WO2021100726A1 - Sterilization method - Google Patents

Sterilization method Download PDF

Info

Publication number
WO2021100726A1
WO2021100726A1 PCT/JP2020/042881 JP2020042881W WO2021100726A1 WO 2021100726 A1 WO2021100726 A1 WO 2021100726A1 JP 2020042881 W JP2020042881 W JP 2020042881W WO 2021100726 A1 WO2021100726 A1 WO 2021100726A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid fertilizer
ultraviolet light
liquid
wavelength
sterilization method
Prior art date
Application number
PCT/JP2020/042881
Other languages
French (fr)
Japanese (ja)
Inventor
敬祐 内藤
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2021100726A1 publication Critical patent/WO2021100726A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultra-violet radiation
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers
    • C05D9/02Other inorganic fertilisers containing trace elements
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/20Liquid fertilisers

Definitions

  • the present invention relates to a sterilization method, and particularly to a sterilization method of liquid fertilizer used for growing plants.
  • a method of growing a plant by using a liquid fertilizer (also referred to as "nutrient solution”) without using soil is known (see, for example, Patent Document 1). Specifically, the nutrient solution is sucked up by a pump from the nutrient solution tank containing the nutrient solution, and the nutrient solution is supplied to the cultivation tank in which the plant is placed, so that the plant is grown. .. This nutrient solution is circulated between the cultivation tank and the nutrient solution tank.
  • Patent Document 1 discloses a method of sterilizing (sterilizing) a nutrient solution by introducing the nutrient solution into a photocatalytic reactor. More specifically, light from a germicidal lamp having a main wavelength of 200 nm to 300 nm is used for a photocatalytic reactor in which a fiber sleeve containing silicon oxide as a main component is used as a base material and a photocatalyst made of titanium oxide is supported on the base material. A method of irradiating the light is disclosed.
  • Liquid fertilizer (nutrient solution) used for plant growth contains ions composed of metal elements such as iron, copper, zinc and manganese.
  • iron (II) ion is said to be necessary for the synthesis of chlorophyll, which is indispensable for photosynthesis, and is one of the important elements contained in liquid fertilizer.
  • An object of the present invention is to provide a sterilizing method capable of realizing a bactericidal effect while suppressing oxidation of metal ions contained in liquid fertilizer.
  • the present invention is a method for sterilizing liquid fertilizer.
  • the liquid fertilizer contains at least metal ions containing iron, and the liquid fertilizer contains at least iron-containing metal ions.
  • the liquid fertilizer is characterized by including a step (a) of irradiating the liquid fertilizer with ultraviolet light having a main emission wavelength in the range of 370 nm or more and 430 nm or less.
  • the light near 254 nm which is the peak wavelength of ultraviolet light emitted from a low-pressure mercury lamp, has a relatively high absorbance for liquid fertilizer.
  • the ultraviolet light having a main emission wavelength in the range of 370 nm or more and 430 nm or less has a significantly lower absorbance with respect to the liquid fertilizer than the light in the vicinity of 254 nm.
  • the high absorbance for liquid fertilizer means that when ultraviolet light is applied to the liquid fertilizer, the light energy is absorbed and the reaction of the above formula (1) is likely to occur.
  • the low absorbance for liquid fertilizer means that when ultraviolet light is applied to the liquid fertilizer, the ultraviolet light easily passes through the nutrient solution, so that the reaction of the above formula (1) is unlikely to occur. To do.
  • the present invention uses ultraviolet light having a main emission wavelength in the range of 370 nm or more and 430 nm or less, which is a wavelength longer than the above-mentioned 254 nm, and is used as a liquid fertilizer. It is an invention made by newly finding that the bactericidal ability can be ensured while suppressing the progress of oxidation of the metal ions contained in. Details will be described later in the section "Modes for Carrying Out the Invention".
  • the main emission wavelength of ultraviolet light is 390 nm or more and 410 nm or less, and more preferably, the main emission wavelength of ultraviolet light is 405 nm.
  • Porphyrin which is a kind of metabolite of bacteria, shows high absorption especially for light in the wavelength range of 390 nm to 410 nm, and it is considered that bactericidal performance is realized by the singlet oxygen generated during this absorption. Be done.
  • titanium dioxide which is generally used as a material for photocatalysts, has a bandgap energy of 388 nm.
  • a low-pressure mercury lamp is used as a light source because the wavelength is sufficiently shorter than 388 nm and is easily available from the viewpoint of surely showing the effect of the photocatalyst.
  • the liquid fertilizer is directly irradiated with ultraviolet light from such a low-pressure mercury lamp, for example, the above equation (1) proceeds, and the elements contained in the liquid fertilizer necessary for plant growth are reduced. It is as described above.
  • the "main emission wavelength” refers to the total integrated intensity in the emission spectrum when the wavelength region Z ( ⁇ ) of ⁇ 10 nm with respect to a certain wavelength ⁇ is defined on the emission spectrum. It refers to the wavelength ⁇ i in the wavelength region Z ( ⁇ i) showing an integrated intensity of 40% or more.
  • the step (a) may be a step of irradiating the ultraviolet light from a light source made of an LED.
  • ultraviolet light having a main emission wavelength in the range of 370 nm or more and 430 nm or less has low absorbance with respect to the nutrient solution and high transmittance. Therefore, the ultraviolet light can travel not only in the vicinity of the light source but also in a region away from the light source. Therefore, by realizing the light source with an LED element, it can be easily attached to the wall surface, the bottom surface, the ceiling, or the like of the device in which the liquid fertilizer is stored.
  • the liquid fertilizer after being irradiated with the ultraviolet light in the step (a) is supplied to a growing region of a plant grown using the liquid fertilizer through a pipe (b). It may have.
  • the sterilization method further includes a step (c) of delivering the liquid fertilizer from the growing region through a pipe to the region irradiated with the ultraviolet light.
  • the step (a), the step (b), and the step (c) may be repeatedly executed.
  • the sterilized liquid fertilizer can be constantly supplied to the plant without performing a separate step of replenishing the deficient metal ions.
  • the step (a) may be a step of irradiating the liquid fertilizer with the ultraviolet light from the outside of the region where the liquid fertilizer is stored.
  • sterilization of liquid fertilizer is realized while suppressing oxidation of metal ions contained in liquid fertilizer.
  • FIG. 1 is a drawing schematically showing a plant growing system, which is an example of the usage mode of the sterilization method according to the present invention.
  • the plant growing system 1 includes an area for growing the plant 10 (cultivation tank 6) and a storage tank 2 in which the liquid fertilizer 3 supplied to the cultivation tank 6 is stored.
  • the liquid fertilizer 3 contains components necessary for growing the plant 10, such as iron, copper, zinc, and manganese, depending on the type of the plant 10.
  • the liquid fertilizer 3 may contain at least iron ions.
  • the storage tank 2 is provided with a light source unit 4 including a plurality of LED light sources 4a.
  • Each LED light source 4a is configured to be capable of emitting ultraviolet light L1 having a main emission wavelength in the range of 370 nm or more and 430 nm or less.
  • each LED light source 4a emits ultraviolet light L1 having a main emission wavelength of 405 nm.
  • the light source unit 4 is arranged in the storage tank 2 outside the region where the liquid fertilizer 3 is stored.
  • the storage tank 2 and the cultivation tank 6 are connected by a pipe 5a and a pipe 5b.
  • the liquid fertilizer 3 stored in the storage tank 2 is supplied to the cultivation tank 6 via the pipe 5a, and the liquid fertilizer 3 staying in the cultivation tank 6 is released. It is sent to the storage tank 2 side via the pipe 5b.
  • the liquid fertilizer 3 stored in the storage tank 2 is irradiated with ultraviolet light L1 from the light source unit 4, so that the liquid fertilizer 3 is sterilized. Therefore, even if the liquid fertilizer 3 accumulated in the cultivation tank 6 contains pathogens, it can be returned to the cultivation tank 6 side again after being sterilized in the storage tank 2. As a result, in the cultivation tank 6, the plant 10 can be grown with the sterilized liquid fertilizer 3.
  • FIG. 2 shows the absorbance of each liquid of liquid fertilizer (Q1), liquid fertilizer diluted to 1/10 (Q2), aqueous chelated iron solution (Q3), and water (Q4) when irradiated with ultraviolet light of 405 nm. It is a graph which shows the result of having measured.
  • the liquids Q1 to Q4 those obtained by the following methods were adopted.
  • liquid Q1 a fertilizer for hydroponic cultivation "OAT House No. 1" manufactured by OAT Agrio Co., Ltd. was used, and a liquid mixed with tap water under the concentration specified by the A formulation was used. The reason why tap water was used in the liquid Q1 is to simulate the actual plant growing site.
  • liquid Q2 1 mL of liquid Q1 diluted with 9 mL of ultrapure water was used.
  • liquid Q3 a liquid prepared by the following method was used.
  • a stock solution was prepared by dissolving 1 g of a fertilizer for making a solution-cultivated fertilizer (product name: EDTA-FE-13, manufactured by Tamagoya Shoten) of 13% chelated iron in 100 mL of ultrapure water.
  • the stock solution was diluted with ultrapure water until the peak absorbance for ultraviolet light at 405 nm could be measured within the range of 0.5 or more and 1.5 or less to obtain liquid Q3. It should be noted that this dilution treatment was performed for the purpose of enabling verification of the wavelength at which the absorbance shows a peak.
  • FIG. 2 is a graph showing the absorbance of each liquid Q1 to Q4.
  • the liquid Q4 which is water (ultrapure water)
  • the liquid Q4 has extremely low absorbance with respect to light having a wavelength in a wide band of 240 nm to 430 nm, including the vicinity of 254 nm, which is the main peak wavelength of a low-pressure mercury lamp, that is, It can be seen that it shows high transmittance.
  • liquid Q1 which is a liquid fertilizer, has high absorbance for light having a wavelength of 254 nm, which is the main peak wavelength of a low-pressure mercury lamp, while has low absorbance for light having a wavelength in the range of 370 nm or more and 430 nm or less.
  • the liquid Q1 has an absorbance of 2.8 (au) for light having a wavelength of 254 nm, and an average absorbance of 0.2 (au. U.) for light having a wavelength in the range of 370 nm or more and 430 nm or less. ) About.
  • the liquid Q1 transmits light having a wavelength in the range of 370 nm or more and 430 nm or less about 14 to 15 times as much as light having a wavelength of 254 nm.
  • the liquid Q1 which is a liquid fertilizer absorbs a large amount of ultraviolet light in the vicinity of 254 nm, which is the main peak wavelength of the low-pressure mercury lamp, and generally transmits ultraviolet light in the range of 370 nm or more and 430 nm or less.
  • the amount absorbed by the liquid fertilizer is high. It is expected that the ultraviolet light will be absorbed and the ultraviolet light will not travel over a wide area in the storage tank. In other words, when sterilizing liquid fertilizer using ultraviolet light in such a wavelength band, the depth of the storage tank should be extremely shallow or at a high flow velocity in order to irradiate the entire liquid fertilizer with ultraviolet light. It is hypothesized that it is necessary to irradiate ultraviolet light while moving and stirring liquid fertilizer.
  • FIG. 3 is a graph showing the spectrum of ultraviolet light used in Example 1.
  • an LED irradiator having a wavelength of 405 nm (UniFiled SF150, manufactured by Ushio, Inc.) was used.
  • Comparative Example 1 among the ultraviolet light emitted from the low-pressure mercury lamp, the ultraviolet light obtained by passing through a filter that blocks ultraviolet light of 300 nm or more is used, so that only the wavelength in the vicinity of 254 nm is substantially emitted. Ultraviolet light, which appears as spectral intensity, was used.
  • the liquid Q2 was housed in a petri dish of ⁇ 30, and the iron (II) ion content concentration before irradiation was measured by a digital pack test (manufactured by Kyoritsu Rikagaku Kenkyusho Co., Ltd.). Next, from an irradiation distance of 50 mm, ultraviolet light emitted from each of the light sources of Example 1 and Comparative Example 1 was irradiated, and the concentration of iron (II) ions after irradiation was measured by the same method. The above measurement was performed a plurality of times with different exposure amounts.
  • FIG. 4 is a graph showing the relationship between the exposure amount of the irradiated ultraviolet light and the decrease amount of iron (II) ions contained in the liquid Q2 in each of Example 1 and Comparative Example 1.
  • the amount of decrease in iron (II) ions is the ratio of the amount of iron (II) ions contained in the liquid Q2 after irradiation to the amount of iron (II) ions contained in the liquid Q2 before irradiation. Calculated by value.
  • the amount of decrease in the iron (II) ion concentration is significantly smaller than that when the liquid fertilizer is irradiated with ultraviolet light having a wavelength of 254 nm at the same exposure amount. ..
  • the liquid Q3 composed of the aqueous chelated iron solution has high absorbance for ultraviolet light in the wavelength band of 240 nm to 280 nm, and has high absorbance for ultraviolet light in the wavelength band of 370 nm to 430 nm. Consistent with low absorbance results.
  • the reason why the liquid Q2 diluted to 1/10 was adopted instead of the liquid Q1 which is the liquid fertilizer itself in the verification 2 is as follows. As described above with reference to FIG. 2, in the case of liquid Q1, it hardly transmits ultraviolet light of 254 nm in the first place. Therefore, even if the liquid Q1 is irradiated with the ultraviolet light (254 nm) of Comparative Example 1, most of the ultraviolet light is absorbed on the surface thereof, and as a result, under the same conditions as the ultraviolet light (405 nm) of Example 1. , Due to the inability to compare the degree of decrease in iron (II) ion concentration.
  • the exposure amount was adjusted by changing the time during which the ultraviolet light from the light source was irradiated, and the degree of decrease in the amount of Staphylococcus aureus contained in the liquid Q1 was compared before and after the irradiation.
  • the amount of Staphylococcus aureus after being irradiated with ultraviolet light was measured by smearing it on a standard agar medium, culturing at 37 ° C. for 48 hours, and then counting the generated colonies.
  • FIG. 5 is a graph showing the relationship between the exposure amount of ultraviolet light emitted from the light source of Example 1 and the decrease amount of the content of Staphylococcus aureus contained in the liquid Q2.
  • the "inactivation rate" on the vertical axis is calculated by the Log value of the content of Staphylococcus aureus contained in the liquid Q1 after irradiation with respect to the content of Staphylococcus aureus contained in the liquid Q1 before irradiation. It was.
  • Staphylococcus aureus contained in the liquid Q1 can be reduced to about 1/10. Furthermore, by setting the exposure amount to 100 J / cm 2 , the Staphylococcus aureus contained in the liquid Q1 can be reduced to almost 1/100, and by setting the exposure amount to 280 J / cm 2 , it is contained in the liquid Q1. It can be seen that the amount of Staphylococcus aureus can be reduced to almost 1/10000.
  • the bactericidal effect is exhibited by irradiating with ultraviolet light having a wavelength of 405 nm. It is considered that the reason for this is that, as described above in Verification 1, the ultraviolet light having a wavelength of 405 nm exhibits the property of transmitting through the liquid fertilizer, so that the ultraviolet light travels throughout the liquid fertilizer.
  • ultraviolet light having a wavelength of 254 nm (Comparative Example 2) is not used because the ultraviolet light in this wavelength band does not pass through the liquid fertilizer in the first place, so that it has a sufficient bactericidal action over the entire liquid fertilizer. This is because it is not possible to show.
  • the main emission wavelength of ultraviolet light used for sterilizing liquid fertilizers is more preferably 390 nm or more and 410 nm or less.
  • the light source unit 4 is composed of the LED light source 4a that emits the ultraviolet light L1 having a main emission wavelength of 370 nm or more and 430 nm or less, so that the ultraviolet light L1 is contained in the storage tank 2. It proceeds through the stored liquid fertilizer 3. Therefore, it is not always necessary to install the light source unit 4 in the liquid fertilizer 3, and as shown in FIG. 1, the light source unit 4 can be installed at a position away from the liquid fertilizer 3. In this case, the waterproof design for the light source unit 4 is not always necessary.
  • filters may be installed at the storage tank 2, the cultivation tank 6, the pipes (5a, 5b), the inlet or the outlet of the pump 7, and the like.
  • the liquid fertilizer 3 may be sterilized in a sterilization treatment tank 9 provided separately from the storage tank 2.
  • the sterilization treatment tank 9 has a light source unit 4 arranged inside a mantle tube designed to be waterproof.
  • the liquid fertilizer 3 stored in the storage tank 2 is sent to the sterilization treatment tank 9 by the pump 7 via the pipe 5a.
  • the liquid fertilizer 3 is sterilized by the ultraviolet light L1 emitted from the light source unit 4 arranged in the sterilization tank 9.
  • the sterilized liquid fertilizer 3 is sent to the cultivation tank 6 via the pipe 5c. Further, the liquid fertilizer 3 that has remained in the cultivation tank 6 for a certain period of time is sent to the storage tank 2 via the pipe 5b.
  • the inside of the sterilization treatment tank 9 may be completely filled with the liquid fertilizer 3, or the liquid level of the liquid fertilizer 3 may be accommodated in a state of being in contact with the atmosphere.
  • the plant growing system 1 may include a plurality of storage tanks 2 (2a, 2b) in which the light source unit 4 is built.
  • the liquid fertilizer 3 which has already been sterilized in advance to the cultivation tank 6 while performing the sterilization treatment on the liquid fertilizer 3.
  • the pipe 5b and the pipe 5d are connected via the check valve 11, and the pipe 5a and the pipe 5c are connected via the check valve 12.
  • the sterilized liquid fertilizer 3 is supplied to the cultivation tank 6 via the pipe 5a from the storage tank 2a in which the liquid fertilizer 3 that has already been sterilized is stored. To. At this time, the liquid fertilizer 3 kept in the cultivation tank 6 for a certain period of time is sent out to the storage tank 2a through the pipe 5b. In FIG. 8A, the flow of the liquid fertilizer 3 at this time is illustrated by the broken line arrow d1.
  • the ultraviolet light L1 from the light source unit 4 is emitted to the stored liquid fertilizer 3.
  • the sterilization process is performed by being irradiated.
  • the light source unit 4 in the storage tank 2a may be turned off, may be turned on with the same output as during the sterilization process, or may be turned on in a dimmed state. You can leave it.
  • the cultivation tank 6 is sterilized from the storage tank 2b in which the liquid fertilizer 3 that has already been sterilized is stored, via the pipe 5c.
  • the treated liquid fertilizer 3 is supplied.
  • the liquid fertilizer 3 kept in the cultivation tank 6 for the above period is sent out to the storage tank 2b through the pipe 5d.
  • the flow of the liquid fertilizer 3 at this time is illustrated by the broken line arrow d2.
  • the ultraviolet light L1 from the light source unit 4 is emitted to the stored liquid fertilizer 3.
  • the sterilization process is performed by being irradiated.
  • the light source unit 4 in the storage tank 2b may be turned off, may be turned on with the same output as during the sterilization process, or may be turned on in a dimmed state. You can leave it.
  • the sterilization light source unit 4 may be arranged in the liquid of the liquid fertilizer 3 stored in the storage tank 2.
  • the light source unit 4 may be arranged in the mantle tube designed to be waterproof, as in the configuration described above with reference to FIG.
  • the light source unit 4 includes a plurality of LED light sources 4a.
  • the structure of the light source unit 4 is not limited as long as it has a configuration capable of emitting ultraviolet light L1 whose main emission wavelength is in the range of 370 nm or more and 430 nm or less.
  • a surface light source it is preferable to use a surface light source.

