意に決定することができる。 The opening 236 of the bone treatment sheet 203 has a quadrangular shape when viewed in a plan view, but has a longer and narrower shape than the opening 226 of the bone treatment sheet 202 according to the thirteenth embodiment. It can also be said that the opening 236 has a so-called slit-like shape. The size of the opening 236 can also be arbitrarily determined according to various circumstances, as in the case of the opening 226.
 実施形態14に係る骨治療シート203は、開口部の形状が実施形態13に係る骨治療シート202とは異なるが、損傷箇所D2(欠損が生じた部分)に対応する箇所にナノ周期構造が形成されている。このため、実施形態14に係る骨治療シート203は、実施形態13に係る骨治療シート202と同様に、骨B2の治癒を促進させることが可能な骨治療シートとなる。 The bone treatment sheet 203 according to the 14th embodiment has a different opening shape from the bone treatment sheet 202 according to the 13th embodiment, but a nanoperiodic structure is formed at a portion corresponding to the damaged portion D2 (the portion where the defect has occurred). Has been done. Therefore, the bone treatment sheet 203 according to the 14th embodiment is a bone treatment sheet capable of promoting the healing of the bone B2, similarly to the bone treatment sheet 202 according to the 13th embodiment.
 なお、実施形態14に係る骨治療シート203は、開口部の形状以外は実施形態13に係る骨治療シート202と実質的に同様の構成を有するため、実施形態13に係る骨治療シート202が有する効果のうち該当する効果も有する。 Since the bone treatment sheet 203 according to the 14th embodiment has substantially the same configuration as the bone treatment sheet 202 according to the 13th embodiment except for the shape of the opening, the bone treatment sheet 202 according to the 13th embodiment has. It also has the corresponding effect among the effects.
[実施形態15]
 図23は、実施形態15に係る骨治療シート201aを説明するために示す図である。なお、図23及び後述する図24においては、固定用孔218については、1つのまとまりにつき1つの固定用孔218にのみ符号を表示し、他の固定用孔218についての符号の表示は省略している。また、図23及び図24において示す延出部216及び固定用孔218の数及び大きさは、必ずしも本発明の骨治療シートの実際の構成を反映するものではない。
[Embodiment 15]
FIG. 23 is a diagram shown for explaining the bone treatment sheet 201a according to the fifteenth embodiment. In addition, in FIG. 23 and FIG. 24 which will be described later, with respect to the fixing hole 218, the code is displayed only in one fixing hole 218 per group, and the display of the code for the other fixing holes 218 is omitted. ing. Further, the number and size of the extending portion 216 and the fixing hole 218 shown in FIGS. 23 and 24 do not necessarily reflect the actual configuration of the bone treatment sheet of the present invention.
 図24は、実施形態15に係る骨治療シート201aを骨B2に固定した状態を示す図である。図24(a)は実施形態15に係る骨の治療方法における配置工程に相当する工程を実施したあとの様子を示す平面図であり、図24(b)は図24(a)のA23-A23断面図である。 FIG. 24 is a diagram showing a state in which the bone treatment sheet 201a according to the fifteenth embodiment is fixed to the bone B2. FIG. 24 (a) is a plan view showing a state after performing a step corresponding to the placement step in the bone treatment method according to the fifteenth embodiment, and FIG. 24 (b) is a plan view showing the state after performing the step corresponding to the arrangement step, and FIG. It is a sectional view.
 実施形態15に係る骨治療シート201aは、基本的には実施形態11に係る骨治療シート201と同様の構成を有するが、損傷した骨(治療を想定する骨)B2に骨治療シート201aを固定するための固定構造を有する点で実施形態11に係る骨治療シート201とは異なる。 The bone treatment sheet 201a according to the 15th embodiment basically has the same configuration as the bone treatment sheet 201 according to the 11th embodiment, but the bone treatment sheet 201a is fixed to the damaged bone (bone assuming treatment) B2. It differs from the bone treatment sheet 201 according to the eleventh embodiment in that it has a fixed structure for the treatment.
 実施形態15における固定構造は、骨治療シート201aのいずれかの箇所から延出する延出部216と、延出部216を通過させることができる固定用孔218とを含む構造である。実施形態15においては、延出部216は骨治療シート201aの端部から延出し、固定用孔218は延出部216が存在する側とは反対側の端部付近に形成されている。なお、実施形態15においては延出部216にはナノ周期構造は形成されていないが、延出部216にもナノ周期構造が形成されていてもよい。固定用孔218は、図23に示すように、延出部216の延出方向に沿って複数形成されている。 The fixation structure in the fifteenth embodiment is a structure including an extension portion 216 extending from any portion of the bone treatment sheet 201a and a fixing hole 218 through which the extension portion 216 can pass. In the fifteenth embodiment, the extension portion 216 extends from the end portion of the bone treatment sheet 201a, and the fixing hole 218 is formed near the end portion on the side opposite to the side where the extension portion 216 exists. Although the nano-periodic structure is not formed in the extension portion 216 in the fifteenth embodiment, the nano-periodic structure may also be formed in the extension portion 216. As shown in FIG. 23, a plurality of fixing holes 218 are formed along the extending direction of the extending portion 216.
