WO2021100694A1 - Image processing device, image processing method, and program - Google Patents
Image processing device, image processing method, and program Download PDFInfo
- Publication number
- WO2021100694A1 WO2021100694A1 PCT/JP2020/042764 JP2020042764W WO2021100694A1 WO 2021100694 A1 WO2021100694 A1 WO 2021100694A1 JP 2020042764 W JP2020042764 W JP 2020042764W WO 2021100694 A1 WO2021100694 A1 WO 2021100694A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- evaluation
- depth range
- image processing
- data
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
Definitions
- the present invention relates to an image processing apparatus, an image processing method, and a program.
- Patent Document 1 relates to a general OCT (Optical Coherence Tomography) and OCTA imaging device and its optical system, a method for generating motion contrast data, and a technique for projecting motion contrast data on a two-dimensional plane within a predetermined depth range.
- a three-dimensional OCT image or a three-dimensional OCTA image is projected within a predetermined depth range in order to extract structural features (including blood vessels) of the eye including the retina, vitreous body, and choroid. It may generate a two-dimensional frontal image.
- one of the objects of the embodiment of the present invention is to make it possible to easily confirm the target area.
- the image processing apparatus is information indicating an evaluation in which the existence of a target region is evaluated by using a plurality of front images corresponding to different depth ranges of the three-dimensional volume data of the eye to be inspected. It includes an evaluation unit that acquires a plurality of information corresponding to the plurality of front images, and a determination unit that determines at least one of the plurality of front images as an output image using the plurality of information.
- a schematic configuration example of the OCT apparatus according to the first embodiment is shown.
- a schematic functional configuration example of the image processing apparatus according to the first embodiment is shown. It is a figure for demonstrating the image generation part which concerns on Example 1.
- FIG. An example of the GUI according to the first embodiment is shown.
- An example of the GUI according to the first embodiment is shown.
- An example of the GUI according to the first embodiment is shown.
- a flowchart of a series of processes according to the first embodiment is shown.
- the flowchart of the front image generation processing which concerns on Example 2 is shown. It is a figure for demonstrating the image generation part which concerns on Example 2.
- FIG. It is a figure for demonstrating the neural network which concerns on Example 2.
- the flowchart of the front image generation processing which concerns on Example 2 is shown.
- An example of the GUI according to the second embodiment is shown.
- An example of the GUI according to the second embodiment is shown. It is a figure for demonstrating the neural network which concerns on the modification 2 of Example 2.
- FIG. An example of the learning data according to the modified example 2 of the second embodiment is shown. It is a figure for demonstrating the image generation part which concerns on Example 3.
- FIG. The flowchart of the front image generation processing which concerns on Example 3 is shown. It is a flowchart of the front image generation processing which concerns on modification 1 of Example 3. It is a figure for demonstrating the relationship between a plurality of OCTA front images and a plurality of evaluation values which concerns on modification 1 of Example 3.
- FIG. It is a figure for demonstrating the OCTA front image to be displayed and the depth range which concerns on modification 1 of Example 3.
- FIG. It is a figure for demonstrating the relationship between a plurality of OCTA front images and a plurality of evaluation values which concerns on modification 1 of Example 3.
- FIG. It is a figure for demonstrating the OCTA front image to be displayed and the depth range which concerns on modification 1 of Example 3.
- FIG. It is a flowchart of the front image generation processing which concerns on modification 2 of Example 3.
- FIG. It is a figure for demonstrating the setting method of the depth range which concerns on Example 4.
- FIG. An example of the configuration of the neural network used as the machine learning model according to the modification 3 is shown. An example of the configuration of the neural network used as the machine learning model according to the modification 3 is shown. An example of the configuration of the neural network used as the machine learning model according to the modification 3 is shown. An example of the configuration of the neural network used as the machine learning model according to the modification 3 is shown.
- the machine learning model refers to a learning model based on a machine learning algorithm.
- Specific algorithms for machine learning include the nearest neighbor method, the naive Bayes method, a decision tree, and a support vector machine.
- deep learning deep learning in which features and coupling weighting coefficients for learning are generated by themselves using a neural network can also be mentioned.
- any of the above algorithms that can be used can be applied to the following examples and modifications.
- the teacher data refers to learning data and is composed of a pair of input data and output data.
- the correct answer data refers to the output data of the learning data (teacher data).
- the trained model is a model in which training (learning) is performed in advance using appropriate teacher data (learning data) for a machine learning model that follows an arbitrary machine learning algorithm such as deep learning. ..
- learning data teacher data
- the trained model is obtained by using appropriate training data in advance, it is not that no further training is performed, and additional training can be performed. Additional learning can be performed even after the device has been installed at the site of use.
- Examples 1 to 3 an example of generating a frontal image for confirming a neovascularization (CNV: Choroidal Neovascularization) derived from exudative age-related macular degeneration (AMD) will be described. To do. On the other hand, for example, a frontal image for confirming the lamina cribrosa of the optic nerve head described in Example 4, the choroidal layer (Sattler layer, Haller layer) described in Example 5, or the capillary aneurysm of the retinal blood vessel.
- the present invention can also be applied to the case of producing.
- Example 1 the image processing device and the image processing method of the ophthalmic device according to the first embodiment of the present invention, particularly the optical coherence tomography device (OCT device) used in an ophthalmic clinic or the like will be described. To do.
- OCT device optical coherence tomography device
- a method for displaying a new blood vessel (CNV) using OCTA according to this example will be described.
- FIG. 1 shows a schematic configuration example of the OCT apparatus according to this embodiment.
- the OCT device according to this embodiment is provided with an optical interference unit 100, a scanning optical system 200, an image processing device 300, a display unit 310, a pointing device 320, and a keyboard 321.
- the optical interference unit 100 is provided with a low coherence light source 101 that emits near-infrared light, an optical branching unit 103, a collimating optical system 111, an adaptive optics system 112, and a reference mirror 113.
- the optical interference unit 100 is provided with a collimating optical system 122, a diffraction grating 123, an imaging lens 124, and a line sensor 125.
- the light emitted from the light source 101 propagates through the optical fiber 102a and is divided into measurement light and reference light by the optical branching portion 103.
- the measurement light divided by the optical branching portion 103 is incident on the optical fiber 102b and guided to the scanning optical system 200.
- the reference light divided by the optical branching portion 103 is incident on the optical fiber 102c and guided to the reference mirror 113.
- the optical branching portion 103 may be configured by using, for example, an optical fiber coupler or the like.
- the reference light incident on the optical fiber 102c is emitted from the fiber end, enters the dispersion adaptive optics system 112 via the collimating optical system 111, and is guided to the reference mirror 113.
- the reference light reflected by the reference mirror 113 follows the optical path in the opposite direction and is incident on the optical fiber 102c again.
- the dispersion-compensated optical system 112 corrects the dispersion of the optical system in the scanning optical system 200 and the eye E to be inspected as the object to be measured.
- the reference mirror 113 is configured to be driveable in the optical axis direction by a drive unit including a motor or the like (not shown), and changes the optical path length of the reference light relative to the optical path length of the measurement light. Can be done.
- the measurement light incident on the optical fiber 102b is emitted from the fiber end and incident on the scanning optical system 200.
- the scanning optical system 200 is an optical system configured to be movable relative to the eye E to be inspected.
- a scanning optical system 200, a collimating optical system 202, a scanning unit 203, and a lens 204 are provided.
- the scanning optical system 200 is configured to be able to be driven in the front-back, up-down, left-right directions with respect to the eye axis of the eye E to be inspected by a driving unit (not shown) controlled by the image processing device 300.
- the image processing device 300 can align the scanning optical system 200 with respect to the eye E to be inspected by controlling a drive unit (not shown).
- the measurement light emitted from the fiber end of the optical fiber 102b is substantially parallelized by the collimating optical system 202 and incident on the scanning unit 203.
- the scanning unit 203 has two galvano mirrors whose mirror surfaces can be rotated, one of which deflects light in the horizontal direction and the other of which deflects light in the vertical direction, and the light incident under the control of the image processing apparatus 300. Bias.
- the scanning unit 203 can scan the measurement light on the fundus Er of the eye E to be inspected in two directions, the main scanning direction in the paper surface and the sub-scanning direction in the direction perpendicular to the paper surface.
- the main scanning direction and the sub-scanning direction are not limited to this, and may be any direction that is orthogonal to the depth direction of the eye E to be inspected and intersects with each other.
- the scanning unit 203 may be configured by using any changing means, and may be configured by using, for example, a MEMS mirror or the like capable of deflecting light in two axial directions with one sheet.
- the measurement light scanned by the scanning unit 203 forms an illumination spot on the fundus Er of the eye E to be inspected via the lens 204.
- each illumination spot moves (scans) on the fundus Er of the eye E to be inspected.
- the reflected light at the illumination spot position follows the optical path in the opposite direction, enters the optical fiber 102b, and returns to the optical branch portion 103.
- the reference light reflected by the reference mirror 113 and the measurement light reflected by the fundus Er of the eye E to be inspected are returned to the optical branching portion 103 as return light and interfere with each other to generate interference light.
- the interference light that has passed through the optical fiber 102d and is emitted to the collimating optical system 122 is substantially parallelized and enters the diffraction grating 123.
- the diffraction grating 123 has a periodic structure and disperses the input interference light.
- the dispersed interference light is imaged on the line sensor 125 by the imaging lens 124 whose focusing state can be changed.
- the line sensor 125 is connected to the image processing device 300, and outputs a signal corresponding to the intensity of the light applied to each sensor unit to the image processing device 300.
- the OCT apparatus may be provided with a fundus camera (not shown) for capturing a frontal image of the fundus of the eye E to be inspected, an optical system of a scanning laser Ophthalmoscope (SLO), or the like.
- a part of the SLO optical system may have an optical path common to a part of the scanning optical system 200.
- FIG. 2 shows a schematic functional configuration example of the image processing device 300.
- the image processing device 300 is provided with a reconstruction unit 301, a motion contrast image generation unit 302, a layer recognition unit 303, an image generation unit 304, a storage unit 305, and a display control unit 306. .
- the image processing device 300 according to the present embodiment is connected to the optical interference unit 100 using the spectrum domain (SD) method, and can acquire the output data of the line sensor 125 of the optical interference unit 100.
- the image processing device 300 may be connected to an external device (not shown) to acquire an interference signal of the eye to be inspected, a tomographic image, or the like from the external device.
- SD spectrum domain
- the reconstruction unit 301 generates the tomographic data of the eye E to be inspected by converting the acquired output data (interference signal) of the line sensor 125 into a wave number and Fourier transforming it.
- the tomographic data refers to data including information on the tomography of the subject, and includes a signal obtained by subjecting an interference signal by OCT to Fourier transform, a signal obtained by subjecting the signal to an arbitrary process, and the like.
- the reconstruction unit 301 can also generate a tomographic image as tomographic data based on the interference signal.
- the reconstructing unit 301 may generate tomographic data based on the interference signal of the eye to be inspected acquired by the image processing device 300 from the external device.
- the OCT apparatus includes the SD type optical interference unit 100, it may also include a time domain (TD) type or wavelength sweep (SS) type optical interference unit.
- the motion contrast image generation unit 302 generates motion contrast data from a plurality of tomographic data. The method of generating the motion contrast data will be described later.
- the motion contrast image generation unit 302 can generate three-dimensional motion contrast data from a plurality of three-dimensional tomographic data. In the following, three-dimensional tomographic data and three-dimensional motion contrast data are collectively referred to as three-dimensional volume data.
- the layer recognition unit 303 analyzes the generated tomographic data of the eye E to be inspected and performs segmentation to identify an arbitrary layer structure in the retinal layer.
- the segmented result serves as a reference for the projection range when generating the OCTA front image as described later.
- the layer boundary line shapes detected by the layer recognition unit 303 include ILM, NFL / GCL, GCL / IPL, IPL / INL, INL / OPL, OPL / ONL, IS / OS, OS / RPE, RPE / Choroid, and There are 10 types of BM.
- the object detected by the layer recognition unit 303 is not limited to this, and may be any structure included in the eye E to be inspected.
- the segmentation method any known method may be used.
- the image generation unit 304 generates an image for display from the generated tomographic data and motion contrast data.
- the image generation unit 304 generates, for example, an En-Face image of brightness obtained by projecting or integrating 3D tomographic data on a 2D plane and an OCTA front image obtained by projecting or integrating 3D motion contrast data on a 2D plane. be able to.
- the display control unit 306 outputs the generated display image to the display unit 310.
- the storage unit 305 stores tomographic data and motion contrast data generated by the reconstruction unit 301, an image for display generated by the image generation unit 304, definitions of a plurality of depth ranges, definitions applied by default, and the like. be able to.
- the image generation unit 304 can generate an OCTA front image and an En-Face image having brightness according to the depth range acquired from the storage unit 305. The method of generating the OCTA front image and the like will be described later. Further, the storage unit 305 may include software or the like in order to realize each unit. The image generation unit 304 can also generate a fundus frontal image based on a signal acquired from a fundus camera (not shown) or an SLO optical system.
- the display unit 310 is connected to the image processing device 300.
- the display unit 310 can be configured by using any monitor.
- the pointing device 320 is a mouse provided with a rotary wheel and buttons, and can specify an arbitrary position on the display unit 310.
- the mouse is used as the pointing device in this embodiment, any pointing device such as a joystick, a touch pad, a trackball, a touch panel, or a stylus pen may be used.
- the OCT device is configured by using the optical interference unit 100, the scanning optical system 200, the image processing device 300, the display unit 310, the pointing device 320, and the keyboard 321.
- the optical interference unit 100, the scanning optical system 200, the image processing device 300, the display unit 310, the pointing device 320, and the keyboard 321 have separate configurations, but all or one of them is configured.
- the parts may be integrally formed.
- the display unit 310 and the pointing device 320 may be integrally configured as a touch panel display.
- a fundus camera and an SLO optical system (not shown) may be configured as separate devices.
- the image processing device 300 may be configured using, for example, a general-purpose computer.
- the image processing device 300 may be configured by using a dedicated computer of the OCT device.
- the image processing device 300 includes a storage medium including a CPU (Central Processing Unit) and an MPU (Micro Processing Unit) (not shown), and a memory such as an optical disk and a ROM (Read Only Memory).
- Each component other than the storage unit 305 of the image processing device 300 may be composed of a software module executed by a processor such as a CPU or MPU.
- each component may be composed of a circuit that performs a specific function such as an ASIC, an independent device, or the like.
- the storage unit 305 may be configured by any storage medium such as an optical disk or a memory.
- the image processing device 300 includes a processor such as a CPU and a storage medium such as a ROM, which may be one or a plurality. Therefore, when each component of the image processing device 300 is connected to at least one or more processors and at least one storage medium, and at least one or more processors executes a program stored in at least one storage medium. It may be configured to work.
- the processor is not limited to the CPU and MPU, and may be a GPU (Graphics Processing Unit), an FPGA (Field-Programmable Gate Array), or the like. Further, each component of the image processing device 300 may be realized by a separate device.
- the examiner seats the patient who is the subject in front of the scanning optical system 200, inputs alignment, patient information, and the like, and then starts OCT imaging.
- the light emitted from the light source 101 passes through the optical fiber 102a and is divided into a measurement light toward the eye E to be inspected and a reference light toward the reference mirror 113 at the optical branching portion 103.
- the measurement light directed to the eye E to be inspected passes through the optical fiber 102b, is emitted from the fiber end, is substantially parallelized by the collimating optical system 202, and is incident on the scanning unit 203.
- the scanning unit 203 has a galvano mirror, and the measurement light deflected by the mirror irradiates the eye E to be inspected via the lens 204. Then, the reflected light reflected by the eye E to be inspected follows the path in the reverse direction and is returned to the optical branching portion 103.
- the reference light directed to the reference mirror 113 passes through the optical fiber 102c, is emitted from the fiber end, and reaches the reference mirror 113 through the collimating optical system 111 and the dispersion compensation optical system 112.
- the reference light reflected by the reference mirror 113 is returned to the optical branching portion 103 by following the path in the reverse direction.
- the interference light input to the diffraction grating 123 is imaged on the line sensor 125 by the imaging lens 124.
- the line sensor 125 can be used to obtain an interference signal at one point on the eye E to be inspected.
- the interference signal acquired by the line sensor 125 is output to the image processing device 300.
- the interference signal output from the line sensor 125 is 12-bit integer format data.
- the reconstruction unit 301 performs wave number transform, fast Fourier transform (FFT), and absolute value transform (acquisition of amplitude) on the 12-bit integer format data, and performs a fault in the depth direction at one point on the eye E to be inspected. Generate data.
- the data format of the interference signal and the like may be arbitrarily set according to the desired configuration.
- the scanning unit 203 drives the galvano mirror and scans the measurement light at one adjacent point on the eye E to be inspected.
- the line sensor 125 detects the interference light based on the measurement light and acquires the interference signal.
- the reconstruction unit 301 generates tomographic data in the depth direction at the adjacent point on the eye E to be inspected based on the interference signal of the adjacent point. By repeating this series of control, tomographic data (two-dimensional tomographic data) relating to one tomographic image in one transverse direction (main scanning direction) of the eye E to be inspected can be generated.
- the scanning unit 203 drives a galvano mirror and scans the same location (same scanning line) of the eye E to be examined a plurality of times to acquire a plurality of tomographic data (two-dimensional tomographic data) at the same location of the eye E to be inspected. .. Further, the scanning unit 203 drives the galvano mirror to move the measurement light minutely in the sub-scanning direction orthogonal to the main scanning direction, and a plurality of tomographic data (adjacent scanning lines) at another location (adjacent scanning line) of the eye E to be inspected. Two-dimensional fault data) is acquired. By repeating this control, it is possible to acquire tomographic data (three-dimensional tomographic data) relating to a plurality of three-dimensional tomographic images in a predetermined range of the eye E to be inspected.
- one tomographic data at one point of the eye E to be inspected is acquired by performing FFT processing on a set of interference signals obtained from the line sensor 125.
- the complex number format tomographic data generated by the reconstruction unit 301 is output to the motion contrast image generation unit 302.
- the motion contrast image generation unit 302 corrects the positional deviation of a plurality of tomographic data (two-dimensional tomographic data) at the same location of the eye E to be inspected.
- the method for correcting the misalignment any known method may be used.
- the reference fault data may be selected as a template, and the amount of misalignment with the template may be acquired as the amount of misalignment with respect to each tomographic data. ..
- the motion contrast image generation unit 302 obtains a decorrelation value between the two two-dimensional tomographic data in which the positional deviation has been corrected by the following equation (1).
- Axz indicates the amplitude of the tomographic data A at the position (x, z)
- Bxz indicates the amplitude of the tomographic data B at the same position (x, z).
- the resulting decorrelation value Mxz takes a value from 0 to 1, and the larger the difference between the two amplitude values, the closer to 1.
- the motion contrast image generation unit 302 obtains a plurality of decorrelation values by repeating the above decorrelation calculation for the number of acquired tomographic data, and obtains the average value of the plurality of decorrelation values to obtain the final motion. Acquire contrast data.
- the motion contrast image generation unit 302 can generate a motion contrast image by arranging the acquired motion contrast data at the corresponding pixel positions.
- the motion contrast data is obtained based on the amplitude of the complex number data after the FFT, but the method of obtaining the motion contrast data is not limited to the above method.
- the motion contrast data may be obtained based on the phase information of the complex number data, or the motion contrast data may be obtained based on both the amplitude and phase information. It is also possible to obtain motion contrast data based on the real part and the imaginary part of the complex number data. Further, the motion contrast image generation unit 302 may perform the same processing on each pixel value of the two-dimensional tomographic image to obtain the motion contrast data.
- the motion contrast data is acquired by calculating the decorrelation value of the two values, but the motion contrast data may be obtained based on the difference between the two values, or the ratio of the two values may be obtained.
- Motion contrast data may be obtained based on the above.
- the motion contrast data may be obtained based on the variance value of the tomographic data.
- the final motion contrast data is obtained by obtaining the average value of the acquired plurality of decorrelation values, but the final values, the difference, the maximum value, the median value, etc. of the plurality of decorrelation values are obtained.
- Motion contrast data may be used.
- the two tomographic data used when acquiring the motion contrast data may be the data acquired at a predetermined time interval.
- the OCTA front image is a front image obtained by projecting or integrating a three-dimensional motion contrast image (three-dimensional motion contrast data) onto a two-dimensional plane in an arbitrary depth range.
- the depth range can be set arbitrarily.
- SCP Superficial Capillary
- Deep Capillary deep layer of the retina
- Outer Retina outer layer of the retina
- RPC radial peri-papillary capillaries
- the superficial retinal layer is defined as ILM + 0 ⁇ m to GCL / IPL + 50 ⁇ m.
- GCL / IPL means the boundary between the GCL layer and the IPL layer.
- an offset amount such as +50 ⁇ m or -100 ⁇ m means that a positive value shifts to the choroid side and a negative value shifts to the pupil side.
- the outer layer of the retina and the choroidal capillary plate are often used as the depth range.
- the outer layer of the retina is often defined as OPL / ONL + 0 ⁇ m to RPE / Choroid + 0 ⁇ m, but as will be described later, the depth range can be adjusted depending on the size of CNV, the location of occurrence (depth position), and the like.
- the representative value can include a value such as an average value, a median value, or a maximum value of pixel values within the depth range.
- the brightness En-Face image is a front image obtained by projecting or integrating a three-dimensional tomographic image on a two-dimensional plane in an arbitrary depth range.
- the brightness En-Face image may be generated in the same manner as the OCTA front image by using a three-dimensional tomographic image instead of the three-dimensional motion contrast image. Further, the brightness En-Face image may be generated by using the three-dimensional tomographic data.
- the depth range of the OCTA front image and the En-Face image is determined based on the retinal layer detected by the segmentation process of the two-dimensional tomographic data (or the two-dimensional tomographic image) of the three-dimensional volume data. Can be done. Further, the depth range may be a range including a predetermined number of pixels in a deeper direction or a shallower direction with reference to one of the two layer boundaries relating to the retinal layer detected by these segmentation processes.
- the depth range may be configured so that it can be changed according to a desired configuration.
- the depth range can be a range modified (offset) according to the operator's instructions from the range between the two layer boundaries with respect to the detected retinal layer.
- the operator can change the depth range by, for example, moving an index indicating the upper limit or the lower limit of the depth range superimposed on the tomographic image.
- FIG. 3 is a diagram for explaining the image generation unit 304.
- the image generation unit 304 includes a projection range control unit 341 and a front image generation unit 342.
- the projection range control unit 341 of the front image is based on the motion contrast image generated by the motion contrast image generation unit 302, the layer recognition result by the layer recognition unit 303, and the depth range stored in the storage unit 305. Specify the 3D motion contrast data used for generation.
- the front image generation unit 342 projects or integrates the motion contrast data specified by the projection range control unit 341 on a two-dimensional plane to generate an OCTA front image.
- the projection range control unit 341 uses the three-dimensional tomographic image (three-dimensional tomographic data), the layer recognition result, and the three-dimensional tomographic data used to generate the En-Face image of the brightness based on the depth range. Can be identified.
- the front image generation unit 342 can project or integrate the tomographic data specified by the projection range control unit 341 on a two-dimensional plane to generate an En-Face image of brightness.
- FIG. 4 shows an example of the GUI 400 for displaying an image including an OCTA front image generated by the image generation unit 304.
- the GUI 400 shows a tab 401 for screen selection, and in the example shown in FIG. 4, the report screen (Report tab) is selected.
- the GUI 400 may include a patient screen (Patient tab) for selecting a patient, an imaging screen (OCT Capture tab) for performing imaging, and the like.
- the inspection selector 408 is provided on the left hand side of the report screen, and the display area is provided on the right hand side.
- the examination selector 408 displays a list of examinations performed so far for the currently selected patient, and when one of them is selected, the display control unit 306 displays the examination result in the display area on the right side of the report screen. Let me.
- an SLO image 406 generated by using an SLO optical system (not shown) is shown, and an OCTA front image is superimposed and displayed on the SLO image 406. Further, in the display area, the first OCTA front image 402, the first tomographic image 403, the brightness En-Face image 407, the second OCTA front image 404, and the second tomographic image 405 are displayed. .. A pull-down is provided on the upper part of the En-Face image 407, and EnfaceImage1 is selected. This means that the depth range of the En-Face image is the same as the depth range of OCTA Image 1 (first OCTA front image 402). By the pull-down operation, the operator can make the depth range of the En-Face image the same as the depth range of the OCTA Image 2 (second OCTA front image 404) and the like.
- the depth range when the first OCTA front image 402 is generated is shown by a broken line.
- the depth range of the first OCTA front image 402 is the superficial layer of the retina (SCP).
- the second OCTA front image 404 is an image generated using data in a depth range different from that of the first OCTA front image 402.
- the depth range when the second OCTA front image 404 is generated is shown by a broken line.
- the depth range of the second OCTA front image 404 is CNV, and in this example, it is in the range of OPL / ONL + 50 ⁇ m to BM + 10 ⁇ m.
- the depth range of the first OCTA front image 402 and the second OCTA front image 404 can be set according to the pull-down operation provided on the upper part of these images. Further, these depth ranges may be set in advance or may be set according to the operation of the operator.
- the image generation unit 304 can function as a target designation unit for designating an extraction target (target area) to be the target of the following extraction processing based on the setting.
- the pull-down for setting the depth range of the OCTA front image corresponds not only to the depth range for each layer such as the superficial layer of the retina described above, but also to an abnormal part or the like that is desired to be extracted by the following processing such as CNV. Ranges may be included.
- the display control unit 306 switches the screen to be displayed on the display unit 310 from the GUI 400 shown in FIG. 4 to the GUI 500 shown in FIG.
- the GUI500 includes OCTA frontal images 501,505,509,513, corresponding tomographic images 503,507,511,515, and depth ranges 502,506,510,514 for four different depth range settings. Is displayed.
- the image generation unit 304 designates the CNV corresponding to the depth range of the second OCTA front image 404 as the extraction target (target area).
- the image generator 304 has corresponding OCTA front images 501,505,509, based on four depth ranges 502,506,510,514 pre-stored in the storage unit 305 for the CNV designated as the extraction target. Generate 513.
- the display control unit 306 causes the display unit 310 to display the generated OCTA front image 501,505,509,513, the corresponding tomographic images 503,507,511,515, and the depth range 502,506,510,514.
- a depth range assuming a Type 1 CNV is set, and is BM + 0 ⁇ m to BM + 20 ⁇ m.
- the type 1 CNV means a CNV below the RPE / Choroid.
- the depth range 506 for the second image from the left (OCTA front image 505) is a depth range assuming a very small CNV slightly above the BM, and is BM-20 ⁇ m to BM + 0 ⁇ m.
- the depth range 510 for the third image from the left (OCTA front image 509) is a depth range assuming a large CNV generated above the BM, and is BM-100 ⁇ m to BM + 0 ⁇ m.
- the depth range 514 for the fourth image from the left (OCTA front image 513) is a depth range that covers the entire outer layer of the retina, and is a depth range (OPL + 50 ⁇ m to BM + 10 ⁇ m) assuming a considerably large CNV.
- Selection buttons 504, 508, 521, 516 are displayed at the bottom of the GUI 500, and the operator selects the selection button to display an OCTA front image (front image to be displayed) preferable for use in diagnosis or the like. You can select from the displayed OCTA front image.
- the display control unit 306 switches the screen displayed on the display unit 310 to the GUI 600 of the report screen shown in FIG.
- the GUI 600 is similar to the GUI 400, but the second OCTA front image 404 and the second tomographic image 405 show the depth range for the OCTA front image 509 and OCTA front image 509 based on the conditions selected by the operator. It has been switched to the tomographic image 511.
- the OCTA front image relating to a plurality of depth ranges according to the extraction target is provided to the operator, and the operator selects a preferable image to display the OCTA front image for the optimum depth range. be able to. This can reduce the risk of oversight of lesions and reduce additional work such as image quality adjustment by doctors and laboratory technicians.
- FIG. 7 is a flowchart of a series of processes according to this embodiment
- FIG. 8 is a flowchart of a front image generation process according to this embodiment.
- the image processing apparatus 300 acquires a three-dimensional interference signal relating to the eye to be inspected E from the line sensor 125 of the optical interference unit 100, and the reconstruction unit 301 acquires the three-dimensional tomographic data. Is generated and acquired.
- the reconstruction unit 301 can also generate a three-dimensional tomographic image based on the three-dimensional tomographic data.
- the image processing device 300 may acquire a three-dimensional interference signal, three-dimensional interference data, a three-dimensional tomographic image, or the like related to the eye E to be inspected from a connected external device (not shown).
- the motion contrast image generation unit 302 When the 3D tom data is acquired by the reconstruction unit 301, the motion contrast image generation unit 302 generates and acquires the 3D motion contrast data (3D motion contrast image) based on the 3D tom data.
- step S702 the image generation unit 304 specifies the extraction target (target area) according to the preset setting or the instruction of the operator.
- the layer recognition unit 303 can segment the three-dimensional tomographic data and acquire the layer recognition result.
- the image generation unit 304 generates the first OCTA front image 402 and the like based on the three-dimensional volume data, the layer recognition result, the setting of the predetermined depth range, and the like, and the display control unit 306 displays the GUI 400 on the display unit 310. It may be displayed in.
- the operator can input an instruction regarding the extraction target by operating a pull-down or the like regarding the OCTA front image.
- the process proceeds to step S703.
- step S703 the image generation unit 304 starts the front image generation process according to this embodiment.
- the image generation unit 304 specifies a plurality of depth ranges stored in the storage unit 305 corresponding to the designated extraction target.
- the projection range control unit 341 of the image generation unit 304 specifies the three-dimensional motion contrast data used for generating the OCTA front image based on the specified plurality of depth ranges, three-dimensional motion contrast data, and layer recognition result. ..
- the front image generation unit 342 generates a plurality of OCTA front images corresponding to a plurality of depth ranges based on the specified three-dimensional motion contrast data.
- step S802 the display control unit 306 causes the display unit 310 to display the generated plurality of OCTA front images.
- the display control unit 306 can display the information regarding the corresponding depth range on the display unit 310 together with the generated plurality of OCTA front images.
- the information regarding the corresponding depth range may be numerical information indicating the depth range, a broken line indicating the depth range on the tomographic image, or both.
- step S803 the operator specifies a preferable OCTA front image for diagnosis or the like from a plurality of OCTA front images displayed on the display unit 310.
- the image processing device 300 selects the OCTA front image to be displayed according to the instruction of the operator.
- the instruction by the operator may be given, for example, by selecting a selection button in the GUI 500 shown in FIG.
- the display control unit 306 causes the display unit 310 to display the selected OCTA front image.
- the OCTA front image is generated and displayed, but the generated / displayed image may be an En-Face image having brightness.
- the same process as the above process may be performed by using the tomographic data instead of the motion contrast data.
- the image processing device 300 includes an image generation unit 304 and a display control unit 306.
- the image generation unit 304 also functions as a target designation unit for designating an extraction target from the three-dimensional volume data of the eye E to be inspected.
- the display control unit 306 causes the display unit 310 to display a plurality of front images corresponding to different depth ranges of the three-dimensional volume data side by side using the information of the designated target area.
- the projection range control unit 341 of the image generation unit 304 determines the depth range for generating a plurality of front images using the designated information of the extraction target.
- each depth range for generating a plurality of front images is, for example, a depth range within a range of 0 to 50 ⁇ m from the outer layer of the retina or the Bruch's membrane to the choroid side.
- a front image relating to a plurality of depth ranges according to the extraction target by providing the operator with a front image relating to a plurality of depth ranges according to the extraction target, a front image in which it is easy to confirm the target area such as the target structure is displayed. be able to. This can reduce the risk of oversight of lesions and reduce additional work such as image quality adjustment by doctors and laboratory technicians.
- the projection range control unit 341 of the image generation unit 304 determines the depth range for generating a plurality of front images based on the designation of the extraction target.
- the projection range control unit 341 of the image generation unit 304 is, for example, the type of three-dimensional volume data, the layer or depth range to be extracted, the number of front images to be generated, the depth range to generate the front image, and the front. It can serve as an example of a determinant that determines at least one of the intervals in the depth range that produces the image.
- the determination unit may be configured as a component separate from the image generation unit 304.
- an image corresponding to a plurality of depth ranges is displayed separately from the GUI 400 shown in FIG. 4, as in the GUI 500 shown in FIG. 5, but the present invention is not limited to this.
- images in a plurality of depth ranges may be displayed side by side on the GUI 400.
- the images in a plurality of depth ranges may be displayed while being temporally switched to the display area of the second OCTA front image 404 of the GUI 400, or may be switched and displayed according to the instruction of the operator.
- an image in a preferable depth range may be selected from the images displayed by switching by an operation on the GUI 400.