Abstract

Provided is a sterilization method which makes it possible to suppress the oxidation of metal ions contained in a liquid fertilizer, and to attain a sterilizing effect. The present invention pertains to a liquid fertilizer sterilization method. The liquid fertilizer contains metal ions which at least include iron. This sterilization method includes a step (a) for irradiating the liquid fertilizer with ultraviolet light having a principal light emission wavelength in the range of 370-410nm, inclusive.

Description

殺菌方法Sterilization method
 本発明は殺菌方法に関し、特に植物育成に利用される液体肥料の殺菌方法に関する。 The present invention relates to a sterilization method, and particularly to a sterilization method of liquid fertilizer used for growing plants.
 従来、土壌を用いずに、液体肥料(「養液」とも称される。)を用いて、植物を育成する方法が知られている(例えば、特許文献1参照)。具体的には、養液が収容された養液槽からポンプによって養液が吸い上げられて、植物が載置されている栽培槽に対して養液が供給されることで、植物が育成される。なお、この養液は、栽培槽と養液槽との間で循環される。 Conventionally, a method of growing a plant by using a liquid fertilizer (also referred to as "nutrient solution") without using soil is known (see, for example, Patent Document 1). Specifically, the nutrient solution is sucked up by a pump from the nutrient solution tank containing the nutrient solution, and the nutrient solution is supplied to the cultivation tank in which the plant is placed, so that the plant is grown. .. This nutrient solution is circulated between the cultivation tank and the nutrient solution tank.
 ところで、栽培槽内で病原菌が発生するなどの事情により、栽培を継続していく過程で、養液に病原菌が繁殖する場合がある。特許文献1では、養液を光触媒反応器に導入することで、養液を除菌(殺菌)する方法が開示されている。より詳細には、酸化ケイ素を主成分とした繊維スリーブを基材とし、この基材に酸化チタンからなる光触媒を担持させてなる光触媒反応器に対して、殺菌灯から主波長200nm~300nmの光を照射する方法が開示されている。 By the way, due to circumstances such as the generation of pathogens in the cultivation tank, pathogens may propagate in the nutrient solution in the process of continuing cultivation. Patent Document 1 discloses a method of sterilizing (sterilizing) a nutrient solution by introducing the nutrient solution into a photocatalytic reactor. More specifically, light from a germicidal lamp having a main wavelength of 200 nm to 300 nm is used for a photocatalytic reactor in which a fiber sleeve containing silicon oxide as a main component is used as a base material and a photocatalyst made of titanium oxide is supported on the base material. A method of irradiating the light is disclosed.
特開2003-274774号公報Japanese Unexamined Patent Publication No. 2003-274774
 植物育成に利用される液体肥料(養液)には、鉄、銅、亜鉛、マンガンなどの金属元素からなるイオンが含まれる。特に、鉄(II)イオンは、光合成に不可欠なクロロフィルの合成に必要であるとされており、液体肥料に含まれる重要な要素な一つである。 Liquid fertilizer (nutrient solution) used for plant growth contains ions composed of metal elements such as iron, copper, zinc and manganese. In particular, iron (II) ion is said to be necessary for the synthesis of chlorophyll, which is indispensable for photosynthesis, and is one of the important elements contained in liquid fertilizer.
 しかし、殺菌灯として一般的に利用されている低圧水銀灯からの紫外光(ピーク波長185nm、254nm)が、直接液体肥料に対して照射されると、鉄(II)イオンが酸化されて、鉄(III)イオンに変化してしまう。この変化は、下記(1)式の反応によるものと考えられる。
 2Fe2+ + (1/2)O2 + H+ = 2Fe3+ + H2O    (1)
However, when ultraviolet light (peak wavelength 185 nm, 254 nm) from a low-pressure mercury lamp generally used as a germicidal lamp is directly applied to liquid fertilizer, iron (II) ions are oxidized and iron (II) is oxidized. III) It changes to ions. This change is considered to be due to the reaction of the following equation (1).
2Fe 2+ + (1/2) O 2 + H + = 2Fe 3+ + H 2 O (1)
 植物の多くは、鉄(III)イオンの状態では吸収できない。このため、上記(1)式の反応が生じると、事実上、植物にとって、育成に必要な要素の吸収量が低下することになる。このため、液体肥料に対して鉄(II)イオンの成分を追加(補充)する工程が必要となる。 Many plants cannot be absorbed in the state of iron (III) ions. Therefore, when the reaction of the above formula (1) occurs, the amount of absorption of the elements necessary for growing the plant is practically reduced. Therefore, a step of adding (replenishing) the iron (II) ion component to the liquid fertilizer is required.
 本発明は、液体肥料に含まれる金属イオンの酸化を抑制しつつ、殺菌効果を実現することのできる殺菌方法を提供することを目的とする。 An object of the present invention is to provide a sterilizing method capable of realizing a bactericidal effect while suppressing oxidation of metal ions contained in liquid fertilizer.
 本発明は、液体肥料の殺菌方法であって、
 前記液体肥料は、少なくとも鉄を含む金属イオンを含有しており、
 前記液体肥料に対して、主たる発光波長が370nm以上、430nm以下の範囲内である紫外光を照射する工程(a)を含むことを特徴とする。
The present invention is a method for sterilizing liquid fertilizer.
The liquid fertilizer contains at least metal ions containing iron, and the liquid fertilizer contains at least iron-containing metal ions.
The liquid fertilizer is characterized by including a step (a) of irradiating the liquid fertilizer with ultraviolet light having a main emission wavelength in the range of 370 nm or more and 430 nm or less.
 本発明者(ら)の鋭意研究により、低圧水銀灯から発せられる紫外光のピーク波長である254nmの近傍の光は、液体肥料に対する吸光度が比較的高いことが確認された。一方、主たる発光波長が370nm以上、430nm以下の範囲内である紫外光は、液体肥料に対する吸光度が、前記254nm近傍の光と比べて、著しく低いことが確認された。 Through the diligent research of the present inventors, it was confirmed that the light near 254 nm, which is the peak wavelength of ultraviolet light emitted from a low-pressure mercury lamp, has a relatively high absorbance for liquid fertilizer. On the other hand, it was confirmed that the ultraviolet light having a main emission wavelength in the range of 370 nm or more and 430 nm or less has a significantly lower absorbance with respect to the liquid fertilizer than the light in the vicinity of 254 nm.
 液体肥料に対する吸光度が高いということは、紫外光が液体肥料に対して照射されると、その光エネルギーが吸収されることで上記(1)式の反応を生じやすいことを意味する。一方、液体肥料に対する吸光度が低いということは、紫外光が液体肥料に対して照射されると、この紫外光は養液を透過しやすいため、上記(1)式の反応は生じにくいことを意味する。 The high absorbance for liquid fertilizer means that when ultraviolet light is applied to the liquid fertilizer, the light energy is absorbed and the reaction of the above formula (1) is likely to occur. On the other hand, the low absorbance for liquid fertilizer means that when ultraviolet light is applied to the liquid fertilizer, the ultraviolet light easily passes through the nutrient solution, so that the reaction of the above formula (1) is unlikely to occur. To do.
 一般的に、殺菌の用途には、DNAの吸収スペクトルのピーク値に近い254nmの紫外光が用いられることが多い。これに対し、本発明は、本発明者らの鋭意研究の結果、前記254nmよりも長波長である、主たる発光波長が370nm以上、430nm以下の範囲内である紫外光を用いることで、液体肥料に含まれる金属イオンの酸化の進行を抑制しながらも、殺菌能力を担保できることを新たに見出したことでなされた発明である。詳細は、「発明を実施するための形態」の項で後述される。 Generally, for sterilization applications, ultraviolet light of 254 nm, which is close to the peak value of the absorption spectrum of DNA, is often used. On the other hand, as a result of diligent research by the present inventors, the present invention uses ultraviolet light having a main emission wavelength in the range of 370 nm or more and 430 nm or less, which is a wavelength longer than the above-mentioned 254 nm, and is used as a liquid fertilizer. It is an invention made by newly finding that the bactericidal ability can be ensured while suppressing the progress of oxidation of the metal ions contained in. Details will be described later in the section "Modes for Carrying Out the Invention".
 なお、好ましくは、紫外光の主たる発光波長は390nm以上、410nm以下であり、より好ましくは、紫外光の主たる発光波長は405nmである。菌の代謝物の一種であるポルフィリンは、特に波長390nm~410nmの範囲の光に対して高い吸収を示し、この吸収の際に発生される一重項酸素によって、殺菌性能が実現されるものと考えられる。 It should be noted that preferably, the main emission wavelength of ultraviolet light is 390 nm or more and 410 nm or less, and more preferably, the main emission wavelength of ultraviolet light is 405 nm. Porphyrin, which is a kind of metabolite of bacteria, shows high absorption especially for light in the wavelength range of 390 nm to 410 nm, and it is considered that bactericidal performance is realized by the singlet oxygen generated during this absorption. Be done.
 ところで、光触媒の材料として一般的に利用される二酸化チタンは、バンドギャップエネルギーが388nmである。そして、光触媒の効果を確実に示す観点から、388nmよりも充分に短波長であり、且つ、容易に入手できるため、光源として低圧水銀灯が利用される。しかし、このような低圧水銀灯からの紫外光が、液体肥料に対して直接照射されると、例えば上記(1)式が進行して、液体肥料に含まれる、植物の育成に必要な要素が低下してしまうことは上述した通りである。 By the way, titanium dioxide, which is generally used as a material for photocatalysts, has a bandgap energy of 388 nm. A low-pressure mercury lamp is used as a light source because the wavelength is sufficiently shorter than 388 nm and is easily available from the viewpoint of surely showing the effect of the photocatalyst. However, when the liquid fertilizer is directly irradiated with ultraviolet light from such a low-pressure mercury lamp, for example, the above equation (1) proceeds, and the elements contained in the liquid fertilizer necessary for plant growth are reduced. It is as described above.