 実施形態15における固定構造は、図24に示すように、骨治療シート201aを骨B2に巻き付けた後、固定用孔218から延出部216を引き出すようにして通過させ、その後に延出部216を折り返すことで、損傷した骨B2に骨治療シート201aを固定することができる。なお、延出部216については、折り返した後に適切な長さとなるように切断してもよい。 As shown in FIG. 24, the fixation structure in the fifteenth embodiment is such that the bone treatment sheet 201a is wound around the bone B2 and then passed by pulling out the extension portion 216 from the fixation hole 218, and then the extension portion 216 is passed therethrough. The bone treatment sheet 201a can be fixed to the damaged bone B2 by folding back. The extension portion 216 may be cut so as to have an appropriate length after being folded back.
 実施形態15に係る骨治療シート201aは、上記した固定構造を有する点で実施形態12に係る骨治療シート201とは異なるが、損傷箇所D2(欠損が生じた部分)に対応する箇所にナノ周期構造が形成されている。このため、実施形態15に係る骨治療シート201aは、実施形態12に係る骨治療シート201と同様に、骨B2の治癒を促進させることが可能な骨治療シートとなる。 The bone treatment sheet 201a according to the 15th embodiment is different from the bone treatment sheet 201 according to the 12th embodiment in that it has the above-mentioned fixed structure, but the nanocycle is located at a portion corresponding to the damaged portion D2 (the portion where the defect has occurred). The structure is formed. Therefore, the bone treatment sheet 201a according to the 15th embodiment is a bone treatment sheet capable of promoting the healing of the bone B2, similarly to the bone treatment sheet 201 according to the 12th embodiment.
 また、実施形態15に係る骨治療シート201aによれば、損傷した骨B2に骨治療シート201aを固定するための固定構造を有するため、骨治療シート201aを固定するための部材を別途準備する必要がなくなり、骨治療シート201aを骨B2に固定するときの手間を軽減することが可能となる。 Further, according to the bone treatment sheet 201a according to the fifteenth embodiment, since the bone treatment sheet 201a has a fixing structure for fixing the bone treatment sheet 201a to the damaged bone B2, it is necessary to separately prepare a member for fixing the bone treatment sheet 201a. It becomes possible to reduce the labor when fixing the bone treatment sheet 201a to the bone B2.
 また、実施形態15に係る骨治療シート201aによれば、固定構造は、骨治療シート201aのいずれかの箇所から延出する延出部216と、延出部216を通過させることができる固定用孔218とを含む構造であるため、骨治療シート201aを形成する際に一体として成形することが可能な程度の簡易な構造で、骨治療シート201aを骨B2に巻きつけるようにするときに使用できる固定構造を構成することが可能となる。 Further, according to the bone treatment sheet 201a according to the fifteenth embodiment, the fixation structure is for fixing that can pass the extension portion 216 extending from any part of the bone treatment sheet 201a and the extension portion 216. Since it has a structure including holes 218, it has a simple structure that can be integrally molded when forming the bone treatment sheet 201a, and is used when the bone treatment sheet 201a is wound around the bone B2. It is possible to construct a fixed structure that can be formed.
 また、実施形態15に係る骨治療シート201aによれば、固定用孔218は、延出部216の延出方向に沿って複数形成されているため、さまざまな太さの骨に対応することが可能となる。 Further, according to the bone treatment sheet 201a according to the fifteenth embodiment, since a plurality of fixing holes 218 are formed along the extending direction of the extending portion 216, it is possible to correspond to bones of various thicknesses. It will be possible.
 なお、実施形態15に係る骨治療シート201aは、固定構造を有する点以外の点については実施形態11に係る骨治療シート201と実質的に同様の構成を有するため、実施形態11に係る骨治療シート201が有する効果のうち該当する効果も有する。 Since the bone treatment sheet 201a according to the fifteenth embodiment has substantially the same configuration as the bone treatment sheet 201 according to the eleventh embodiment except that it has a fixed structure, the bone treatment sheet 201 according to the eleventh embodiment has a substantially similar structure. Among the effects of the sheet 201, it also has the corresponding effect.
[実施形態16]
 図25は、実施形態16に係る骨治療シート(全体を図示せず。)における主構造210及び被覆膜211を示す図である。図25は、図16(d)に相当する図(図16(a)のA16で示す部分に相当する部分を拡大して示す図)である。
[Embodiment 16]
FIG. 25 is a diagram showing a main structure 210 and a coating film 211 in the bone treatment sheet (not shown as a whole) according to the 16th embodiment. FIG. 25 is a diagram corresponding to FIG. 16 (d) (a diagram showing an enlarged portion corresponding to the portion shown by A16 in FIG. 16 (a)).