- the OCTA front image corresponding to a plurality of depth ranges is displayed as in the GUI 500 shown in FIG. 5, but the present invention is not limited to this.
- the images whose projection method has been changed may be displayed side by side together with the depth range, and the operator may select the images.
- the projection method may be any known method such as maximum value projection or average value projection. Even within the same depth range, the appearance of the front image changes depending on the projection method. Therefore, in such a case, the operator can be made to select the front image corresponding to the preferable projection method.
- the generated image is displayed on the display unit 310, but for example, it may be output to an external device such as an external server.
- the different depth ranges corresponding to the plurality of front images may be partially overlapping depth ranges. It should be noted that these contents can be similarly applied to the following various examples and modifications.
- Modified Example 1 In the first embodiment, an example is shown in which the operator double-clicks the front image to display the front image in a plurality of depth ranges, but the processing for displaying the front image in a plurality of depth ranges is limited to this. I can't. For example, at the stage when the report screen of the GUI 400 is displayed, a front image corresponding to a plurality of depth ranges set for the target disease may be displayed and the operator may select the front image.
- a front image for a plurality of depth ranges is displayed.
- the operator may be allowed to select the most suitable image.
- an OCTA test is performed on a patient having a disease such as a patient with exudative age-related macular degeneration having CNV
- a front image corresponding to a plurality of depth ranges set for the disease is displayed.
- the operator may be allowed to select the most suitable image.
- the determination as to whether or not there is an abnormality may be performed by any known method.
- Example 2 In Example 1, a plurality of OCTA front images corresponding to a plurality of depth ranges are displayed, and the operator selects a preferred image among them to provide an OCTA front image projected in a preferred depth range.
- the image processing apparatus according to the second embodiment is further provided with an image evaluation unit 343 in the image generation unit 304, and can provide the operator with information indicating the evaluation of the existence of the extraction target in the image together with the OCTA front image. different.
- the configuration of the image processing apparatus according to the present embodiment is the same as the configuration of the image processing apparatus according to the first embodiment except that the image evaluation unit 343 is added to the image generation unit 304. The description will be omitted using reference numerals.
- the image processing apparatus according to the present embodiment will be described focusing on the difference from the image processing apparatus 300 according to the first embodiment.
- FIG. 9 is a diagram for explaining the image generation unit 304 according to this embodiment. As shown in the figure, the image generation unit 304 according to this embodiment is provided with an image evaluation unit 343 in addition to the projection range control unit 341 and the front image generation unit 342.
- the image evaluation unit 343 evaluates the OCTA front image corresponding to a plurality of depth ranges generated by the front image generation unit 342, and acquires information indicating an evaluation indicating the presence of new blood vessels (CNV) in each OCTA front image.
- the information indicating the evaluation may be an evaluation value, or may be information indicating the presence or absence of existence and the possibility thereof.
- the information indicating the evaluation may be information that the eye to be inspected has or does not have an extraction target such as CNV, or there is a suspicion that an extraction target such as CNV exists.
- the image evaluation unit 343 acquires an evaluation value from the OCTA front image using a trained model trained using a neural network as a machine learning model.
- FIG. 10A shows an example of a neural network used as a machine learning model
- FIG. 10B shows an example of learning data according to this embodiment.
- the feature points of the input data are extracted, and the output data is estimated from the feature points according to the weights between the nodes determined according to the learning.
- the OCTA front image is used as the input data of the learning data, and the evaluation value evaluated for the presence of CNV in the OCTA front image is used as the output data of the learning data.
- the evaluation value is a value of 0 to 1, and indicates whether or not CNV is included in the OCTA front image.
- the maximum value of the evaluation value is 1, and the larger the value, the higher the probability that the OCTA front image contains CNV.
- FIG. 10B six types of OCTA front images are shown as input data and three levels of values are shown as output data, but in reality, more OCTA front images are used as input data and labeling related to output data is performed. The number of stages may be increased.
- OCTA front image that becomes input data by performing so-called augmentation such as rotating the image, flipping it upside down, left and right, and changing the cropping range of the image. May be increased.
- the projection artifact is a phenomenon in which blood vessels such as the surface layer of the retina are reflected in a layer below the surface layer. Any known method may be used as the algorithm for removing the projection artifacts.
- the input data of the learning data not only the OCTA front image of various examples including CNV but also the image of a healthy eye can be used together. Further, the OCTA front image of another diseased eye may be included in the input data of the learning data to be trained.
- an evaluation value in which a doctor or the like evaluates the presence of CNV in the OCTA front image which is the input data of the learning data is used.
- the evaluation values of three stages of 0, 0.5, and 1 are used as the output data of the training data, but even if the evaluation values of a larger number of stages are used as described above. Good.
- the evaluation standard may be arbitrary, and for example, the evaluation value may be determined according to the clarity of CNV, or the evaluation value may be set to 1 when CNV appears even a little.
- the data according to the design of the machine learning model is output. For example, output data that is likely to correspond to the input data is output according to the tendency of learning using the learning data.
- the evaluation value for evaluating the presence of CNV in the input OCTA front image is output according to the learning tendency.
- the image evaluation unit 343 may calculate the final evaluation value from the ratio of the evaluation values of each stage output from the trained model. For example, the image evaluation unit 343 may calculate the final evaluation value by multiplying each evaluation value by the corresponding ratio and dividing the added value by the total of the ratios. In this case, for example, when the ratio of the evaluation value of 0 is 0.2, the ratio of the evaluation value of 0.5 is 0.8, and the ratio of the evaluation value of 1 is 0, the image evaluation unit 343 is final. 0.4 can be calculated as a typical evaluation value.
- the method of calculating the final evaluation value is not limited to this, and any method may be used, for example, the final evaluation value having a ratio higher than other ratios.
- FIG. 11 is a flowchart of the front image generation process according to the present embodiment. Since the flow of a series of processes other than the front image generation process is the same as the series of processes according to the first embodiment, the description thereof will be omitted. Further, since step S1101 is the same step as step S801 according to the first embodiment, the description thereof will be omitted. When a plurality of OCTA front images are generated in step S1101, the process proceeds to step S1102.
- step S1102 the image evaluation unit 343 evaluates each of the generated plurality of OCTA front images using the trained model, and acquires an evaluation value for evaluating the presence of CNV in each OCTA front image.
- the process proceeds to step S1103.
- step S1103 the display control unit 306 displays a plurality of OCTA front images corresponding to a plurality of depth ranges side by side together with their respective evaluation values and depth ranges.
- FIG. 12 shows an example of a GUI that the display control unit 306 displays on the display unit 310.
- the GUI 1200 shown in FIG. 12 is similar to the GUI 500 shown in FIG. 5, but the evaluation values 1217, 1218, 1219, 1220 of each OCTA front image are placed on the upper part of each OCTA front image 501, 505, 509, 520. It is shown.
- step S1104 the operator specifies a preferable OCTA front image for diagnosis or the like from a plurality of OCTA front images displayed on the display unit 310 based on the OCTA front image and its evaluation value.
- the image processing device 300 selects the OCTA front image to be displayed according to the instruction of the operator. At this time, the operator can specify the OCTA front image to be displayed by, for example, operating the selection buttons 504, 508, 512, 516. Since the subsequent processing is the same as the processing according to the first embodiment, the description thereof will be omitted.
- the evaluation value (information indicating the evaluation) that evaluates the existence of the extraction target in the front image is displayed together with the plurality of front images.
- the operator can more accurately select the optimum image. Therefore, for example, even when the image quality difference between the plurality of front images is small, it is possible to reduce the individual difference by the operator when selecting the image to be displayed.
- information indicating the evaluation of the front image (evaluation value 1310) may be displayed together with the selected front image as in the GUI 1300 shown in FIG. Good. In this case, information indicating the evaluation of the front image can be confirmed on the report screen as well.
- the image processing device 300 includes an image generation unit 304 and an image evaluation unit 343.
- the image generation unit 304 generates a plurality of front images corresponding to different depth ranges of the three-dimensional volume data of the eye E to be inspected.
- the image evaluation unit 343 obtains a plurality of information corresponding to the plurality of front images, which is information indicating the evaluation of evaluating the existence of the target region by using the plurality of front images.
- the image generation unit 304 can function as an example of a determination unit that determines a front image (output image) to be displayed using the plurality of information.
- the image generation unit 304 uses the plurality of information to determine at least one of the plurality of front images as a front image to be displayed.
- the image processing device 300 includes a display control unit 306 that controls the display of the display unit 310.
- the display control unit 306 causes the display unit 310 to display the acquired information indicating the plurality of evaluations side by side with the plurality of front images.
- the determination unit may be configured as a component separate from the image generation unit 304.
- the target structure or the like can be targeted. It is possible to display a front image in which the area can be easily confirmed. This can reduce the risk of oversight of lesions and reduce additional work such as image quality adjustment by doctors and laboratory technicians. Further, by displaying a plurality of front images side by side together with a plurality of information indicating the evaluation, it is possible for the operator to easily specify an appropriate front image for diagnosis or the like from the plurality of front images.
- the brightness En-Face image may be generated and displayed as the front image as in the first embodiment.
- the image processing device 300 may be configured so that the depth range of the generated front image can be manually adjusted.
- the image generation unit 304 determines the image to be finally displayed, but the determined image may be output to an external device or the like. Therefore, the image generation unit 304 may be able to determine, for example, an output image to be output to the display unit 310 or an external device.
- the image evaluation unit 343 acquires the evaluation value by using the trained model, but the present invention is not limited to this, and the evaluation value may be acquired by using so-called rule-based image processing. For example, when calculating an evaluation value for evaluating the presence of CNV, the image evaluation unit 343 removes granular noise from the tomographic image, then emphasizes the tubular region with a Hessian filter, and integrates the emphasized image. The evaluation value may be calculated. Further, the image evaluation unit 343 may binarize the emphasized image and acquire the evaluation value according to the presence of pixels exceeding the threshold value.
- the image evaluation unit 343 can calculate the evaluation value for each type of CNV. Further, as shown in FIG. 13, the display control unit 306 can display the CNV type having the higher evaluation value and the evaluation value thereof on the display unit 310. In such a case, the operator can confirm the type of age-related macular degeneration CNV contained in the front image in addition to the evaluation value of the front image.
- the CNV type and the evaluation value are displayed, but the present invention is not limited to this, and the evaluation value for each type may be displayed. If it is estimated that there is no CNV in the front image, it may be displayed that there is no CNV instead of the CNV type display.
- the image evaluation unit 343 may determine the CNV type from the depth range of the front image.
- the image evaluation unit 343 may determine the CNV type from the depth range of the front image.
- an example of generating and displaying an OCTA front image as a front image has been described, but as in the second embodiment, a brightness En-Face image may be generated and displayed as a front image.
- the image processing device 300 may be configured so that the depth range of the generated front image can be manually adjusted.
- the trained model shown in FIG. 14 is composed of a plurality of layers responsible for processing and outputting an input value group.
- the types of layers included in the configuration 1401 of the trained model include a convolution layer, a Downsampling layer, an Upsampling layer, and a Merger layer.
- the convolution layer is a layer that performs convolution processing on the input value group according to parameters such as the set filter kernel size, the number of filters, the stride value, and the dilation value.
- the number of dimensions of the kernel size of the filter may be changed according to the number of dimensions of the input image.
- the downsampling layer is a layer that performs processing to reduce the number of output value groups to less than the number of input value groups by thinning out or synthesizing the input value groups. Specifically, as such a process, for example, there is a Max Polling process.
- the upsampling layer is a layer that performs processing to increase the number of output value groups to be larger than the number of input value groups by duplicating the input value group or adding the interpolated value from the input value group. Specifically, as such a process, for example, there is a linear interpolation process.
- the composite layer is a layer in which a value group such as an output value group of a certain layer or a pixel value group constituting an image is input from a plurality of sources, and the processing is performed by concatenating or adding them.
- the kernel size of the filter is 3 pixels in width, 3 pixels in height, and the number of filters is 64, so that a certain degree of accuracy is achieved. Can be processed.
- the parameter settings for the layers and nodes that make up the neural network are different, the degree to which the tendency trained from the teacher data can be reproduced in the output data may differ. That is, in many cases, the appropriate parameters differ depending on the embodiment, and therefore, the values can be changed to preferable values as needed.
- the CNN can obtain better characteristics by changing the configuration of the CNN.
- Better characteristics include, for example, higher processing accuracy, shorter processing time, and shorter training time for machine learning models.
- the CNN configuration 1401 used in this modification has a function of an encoder composed of a plurality of layers including a plurality of downsampling layers and a function of a decoder composed of a plurality of layers including a plurality of upsampling layers. It is a net type machine learning model.
- position information spatial information
- a decoder composed of a plurality of layers including a plurality of upsampling layers.
- a batch normalization layer or an activation layer using a rectifier liner unit may be incorporated after the convolution layer. ..
- the data according to the design of the machine learning model is output.
- output data that is likely to correspond to the input data is output according to the tendency trained using the training data.
- the input data is the OCTA front image of the layer in which CNV occurs when age-related macular degeneration develops
- the output data is white only in the region where CNV is present with respect to the OCTA front image, and the rest. Is composed of an image pair to be a binary image in black.
- An example of the learning data in this case is shown in FIG.
- images of healthy eyes are also learned. All binary images of healthy eyes are black.
- the trained model learned in this way can output a binary image as if only the region where the CNV exists was segmented.
- the image evaluation unit 343 can acquire a binary image showing the region where the CNV exists by inputting the OCTA front image into the trained model.
- the image evaluation unit 343 can calculate an evaluation value indicating the possibility that CNV is present based on the white area in the acquired binary image.
- the evaluation value may be set to 1, or when the total area (number of pixels) of the white area is equal to or larger than the threshold value.
- the evaluation value may be 1.
- the threshold value may be set stepwise, and the evaluation value may be determined according to the threshold value when the total area of the white area exceeds.
- the image evaluation unit 343 may calculate the area of the white region in the binary image acquired from the trained model as the size of the CNV.
- the display control unit 306 can display the size of the CNV included in the OCTA front image as well as the OCTA front image to be displayed.
- the value of the image used as the output data is not limited to the binary value.
- the image whose value is changed according to the evaluation value of CNV may be used as the output data of the learning data.
- the evaluation value of CNV in this case may be an evaluation value labeled by a doctor or the like as in Example 2. Further, as described in the first modification of the second embodiment, the CNV type may be distinguished and learned.
- a binary image was acquired using a neural network, but it is not limited to this and can be realized by so-called rule-based image processing.
- the tubular area may be emphasized with a Hessian filter, and the emphasized image may be binarized.
- the method for calculating the evaluation value in this case the same method as the above-mentioned method may be used.
- a brightness En-Face image may be generated and displayed as a front image.
- the image processing device 300 may be configured so that the depth range of the generated front image can be manually adjusted.
- the binary image is an image shown by binary values of white and black, but the binary image may be any two labels.
- the image evaluation unit 343 is provided in the image generation unit 304 to acquire and display the evaluation values for a plurality of OCTA front images.
- the OCTA front image having an optimum depth range is automatically output without the intervention of an operator.
- the configuration of the image processing apparatus according to the present embodiment is the same as the configuration of the image processing apparatus according to the second embodiment except that the front image determination unit 344 is added to the image generation unit 304. The description will be omitted using reference numerals.
- the image processing apparatus according to the present embodiment will be described focusing on the difference from the image processing apparatus 300 according to the second embodiment.
- FIG. 16 is a diagram for explaining the image generation unit 304 according to this embodiment.
- the image generation unit 304 according to this embodiment is provided with a front image determination unit 344 in addition to the projection range control unit 341, the front image generation unit 342, and the image evaluation unit 343.
- the front image determination unit 344 should display the OCTA front image corresponding to the maximum evaluation value (evaluation value higher than other evaluation values) among the evaluation values calculated for the plurality of OCTA front images. Determine and select as OCTA front image.
- FIG. 17 is a flowchart of the front image generation process according to the present embodiment. Since the flow of a series of processes other than the front image generation process is the same as the series of processes according to the second embodiment, the description thereof will be omitted. Further, since steps S1701 and S1702 are the same steps as steps S1101 and S1102 according to the second embodiment, the description thereof will be omitted. When a plurality of evaluation values are acquired for the plurality of OCTA front images in step S1702, the process proceeds to step S1703.
- step S1703 the front image determination unit 344 determines the OCTA front image having the maximum evaluation value (higher than other evaluation values) as the OCTA front image to be displayed from among the generated plurality of OCTA front images. ⁇ select. Since the subsequent processing is the same as the processing according to the second embodiment, the description thereof will be omitted.
- the front image determination unit 344 of the image generation unit 304 determines as the front image to display the front image corresponding to the evaluation value higher than the other evaluation values among the acquired plurality of evaluation values. Functions as an example of the department. As a result, the OCTA front image in the optimum depth range can be displayed without the intervention of an operator, and the processing efficiency can be improved.
- the front image determination unit 344 may be configured as a component separate from the image generation unit 304.
- the threshold value for example, 0.2
- CNV CNV
- a projection image in a predetermined depth range may be displayed.
- the threshold value in this case may be arbitrarily set according to the desired configuration. Further, in this case, it may be displayed together with the evaluation value or instead that there is no CNV.
- the brightness En-Face image may be generated and displayed as the front image as in the second embodiment.
- the image processing device 300 may be configured so that the depth range of the generated front image can be manually adjusted. It should be noted that these processes can also be applied to the following modified examples of this embodiment.
- the front image determination unit 344 selects the OCTA front image having the highest evaluation value, but the front image determination unit 344 may select the OCTA front image whose evaluation value exceeds the threshold value. In this case, the front image determination unit 344 may select a plurality of OCTA front images corresponding to the plurality of evaluation values when the plurality of evaluation values exceed the threshold value. In this case, the display control unit 306 may display the plurality of evaluation values and a plurality of OCTA front images corresponding thereto while switching between them. Further, the front image determination unit 344 may select the OCTA front image to be displayed independently from the plurality of OCTA front images according to the instruction of the operator.
- the front image in the optimum depth range is automatically selected as the front image (output image) to be displayed without the intervention of the operator.
- the method of determining the depth range corresponding to the front image to be displayed is not limited to this.
- the front image determination unit 344 selects the front image corresponding to the depth range in which the evaluation value is maximum, but in the present modification, the front image determination unit 344 has the evaluation value of the front image. The difference is that the depth ranges that are equal to or greater than the threshold value are connected to form the depth range of the front image to be displayed.
- FIG. 18 is a flowchart of the front image generation process according to this modification. Since the flow of a series of processes other than the front image generation process is the same as the series of processes according to the third embodiment, the description thereof will be omitted. Further, since steps S1801 and S1802 are the same steps as steps S1701 and S1702 according to the third embodiment, the description thereof will be omitted. When a plurality of evaluation values are acquired for the plurality of OCTA front images in step S1802, the process proceeds to step S1803.
- the front image determination unit 344 connects the depth ranges whose evaluation values are equal to or greater than the threshold value, and determines the depth range of the OCTA front image to be displayed.
- FIG. 19 is an example in which a plurality of evaluation values are calculated for a plurality of OCTA front images. Assuming that the Bruch film is BM, in the example shown in FIG. 19, the depth range is sequentially from the depth range (a) “BM + 0 ⁇ m to BM + 20 ⁇ m” to the depth range (h) “BM-140 ⁇ m to BM-120 ⁇ m” every 20 ⁇ m. This is an example in which a plurality of OCTA front images are generated while shifting to the glass body side. In the example shown in FIG. 19, the image evaluation unit 343 acquires a plurality of evaluation values (numerical values on the right side of the figure) corresponding to the plurality of OCTA front images generated in this way.
- the front image determination unit 344 connects the depth ranges from the depth range (b) to the depth range (f) and determines the depth range of the OCTA front image to be displayed.
- the front image determination unit 344 determines the depth range of the OCTA front image to be displayed from BM + 0 ⁇ m, which is the lower limit of the depth range (b), to BM-100 ⁇ m, which is the upper limit of the depth range (f).
- step S1804 the projection range control unit 341 and the front image generation unit 342 generate an OCTA front image to be displayed based on the depth range determined by the front image determination unit 344. Since the subsequent processing is the same as that of the third embodiment, the description thereof will be omitted.
- the OCTA front image, its depth range, and the tomographic image generated by performing the above processing are shown in FIG.
- the CNV appears in such a manner that it can be easily confirmed.
- FIG. 21 is an example in which the processing of this modification is executed for a very small CNV.
- the depth range is set from the depth range (a) “BM + 0 ⁇ m to BM + 20 ⁇ m” to the depth range (e) “BM-80 ⁇ m to BM-60 ⁇ m” for simplification of the description.
- the depth range in which the evaluation value is the threshold value of 0.3 or more is only the depth range (b), so that the front image determination unit 344 determines the final depth range to be the same range as the depth range (b).
- the OCTA frontal image corresponding to the determined depth range, the depth range thereof, and the tomographic image are shown in FIG. In the OCTA front image shown in FIG.
- the image generation unit 304 does not need to generate the OCTA front image of the depth range again.
- the front image determination unit 344 of the image generation unit 304 determines the second depth range based on the calculated plurality of evaluation values, and the determination is made. It functions as an example of a determination unit that determines an image generated using the second depth range as a front image to be displayed.
- the image generation unit 304 determines the second depth range by connecting the depth ranges corresponding to the evaluation values that are equal to or greater than the threshold value among the plurality of calculated evaluation values.
- the determination unit may be configured as a component separate from the image generation unit 304.
- the image processing apparatus 300 generates a front image for a very thin depth range as compared with the third embodiment, and estimates the presence or absence of an extraction target while continuously changing the depth range. Therefore, the depth range of the front image to be displayed can be determined more finely. Therefore, it is possible to more appropriately generate an image in which the target area can be easily confirmed. In particular, by performing evaluation for each very thin depth range, even if there is a very small extraction target (for example, CNV), it can be detected without overlooking.
- a very small extraction target for example, CNV
- the depth of the depth range to be exploratoryly shifted (difference between the upper limit and the lower limit of the depth range) is fixed to 20 ⁇ m, but the depth of the depth range is not limited to this and is desired. It may be arbitrarily set according to the configuration of.
- the number of candidate images increases as the depth of the depth range that shifts exploratoryly becomes thinner, and the amount of calculation for calculating the evaluation value increases accordingly. Further, if the depth of the depth range for exploratory shift becomes too thin, noise becomes stronger in the OCTA front image. On the other hand, as the depth of the exploratory shift depth range becomes deeper, the number of candidate images decreases and the amount of calculation decreases.
- the depth of the depth range may be determined in a balanced manner in consideration of such circumstances, and an effective range may be, for example, a thickness having a width of 10 ⁇ m to 50 ⁇ m.
- the range to be searched may cover up to the outer layer of the retina, but as shown in this modification, a predetermined range may be searched toward the glass body side based on the Bruch membrane, or the upper limit of the outer layer of the retina may be used. You may search up to a certain OPL / ONL.
- the boundary line when searching is determined based on the shape of the Bruch film (BM), but the shape of the boundary line when searching is not limited to this.
- the boundary line for searching may be determined based on the shape of retinal pigment epithelium (RPE) or other layers instead of Bruch's membrane. Further, the boundary line for searching may be determined based on a straight line close to the shape of the retina of the Bruch's membrane in the macula.
- the threshold value of the evaluation value when the front image determination unit 344 determines the depth range to be displayed may be changed according to the instruction of the operator. In this case, the degree of drawing of the CNV can be adjusted according to the preference of the operator.
- the depth range of the front image to be displayed by connecting the depth ranges whose evaluation values are equal to or higher than a certain value is determined, but once the evaluation values of the continuous depth ranges are less than the threshold value, the depth range is determined again. It may exceed the threshold. In other words, the evaluation value of the continuous depth range may be "Futayama".
- the upper limit and the lower limit of the range in which the evaluation becomes a certain value or more are selected, and the range between the upper limit and the lower limit is determined and selected as the depth range.
- FIG. 23 is a flowchart showing a front image generation process according to this modification. Since the flow of a series of processes other than the front image generation process is the same as the series of processes according to the third embodiment, the description thereof will be omitted. Further, since step S2301, step S2302, and step S2304 are the same steps as steps S1801, step S1802, and step S1804 according to the first modification of the third embodiment, the description thereof will be omitted. When a plurality of evaluation values are acquired for the plurality of OCTA front images in step S2302, the process proceeds to step S2303.
- the front image determination unit 344 integrates the depth ranges whose evaluation values are equal to or greater than the threshold value, and determines the depth range of the OCTA front image to be displayed.
- the front image determining unit 344 includes a depth range in which the evaluation value is less than the threshold value between the depth ranges in which the evaluation value is equal to or more than the threshold value.
- the depth range of the OCTA front image to be displayed is determined based on the upper limit and the lower limit in a plurality of depth ranges whose evaluation values are equal to or higher than the threshold value.
- the depth range (h) when the evaluation value of the depth range (h) is 0.3, the depth range (h) is added to the evaluation value of the depth range (b) to the depth range (f).
- the evaluation value of is also equal to or higher than the threshold value, but the evaluation value is lower than the threshold value in the depth range (g).
- the front image determination unit 344 according to the present modification has the lower limit BM + 0 ⁇ m of the depth range (b) whose evaluation value is equal to or higher than the threshold value to the upper limit BM of the depth range (h) whose evaluation value is equal to or higher than the threshold value.
- Up to ⁇ 140 ⁇ m is determined as the depth range of the OCTA front image to be displayed. Since the subsequent processing is the same as that of the first modification of the third embodiment, the description thereof will be omitted.
- the front image determination unit 344 of the image generation unit 304 is more than the other depth positions in the depth range corresponding to the evaluation value equal to or more than the threshold value among the acquired plurality of evaluation values.
- the second depth range is determined with the shallow depth position as the upper limit and the depth position deeper than the other depth positions as the lower limit.
- the threshold value of the evaluation value when the front image determination unit 344 determines the depth range to be displayed may be changed according to the instruction of the operator. In this case, the degree of drawing of the CNV can be adjusted according to the preference of the operator.
- the front image determination unit 344 finely adjusts and displays the upper limit and the lower limit of the depth range centered on the depth range where the evaluation value is the maximum (higher than other evaluation values). Determine the depth range of the OCTA front image to be.
- FIG. 24 is a flowchart of the front image generation process according to this modification. Since the flow of a series of processes other than the front image generation process is the same as the series of processes according to the third embodiment, the description thereof will be omitted. Further, since steps S2401 and S2402 are the same steps as steps S1701 and S1702 according to the third embodiment, the description thereof will be omitted. When a plurality of evaluation values are acquired for the plurality of OCTA front images in step S2402, the process proceeds to step S2403.
- the front image determination unit 344 selects the depth range corresponding to the OCTA front image having the maximum evaluation value as the central depth range from the depth ranges corresponding to the plurality of OCTA front images. For example, in the example of FIG. 19, the depth range (d) “BM-60 ⁇ m to BM-40 ⁇ m” corresponding to the maximum evaluation value 0.7 is selected.
- step S2404 the front image determination unit 344 sets a plurality of depth ranges in which the upper and lower limits of the depth range are finely adjusted, centering on the depth range in which the evaluation value is the maximum.
- the fine adjustment is the upper limit of the selected depth range by a depth narrower than the depth of the depth range (difference between the upper limit and the lower limit of the depth range) that is exploratoryly shifted when the evaluation value is obtained first. And set multiple depth ranges with at least one of the lower bounds moved.
- the depth of the exploratory shift depth range when the evaluation value is obtained first is 20 ⁇ m.
- the front image determining unit 344 sets, for example, a depth range in which the upper limit BM-60 ⁇ m of the depth range (d) is moved to a shallower side or a deeper side by, for example, 10 ⁇ m or 5 ⁇ m.
- the front image determining unit 344 sets, for example, a depth range in which the lower limit BM-40 ⁇ m of the depth range (d) is moved to a shallower side or a deeper side by, for example, 10 ⁇ m or 5 ⁇ m.
- the front image determining unit 344 may set a depth range in which both the upper limit and the lower limit of the depth range (d) are moved to a shallow side or a deep side by, for example, 10 ⁇ m or 5 ⁇ m.
- the numerical values in the example are examples, and may be arbitrarily set according to a desired configuration. Further, the number of depth ranges to be set may be arbitrarily set according to a desired configuration.
- step S2405 the projection range control unit 341 and the front image generation unit 342 generate a plurality of OCTA front images based on the plurality of depth ranges set by the front image determination unit 344.
- the image evaluation unit 343 calculates a plurality of evaluation values for the generated plurality of OCTA front images.
- step S2406 the front image determination unit 344 should display the OCTA front image corresponding to the maximum evaluation value (evaluation value higher than other evaluation values) among the plurality of evaluation values calculated in step S2405. Select / determine as an image. Since the subsequent processing is the same as that of the third embodiment, the description thereof will be omitted.
- the front image determination unit 344 of the image generation unit 304 according to this modification is centered on the depth range corresponding to the evaluation value higher than the other evaluation values among the acquired plurality of evaluation values. It functions as an example of a determination unit that determines the depth range of the second.
- the image generation unit 304 according to this modification sets a plurality of depth ranges in which the depth range corresponding to an evaluation value higher than the other evaluation values is increased or decreased, and a plurality of front surfaces corresponding to the plurality of depth ranges. Generate an image.
- the image evaluation unit 343 acquires a plurality of evaluation values of the plurality of front images corresponding to the plurality of depth ranges by using the plurality of front images corresponding to the plurality of depth ranges.
- the front image determination unit 344 of the image generation unit 304 displays the front image corresponding to the evaluation value higher than the other evaluation values among the plurality of evaluation values of the plurality of front images corresponding to the plurality of depth ranges. Determined as a power front image (output image).
- the front image determination unit 344 may be configured as a component separate from the image generation unit 304.
- the depth range By adjusting the depth range in this way and determining the front image of the depth range that has a higher evaluation value than other evaluation values as the front image to be displayed, the front surface that makes it easier to observe the extraction target (target area). Images can be generated and displayed.
- the threshold value of the evaluation value when the front image determination unit 344 determines the depth range to be displayed may be changed according to the instruction of the operator. In this case, the degree of drawing of the CNV can be adjusted according to the preference of the operator. Further, the depth (depth width) when finely adjusting the depth range may be changed according to the instruction of the operator. In this case, the depth range for calculating the evaluation value can be changed according to the instruction of the operator, and the depth range corresponding to each eye to be inspected can be appropriately set.
- the front image determination unit 344 selects the OCTA front image having the highest evaluation value, but the front image determination unit 344 may select the OCTA front image whose evaluation value exceeds the threshold value. In this case, the front image determination unit 344 may select a plurality of OCTA front images corresponding to the plurality of evaluation values when the plurality of evaluation values exceed the threshold value. In this case, the display control unit 306 may display the plurality of evaluation values and a plurality of OCTA front images corresponding thereto while switching between them. Further, the front image determination unit 344 may select the OCTA front image to be displayed independently from the plurality of OCTA front images according to the instruction of the operator.
- Example 4 In Examples 1 to 3, OCTA frontal images were used to provide images in the optimum depth range for cases in which neovascularization (CNV) due to age-related macular degeneration is occurring.
- CNV neovascularization
- the techniques described in Examples 1 to 3 can also be applied to confirm a structure called a sieve plate in the lower part of the optic nerve head.
- Example 4 a process in which the lamina cribrosa below the optic nerve head is used as an extraction target (target region) will be described.
- the lamina cribrosa is a mesh-like structure that supports the optic nerve at the bottom of the optic nerve head. It is known that the morphology of the lamina cribrosa correlates with the progression of glaucoma, and it is known that being able to display the morphology (particularly the thickness) is very meaningful in diagnosing glaucoma.
- the sieve plate it is difficult to recognize by image processing the tomographic image like the layered structure of the retina because a clear change in the layer structure and the accompanying change in brightness do not appear on the tomographic image.
- the target area to be observed is set as the region of the sieve plate, and an En-Face image having a brightness that makes it easy to observe the sieve plate is generated. Since the configuration of the image processing apparatus according to the present embodiment is the same as the configuration of the image processing apparatus according to the first to third embodiments, the same reference numerals will be used and the description thereof will be omitted. Hereinafter, the image processing apparatus according to the present embodiment will be described focusing on the difference from the image processing apparatus 300 according to the first to third embodiments.
- the image processing apparatus when the sieve plate is selected in the pull-down at the upper part of the brightness En-Face image 407, the image generation unit 304 is sieved as the target of the extraction process. Specify the board.
- the image generation unit 304 generates En-Face images having a plurality of corresponding brightness based on a plurality of depth ranges stored in the storage unit 305 in advance for the sieve plate designated as the extraction target.
- the display control unit 306 causes the display unit 310 to display the generated En-Face image of the brightness, the corresponding tomographic image, and the depth range according to the instruction of the operator or the like.