 鉄以外の、マンガン、銅、亜鉛についても同様に、短波長の紫外光が照射されることで、酸化反応が生じる。上記方法によれば、これらの金属イオンを含む液体肥料が用いられている場合であっても、同様に、植物の育成に必要な要素の低下を抑制しながら、殺菌効果を示すことが可能となる。 Similarly, manganese, copper, and zinc other than iron also undergo an oxidation reaction when exposed to short-wavelength ultraviolet light. According to the above method, even when a liquid fertilizer containing these metal ions is used, it is possible to similarly exhibit a bactericidal effect while suppressing a decrease in elements necessary for plant growth. Become.
 なお、本明細書において、「主たる発光波長」とは、ある波長λに対して±10nmの波長域Z(λ)を発光スペクトル上で規定した場合において、発光スペクトル内における全積分強度に対して40%以上の積分強度を示す波長域Z(λi)における、波長λiを指す。 In the present specification, the "main emission wavelength" refers to the total integrated intensity in the emission spectrum when the wavelength region Z (λ) of ± 10 nm with respect to a certain wavelength λ is defined on the emission spectrum. It refers to the wavelength λi in the wavelength region Z (λi) showing an integrated intensity of 40% or more.
 前記工程(a)は、LEDからなる光源から前記紫外光を照射する工程であるものとしても構わない。 The step (a) may be a step of irradiating the ultraviolet light from a light source made of an LED.
 上述したように、主たる発光波長が370nm以上、430nm以下の範囲内である紫外光は、養液に対する吸光度が低く、透過率が高い。このため、光源の近傍のみならず、光源から離れた領域まで紫外光を進行させることができる。よって、光源をLED素子で実現することで、液体肥料が貯留されている装置の壁面や底面、天井などに容易に取り付けることができる。 As described above, ultraviolet light having a main emission wavelength in the range of 370 nm or more and 430 nm or less has low absorbance with respect to the nutrient solution and high transmittance. Therefore, the ultraviolet light can travel not only in the vicinity of the light source but also in a region away from the light source. Therefore, by realizing the light source with an LED element, it can be easily attached to the wall surface, the bottom surface, the ceiling, or the like of the device in which the liquid fertilizer is stored.
 前記殺菌方法は、前記工程(a)によって前記紫外光が照射された後の前記液体肥料を、当該液体肥料を用いて生育される植物の育成領域に対して、配管を通じて供給する工程(b)を有するものとしても構わない。 In the sterilization method, the liquid fertilizer after being irradiated with the ultraviolet light in the step (a) is supplied to a growing region of a plant grown using the liquid fertilizer through a pipe (b). It may have.
 この場合において、前記殺菌方法は、更に前記育成領域から配管を通じて、前記紫外光が照射される領域に対して前記液体肥料を送り出す工程(c)を有し、
 前記工程(a)、前記工程(b)、及び前記工程(c)が繰り返し実行されるものとしても構わない。
In this case, the sterilization method further includes a step (c) of delivering the liquid fertilizer from the growing region through a pipe to the region irradiated with the ultraviolet light.
The step (a), the step (b), and the step (c) may be repeatedly executed.
 かかる方法によれば、不足する金属イオンを補給する別途の工程を実行することなく、殺菌処理が施された液体肥料を常時植物に対して供給することができる。 According to this method, the sterilized liquid fertilizer can be constantly supplied to the plant without performing a separate step of replenishing the deficient metal ions.
 前記工程(a)は、前記液体肥料が貯留されている領域の外側から、前記液体肥料に対して前記紫外光を照射する工程であるものとしても構わない。 The step (a) may be a step of irradiating the liquid fertilizer with the ultraviolet light from the outside of the region where the liquid fertilizer is stored.
 本発明の殺菌方法によれば、液体肥料に含まれる金属イオンの酸化を抑制しつつ、液体肥料に対する殺菌が実現される。 According to the sterilization method of the present invention, sterilization of liquid fertilizer is realized while suppressing oxidation of metal ions contained in liquid fertilizer.
本発明に係る殺菌方法の利用態様の一例である、植物育成システムを模式的に示す図面である。It is a drawing which shows typically the plant growing system which is an example of the use mode of the sterilization method which concerns on this invention. 各液体Q1~Q4の吸光度を示すグラフである。It is a graph which shows the absorbance of each liquid Q1 to Q4. 実施例1において用いられた紫外光のスペクトルを示すグラフである。It is a graph which shows the spectrum of the ultraviolet light used in Example 1. 実施例1及び比較例1のそれぞれの光源によって照射された紫外光の露光量と、液体Q2に含まれる鉄(II)イオンの減少量との関係を示すグラフである。It is a graph which shows the relationship between the exposure amount of the ultraviolet light irradiated by each of the light sources of Example 1 and Comparative Example 1 and the amount of decrease of iron (II) ion contained in liquid Q2. 実施例1の光源から照射された紫外光の露光量と、液体Q2に含まれる黄色ブドウ球菌の含有量の減少量との関係を示すグラフである。It is a graph which shows the relationship between the exposure amount of ultraviolet light irradiated from the light source of Example 1 and the amount of decrease of the content of Staphylococcus aureus contained in liquid Q2. 本発明に係る殺菌方法の利用態様の別の一例である、植物育成システムを模式的に示す図面である。It is a drawing which shows typically the plant growing system which is another example of the use mode of the sterilization method which concerns on this invention. 本発明に係る殺菌方法の利用態様の別の一例である、植物育成システムを模式的に示す図面である。It is a drawing which shows typically the plant growing system which is another example of the use mode of the sterilization method which concerns on this invention. 図7に示す植物育成システムにおいて、ある期間T1内における液体肥料の通流の態様を模式的に示す図面である。In the plant growing system shown in FIG. 7, it is a drawing which shows typically the mode of flow of the liquid fertilizer in T1 for a certain period. 図7に示す植物育成システムにおいて、ある期間T2内における液体肥料の通流の態様を模式的に示す図面である。In the plant growing system shown in FIG. 7, it is a drawing which shows typically the mode of the flow of the liquid fertilizer within a certain period T2. 本発明に係る殺菌方法の利用態様の別の一例である、植物育成システムを模式的に示す図面である。It is a drawing which shows typically the plant growing system which is another example of the use mode of the sterilization method which concerns on this invention.
 本発明に係る殺菌方法の実施形態につき、図面を参照して説明する。 An embodiment of the sterilization method according to the present invention will be described with reference to the drawings.
 [システム構成例]
 図1は、本発明に係る殺菌方法の利用態様の一例である、植物育成システムを模式的に示す図面である。植物育成システム1は、植物10を育成する領域(栽培槽6)と、栽培槽6に対して供給される液体肥料3が貯留される貯留槽2とを備える。液体肥料3には、鉄を初めとして、銅、亜鉛、マンガンなど、植物10の種類に応じて、植物10の育成に必要な成分が含まれている。なお、液体肥料3には少なくとも鉄イオンが含まれているものとして構わない。
[System configuration example]
FIG. 1 is a drawing schematically showing a plant growing system, which is an example of the usage mode of the sterilization method according to the present invention. The plant growing system 1 includes an area for growing the plant 10 (cultivation tank 6) and a storage tank 2 in which the liquid fertilizer 3 supplied to the cultivation tank 6 is stored. The liquid fertilizer 3 contains components necessary for growing the plant 10, such as iron, copper, zinc, and manganese, depending on the type of the plant 10. The liquid fertilizer 3 may contain at least iron ions.
 貯留槽2には、複数のLED光源4aを含む光源部4が備えられている。各LED光源4aは、主たる発光波長が370nm以上、430nm以下の範囲内である紫外光L1を出射可能に構成されている。一例として、各LED光源4aは、主たる発光波長が405nmである紫外光L1を出射する。図1に示す植物育成システム1では、光源部4は、貯留槽2内において液体肥料3が貯留されている領域の外側に配置されている。 The storage tank 2 is provided with a light source unit 4 including a plurality of LED light sources 4a. Each LED light source 4a is configured to be capable of emitting ultraviolet light L1 having a main emission wavelength in the range of 370 nm or more and 430 nm or less. As an example, each LED light source 4a emits ultraviolet light L1 having a main emission wavelength of 405 nm. In the plant growing system 1 shown in FIG. 1, the light source unit 4 is arranged in the storage tank 2 outside the region where the liquid fertilizer 3 is stored.
 貯留槽2と栽培槽6とは、配管5a及び配管5bによって連絡されている。ポンプ7が駆動することで、貯留槽2に貯留されている液体肥料3が、配管5aを介して栽培槽6に対して供給されると共に、栽培槽6内に留まっていた液体肥料3は、配管5bを介して貯留槽2側に送られる。 The storage tank 2 and the cultivation tank 6 are connected by a pipe 5a and a pipe 5b. By driving the pump 7, the liquid fertilizer 3 stored in the storage tank 2 is supplied to the cultivation tank 6 via the pipe 5a, and the liquid fertilizer 3 staying in the cultivation tank 6 is released. It is sent to the storage tank 2 side via the pipe 5b.
 貯留槽2内に貯留された液体肥料3に対して、光源部4から紫外光L1が照射されることで、液体肥料3に対して殺菌処理が施される。よって、栽培槽6に溜まっていた液体肥料3に病原菌が含まれていた場合であっても、貯留槽2で殺菌処理が施された後に、再び栽培槽6側に戻すことができる。これにより、栽培槽6では、滅菌された液体肥料3によって植物10の育成を行うことができる。 The liquid fertilizer 3 stored in the storage tank 2 is irradiated with ultraviolet light L1 from the light source unit 4, so that the liquid fertilizer 3 is sterilized. Therefore, even if the liquid fertilizer 3 accumulated in the cultivation tank 6 contains pathogens, it can be returned to the cultivation tank 6 side again after being sterilized in the storage tank 2. As a result, in the cultivation tank 6, the plant 10 can be grown with the sterilized liquid fertilizer 3.