 実施形態16に係る骨治療シートは、実施形態11に係る骨治療シート201と基本的に同様の構成を有するが、主構造210の少なくとも一部を覆う被覆膜211を備える点で実施形態11に係る骨治療シート201の場合とは異なる。 The bone treatment sheet according to the 16th embodiment has basically the same configuration as the bone treatment sheet 201 according to the 11th embodiment, but includes a covering film 211 that covers at least a part of the main structure 210. It is different from the case of the bone treatment sheet 201 according to the above.
 なお、被覆膜211は、骨治療シート全体に配置されていてもよいし、骨治療シートの一部のみに配置されていてもよい。被覆膜211としては、骨治療シートの用途等に応じて種々の材料や厚さからなるものを用いることができる。 The covering film 211 may be arranged on the entire bone treatment sheet, or may be arranged only on a part of the bone treatment sheet. As the coating film 211, those made of various materials and thicknesses can be used depending on the use of the bone treatment sheet and the like.
 実施形態16に係る骨治療シートは、被覆膜211を備える点で実施形態11に係る骨治療シート201とは異なるが、損傷箇所に対応する箇所にナノ周期構造が形成されている。このため、実施形態16に係る骨治療シートは、実施形態11に係る骨治療シート201と同様に、骨の治癒を促進させることが可能な骨治療シートとなる。 The bone treatment sheet according to the 16th embodiment is different from the bone treatment sheet 201 according to the 11th embodiment in that it includes a covering film 211, but a nanoperiodic structure is formed at a portion corresponding to the damaged portion. Therefore, the bone treatment sheet according to the 16th embodiment is a bone treatment sheet capable of promoting bone healing, similarly to the bone treatment sheet 201 according to the 11th embodiment.
 また、実施形態16に係る骨治療シートは、主構造210の少なくとも一部を覆う被覆膜211をさらに備えるため、主構造のみでは得ることが難しい性質を有する骨治療シートとすることが可能となる。 Further, since the bone treatment sheet according to the 16th embodiment further includes a covering film 211 that covers at least a part of the main structure 210, it is possible to obtain a bone treatment sheet having properties that are difficult to obtain from the main structure alone. Become.
 なお、実施形態16に係る骨治療シートは、被覆膜211を備える点以外の点については実施形態11に係る骨治療シート201と実質的に同様の構成を有するため、実施形態11に係る骨治療シート201が有する効果のうち該当する効果も有する。 Since the bone treatment sheet according to the 16th embodiment has substantially the same configuration as the bone treatment sheet 201 according to the 11th embodiment except that the covering film 211 is provided, the bone according to the 11th embodiment. Among the effects of the treatment sheet 201, it also has the corresponding effect.
[実施形態17]
 図26は、実施形態17に係る骨治療シート6を説明するために示す図である。図26(a)は骨治療シート6の平面図であり、図26(b)は図26(a)の断面図(図1(b)に相当する断面図)であり、図26(c)は図26(a)のA10で示す部分を拡大して示す図であり、図26(d)は図26(b)のA11で示す部分を拡大して示す図である。
[Embodiment 17]
FIG. 26 is a diagram shown for explaining the bone treatment sheet 6 according to the seventeenth embodiment. 26 (a) is a plan view of the bone treatment sheet 6, FIG. 26 (b) is a cross-sectional view of FIG. 26 (a) (a cross-sectional view corresponding to FIG. 1 (b)), and FIG. 26 (c). Is an enlarged view showing a portion shown by A10 in FIG. 26 (a), and FIG. 26 (d) is an enlarged view showing a portion shown by A11 in FIG. 26 (b).
 実施形態17に係る骨治療シート6は、基本的には実施形態1に係る骨治療シート1と同様の構成を有するが、周期性を有するナノスケールの凹凸構造からなるナノ周期構造が形成されている点で実施形態1に係る骨治療シート1とは異なる(図26参照。)。 The bone treatment sheet 6 according to the 17th embodiment basically has the same structure as the bone treatment sheet 1 according to the 1st embodiment, but a nano-periodic structure having a periodic nanoscale uneven structure is formed. This is different from the bone treatment sheet 1 according to the first embodiment (see FIG. 26).
 骨治療シート6においては、保持部61の表面にナノ周期構造が形成されている。主構造10の表面には、ナノ周期構造は形成されていない。なお、主構造10の表面にナノ周期構造が形成されていてもよい。 In the bone treatment sheet 6, a nanoperiodic structure is formed on the surface of the holding portion 61. No nanoperiodic structure is formed on the surface of the main structure 10. A nanoperiodic structure may be formed on the surface of the main structure 10.