- the brightness En-Face image generation process according to this embodiment is performed except that the tomographic data is used instead of the motion contrast data and the depth range is the depth range set for the sieve plate. It may be the same as in Examples 1 to 3.
- FIGS. 25 (a) to 25 (c) are examples of an En-Face image having a brightness showing the morphology of the sieve plate and a tomographic image showing a corresponding depth range.
- the En-Face images of the brightness shown in FIGS. 25 (a) to 25 (c) are En-Face images of the sieve plate portion, and are three-dimensional tomographic data (three-dimensional tomography) for different depth ranges. Image) is a projected image.
- the depth range of the corresponding En-Face image is displayed as a white straight line (solid line).
- (A) to (c) of FIG. 25 are En-Face images having a depth range of +50 ⁇ m to +100 ⁇ m, +150 ⁇ m to +200 ⁇ m, and +300 ⁇ m to +350 ⁇ m from the depth position of the bottom of the retinal-vitreous interface of the optic nerve head, respectively. Is shown.
- the display mode indicating each depth range may be arbitrary.
- the description of Line + 50 ⁇ m, Line + 100 ⁇ m, etc. is shown on the tomographic image. Line in the description indicates that the upper limit and the lower limit for determining the depth range are set by a straight line (Line).
- the numbers on the display represent the distance from the position indicated by the dotted line in the figure (the depth position at the bottom of the retinal-vitreous interface of the optic nerve head).
- each depth range for generating a plurality of En-Face images may be a depth range within a range of 0 to 500 ⁇ m from the boundary (interface) between the retina and the vitreous body of the papilla to the interstitial side.
- each depth range may be arbitrarily set within a depth range on the choroidal side of approximately 100 ⁇ m to 500 ⁇ m from the boundary between the optic nerve head and the vitreous body.
- FIGS. 25 (a) and 25 (c) of FIG. 25 show En-Face images of brightness when the depth range is changed from the glass body side to the deep direction, respectively.
- a mesh-like structure can be seen at a position corresponding to the optic nerve head, but the brightness En-Face shown in FIGS. 25 (a) and 25 (c).
- the structure on the retina cannot be clearly observed.
- an En-Face image having brightness in a plurality of depth ranges is displayed on the GUI and sieved. It is possible to provide the operator with an image in which the board is easy to observe.
- the display control unit 306 displays the GUI including the En-Face image having the brightness corresponding to a plurality of depth ranges related to the sieve plate. It can be displayed on the display unit 310.
- an OCTA front image is generated instead of the brightness En-Face image and displayed side by side. You may.
- the front image may be generated by using the motion contrast data instead of the tomographic data.
- the image evaluation unit 343 calculates an evaluation value for evaluating the presence of the sieve plate in the En-Face image having a plurality of brightness using the trained model. You may.
- the brightness En-Face image is used as the input data, and the evaluation value for evaluating the existence of the mesh-like structure (sieving plate) in the brightness En-Face image is used as the output data. can do.
- an evaluation value obtained by a doctor or the like evaluating the existence of a mesh-like structure (sieving plate) in an En-Face image of brightness may be used.
- an image in which holes in the sieve plate can be seen is evaluated. Evaluation may be performed based on criteria such as increasing the value.
- the display control unit 306 can display the evaluation value of the brightness En-Face image on the display unit 310 together with the brightness En-Face image.
- the image evaluation unit 343 may calculate an evaluation value for evaluating the presence of the sieve plate in the brightness En-Face image by rule-based processing as in the second embodiment. Further, instead of the brightness En-Face image, an OCTA front image may be generated, evaluated, and displayed side by side.
- an En-Face image having a brightness corresponding to the maximum evaluation value (evaluation value higher than other evaluation values) and an En-Face image having a brightness equal to or higher than the threshold value are displayed. It may be automatically selected and displayed.
- the sieve plate may be the extraction target (target region).
- target region the network structure corresponding to the sieve plate. It is possible to estimate whether it is distributed. As a result, not only the optimum depth range of the front image to be displayed can be determined, but also the thickness of the sieve plate can be obtained from the depth range in which the network structure is distributed, and the sieve plate can be segmented from tomographic data or the like. It is possible.
- the sieve plate When observing the morphology of the sieve plate, it is possible to generate a front image in which the sieve plate can be easily observed by using an SS-OCT device using a wavelength sweep (SS: Swept Source) light source in the 1 ⁇ m band. it can. Further, it is known that the morphology of the sieve plate can be easily observed by using the En-Face image of brightness.
- the OCT device used for photographing the eye to be inspected and the front image to be generated are not limited to this, and for example, as described above, an SD-OCT device using an SD type optical interference unit or an OCTA front image may be used. Good.
- the line horizontal to the tomographic image is based on the depth corresponding to the bottom of the retinal-vitreous interface of the optic nerve head.
- the depth range determined by was defined, and the front image with the changed depth range was generated and the evaluation value was calculated.
- the criteria for defining the depth range are not limited to this.
- the reference may be defined by a line connecting the ends of the Bruch membrane.
- FIG. 26 is a diagram for explaining a reference line that defines a depth range by a line connecting the ends of the Bruch film (Bruch film edges P1 and P2).
- FIG. 26 shows a tomographic image of the optic disc.
- the tomographic image shown in FIG. 26 shows the vitreous-inner limiting membrane (ILM) boundary L1, the GCL / IPL boundary L2, the retinal pigment epithelium (RPE) L3, and the Bruch's membrane L4.
- ILM vitreous-inner limiting membrane
- RPE retinal pigment epithelium
- the Bruch membrane L4 is generally continuously present in the retina but not in the optic disc.
- the end of the Bruch's membrane that terminates around the optic nerve head is called the Bruch's membrane end, and appears as the Bruch's membrane ends P1 and P2 in the tomographic image.
- the straight line Z connecting the Bruch film ends P1 and P2 is set as the reference line of the depth range. Can be done.
- the depth range may be changed by moving the straight line Z up and down (shallower or deeper) by an operation such as dragging.
- Example 2 a configuration using an En-Face image having a plurality of brightnesss as input data of training data related to the trained model and input data at the time of operation was described.
- the optic disc in the En-Face image of brightness is extracted, and an image masking other than the optic disc in the En-Face image of the brightness is used. You may use it. In this case, by not letting the neural network learn information other than the optic disc, unnecessary information is not input, so it can be expected that learning will be faster and the inference result (evaluation value) will be accurate. ..
- Example 5 In Examples 1 to 3, the OCTA frontal image was used to describe a configuration for providing a frontal image in an optimum depth range for a case in which neovascularization (CNV) due to age-related macular degeneration is occurring. Further, in Example 4, a configuration for providing a frontal image in an optimum depth range for the morphology of the optic disc is described.
- CNV neovascularization
- the same technique can be applied to choroid segmentation (separation of Sattler layer and Haller layer).
- the boundary between the Sattler layer and the Haller layer is also difficult to distinguish because the layer boundary is unclear on the tomographic image, as in the case of the sieve plate.
- by projecting onto a frontal image it is possible to confirm the structural difference in blood vessels regarding the boundary between the Sattler layer and the Haller layer.
- the Sattler layer and the Haller layer can be separated by using a boundary where the structural difference of blood vessels is clearly changed. Further, in such a case, it is possible to generate an En-Face image and an OCTA front image of the brightness in each layer.
- the structure of the blood vessel related to the boundary between the Sattler layer and the Haller layer is specified as the extraction target (target area), and a plurality of depth ranges corresponding to the extraction target are specified. Generate an En-Face image.
- the plurality of depth ranges may be arbitrarily set within the range from the Bruch's membrane to the choroid or sclera, for example.
- the operator can easily confirm and identify the boundary between the Sattler layer and the Haller layer by generating and displaying a front image having an optimum depth range for confirming the boundary between the Sattler layer and the Haller layer. it can. It is also possible to obtain a frontal image in which it is easy to confirm the structure of the blood vessel with respect to the boundary between the Sattler layer and the Haller layer by performing the same processing as that described in Examples 2 and 3 and their modified examples.
- a frontal image that makes it easy to observe the choroidal layer can be generated by using an SS-OCT device that uses a wavelength sweep (SS) light source in the 1 ⁇ m band. Further, it is known that it is easy to observe the layer of the choroid by using the En-Face image of brightness.
- the OCT device used for photographing the eye to be inspected and the front image to be generated are not limited to this, and for example, as described above, an SD-OCT device using an SD type optical interference unit or an OCTA front image may be used. Good.
- the boundary line that serves as a reference for the depth range may be a curved line that follows the layered structure of the choroid. Further, the layer shape of the Bruch film or RPE on the tomographic image or the boundary line thereof may be used to determine the shape of the boundary line for defining the depth range. In this case, the depth range may be moved by moving the reference boundary line by an operation such as dragging.
- a capillary aneurysm of a retinal blood vessel may be designated as an extraction target, and a plurality of En-Face images for a plurality of depth ranges corresponding to the extraction target may be generated.
- Capillary aneurysms generally exist in the superficial retinal layer (ILM to GCL / IPL + 50 ⁇ m) and deep retinal layer (GCL / IPL + 50 ⁇ m to INL / OPL + 70 ⁇ m).
- each depth range for generating a plurality of En-Face images may be arbitrarily set in the depth range in the surface layer of the retina or the deep layer of the retina.
- an operator can easily create a clear capillary aneurysm by generating and displaying a frontal image having an optimum depth range for confirming the capillary aneurysm of the retinal blood vessel. Can be confirmed in. It is also possible to obtain a frontal image in which a capillary aneurysm of a retinal blood vessel can be easily confirmed by performing the same treatment as described in Examples 2 and 3 and their modified examples.
- the display control unit 306 in the various examples and modifications described above may display analysis results such as a layer thickness of a desired layer and various blood vessel densities on the report screen of the display screen.
- the value (distribution) of the parameter relating to the site of interest including at least one such as the vascular wall, the vascular inner wall boundary, the vascular lateral boundary, the ganglion cell, the corneal region, the corner region, and Schlemm's canal may be displayed as the analysis result.
- the artifact is, for example, a false image region generated by light absorption by a blood vessel region or the like, a projection artifact, a band-shaped artifact in a front image generated in the main scanning direction of the measured light depending on the state of the eye to be inspected (movement, blinking, etc.), or the like. There may be. Further, the artifact may be any image loss region as long as it is randomly generated for each image taken on a medical image of a predetermined portion of the subject, for example.
- the display control unit 306 may display the value (distribution) of the parameter relating to the region including at least one of the various artifacts (copy loss region) as described above on the display unit 310 as an analysis result. Further, the value (distribution) of the parameter relating to the region including at least one such as drusen, new blood vessel, vitiligo (hard vitiligo), and abnormal site such as pseudo-drusen may be displayed as the analysis result.
- the image analysis process may be performed by the image evaluation unit 343, or may be performed by an analysis unit different from the image evaluation unit 343 in the image processing device 300.
- the analysis result may be displayed in an analysis map, a sector showing statistical values corresponding to each divided area, or the like.
- the analysis result is a trained model (analysis result generation engine, trained model for analysis result generation) obtained by the image evaluation unit 343 or another analysis unit learning the analysis result of the medical image as training data. It may be generated by using.
- the trained model is trained using training data including a medical image and an analysis result of the medical image, training data including a medical image and an analysis result of a medical image of a type different from the medical image, and the like. It may be obtained by.
- the learning data may include the area label image generated by the segmentation process and the analysis result of the medical image using them.
- the image evaluation unit 343 analyzes a tomographic image or a frontal image from the result obtained by executing the segmentation process (for example, the detection result of the retinal layer) using, for example, the trained model for generating the analysis result. It can function as an example of an analysis result generation unit that generates results. In other words, the image evaluation unit 343 uses a trained model for generating analysis results different from the trained model for acquiring the evaluation results, and generates image analysis results for each of the different regions specified by the segmentation process. Can be done.
- the segmentation process may be the result of layer recognition performed by the layer recognition unit 303, or may be performed separately from the process of the layer recognition unit 303.
- the trained model is obtained by training using training data including input data in which a plurality of medical images of different types of predetermined parts are set, such as a luminance front image and a motion contrast front image. May be good.
- the luminance front image corresponds to the luminance En-Face image
- the motion contrast front image corresponds to the OCTA En-face image.
- the training data includes, for example, analysis values (for example, average value, median value, etc.) obtained by analyzing the analysis area, a table including the analysis values, an analysis map, and the position of the analysis area such as a sector in the image.
- Information containing at least one may be data labeled (annotated) with input data as correct answer data (for supervised learning).
- the analysis result obtained by using the trained model for generating the analysis result may be displayed according to the instruction from the operator.
- the display control unit 306 in the above-described examples and modifications may display various diagnostic results such as glaucoma and age-related macular degeneration on the report screen of the display screen.
- various diagnostic results such as glaucoma and age-related macular degeneration
- the diagnosis result the position of the specified abnormal portion or the like may be displayed on the image, or the state or the like of the abnormal portion may be displayed by characters or the like.
- the classification result of the abnormal part or the like (for example, Curtin classification) may be displayed as the diagnosis result.
- information indicating the certainty of each abnormal part for example, a numerical value indicating the ratio
- the display control unit 306 in the above-described examples and modifications may display various diagnostic results such as glaucoma and age-related macular degeneration on the report screen of the display screen.
- the classification result of the abnormal part or the like for example, Curtin classification
- information indicating the certainty of each abnormal part for example, a numerical value indicating the ratio
- information necessary for the doctor to confirm the diagnosis may be displayed as a diagnosis result.
- advice such as additional shooting can be considered.
- fluorescence imaging using a contrast medium capable of observing the blood vessel in more detail than OCTA is performed.
- the diagnosis result was generated using a trained model (diagnosis result generation engine, trained model for generation of diagnosis result) obtained by the image evaluation unit 343 learning the diagnosis result of the medical image as training data. It may be a thing.
- the trained model is based on training using training data including a medical image and a diagnosis result of the medical image, and training data including a medical image and a diagnosis result of a medical image of a type different from the medical image. It may be obtained.
- the learning data may include the area label image generated by the segmentation process and the diagnosis result of the medical image using them.
- the image evaluation unit 343 diagnoses the front image or the tomographic image from the result obtained by executing the segmentation process (for example, the detection result of the retinal layer) using, for example, the trained model for generating the diagnosis result. It can function as an example of a diagnostic result generation unit that generates results.
- the image evaluation unit 343 can generate a diagnostic result for each of the different regions specified by the segmentation process by using a trained model for generating a diagnostic result different from the trained model for acquiring the evaluation result. it can.
- the diagnosis result using the trained model may be generated by a diagnosis unit other than the image evaluation unit 343 in the image processing apparatus 300.
- the learning data includes, for example, the diagnosis name, the type and state (degree) of the lesion (abnormal site), the position of the lesion in the image, the position of the lesion with respect to the region of interest, the findings (interpretation findings, etc.), and the basis of the diagnosis name (affirmation).
- Information including at least one such as (general medical support information, etc.) and grounds for denying the diagnosis name (negative medical support information), etc. are labeled (annotated) in the input data as correct answer data (for supervised learning). It may be data.
- the diagnosis result obtained by using the trained model for generating the diagnosis result may be displayed.
- the image evaluation unit 343 extracts the analysis result of the image acquired by using the trained model for generating the analysis result in the above Examples 2 to 5 as the CNV or the like which is the extraction target (target area) from the front image. It may be acquired as an evaluation result (information indicating the evaluation) for evaluating the existence of. Similarly, the image evaluation unit 343 may acquire the diagnosis result acquired by using the trained model for generating the diagnosis result as the evaluation result for evaluating the existence of the extraction target. For example, the image evaluation unit 343 can use the analysis result and the diagnosis result that CNV exists, which are obtained by using these trained models for the front image, as the evaluation result for the front image. Further, the image evaluation unit 343 can also use the analysis result or the diagnosis result regarding the artifact or the predetermined layer as the evaluation result for the front image.
- the image evaluation unit 343 can calculate the evaluation value as 1 when the analysis result or the diagnosis result indicating that the region of interest or the region of interest exists in the image is acquired.
- the image evaluation unit 343 may calculate an evaluation value according to the numerical value or area of the analysis result or the diagnosis result regarding the region of interest or the region of interest.
- the image evaluation unit 343 may set a threshold value step by step and calculate an evaluation value according to a threshold value that exceeds the area of the region of interest or the region analyzed / diagnosed as the region of interest.
- the information indicating the evaluation acquired by the image evaluation unit 343 is not limited to the evaluation value, and may be information indicating the existence or nonexistence of the extraction target and its possibility.
- the above-mentioned various sites of interest, regions of interest, and artifacts can be used as examples of extraction targets (target regions).
- the display control unit 306 related to the various examples and modifications described above displays object recognition results (object detection results) such as the above-mentioned attention portion, attention region, artifact, and abnormal portion on the report screen of the display screen.
- object recognition results object detection results
- the segmentation result may be displayed.
- a rectangular frame or the like may be superimposed and displayed around the object on the image.
- colors and the like may be superimposed and displayed on the object in the image.
- the object recognition result and the segmentation result are learned obtained by learning the learning data in which the layer recognition unit 303 and the image evaluation unit 343 have labeled (annotated) the medical image with the information indicating the object recognition and the segmentation as the correct answer data. It may be generated using a completed model (object recognition engine, trained model for object recognition, segmentation engine, trained model for segmentation).
- the image evaluation unit 343 evaluates the result of the object recognition process or segmentation process using the trained model for object recognition or the trained model for segmentation to evaluate the existence of CNV or the like to be extracted from the front image. It may be acquired as (information indicating evaluation). For example, the image evaluation unit 343 can use the label value or the like indicating CNV obtained by using these trained models for the front image as the evaluation result for the front image. Further, the image evaluation unit 343 can calculate the evaluation value as 1, for example, when an abnormal portion is detected. Further, the image evaluation unit 343 may calculate the evaluation value according to the area of the region detected as the abnormal portion.
- the image evaluation unit 343 may set a threshold value step by step and calculate the evaluation value according to the threshold value when the area of the region detected as the abnormal portion exceeds the threshold value.
- the information indicating the evaluation acquired by the image evaluation unit 343 is not limited to the evaluation value, and may be information indicating the existence or nonexistence of the extraction target and its possibility.
- the above-mentioned various sites of interest, regions of interest, and artifacts can be used as examples of extraction targets (target regions).
- analysis result generation and diagnosis result generation may be obtained by using the above-mentioned object recognition result and segmentation result.
- analysis result generation or diagnosis result generation processing may be performed on a region of interest obtained by object recognition or segmentation processing.
- the object recognition process and the segmentation process using the trained model for object recognition and the trained model for segmentation are performed by the segmentation unit and the layer recognition unit 303 different from the image evaluation unit 343 in the image processing device 300. You may.
- the image evaluation unit 343 may use a hostile generation network (GAN: Generative Adversarial Networks) or a variational autoencoder (VAE: Variational Auto-Encoder) when detecting an abnormal portion.
- GAN Generative Adversarial Networks
- VAE Variational Auto-Encoder
- DCGAN Deep Convolutional GAN
- a generator obtained by learning the generation of a front image
- a classifier obtained by learning the discrimination between a new front image generated by the generator and a real front image.
- the classifier encodes the input front image to make it a latent variable, and the generator generates a new front image based on the latent variable. After that, the difference between the input front image and the generated new front image can be extracted as an abnormal part.
- VAE the input front image is encoded by an encoder to be a latent variable, and the latent variable is decoded by a decoder to generate a new front image. After that, the difference between the input front image and the generated new front image can be extracted as an abnormal part.
- the image evaluation unit 343 may detect an abnormal part by using a convolutional autoencoder (CAE).
- CAE convolutional autoencoder
- CAE convolutional autoencoder
- the image evaluation unit 343 provides information on the difference between the image obtained by using the hostile generation network or the autoencoder (AE) for the front image and the front image input to the hostile generation network or the autoencoder. Can be generated as information about the abnormal site. As a result, the image evaluation unit 343 can be expected to detect the abnormal portion at high speed and with high accuracy.
- the autoencoder includes VAE, CAE, and the like.
- the image evaluation unit 343 can calculate the evaluation value as 1 when an abnormal portion is detected by such processing. Further, the image evaluation unit 343 may calculate the evaluation value according to the area of the region detected as the abnormal portion. For example, the image evaluation unit 343 may set a threshold value step by step and calculate the evaluation value according to the threshold value when the area of the region detected as the abnormal portion exceeds the threshold value.
- the image evaluation unit 343 can also use, for example, FCN (Fully Convolutional Network), SegNet, or the like as a machine learning model for detecting an abnormal portion.
- FCN Full Convolutional Network
- SegNet SegNet
- a machine learning model that recognizes an object in a region unit according to a desired configuration may be used.
- RCNN Registered CNN
- fastRCNN fastRCNN
- fasterRCNN fasterRCNN
- YOLO You Only Look None
- SSD Single Shot Detector or Single Shot MultiBox Detector
- the image evaluation unit 343 may use information regarding a difference such as a correlation value between an image acquired by using GAN or AE and an image input to GAN or AE as an evaluation value (information indicating evaluation). Even in this case, the image evaluation unit 343 can acquire information indicating the evaluation for evaluating the existence of the target region (lesion site, etc.) in the front image.
- the trained models used in the various examples and modifications described above may be generated and prepared for each type of disease or for each abnormal site.
- the image processing device 300 can select a trained model to be used for processing according to an input (instruction) of the type of disease of the eye to be inspected, an abnormal part, or the like from the operator.
- the trained models prepared for each type of disease and abnormal site are not limited to trained models for object recognition and segmentation, and are trained, for example, used in an engine for image evaluation and an engine for analysis. It may be a model.
- the image processing device 300 may identify the type of disease or abnormal site of the eye to be inspected from the image by using a separately prepared trained model.
- the image processing device 300 may automatically select the trained model to be used for the above processing based on the type of disease or abnormal site identified by using the trained model prepared separately. It can.
- the trained model for identifying the disease type and abnormal site of the eye to be inspected uses tomographic images, fundus images, frontal images, etc. as input data, and the disease type and abnormal site in these images as output data. Learning may be performed using a pair of training data.
- a tomographic image, a fundus image, a frontal image, or the like may be used alone as input data, or a combination thereof may be used as input data.
- the trained model for generating the diagnosis result may be a trained model obtained by training with the training data including the input data including a set of a plurality of medical images of different types of the predetermined part of the subject. Good.
- the input data included in the training data for example, input data in which a motion contrast front image and a luminance front image (or a luminance tom image) of the fundus of the eye are set can be considered.
- the input data included in the training data for example, input data in which a tomographic image (B scan image) of the fundus and a color fundus image (or a fluorescent fundus image) are set can be considered.
- the plurality of medical images of different types may be anything as long as they are acquired by different modality, different optical systems, different principles, or the like.
- the trained model for generating the diagnosis result may be a trained model obtained by learning from the training data including the input data including a plurality of medical images of different parts of the subject.
- the input data included in the training data for example, input data in which a tomographic image of the fundus of the eye (B scan image) and a tomographic image of the anterior segment of the eye (B scan image) are considered as a set can be considered.
- the input data included in the training data for example, input data in which a three-dimensional OCT image (three-dimensional tomographic image) of the macula of the fundus and a circle scan (or raster scan) tomographic image of the optic nerve head of the fundus are set as a set, etc. Is also possible.
- the input data included in the learning data may be different parts of the subject and a plurality of different types of medical images.
- the input data included in the training data may be, for example, input data in which a tomographic image of the anterior segment of the eye and a color fundus image are set.
- the trained model described above may be a trained model obtained by learning from training data including input data including a set of a plurality of medical images having different shooting angles of view of a predetermined portion of the subject.
- the input data included in the learning data may be a combination of a plurality of medical images obtained by time-dividing a predetermined portion into a plurality of regions, such as a panoramic image.
- the feature amount of the image can be accurately acquired because the amount of information is larger than that of the narrow angle of view image.
- the result of can be improved. For example, when an abnormal portion is detected at a plurality of positions in a wide angle-of-view image at the time of estimation (prediction), an enlarged image of each abnormal portion can be sequentially displayed. As a result, it is possible to efficiently confirm the abnormal portion at a plurality of positions, so that the convenience of the examiner can be improved, for example.
- the examiner may be configured to select each position on the wide angle-of-view image in which the abnormal portion is detected, and an enlarged image of the abnormal portion at the selected position may be displayed.
- the input data included in the learning data may be input data in which a plurality of medical images of different dates and times of a predetermined part of the subject are set.
- the display screen on which at least one of the above-mentioned analysis result, diagnosis result, object recognition result, and segmentation result is displayed is not limited to the report screen.
- a display screen is, for example, at least one display screen such as a shooting confirmation screen, a display screen for follow-up observation, and a preview screen for various adjustments before shooting (a display screen on which various live moving images are displayed). It may be displayed in. For example, by displaying at least one result obtained by using the above-mentioned trained model on the shooting confirmation screen, the operator can confirm the accurate result even immediately after shooting.
- Machine learning includes, for example, deep learning consisting of a multi-layer neural network. Further, for at least a part of the multi-layer neural network, for example, a convolutional neural network (CNN) can be used as a machine learning model. Further, a technique related to an autoencoder (self-encoder) may be used for at least a part of a multi-layer neural network. Further, a technique related to backpropagation (backpropagation method) may be used for learning.
- the machine learning is not limited to deep learning, and any learning using a model capable of extracting (expressing) the features of learning data such as images by learning may be used.
- the machine learning model refers to a learning model based on a machine learning algorithm such as deep learning.
- the trained model is a model in which a machine learning model by an arbitrary machine learning algorithm is trained (learned) in advance using appropriate learning data. However, the trained model does not require further learning, and additional learning can be performed.
- the learning data is composed of a pair of input data and output data (correct answer data).
- the learning data may be referred to as teacher data, or the correct answer data may be referred to as teacher data.
- the GPU can perform efficient calculations by processing more data in parallel. Therefore, when learning is performed a plurality of times using a learning model such as deep learning, it is effective to perform processing on the GPU. Therefore, in this modification, a GPU is used in addition to the CPU for processing by the image processing device 300, which is an example of the learning unit (not shown). Specifically, when executing a learning program including a learning model, learning is performed by the CPU and the GPU collaborating to perform calculations. The processing of the learning unit may be performed only by the CPU or GPU. Further, the processing unit (estimation unit) that executes the processing using the various trained models described above may also use the GPU in the same manner as the learning unit. Further, the learning unit may include an error detecting unit and an updating unit (not shown).
- the error detection unit obtains an error between the output data output from the output layer of the neural network and the correct answer data according to the input data input to the input layer.
- the error detection unit may use the loss function to calculate the error between the output data from the neural network and the correct answer data.
- the update unit updates the coupling weighting coefficient between the nodes of the neural network based on the error obtained by the error detection unit so that the error becomes small.
- This updating unit updates the coupling weighting coefficient and the like by using, for example, the backpropagation method.
- the error backpropagation method is a method of adjusting the coupling weighting coefficient and the like between the nodes of each neural network so that the above error becomes small.
- a function of an encoder composed of a plurality of layers including a plurality of downsampling layers and a function of a decoder composed of a plurality of layers including a plurality of upsampling layers are provided.
- the U-net type machine learning model to have is applicable.
- position information spatial information
- position information that is ambiguous in a plurality of layers configured as encoders is displayed in layers of the same dimension (layers corresponding to each other) in a plurality of layers configured as a decoder. ) (For example, using a skip connection).
- machine learning model used for evaluation, segmentation, etc. for example, FCN, SegNet, or the like can be used.
- a machine learning model that recognizes an object in a region unit according to a desired configuration may be used.
- a machine learning model for performing object recognition for example, RCNN, fastRCNN, or fasterRCNN can be used.
- YOLO or SSD can be used as a machine learning model for recognizing an object in a region unit.
- the machine learning model may be, for example, a capsule network (CapsNet: Capsule Network).
- CapsNet Capsule Network
- each unit is configured to output a scalar value, so that, for example, spatial information regarding the spatial positional relationship (relative position) between features in an image can be obtained. It is configured to be reduced. Thereby, for example, learning can be performed so as to reduce the influence of local distortion and translation of the image.
- each unit is configured to output spatial information as a vector, so that, for example, spatial information is retained. Thereby, for example, learning can be performed in which the spatial positional relationship between the features in the image is taken into consideration.
- the trained model for evaluation may be a trained model obtained by additionally learning training data including at least one evaluation value generated by the trained model. At this time, whether or not to use the evaluation value as learning data for additional learning may be configured to be selectable according to an instruction from the examiner. It should be noted that these configurations can be applied not only to the trained model for evaluation but also to the various trained models described above. Further, in the generation of the correct answer data used for learning the various trained models described above, the trained model for generating the correct answer data for generating the correct answer data such as labeling (annotation) may be used. At this time, the trained model for generating correct answer data may be obtained by (sequentially) additionally learning the correct answer data obtained by labeling (annotation) by the examiner.
- the trained model for generating correct answer data may be obtained by additional training of training data in which the data before labeling is used as input data and the data after labeling is used as output data. Further, in a plurality of consecutive frames such as a moving image, the result of the frame judged to have low accuracy is corrected in consideration of the results of object recognition and segmentation of the preceding and following frames. May be good. At this time, according to the instruction from the examiner, the corrected result may be additionally learned as correct answer data.
- predetermined image processing can be performed for each detected area. For example, consider the case of detecting at least two regions of the vitreous region, the retinal region, and the choroid region. In this case, when performing image processing such as contrast adjustment on at least two detected regions, adjustments suitable for each region can be performed by using different image processing parameters. By displaying the image adjusted suitable for each area, the operator can more appropriately diagnose the disease or the like in each area. Note that the configuration using different image processing parameters for each detected region may be similarly applied to the region of the eye to be inspected detected without using the trained model, for example.
- the trained model obtained by learning for each imaging site may be selectively used. Specifically, learning including a first learned model obtained by using learning data including the first imaging site (lung, eye to be examined, etc.) and a second imaging site different from the first imaging site. A second trained model obtained using the data and a plurality of trained models including the second trained model can be prepared. Then, the image processing device 300 may have a selection means for selecting one of the plurality of trained models. At this time, the image processing device 300 may have a control means for executing additional learning on the selected trained model. The control means searches for data in which the imaged part corresponding to the selected trained model and the photographed image of the imaged part are paired according to the instruction from the examiner, and the data obtained by the search is the learning data.
- the imaging site corresponding to the selected trained model may be acquired from the information in the header of the data or manually input by the examiner. Further, the data search may be performed from a server of an external facility such as a hospital or a research institute via a network, for example. As a result, additional learning can be efficiently performed for each imaged part by using the photographed image of the imaged part corresponding to the trained model.
- the selection means and the control means may be composed of a software module executed by a processor such as a CPU or an MPU of the image processing device 300. Further, the selection means and the control means may be composed of a circuit that performs a specific function such as an ASIC, an independent device, or the like.
- the correctness of the learning data for additional learning may be detected by confirming the consistency by digital signature or hashing. As a result, the learning data for additional learning can be protected. At this time, if the validity of the training data for additional learning cannot be detected as a result of confirming the consistency by digital signature or hashing, a warning to that effect is given and additional learning is performed using the training data. Make it not exist.
- the server may be in any form, for example, a cloud server, a fog server, an edge server, or the like, regardless of its installation location.
- the instruction from the examiner may be an instruction by voice or the like in addition to a manual instruction (for example, an instruction using a user interface or the like).
- a machine learning model including a voice recognition model speech recognition engine, trained model for voice recognition
- the manual instruction may be an instruction by character input or the like using a keyboard, a touch panel, or the like.
- a machine learning model including a character recognition model character recognition engine, trained model for character recognition
- the instruction from the examiner may be an instruction by a gesture or the like.
- a machine learning model including a gesture recognition model gesture recognition engine, learned model for gesture recognition
- the instruction from the examiner may be the result of the examiner's line-of-sight detection on the display screen of the display unit 310 or the like.
- the line-of-sight detection result may be, for example, a pupil detection result using a moving image of the examiner obtained by photographing from the periphery of the display screen on the display unit 310.
- the object recognition engine as described above may be used for the pupil detection from the moving image.
- the instruction from the examiner may be an instruction by an electroencephalogram, a weak electric signal flowing through the body, or the like.
- the training data various trained data such as character data or voice data (waveform data) indicating an instruction for displaying the result by processing the various trained models as described above are used as input data.
- the training data may be training data in which the execution instruction for actually displaying the result of the model processing on the display unit is the correct answer data.
- character data or voice data indicating an instruction for designating the extraction target (target area) is used as input data, and an execution command for designating the extraction target and a selection button shown in FIG. 5 are selected. It may be learning data in which the execution instruction for the purpose is the correct answer data.
- the learning data may be any data as long as the instruction content and the execution instruction content indicated by the character data, the voice data, or the like correspond to each other.
- the voice data may be converted into character data by using an acoustic model, a language model, or the like.