 光源部4から発せられる紫外光L1の主たる発光波長を370nm以上、430nm以下の範囲内とすることで、液体肥料3に含まれる鉄イオンの酸化を抑制しつつ、液体肥料3に対する殺菌を行うことができる。以下、この理由について説明する。 By setting the main emission wavelength of the ultraviolet light L1 emitted from the light source unit 4 to the range of 370 nm or more and 430 nm or less, sterilization of the liquid fertilizer 3 is performed while suppressing the oxidation of iron ions contained in the liquid fertilizer 3. Can be done. The reason for this will be described below.
 [検証]
 〈検証1〉
 図2は、液体肥料(Q1)、1/10に希釈した液体肥料(Q2)、キレート鉄水溶液(Q3)、及び水(Q4)の各液体に対し、405nmの紫外光を照射したときの吸光度を測定した結果を示すグラフである。液体Q1~Q4は、以下の方法で得られたものが採用された。
[Verification]
<Verification 1>
FIG. 2 shows the absorbance of each liquid of liquid fertilizer (Q1), liquid fertilizer diluted to 1/10 (Q2), aqueous chelated iron solution (Q3), and water (Q4) when irradiated with ultraviolet light of 405 nm. It is a graph which shows the result of having measured. As the liquids Q1 to Q4, those obtained by the following methods were adopted.
 [利用された液体]
 液体Q1としては、OATアグリオ株式会社製の養液栽培用肥料「OATハウス1号」を用い、A処方によって規定された濃度の下で水道水に対して混合された液体が利用された。なお、液体Q1において水道水が利用された理由は、実際の植物育成の現場を模擬する目的である。
[Liquid used]
As the liquid Q1, a fertilizer for hydroponic cultivation "OAT House No. 1" manufactured by OAT Agrio Co., Ltd. was used, and a liquid mixed with tap water under the concentration specified by the A formulation was used. The reason why tap water was used in the liquid Q1 is to simulate the actual plant growing site.
 液体Q2としては、1mLの液体Q1に対して、9mLの超純水で希釈されたものが利用された。 As the liquid Q2, 1 mL of liquid Q1 diluted with 9 mL of ultrapure water was used.
 液体Q3は、以下の方法で調整された液体が利用された。
 100mLの超純水に対して、キレート鉄13%の溶液栽培肥料作成用肥料(製品名EDTA-FE-13、たまごや商店製)1gを溶解して、原液を作製した。次に、405nmの紫外光に対する吸光度のピークが0.5以上、1.5以下の範囲内で測定できるようになるまで、原液を超純水に対して希釈して、液体Q3とした。なお、この希釈処理は、吸光度がピークを示す波長の検証を可能にする目的で行われたものである。
As the liquid Q3, a liquid prepared by the following method was used.
A stock solution was prepared by dissolving 1 g of a fertilizer for making a solution-cultivated fertilizer (product name: EDTA-FE-13, manufactured by Tamagoya Shoten) of 13% chelated iron in 100 mL of ultrapure water. Next, the stock solution was diluted with ultrapure water until the peak absorbance for ultraviolet light at 405 nm could be measured within the range of 0.5 or more and 1.5 or less to obtain liquid Q3. It should be noted that this dilution treatment was performed for the purpose of enabling verification of the wavelength at which the absorbance shows a peak.
 液体Q4としては、超純水が利用された。 Ultrapure water was used as the liquid Q4.
 [測定方法]
 Thermo Fisher Scientific社製の超微量分光光度計「NanoDrop One」(登録商標)を利用し、測定ポートに対してサンプルとなる各液体Q1~Q4を滴下して、吸光度を測定した。
[Measuring method]
Using an ultra-trace spectrophotometer "NanoDrop One" (registered trademark) manufactured by Thermo Fisher Scientific, each of the sample liquids Q1 to Q4 was dropped onto the measurement port to measure the absorbance.
 [結果]
 図2は、各液体Q1~Q4の吸光度を示すグラフである。図2によれば、水(超純水)である液体Q4は、低圧水銀灯の主たるピーク波長である254nm近傍を含む、240nm~430nmの広い帯域の波長の光に対して吸光度が極めて低く、すなわち高い透過率を示すことが分かる。
[result]
FIG. 2 is a graph showing the absorbance of each liquid Q1 to Q4. According to FIG. 2, the liquid Q4, which is water (ultrapure water), has extremely low absorbance with respect to light having a wavelength in a wide band of 240 nm to 430 nm, including the vicinity of 254 nm, which is the main peak wavelength of a low-pressure mercury lamp, that is, It can be seen that it shows high transmittance.
 液体肥料である液体Q1は、低圧水銀灯の主たるピーク波長である254nmの光に対しては吸光度が高い一方、波長370nm以上、430nm以下の範囲内の光に対しては吸光度が低いことが分かる。具体的には、液体Q1は、波長254nmの光に対する吸光度は2.8(a.u.)であり、波長370nm以上430nm以下の範囲内の光に対する平均吸光度は0.2(a.u.)程度である。つまり、液体Q1は、波長370nm以上430nm以下の範囲内の光を、波長254nmの光よりも14~15倍程度透過させる。言い換えれば、液体肥料である液体Q1は、低圧水銀灯の主たるピーク波長である254nm近傍の紫外光を多く吸収する一方、370nm以上、430nm以下の範囲内の紫外光を概ね透過させることが分かる。 It can be seen that liquid Q1, which is a liquid fertilizer, has high absorbance for light having a wavelength of 254 nm, which is the main peak wavelength of a low-pressure mercury lamp, while has low absorbance for light having a wavelength in the range of 370 nm or more and 430 nm or less. Specifically, the liquid Q1 has an absorbance of 2.8 (au) for light having a wavelength of 254 nm, and an average absorbance of 0.2 (au. U.) for light having a wavelength in the range of 370 nm or more and 430 nm or less. ) About. That is, the liquid Q1 transmits light having a wavelength in the range of 370 nm or more and 430 nm or less about 14 to 15 times as much as light having a wavelength of 254 nm. In other words, it can be seen that the liquid Q1 which is a liquid fertilizer absorbs a large amount of ultraviolet light in the vicinity of 254 nm, which is the main peak wavelength of the low-pressure mercury lamp, and generally transmits ultraviolet light in the range of 370 nm or more and 430 nm or less.
 図2の結果からは、254nm近傍の紫外光を液体肥料に対して照射すると、液体肥料に対する吸収量が高いことから、液体肥料が貯留している貯留槽内のうち、光源に近い位置において多くの紫外光が吸収されてしまい、貯留槽内の広い範囲にわたっては紫外光が進行しないことが予想される。つまり、このような波長帯の紫外光を用いて液体肥料に対する殺菌を行う場合には、液体肥料の全体にわたって紫外光を照射させるために、貯留槽の深さを極めて浅くするか、速い流速で液体肥料を移動・撹拌させながら紫外光を照射する必要があるという仮説が立つ。 From the results shown in FIG. 2, when the liquid fertilizer is irradiated with ultraviolet light near 254 nm, the amount absorbed by the liquid fertilizer is high. It is expected that the ultraviolet light will be absorbed and the ultraviolet light will not travel over a wide area in the storage tank. In other words, when sterilizing liquid fertilizer using ultraviolet light in such a wavelength band, the depth of the storage tank should be extremely shallow or at a high flow velocity in order to irradiate the entire liquid fertilizer with ultraviolet light. It is hypothesized that it is necessary to irradiate ultraviolet light while moving and stirring liquid fertilizer.
 〈検証2〉
 異なる波長の紫外光を液体肥料に対して照射したときの、液体肥料に含まれる鉄(II)イオンの量の変動の程度を比較した。具体的には、1/10に希釈した液体肥料である液体Q2を利用し、この液体Q2に対して、主たる発光波長が405nmの紫外光を照射した場合(実施例1)と、主たる発光波長が254nmの紫外光を照射した場合(比較例1)の双方について、紫外光の照射前後における鉄(II)イオンの量の変動の程度を比較した。
<Verification 2>
The degree of fluctuation in the amount of iron (II) ions contained in the liquid fertilizer when the liquid fertilizer was irradiated with ultraviolet light of different wavelengths was compared. Specifically, when liquid Q2, which is a liquid fertilizer diluted to 1/10, is used and the liquid Q2 is irradiated with ultraviolet light having a main emission wavelength of 405 nm (Example 1), the main emission wavelength The degree of fluctuation in the amount of iron (II) ions before and after irradiation with ultraviolet light was compared for both cases of irradiation with ultraviolet light of 254 nm (Comparative Example 1).
 [利用された光源]
 図3は、実施例1において用いられた紫外光のスペクトルを示すグラフである。実施例1の光源としては、波長405nmのLED照射機(ウシオ電機株式会社製、UniFiled SF150)が利用された。
[Used light source]
FIG. 3 is a graph showing the spectrum of ultraviolet light used in Example 1. As the light source of Example 1, an LED irradiator having a wavelength of 405 nm (UniFiled SF150, manufactured by Ushio, Inc.) was used.
 また、比較例1としては、低圧水銀灯から発せられる紫外光のうち、300nm以上の紫外光を遮断するフィルタを透過して得られた紫外光とすることで、実質的に254nm近傍の波長のみがスペクトル強度として現れる紫外光が利用された。 Further, as Comparative Example 1, among the ultraviolet light emitted from the low-pressure mercury lamp, the ultraviolet light obtained by passing through a filter that blocks ultraviolet light of 300 nm or more is used, so that only the wavelength in the vicinity of 254 nm is substantially emitted. Ultraviolet light, which appears as spectral intensity, was used.
 [測定方法]
 液体Q2をφ30のシャーレに収容し、照射前の鉄(II)イオンの含有濃度を、デジタルパックテスト(株式会社共立理化学研究所製)により測定した。次に、照射距離50mmから、上記実施例1及び比較例1のそれぞれの光源から発せられる紫外光を照射し、照射後の鉄(II)イオンの含有濃度を同様の方法により測定した。上記測定を、露光量を変えて複数回行った。
[Measuring method]
The liquid Q2 was housed in a petri dish of φ30, and the iron (II) ion content concentration before irradiation was measured by a digital pack test (manufactured by Kyoritsu Rikagaku Kenkyusho Co., Ltd.). Next, from an irradiation distance of 50 mm, ultraviolet light emitted from each of the light sources of Example 1 and Comparative Example 1 was irradiated, and the concentration of iron (II) ions after irradiation was measured by the same method. The above measurement was performed a plurality of times with different exposure amounts.
 [結果]
 図4は、実施例1及び比較例1のそれぞれにおいて、照射された紫外光の露光量と、液体Q2に含まれる鉄(II)イオンの減少量との関係をグラフ化したものである。鉄(II)イオンの減少量は、照射前の液体Q2に含有されている鉄(II)イオンの量に対する、照射後の液体Q2に含有されている鉄(II)イオンの量の比率のLog値によって算定された。
[result]