 骨治療シート6におけるナノ周期構造は、実施形態11に係る骨治療シート201におけるナノ周期構造と同様のものであるため、再度の説明は省略する。骨治療シート6におけるナノ周期構造は、ナノスケールの構造を形成可能なあらゆる方法を用いて形成することが可能である。ナノ周期構造を形成可能な方法としては、刃物やレーザーによる切削、金型による押圧(例えば、プレス成型)及びガス、イオン、薬液等によるエッチング(プラズマエッチングを含む)を例示することができる。 Since the nano-periodic structure in the bone treatment sheet 6 is the same as the nano-periodic structure in the bone treatment sheet 201 according to the eleventh embodiment, the description thereof will be omitted again. The nanoperiodic structure in the bone treatment sheet 6 can be formed by any method capable of forming a nanoscale structure. Examples of methods capable of forming a nanoperiodic structure include cutting with a cutting tool or laser, pressing with a die (for example, press molding), and etching with gas, ions, chemicals, or the like (including plasma etching).
 実施形態17に係る骨治療シート6は、ナノ周期構造が形成されている点で実施形態1に係る骨治療シート1とは異なるが、保持部61を有するため、実施形態1に係る骨治療シート1と同様に、骨の治癒を促進させることが可能な骨治療シートとなる。また、実施形態17に係る骨治療シート6は、実施形態1に係る骨治療シート1が有する効果のうち、該当する効果を有する。 The bone treatment sheet 6 according to the 17th embodiment is different from the bone treatment sheet 1 according to the first embodiment in that a nano-periodic structure is formed, but has a holding portion 61, so that the bone treatment sheet 6 according to the first embodiment has a holding portion 61. Similar to No. 1, it becomes a bone treatment sheet capable of promoting bone healing. Further, the bone treatment sheet 6 according to the 17th embodiment has a corresponding effect among the effects of the bone treatment sheet 1 according to the 1st embodiment.
 また、実施形態17に係る骨治療シート6によれば、ナノ周期構造を骨の損傷箇所やその付近に配置して使用することで、表面形状の面からも骨の細胞(特に骨芽細胞)の増殖や分化を促進させることが可能となる。 Further, according to the bone treatment sheet 6 according to the seventeenth embodiment, by arranging and using the nano-periodic structure at or near the damaged part of the bone, bone cells (particularly osteoblasts) are also used in terms of surface shape. It becomes possible to promote the proliferation and differentiation of.
 なお、実施形態17で説明した内容以外の点については、実施形態17においても実施形態1で説明した態様がそのまま適用できる。 Regarding points other than the contents described in the 17th embodiment, the embodiment described in the 1st embodiment can be applied as it is in the 17th embodiment.
 以上、本発明を上記の各実施形態に基づいて説明したが、本発明は上記の各実施形態に限定されるものではない。その趣旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば、次のような変形も可能である。 Although the present invention has been described above based on each of the above embodiments, the present invention is not limited to each of the above embodiments. It can be carried out in various aspects within a range that does not deviate from the purpose, and for example, the following modifications are also possible.
(1)上記各実施形態において説明した構成要素の形状、数、位置等は例示であり、本発明の効果を損なわない範囲において変更することが可能である。 (1) The shapes, numbers, positions, and the like of the components described in each of the above embodiments are examples, and can be changed as long as the effects of the present invention are not impaired.
(2)上記実施形態13,14で説明した開口部の構成は例示であり、本発明はこれに限定されるものではない。図27は、変形例1に係る骨治療シート202aの平面図である。図28に示す開口部226aのように、開口部は平面視したときに円形に見える形状であってもよい。また、四角形や円形以外の形状であってもよい。また、開口部の配列も行列状の配列に限られるものではなく、例えば、千鳥状の配列としてもよい。 (2) The configuration of the opening described in the above embodiments 13 and 14 is an example, and the present invention is not limited thereto. FIG. 27 is a plan view of the bone treatment sheet 202a according to the first modification. Like the opening 226a shown in FIG. 28, the opening may have a shape that looks circular when viewed in a plan view. Further, the shape may be other than a quadrangle or a circle. Further, the arrangement of the openings is not limited to the matrix-like arrangement, and may be, for example, a staggered arrangement.
(3)上記実施形態8で説明した開口部40の構成も例示であり、本発明はこれに限定されるものではない。図28は、変形例2に係る骨治療シート4a,4bの平面図である。図28(a)に示す開口部40aのように、保持部11を有するような骨治療シートにおいても、開口部は平面視したときに円形に見える形状であってもよい。また、四角形や円形以外の形状であってもよい。また、開口部の配列も行列状の配列に限られるものではなく、例えば、千鳥状の配列としてもよい。また、図28(b)に示す開口部40bのように、保持部11を有するような骨治療シートにおいても、開口部はいわゆるスリット状の形状であってもよい。 (3) The configuration of the opening 40 described in the eighth embodiment is also an example, and the present invention is not limited thereto. FIG. 28 is a plan view of the bone treatment sheets 4a and 4b according to the modified example 2. Even in a bone treatment sheet having a holding portion 11 as in the opening 40a shown in FIG. 28A, the opening may have a shape that looks circular when viewed in a plan view. Further, the shape may be other than a quadrangle or a circle. Further, the arrangement of the openings is not limited to the matrix-like arrangement, and may be, for example, a staggered arrangement. Further, even in a bone treatment sheet having a holding portion 11 as in the opening 40b shown in FIG. 28 (b), the opening may have a so-called slit-like shape.