- the waveform data obtained by the plurality of microphones may be used to perform a process of reducing the noise data superimposed on the voice data.
- the instruction by characters or voice and the instruction by a mouse or a touch panel may be configured to be selectable according to the instruction from the examiner. Further, the on / off of the instruction by characters or voice may be selectably configured according to the instruction from the examiner.
- the extraction target (target area) is a trained model for generating a character recognition result and a trained model for generating a voice recognition result by the image generation unit 304 (target designation unit).
- the information obtained by using at least one of the trained models for generating the gesture recognition result can be specified. This makes it possible to improve the operability of the image processing device 300 by the examiner.
- machine learning includes deep learning as described above, and for at least a part of a multi-layer neural network, for example, a recurrent neural network (RNN) can be used.
- RNN recurrent neural network
- FIGS. 27A and 27B As an example of the machine learning model according to this modified example, RNN, which is a neural network that handles time series information, will be described with reference to FIGS. 27A and 27B.
- LSTM Long short-term memory
- FIG. 27A shows the structure of the RNN, which is a machine learning model.
- the RNN2720 has a loop structure in the network, data x t 2710 is input at time t, and data h t 2730 is output. Since the RNN2720 has a loop function in the network, the current state can be inherited to the next state, so that time-series information can be handled.
- FIG. 27B shows an example of input / output of the parameter vector at time t.
- the data x t 2710 contains N pieces of data (Params1 to ParamsN). Further, the data h t 2730 output from the RNN 2720 includes N data (Params 1 to Params N) corresponding to the input data.
- FIG. 28A shows the structure of the LSTM.
- the information that the network takes over at the next time t is the internal state ct -1 of the network called the cell and the output data h t-1 .
- the lowercase letters (c, h, x) in the figure represent vectors.
- FIG. 28B shows the details of RSTM2840.
- the oblivion gate network FG, the input gate network IG, and the output gate network OG are shown, each of which is a sigmoid layer. Therefore, a vector in which each element has a value of 0 to 1 is output.
- the oblivion gate network FG determines how much past information is retained, and the input gate network IG determines which value to update.
- the cell update candidate network CU is shown, and the cell update candidate network CU is the activation function tanh layer. This creates a vector of new candidate values to be added to the cell.
- the output gate network OG selects the cell candidate element and selects how much information to convey at the next time.
- LSTM model is a basic model, it is not limited to the network shown here. You may change the coupling between the networks. QRNN (Quasi Recurrent Neural Network) may be used instead of RSTM. Further, the machine learning model is not limited to the neural network, and boosting, a support vector machine, or the like may be used. Further, when the instruction from the examiner is input by characters, voice, or the like, a technique related to natural language processing (for example, Sequence to Sequence) may be applied. Further, a dialogue engine (dialogue model, trained model for dialogue) that responds to the examiner by outputting characters or voices may be applied.
- a technique related to natural language processing for example, Sequence to Sequence
- a dialogue engine dialogue model, trained model for dialogue
- the front image, the area label image generated by the segmentation process, and the like may be stored in the storage unit in response to an instruction from the operator.
- an instruction from the operator for saving the area label image when registering the file name, as a recommended file name, any part of the file name (for example, the first part, or In the last part), a file name containing information (for example, characters) indicating that the image is generated by processing using a trained model for segmentation can be edited according to an instruction from the operator. It may be displayed as.
- a file name including information which is an image generated by a process using the trained model may be displayed.
- the displayed image is an image generated by processing using the trained model for segmentation.
- the indication shown may be displayed with the image. In this case, the operator can easily identify from the display that the displayed image is not the image itself acquired by shooting, so that misdiagnosis can be reduced or the diagnosis efficiency can be improved. it can.
- the display indicating that the image is generated by the process using the trained model for segmentation is any form as long as the input image and the image generated by the process can be distinguished from each other. But it may be. Further, not only the processing using the trained model for segmentation but also the processing using the various trained models as described above is the result generated by the processing using the trained model of that type.
- the display indicating that the analysis result is based on the result using the trained model for segmentation is displayed together with the analysis result. It may be displayed.
- the display screen such as the report screen may be saved in the storage unit as image data according to the instruction from the operator.
- the report screen may be saved in the storage unit as one image in which the area label image and the like and the display indicating that these images are images generated by the processing using the trained model are arranged side by side.
- the display showing that the image is generated by the processing using the trained model for segmentation the display showing what kind of training data the trained model for segmentation used for training is displayed. It may be displayed on the display unit.
- the display may include an explanation of the types of the input data and the correct answer data of the learning data, and an arbitrary display regarding the correct answer data such as the imaging part included in the input data and the correct answer data. For example, even in the case of processing using the various trained models described above, even if a display indicating what kind of training data the trained model of that type is trained by is displayed on the display unit 310. Good.
- information for example, characters
- the portion to be superimposed on the image may be any region (for example, the edge of the image) that does not overlap with the region where the region of interest to be photographed is displayed.
- the non-overlapping areas may be determined and superimposed on the determined areas.
- the image obtained by the processing using the other various trained models described above may be processed in the same manner.
- the extraction target is according to the instruction from the examiner.
- the report image corresponding to the report screen including the image of the above may be configured to be transmitted to the server.
- the default setting is set so that a predetermined extraction target is selected
- when the inspection is completed (for example, when the shooting confirmation screen or preview screen is changed to the report screen in response to an instruction from the inspector). ) May be configured to (automatically) send the report image corresponding to the report screen including the image to be extracted to the server.
- various settings in the default settings for example, the depth range for generating the En-Face image on the initial display screen of the report screen, whether or not the analysis map is superimposed, whether or not the image is to be extracted, and the display for follow-up observation.
- the report image generated based on may be configured to be transmitted to the server.
- the first type is used by using the result of processing the first type of trained model (for example, analysis result, diagnosis result, object recognition result, segmentation result).
- An image to be input to a second type of trained model different from the first type may be generated from the image input to the trained model of.
- the generated image is likely to be an image suitable as an image to be processed using the second type of trained model. Therefore, an image obtained by inputting the generated image into the second type of trained model (for example, an image showing an analysis result such as an analysis map, an image showing an object recognition result, an image showing a segmentation result). The accuracy can be improved.
- a similar case image search using an external database stored in a server or the like may be performed using the analysis result, the diagnosis result, etc. obtained by the processing of the trained model as described above as a search key. If a plurality of images stored in the database are already managed by machine learning or the like with the feature amount of each of the plurality of images attached as incidental information, the image itself is used as a search key.
- a similar case image search engine similar case image search model, trained model for similar case image search
- the image processing device searches for similar case images for each of the different regions specified by segmentation processing or the like, using a trained model for searching for similar case images that is different from the trained model for acquiring evaluation results. be able to.
- the three-dimensional volume data and the front image relating to the fundus portion of the eye to be inspected have been described, but the image processing may be performed on the image relating to the anterior segment of the eye to be inspected.
- the regions of the image to be subjected to different image processing include regions such as the crystalline lens, cornea, iris, and anterior chamber of eye.
- the region may include another region of the anterior segment of the eye.
- the region for the image relating to the fundus portion is not limited to the vitreous portion, the retina portion, and the choroid portion, and may include other regions relating to the fundus portion.
- the subject to be examined has been described as an example, but the subject is not limited to this.
- the subject may be skin, other organs, or the like.
- the OCT device according to the above embodiment and the modified example can be applied to a medical device such as an endoscope in addition to the ophthalmic device.
- the image processed by the image processing apparatus or the image processing method according to the various examples and modifications described above includes a medical image acquired by using an arbitrary modality (imaging apparatus, imaging method).
- the medical image to be processed may include a medical image acquired by an arbitrary imaging device or the like, or an image created by an image processing device or an image processing method according to the above-described embodiment and modification.
- the medical image to be processed is an image of a predetermined part of the subject (subject), and the image of the predetermined part includes at least a part of the predetermined part of the subject.
- the medical image may include other parts of the subject.
- the medical image may be a still image or a moving image, and may be a black-and-white image or a color image.
- the medical image may be an image showing the structure (morphology) of a predetermined part or an image showing the function thereof.
- the image showing the function includes, for example, an OCTA image, a Doppler OCT image, an fMRI image, and an image showing blood flow dynamics (blood flow volume, blood flow velocity, etc.) such as an ultrasonic Doppler image.
- the predetermined part of the subject may be determined according to the subject to be imaged, and the human eye (eye to be examined), brain, lung, intestine, heart, pancreas, kidney, liver and other organs, head, chest, etc. Includes any part such as legs and arms.
- the medical image may be a tomographic image of the subject or a frontal image.
- the frontal image is, for example, a frontal image of the fundus, a frontal image of the anterior segment of the eye, a fluorescently photographed fundus image, and data acquired by OCT (three-dimensional OCT data) in at least a part of a range in the depth direction of the object to be imaged.
- OCT three-dimensional OCT data
- En-Face images generated using the data from.
- the En-Face image is an OCTA En-Face image (motion contrast front image) generated by using data in at least a part of the depth direction of the shooting target for three-dimensional OCTA data (three-dimensional motion contrast data). ) May be.
- three-dimensional OCT data and three-dimensional motion contrast data are examples of three-dimensional medical image data.
- the photographing device is a device for photographing an image used for diagnosis.
- the photographing device detects, for example, a device that obtains an image of a predetermined part by irradiating a predetermined part of the subject with radiation such as light or X-rays, electromagnetic waves, ultrasonic waves, or the like, or radiation emitted from the subject.
- the imaging devices according to the various examples and modifications described above include at least an X-ray imaging device, a CT device, an MRI device, a PET device, a SPECT device, an SLO device, an OCT device, an OCTA device, and a fundus. Includes cameras, endoscopes, etc.
- the target region (attention site or the region of interest) in the slice image is obtained by the image evaluation unit 343. It may be configured to evaluate the presence of the target site).
- the image generation unit 304 can determine the output image by using the evaluation result (information indicating the evaluation) by the image evaluation unit 343.
- image processing is not limited to the field of ophthalmology, and can be applied to medical images acquired for a target site by any of the above-mentioned imaging devices.
- the process evaluates multiple images corresponding to different locations and determines the output image using the evaluation results to determine the region of interest. It is possible to acquire an image that is easy to confirm.
- the predetermined part of the subject described above can be an example of the extraction target (target area).
- the medical image acquired by using the imaging device has different image features depending on the type of the region of interest. Therefore, the trained models used in the various examples and modifications described above may be generated and prepared for each type of the region of interest.
- the image processing apparatus 300 can select a trained model to be used for processing by the image evaluation unit 343 or the like according to the designated target area (part of interest).
- the display mode of the GUI or the like described in the above-described embodiment and the modified example is not limited to the above-mentioned one, and may be arbitrarily changed according to a desired configuration.
- the motion contrast data may be displayed on the tomographic image. In this case, it is possible to confirm at which depth the motion contrast value is distributed. Further, colors may be used for displaying an image or the like.
- the generated image is displayed on the display unit 310, but for example, it may be output to an external device such as an external server.
- the different depth ranges corresponding to the plurality of front images may be partially overlapping depth ranges.
- the magnitude of the brightness value of the front image, the order and inclination of the bright part and the dark part, the position, the distribution, the continuity, etc. are determined. It is considered that it is extracted as a part of the feature quantity and used for the estimation process.
- the spectrum domain OCT (SD-OCT) device using the SLD as the light source has been described as the OCT device, but the configuration of the OCT device according to the present invention is not limited to this.
- the present invention can be applied to any other type of OCT apparatus such as a wavelength sweep type OCT (SS-OCT) apparatus using a wavelength sweep light source capable of sweeping the wavelength of emitted light.
- SS-OCT wavelength sweep type OCT
- the present invention can also be applied to a Line-OCT device (or SS-Line-OCT device) using line light.
- the present invention can also be applied to a Full Field-OCT device (or SS-Full Field-OCT device) using area light.
- the present invention may be applied to a wave surface adaptive optics tomography (AO-OCT) device using an adaptive optics system or a polarized light OCT (PS-OCT) device for visualizing information on polarization phase difference and polarization elimination. it can.
- AO-OCT wave surface adaptive optics tomography
- PS-OCT polarized light OCT
- an optical fiber optical system using a coupler is used as the dividing means, but a spatial optical system using a collimator and a beam splitter may be used.
- the configurations of the optical interference unit 100 and the scanning optical system 200 are not limited to the above configurations, and a part of the configurations included in the optical interference unit 100 and the scanning optical system 200 may be different from these configurations.
- the Michelson interference system is used as the interference system, the Mach-Zehnder interference system may be used.
- the image processing apparatus 300 has acquired the interference signal acquired by the optical interference unit 100, the tomographic data generated by the reconstruction unit 301, and the like.
- the configuration in which the image processing device 300 acquires these signals and images is not limited to this.
- the image processing device 300 may acquire these signals and data from a server or a photographing device connected to the image processing device 300 via a LAN, WAN, the Internet, or the like.
- the trained model according to the above embodiment and the modified example can be provided in the image processing device 300.
- the trained model may be composed of, for example, a CPU, a software module executed by a processor such as an MPU, GPU, or FPGA, or a circuit or the like that performs a specific function such as an ASIC.
- these trained models may be provided in a device of another server connected to the image processing device 300 or the like.
- the image processing device 300 can use the trained model by connecting to a server or the like provided with the trained model via an arbitrary network such as the Internet.
- the server provided with the trained model may be, for example, a cloud server, a fog server, an edge server, or the like.
- the training data of the trained model is not limited to the data obtained by using the ophthalmology device itself that actually performs the imaging, but the data obtained by using the same type of ophthalmology device or the same type of ophthalmology according to a desired configuration. It may be data or the like obtained by using the device.
- the image evaluation unit 343 may be provided outside the image processing device 300.
- the image evaluation unit 343 is configured by an external device such as an external server connected to the image processing device 300, and the image processing device 300 includes the acquired three-dimensional volume data, the generated front image, and the extraction target (target area). ) Is sent to an external device.
- the image processing device 300 may determine or generate a front image to be output by using the evaluation result acquired from the external device.
- an image processing system provided with the image processing device 300 and the external device (evaluation device) can be configured.
- the determination unit that determines the image to be output using the information indicating the evaluation may be provided in the same device as the image evaluation unit 343. Good.
- the target area can be easily confirmed.
- the present invention is also a process in which a program that realizes one or more functions of the above-described examples and modifications is supplied to a system or device via a network or storage medium, and a computer of the system or device reads and executes the program. It is feasible.
- a computer may have one or more processors or circuits and may include multiple separate computers or a network of separate processors or circuits to read and execute computer executable instructions.
- the processor or circuit may include a central processing unit (CPU), a microprocessing unit (MPU), a graphics processing unit (GPU), an application specific integrated circuit (ASIC), or a field programmable gateway (FPGA). Also, the processor or circuit may include a digital signal processor (DSP), a data flow processor (DFP), or a neural processing unit (NPU).
- CPU central processing unit
- MPU microprocessing unit
- GPU graphics processing unit
- ASIC application specific integrated circuit
- FPGA field programmable gateway
- DSP digital signal processor
- DFP data flow processor
- NPU neural processing unit
- 300 Image processing device, 304: Image generation unit (decision unit), 343: Image evaluation unit (evaluation unit)
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Ophthalmology & Optometry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Eye Examination Apparatus (AREA)
Abstract
Provided is an image processing device equipped with: an evaluation unit which, using multiple frontal images corresponding to different depth ranges of three-dimensional volume data of a subject's eye, acquires multiple pieces of information corresponding to said multiple frontal images, the multiple pieces of information being indicative of evaluation conducted as to the presence of an object domain; and a determination unit which, using said multiple pieces of information, determines at least one of the multiple frontal images as an image to be outputted.
Description
本発明は、画像処理装置、画像処理方法、及びプログラムに関する。
The present invention relates to an image processing apparatus, an image processing method, and a program.
光干渉断層血管撮影法(OCTA:Optical Coherence Tomography Angiography)により、網膜の血管の形態を観察できることが知られている。特許文献1には、一般的なOCT(Optical Coherence Tomography)及びOCTAの撮影装置とその光学系、モーションコントラストデータの生成方法、並びにモーションコントラストデータを所定の深度範囲で2次元平面に投影する技術に関して記載されている。
It is known that the morphology of blood vessels in the retina can be observed by optical interference tomography angiography (OCTA: Optical Coherence Tomography Angiography). Patent Document 1 relates to a general OCT (Optical Coherence Tomography) and OCTA imaging device and its optical system, a method for generating motion contrast data, and a technique for projecting motion contrast data on a two-dimensional plane within a predetermined depth range. Are listed.
網膜や硝子体、脈絡膜を含む眼の構造的な特徴(血管を含む)を抽出するために、3次元のOCT画像又は3次元のOCTA画像(モーションコントラスト画像)を所定の深度範囲内で投影し、2次元の正面画像を生成することがある。この際には、対象とする構造物に対して、構造物を抽出しやすい深度範囲について網膜層の特定の層を基準として定義し、その深度範囲で投影することが一般的である。
A three-dimensional OCT image or a three-dimensional OCTA image (motion contrast image) is projected within a predetermined depth range in order to extract structural features (including blood vessels) of the eye including the retina, vitreous body, and choroid. It may generate a two-dimensional frontal image. In this case, it is common to define a specific layer of the retinal layer as a reference for a depth range in which the structure can be easily extracted with respect to the target structure, and to project in that depth range.
しかしながら、個人差、及び構造物の形態やその状態(病変の進行度合い)等によって、確認されるべき構造物等の対象領域の特徴が、画像上で確認できなかったり、鮮明に見えなかったりすることがあった。そこで、本発明の一実施態様では、対象領域を容易に確認可能とすることを目的の一つとする。
However, depending on individual differences, the morphology of the structure, its state (degree of lesion progression), etc., the characteristics of the target area such as the structure to be confirmed may not be confirmed on the image or may not be clearly seen. There was something. Therefore, one of the objects of the embodiment of the present invention is to make it possible to easily confirm the target area.
本発明の一実施態様に係る画像処理装置は、被検眼の3次元ボリュームデータの異なる深度範囲に対応した複数の正面画像を用いて、対象領域の存在を評価した評価を示す情報であって、前記複数の正面画像に対応する複数の情報を取得する評価部と、前記複数の情報を用いて、前記複数の正面画像のうち少なくとも一つを出力画像として決定する決定部とを備える。
The image processing apparatus according to one embodiment of the present invention is information indicating an evaluation in which the existence of a target region is evaluated by using a plurality of front images corresponding to different depth ranges of the three-dimensional volume data of the eye to be inspected. It includes an evaluation unit that acquires a plurality of information corresponding to the plurality of front images, and a determination unit that determines at least one of the plurality of front images as an output image using the plurality of information.
本発明のさらなる特徴が、添付の図面を参照して以下の例示的な実施例の説明から明らかになる。
Further features of the present invention will become apparent from the description of the following exemplary examples with reference to the accompanying drawings.
以下、本発明の実施例について、添付の図面を参照して具体的に説明する。
Hereinafter, examples of the present invention will be specifically described with reference to the accompanying drawings.
ただし、以下の実施例で説明する寸法、材料、形状、及び構成要素の相対的な位置等は任意であり、本発明が適用される装置の構成又は様々な条件に応じて変更できる。また、図面において、同一であるか又は機能的に類似している要素を示すために図面間で同じ参照符号を用いる。
However, the dimensions, materials, shapes, relative positions of the components, etc. described in the following examples are arbitrary, and can be changed according to the configuration of the device to which the present invention is applied or various conditions. Also, in the drawings, the same reference numerals are used between the drawings to indicate elements that are the same or functionally similar.
なお、以下において、機械学習モデルとは、機械学習アルゴリズムによる学習モデルをいう。機械学習の具体的なアルゴリズムとしては、最近傍法、ナイーブベイズ法、決定木、サポートベクターマシンなどが挙げられる。また、ニューラルネットワークを利用して、学習するための特徴量、結合重み付け係数を自ら生成する深層学習(ディープラーニング)も挙げられる。適宜、上記アルゴリズムのうち利用できるものを用いて以下の実施例及び変形例に適用することができる。また、教師データとは、学習データのことをいい、入力データ及び出力データのペアで構成される。また、正解データとは、学習データ(教師データ)の出力データのことをいう。
In the following, the machine learning model refers to a learning model based on a machine learning algorithm. Specific algorithms for machine learning include the nearest neighbor method, the naive Bayes method, a decision tree, and a support vector machine. In addition, deep learning (deep learning) in which features and coupling weighting coefficients for learning are generated by themselves using a neural network can also be mentioned. As appropriate, any of the above algorithms that can be used can be applied to the following examples and modifications. The teacher data refers to learning data and is composed of a pair of input data and output data. The correct answer data refers to the output data of the learning data (teacher data).
なお、学習済モデルとは、ディープラーニング等の任意の機械学習アルゴリズムに従った機械学習モデルに対して、事前に適切な教師データ(学習データ)を用いてトレーニング(学習)を行ったモデルをいう。ただし、学習済モデルは、事前に適切な学習データを用いて得ているが、それ以上の学習を行わないものではなく、追加の学習を行うこともできるものとする。追加学習は、装置が使用先に設置された後も行われることができる。
The trained model is a model in which training (learning) is performed in advance using appropriate teacher data (learning data) for a machine learning model that follows an arbitrary machine learning algorithm such as deep learning. .. However, although the trained model is obtained by using appropriate training data in advance, it is not that no further training is performed, and additional training can be performed. Additional learning can be performed even after the device has been installed at the site of use.
なお、実施例1乃至3では、滲出性加齢黄斑変性症(AMD:Age-related Macular Degeneration)由来の新生血管(CNV:Choroidal Neovascularization)を確認するための正面画像を生成する場合の例に関して説明する。一方で、例えば、実施例4で説明する視神経乳頭部の篩状板や、実施例5で説明する脈絡膜の層(Sattler層、Haller層)又は網膜血管の毛細血管瘤を確認するための正面画像を生成する場合にも本発明を適用可能である。
In Examples 1 to 3, an example of generating a frontal image for confirming a neovascularization (CNV: Choroidal Neovascularization) derived from exudative age-related macular degeneration (AMD) will be described. To do. On the other hand, for example, a frontal image for confirming the lamina cribrosa of the optic nerve head described in Example 4, the choroidal layer (Sattler layer, Haller layer) described in Example 5, or the capillary aneurysm of the retinal blood vessel. The present invention can also be applied to the case of producing.
(実施例1)
以下、図1乃至図8を参照して、本発明の実施例1に係る眼科装置、特に眼科医院等で使用される光干渉断層撮影装置(OCT装置)の画像処理装置及び画像処理方法について説明する。以下、本実施例に係るOCTAを用いた新生血管(CNV)の表示方法に関して説明する。 (Example 1)
Hereinafter, with reference to FIGS. 1 to 8, the image processing device and the image processing method of the ophthalmic device according to the first embodiment of the present invention, particularly the optical coherence tomography device (OCT device) used in an ophthalmic clinic or the like will be described. To do. Hereinafter, a method for displaying a new blood vessel (CNV) using OCTA according to this example will be described.
以下、図1乃至図8を参照して、本発明の実施例1に係る眼科装置、特に眼科医院等で使用される光干渉断層撮影装置(OCT装置)の画像処理装置及び画像処理方法について説明する。以下、本実施例に係るOCTAを用いた新生血管(CNV)の表示方法に関して説明する。 (Example 1)
Hereinafter, with reference to FIGS. 1 to 8, the image processing device and the image processing method of the ophthalmic device according to the first embodiment of the present invention, particularly the optical coherence tomography device (OCT device) used in an ophthalmic clinic or the like will be described. To do. Hereinafter, a method for displaying a new blood vessel (CNV) using OCTA according to this example will be described.
(OCT光学系)
図1は本実施例に係るOCT装置の概略的な構成例を示す。本実施例に係るOCT装置には、光干渉部100、走査光学系200、画像処理装置300、表示部310、ポインティングデバイス320、及びキーボード321が設けられている。光干渉部100には、近赤外光を発光する低コヒーレンス光源101、光分岐部103、コリメート光学系111、分散補償光学系112、及び参照ミラー113が設けられている。さらに、光干渉部100には、コリメート光学系122、回折格子123、結像レンズ124、及びラインセンサ125が設けられている。光源101から発光した光は、光ファイバ102aを伝搬し、光分岐部103で測定光と参照光に分割される。光分岐部103により分割された測定光は、光ファイバ102bに入射され、走査光学系200に導かれる。一方、光分岐部103により分割された参照光は、光ファイバ102cに入射され、参照ミラー113へ導かれる。なお、光分岐部103は、例えば、光ファイバカプラ等を用いて構成されてよい。 (OCT optical system)
FIG. 1 shows a schematic configuration example of the OCT apparatus according to this embodiment. The OCT device according to this embodiment is provided with anoptical interference unit 100, a scanning optical system 200, an image processing device 300, a display unit 310, a pointing device 320, and a keyboard 321. The optical interference unit 100 is provided with a low coherence light source 101 that emits near-infrared light, an optical branching unit 103, a collimating optical system 111, an adaptive optics system 112, and a reference mirror 113. Further, the optical interference unit 100 is provided with a collimating optical system 122, a diffraction grating 123, an imaging lens 124, and a line sensor 125. The light emitted from the light source 101 propagates through the optical fiber 102a and is divided into measurement light and reference light by the optical branching portion 103. The measurement light divided by the optical branching portion 103 is incident on the optical fiber 102b and guided to the scanning optical system 200. On the other hand, the reference light divided by the optical branching portion 103 is incident on the optical fiber 102c and guided to the reference mirror 113. The optical branching portion 103 may be configured by using, for example, an optical fiber coupler or the like.
図1は本実施例に係るOCT装置の概略的な構成例を示す。本実施例に係るOCT装置には、光干渉部100、走査光学系200、画像処理装置300、表示部310、ポインティングデバイス320、及びキーボード321が設けられている。光干渉部100には、近赤外光を発光する低コヒーレンス光源101、光分岐部103、コリメート光学系111、分散補償光学系112、及び参照ミラー113が設けられている。さらに、光干渉部100には、コリメート光学系122、回折格子123、結像レンズ124、及びラインセンサ125が設けられている。光源101から発光した光は、光ファイバ102aを伝搬し、光分岐部103で測定光と参照光に分割される。光分岐部103により分割された測定光は、光ファイバ102bに入射され、走査光学系200に導かれる。一方、光分岐部103により分割された参照光は、光ファイバ102cに入射され、参照ミラー113へ導かれる。なお、光分岐部103は、例えば、光ファイバカプラ等を用いて構成されてよい。 (OCT optical system)
FIG. 1 shows a schematic configuration example of the OCT apparatus according to this embodiment. The OCT device according to this embodiment is provided with an
光ファイバ102cに入射した参照光はファイバ端から射出され、コリメート光学系111を介して、分散補償光学系112に入射し、参照ミラー113へと導かれる。参照ミラー113で反射した参照光は、光路を逆にたどり再び光ファイバ102cに入射する。分散補償光学系112は、走査光学系200及び被測定物体である被検眼Eにおける光学系の分散を補正するものである。参照ミラー113は、不図示のモータ等を含む駆動部によって光軸方向に駆動可能なように構成されており、参照光の光路長を、測定光の光路長に対して相対的に変化させることができる。一方、光ファイバ102bに入射した測定光はファイバ端より射出され、走査光学系200に入射される。これらの光源101、及び不図示の駆動部は画像処理装置300の制御下で制御される。
The reference light incident on the optical fiber 102c is emitted from the fiber end, enters the dispersion adaptive optics system 112 via the collimating optical system 111, and is guided to the reference mirror 113. The reference light reflected by the reference mirror 113 follows the optical path in the opposite direction and is incident on the optical fiber 102c again. The dispersion-compensated optical system 112 corrects the dispersion of the optical system in the scanning optical system 200 and the eye E to be inspected as the object to be measured. The reference mirror 113 is configured to be driveable in the optical axis direction by a drive unit including a motor or the like (not shown), and changes the optical path length of the reference light relative to the optical path length of the measurement light. Can be done. On the other hand, the measurement light incident on the optical fiber 102b is emitted from the fiber end and incident on the scanning optical system 200. These light sources 101 and a driving unit (not shown) are controlled under the control of the image processing device 300.
次に走査光学系200について説明する。走査光学系200は被検眼Eに対して相対的に移動可能なように構成された光学系である。走査光学系200、コリメート光学系202、走査部203、及びレンズ204が設けられている。走査光学系200は、画像処理装置300によって制御される不図示の駆動部により、被検眼Eの眼軸に対して前後上下左右方向に駆動可能なように構成される。画像処理装置300は、不図示の駆動部を制御することで、被検眼Eに対して走査光学系200をアライメントすることができる。
Next, the scanning optical system 200 will be described. The scanning optical system 200 is an optical system configured to be movable relative to the eye E to be inspected. A scanning optical system 200, a collimating optical system 202, a scanning unit 203, and a lens 204 are provided. The scanning optical system 200 is configured to be able to be driven in the front-back, up-down, left-right directions with respect to the eye axis of the eye E to be inspected by a driving unit (not shown) controlled by the image processing device 300. The image processing device 300 can align the scanning optical system 200 with respect to the eye E to be inspected by controlling a drive unit (not shown).
光ファイバ102bのファイバ端より射出した測定光は、コリメート光学系202により略平行化され、走査部203へ入射する。走査部203は、ミラー面を回転可能なガルバノミラーを2つ有し、一方は水平方向に光を偏向し、他方は垂直方向に光を偏向し、画像処理装置300の制御下で入射した光を偏向する。これにより、走査部203は、紙面内の主走査方向と紙面垂直方向の副走査方向の2方向に、被検眼Eの眼底Er上で測定光を走査することができる。なお、主走査方向及び副走査方向はこれに限られず、被検眼Eの深度方向と直交し、互いに交差する方向であればよい。また、走査部203は、任意の変更手段を用いて構成されてよく、例えば、1枚で2軸方向に光を偏向することができるMEMSミラー等を用いて構成されてもよい。
The measurement light emitted from the fiber end of the optical fiber 102b is substantially parallelized by the collimating optical system 202 and incident on the scanning unit 203. The scanning unit 203 has two galvano mirrors whose mirror surfaces can be rotated, one of which deflects light in the horizontal direction and the other of which deflects light in the vertical direction, and the light incident under the control of the image processing apparatus 300. Bias. As a result, the scanning unit 203 can scan the measurement light on the fundus Er of the eye E to be inspected in two directions, the main scanning direction in the paper surface and the sub-scanning direction in the direction perpendicular to the paper surface. The main scanning direction and the sub-scanning direction are not limited to this, and may be any direction that is orthogonal to the depth direction of the eye E to be inspected and intersects with each other. Further, the scanning unit 203 may be configured by using any changing means, and may be configured by using, for example, a MEMS mirror or the like capable of deflecting light in two axial directions with one sheet.
走査部203により走査された測定光は、レンズ204を経由して被検眼Eの眼底Er上に、照明スポットを形成する。走査部203により面内偏向をうけると各照明スポットは被検眼Eの眼底Er上を移動(走査)する。この照明スポット位置における反射光が光路を逆にたどり光ファイバ102bに入射して、光分岐部103まで戻る。
The measurement light scanned by the scanning unit 203 forms an illumination spot on the fundus Er of the eye E to be inspected via the lens 204. When in-plane deflection is received by the scanning unit 203, each illumination spot moves (scans) on the fundus Er of the eye E to be inspected. The reflected light at the illumination spot position follows the optical path in the opposite direction, enters the optical fiber 102b, and returns to the optical branch portion 103.
以上のように、参照ミラー113で反射された参照光及び被検眼Eの眼底Erで反射された測定光は、戻り光として光分岐部103に戻され、干渉して干渉光を発生させる。光ファイバ102dを通過し、コリメート光学系122に射出された干渉光は、略平行化され、回折格子123に入射する。回折格子123には周期構造があり、入力した干渉光を分光する。分光された干渉光は、合焦状態を変更可能な結像レンズ124によりラインセンサ125に結像される。ラインセンサ125は、画像処理装置300に接続されており、各センサ部に照射される光の強度に応じた信号を画像処理装置300に出力する。
As described above, the reference light reflected by the reference mirror 113 and the measurement light reflected by the fundus Er of the eye E to be inspected are returned to the optical branching portion 103 as return light and interfere with each other to generate interference light. The interference light that has passed through the optical fiber 102d and is emitted to the collimating optical system 122 is substantially parallelized and enters the diffraction grating 123. The diffraction grating 123 has a periodic structure and disperses the input interference light. The dispersed interference light is imaged on the line sensor 125 by the imaging lens 124 whose focusing state can be changed. The line sensor 125 is connected to the image processing device 300, and outputs a signal corresponding to the intensity of the light applied to each sensor unit to the image processing device 300.