FIG. 4 is a graph showing the relationship between the exposure amount of the irradiated ultraviolet light and the decrease amount of iron (II) ions contained in the liquid Q2 in each of Example 1 and Comparative Example 1. The amount of decrease in iron (II) ions is the ratio of the amount of iron (II) ions contained in the liquid Q2 after irradiation to the amount of iron (II) ions contained in the liquid Q2 before irradiation. Calculated by value.
 図4によれば、実施例1及び比較例1の双方とも、露光量(照射線量)が増加するほど、液体Q2に含有されている鉄(II)イオンの量が減少することが確認される。 According to FIG. 4, in both Example 1 and Comparative Example 1, it is confirmed that the amount of iron (II) ions contained in the liquid Q2 decreases as the exposure amount (irradiation dose) increases. ..
 より詳細には、鉄(II)イオン濃度の減少量が-0.95(Log)に達するのに必要な露光量で比較すると、波長254nmの紫外光(比較例1)では1.8J/cm2であるのに対し、波長405nmの紫外光(実施例1)では2160J/cm2であった。このことから、波長405nmの紫外光が液体肥料に対して照射されることに伴う、鉄(II)イオン濃度の減少の程度は、波長254nmの紫外光に対して、1/1200程度であると見積もられる。すなわち、液体肥料に対して波長405nmの紫外光を照射した場合、波長254nmの紫外光を同じ露光量で照射した場合と比べて、鉄(II)イオン濃度の減少量は格段に少ないことが分かる。 More specifically, when compared with the amount of exposure required for the amount of decrease in iron (II) ion concentration to reach −0.95 (Log), it is 1.8 J / cm for ultraviolet light having a wavelength of 254 nm (Comparative Example 1). In contrast to 2, it was 2160 J / cm 2 in ultraviolet light having a wavelength of 405 nm (Example 1). From this, it is said that the degree of decrease in the iron (II) ion concentration associated with the irradiation of the liquid fertilizer with ultraviolet light having a wavelength of 405 nm is about 1/1200 with respect to the ultraviolet light having a wavelength of 254 nm. Estimated. That is, it can be seen that when the liquid fertilizer is irradiated with ultraviolet light having a wavelength of 405 nm, the amount of decrease in the iron (II) ion concentration is significantly smaller than that when the liquid fertilizer is irradiated with ultraviolet light having a wavelength of 254 nm at the same exposure amount. ..
 この結果は、検証1の結果として図2に示されるように、キレート鉄水溶液からなる液体Q3において、240nm~280nmの波長帯の紫外光に対する吸光度が高く、370nm~430nmの波長帯の紫外光に対する吸光度が低い結果に整合する。 As a result of the verification 1, as shown in FIG. 2, the liquid Q3 composed of the aqueous chelated iron solution has high absorbance for ultraviolet light in the wavelength band of 240 nm to 280 nm, and has high absorbance for ultraviolet light in the wavelength band of 370 nm to 430 nm. Consistent with low absorbance results.
 なお、検証2において、液体肥料そのものである液体Q1ではなく、1/10に希釈された液体Q2が採用された理由は以下の通りである。図2を参照して上述したように、液体Q1の場合には、そもそも254nmの紫外光をほとんど透過しない。このため、比較例1の紫外光(254nm)が液体Q1に対して照射されても、その表面でほとんどの紫外光が吸収される結果、実施例1の紫外光(405nm)と同じ条件下で、鉄(II)イオン濃度の減少の程度を比較できないことによる。 The reason why the liquid Q2 diluted to 1/10 was adopted instead of the liquid Q1 which is the liquid fertilizer itself in the verification 2 is as follows. As described above with reference to FIG. 2, in the case of liquid Q1, it hardly transmits ultraviolet light of 254 nm in the first place. Therefore, even if the liquid Q1 is irradiated with the ultraviolet light (254 nm) of Comparative Example 1, most of the ultraviolet light is absorbed on the surface thereof, and as a result, under the same conditions as the ultraviolet light (405 nm) of Example 1. , Due to the inability to compare the degree of decrease in iron (II) ion concentration.
 〈検証3〉
 波長405nmの紫外光によっても、殺菌性能が実現できる点につき、以下検証した。
<Verification 3>
The point that the sterilization performance can be realized even by the ultraviolet light having a wavelength of 405 nm was verified below.
 [利用された光源]
 検証2の実施例1と同じ光源が利用された。
[Used light source]
The same light source as in Example 1 of Verification 2 was used.
 [測定方法]
 液体Q1(液体肥料)に対して、黄色ブドウ球菌(NBRC.12732)の菌液3mLを、107CFU/mLになるように加えた。この液体を、φ30のシャーレに収容し、実施例1の光源で照射距離50mmから照射した。このときの照射面での照度は150mW/cm2であった。なお、この照度値は、紫外線積算光量計(ウシオ電機株式会社製、UIT-250/UVD-S405)で測定されたものである。
[Measuring method]
The liquid Q1 (liquid manure), the bacterial solution 3mL of Staphylococcus aureus (NBRC.12732), was added to a 10 7 CFU / mL. This liquid was housed in a petri dish of φ30 and irradiated with the light source of Example 1 from an irradiation distance of 50 mm. The illuminance on the irradiated surface at this time was 150 mW / cm 2 . This illuminance value was measured with an ultraviolet integrated light meter (UIT-250 / UVD-S405 manufactured by Ushio, Inc.).
 光源からの紫外光が照射される時間を変化させることで、露光量を調整して、照射前後で液体Q1に含有される黄色ブドウ球菌の量の減少の程度を比較した。なお、紫外光が照射された後の黄色ブドウ球菌の量は、標準寒天培地に塗抹して37℃で48時間培養後、発生したコロニーをカウントすることで測定された。 The exposure amount was adjusted by changing the time during which the ultraviolet light from the light source was irradiated, and the degree of decrease in the amount of Staphylococcus aureus contained in the liquid Q1 was compared before and after the irradiation. The amount of Staphylococcus aureus after being irradiated with ultraviolet light was measured by smearing it on a standard agar medium, culturing at 37 ° C. for 48 hours, and then counting the generated colonies.
 [結果]
 図5は、実施例1の光源から照射された紫外光の露光量と、液体Q2に含まれる黄色ブドウ球菌の含有量の減少量との関係をグラフ化したものである。縦軸の「不活化率」は、照射前の液体Q1に含有されている黄色ブドウ球菌の含有量に対する、照射後の液体Q1に含有されている黄色ブドウ球菌の含有量のLog値によって算定された。
[result]
FIG. 5 is a graph showing the relationship between the exposure amount of ultraviolet light emitted from the light source of Example 1 and the decrease amount of the content of Staphylococcus aureus contained in the liquid Q2. The "inactivation rate" on the vertical axis is calculated by the Log value of the content of Staphylococcus aureus contained in the liquid Q1 after irradiation with respect to the content of Staphylococcus aureus contained in the liquid Q1 before irradiation. It was.
 図5の結果によれば、405nmの波長の紫外光を50J/cm2の露光量で照射すると、液体Q1に含有されている黄色ブドウ球菌をほぼ1/10に低下できることが分かる。更に、露光量を100J/cm2とすることで、液体Q1に含有されている黄色ブドウ球菌をほぼ1/100に低下でき、露光量を280J/cm2とすることで、液体Q1に含有されている黄色ブドウ球菌をほぼ1/100000に低下できることが分かる。すなわち、405nmの波長の紫外光が照射されることで、殺菌効果が示されていることが分かる。この理由としては、検証1において上述したように、405nmの波長の紫外光が液体肥料を透過する性質を示すことで、液体肥料の全体にわたって紫外光が進行するためと考えられる。 According to the results of FIG. 5, it can be seen that when ultraviolet light having a wavelength of 405 nm is irradiated with an exposure amount of 50 J / cm 2 , Staphylococcus aureus contained in the liquid Q1 can be reduced to about 1/10. Furthermore, by setting the exposure amount to 100 J / cm 2 , the Staphylococcus aureus contained in the liquid Q1 can be reduced to almost 1/100, and by setting the exposure amount to 280 J / cm 2 , it is contained in the liquid Q1. It can be seen that the amount of Staphylococcus aureus can be reduced to almost 1/10000. That is, it can be seen that the bactericidal effect is exhibited by irradiating with ultraviolet light having a wavelength of 405 nm. It is considered that the reason for this is that, as described above in Verification 1, the ultraviolet light having a wavelength of 405 nm exhibits the property of transmitting through the liquid fertilizer, so that the ultraviolet light travels throughout the liquid fertilizer.
 なお、この検証3において、波長254nmの紫外光(比較例2)が利用されていないのは、この波長帯の紫外光がそもそも液体肥料を透過しないために、液体肥料の全体にわたって充分な殺菌作用を示すことができないためである。 In this verification 3, ultraviolet light having a wavelength of 254 nm (Comparative Example 2) is not used because the ultraviolet light in this wavelength band does not pass through the liquid fertilizer in the first place, so that it has a sufficient bactericidal action over the entire liquid fertilizer. This is because it is not possible to show.
 〈検証のまとめ〉
 以上の検証により、波長405nmの紫外光によれば、液体肥料に含まれる鉄(II)イオンの減少を抑制しながらも、液体肥料に対する殺菌作用を実現できることが分かる。なお、図2の結果より、波長405nmと同様に、370nm以上、430nm以下の波長帯の紫外光に対しても、液体肥料(Q1)に対する吸光度が低いことが分かる。また、前記波長帯の紫外光に対してはポルフィリン類が高い吸光度を示す。このため、主たる発光波長が370nm以上、430nm以下の範囲内である紫外光によっても、同様の効果が実現できることが分かる。
<Summary of verification>
From the above verification, it can be seen that the ultraviolet light having a wavelength of 405 nm can realize a bactericidal action on the liquid fertilizer while suppressing the decrease of iron (II) ions contained in the liquid fertilizer. From the results of FIG. 2, it can be seen that the absorbance of the liquid fertilizer (Q1) is low even for ultraviolet light in the wavelength band of 370 nm or more and 430 nm or less, as in the case of the wavelength of 405 nm. In addition, porphyrins show high absorbance for ultraviolet light in the wavelength band. Therefore, it can be seen that the same effect can be achieved by ultraviolet light having a main emission wavelength in the range of 370 nm or more and 430 nm or less.