(4)本発明におけるナノ周期構造は、上記した帯状凹部S1又は帯状凸部S2からなるものに限定されるものではない。帯状凹部及び帯状凸部が連続する方向は、上記した帯状凹部S1又は帯状凸部S2の場合とは異なる方向であってもよい。また、例えば、帯状凹部及び帯状凸部は屈曲した形状や蛇行するような形状からなる構造であってもよい。また、ナノ周期構造は、格子状の凹部又は凸部を含む構造や、円形の凹凸を含む構造であってもよい。 (4) The nanoperiodic structure in the present invention is not limited to the one composed of the band-shaped concave portion S1 or the band-shaped convex portion S2 described above. The direction in which the band-shaped concave portion and the band-shaped convex portion are continuous may be different from the direction in the case of the band-shaped concave portion S1 or the band-shaped convex portion S2 described above. Further, for example, the band-shaped concave portion and the band-shaped convex portion may have a structure having a bent shape or a meandering shape. Further, the nanoperiodic structure may be a structure including a lattice-shaped concave or convex portion or a structure including a circular unevenness.
(5)上記実施形態13~15においては、骨治療シートを実施形態12に係る骨の治療方法に適用した場合を例に挙げて説明を行ったが、本発明はこれに限定されるものではない。上記実施形態13~15において説明したような骨治療シートであっても、実施形態11に係る骨の治療方法に適用することができる。つまり、上記実施形態において、損傷した骨として骨B1及び骨B2のうち一方のみを示して説明した骨治療シート及び骨の治療方法についても、基本的には、骨B1及び骨B2の両方に適用することが可能である。 (5) In the above-described 13 to 15 embodiments, the case where the bone treatment sheet is applied to the bone treatment method according to the 12th embodiment has been described as an example, but the present invention is not limited thereto. Absent. Even the bone treatment sheet as described in the 13th to 15th embodiments can be applied to the bone treatment method according to the 11th embodiment. That is, the bone treatment sheet and the bone treatment method described by showing only one of the bone B1 and the bone B2 as the damaged bone in the above embodiment are basically applied to both the bone B1 and the bone B2. It is possible to do.
(6)上記実施形態15において説明した骨治療シート201aには開口部が形成されていないが、本発明はこれに限定されるものではない。骨治療シート201aのような固定構造を有する骨治療シートにおいて開口部が形成されていてもよい。 (6) The bone treatment sheet 201a described in the 15th embodiment does not have an opening, but the present invention is not limited thereto. An opening may be formed in a bone treatment sheet having a fixed structure such as the bone treatment sheet 201a.
(7)上記実施形態8以外の実施形態において説明した保持部を有する骨治療シートにおいては、実施形態8における開口部40、又は、変形例における開口部40a,40bのような開口部は形成されていないが、本発明はこれに限定されるものではない。保持部を有する骨治療シートに開口部が形成されていてもよい。 (7) In the bone treatment sheet having the holding portion described in the embodiment other than the eighth embodiment, the opening 40 in the eighth embodiment or the openings 40a and 40b in the modified example are formed. However, the present invention is not limited thereto. An opening may be formed in the bone treatment sheet having the holding portion.
(8)上記実施形態16において説明した被覆膜を備える構成は、他の上記実施形態に記載したような骨治療シートにおいても適用可能である。 (8) The configuration including the coating film described in the 16th embodiment can also be applied to the bone treatment sheet as described in the other 16th embodiment.
(9)上記実施形態3における固定具100は骨固定用のプレートであったが、本発明はこれに限定されるものではない。プレート以外の固定具(例えば、ネジ、ピン、ワイヤー及びステープル)を単独で又は組み合わせて用いることもできる。 (9) The fixture 100 in the third embodiment is a plate for bone fixation, but the present invention is not limited thereto. Fixtures other than plates (eg, screws, pins, wires and staples) can also be used alone or in combination.