また、OCT装置には、被検眼Eの眼底正面画像を撮影するための不図示の眼底カメラや走査型検眼鏡(SLO:Scanning Laser Ophthalmoscope)の光学系等が設けられることができる。この場合、SLO光学系の一部は、走査光学系200の一部と共通の光路を有してもよい。
Further, the OCT apparatus may be provided with a fundus camera (not shown) for capturing a frontal image of the fundus of the eye E to be inspected, an optical system of a scanning laser Ophthalmoscope (SLO), or the like. In this case, a part of the SLO optical system may have an optical path common to a part of the scanning optical system 200.
(画像処理装置)
図2は、画像処理装置300の概略的な機能構成例を示す。図2に示すように、画像処理装置300には、再構成部301、モーションコントラスト画像生成部302、層認識部303、画像生成部304、記憶部305、及び表示制御部306が設けられている。本実施例に係る画像処理装置300は、スペクトラムドメイン(SD)方式を用いた光干渉部100に接続されており、光干渉部100のラインセンサ125の出力データを取得することができる。なお、画像処理装置300は、不図示の外部装置に接続され、外部装置から被検眼の干渉信号や断層画像等を取得してもよい。 (Image processing device)
FIG. 2 shows a schematic functional configuration example of theimage processing device 300. As shown in FIG. 2, the image processing device 300 is provided with a reconstruction unit 301, a motion contrast image generation unit 302, a layer recognition unit 303, an image generation unit 304, a storage unit 305, and a display control unit 306. .. The image processing device 300 according to the present embodiment is connected to the optical interference unit 100 using the spectrum domain (SD) method, and can acquire the output data of the line sensor 125 of the optical interference unit 100. The image processing device 300 may be connected to an external device (not shown) to acquire an interference signal of the eye to be inspected, a tomographic image, or the like from the external device.
図2は、画像処理装置300の概略的な機能構成例を示す。図2に示すように、画像処理装置300には、再構成部301、モーションコントラスト画像生成部302、層認識部303、画像生成部304、記憶部305、及び表示制御部306が設けられている。本実施例に係る画像処理装置300は、スペクトラムドメイン(SD)方式を用いた光干渉部100に接続されており、光干渉部100のラインセンサ125の出力データを取得することができる。なお、画像処理装置300は、不図示の外部装置に接続され、外部装置から被検眼の干渉信号や断層画像等を取得してもよい。 (Image processing device)
FIG. 2 shows a schematic functional configuration example of the
再構成部301は、取得したラインセンサ125の出力データ(干渉信号)を波数変換し、フーリエ変換することで被検眼Eの断層データを生成する。ここで、断層データとは、被検体の断層に関する情報を含むデータであり、OCTによる干渉信号にフーリエ変換を施した信号、及び該信号に任意の処理を施した信号等を含むものをいう。また、再構成部301は、断層データとして、干渉信号に基づいて断層画像を生成することもできる。なお、再構成部301は画像処理装置300が外部装置から取得した被検眼の干渉信号に基づいて断層データを生成してもよい。なお、本実施例に係るOCT装置は、SD方式の光干渉部100を備えているが、タイムドメイン(TD)方式や波長掃引(SS)方式の光干渉部を備えてもよい。
The reconstruction unit 301 generates the tomographic data of the eye E to be inspected by converting the acquired output data (interference signal) of the line sensor 125 into a wave number and Fourier transforming it. Here, the tomographic data refers to data including information on the tomography of the subject, and includes a signal obtained by subjecting an interference signal by OCT to Fourier transform, a signal obtained by subjecting the signal to an arbitrary process, and the like. In addition, the reconstruction unit 301 can also generate a tomographic image as tomographic data based on the interference signal. The reconstructing unit 301 may generate tomographic data based on the interference signal of the eye to be inspected acquired by the image processing device 300 from the external device. Although the OCT apparatus according to this embodiment includes the SD type optical interference unit 100, it may also include a time domain (TD) type or wavelength sweep (SS) type optical interference unit.
モーションコントラスト画像生成部302は、複数の断層データからモーションコントラストデータを生成する。モーションコントラストデータの生成方法については後述する。なお、モーションコントラスト画像生成部302は、複数の3次元の断層データから3次元のモーションコントラストデータを生成することができる。なお、以下において、3次元の断層データや3次元のモーションコントラストデータを総称して、3次元ボリュームデータという。
The motion contrast image generation unit 302 generates motion contrast data from a plurality of tomographic data. The method of generating the motion contrast data will be described later. The motion contrast image generation unit 302 can generate three-dimensional motion contrast data from a plurality of three-dimensional tomographic data. In the following, three-dimensional tomographic data and three-dimensional motion contrast data are collectively referred to as three-dimensional volume data.
層認識部303は、生成された被検眼Eの断層データを解析し、網膜層における任意の層構造を特定するためのセグメンテーションを実施する。セグメンテーションされた結果は、後述するようにOCTA正面画像を生成する際の投影範囲の基準となる。例えば、層認識部303が検出する層境界線形状は、ILM、NFL/GCL、GCL/IPL、IPL/INL、INL/OPL、OPL/ONL、IS/OS、OS/RPE、RPE/Choroid、及びBMの10種類である。なお、層認識部303が検出する対象物はこれに限られず、被検眼Eに含まれる任意の構造であってよい。なお、セグメンテーションの方法は、公知の任意の方法を用いてよい。
The layer recognition unit 303 analyzes the generated tomographic data of the eye E to be inspected and performs segmentation to identify an arbitrary layer structure in the retinal layer. The segmented result serves as a reference for the projection range when generating the OCTA front image as described later. For example, the layer boundary line shapes detected by the layer recognition unit 303 include ILM, NFL / GCL, GCL / IPL, IPL / INL, INL / OPL, OPL / ONL, IS / OS, OS / RPE, RPE / Choroid, and There are 10 types of BM. The object detected by the layer recognition unit 303 is not limited to this, and may be any structure included in the eye E to be inspected. As the segmentation method, any known method may be used.
画像生成部304は、生成された断層データやモーションコントラストデータから表示用の画像を生成する。画像生成部304は、例えば、3次元の断層データを2次元平面に投影又は積算した輝度のEn-Face画像や3次元のモーションコントラストデータを2次元平面に投影又は積算したOCTA正面画像を生成することができる。表示制御部306は、生成された表示用の画像を表示部310へ出力する。記憶部305は、再構成部301で生成された断層データやモーションコントラストデータ、画像生成部304で生成された表示用の画像、複数の深度範囲の定義、デフォルトで適用される定義等を記憶することができる。画像生成部304は、記憶部305から取得した深度範囲に従ってOCTA正面画像や輝度のEn-Face画像を生成することができる。なお、OCTA正面画像等の生成方法については後述する。また、記憶部305は、各部を実現するためにソフトウェア等を含んでもよい。なお、画像生成部304は、不図示の眼底カメラやSLO光学系から取得した信号に基づいて眼底正面画像を生成することもできる。
The image generation unit 304 generates an image for display from the generated tomographic data and motion contrast data. The image generation unit 304 generates, for example, an En-Face image of brightness obtained by projecting or integrating 3D tomographic data on a 2D plane and an OCTA front image obtained by projecting or integrating 3D motion contrast data on a 2D plane. be able to. The display control unit 306 outputs the generated display image to the display unit 310. The storage unit 305 stores tomographic data and motion contrast data generated by the reconstruction unit 301, an image for display generated by the image generation unit 304, definitions of a plurality of depth ranges, definitions applied by default, and the like. be able to. The image generation unit 304 can generate an OCTA front image and an En-Face image having brightness according to the depth range acquired from the storage unit 305. The method of generating the OCTA front image and the like will be described later. Further, the storage unit 305 may include software or the like in order to realize each unit. The image generation unit 304 can also generate a fundus frontal image based on a signal acquired from a fundus camera (not shown) or an SLO optical system.
また、画像処理装置300には、表示部310、ポインティングデバイス320及びキーボード321が接続されている。表示部310は、任意のモニタを用いて構成することができる。
Further, the display unit 310, the pointing device 320, and the keyboard 321 are connected to the image processing device 300. The display unit 310 can be configured by using any monitor.
ポインティングデバイス320は、回転式ホイールとボタンを備えたマウスであり、表示部310上の任意の位置を指定することができる。なお、本実施例ではポインティングデバイスとしてマウスを使用しているが、ジョイスティック、タッチパッド、トラックボール、タッチパネル、又はスタイラスペン等の任意のポインティングデバイスを用いてもよい。
The pointing device 320 is a mouse provided with a rotary wheel and buttons, and can specify an arbitrary position on the display unit 310. Although the mouse is used as the pointing device in this embodiment, any pointing device such as a joystick, a touch pad, a trackball, a touch panel, or a stylus pen may be used.
このように、本実施例に係るOCT装置は、光干渉部100、走査光学系200、及び画像処理装置300、表示部310、ポインティングデバイス320、及びキーボード321を用いて構成される。なお、本実施例では、光干渉部100、走査光学系200、画像処理装置300、表示部310、ポインティングデバイス320、及びキーボード321は、それぞれ別個の構成としているが、これらのうちの全て又は一部を一体的に構成してもよい。例えば、表示部310及びポインティングデバイス320を、タッチパネルディスプレイとして一体的に構成してもよい。同様に、不図示の眼底カメラやSLO光学系も別個の装置として構成されてもよい。
As described above, the OCT device according to the present embodiment is configured by using the optical interference unit 100, the scanning optical system 200, the image processing device 300, the display unit 310, the pointing device 320, and the keyboard 321. In this embodiment, the optical interference unit 100, the scanning optical system 200, the image processing device 300, the display unit 310, the pointing device 320, and the keyboard 321 have separate configurations, but all or one of them is configured. The parts may be integrally formed. For example, the display unit 310 and the pointing device 320 may be integrally configured as a touch panel display. Similarly, a fundus camera and an SLO optical system (not shown) may be configured as separate devices.
画像処理装置300は、例えば汎用のコンピュータを用いて構成されてよい。なお、画像処理装置300は、OCT装置の専用のコンピュータを用いて構成されてもよい。画像処理装置300は、不図示のCPU(Central Processing Unit)やMPU(Micro Processing Unit)、及び光学ディスクやROM(Read Only Memory)等のメモリを含む記憶媒体を備えている。画像処理装置300の記憶部305以外の各構成要素は、CPUやMPU等のプロセッサーによって実行されるソフトウェアモジュールにより構成されてよい。また、当該各構成要素は、ASIC等の特定の機能を果たす回路や独立した装置等によって構成されてもよい。記憶部305は、例えば、光学ディスクやメモリ等の任意の記憶媒体によって構成されてよい。
The image processing device 300 may be configured using, for example, a general-purpose computer. The image processing device 300 may be configured by using a dedicated computer of the OCT device. The image processing device 300 includes a storage medium including a CPU (Central Processing Unit) and an MPU (Micro Processing Unit) (not shown), and a memory such as an optical disk and a ROM (Read Only Memory). Each component other than the storage unit 305 of the image processing device 300 may be composed of a software module executed by a processor such as a CPU or MPU. In addition, each component may be composed of a circuit that performs a specific function such as an ASIC, an independent device, or the like. The storage unit 305 may be configured by any storage medium such as an optical disk or a memory.
なお、画像処理装置300が備えるCPU等のプロセッサー及びROM等の記憶媒体は一つであってもよいし複数であってもよい。そのため、画像処理装置300の各構成要素は、少なくとも一以上のプロセッサーと少なくとも一つの記憶媒体とが接続され、少なくとも一以上のプロセッサーが少なくとも1以上の記憶媒体に記憶されたプログラムを実行した場合に機能するように構成されてもよい。なお、プロセッサーはCPUやMPUに限定されるものではなく、GPU(Graphics Processing Unit)やFPGA(Field-Programmable Gate Array)等であってもよい。また、画像処理装置300の各構成要素は、各々が別個の装置により実現されてもよい。
The image processing device 300 includes a processor such as a CPU and a storage medium such as a ROM, which may be one or a plurality. Therefore, when each component of the image processing device 300 is connected to at least one or more processors and at least one storage medium, and at least one or more processors executes a program stored in at least one storage medium. It may be configured to work. The processor is not limited to the CPU and MPU, and may be a GPU (Graphics Processing Unit), an FPGA (Field-Programmable Gate Array), or the like. Further, each component of the image processing device 300 may be realized by a separate device.
(断層画像撮影の制御方法)
次に、本実施例に係るOCT装置を用いて、被検眼Eの断層画像を撮影するための制御方法について述べる。 (Control method for tomographic imaging)
Next, a control method for taking a tomographic image of the eye E to be inspected will be described using the OCT apparatus according to this embodiment.
次に、本実施例に係るOCT装置を用いて、被検眼Eの断層画像を撮影するための制御方法について述べる。 (Control method for tomographic imaging)
Next, a control method for taking a tomographic image of the eye E to be inspected will be described using the OCT apparatus according to this embodiment.
まず、検者は走査光学系200の前に被検者である患者を着座させ、アライメントや患者情報等を入力した後にOCT撮影を開始する。光源101から射出した光は、光ファイバ102aを通過し光分岐部103にて被検眼Eに向かう測定光と参照ミラー113に向かう参照光に分けられる。
First, the examiner seats the patient who is the subject in front of the scanning optical system 200, inputs alignment, patient information, and the like, and then starts OCT imaging. The light emitted from the light source 101 passes through the optical fiber 102a and is divided into a measurement light toward the eye E to be inspected and a reference light toward the reference mirror 113 at the optical branching portion 103.
被検眼Eに向かう測定光は、光ファイバ102bを通過しファイバ端から射出され、コリメート光学系202により略平行化され、走査部203へ入射する。走査部203はガルバノミラーを有し、該ミラーにより偏向された測定光はレンズ204を経由して被検眼Eを照射される。そして、被検眼Eで反射した反射光は経路を逆にたどって光分岐部103へと戻される。
The measurement light directed to the eye E to be inspected passes through the optical fiber 102b, is emitted from the fiber end, is substantially parallelized by the collimating optical system 202, and is incident on the scanning unit 203. The scanning unit 203 has a galvano mirror, and the measurement light deflected by the mirror irradiates the eye E to be inspected via the lens 204. Then, the reflected light reflected by the eye E to be inspected follows the path in the reverse direction and is returned to the optical branching portion 103.
一方、参照ミラー113に向かう参照光は、光ファイバ102cを通過しファイバ端から射出され、コリメート光学系111及び分散補償光学系112を通して参照ミラー113に到達する。参照ミラー113で反射された参照光は、経路を逆にたどって光分岐部103へと戻される。
On the other hand, the reference light directed to the reference mirror 113 passes through the optical fiber 102c, is emitted from the fiber end, and reaches the reference mirror 113 through the collimating optical system 111 and the dispersion compensation optical system 112. The reference light reflected by the reference mirror 113 is returned to the optical branching portion 103 by following the path in the reverse direction.
光分岐部103に戻ってきた測定光と参照光は相互に干渉し、干渉光となって光ファイバ102dへと入射し、コリメート光学系122により略平行化され回折格子123に入射する。回折格子123に入力された干渉光は結像レンズ124によってラインセンサ125に結像する。これにより、ラインセンサ125を用いて、被検眼E上の一点における干渉信号を得ることができる。
The measurement light and the reference light that have returned to the optical branching portion 103 interfere with each other, become interference light, enter the optical fiber 102d, are substantially collimated by the collimated optical system 122, and enter the diffraction grating 123. The interference light input to the diffraction grating 123 is imaged on the line sensor 125 by the imaging lens 124. As a result, the line sensor 125 can be used to obtain an interference signal at one point on the eye E to be inspected.
ラインセンサ125で取得された干渉信号は、画像処理装置300に出力される。ラインセンサ125から出力される干渉信号は、12ビットの整数形式のデータである。再構成部301は、この12ビットの整数形式のデータに対して波数変換、高速フーリエ変換(FFT)、絶対値変換(振幅の取得)を行い、被検眼E上の一点における深さ方向の断層データを生成する。なお、干渉信号のデータ形式等は、所望の構成に応じて任意に設定されてよい。
The interference signal acquired by the line sensor 125 is output to the image processing device 300. The interference signal output from the line sensor 125 is 12-bit integer format data. The reconstruction unit 301 performs wave number transform, fast Fourier transform (FFT), and absolute value transform (acquisition of amplitude) on the 12-bit integer format data, and performs a fault in the depth direction at one point on the eye E to be inspected. Generate data. The data format of the interference signal and the like may be arbitrarily set according to the desired configuration.
被検眼E上の一点における干渉信号を取得した後、走査部203はガルバノミラーを駆動し、被検眼E上の隣接する一点に測定光を走査する。ラインセンサ125は当該測定光に基づく干渉光を検出し、干渉信号を取得する。再構成部301は、当該隣接する一点の干渉信号に基づいて、被検眼E上の当該隣接する一点における深度方向の断層データを生成する。この一連の制御を繰り返すことにより、被検眼Eの一つの横断方向(主走査方向)における一枚の断層画像に関する断層データ(2次元断層データ)を生成することができる。
After acquiring the interference signal at one point on the eye E to be inspected, the scanning unit 203 drives the galvano mirror and scans the measurement light at one adjacent point on the eye E to be inspected. The line sensor 125 detects the interference light based on the measurement light and acquires the interference signal. The reconstruction unit 301 generates tomographic data in the depth direction at the adjacent point on the eye E to be inspected based on the interference signal of the adjacent point. By repeating this series of control, tomographic data (two-dimensional tomographic data) relating to one tomographic image in one transverse direction (main scanning direction) of the eye E to be inspected can be generated.
さらに、走査部203はガルバノミラーを駆動し、被検眼Eの同一箇所(同一の走査ライン)を複数回走査して被検眼Eの同一箇所における複数の断層データ(2次元断層データ)を取得する。また、走査部203は、ガルバノミラーを駆動して測定光を主走査方向に直交する副走査方向に微小に移動させ、被検眼Eの別の個所(隣接する走査ライン)における複数の断層データ(2次元断層データ)を取得する。この制御を繰り返すことにより、被検眼Eの所定範囲における複数の3次元の断層画像に関する断層データ(3次元断層データ)を取得することができる。
Further, the scanning unit 203 drives a galvano mirror and scans the same location (same scanning line) of the eye E to be examined a plurality of times to acquire a plurality of tomographic data (two-dimensional tomographic data) at the same location of the eye E to be inspected. .. Further, the scanning unit 203 drives the galvano mirror to move the measurement light minutely in the sub-scanning direction orthogonal to the main scanning direction, and a plurality of tomographic data (adjacent scanning lines) at another location (adjacent scanning line) of the eye E to be inspected. Two-dimensional fault data) is acquired. By repeating this control, it is possible to acquire tomographic data (three-dimensional tomographic data) relating to a plurality of three-dimensional tomographic images in a predetermined range of the eye E to be inspected.
なお、上記ではラインセンサ125から得られた一組の干渉信号をFFT処理することで被検眼Eの一点における一つの断層データを取得している。しかしながら、干渉信号を複数の組に分割し、分割されたそれぞれの干渉信号に対してFFT処理を行って、一つの干渉信号から複数の断層データを取得するように構成することもできる。この方法によれば実際に被検眼Eの同一箇所を走査した回数よりも多くの断層データを取得することができる。
In the above, one tomographic data at one point of the eye E to be inspected is acquired by performing FFT processing on a set of interference signals obtained from the line sensor 125. However, it is also possible to divide the interference signal into a plurality of sets, perform FFT processing on each of the divided interference signals, and acquire a plurality of tomographic data from one interference signal. According to this method, it is possible to acquire more tomographic data than the number of times that the same part of the eye E to be inspected is actually scanned.
(モーションコントラストデータ生成)
次に、画像処理装置300において、断層データからモーションコントラストデータを生成する方法について説明する。 (Motion contrast data generation)
Next, a method of generating motion contrast data from tomographic data in theimage processing apparatus 300 will be described.
次に、画像処理装置300において、断層データからモーションコントラストデータを生成する方法について説明する。 (Motion contrast data generation)
Next, a method of generating motion contrast data from tomographic data in the
再構成部301で生成された複素数形式の断層データは、モーションコントラスト画像生成部302へ出力される。まず、モーションコントラスト画像生成部302は、被検眼Eの同一箇所における複数の断層データ(2次元断層データ)の位置ずれを補正する。なお、位置ずれの補正方法は公知の任意の手法を用いてよく、例えば、基準となる断層データをテンプレートとして選択し、テンプレートとのずれ量を各断層データに関する位置ずれ量として取得してもよい。
The complex number format tomographic data generated by the reconstruction unit 301 is output to the motion contrast image generation unit 302. First, the motion contrast image generation unit 302 corrects the positional deviation of a plurality of tomographic data (two-dimensional tomographic data) at the same location of the eye E to be inspected. As the method for correcting the misalignment, any known method may be used. For example, the reference fault data may be selected as a template, and the amount of misalignment with the template may be acquired as the amount of misalignment with respect to each tomographic data. ..
モーションコントラスト画像生成部302は、位置ずれが補正された二つの2次元断層データ間で以下の式(1)により脱相関値を求める。
ここで、Axzは断層データAの位置(x,z)における振幅、Bxzは断層データBの同一位置(x,z)における振幅を示している。結果として得られる脱相関値Mxzは0から1までの値を取り、二つの振幅値の差異が大きいほど1に近い値となる。
The motion contrast image generation unit 302 obtains a decorrelation value between the two two-dimensional tomographic data in which the positional deviation has been corrected by the following equation (1).
Here, Axz indicates the amplitude of the tomographic data A at the position (x, z), and Bxz indicates the amplitude of the tomographic data B at the same position (x, z). The resulting decorrelation value Mxz takes a value from 0 to 1, and the larger the difference between the two amplitude values, the closer to 1.
モーションコントラスト画像生成部302は、取得した断層データの枚数分だけ上記の脱相関演算を繰り返すことによって複数の脱相関値を求め、該複数の脱相関値の平均値を求めることで最終的なモーションコントラストデータを取得する。モーションコントラスト画像生成部302は、取得したモーションコントラストデータを対応する画素位置に配置することでモーションコントラスト画像を生成することができる。ここではFFT後の複素数データの振幅に基づいてモーションコントラストデータを求めたが、モーションコントラストデータの求め方は上記方法に限られるものではない。複素数データの位相情報に基づいてモーションコントラストデータを求めてもよいし、振幅と位相の両方の情報に基づいてモーションコントラストデータを求めてもよい。また、複素数データの実部や虚部に基づいてモーションコントラストデータを求めることもできる。また、モーションコントラスト画像生成部302は、2次元の断層画像の各画素値について同様の処理を行い、モーションコントラストデータを求めてもよい。
The motion contrast image generation unit 302 obtains a plurality of decorrelation values by repeating the above decorrelation calculation for the number of acquired tomographic data, and obtains the average value of the plurality of decorrelation values to obtain the final motion. Acquire contrast data. The motion contrast image generation unit 302 can generate a motion contrast image by arranging the acquired motion contrast data at the corresponding pixel positions. Here, the motion contrast data is obtained based on the amplitude of the complex number data after the FFT, but the method of obtaining the motion contrast data is not limited to the above method. The motion contrast data may be obtained based on the phase information of the complex number data, or the motion contrast data may be obtained based on both the amplitude and phase information. It is also possible to obtain motion contrast data based on the real part and the imaginary part of the complex number data. Further, the motion contrast image generation unit 302 may perform the same processing on each pixel value of the two-dimensional tomographic image to obtain the motion contrast data.
また、上記の方法では二つの値の脱相関値を演算することによってモーションコントラストデータを取得したが、二つの値の差分に基づいてモーションコントラストデータを求めてもよいし、二つの値の比に基づいてモーションコントラストデータを求めてもよい。また、断層データの分散値に基づいてモーションコントラストデータを求めてもよい。さらに、上記では取得された複数の脱相関値の平均値を求めることで最終的なモーションコントラストデータを得ているが、複数の脱相関値や差分、比の最大値や中央値等を最終的なモーションコントラストデータとしてもよい。なお、モーションコントラストデータを取得する際に用いる二つの断層データは、所定の時間間隔で取得されたデータであってよい。
Further, in the above method, the motion contrast data is acquired by calculating the decorrelation value of the two values, but the motion contrast data may be obtained based on the difference between the two values, or the ratio of the two values may be obtained. Motion contrast data may be obtained based on the above. Further, the motion contrast data may be obtained based on the variance value of the tomographic data. Further, in the above, the final motion contrast data is obtained by obtaining the average value of the acquired plurality of decorrelation values, but the final values, the difference, the maximum value, the median value, etc. of the plurality of decorrelation values are obtained. Motion contrast data may be used. The two tomographic data used when acquiring the motion contrast data may be the data acquired at a predetermined time interval.
(OCTA正面画像の生成)
次に、画像処理装置300において、OCTA正面画像を生成するための深度範囲を定義する手順について説明する。 (Generation of OCTA front image)
Next, in theimage processing apparatus 300, a procedure for defining a depth range for generating an OCTA front image will be described.
次に、画像処理装置300において、OCTA正面画像を生成するための深度範囲を定義する手順について説明する。 (Generation of OCTA front image)
Next, in the
OCTA正面画像は、3次元のモーションコントラスト画像(3次元モーションコントラストデータ)を任意の深度範囲で2次元平面に投影又は積算した正面画像である。深度範囲は任意に設定できる。一般的には、網膜から脈絡側に向かって、網膜浅層(SCP:Superficial Capillary)、網膜深層(Deep Capillary)、網膜外層(Outer Retina)、放射状乳頭周囲毛細血管(RPC:Radial Peripapillary Capillaries)、脈絡膜毛細血管板(Choriocapillaris)、及び強膜篩状板(Lamina Cribrosa)などの深度範囲が定義される。
The OCTA front image is a front image obtained by projecting or integrating a three-dimensional motion contrast image (three-dimensional motion contrast data) onto a two-dimensional plane in an arbitrary depth range. The depth range can be set arbitrarily. Generally, from the retina to the choroidal side, the superficial layer of the retina (SCP: Superficial Capillary), the deep layer of the retina (Deep Capillary), the outer layer of the retina (Outer Retina), and the radial peri-papillary capillaries (RPC) Depth ranges such as choriocapillaris and Lamina Cribrosa are defined.
それぞれの定義は、網膜の層境界に対して定義されており、例えば網膜浅層は、ILM+0μm~GCL/IPL+50μmとして定義される。ここで、GCL/IPLとはGCL層とIPL層の境界を意味する。また、以下において、+50μmや-100μm等のオフセット量は、正の値は脈絡膜側へシフトすることを意味し、負の値は瞳側へシフトすることを意味する。
Each definition is defined for the layer boundary of the retina, for example, the superficial retinal layer is defined as ILM + 0 μm to GCL / IPL + 50 μm. Here, GCL / IPL means the boundary between the GCL layer and the IPL layer. Further, in the following, an offset amount such as +50 μm or -100 μm means that a positive value shifts to the choroid side and a negative value shifts to the pupil side.
滲出性加齢黄斑変性の新生血管を確認する際には、深度範囲として網膜外層や脈絡膜毛細血管板が使用されることが多い。網膜外層はOPL/ONL+0μm~RPE/Choroid+0μmとして定義されることが多いが、後述するように、CNVの大きさや発生箇所(深度位置)などによって、当該深度範囲は調整することができる。
When confirming new blood vessels of exudative age-related macular degeneration, the outer layer of the retina and the choroidal capillary plate are often used as the depth range. The outer layer of the retina is often defined as OPL / ONL + 0 μm to RPE / Choroid + 0 μm, but as will be described later, the depth range can be adjusted depending on the size of CNV, the location of occurrence (depth position), and the like.
なお、深度範囲に対応するデータを2次元平面に投影する手法としては、例えば、当該深度範囲内のデータの代表値を2次元平面上の画素値とする手法を用いることができる。ここで、代表値は、深度範囲内における画素値の平均値、中央値又は最大値などの値を含むことができる。
As a method of projecting the data corresponding to the depth range on the two-dimensional plane, for example, a method of using the representative value of the data in the depth range as the pixel value on the two-dimensional plane can be used. Here, the representative value can include a value such as an average value, a median value, or a maximum value of pixel values within the depth range.
また、輝度のEn-Face画像とは、3次元の断層画像を任意の深度範囲で2次元平面に投影又は積算した正面画像である。輝度のEn-Face画像は、3次元のモーションコントラスト画像に代えて3次元の断層画像を用いることで、OCTA正面画像と同様の方法で生成されてよい。また、輝度のEn-Face画像は3次元断層データを用いて生成されてもよい。
The brightness En-Face image is a front image obtained by projecting or integrating a three-dimensional tomographic image on a two-dimensional plane in an arbitrary depth range. The brightness En-Face image may be generated in the same manner as the OCTA front image by using a three-dimensional tomographic image instead of the three-dimensional motion contrast image. Further, the brightness En-Face image may be generated by using the three-dimensional tomographic data.
また、OCTA正面画像やEn-Face画像に関する深度範囲は、3次元ボリュームデータのうちの、2次元断層データ(又は2次元の断層画像)についてのセグメンテーション処理により検出された網膜層に基づいて決定されることができる。また、当該深度範囲は、これらセグメンテーション処理によって検出された網膜層に関する2つの層境界の一方を基準として、より深い方向又はより浅い方向に所定の画素数分だけ含んだ範囲であってもよい。
Further, the depth range of the OCTA front image and the En-Face image is determined based on the retinal layer detected by the segmentation process of the two-dimensional tomographic data (or the two-dimensional tomographic image) of the three-dimensional volume data. Can be done. Further, the depth range may be a range including a predetermined number of pixels in a deeper direction or a shallower direction with reference to one of the two layer boundaries relating to the retinal layer detected by these segmentation processes.
また、深度範囲は、所望の構成に応じて変更できるように構成されてもよい。例えば、深度範囲は、検出された網膜層に関する2つの層境界の間の範囲から、操作者の指示に応じて変更された(オフセットされた)範囲とすることもできる。この際、操作者は、例えば、断層画像上に重畳された、深度範囲の上限又は下限を示す指標を移動させる等により、深度範囲を変更することができる。
Further, the depth range may be configured so that it can be changed according to a desired configuration. For example, the depth range can be a range modified (offset) according to the operator's instructions from the range between the two layer boundaries with respect to the detected retinal layer. At this time, the operator can change the depth range by, for example, moving an index indicating the upper limit or the lower limit of the depth range superimposed on the tomographic image.
(画像生成部)
図3は画像生成部304を説明するための図である。画像生成部304には、投影範囲制御部341と正面画像生成部342が含まれる。投影範囲制御部341は、モーションコントラスト画像生成部302によって生成されたモーションコントラスト画像と、層認識部303による層認識結果と、記憶部305に記憶されている深度範囲とに基づいて、正面画像の生成に用いる3次元モーションコントラストデータを特定する。正面画像生成部342は、投影範囲制御部341によって特定されたモーションコントラストデータを2次元平面に投影又は積算し、OCTA正面画像を生成する。 (Image generator)
FIG. 3 is a diagram for explaining theimage generation unit 304. The image generation unit 304 includes a projection range control unit 341 and a front image generation unit 342. The projection range control unit 341 of the front image is based on the motion contrast image generated by the motion contrast image generation unit 302, the layer recognition result by the layer recognition unit 303, and the depth range stored in the storage unit 305. Specify the 3D motion contrast data used for generation. The front image generation unit 342 projects or integrates the motion contrast data specified by the projection range control unit 341 on a two-dimensional plane to generate an OCTA front image.
図3は画像生成部304を説明するための図である。画像生成部304には、投影範囲制御部341と正面画像生成部342が含まれる。投影範囲制御部341は、モーションコントラスト画像生成部302によって生成されたモーションコントラスト画像と、層認識部303による層認識結果と、記憶部305に記憶されている深度範囲とに基づいて、正面画像の生成に用いる3次元モーションコントラストデータを特定する。正面画像生成部342は、投影範囲制御部341によって特定されたモーションコントラストデータを2次元平面に投影又は積算し、OCTA正面画像を生成する。 (Image generator)
FIG. 3 is a diagram for explaining the
なお、同様に、投影範囲制御部341は、3次元の断層画像(3次元断層データ)と、層認識結果と、深度範囲に基づいて、輝度のEn-Face画像の生成に用いる3次元断層データを特定することができる。この場合、正面画像生成部342は、投影範囲制御部341によって特定された断層データを2次元平面に投影又は積算し、輝度のEn-Face画像を生成することができる。
Similarly, the projection range control unit 341 uses the three-dimensional tomographic image (three-dimensional tomographic data), the layer recognition result, and the three-dimensional tomographic data used to generate the En-Face image of the brightness based on the depth range. Can be identified. In this case, the front image generation unit 342 can project or integrate the tomographic data specified by the projection range control unit 341 on a two-dimensional plane to generate an En-Face image of brightness.