 ただし、ポルフィリン類に対する紫外光の吸光度に鑑みると、液体肥料の殺菌に用いられる紫外光の主たる発光波長は、390nm以上、410nm以下とするのがより好ましい。 However, in view of the absorbance of ultraviolet light for porphyrins, the main emission wavelength of ultraviolet light used for sterilizing liquid fertilizers is more preferably 390 nm or more and 410 nm or less.
 上述したように、光源部4が、主たる発光波長が370nm以上、430nm以下の波長帯である紫外光L1を発するLED光源4aによって構成されることで、この紫外光L1は、貯留槽2内に貯留された液体肥料3内を透過して進行する。このため、必ずしも液体肥料3内に光源部4を設置する必要はなく、図1に示すように、液体肥料3から離れた位置に光源部4を設置することができる。この場合、光源部4に対する防水設計は必ずしも必要がない。 As described above, the light source unit 4 is composed of the LED light source 4a that emits the ultraviolet light L1 having a main emission wavelength of 370 nm or more and 430 nm or less, so that the ultraviolet light L1 is contained in the storage tank 2. It proceeds through the stored liquid fertilizer 3. Therefore, it is not always necessary to install the light source unit 4 in the liquid fertilizer 3, and as shown in FIG. 1, the light source unit 4 can be installed at a position away from the liquid fertilizer 3. In this case, the waterproof design for the light source unit 4 is not always necessary.
 なお、貯留槽2、栽培槽6、配管(5a,5b)、ポンプ7の入口又は出口等に、フィルタが設置されていても構わない。 Note that filters may be installed at the storage tank 2, the cultivation tank 6, the pipes (5a, 5b), the inlet or the outlet of the pump 7, and the like.
 [別のシステム構成例]
 本発明に係る液体肥料の殺菌方法を利用する態様は、図1に図示されるようなシステムに限定されない。以下、別のシステム構成例について説明する。
[Another system configuration example]
The mode of utilizing the liquid fertilizer sterilization method according to the present invention is not limited to the system as shown in FIG. Hereinafter, another system configuration example will be described.
 〈1〉図6に示すように、貯留槽2とは別に設けられた殺菌処理槽9内で、液体肥料3に対する殺菌処理が行われるものとしても構わない。殺菌処理槽9は、内部に、防水に設計された外套管内に配置された光源部4を有している。貯留槽2内に貯留された液体肥料3は、ポンプ7によって配管5aを介して殺菌処理槽9に対して送り込まれる。殺菌処理槽9内に配置された光源部4から照射される紫外光L1によって、液体肥料3に対して殺菌処理がされる。殺菌処理がされた液体肥料3は、配管5cを介して栽培槽6へと送られる。また、栽培槽6内である程度の期間にわたって留まっていた液体肥料3は、配管5bを介して貯留槽2へと送られる。 <1> As shown in FIG. 6, the liquid fertilizer 3 may be sterilized in a sterilization treatment tank 9 provided separately from the storage tank 2. The sterilization treatment tank 9 has a light source unit 4 arranged inside a mantle tube designed to be waterproof. The liquid fertilizer 3 stored in the storage tank 2 is sent to the sterilization treatment tank 9 by the pump 7 via the pipe 5a. The liquid fertilizer 3 is sterilized by the ultraviolet light L1 emitted from the light source unit 4 arranged in the sterilization tank 9. The sterilized liquid fertilizer 3 is sent to the cultivation tank 6 via the pipe 5c. Further, the liquid fertilizer 3 that has remained in the cultivation tank 6 for a certain period of time is sent to the storage tank 2 via the pipe 5b.
 なお、殺菌処理槽9は、内部が液体肥料3によって完全に満たされていても構わないし、液体肥料3の液面が大気に触れた状態で収容されていても構わない。 The inside of the sterilization treatment tank 9 may be completely filled with the liquid fertilizer 3, or the liquid level of the liquid fertilizer 3 may be accommodated in a state of being in contact with the atmosphere.
 〈2〉図7に示すように、植物育成システム1は、光源部4が内蔵された複数の貯留槽2(2a,2b)を備えるものしても構わない。この場合、液体肥料3に対して殺菌処理を行いつつ、事前に既に殺菌処理が完了した液体肥料3を栽培槽6に対して供給することが可能となる。なお、図7に示す例では、配管5bと配管5dとは逆止弁11を介して連絡されており、配管5aと配管5cとは逆止弁12を介して連絡されている。 <2> As shown in FIG. 7, the plant growing system 1 may include a plurality of storage tanks 2 (2a, 2b) in which the light source unit 4 is built. In this case, it is possible to supply the liquid fertilizer 3 which has already been sterilized in advance to the cultivation tank 6 while performing the sterilization treatment on the liquid fertilizer 3. In the example shown in FIG. 7, the pipe 5b and the pipe 5d are connected via the check valve 11, and the pipe 5a and the pipe 5c are connected via the check valve 12.
 具体的な処理方法の一例について説明する。まず、図8Aに示すように、既に殺菌処理が行われた液体肥料3が貯留されている貯留槽2aから、配管5aを介して栽培槽6に対して殺菌処理済の液体肥料3が供給される。このとき、ある程度の期間にわたって栽培槽6内に留められていた液体肥料3は、配管5bを通じて貯留槽2aに送り出される。図8Aでは、このときの液体肥料3の流れが、破線の矢印d1によって図示されている。 An example of a specific processing method will be explained. First, as shown in FIG. 8A, the sterilized liquid fertilizer 3 is supplied to the cultivation tank 6 via the pipe 5a from the storage tank 2a in which the liquid fertilizer 3 that has already been sterilized is stored. To. At this time, the liquid fertilizer 3 kept in the cultivation tank 6 for a certain period of time is sent out to the storage tank 2a through the pipe 5b. In FIG. 8A, the flow of the liquid fertilizer 3 at this time is illustrated by the broken line arrow d1.
 貯留槽2aと栽培槽6との間で液体肥料3の通流が行われている期間T1にわたって、貯留槽2bでは、貯留されている液体肥料3に対して光源部4からの紫外光L1が照射されることで殺菌処理が行われる。なお、この期間T1内において、貯留槽2a内の光源部4については、消灯しても構わないし、殺菌処理時と同様の出力で点灯させておいても構わないし、減光状態で点灯させておいても構わない。 During the period T1 in which the liquid fertilizer 3 is flowing between the storage tank 2a and the cultivation tank 6, in the storage tank 2b, the ultraviolet light L1 from the light source unit 4 is emitted to the stored liquid fertilizer 3. The sterilization process is performed by being irradiated. During this period T1, the light source unit 4 in the storage tank 2a may be turned off, may be turned on with the same output as during the sterilization process, or may be turned on in a dimmed state. You can leave it.
 次に、ある程度の期間が経過した後、図8Bに示すように、既に殺菌処理が行われた液体肥料3が貯留されている貯留槽2bから、配管5cを介して栽培槽6に対して殺菌処理済の液体肥料3が供給される。このとき、前記期間にわたって栽培槽6内に留められていた液体肥料3は、配管5dを通じて貯留槽2bに送り出される。図8Bでは、このときの液体肥料3の流れが、破線の矢印d2によって図示されている。 Next, after a certain period of time has passed, as shown in FIG. 8B, the cultivation tank 6 is sterilized from the storage tank 2b in which the liquid fertilizer 3 that has already been sterilized is stored, via the pipe 5c. The treated liquid fertilizer 3 is supplied. At this time, the liquid fertilizer 3 kept in the cultivation tank 6 for the above period is sent out to the storage tank 2b through the pipe 5d. In FIG. 8B, the flow of the liquid fertilizer 3 at this time is illustrated by the broken line arrow d2.
 貯留槽2bと栽培槽6との間で液体肥料3の通流が行われている期間T2にわたって、貯留槽2aでは、貯留されている液体肥料3に対して光源部4からの紫外光L1が照射されることで殺菌処理が行われる。なお、この期間T2内において、貯留槽2b内の光源部4については、消灯しても構わないし、殺菌処理時と同様の出力で点灯させておいても構わないし、減光状態で点灯させておいても構わない。 During the period T2 in which the liquid fertilizer 3 is flowing between the storage tank 2b and the cultivation tank 6, in the storage tank 2a, the ultraviolet light L1 from the light source unit 4 is emitted to the stored liquid fertilizer 3. The sterilization process is performed by being irradiated. During this period T2, the light source unit 4 in the storage tank 2b may be turned off, may be turned on with the same output as during the sterilization process, or may be turned on in a dimmed state. You can leave it.
 以下、同様の処理が繰り返し実行される。これにより、栽培槽6に対しては、常に充分に殺菌された液体肥料3を供給し続けることができる。 Hereafter, the same process is repeatedly executed. As a result, the fully sterilized liquid fertilizer 3 can be continuously supplied to the cultivation tank 6.
 〈3〉図9に示すように、殺菌用の光源部4は、貯留槽2に貯留されている液体肥料3の液中に配置されていても構わない。この場合、図6を参照して上述した構成と同様に、光源部4は防水に設計された外套管内に配置されているものとして構わない。 <3> As shown in FIG. 9, the sterilization light source unit 4 may be arranged in the liquid of the liquid fertilizer 3 stored in the storage tank 2. In this case, the light source unit 4 may be arranged in the mantle tube designed to be waterproof, as in the configuration described above with reference to FIG.
 〈4〉上述した実施例では、光源部4は、複数のLED光源4aを含んでなるものとした。しかし、光源部4は、主たる発光波長が370nm以上、430nm以下の範囲内である紫外光L1を出射可能な構成である限りにおいて、その構造は限定されない。ただし、貯留されている液体肥料3に対して、面方向に広がりを有した光を照射する観点からは、面光源で構成されるのが好適である。 <4> In the above-described embodiment, the light source unit 4 includes a plurality of LED light sources 4a. However, the structure of the light source unit 4 is not limited as long as it has a configuration capable of emitting ultraviolet light L1 whose main emission wavelength is in the range of 370 nm or more and 430 nm or less. However, from the viewpoint of irradiating the stored liquid fertilizer 3 with light having a spread in the surface direction, it is preferable to use a surface light source.
1  :植物育成システム
2  :貯留槽
2a :貯留槽
2b :貯留槽
3  :液体肥料
4  :光源部
4a :LED光源
5a :配管
5b :配管
5c :配管
5d :配管
6  :栽培槽
7  :ポンプ
9  :殺菌処理槽
10 :植物
11 :逆止弁
12 :逆止弁
L1 :紫外光
1: Plant growing system 2: Storage tank 2a: Storage tank 2b: Storage tank 3: Liquid fertilizer 4: Light source 4a: LED light source 5a: Piping 5b: Piping 5c: Piping 5d: Piping 6: Cultivation tank 7: Pump 9: Sterilization treatment tank 10: Plant 11: Check valve 12: Check valve L1: Ultraviolet light