(10)本明細書における「骨の治癒」には「骨折の治癒」が含まれる。また、本明細書における「骨の治療方法」には「骨折の治療方法」が含まれる。例えば、実施形態1のように骨折した骨である骨B1が治療対象(骨治療シートを用いる対象)である場合には、「骨の治癒」は「骨折の治癒」であり、「骨の治療方法」は「骨折の治療方法」である。 (10) “Bone healing” in the present specification includes “fracture healing”. In addition, the "bone treatment method" in the present specification includes a "fracture treatment method". For example, when the fractured bone B1 is the treatment target (the target using the bone treatment sheet) as in the first embodiment, the “bone healing” is the “fracture healing” and the “bone treatment”. "Method" is "a method for treating bone fractures".
(11)上記実施形態11~16及び変形例1で説明したような骨治療シートにおいて、ナノ周期構造の代わりに周期性を有しないナノスケールの凹凸構造が形成されていてもよい。 (11) In the bone treatment sheet as described in the above embodiments 11 to 16 and the first modification, a nanoscale uneven structure having no periodicity may be formed instead of the nanoperiodic structure.
1,1a,2,3,4,4a,4b,5,6,7,7a,8,201,201a,202,202a,203…骨治療シート、10,90,210,220,230…主構造、11,31,61,71,81,91…保持部、20…足場材含有部、32…突出部、40,40a,40b,226,226a,236…開口部、50,216…延出部、52,218…固定用孔、100…固定具、110…本体部、120…留め具、211…被覆膜、212,214,222,224,232,234…表面、B1,B2…骨、Ba…皮質骨、Bb…海綿骨、D1,D2…損傷箇所、P1,P2…細孔、S…充填材、S1…帯状凹部、S2…帯状凸部 1,1a, 2,3,4,4a, 4b, 5,6,7,7a, 8,201,201a, 202,202a, 203 ... Bone treatment sheet, 10,90,210,220,230 ... Main structure , 11, 31, 61, 71, 81, 91 ... Holding part, 20 ... Scaffolding material containing part, 32 ... Protruding part, 40, 40a, 40b, 226, 226a, 236 ... Opening, 50, 216 ... Extension part , 52, 218 ... Fixing hole, 100 ... Fixing tool, 110 ... Main body, 120 ... Fastener, 211 ... Coating film, 212, 214, 222, 224, 232, 234 ... Surface, B1, B2 ... Bone, Ba ... cortical bone, Bb ... cancellous bone, D1, D2 ... damaged part, P1, P2 ... pore, S ... filler, S1 ... band-shaped recess, S2 ... band-shaped convex part

Claims (16)

  1.  損傷した骨の損傷箇所を覆うように配置することで骨の治療に用いるための骨治療シートであって、
     少なくとも一部にナノスケールの凹凸構造が形成されていることを特徴とする骨治療シート。
    It is a bone treatment sheet for use in bone treatment by arranging it so as to cover the damaged part of the damaged bone.
    A bone treatment sheet characterized in that a nanoscale uneven structure is formed at least in part.
  2.  骨治癒促進物質を保持する保持部を有し、
     前記保持部は、前記骨治癒促進物質を収容可能な多孔質構造からなり、
     前記多孔質構造を構成する細孔の壁面の少なくとも一部には、前記ナノスケールの凹凸構造が形成されていることを特徴とする請求項1に記載の骨治療シート。
    Has a retainer that holds bone healing promoters,
    The holding portion has a porous structure capable of accommodating the bone healing promoting substance.
    The bone treatment sheet according to claim 1, wherein the nanoscale uneven structure is formed on at least a part of the wall surface of the pores constituting the porous structure.
  3.  前記保持部は、骨治癒の足場となる足場材を含有することを特徴とする請求項2記載の骨治療シート。 The bone treatment sheet according to claim 2, wherein the holding portion contains a scaffolding material that serves as a scaffold for bone healing.
  4.  前記保持部は、少なくとも一部が、前記損傷した骨に配置したときに前記損傷箇所の内部に侵入可能に構成されていることを特徴とする請求項2又は3に記載の骨治療シート。 The bone treatment sheet according to claim 2 or 3, wherein at least a part of the holding portion is configured to be able to penetrate the inside of the damaged portion when placed on the damaged bone.
  5.  前記保持部は、前記損傷箇所に対応する突出部を有することを特徴とする請求項4に記載の骨治療シート。 The bone treatment sheet according to claim 4, wherein the holding portion has a protruding portion corresponding to the damaged portion.
  6.  前記保持部が、前記骨治癒促進物質として、多血小板血漿(Platelet-Rich Plasma)を保持していることを特徴とする請求項2~5のいずれかに記載の骨治療シート。 The bone treatment sheet according to any one of claims 2 to 5, wherein the holding portion holds platelet-rich plasma (Platelet-Rich Plasma) as the bone healing promoting substance.
  7.  生分解性を有することを特徴とする請求項1~6のいずれかに記載の骨治療シート。 The bone treatment sheet according to any one of claims 1 to 6, which is characterized by having biodegradability.