(レポート画面)
図4は、画像生成部304によって生成されたOCTA正面画像を含む画像を表示するためのGUI400の一例を示す。GUI400には、画面選択用のタブ401が示されており、図4に示す例ではレポート画面(Reportタブ)が選択されている。なお、GUI400には、レポートタブ以外に、患者を選択するための患者画面(Patientタブ)や、撮影を行うための撮影画面(OCT Captureタブ)等が含まれてよい。 (Report screen)
FIG. 4 shows an example of theGUI 400 for displaying an image including an OCTA front image generated by the image generation unit 304. The GUI 400 shows a tab 401 for screen selection, and in the example shown in FIG. 4, the report screen (Report tab) is selected. In addition to the report tab, the GUI 400 may include a patient screen (Patient tab) for selecting a patient, an imaging screen (OCT Capture tab) for performing imaging, and the like.
図4は、画像生成部304によって生成されたOCTA正面画像を含む画像を表示するためのGUI400の一例を示す。GUI400には、画面選択用のタブ401が示されており、図4に示す例ではレポート画面(Reportタブ)が選択されている。なお、GUI400には、レポートタブ以外に、患者を選択するための患者画面(Patientタブ)や、撮影を行うための撮影画面(OCT Captureタブ)等が含まれてよい。 (Report screen)
FIG. 4 shows an example of the
レポート画面の左手には検査セレクタ408が設けられ、右手には表示エリアが設けられている。検査セレクタ408には現在選択されている患者のこれまで行った検査一覧が表示されており、そのうち一つが選択されると、表示制御部306は、レポート画面の右手の表示エリアに検査結果を表示させる。
The inspection selector 408 is provided on the left hand side of the report screen, and the display area is provided on the right hand side. The examination selector 408 displays a list of examinations performed so far for the currently selected patient, and when one of them is selected, the display control unit 306 displays the examination result in the display area on the right side of the report screen. Let me.
表示エリアには、不図示のSLO光学系を用いて生成されたSLO画像406が示され、SLO画像406上にはOCTA正面画像が重畳して表示されている。また、表示エリアには、第一のOCTA正面画像402、第一の断層画像403、輝度のEn-Face画像407、第二のOCTA正面画像404、及び第二の断層画像405が表示されている。En-Face画像407の上部にはプルダウンが設けられており、EnfaceImage1が選択されている。これはEn-Face画像の深度範囲がOCTAImage1(第一のOCTA正面画像402)の深度範囲と同じであることを意味する。操作者は当該プルダウンの操作により、En-Face画像の深度範囲をOCTAImage2(第二のOCTA正面画像404)の深度範囲等と同じにすることができる。
In the display area, an SLO image 406 generated by using an SLO optical system (not shown) is shown, and an OCTA front image is superimposed and displayed on the SLO image 406. Further, in the display area, the first OCTA front image 402, the first tomographic image 403, the brightness En-Face image 407, the second OCTA front image 404, and the second tomographic image 405 are displayed. .. A pull-down is provided on the upper part of the En-Face image 407, and EnfaceImage1 is selected. This means that the depth range of the En-Face image is the same as the depth range of OCTA Image 1 (first OCTA front image 402). By the pull-down operation, the operator can make the depth range of the En-Face image the same as the depth range of the OCTA Image 2 (second OCTA front image 404) and the like.
第一の断層画像403上には、第一のOCTA正面画像402を生成した際の深度範囲が破線で示されている。GUI400の例では、第一のOCTA正面画像402の深度範囲は網膜浅層(SCP)である。また、第二のOCTA正面画像404は、第一のOCTA正面画像402とは異なる深度範囲のデータを用いて生成された画像となっている。第二の断層画像405上には、第二のOCTA正面画像404を生成した際の深度範囲が破線で示されている。ここで、第二のOCTA正面画像404の深度範囲はCNVとなっており、この例ではOPL/ONL+50μm~BM+10μmの範囲とされている。
On the first tomographic image 403, the depth range when the first OCTA front image 402 is generated is shown by a broken line. In the example of GUI400, the depth range of the first OCTA front image 402 is the superficial layer of the retina (SCP). Further, the second OCTA front image 404 is an image generated using data in a depth range different from that of the first OCTA front image 402. On the second tomographic image 405, the depth range when the second OCTA front image 404 is generated is shown by a broken line. Here, the depth range of the second OCTA front image 404 is CNV, and in this example, it is in the range of OPL / ONL + 50 μm to BM + 10 μm.
なお、第一のOCTA正面画像402及び第二のOCTA正面画像404の深度範囲は、これら画像の上部に設けられたプルダウンの操作に応じて設定されることができる。また、これら深度範囲は、予め設定されていてもよいし、操作者の操作に応じて設定されてもよい。ここで、画像生成部304は、当該設定に基づいて下記の抽出処理の対象となる抽出対象(対象領域)を指定する対象指定部として機能することができる。なお、OCTA正面画像の深度範囲を設定するためのプルダウンには、上述した網膜浅層等の層毎の深度範囲だけでなく、CNV等の下記の処理で抽出が望まれる異常部位等に対応する範囲が含まれてよい。
The depth range of the first OCTA front image 402 and the second OCTA front image 404 can be set according to the pull-down operation provided on the upper part of these images. Further, these depth ranges may be set in advance or may be set according to the operation of the operator. Here, the image generation unit 304 can function as a target designation unit for designating an extraction target (target area) to be the target of the following extraction processing based on the setting. The pull-down for setting the depth range of the OCTA front image corresponds not only to the depth range for each layer such as the superficial layer of the retina described above, but also to an abnormal part or the like that is desired to be extracted by the following processing such as CNV. Ranges may be included.
本実施例では、操作者が第二のOCTA正面画像404をダブルクリックすると、表示制御部306は、図4に示すGUI400から図5に示すGUI500へと表示部310に表示させる画面を切り替える。GUI500には、4つの異なる深度範囲の設定に対して、OCTA正面画像501,505,509,513と、それに対応する断層画像503,507,511,515、及び深度範囲502,506,510,514とが表示されている。
In this embodiment, when the operator double-clicks the second OCTA front image 404, the display control unit 306 switches the screen to be displayed on the display unit 310 from the GUI 400 shown in FIG. 4 to the GUI 500 shown in FIG. The GUI500 includes OCTA frontal images 501,505,509,513, corresponding tomographic images 503,507,511,515, and depth ranges 502,506,510,514 for four different depth range settings. Is displayed.
これに関連して、画像生成部304は、第二のOCTA正面画像404の深度範囲に対応するCNVを抽出対象(対象領域)として指定する。画像生成部304は、抽出対象として指定されたCNV用に記憶部305に予め記憶されている4つの深度範囲502,506,510,514に基づいて、対応するOCTA正面画像501,505,509,513を生成する。表示制御部306は、生成されたOCTA正面画像501,505,509,513、対応する断層画像503,507,511,515、及び深度範囲502,506,510,514を表示部310に表示させる。
In connection with this, the image generation unit 304 designates the CNV corresponding to the depth range of the second OCTA front image 404 as the extraction target (target area). The image generator 304 has corresponding OCTA front images 501,505,509, based on four depth ranges 502,506,510,514 pre-stored in the storage unit 305 for the CNV designated as the extraction target. Generate 513. The display control unit 306 causes the display unit 310 to display the generated OCTA front image 501,505,509,513, the corresponding tomographic images 503,507,511,515, and the depth range 502,506,510,514.
この例では、一番左の画像(OCTA正面画像501)に関する深度範囲502として、タイプ1のCNVを想定した深度範囲が設定されており、BM+0μm~BM+20μmとなっている。ここで、タイプ1のCNVとは、RPE/Choroidよりも下にあるCNVをいう。
In this example, as the depth range 502 for the leftmost image (OCTA front image 501), a depth range assuming a Type 1 CNV is set, and is BM + 0 μm to BM + 20 μm. Here, the type 1 CNV means a CNV below the RPE / Choroid.
左から2つ目の画像(OCTA正面画像505)に関する深度範囲506は、BMよりも少し上にある非常に小さなCNVを想定した深度範囲であり、BM-20μm~BM+0μmとなっている。左から3番目の画像(OCTA正面画像509)に関する深度範囲510は、BMより上に発生した大きなCNVを想定した深度範囲であり、BM-100μm~BM+0μmとなっている。左から4番目の画像(OCTA正面画像513)に関する深度範囲514は網膜外層全域をカバーする深度範囲であり、かなり大きなCNVを想定した深度範囲(OPL+50μm~BM+10μm)となっている。
The depth range 506 for the second image from the left (OCTA front image 505) is a depth range assuming a very small CNV slightly above the BM, and is BM-20 μm to BM + 0 μm. The depth range 510 for the third image from the left (OCTA front image 509) is a depth range assuming a large CNV generated above the BM, and is BM-100 μm to BM + 0 μm. The depth range 514 for the fourth image from the left (OCTA front image 513) is a depth range that covers the entire outer layer of the retina, and is a depth range (OPL + 50 μm to BM + 10 μm) assuming a considerably large CNV.
GUI500の下部には選択ボタン504,508,512,516が表示されており、操作者は当該選択ボタンを選択することで、診断等に用いるのに好ましいOCTA正面画像(表示すべき正面画像)を表示されているOCTA正面画像から選択できる。
Selection buttons 504, 508, 521, 516 are displayed at the bottom of the GUI 500, and the operator selects the selection button to display an OCTA front image (front image to be displayed) preferable for use in diagnosis or the like. You can select from the displayed OCTA front image.
実施例では、操作者が選択ボタン512を押下すると、表示制御部306は、表示部310に表示する画面を、図6に示すレポート画面のGUI600に切り替える。GUI600は、GUI400と同様のものであるが、第二のOCTA正面画像404及び第二の断層画像405が、操作者が選択した条件に基づくOCTA正面画像509及びOCTA正面画像509に関する深度範囲を示す断層画像511に切り替わっている。
In the embodiment, when the operator presses the selection button 512, the display control unit 306 switches the screen displayed on the display unit 310 to the GUI 600 of the report screen shown in FIG. The GUI 600 is similar to the GUI 400, but the second OCTA front image 404 and the second tomographic image 405 show the depth range for the OCTA front image 509 and OCTA front image 509 based on the conditions selected by the operator. It has been switched to the tomographic image 511.
このように本実施例では、抽出対象に応じた複数の深度範囲に関するOCTA正面画像を操作者に提供し、操作者が好ましい画像を選択することにより、最適な深度範囲に対するOCTA正面画像を表示することができる。これにより、病変の見落としのリスクを低減したり、医師や検査技師による画質調整などの追加作業を削減したりすることができる。
As described above, in this embodiment, the OCTA front image relating to a plurality of depth ranges according to the extraction target is provided to the operator, and the operator selects a preferable image to display the OCTA front image for the optimum depth range. be able to. This can reduce the risk of oversight of lesions and reduce additional work such as image quality adjustment by doctors and laboratory technicians.
次に、図7及び図8を参照して、本実施例に係る一連の処理について説明する。図7は、本実施例に係る一連の処理のフローチャートであり、図8は本実施例に係る正面画像生成処理のフローチャートである。一連の処理が開始されると、まずステップS701において、画像処理装置300は光干渉部100のラインセンサ125から被検眼Eに関する3次元の干渉信号を取得し、再構成部301により3次元断層データを生成・取得する。この際、再構成部301は3次元断層データに基づいて、3次元の断層画像を生成することもできる。なお、画像処理装置300は、接続される不図示の外部装置から被検眼Eに関する3次元の干渉信号や3次元干渉データ、3次元の断層画像等を取得してもよい。
Next, a series of processes according to this embodiment will be described with reference to FIGS. 7 and 8. FIG. 7 is a flowchart of a series of processes according to this embodiment, and FIG. 8 is a flowchart of a front image generation process according to this embodiment. When a series of processing is started, first, in step S701, the image processing apparatus 300 acquires a three-dimensional interference signal relating to the eye to be inspected E from the line sensor 125 of the optical interference unit 100, and the reconstruction unit 301 acquires the three-dimensional tomographic data. Is generated and acquired. At this time, the reconstruction unit 301 can also generate a three-dimensional tomographic image based on the three-dimensional tomographic data. The image processing device 300 may acquire a three-dimensional interference signal, three-dimensional interference data, a three-dimensional tomographic image, or the like related to the eye E to be inspected from a connected external device (not shown).
再構成部301により3次元断層データが取得されると、モーションコントラスト画像生成部302が3次元断層データに基づいて3次元モーションコントラストデータ(3次元モーションコントラスト画像)を生成・取得する。
When the 3D tom data is acquired by the reconstruction unit 301, the motion contrast image generation unit 302 generates and acquires the 3D motion contrast data (3D motion contrast image) based on the 3D tom data.
次に、ステップS702において、画像生成部304が予めの設定又は操作者の指示に応じて、抽出対象(対象領域)を指定する。この際には、層認識部303が3次元断層データに対しセグメンテーションを行って層認識結果を取得することができる。また、画像生成部304は、3次元ボリュームデータや層認識結果、所定の深度範囲の設定等に基づいて、第一のOCTA正面画像402等を生成し、表示制御部306がGUI400を表示部310に表示させてもよい。この場合には、操作者は、OCTA正面画像に関するプルダウン等を操作して、抽出対象に関する指示を入力することができる。抽出対象が指定されると、処理はステップS703に移行する。
Next, in step S702, the image generation unit 304 specifies the extraction target (target area) according to the preset setting or the instruction of the operator. At this time, the layer recognition unit 303 can segment the three-dimensional tomographic data and acquire the layer recognition result. Further, the image generation unit 304 generates the first OCTA front image 402 and the like based on the three-dimensional volume data, the layer recognition result, the setting of the predetermined depth range, and the like, and the display control unit 306 displays the GUI 400 on the display unit 310. It may be displayed in. In this case, the operator can input an instruction regarding the extraction target by operating a pull-down or the like regarding the OCTA front image. When the extraction target is specified, the process proceeds to step S703.
ステップS703では、画像生成部304が本実施例に係る正面画像生成処理を開始する。本実施例に係る正面画像生成処理では、まずステップS801において、画像生成部304は、指定された抽出対象に対応する、記憶部305に記憶されている複数の深度範囲を特定する。また、画像生成部304の投影範囲制御部341は、特定した複数の深度範囲、3次元モーションコントラストデータ、層認識結果に基づいて、OCTA正面画像の生成に用いる3次元のモーションコントラストデータを特定する。正面画像生成部342は、特定された3次元モーションコントラストデータに基づいて、複数の深度範囲に対応する複数のOCTA正面画像を生成する。
In step S703, the image generation unit 304 starts the front image generation process according to this embodiment. In the front image generation process according to the present embodiment, first, in step S801, the image generation unit 304 specifies a plurality of depth ranges stored in the storage unit 305 corresponding to the designated extraction target. Further, the projection range control unit 341 of the image generation unit 304 specifies the three-dimensional motion contrast data used for generating the OCTA front image based on the specified plurality of depth ranges, three-dimensional motion contrast data, and layer recognition result. .. The front image generation unit 342 generates a plurality of OCTA front images corresponding to a plurality of depth ranges based on the specified three-dimensional motion contrast data.
ステップS802では、表示制御部306が、生成された複数のOCTA正面画像を表示部310に表示させる。この際、表示制御部306は、生成された複数のOCTA正面画像とともに、対応する深度範囲に関する情報を表示部310に表示させることができる。ここで、対応する深度範囲に関する情報は、深度範囲を示す数値情報であってもよいし、断層画像上に深度範囲を示される破線等であってもよいし、その両方であってもよい。
In step S802, the display control unit 306 causes the display unit 310 to display the generated plurality of OCTA front images. At this time, the display control unit 306 can display the information regarding the corresponding depth range on the display unit 310 together with the generated plurality of OCTA front images. Here, the information regarding the corresponding depth range may be numerical information indicating the depth range, a broken line indicating the depth range on the tomographic image, or both.
ステップS803では、操作者が表示部310に表示された複数のOCTA正面画像から、診断等に好ましいOCTA正面画像を指定する。画像処理装置300は、操作者の指示に応じて、表示すべきOCTA正面画像を選択する。なお、操作者による指示は、例えば、図5に示すGUI500における選択ボタンの選択によって行われてよい。
In step S803, the operator specifies a preferable OCTA front image for diagnosis or the like from a plurality of OCTA front images displayed on the display unit 310. The image processing device 300 selects the OCTA front image to be displayed according to the instruction of the operator. The instruction by the operator may be given, for example, by selecting a selection button in the GUI 500 shown in FIG.
画像処理装置300が表示すべきOCTA正面画像を選択すると、ステップS704において、表示制御部306が選択されたOCTA正面画像を表示部310に表示させる。これにより、対象となる構造物を確認することが容易なOCTA正面画像を表示させることができる。なお、本実施例では、OCTA正面画像を生成し表示させる構成としたが、生成・表示される画像は輝度のEn-Face画像であってもよい。この場合には、モーションコントラストデータに代えて断層データを用いて、上記処理と同様の処理を行えばよい。
When the image processing device 300 selects the OCTA front image to be displayed, in step S704, the display control unit 306 causes the display unit 310 to display the selected OCTA front image. As a result, it is possible to display an OCTA front image in which it is easy to confirm the target structure. In this embodiment, the OCTA front image is generated and displayed, but the generated / displayed image may be an En-Face image having brightness. In this case, the same process as the above process may be performed by using the tomographic data instead of the motion contrast data.
上記のように、本実施例に係る画像処理装置300は、画像生成部304と、表示制御部306とを備える。画像生成部304は、被検眼Eの3次元ボリュームデータからの抽出対象を指定する対象指定部としても機能する。表示制御部306は、指定された対象領域の情報を用いて、3次元ボリュームデータの異なる深度範囲に対応した複数の正面画像を表示部310に並べて表示させる。画像生成部304の投影範囲制御部341は、指定された抽出対象の情報を用いて、複数の正面画像を生成するための深度範囲を決定する。特に、本実施例に係る画像処理装置300では、抽出対象は新生血管(CNV)であり、3次元ボリュームデータは3次元のモーションコントラストデータである。また、複数の正面画像を生成するための各深度範囲は、例えば、網膜外層又はブルッフ膜から脈絡膜側に0~50μmの範囲内における深度範囲である。
As described above, the image processing device 300 according to this embodiment includes an image generation unit 304 and a display control unit 306. The image generation unit 304 also functions as a target designation unit for designating an extraction target from the three-dimensional volume data of the eye E to be inspected. The display control unit 306 causes the display unit 310 to display a plurality of front images corresponding to different depth ranges of the three-dimensional volume data side by side using the information of the designated target area. The projection range control unit 341 of the image generation unit 304 determines the depth range for generating a plurality of front images using the designated information of the extraction target. In particular, in the image processing apparatus 300 according to the present embodiment, the extraction target is a neovascularization (CNV), and the three-dimensional volume data is three-dimensional motion contrast data. Further, each depth range for generating a plurality of front images is, for example, a depth range within a range of 0 to 50 μm from the outer layer of the retina or the Bruch's membrane to the choroid side.
このような構成によれば、抽出対象に応じた複数の深度範囲に関する正面画像を操作者に提供することで、対象となる構造物等の対象領域を確認することが容易な正面画像を表示させることができる。これにより、病変の見落としのリスクを低減したり、医師や検査技師による画質調整などの追加作業を削減したりすることができる。
According to such a configuration, by providing the operator with a front image relating to a plurality of depth ranges according to the extraction target, a front image in which it is easy to confirm the target area such as the target structure is displayed. be able to. This can reduce the risk of oversight of lesions and reduce additional work such as image quality adjustment by doctors and laboratory technicians.
なお、本実施例では、画像生成部304の投影範囲制御部341は、抽出対象の指定に基づいて、複数の正面画像を生成するための深度範囲を決定した。ここで、画像生成部304の投影範囲制御部341は、例えば、3次元ボリュームデータの種別、抽出対象となる層又は深度範囲、生成する正面画像の枚数、正面画像を生成する深度範囲、及び正面画像を生成する深度範囲の間隔のうち少なくとも一つを決定する決定部の一例として機能することができる。なお、当該決定部は、画像生成部304とは別個の構成要素として構成されてもよい。
In this embodiment, the projection range control unit 341 of the image generation unit 304 determines the depth range for generating a plurality of front images based on the designation of the extraction target. Here, the projection range control unit 341 of the image generation unit 304 is, for example, the type of three-dimensional volume data, the layer or depth range to be extracted, the number of front images to be generated, the depth range to generate the front image, and the front. It can serve as an example of a determinant that determines at least one of the intervals in the depth range that produces the image. The determination unit may be configured as a component separate from the image generation unit 304.
また、本実施例では、図5に示すGUI500のように、複数の深度範囲に対応した画像を図4に示すGUI400とは別に表示しているが、これに限らない。例えば、GUI400上に複数の深度範囲の画像を並べて表示してもよい。また、複数の深度範囲の画像をGUI400の第二のOCTA正面画像404の表示エリアに時間的に切り替えながら表示してもよいし、操作者の指示に応じて切り替えて表示してもよい。この場合、GUI400上の操作により、切り替えて表示された画像から、好ましい深度範囲の画像を選択できるようにしてもよい。
Further, in this embodiment, an image corresponding to a plurality of depth ranges is displayed separately from the GUI 400 shown in FIG. 4, as in the GUI 500 shown in FIG. 5, but the present invention is not limited to this. For example, images in a plurality of depth ranges may be displayed side by side on the GUI 400. Further, the images in a plurality of depth ranges may be displayed while being temporally switched to the display area of the second OCTA front image 404 of the GUI 400, or may be switched and displayed according to the instruction of the operator. In this case, an image in a preferable depth range may be selected from the images displayed by switching by an operation on the GUI 400.
なお、本実施例では、図5に示すGUI500のように複数の深度範囲に対応したOCTA正面画像を表示しているが、これに限らない。例えば、深度範囲とともに、投影方法を変更した画像を並べて表示し、操作者に選択させてもよい。ここで、投影方法とは、例えば最大値投影や平均値投影等の公知の任意の方法であってよい。同じ深度範囲であっても、投影方法の違いにより正面画像の見え方は変化する。そのため、このような場合には、好ましい投影方法に対応する正面画像を操作者に選択させることができる。
In this embodiment, the OCTA front image corresponding to a plurality of depth ranges is displayed as in the GUI 500 shown in FIG. 5, but the present invention is not limited to this. For example, the images whose projection method has been changed may be displayed side by side together with the depth range, and the operator may select the images. Here, the projection method may be any known method such as maximum value projection or average value projection. Even within the same depth range, the appearance of the front image changes depending on the projection method. Therefore, in such a case, the operator can be made to select the front image corresponding to the preferable projection method.
また、本実施例では、生成した画像を表示部310に表示させる構成としたが、例えば、外部のサーバ等の外部装置に出力する構成としてもよい。さらに、複数の正面画像に対応する互いに異なる深度範囲は、一部が重複する深度範囲であってもよい。なお、これらの内容は、以下の様々な実施例及び変形例についても同様に適用することができる。
Further, in this embodiment, the generated image is displayed on the display unit 310, but for example, it may be output to an external device such as an external server. Further, the different depth ranges corresponding to the plurality of front images may be partially overlapping depth ranges. It should be noted that these contents can be similarly applied to the following various examples and modifications.
(実施例1の変形例)
実施例1では、操作者が正面画像をダブルクリックすることで、複数の深度範囲の正面画像を表示させる例を示したが、複数の深度範囲の正面画像を表示させる際の処理はこれに限られない。例えば、GUI400のレポート画面を表示した段階で、対象となる疾患について設定された複数の深度範囲に対応する正面画像を表示し、操作者に選択させてもよい。 (Modified Example 1)
In the first embodiment, an example is shown in which the operator double-clicks the front image to display the front image in a plurality of depth ranges, but the processing for displaying the front image in a plurality of depth ranges is limited to this. I can't. For example, at the stage when the report screen of theGUI 400 is displayed, a front image corresponding to a plurality of depth ranges set for the target disease may be displayed and the operator may select the front image.
実施例1では、操作者が正面画像をダブルクリックすることで、複数の深度範囲の正面画像を表示させる例を示したが、複数の深度範囲の正面画像を表示させる際の処理はこれに限られない。例えば、GUI400のレポート画面を表示した段階で、対象となる疾患について設定された複数の深度範囲に対応する正面画像を表示し、操作者に選択させてもよい。 (Modified Example 1)
In the first embodiment, an example is shown in which the operator double-clicks the front image to display the front image in a plurality of depth ranges, but the processing for displaying the front image in a plurality of depth ranges is limited to this. I can't. For example, at the stage when the report screen of the
また別の例は、検査を実施した際に被検眼EにCNVなどの異常があるかどうかを判定し、異常があると判定された場合に、複数の深度範囲に対する正面画像を表示して、操作者に最適な画像を選択させてもよい。また、CNVを有する滲出性加齢黄斑変性症の患者等の疾患を有する患者に対してOCTA検査を実施した場合に、当該疾患について設定された複数の深度範囲に対応する正面画像を表示して、操作者に最適な画像を選択させてもよい。なお、異常があるか否かの判定は、公知の任意の方法によって行われてよい。
In another example, it is determined whether or not the eye E to be inspected has an abnormality such as CNV when the examination is performed, and when it is determined that there is an abnormality, a front image for a plurality of depth ranges is displayed. The operator may be allowed to select the most suitable image. In addition, when an OCTA test is performed on a patient having a disease such as a patient with exudative age-related macular degeneration having CNV, a front image corresponding to a plurality of depth ranges set for the disease is displayed. , The operator may be allowed to select the most suitable image. The determination as to whether or not there is an abnormality may be performed by any known method.
(実施例2)
実施例1では、複数の深度範囲に対応する複数のOCTA正面画像を表示し、そのうちの好ましい画像を操作者が選択することで、好ましい深度範囲で投影されたOCTA正面画像を提供した。実施例2に係る画像処理装置は、さらに画像生成部304に画像評価部343を設け、OCTA正面画像とともに、その画像における抽出対象の存在を評価した評価を示す情報を操作者に提供できる点が異なる。 (Example 2)
In Example 1, a plurality of OCTA front images corresponding to a plurality of depth ranges are displayed, and the operator selects a preferred image among them to provide an OCTA front image projected in a preferred depth range. The image processing apparatus according to the second embodiment is further provided with animage evaluation unit 343 in the image generation unit 304, and can provide the operator with information indicating the evaluation of the existence of the extraction target in the image together with the OCTA front image. different.
実施例1では、複数の深度範囲に対応する複数のOCTA正面画像を表示し、そのうちの好ましい画像を操作者が選択することで、好ましい深度範囲で投影されたOCTA正面画像を提供した。実施例2に係る画像処理装置は、さらに画像生成部304に画像評価部343を設け、OCTA正面画像とともに、その画像における抽出対象の存在を評価した評価を示す情報を操作者に提供できる点が異なる。 (Example 2)
In Example 1, a plurality of OCTA front images corresponding to a plurality of depth ranges are displayed, and the operator selects a preferred image among them to provide an OCTA front image projected in a preferred depth range. The image processing apparatus according to the second embodiment is further provided with an
以下、図9乃至図13を参照して、本実施例に係る画像処理装置について説明する。なお、本実施例に係る画像処理装置の構成は、画像生成部304に画像評価部343が加えられている点を除き、実施例1に係る画像処理装置の構成と同様であるため、同じ参照符号を用いて説明を省略する。以下、本実施例に係る画像処理装置について、実施例1に係る画像処理装置300との違いを中心に説明する。
Hereinafter, the image processing apparatus according to this embodiment will be described with reference to FIGS. 9 to 13. The configuration of the image processing apparatus according to the present embodiment is the same as the configuration of the image processing apparatus according to the first embodiment except that the image evaluation unit 343 is added to the image generation unit 304. The description will be omitted using reference numerals. Hereinafter, the image processing apparatus according to the present embodiment will be described focusing on the difference from the image processing apparatus 300 according to the first embodiment.
図9は、本実施例に係る画像生成部304を説明するための図である。図に示すように、本実施例に係る画像生成部304には、投影範囲制御部341及び正面画像生成部342に加えて、画像評価部343が設けられている。
FIG. 9 is a diagram for explaining the image generation unit 304 according to this embodiment. As shown in the figure, the image generation unit 304 according to this embodiment is provided with an image evaluation unit 343 in addition to the projection range control unit 341 and the front image generation unit 342.
画像評価部343は、正面画像生成部342によって生成された複数の深度範囲に対応するOCTA正面画像を評価し、各OCTA正面画像における新生血管(CNV)の存在を評価した評価を示す情報を取得するものである。なお、評価を示す情報とは、評価値であってもよいし、存在の有無やその可能性を示す情報であってもよい。例えば、評価を示す情報は、被検眼についてCNV等の抽出対象が有るか、無いか、又はCNV等の抽出対象が存在する疑いがあるといった情報であってもよい。本実施例では、画像評価部343は、機械学習モデルとしてニューラルネットワークを用いて学習を行った学習済モデルを用いて、OCTA正面画像から評価値を取得する。
The image evaluation unit 343 evaluates the OCTA front image corresponding to a plurality of depth ranges generated by the front image generation unit 342, and acquires information indicating an evaluation indicating the presence of new blood vessels (CNV) in each OCTA front image. To do. The information indicating the evaluation may be an evaluation value, or may be information indicating the presence or absence of existence and the possibility thereof. For example, the information indicating the evaluation may be information that the eye to be inspected has or does not have an extraction target such as CNV, or there is a suspicion that an extraction target such as CNV exists. In this embodiment, the image evaluation unit 343 acquires an evaluation value from the OCTA front image using a trained model trained using a neural network as a machine learning model.
図10Aは機械学習モデルとして用いるニューラルネットワークの例を示し、図10Bは本実施例に係る学習データの例を示す。ニューラルネットワークでは、入力データの特徴点を抽出し、学習に応じて定められたノード間の重みに従って、特徴点から出力データを推定する。
FIG. 10A shows an example of a neural network used as a machine learning model, and FIG. 10B shows an example of learning data according to this embodiment. In the neural network, the feature points of the input data are extracted, and the output data is estimated from the feature points according to the weights between the nodes determined according to the learning.
本実施例では、OCTA正面画像を学習データの入力データとし、OCTA正面画像におけるCNVの存在を評価した評価値を学習データの出力データとしている。評価値は、0~1の値とし、OCTA正面画像にCNVが含まれるかどうかを示す。評価値の最大値は1であり、値が大きいほどOCTA正面画像にCNVが含まれる確率が高いことを示す。図10Bに示す例では、入力データとして6種類のOCTA正面画像、出力データとして3段階の値を示しているが、実際にはより多くのOCTA正面画像を入力データとして用いたり、出力データに関するラベリングの段数を増やしたりしてもよい。また、ニューラルネットワークのトレーニングでは、画像を回転させたり、上下左右反転させたり、画像を切り取る範囲を変化させることなどの、いわゆるオーグメンテーション(Augmentation)を行うことで、入力データとなるOCTA正面画像を増やしてよい。
In this embodiment, the OCTA front image is used as the input data of the learning data, and the evaluation value evaluated for the presence of CNV in the OCTA front image is used as the output data of the learning data. The evaluation value is a value of 0 to 1, and indicates whether or not CNV is included in the OCTA front image. The maximum value of the evaluation value is 1, and the larger the value, the higher the probability that the OCTA front image contains CNV. In the example shown in FIG. 10B, six types of OCTA front images are shown as input data and three levels of values are shown as output data, but in reality, more OCTA front images are used as input data and labeling related to output data is performed. The number of stages may be increased. In neural network training, OCTA front image that becomes input data by performing so-called augmentation such as rotating the image, flipping it upside down, left and right, and changing the cropping range of the image. May be increased.
なお、学習データの入力データ及び実際の運用時の入力データとして用いるOCTA正面画像としては、プロジェクションアーチファクトが除去された画像を用いることができる。ここで、プロジェクションアーチファクトとは、網膜の表層などの血管が、表層より下の層に映りこむ現象である。なお、プロジェクションアーチファクトを除去するアルゴリズムとしては公知の任意の方法を用いてよい。
As the OCTA front image used as the input data of the learning data and the input data at the time of actual operation, an image from which the projection artifacts have been removed can be used. Here, the projection artifact is a phenomenon in which blood vessels such as the surface layer of the retina are reflected in a layer below the surface layer. Any known method may be used as the algorithm for removing the projection artifacts.
また、学習データの入力データには、CNVを含む様々な例のOCTA正面画像だけでなく、健常眼の画像も併せて用いることができる。さらに、他の疾病眼についてのOCTA正面画像も学習データの入力データに含めて学習させてもよい。
Further, as the input data of the learning data, not only the OCTA front image of various examples including CNV but also the image of a healthy eye can be used together. Further, the OCTA front image of another diseased eye may be included in the input data of the learning data to be trained.