Claims (7)

  1.  液体肥料の殺菌方法であって、
     前記液体肥料は、少なくとも鉄を含む金属イオンを含有しており、
     前記液体肥料に対して、主たる発光波長が370nm以上、430nm以下の範囲内である紫外光を照射する工程(a)を含むことを特徴とする殺菌方法。
    It is a method of sterilizing liquid fertilizer.
    The liquid fertilizer contains at least metal ions containing iron, and the liquid fertilizer contains at least iron-containing metal ions.
    A sterilization method comprising the step (a) of irradiating the liquid fertilizer with ultraviolet light having a main emission wavelength in the range of 370 nm or more and 430 nm or less.
  2.  前記金属イオンは、鉄(II)イオンであることを特徴とする、請求項1に記載の殺菌方法。 The sterilization method according to claim 1, wherein the metal ion is an iron (II) ion.
  3.  前記工程(a)は、LEDからなる光源から前記紫外光を照射する工程であることを特徴とする、請求項1又は2に記載の殺菌方法。 The sterilization method according to claim 1 or 2, wherein the step (a) is a step of irradiating the ultraviolet light from a light source made of an LED.
  4.  前記紫外光は、主たる発光波長が405nmであることを特徴とする、請求項1~3のいずれか1項に記載の殺菌方法。 The sterilization method according to any one of claims 1 to 3, wherein the ultraviolet light has a main emission wavelength of 405 nm.
  5.  前記工程(a)によって前記紫外光が照射された後の前記液体肥料を、当該液体肥料を用いて生育される植物の育成領域に対して、配管を通じて供給する工程(b)を有することを特徴とする、請求項1~4のいずれか1項に記載の殺菌方法。 It is characterized by having a step (b) of supplying the liquid fertilizer after being irradiated with the ultraviolet light by the step (a) to a growing region of a plant grown using the liquid fertilizer through a pipe. The sterilization method according to any one of claims 1 to 4.
  6.  前記育成領域から配管を通じて、前記紫外光が照射される領域に対して前記液体肥料を送り出す工程(c)を有し、
     前記工程(a)、前記工程(b)、及び前記工程(c)が繰り返し実行されることを特徴とする、請求項5に記載の殺菌方法。
    It has a step (c) of sending out the liquid fertilizer from the growing area through a pipe to the area irradiated with the ultraviolet light.
    The sterilization method according to claim 5, wherein the step (a), the step (b), and the step (c) are repeatedly executed.
  7.  前記工程(a)は、前記液体肥料が貯留されている領域の外側から、前記液体肥料に対して前記紫外光を照射する工程であることを特徴とする、請求項1~6のいずれか1項に記載の殺菌方法。 Any one of claims 1 to 6, wherein the step (a) is a step of irradiating the liquid fertilizer with the ultraviolet light from the outside of the region in which the liquid fertilizer is stored. The sterilization method described in the section.
PCT/JP2020/042881 2019-11-22 2020-11-18 Sterilization method WO2021100726A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-211546 2019-11-22
JP2019211546A JP7447442B2 (en) 2019-11-22 2019-11-22 Sterilization method