  8.  前記骨治療シートは、前記損傷箇所の外面に配置することで骨の治療に用いるための骨治療シートであって、
     前記損傷箇所に対応する箇所の少なくとも一部に、周期性を有するナノスケールの凹凸構造からなるナノ周期構造が形成されていることを特徴とする請求項1~7のいずれかに記載の骨治療シート。
    The bone treatment sheet is a bone treatment sheet for use in bone treatment by arranging it on the outer surface of the damaged portion.
    The bone treatment according to any one of claims 1 to 7, wherein a nano-periodic structure composed of a periodic nano-scale concavo-convex structure is formed in at least a part of the portion corresponding to the damaged portion. Sheet.
  9.  前記骨治療シートの主要形状を構成する主構造の少なくとも一部を覆う被覆膜をさらに備えることを特徴とする請求項8に記載の骨治療シート。 The bone treatment sheet according to claim 8, further comprising a coating film covering at least a part of the main structure constituting the main shape of the bone treatment sheet.
  10.  貫通孔である開口部が形成されていることを特徴とする請求項8又は9に記載の骨治療シート。 The bone treatment sheet according to claim 8 or 9, wherein an opening that is a through hole is formed.
  11.  請求項1~10のいずれかに記載の骨治療シートを準備する準備工程と、
     前記骨治療シートを、損傷した骨における損傷箇所の少なくとも一部を覆うように、前記損傷した骨の表面に配置する配置工程とを含むことを特徴とする動物の骨の治療方法。
    The preparatory step for preparing the bone treatment sheet according to any one of claims 1 to 10.
    A method for treating an animal bone, which comprises a placement step of arranging the bone treatment sheet on the surface of the damaged bone so as to cover at least a part of the damaged part in the damaged bone.
  12.  前記準備工程においては、請求項2~6のいずれかに記載の骨治療シートを準備し、
     前記配置工程においては、骨治癒促進物質を保持している前記骨治療シートを、前記損傷した骨における損傷箇所の少なくとも一部を覆うように、前記損傷した骨の表面に配置することを特徴とする請求項11に記載の動物の骨の治療方法。
    In the preparation step, the bone treatment sheet according to any one of claims 2 to 6 is prepared.
    The placement step is characterized in that the bone treatment sheet holding the bone healing promoting substance is placed on the surface of the damaged bone so as to cover at least a part of the damaged portion in the damaged bone. The method for treating an animal bone according to claim 11.
  13.  前記配置工程においては、前記損傷箇所の内部に前記骨治療シートにおける保持部の少なくとも一部を侵入させることを特徴とする請求項12に記載の動物の骨の治療方法。 The method for treating an animal bone according to claim 12, wherein in the placement step, at least a part of the holding portion of the bone treatment sheet is invaded inside the damaged portion.
  14.  前記配置工程の後に、固定具を用いて、損傷した骨に前記骨治療シートを固定する固定工程をさらに含むことを特徴とする請求項11~13のいずれかに記載の動物の骨の治療方法。 The method for treating an animal bone according to any one of claims 11 to 13, further comprising a fixing step of fixing the bone treatment sheet to the damaged bone by using a fixture after the placement step. ..
  15.  前記準備工程においては、請求項8~10のいずれかに記載の骨治療シートを準備し、
     前記配置工程においては、前記骨治療シートのナノ周期構造が前記損傷した骨と接触するように、前記骨治療シートを、前記損傷した骨の表面に配置することを特徴とする請求項11に記載の動物の骨の治療方法。
    In the preparation step, the bone treatment sheet according to any one of claims 8 to 10 is prepared.
    The eleventh aspect of claim 11, wherein in the placement step, the bone treatment sheet is placed on the surface of the damaged bone so that the nanoperiodic structure of the bone treatment sheet comes into contact with the damaged bone. How to treat animal bones.
  16.  前記損傷した骨は、欠損が生じた骨であり、
     前記準備工程と前記配置工程との間に、前記欠損が生じた部分に充填材を充填する充填工程をさらに含み、
     前記配置工程においては、前記充填材が充填された部分の少なくとも一部を覆うように前記骨治療シートを配置することを特徴とする請求項11~15のいずれかに記載の動物の骨の治療方法。
    The damaged bone is a defective bone.
    Between the preparatory step and the placement step, a filling step of filling the defective portion with a filler is further included.
    The treatment of animal bone according to any one of claims 11 to 15, wherein in the arrangement step, the bone treatment sheet is arranged so as to cover at least a part of the portion filled with the filler. Method.