学習データの出力データとしては、医師等が、学習データの入力データとなるOCTA正面画像におけるCNVの存在を評価した評価値を用いる。なお、図10Bに示す例では、学習データの出力データとして、0、0.5、及び1の3段階の評価値を用いているが、上記のようにより多くの段数の評価値を用いてもよい。また、評価の基準は任意であってよく、例えば、CNVの明瞭さに応じて評価値が決められてもよいし、少しでもCNVが現れている場合には評価値を1としてもよい。
As the output data of the learning data, an evaluation value in which a doctor or the like evaluates the presence of CNV in the OCTA front image which is the input data of the learning data is used. In the example shown in FIG. 10B, the evaluation values of three stages of 0, 0.5, and 1 are used as the output data of the training data, but even if the evaluation values of a larger number of stages are used as described above. Good. Further, the evaluation standard may be arbitrary, and for example, the evaluation value may be determined according to the clarity of CNV, or the evaluation value may be set to 1 when CNV appears even a little.
このような機械学習モデルの学習済モデルにデータを入力すると、機械学習モデルの設計に従ったデータが出力される。例えば、学習データを用いて学習を行った傾向に従って入力データに対応する可能性の高い出力データが出力される。本実施例に係る学習済モデルでは、OCTA正面画像が入力されると、入力されたOCTA正面画像におけるCNVの存在を評価した評価値が学習の傾向に従って出力される。
When data is input to the trained model of such a machine learning model, the data according to the design of the machine learning model is output. For example, output data that is likely to correspond to the input data is output according to the tendency of learning using the learning data. In the trained model according to the present embodiment, when the OCTA front image is input, the evaluation value for evaluating the presence of CNV in the input OCTA front image is output according to the learning tendency.
なお、このような学習を行った学習済モデルでは、機械学習モデルの構成に応じて、入力データに対応する評価値について、学習データの出力データに関する各段階の評価値についての割合が出力される。この場合には、画像評価部343は、学習済モデルから出力された各段階の評価値についての割合から最終的な評価値を算出してよい。例えば、画像評価部343は各評価値と対応する割合を乗算し、それぞれを加算した値を割合の合計で除算することで最終的な評価値を算出してもよい。この場合には、例えば、評価値0である割合が0.2、評価値0.5である割合が0.8、評価値1である割合が0であったとき、画像評価部343は最終的な評価値として0.4を算出することができる。なお、最終的な評価値の算出方法はこれに限られず、例えば、割合が他の割合よりも高いもの最終的な評価値とする等、任意の方法を用いてよい。
In the trained model that has undergone such learning, the ratio of the evaluation value corresponding to the input data to the evaluation value of each stage regarding the output data of the training data is output according to the configuration of the machine learning model. .. In this case, the image evaluation unit 343 may calculate the final evaluation value from the ratio of the evaluation values of each stage output from the trained model. For example, the image evaluation unit 343 may calculate the final evaluation value by multiplying each evaluation value by the corresponding ratio and dividing the added value by the total of the ratios. In this case, for example, when the ratio of the evaluation value of 0 is 0.2, the ratio of the evaluation value of 0.5 is 0.8, and the ratio of the evaluation value of 1 is 0, the image evaluation unit 343 is final. 0.4 can be calculated as a typical evaluation value. The method of calculating the final evaluation value is not limited to this, and any method may be used, for example, the final evaluation value having a ratio higher than other ratios.
次に、図11を参照して、本実施例に係る正面画像生成処理について説明する。図11は、本実施例に係る正面画像生成処理のフローチャートである。なお、正面画像生成処理以外の一連の処理の流れは実施例1に係る一連の処理と同様であるため説明を省略する。また、ステップS1101は実施例1に係るステップS801と同様のステップであるため説明を省略する。ステップS1101において、複数のOCTA正面画像が生成されると、処理はステップS1102に移行する。
Next, the front image generation process according to this embodiment will be described with reference to FIG. FIG. 11 is a flowchart of the front image generation process according to the present embodiment. Since the flow of a series of processes other than the front image generation process is the same as the series of processes according to the first embodiment, the description thereof will be omitted. Further, since step S1101 is the same step as step S801 according to the first embodiment, the description thereof will be omitted. When a plurality of OCTA front images are generated in step S1101, the process proceeds to step S1102.
ステップS1102では、画像評価部343が、生成された複数のOCTA正面画像について、学習済モデルを用いてそれぞれ評価を行い、それぞれのOCTA正面画像におけるCNVの存在を評価した評価値を取得する。複数のOCTA正面画像に対応する複数の評価値が取得されると、処理はステップS1103に移行する。
In step S1102, the image evaluation unit 343 evaluates each of the generated plurality of OCTA front images using the trained model, and acquires an evaluation value for evaluating the presence of CNV in each OCTA front image. When a plurality of evaluation values corresponding to the plurality of OCTA front images are acquired, the process proceeds to step S1103.
ステップS1103では、表示制御部306が、複数の深度範囲に対応する複数のOCTA正面画像について、それぞれの評価値及び深度範囲と併せて、並べて表示する。ここで、図12に表示制御部306が表示部310に表示させるGUIの例を示す。図12に示すGUI1200は、図5に示すGUI500と同様のものであるが、各OCTA正面画像501,505,509,520の上部に、各OCTA正面画像の評価値1217,1218,1219,1220が示されている。
In step S1103, the display control unit 306 displays a plurality of OCTA front images corresponding to a plurality of depth ranges side by side together with their respective evaluation values and depth ranges. Here, FIG. 12 shows an example of a GUI that the display control unit 306 displays on the display unit 310. The GUI 1200 shown in FIG. 12 is similar to the GUI 500 shown in FIG. 5, but the evaluation values 1217, 1218, 1219, 1220 of each OCTA front image are placed on the upper part of each OCTA front image 501, 505, 509, 520. It is shown.
ステップS1104では、操作者が表示部310に表示された複数のOCTA正面画像から、OCTA正面画像やその評価値に基づいて、診断等に好ましいOCTA正面画像を指定する。画像処理装置300は、操作者の指示に応じて、表示すべきOCTA正面画像を選択する。この際、操作者は、例えば、選択ボタン504,508,512,516を操作することで、表示すべきOCTA正面画像を指定することができる。なお、以降の処理は、実施例1に係る処理と同様であるため説明を省略する。
In step S1104, the operator specifies a preferable OCTA front image for diagnosis or the like from a plurality of OCTA front images displayed on the display unit 310 based on the OCTA front image and its evaluation value. The image processing device 300 selects the OCTA front image to be displayed according to the instruction of the operator. At this time, the operator can specify the OCTA front image to be displayed by, for example, operating the selection buttons 504, 508, 512, 516. Since the subsequent processing is the same as the processing according to the first embodiment, the description thereof will be omitted.
本実施例では、複数の正面画像と併せて、正面画像における抽出対象の存在を評価した評価値(評価を示す情報)が表示される。これらの評価値を参考にすることで、操作者はより正確に最適な画像を選択することができる。そのため、例えば、複数の正面画像間の画質差が小さい場合でも、表示すべき画像を選択する際の操作者による個人差を低減することができる。
In this embodiment, the evaluation value (information indicating the evaluation) that evaluates the existence of the extraction target in the front image is displayed together with the plurality of front images. By referring to these evaluation values, the operator can more accurately select the optimum image. Therefore, for example, even when the image quality difference between the plurality of front images is small, it is possible to reduce the individual difference by the operator when selecting the image to be displayed.
なお、選択された正面画像を表示部310に表示させる際には、図13に示すGUI1300のように、選択された正面画像とともに正面画像の評価を示す情報(評価値1310)を表示してもよい。この場合には、レポート画面においても正面画像に対する評価を示す情報を確認することができる。
When displaying the selected front image on the display unit 310, information indicating the evaluation of the front image (evaluation value 1310) may be displayed together with the selected front image as in the GUI 1300 shown in FIG. Good. In this case, information indicating the evaluation of the front image can be confirmed on the report screen as well.
上記のように、本実施例に係る画像処理装置300は、画像生成部304と、画像評価部343とを備える。画像生成部304は、被検眼Eの3次元ボリュームデータの異なる深度範囲に対応した複数の正面画像を生成する。画像評価部343は、複数の正面画像を用いて、対象領域の存在を評価した評価を示す情報であって、複数の正面画像に対応する複数の情報を取得する。また、画像生成部304は、当該複数の情報を用いて表示すべき正面画像(出力画像)を決定する決定部の一例として機能することができる。特に、本実施例に係る画像生成部304は、当該複数の情報を用いて、複数の正面画像のうち少なくとも一つを表示すべき正面画像として決定する。さらに、画像処理装置300は表示部310の表示を制御する表示制御部306を備える。本実施例に係る表示制御部306は、取得された複数の評価を示す情報を表示部310に複数の正面画像と並べて表示させる。なお、決定部は、画像生成部304とは別個の構成要素として構成されてもよい。
As described above, the image processing device 300 according to this embodiment includes an image generation unit 304 and an image evaluation unit 343. The image generation unit 304 generates a plurality of front images corresponding to different depth ranges of the three-dimensional volume data of the eye E to be inspected. The image evaluation unit 343 obtains a plurality of information corresponding to the plurality of front images, which is information indicating the evaluation of evaluating the existence of the target region by using the plurality of front images. Further, the image generation unit 304 can function as an example of a determination unit that determines a front image (output image) to be displayed using the plurality of information. In particular, the image generation unit 304 according to this embodiment uses the plurality of information to determine at least one of the plurality of front images as a front image to be displayed. Further, the image processing device 300 includes a display control unit 306 that controls the display of the display unit 310. The display control unit 306 according to the present embodiment causes the display unit 310 to display the acquired information indicating the plurality of evaluations side by side with the plurality of front images. The determination unit may be configured as a component separate from the image generation unit 304.
このような構成によれば、抽出対象に応じた複数の深度範囲に関する正面画像を、抽出対象の存在を評価した評価を示す情報とともに操作者に提供することで、対象となる構造物等の対象領域を確認することが容易な正面画像を表示させることができる。これにより、病変の見落としのリスクを低減したり、医師や検査技師による画質調整などの追加作業を削減したりすることができる。また、複数の正面画像を、その評価を示す複数の情報とともに、並べて表示させることで、複数の正面画像のうちから、操作者が診断等に適切な正面画像を指定し易くすることができる。
According to such a configuration, by providing the operator with front images relating to a plurality of depth ranges according to the extraction target together with information indicating the evaluation of the existence of the extraction target, the target structure or the like can be targeted. It is possible to display a front image in which the area can be easily confirmed. This can reduce the risk of oversight of lesions and reduce additional work such as image quality adjustment by doctors and laboratory technicians. Further, by displaying a plurality of front images side by side together with a plurality of information indicating the evaluation, it is possible for the operator to easily specify an appropriate front image for diagnosis or the like from the plurality of front images.
なお、本実施例では、正面画像としてOCTA正面画像を生成・表示する例について述べたが、実施例1と同様に、正面画像として輝度のEn-Face画像を生成・表示してもよい。また、本実施例の場合も、操作者が好ましくないと考えた場合には、生成される正面画像の深度範囲をマニュアルで調整できるように画像処理装置300を構成してもよい。また、上述のように、本実施例では、画像生成部304は、最終的に表示する画像を決定するとしたが、決定した画像を外部装置等に出力してもよい。このため、画像生成部304は、例えば、表示部310や外部装置に出力する出力画像を決定できればよい。
Although the example of generating and displaying the OCTA front image as the front image has been described in this embodiment, the brightness En-Face image may be generated and displayed as the front image as in the first embodiment. Further, also in the case of this embodiment, if the operator thinks that it is not preferable, the image processing device 300 may be configured so that the depth range of the generated front image can be manually adjusted. Further, as described above, in the present embodiment, the image generation unit 304 determines the image to be finally displayed, but the determined image may be output to an external device or the like. Therefore, the image generation unit 304 may be able to determine, for example, an output image to be output to the display unit 310 or an external device.
また、本実施例に係る画像評価部343は、学習済モデルを用いて評価値を取得したが、これに限らず、いわゆるルールベースの画像処理を用いて評価値を取得してもよい。例えば、CNVの存在を評価する評価値を算出する場合には、画像評価部343は断層画像から粒状のノイズを除去した後に、Hessianフィルタで管状の領域を強調し、強調された画像を積分して評価値を算出してもよい。また、画像評価部343は、強調された画像について2値化を行い、閾値を上回る画素の存在に応じて、評価値を取得してもよい。
Further, the image evaluation unit 343 according to this embodiment acquires the evaluation value by using the trained model, but the present invention is not limited to this, and the evaluation value may be acquired by using so-called rule-based image processing. For example, when calculating an evaluation value for evaluating the presence of CNV, the image evaluation unit 343 removes granular noise from the tomographic image, then emphasizes the tubular region with a Hessian filter, and integrates the emphasized image. The evaluation value may be calculated. Further, the image evaluation unit 343 may binarize the emphasized image and acquire the evaluation value according to the presence of pixels exceeding the threshold value.
(実施例2の変形例1)
実施例2では、正面画像とともに評価値を表示する例について説明したが、正面画像と併せて表示するものは評価値だけに限られない。例えば、加齢黄斑変性由来のCNVには2つのタイプがあることが知られている。タイプ1はRPE/Choroidよりも下に新生血管がある場合、タイプ2はRPE/Choroidの下部から上部にわたって新生血管がある場合である。これらのタイプが異なると、正面画像におけるCNVの見え方も異なる。そのため、画像評価部343が用いる機械学習モデルは、これら異なるタイプのCNVを含む正面画像を区別して学習してもよい。この場合、学習済モデルは、CNVのタイプ毎に学習を行った複数の学習済モデルが用意されてもよい。 (Modification 1 of Example 2)
In the second embodiment, an example in which the evaluation value is displayed together with the front image has been described, but what is displayed together with the front image is not limited to the evaluation value. For example, it is known that there are two types of CNV derived from age-related macular degeneration.Type 1 is when there are new blood vessels below the RPE / Choroid, and type 2 is when there are new blood vessels from the bottom to the top of the RPE / Choroid. Different types have different appearances of CNV in the front image. Therefore, the machine learning model used by the image evaluation unit 343 may separately learn front images including these different types of CNVs. In this case, as the trained model, a plurality of trained models trained for each type of CNV may be prepared.
実施例2では、正面画像とともに評価値を表示する例について説明したが、正面画像と併せて表示するものは評価値だけに限られない。例えば、加齢黄斑変性由来のCNVには2つのタイプがあることが知られている。タイプ1はRPE/Choroidよりも下に新生血管がある場合、タイプ2はRPE/Choroidの下部から上部にわたって新生血管がある場合である。これらのタイプが異なると、正面画像におけるCNVの見え方も異なる。そのため、画像評価部343が用いる機械学習モデルは、これら異なるタイプのCNVを含む正面画像を区別して学習してもよい。この場合、学習済モデルは、CNVのタイプ毎に学習を行った複数の学習済モデルが用意されてもよい。 (
In the second embodiment, an example in which the evaluation value is displayed together with the front image has been described, but what is displayed together with the front image is not limited to the evaluation value. For example, it is known that there are two types of CNV derived from age-related macular degeneration.
このような学習を行うことで、画像評価部343は、CNVのタイプ毎の評価値を算出することができる。また、表示制御部306は、図13に示すように、CNVのタイプのうち、評価値が高い方のタイプとその評価値を表示部310に表示させることができる。このような場合には、操作者は正面画像の評価値に加えて、正面画像に含まれる加齢黄斑変性のCNVのタイプを確認することができる。
By performing such learning, the image evaluation unit 343 can calculate the evaluation value for each type of CNV. Further, as shown in FIG. 13, the display control unit 306 can display the CNV type having the higher evaluation value and the evaluation value thereof on the display unit 310. In such a case, the operator can confirm the type of age-related macular degeneration CNV contained in the front image in addition to the evaluation value of the front image.
なお、図13に示す例ではCNVのタイプ及び評価値を表示したが、これに限るものではなく、それぞれのタイプ毎の評価値を表示してもよい。また、正面画像中にCNVがないと推定された場合には、CNVのタイプの表示に代えてCNVがない旨を表示してもよい。
In the example shown in FIG. 13, the CNV type and the evaluation value are displayed, but the present invention is not limited to this, and the evaluation value for each type may be displayed. If it is estimated that there is no CNV in the front image, it may be displayed that there is no CNV instead of the CNV type display.
また、画像評価部343は、正面画像からCNVのタイプを判定する以外にも、正面画像の深度範囲からCNVのタイプを判定してもよい。なお、変形例では、正面画像としてOCTA正面画像を生成・表示する例について述べたが、実施例2と同様に、正面画像として輝度のEn-Face画像を生成・表示してもよい。また、本変形例の場合も、操作者が好ましくないと考えた場合には、生成される正面画像の深度範囲をマニュアルで調整できるように画像処理装置300を構成してもよい。
In addition to determining the CNV type from the front image, the image evaluation unit 343 may determine the CNV type from the depth range of the front image. In the modified example, an example of generating and displaying an OCTA front image as a front image has been described, but as in the second embodiment, a brightness En-Face image may be generated and displayed as a front image. Further, also in the case of this modification, if the operator thinks that it is not preferable, the image processing device 300 may be configured so that the depth range of the generated front image can be manually adjusted.
(実施例2の変形例2)
実施例2では、画像評価部343が用いる学習済モデルに関するニューラルネットワークの構造と学習データについて、図10A及び図10Bを用いて説明したが、これに限るものではない。本変形例では、U-net型の畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)を、機械学習モデルの一例として用いる構成について説明する。 (Modification 2 of Example 2)
In the second embodiment, the structure and training data of the neural network related to the trained model used by theimage evaluation unit 343 have been described with reference to FIGS. 10A and 10B, but the present invention is not limited to this. In this modification, a configuration using a U-net type convolutional neural network (CNN) as an example of a machine learning model will be described.
実施例2では、画像評価部343が用いる学習済モデルに関するニューラルネットワークの構造と学習データについて、図10A及び図10Bを用いて説明したが、これに限るものではない。本変形例では、U-net型の畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)を、機械学習モデルの一例として用いる構成について説明する。 (
In the second embodiment, the structure and training data of the neural network related to the trained model used by the
以下、本変形例に係る学習済モデルの一例として、CNNについて、図14を用いて説明する。図14に示す学習済モデルは、入力値群を加工して出力する処理を担う複数の層群によって構成される。なお、当該学習済モデルの構成1401に含まれる層の種類としては、畳み込み(Convolution)層、ダウンサンプリング(Downsampling)層、アップサンプリング(Upsampling)層、及び合成(Merger)層がある。
Hereinafter, CNN will be described with reference to FIG. 14 as an example of the trained model according to this modified example. The trained model shown in FIG. 14 is composed of a plurality of layers responsible for processing and outputting an input value group. The types of layers included in the configuration 1401 of the trained model include a convolution layer, a Downsampling layer, an Upsampling layer, and a Merger layer.
畳み込み層は、設定されたフィルタのカーネルサイズや、フィルタの数、ストライドの値、ダイレーションの値等のパラメータに従い、入力値群に対して畳み込み処理を行う層である。なお、入力される画像の次元数に応じて、フィルタのカーネルサイズの次元数も変更してもよい。
The convolution layer is a layer that performs convolution processing on the input value group according to parameters such as the set filter kernel size, the number of filters, the stride value, and the dilation value. The number of dimensions of the kernel size of the filter may be changed according to the number of dimensions of the input image.
ダウンサンプリング層は、入力値群を間引いたり、合成したりすることによって、出力値群の数を入力値群の数よりも少なくする処理を行う層である。具体的には、このような処理として、例えば、Max Pooling処理がある。
The downsampling layer is a layer that performs processing to reduce the number of output value groups to less than the number of input value groups by thinning out or synthesizing the input value groups. Specifically, as such a process, for example, there is a Max Polling process.
アップサンプリング層は、入力値群を複製したり、入力値群から補間した値を追加したりすることによって、出力値群の数を入力値群の数よりも多くする処理を行う層である。具体的には、このような処理として、例えば、線形補間処理がある。
The upsampling layer is a layer that performs processing to increase the number of output value groups to be larger than the number of input value groups by duplicating the input value group or adding the interpolated value from the input value group. Specifically, as such a process, for example, there is a linear interpolation process.
合成層は、ある層の出力値群や画像を構成する画素値群といった値群を、複数のソースから入力し、それらを連結したり、加算したりして合成する処理を行う層である。
The composite layer is a layer in which a value group such as an output value group of a certain layer or a pixel value group constituting an image is input from a plurality of sources, and the processing is performed by concatenating or adding them.
なお、図14に示す構成1401に含まれる畳み込み層群に設定されるパラメータとして、例えば、フィルタのカーネルサイズを幅3画素、高さ3画素、フィルタの数を64とすることで、一定の精度の処理が可能である。ただし、ニューラルネットワークを構成する層群やノード群に対するパラメータの設定が異なると、教師データからトレーニングされた傾向を出力データに再現可能な程度が異なる場合があるので注意が必要である。つまり、多くの場合、実施する際の形態に応じて適切なパラメータは異なるので、必要に応じて好ましい値に変更することができる。
As the parameters set in the convolution layer group included in the configuration 1401 shown in FIG. 14, for example, the kernel size of the filter is 3 pixels in width, 3 pixels in height, and the number of filters is 64, so that a certain degree of accuracy is achieved. Can be processed. However, it should be noted that if the parameter settings for the layers and nodes that make up the neural network are different, the degree to which the tendency trained from the teacher data can be reproduced in the output data may differ. That is, in many cases, the appropriate parameters differ depending on the embodiment, and therefore, the values can be changed to preferable values as needed.
また、上述したようなパラメータを変更するという方法だけでなく、CNNの構成を変更することによって、CNNがより良い特性を得られる場合がある。より良い特性とは、例えば、処理の精度が高かったり、処理の時間が短かったり、機械学習モデルのトレーニングにかかる時間が短かったりする等である。
In addition to the method of changing the parameters as described above, there are cases where the CNN can obtain better characteristics by changing the configuration of the CNN. Better characteristics include, for example, higher processing accuracy, shorter processing time, and shorter training time for machine learning models.
なお、本変形例で用いるCNNの構成1401は、複数のダウンサンプリング層を含む複数の階層からなるエンコーダーの機能と、複数のアップサンプリング層を含む複数の階層からなるデコーダーの機能とを有するU-net型の機械学習モデルである。U-net型の機械学習モデルでは、エンコーダーとして構成される複数の階層において曖昧にされた位置情報(空間情報)を、デコーダーとして構成される複数の階層において、同次元の階層(互いに対応する階層)で用いることができるように(例えば、スキップコネクションを用いて)構成される。
The CNN configuration 1401 used in this modification has a function of an encoder composed of a plurality of layers including a plurality of downsampling layers and a function of a decoder composed of a plurality of layers including a plurality of upsampling layers. It is a net type machine learning model. In the U-net type machine learning model, position information (spatial information) that is ambiguous in a plurality of layers configured as encoders is displayed in layers of the same dimension (layers corresponding to each other) in a plurality of layers configured as a decoder. ) (For example, using a skip connection).
図示しないが、CNNの構成の変更例として、例えば、畳み込み層の後にバッチ正規化(Batch Normalization)層や、正規化線形関数(Rectifier Linear Unit)を用いた活性化層を組み込む等してもよい。
Although not shown, as an example of changing the configuration of the CNN, for example, a batch normalization layer or an activation layer using a rectifier liner unit may be incorporated after the convolution layer. ..
このような機械学習モデルの学習済モデルにデータを入力すると、機械学習モデルの設計に従ったデータが出力される。例えば、学習データを用いてトレーニングされた傾向に従って入力データに対応する可能性の高い出力データが出力される。本変形例では、学習データについて、入力データを加齢黄斑変性が発症した際にCNVが生じる層のOCTA正面画像とし、出力データをOCTA正面画像に対してCNVがある領域だけを白とし、残りは黒とした2値画像とする画像ペアで構成する。この場合の学習データの例を図15に示す。
When data is input to the trained model of such a machine learning model, the data according to the design of the machine learning model is output. For example, output data that is likely to correspond to the input data is output according to the tendency trained using the training data. In this modified example, for the training data, the input data is the OCTA front image of the layer in which CNV occurs when age-related macular degeneration develops, the output data is white only in the region where CNV is present with respect to the OCTA front image, and the rest. Is composed of an image pair to be a binary image in black. An example of the learning data in this case is shown in FIG.
学習にはCNVを生じた様々な例の画像とともに、健常眼の画像も合わせて学習させる。健常眼の2値画像は全て黒となる。
For learning, along with images of various examples of CNV, images of healthy eyes are also learned. All binary images of healthy eyes are black.
このように学習した学習済モデルは、CNVが存在する領域のみをセグメンテーションしたような2値画像を出力可能である。これにより、画像評価部343は、OCTA正面画像を学習済モデルに入力することで、CNVが存在する領域を示す2値画像を取得することができる。画像評価部343は、取得した2値画像における白い領域に基づいてCNVが存在する可能性を表す評価値を算出することができる。なお、評価値の算出方法としては、例えば、取得した2値画像に白い領域が含まれていたら評価値を1としてもよいし、白い領域の合計面積(画素数)が閾値以上となる場合に、評価値を1としてもよい。また、閾値を段階的に設け、白い領域の合計面積が超えた閾値に応じて評価値を決定してもよい。
The trained model learned in this way can output a binary image as if only the region where the CNV exists was segmented. As a result, the image evaluation unit 343 can acquire a binary image showing the region where the CNV exists by inputting the OCTA front image into the trained model. The image evaluation unit 343 can calculate an evaluation value indicating the possibility that CNV is present based on the white area in the acquired binary image. As a method of calculating the evaluation value, for example, if the acquired binary image includes a white area, the evaluation value may be set to 1, or when the total area (number of pixels) of the white area is equal to or larger than the threshold value. , The evaluation value may be 1. Further, the threshold value may be set stepwise, and the evaluation value may be determined according to the threshold value when the total area of the white area exceeds.
また、このような学習済モデルの別の用途として、CNVの大きさを推定することもできる。この場合には、画像評価部343は、学習済モデルから取得した2値画像における白い領域の面積をCNVの大きさとして算出してもよい。この際、表示制御部306は、表示すべきOCTA正面画像とともに、OCTA正面画像に含まれるCNVの大きさも表示することができる。
Another use of such a trained model is to estimate the size of the CNV. In this case, the image evaluation unit 343 may calculate the area of the white region in the binary image acquired from the trained model as the size of the CNV. At this time, the display control unit 306 can display the size of the CNV included in the OCTA front image as well as the OCTA front image to be displayed.
また学習データの出力データとして2値画像を用いる例について説明したが、出力データとして用いる画像の値は2値に限るものではない。CNVの評価値に応じて、値を変更した画像を学習データの出力データとしてもよい。この場合のCNVの評価値は実施例2と同様に医師等によってラベル付けされた評価値であってよい。また、実施例2の変形例1で述べたようにCNVのタイプを区別して学習させてもよい。
Although an example of using a binary image as the output data of the learning data has been described, the value of the image used as the output data is not limited to the binary value. The image whose value is changed according to the evaluation value of CNV may be used as the output data of the learning data. The evaluation value of CNV in this case may be an evaluation value labeled by a doctor or the like as in Example 2. Further, as described in the first modification of the second embodiment, the CNV type may be distinguished and learned.
なお、本変形例ではニューラルネットワークを用いて2値画像を取得したが、これに限らず、いわゆるルールベースの画像処理によっても実現可能である。たとえばOCT正面画像から粒状のノイズを除去した後に、Hessianフィルタで管状の領域を強調し、強調された画像に2値化を行ってもよい。この場合の評価値の算出方法も、上述の方法と同様の方法を用いてよい。
In this modified example, a binary image was acquired using a neural network, but it is not limited to this and can be realized by so-called rule-based image processing. For example, after removing granular noise from the OCT front image, the tubular area may be emphasized with a Hessian filter, and the emphasized image may be binarized. As the method for calculating the evaluation value in this case, the same method as the above-mentioned method may be used.
なお、本変形例では、正面画像としてOCTA正面画像を生成・表示する例について述べたが、実施例2と同様に、正面画像として輝度のEn-Face画像を生成・表示してもよい。また、本変形例の場合も、操作者が好ましくないと考えた場合には、生成される正面画像の深度範囲をマニュアルで調整できるように画像処理装置300を構成してもよい。また、本変形例では、2値画像について、白と黒の2値で示した画像としたが、2値は任意の2つのラベルであってもよい。
In this modification, an example of generating and displaying an OCTA front image as a front image has been described, but as in the second embodiment, a brightness En-Face image may be generated and displayed as a front image. Further, also in the case of this modification, if the operator thinks that it is not preferable, the image processing device 300 may be configured so that the depth range of the generated front image can be manually adjusted. Further, in this modification, the binary image is an image shown by binary values of white and black, but the binary image may be any two labels.
(実施例3)
実施例2では、画像生成部304内に画像評価部343を設けることで、複数のOCTA正面画像に対する評価値を取得し表示した。実施例3に係る画像処理装置では、画像生成部304内に、正面画像決定部344を設けることにより、操作者が介在することなく、自動的に最適な深度範囲のOCTA正面画像を出力する。 (Example 3)
In the second embodiment, theimage evaluation unit 343 is provided in the image generation unit 304 to acquire and display the evaluation values for a plurality of OCTA front images. In the image processing apparatus according to the third embodiment, by providing the front image determination unit 344 in the image generation unit 304, the OCTA front image having an optimum depth range is automatically output without the intervention of an operator.
実施例2では、画像生成部304内に画像評価部343を設けることで、複数のOCTA正面画像に対する評価値を取得し表示した。実施例3に係る画像処理装置では、画像生成部304内に、正面画像決定部344を設けることにより、操作者が介在することなく、自動的に最適な深度範囲のOCTA正面画像を出力する。 (Example 3)
In the second embodiment, the
以下、図16及び図17を参照して、本実施例に係る画像処理装置について説明する。なお、本実施例に係る画像処理装置の構成は、画像生成部304に正面画像決定部344が加えられている点を除き、実施例2に係る画像処理装置の構成と同様であるため、同じ参照符号を用いて説明を省略する。以下、本実施例に係る画像処理装置について、実施例2に係る画像処理装置300との違いを中心に説明する。
Hereinafter, the image processing apparatus according to this embodiment will be described with reference to FIGS. 16 and 17. The configuration of the image processing apparatus according to the present embodiment is the same as the configuration of the image processing apparatus according to the second embodiment except that the front image determination unit 344 is added to the image generation unit 304. The description will be omitted using reference numerals. Hereinafter, the image processing apparatus according to the present embodiment will be described focusing on the difference from the image processing apparatus 300 according to the second embodiment.
図16は、本実施例に係る画像生成部304を説明するための図である。図に示すように、本実施例に係る画像生成部304には、投影範囲制御部341、正面画像生成部342、及び画像評価部343に加えて、正面画像決定部344が設けられている。
FIG. 16 is a diagram for explaining the image generation unit 304 according to this embodiment. As shown in the figure, the image generation unit 304 according to this embodiment is provided with a front image determination unit 344 in addition to the projection range control unit 341, the front image generation unit 342, and the image evaluation unit 343.
本実施例に係る正面画像決定部344は、複数のOCTA正面画像について算出された評価値のうち最大の評価値(他の評価値よりも高い評価値)に対応するOCTA正面画像を表示すべきOCTA正面画像として決定・選択する。
The front image determination unit 344 according to this embodiment should display the OCTA front image corresponding to the maximum evaluation value (evaluation value higher than other evaluation values) among the evaluation values calculated for the plurality of OCTA front images. Determine and select as OCTA front image.
次に、図17を参照して、本実施例に係る正面画像生成処理について説明する。図17は、本実施例に係る正面画像生成処理のフローチャートである。なお、正面画像生成処理以外の一連の処理の流れは実施例2に係る一連の処理と同様であるため説明を省略する。また、ステップS1701及びステップS1702は実施例2に係るステップS1101及びステップS1102と同様のステップであるため説明を省略する。ステップS1702において、複数のOCTA正面画像について複数の評価値が取得されると、処理はステップS1703に移行する。
Next, with reference to FIG. 17, the front image generation process according to this embodiment will be described. FIG. 17 is a flowchart of the front image generation process according to the present embodiment. Since the flow of a series of processes other than the front image generation process is the same as the series of processes according to the second embodiment, the description thereof will be omitted. Further, since steps S1701 and S1702 are the same steps as steps S1101 and S1102 according to the second embodiment, the description thereof will be omitted. When a plurality of evaluation values are acquired for the plurality of OCTA front images in step S1702, the process proceeds to step S1703.
ステップS1703では、正面画像決定部344が、生成された複数のOCTA正面画像の中から、評価値が最大となる(他の評価値よりも高い)OCTA正面画像を表示すべきOCTA正面画像として決定・選択する。なお、以降の処理は、実施例2に係る処理と同様であるため説明を省略する。
In step S1703, the front image determination unit 344 determines the OCTA front image having the maximum evaluation value (higher than other evaluation values) as the OCTA front image to be displayed from among the generated plurality of OCTA front images. ·select. Since the subsequent processing is the same as the processing according to the second embodiment, the description thereof will be omitted.