Publications (1)

Publication Number Publication Date
WO2021100726A1 true WO2021100726A1 (en) 2021-05-27

Family

ID=75964118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042881 WO2021100726A1 (en) 2019-11-22 2020-11-18 Sterilization method

Country Status (2)

Country Link
JP (1) JP7447442B2 (en)
WO (1) WO2021100726A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011055795A (en) * 2009-09-14 2011-03-24 Toyo Valve Co Ltd Water quality adjusting system
WO2011043326A1 (en) * 2009-10-05 2011-04-14 東洋バルヴ株式会社 Nutriculture system, and water treatment apparatus for sterilization and purification purposes
JP2012205514A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Method for producing cultivated crop
JP2014226108A (en) * 2013-05-24 2014-12-08 島根県 Liquid purifying device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233712A (en) * 2013-06-05 2014-12-15 Ckd株式会社 Ultraviolet sterilization device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011055795A (en) * 2009-09-14 2011-03-24 Toyo Valve Co Ltd Water quality adjusting system
WO2011043326A1 (en) * 2009-10-05 2011-04-14 東洋バルヴ株式会社 Nutriculture system, and water treatment apparatus for sterilization and purification purposes
JP2012205514A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Method for producing cultivated crop
JP2014226108A (en) * 2013-05-24 2014-12-08 島根県 Liquid purifying device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, YUWEI ET AL.: "Effects of the circulation Pump Type and Ultraviolet Sterilization on Nutrient Solutions and Plant Growth in Plant Factories", HORTTECHNOLOGY, vol. 29, no. 2, 28 March 2019 (2019-03-28), pages 189 - 198, XP055825777 *
YAO, K. S. ET AL.: "Photocatalytic Inactivation of Enterobacter cloacae SMI by Ti02 Thin Film under UV-A Light Irradiation in vitro", PLANT PATHOLOGY BULLETIN, vol. 14, no. 4, 2005, pages 265 - 268 *

Also Published As

Publication number Publication date
JP7447442B2 (en) 2024-03-12
JP2021080147A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP5318713B2 (en) Water quality adjustment system
JP5802558B2 (en) Hydroponic system
KR100575511B1 (en) A method for disinfecting liquids and gases and devices for use thereof
JP5191782B2 (en) Hydroponic system
Luo et al. Advances in application of ultraviolet irradiation for biofilm control in water and wastewater infrastructure
JPWO2010032765A1 (en) Water for expressing a pathogenic resistance gene (PR gene group) encoding a plant immunostimulatory protein, a method for preventing plant diseases using the water, and a device for producing the water
US11267734B2 (en) Apparatus and process for water treatment
JP2006320282A (en) Culture solution circulation feeder, sterilization device for culture solution circulation supply and culture solution circulation supply method
WO1997039985A1 (en) Fluid purifying apparatus
WO2021100726A1 (en) Sterilization method
ITVR20010110A1 (en) MICROBIOLOGICAL STERILIZATION OF WATER PROCEDURE THROUGH PHOTO-ACTIVABLE AGENTS.
KR20010099528A (en) Nutrient solution disinfection and recycling system by utilizing ultraviolet light and photocatalyst effect
KR101017272B1 (en) Device for treating drained nutrient solution and of hydroponic apparatus using the same
KR101547300B1 (en) Drainage control devices circulating hydroponic cultivation
KR20120002364A (en) Device for treating drained nutrient solution and of hydroponic apparatus using the same
KR200320054Y1 (en) sterilizer equipped in water tank
Evans Control of microorganisms in flowing nutrient solutions
KR101803706B1 (en) Aqueous solution sterilizers and method using flexible UV irradiator
JP2543141B2 (en) Hydroponics culture fluid running water sterilization system
JP2001112363A (en) Nutritious liquid-recycling type cultivation system and method for treating the nutritious liquid
EP4070646A1 (en) Horticulture facility comprising a water loop
KR102626875B1 (en) The system for controlling drainage sterilization and nutrient solution supply in hydroponics
JP2982429B2 (en) Culture solution sterilizer for hydroponics
JPS5821559B2 (en) Sterilization method and equipment
CN113351195A (en) Preparation method of photocatalytic semiconductor material for water treatment, photocatalytic method and equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891140

Country of ref document: EP

Kind code of ref document: A1