PCT/JP2020/043521 2019-11-20 2020-11-20 Bone treatment sheet and method for treating animal bone WO2021100877A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021558482A JP7541749B2 (en) 2019-11-20 2020-11-20 Bone treatment sheet and animal bone treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019210063 2019-11-20
JP2019-210063 2019-11-20

Publications (1)

Publication Number Publication Date
WO2021100877A1 true WO2021100877A1 (en) 2021-05-27

Family

ID=75981612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043521 WO2021100877A1 (en) 2019-11-20 2020-11-20 Bone treatment sheet and method for treating animal bone

Country Status (2)

Country Link
JP (1) JP7541749B2 (en)
WO (1) WO2021100877A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100168771A1 (en) * 2008-11-24 2010-07-01 Georgia Tech Research Corporation Systems and methods to affect anatomical structures
US20110159070A1 (en) * 2008-07-03 2011-06-30 The Regents Of The University Of California Biomaterials and implants for enhanced cartilage formation, and methods for making and using them
US20140248585A1 (en) * 2013-03-01 2014-09-04 Shih-Liang Stanley Yang Medical barrier with micro pores
JP2016010690A (en) * 2015-07-31 2016-01-21 京セラメディカル株式会社 Substrate for bone induction regeneration
US20170100508A1 (en) * 2015-10-09 2017-04-13 Huazhong University Of Science And Technology Bio-artificial periosteum based on micropatterning of biomimetic mineralized calcium-phosphorus nanoparticles and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110159070A1 (en) * 2008-07-03 2011-06-30 The Regents Of The University Of California Biomaterials and implants for enhanced cartilage formation, and methods for making and using them
US20100168771A1 (en) * 2008-11-24 2010-07-01 Georgia Tech Research Corporation Systems and methods to affect anatomical structures
US20140248585A1 (en) * 2013-03-01 2014-09-04 Shih-Liang Stanley Yang Medical barrier with micro pores
JP2016010690A (en) * 2015-07-31 2016-01-21 京セラメディカル株式会社 Substrate for bone induction regeneration
US20170100508A1 (en) * 2015-10-09 2017-04-13 Huazhong University Of Science And Technology Bio-artificial periosteum based on micropatterning of biomimetic mineralized calcium-phosphorus nanoparticles and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2021100877A1 (en) 2021-05-27
JP7541749B2 (en) 2024-08-29

Similar Documents

Publication Publication Date Title
von Wilmowsky et al. Implants in bone: Part I. A current overview about tissue response, surface modifications and future perspectives
Teotia et al. Nano-hydroxyapatite bone substitute functionalized with bone active molecules for enhanced cranial bone regeneration
Lin et al. Low-temperature additive manufacturing of biomimic three-dimensional hydroxyapatite/collagen scaffolds for bone regeneration
Zhuang et al. A biomimetic zinc alloy scaffold coated with brushite for enhanced cranial bone regeneration
Shim et al. Efficacy of rhBMP-2 loaded PCL/PLGA/β-TCP guided bone regeneration membrane fabricated by 3D printing technology for reconstruction of calvaria defects in rabbit
Shim et al. Porosity effect of 3D-printed polycaprolactone membranes on calvarial defect model for guided bone regeneration
EP2134297B1 (en) Apparatus for tissue repair
KR100903761B1 (en) Implant material and process for producing the same
Gulati et al. Local drug delivery to the bone by drug-releasing implants: perspectives of nano-engineered titania nanotube arrays
Jung et al. Highly aligned porous Ti scaffold coated with bone morphogenetic protein‐loaded silica/chitosan hybrid for enhanced bone regeneration
US20140277569A1 (en) Hybrid osteoinductive bone graft
KR20020082231A (en) Shaped Particle and Composition for Bone Deficiency and Method of Making the Particle
Alluri et al. Regional gene therapy with 3D printed scaffolds to heal critical sized bone defects in a rat model
Senatov et al. Osseointegration evaluation of UHMWPE and PEEK-based scaffolds with BMP-2 using model of critical-size cranial defect in mice and push-out test
US10286103B2 (en) Method and apparatus to control the heterogeneous flow of bone cement and improve osseointegration of cemented implant
US9877808B2 (en) Membrane for inducing regeneration of bone/tissue, and method for producing same
KR20170093100A (en) Improved osteoinductive substrates and methods of making the same
JP2022035002A (en) Bone treatment sheet and animal bone treatment method
WO2021100877A1 (en) Bone treatment sheet and method for treating animal bone
Bow et al. Evaluation of a polyurethane platform for delivery of nanohydroxyapatite and decellularized bone particles in a porous three-dimensional scaffold
Lee et al. Generation of an rhBMP-2-loaded beta-tricalcium phosphate/hydrogel composite and evaluation of its efficacy on peri-implant bone formation
Hu Effects of alendronate-immobilized calcium phosphate coating on bone growth into porous tantalum: a gap model animal study
Barik et al. In-Vitro and In-Vivo Tracking of Cell-Biomaterial Interaction to Monitor the Process of Bone Regeneration
JP2021079109A (en) Bone restoration sheet, bone remedy tool and remedy method of bone of animal
WO2017069655A2 (en) Carbon implant for repairing bone defects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558482

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891228

Country of ref document: EP

Kind code of ref document: A1