本実施例では、画像生成部304の正面画像決定部344が、取得された複数の評価値のうち他の評価値よりも高い評価値に対応する正面画像を表示すべき正面画像として決定する決定部の一例として機能する。これにより、操作者が介在することなく、最適な深度範囲のOCTA正面画像を表示することができ、処理の効率を向上させることができる。なお、正面画像決定部344は、画像生成部304とは別個の構成要素として構成されてもよい。
In this embodiment, the front image determination unit 344 of the image generation unit 304 determines as the front image to display the front image corresponding to the evaluation value higher than the other evaluation values among the acquired plurality of evaluation values. Functions as an example of the department. As a result, the OCTA front image in the optimum depth range can be displayed without the intervention of an operator, and the processing efficiency can be improved. The front image determination unit 344 may be configured as a component separate from the image generation unit 304.
なお、複数のOCTA正面画像に対する複数の評価値がいずれも閾値(例えば0.2)を下回る場合は、CNVが含まれないとして、予め決められた深度範囲の投影像を表示してもよい。なお、この場合の閾値は所望の構成に応じて任意に設定されてよい。また、この場合には、評価値とともに又は代わりにCNVがない旨を表示してもよい。
If the plurality of evaluation values for the plurality of OCTA front images are all below the threshold value (for example, 0.2), it is considered that CNV is not included, and a projection image in a predetermined depth range may be displayed. The threshold value in this case may be arbitrarily set according to the desired configuration. Further, in this case, it may be displayed together with the evaluation value or instead that there is no CNV.
なお、本実施例では、正面画像としてOCTA正面画像を生成・表示する例について述べたが、実施例2と同様に、正面画像として輝度のEn-Face画像を生成・表示してもよい。また、本実施例の場合も、操作者が好ましくないと考えた場合には、生成される正面画像の深度範囲をマニュアルで調整することができるように画像処理装置300を構成してもよい。なお、これらの処理については、下記の本実施例の変形例についても適用することができる。
Although the example of generating and displaying the OCTA front image as the front image has been described in this embodiment, the brightness En-Face image may be generated and displayed as the front image as in the second embodiment. Further, also in the case of this embodiment, if the operator thinks that it is not preferable, the image processing device 300 may be configured so that the depth range of the generated front image can be manually adjusted. It should be noted that these processes can also be applied to the following modified examples of this embodiment.
さらに、本実施例では正面画像決定部344は、評価値が最も高いOCTA正面画像を選択したが、正面画像決定部344は、評価値が閾値を超えるOCTA正面画像を選択してもよい。この場合、正面画像決定部344は、複数の評価値が閾値を超える場合には、当該複数の評価値に対応する複数のOCTA正面画像を選択してもよい。この場合には、表示制御部306は、当該複数の評価値及びこれに対応する複数のOCTA正面画像を切り替えながら表示してもよい。また、正面画像決定部344は、当該複数のOCTA正面画像のうち、単独で表示させるべきOCTA正面画像を操作者の指示に応じて選択するようにしてもよい。
Further, in the present embodiment, the front image determination unit 344 selects the OCTA front image having the highest evaluation value, but the front image determination unit 344 may select the OCTA front image whose evaluation value exceeds the threshold value. In this case, the front image determination unit 344 may select a plurality of OCTA front images corresponding to the plurality of evaluation values when the plurality of evaluation values exceed the threshold value. In this case, the display control unit 306 may display the plurality of evaluation values and a plurality of OCTA front images corresponding thereto while switching between them. Further, the front image determination unit 344 may select the OCTA front image to be displayed independently from the plurality of OCTA front images according to the instruction of the operator.
(実施例3の変形例1)
実施例3では、正面画像決定部344を設けることにより、操作者が介在することなく、自動的に最適な深度範囲の正面画像を表示すべき正面画像(出力画像)として選択した。なお、表示すべき正面画像に対応する深度範囲の決定方法に関してはこれに限られない。 (Modification 1 of Example 3)
In the third embodiment, by providing the frontimage determination unit 344, the front image in the optimum depth range is automatically selected as the front image (output image) to be displayed without the intervention of the operator. The method of determining the depth range corresponding to the front image to be displayed is not limited to this.
実施例3では、正面画像決定部344を設けることにより、操作者が介在することなく、自動的に最適な深度範囲の正面画像を表示すべき正面画像(出力画像)として選択した。なお、表示すべき正面画像に対応する深度範囲の決定方法に関してはこれに限られない。 (
In the third embodiment, by providing the front
以下、図18乃至図22を参照して、実施例3の変形例1に係る表示すべき正面画像に対応する深度範囲の決定方法について説明する。実施例3では、正面画像決定部344は、評価値が最大となる深度範囲に対応する正面画像を選択していたが、本変形例では、正面画像決定部344は、正面画像の評価値が閾値以上である深度範囲を連結して、表示すべき正面画像の深度範囲とする点が異なる。
Hereinafter, a method of determining the depth range corresponding to the front image to be displayed according to the first modification of the third embodiment will be described with reference to FIGS. 18 to 22. In the third embodiment, the front image determination unit 344 selects the front image corresponding to the depth range in which the evaluation value is maximum, but in the present modification, the front image determination unit 344 has the evaluation value of the front image. The difference is that the depth ranges that are equal to or greater than the threshold value are connected to form the depth range of the front image to be displayed.
図18は、本変形例に係る正面画像生成処理のフローチャートである。なお、正面画像生成処理以外の一連の処理の流れは実施例3に係る一連の処理と同様であるため説明を省略する。また、ステップS1801及びステップS1802は実施例3に係るステップS1701及びステップS1702と同様のステップであるため説明を省略する。ステップS1802において、複数のOCTA正面画像について複数の評価値が取得されると、処理はステップS1803に移行する。
FIG. 18 is a flowchart of the front image generation process according to this modification. Since the flow of a series of processes other than the front image generation process is the same as the series of processes according to the third embodiment, the description thereof will be omitted. Further, since steps S1801 and S1802 are the same steps as steps S1701 and S1702 according to the third embodiment, the description thereof will be omitted. When a plurality of evaluation values are acquired for the plurality of OCTA front images in step S1802, the process proceeds to step S1803.
ステップS1803では、正面画像決定部344は、評価値が閾値以上である深度範囲を連結し、表示すべきOCTA正面画像の深度範囲を決定する。ここで、図19は複数のOCTA正面画像に対し、複数の評価値を算出した例である。ここでブルッフ膜をBMとすると、図19に示す例は、深度範囲を深度範囲(a)“BM+0μm~BM+20μm”から深度範囲(h)“BM-140μm~BM-120μm”まで、20μm毎に順次硝子体側にずらしながら複数のOCTA正面画像を生成した例である。図19に示す例では、画像評価部343が、このようにして生成された複数のOCTA正面画像に対応する複数の評価値(図の右側の数値)を取得する。
In step S1803, the front image determination unit 344 connects the depth ranges whose evaluation values are equal to or greater than the threshold value, and determines the depth range of the OCTA front image to be displayed. Here, FIG. 19 is an example in which a plurality of evaluation values are calculated for a plurality of OCTA front images. Assuming that the Bruch film is BM, in the example shown in FIG. 19, the depth range is sequentially from the depth range (a) “BM + 0 μm to BM + 20 μm” to the depth range (h) “BM-140 μm to BM-120 μm” every 20 μm. This is an example in which a plurality of OCTA front images are generated while shifting to the glass body side. In the example shown in FIG. 19, the image evaluation unit 343 acquires a plurality of evaluation values (numerical values on the right side of the figure) corresponding to the plurality of OCTA front images generated in this way.
この例において、仮に評価値に対する閾値を0.3とすると、深度範囲(b)“BM-20μm~BM+0μm”から深度範囲(f)“BM-100μm~BM-80μm”の深度範囲に対応するOCTA正面画像の評価値が閾値以上である。そのため、正面画像決定部344は、深度範囲(b)から深度範囲(f)までの深度範囲を連結し、表示すべきOCTA正面画像の深度範囲を決定する。具体的には、正面画像決定部344は、表示すべきOCTA正面画像の深度範囲を、深度範囲(b)の下限であるBM+0μmから深度範囲(f)の上限であるBM-100μmに決定する。
In this example, assuming that the threshold value for the evaluation value is 0.3, OCTA corresponding to the depth range (b) "BM-20 μm to BM + 0 μm" to the depth range (f) "BM-100 μm to BM-80 μm". The evaluation value of the front image is equal to or higher than the threshold value. Therefore, the front image determination unit 344 connects the depth ranges from the depth range (b) to the depth range (f) and determines the depth range of the OCTA front image to be displayed. Specifically, the front image determination unit 344 determines the depth range of the OCTA front image to be displayed from BM + 0 μm, which is the lower limit of the depth range (b), to BM-100 μm, which is the upper limit of the depth range (f).
ステップS1804では、投影範囲制御部341及び正面画像生成部342が、正面画像決定部344によって決定された深度範囲に基づいて、表示すべきOCTA正面画像を生成する。以降の処理は実施例3と同様であるため説明を省略する。
In step S1804, the projection range control unit 341 and the front image generation unit 342 generate an OCTA front image to be displayed based on the depth range determined by the front image determination unit 344. Since the subsequent processing is the same as that of the third embodiment, the description thereof will be omitted.
図19に示す例について、上述の処理を行い生成されたOCTA正面画像、その深度範囲、及び断層画像を図20に示す。図20に示すOCTA正面画像では、CNVが容易に確認できるような態様で現れていることが分かる。
For the example shown in FIG. 19, the OCTA front image, its depth range, and the tomographic image generated by performing the above processing are shown in FIG. In the OCTA front image shown in FIG. 20, it can be seen that the CNV appears in such a manner that it can be easily confirmed.
さらに図21は非常に小さなCNVに対して、本変形例の処理を実行した例である。なお、図21に示す例では、説明の簡略化のため、深度範囲を深度範囲(a)“BM+0μm~BM+20μm”から深度範囲(e)“BM-80μm~BM-60μm”までとしている。この例では評価値が閾値0.3以上である深度範囲は、深度範囲(b)のみであるため、正面画像決定部344は、最終的な深度範囲を深度範囲(b)と同じ範囲に決定する。当該決定された深度範囲に対応するOCTA正面画像、その深度範囲、及び断層画像を図22に示す。図22に示すOCTA正面画像では、図21に示す例に関してCNVが容易に確認できるような態様で現れていることが分かる。なお、最終的な深度範囲が評価値を算出した複数の深度範囲のいずれかと同じであれば、画像生成部304は当該深度範囲のOCTA正面画像を改めて生成する必要はない。
Further, FIG. 21 is an example in which the processing of this modification is executed for a very small CNV. In the example shown in FIG. 21, the depth range is set from the depth range (a) “BM + 0 μm to BM + 20 μm” to the depth range (e) “BM-80 μm to BM-60 μm” for simplification of the description. In this example, the depth range in which the evaluation value is the threshold value of 0.3 or more is only the depth range (b), so that the front image determination unit 344 determines the final depth range to be the same range as the depth range (b). To do. The OCTA frontal image corresponding to the determined depth range, the depth range thereof, and the tomographic image are shown in FIG. In the OCTA front image shown in FIG. 22, it can be seen that the CNV appears in such a manner that the CNV can be easily confirmed with respect to the example shown in FIG. If the final depth range is the same as any one of the plurality of depth ranges for which the evaluation value has been calculated, the image generation unit 304 does not need to generate the OCTA front image of the depth range again.
上記のように、本変形例に係る画像処理装置300では、画像生成部304の正面画像決定部344は、算出された複数の評価値に基づいて第二の深度範囲を決定し、該決定された第二の深度範囲を用いて生成した画像を表示すべき正面画像として決定する決定部の一例として機能する。特に、画像生成部304は、算出された複数の評価値のうち閾値以上である評価値に対応する深度範囲を連結することで第二の深度範囲を決定する。なお、当該決定部は、画像生成部304とは別個の構成要素として構成されてもよい。
As described above, in the image processing apparatus 300 according to the present modification, the front image determination unit 344 of the image generation unit 304 determines the second depth range based on the calculated plurality of evaluation values, and the determination is made. It functions as an example of a determination unit that determines an image generated using the second depth range as a front image to be displayed. In particular, the image generation unit 304 determines the second depth range by connecting the depth ranges corresponding to the evaluation values that are equal to or greater than the threshold value among the plurality of calculated evaluation values. The determination unit may be configured as a component separate from the image generation unit 304.
本変形例に係る画像処理装置300では、実施例3に比べ、非常に薄い深度範囲に対して、正面画像を生成し、さらに深度範囲を連続的に変更しながら、抽出対象の有無を推定することで、表示すべき正面画像の深度範囲をより精細に決定することができる。このため、対象領域を容易に確認することが容易な画像をより適切に生成できる。特に非常に薄い深度範囲毎に評価を行うことで、非常に小さな抽出対象(例えばCNV)がある場合も、見逃すことなく、検出することができる。
The image processing apparatus 300 according to the present modification generates a front image for a very thin depth range as compared with the third embodiment, and estimates the presence or absence of an extraction target while continuously changing the depth range. Therefore, the depth range of the front image to be displayed can be determined more finely. Therefore, it is possible to more appropriately generate an image in which the target area can be easily confirmed. In particular, by performing evaluation for each very thin depth range, even if there is a very small extraction target (for example, CNV), it can be detected without overlooking.
なお、本変形例では、探索的にシフトする深度範囲の深さ(深度範囲上限と下限の差)を20μmに固定した例を示したが、当該深度範囲の深さはこれに限られず、所望の構成に応じて任意に設定されてよい。同じ範囲を探索する場合には、探索的にシフトする深度範囲の深さが薄くなると、候補画像数が増え、それに伴い評価値を計算する計算量が増える。また、探索的にシフトする深度範囲の深さがあまり薄くなると、OCTA正面画像にノイズがより強く生じるようになる。一方、探索的にシフトする深度範囲の深さが深くなると、候補の画像数が減少し、計算量は減少する。一方で、最適な深度範囲を決定する際の分解能も粗くなる。深度範囲の深さは、こうした事情を踏まえてバランスをとって決定すればよく、効果的な範囲としては、例えば10μm~50μm幅の厚さで行うことができる。
In this modified example, the depth of the depth range to be exploratoryly shifted (difference between the upper limit and the lower limit of the depth range) is fixed to 20 μm, but the depth of the depth range is not limited to this and is desired. It may be arbitrarily set according to the configuration of. When searching the same range, the number of candidate images increases as the depth of the depth range that shifts exploratoryly becomes thinner, and the amount of calculation for calculating the evaluation value increases accordingly. Further, if the depth of the depth range for exploratory shift becomes too thin, noise becomes stronger in the OCTA front image. On the other hand, as the depth of the exploratory shift depth range becomes deeper, the number of candidate images decreases and the amount of calculation decreases. On the other hand, the resolution for determining the optimum depth range also becomes coarse. The depth of the depth range may be determined in a balanced manner in consideration of such circumstances, and an effective range may be, for example, a thickness having a width of 10 μm to 50 μm.
また探索する範囲は、網膜外層までをカバーすればよいが、本変形例に示したようにブルッフ膜基準で、予め決められた範囲だけ硝子体側に探索してもよいし、網膜外層の上限であるOPL/ONLまで探索してもよい。
The range to be searched may cover up to the outer layer of the retina, but as shown in this modification, a predetermined range may be searched toward the glass body side based on the Bruch membrane, or the upper limit of the outer layer of the retina may be used. You may search up to a certain OPL / ONL.
また、本変形例では、探索する際の境界線をブルッフ膜(BM)の形状に基づいて決定したが、探索する際の境界線の形状はこれに限るものではない。ただし、ブルッフ膜は網膜の底に位置しており、形状も比較的フラットであるため、CNVの有無を探索的に評価する際には適している。探索する際の境界線をブルッフ膜の代わりに網膜色素上皮(RPE)や他の層の形状等に基づいて決定してもよい。また、探索する際の境界線を黄斑部のブルッフ膜の網膜の形状に近い直線等に基づいて決定してもよい。
Further, in this modification, the boundary line when searching is determined based on the shape of the Bruch film (BM), but the shape of the boundary line when searching is not limited to this. However, since the Bruch membrane is located at the bottom of the retina and has a relatively flat shape, it is suitable for exploratory evaluation of the presence or absence of CNV. The boundary line for searching may be determined based on the shape of retinal pigment epithelium (RPE) or other layers instead of Bruch's membrane. Further, the boundary line for searching may be determined based on a straight line close to the shape of the retina of the Bruch's membrane in the macula.
なお、正面画像決定部344が表示すべき深度範囲を決定する際の評価値の閾値は、操作者の指示に応じて変更されてもよい。この場合には、操作者の好みに応じて、CNVの描画の程度を調整することができる。
The threshold value of the evaluation value when the front image determination unit 344 determines the depth range to be displayed may be changed according to the instruction of the operator. In this case, the degree of drawing of the CNV can be adjusted according to the preference of the operator.
(実施例3の変形例2)
実施例3の変形例1では、評価値が一定以上の深度範囲を連結して表示すべき正面画像の深度範囲を決定したが、連続する深度範囲の評価値が一度閾値未満になった後に再度閾値以上となることがある。言い換えると、連続する深度範囲の評価値が“ふたやま”になることがある。実施例3の変形例2では、このような場合に対応して、評価が一定以上となる範囲の上限と下限を選択し、上限と下限に挟まれた範囲を深度範囲として決定・選択する。 (Modification 2 of Example 3)
In the first modification of the third embodiment, the depth range of the front image to be displayed by connecting the depth ranges whose evaluation values are equal to or higher than a certain value is determined, but once the evaluation values of the continuous depth ranges are less than the threshold value, the depth range is determined again. It may exceed the threshold. In other words, the evaluation value of the continuous depth range may be "Futayama". In the second modification of the third embodiment, in response to such a case, the upper limit and the lower limit of the range in which the evaluation becomes a certain value or more are selected, and the range between the upper limit and the lower limit is determined and selected as the depth range.
実施例3の変形例1では、評価値が一定以上の深度範囲を連結して表示すべき正面画像の深度範囲を決定したが、連続する深度範囲の評価値が一度閾値未満になった後に再度閾値以上となることがある。言い換えると、連続する深度範囲の評価値が“ふたやま”になることがある。実施例3の変形例2では、このような場合に対応して、評価が一定以上となる範囲の上限と下限を選択し、上限と下限に挟まれた範囲を深度範囲として決定・選択する。 (
In the first modification of the third embodiment, the depth range of the front image to be displayed by connecting the depth ranges whose evaluation values are equal to or higher than a certain value is determined, but once the evaluation values of the continuous depth ranges are less than the threshold value, the depth range is determined again. It may exceed the threshold. In other words, the evaluation value of the continuous depth range may be "Futayama". In the second modification of the third embodiment, in response to such a case, the upper limit and the lower limit of the range in which the evaluation becomes a certain value or more are selected, and the range between the upper limit and the lower limit is determined and selected as the depth range.
図23は、本変形例に係る正面画像生成処理を示すフローチャートである。なお、正面画像生成処理以外の一連の処理の流れは実施例3に係る一連の処理と同様であるため説明を省略する。また、ステップS2301、ステップS2302、及びステップS2304は実施例3の変形例1に係るステップS1801、ステップS1802、及びステップS1804と同様のステップであるため説明を省略する。ステップS2302において、複数のOCTA正面画像について複数の評価値が取得されると、処理はステップS2303に移行する。
FIG. 23 is a flowchart showing a front image generation process according to this modification. Since the flow of a series of processes other than the front image generation process is the same as the series of processes according to the third embodiment, the description thereof will be omitted. Further, since step S2301, step S2302, and step S2304 are the same steps as steps S1801, step S1802, and step S1804 according to the first modification of the third embodiment, the description thereof will be omitted. When a plurality of evaluation values are acquired for the plurality of OCTA front images in step S2302, the process proceeds to step S2303.
ステップS2303では、正面画像決定部344は、評価値が閾値以上である深度範囲を統合し、表示すべきOCTA正面画像の深度範囲を決定する。この際、正面画像決定部344は、実施例3の変形例1におけるステップS1803とは異なり、評価値が閾値以上である深度範囲同士の間に評価値が閾値未満の深度範囲が含まれていても、評価値が閾値以上である複数の深度範囲における上限と下限に基づいて表示すべきOCTA正面画像の深度範囲を決定する。
In step S2303, the front image determination unit 344 integrates the depth ranges whose evaluation values are equal to or greater than the threshold value, and determines the depth range of the OCTA front image to be displayed. At this time, unlike step S1803 in the first modification of the third embodiment, the front image determining unit 344 includes a depth range in which the evaluation value is less than the threshold value between the depth ranges in which the evaluation value is equal to or more than the threshold value. Also, the depth range of the OCTA front image to be displayed is determined based on the upper limit and the lower limit in a plurality of depth ranges whose evaluation values are equal to or higher than the threshold value.
例えば、図19に示す例において、深度範囲(h)の評価値が0.3であった場合には、深度範囲(b)から深度範囲(f)の評価値に加えて深度範囲(h)の評価値も閾値以上となるが、評価値が深度範囲(g)において閾値未満となる。この場合でも、本変形例に係る正面画像決定部344は、評価値が閾値以上である深度範囲(b)の下限BM+0μmから、評価値が閾値以上である深度範囲(h)の上限であるBM-140μmまでを、表示すべきOCTA正面画像の深度範囲として決定する。以降の処理は実施例3の変形例1と同様であるため説明を省略する。
For example, in the example shown in FIG. 19, when the evaluation value of the depth range (h) is 0.3, the depth range (h) is added to the evaluation value of the depth range (b) to the depth range (f). The evaluation value of is also equal to or higher than the threshold value, but the evaluation value is lower than the threshold value in the depth range (g). Even in this case, the front image determination unit 344 according to the present modification has the lower limit BM + 0 μm of the depth range (b) whose evaluation value is equal to or higher than the threshold value to the upper limit BM of the depth range (h) whose evaluation value is equal to or higher than the threshold value. Up to −140 μm is determined as the depth range of the OCTA front image to be displayed. Since the subsequent processing is the same as that of the first modification of the third embodiment, the description thereof will be omitted.
上記のように、本変形例に係る画像生成部304の正面画像決定部344は、取得された複数の評価値のうち閾値以上である評価値に対応する深度範囲における、他の深度位置よりも浅い深度位置を上限とし、他の深度位置よりも深い深度位置を下限として第二の深度範囲を決定する。このような処理により、本変形例では評価値が“ふたやま”になった場合でも、表示すべきOCTA正面画像の深度範囲を適切に決定することができる。なお、本変形例では、評価値が“ふたやま”になる例について説明したが、山が3つ以上となる場合であっても同様の処理を行うことで、表示すべきOCTA正面画像の深度範囲を適切に決定することができる。なお、正面画像決定部344は、画像生成部304とは別個の構成要素として構成されてもよい。
As described above, the front image determination unit 344 of the image generation unit 304 according to this modification is more than the other depth positions in the depth range corresponding to the evaluation value equal to or more than the threshold value among the acquired plurality of evaluation values. The second depth range is determined with the shallow depth position as the upper limit and the depth position deeper than the other depth positions as the lower limit. By such processing, even when the evaluation value becomes "Futayama" in this modified example, the depth range of the OCTA front image to be displayed can be appropriately determined. In this modified example, an example in which the evaluation value is "Futayama" has been described, but the depth of the OCTA front image to be displayed can be displayed by performing the same processing even when there are three or more peaks. The range can be determined appropriately. The front image determination unit 344 may be configured as a component separate from the image generation unit 304.
なお、正面画像決定部344が表示すべき深度範囲を決定する際の評価値の閾値は、操作者の指示に応じて変更されてもよい。この場合には、操作者の好みに応じて、CNVの描画の程度を調整することができる。
The threshold value of the evaluation value when the front image determination unit 344 determines the depth range to be displayed may be changed according to the instruction of the operator. In this case, the degree of drawing of the CNV can be adjusted according to the preference of the operator.
(実施例3の変形例3)
実施例3の変形例3では、正面画像決定部344は、評価値が最大となる(他の評価値よりも高い)深度範囲を中心として、当該深度範囲の上限と下限を微調整して表示すべきOCTA正面画像の深度範囲を決定する。 (Modification 3 of Example 3)
In the modified example 3 of the third embodiment, the frontimage determination unit 344 finely adjusts and displays the upper limit and the lower limit of the depth range centered on the depth range where the evaluation value is the maximum (higher than other evaluation values). Determine the depth range of the OCTA front image to be.
実施例3の変形例3では、正面画像決定部344は、評価値が最大となる(他の評価値よりも高い)深度範囲を中心として、当該深度範囲の上限と下限を微調整して表示すべきOCTA正面画像の深度範囲を決定する。 (Modification 3 of Example 3)
In the modified example 3 of the third embodiment, the front
図24は、本変形例に係る正面画像生成処理のフローチャートである。なお、正面画像生成処理以外の一連の処理の流れは実施例3に係る一連の処理と同様であるため説明を省略する。また、ステップS2401及びステップS2402は実施例3に係るステップS1701及びステップS1702と同様のステップであるため説明を省略する。ステップS2402において、複数のOCTA正面画像について複数の評価値が取得されると、処理はステップS2403に移行する。
FIG. 24 is a flowchart of the front image generation process according to this modification. Since the flow of a series of processes other than the front image generation process is the same as the series of processes according to the third embodiment, the description thereof will be omitted. Further, since steps S2401 and S2402 are the same steps as steps S1701 and S1702 according to the third embodiment, the description thereof will be omitted. When a plurality of evaluation values are acquired for the plurality of OCTA front images in step S2402, the process proceeds to step S2403.
ステップS2403では、正面画像決定部344は、複数のOCTA正面画像に対応する深度範囲の中から、評価値が最大となるOCTA正面画像に対応する深度範囲を、中心となる深度範囲として選択する。例えば、図19の例では、最大の評価値0.7に対応する深度範囲(d)“BM-60μm~BM-40μm”を選択する。
In step S2403, the front image determination unit 344 selects the depth range corresponding to the OCTA front image having the maximum evaluation value as the central depth range from the depth ranges corresponding to the plurality of OCTA front images. For example, in the example of FIG. 19, the depth range (d) “BM-60 μm to BM-40 μm” corresponding to the maximum evaluation value 0.7 is selected.
次にステップS2404において、正面画像決定部344は、評価値が最大だった深度範囲を中心に、深度範囲の上限と下限を微調整した複数の深度範囲を設定する。ここで、微調整とは、先に評価値を求めた際の探索的にシフトする深度範囲の深さ(深度範囲上限と下限の差)よりも狭い深さ分だけ、選択した深度範囲の上限及び下限の少なくとも一方を移動させた複数の深度範囲を設定する。
Next, in step S2404, the front image determination unit 344 sets a plurality of depth ranges in which the upper and lower limits of the depth range are finely adjusted, centering on the depth range in which the evaluation value is the maximum. Here, the fine adjustment is the upper limit of the selected depth range by a depth narrower than the depth of the depth range (difference between the upper limit and the lower limit of the depth range) that is exploratoryly shifted when the evaluation value is obtained first. And set multiple depth ranges with at least one of the lower bounds moved.
例えば、図19の例では、先に評価値を求めた際の探索的にシフトする深度範囲の深さは20μmである。この場合、正面画像決定部344は、例えば、深度範囲(d)の上限BM-60μmについて、例えば10μmや5μmだけ浅い側又は深い側に移動させた深度範囲を設定する。同様に、正面画像決定部344は、例えば、深度範囲(d)の下限BM-40μmについて、例えば10μmや5μmだけ浅い側又は深い側に移動させた深度範囲を設定する。また、正面画像決定部344は、深度範囲(d)の上限及び下限の両方を例えば10μmや5μmだけ浅い側又は深い側に移動させた深度範囲を設定してもよい。なお、当該例における数値は例示であり、所望の構成に応じて任意に設定されてよい。また、設定される深度範囲の数も所望の構成に応じて任意に設定されてよい。
For example, in the example of FIG. 19, the depth of the exploratory shift depth range when the evaluation value is obtained first is 20 μm. In this case, the front image determining unit 344 sets, for example, a depth range in which the upper limit BM-60 μm of the depth range (d) is moved to a shallower side or a deeper side by, for example, 10 μm or 5 μm. Similarly, the front image determining unit 344 sets, for example, a depth range in which the lower limit BM-40 μm of the depth range (d) is moved to a shallower side or a deeper side by, for example, 10 μm or 5 μm. Further, the front image determining unit 344 may set a depth range in which both the upper limit and the lower limit of the depth range (d) are moved to a shallow side or a deep side by, for example, 10 μm or 5 μm. The numerical values in the example are examples, and may be arbitrarily set according to a desired configuration. Further, the number of depth ranges to be set may be arbitrarily set according to a desired configuration.
ステップS2405では、投影範囲制御部341及び正面画像生成部342が、正面画像決定部344によって設定された複数の深度範囲に基づいて、複数のOCTA正面画像を生成する。また、画像評価部343が、生成された複数のOCTA正面画像について複数の評価値を算出する。
In step S2405, the projection range control unit 341 and the front image generation unit 342 generate a plurality of OCTA front images based on the plurality of depth ranges set by the front image determination unit 344. In addition, the image evaluation unit 343 calculates a plurality of evaluation values for the generated plurality of OCTA front images.
ステップS2406では、正面画像決定部344が、ステップS2405において算出された複数の評価値のうち最大の評価値(他の評価値よりも高い評価値)に対応するOCTA正面画像を表示すべきOCTA正面画像として選択・決定する。以降の処理は実施例3と同様であるため説明を省略する。
In step S2406, the front image determination unit 344 should display the OCTA front image corresponding to the maximum evaluation value (evaluation value higher than other evaluation values) among the plurality of evaluation values calculated in step S2405. Select / determine as an image. Since the subsequent processing is the same as that of the third embodiment, the description thereof will be omitted.
上記のように、本変形例に係る画像生成部304の正面画像決定部344は、取得された複数の評価値のうち他の評価値よりも高い評価値に対応する深度範囲を中心として、第二の深度範囲を決定する決定部の一例として機能する。特に、本変形例に係る画像生成部304は、他の評価値よりも高い評価値に対応する深度範囲を増減させた複数の深度範囲を設定するとともに該複数の深度範囲に対応する複数の正面画像を生成する。また、画像評価部343は、当該複数の深度範囲に対応する複数の正面画像を用いて、当該複数の深度範囲に対応する複数の正面画像の複数の評価値を取得する。さらに、画像生成部304の正面画像決定部344は、当該複数の深度範囲に対応する複数の正面画像の複数の評価値のうち他の評価値よりも高い評価値に対応する正面画像を表示すべき正面画像(出力画像)として決定する。なお、正面画像決定部344は、画像生成部304とは別個の構成要素として構成されてもよい。
As described above, the front image determination unit 344 of the image generation unit 304 according to this modification is centered on the depth range corresponding to the evaluation value higher than the other evaluation values among the acquired plurality of evaluation values. It functions as an example of a determination unit that determines the depth range of the second. In particular, the image generation unit 304 according to this modification sets a plurality of depth ranges in which the depth range corresponding to an evaluation value higher than the other evaluation values is increased or decreased, and a plurality of front surfaces corresponding to the plurality of depth ranges. Generate an image. In addition, the image evaluation unit 343 acquires a plurality of evaluation values of the plurality of front images corresponding to the plurality of depth ranges by using the plurality of front images corresponding to the plurality of depth ranges. Further, the front image determination unit 344 of the image generation unit 304 displays the front image corresponding to the evaluation value higher than the other evaluation values among the plurality of evaluation values of the plurality of front images corresponding to the plurality of depth ranges. Determined as a power front image (output image). The front image determination unit 344 may be configured as a component separate from the image generation unit 304.
このように深度範囲を調整して、他の評価値よりも高い評価値となる深度範囲の正面画像を表示すべき正面画像として決定することで、抽出対象(対象領域)をより観察し易い正面画像を生成し、表示することができる。なお、正面画像決定部344が表示すべき深度範囲を決定する際の評価値の閾値は、操作者の指示に応じて変更されてもよい。この場合には、操作者の好みに応じて、CNVの描画の程度を調整することができる。また、深度範囲を微調整する際の深度(深度幅)も操作者の指示に応じて変更されてもよい。この場合には、操作者の指示に応じて、評価値を算出する深度範囲を変更でき、個々の被検眼に応じた深度範囲を適切に設定することができる。
By adjusting the depth range in this way and determining the front image of the depth range that has a higher evaluation value than other evaluation values as the front image to be displayed, the front surface that makes it easier to observe the extraction target (target area). Images can be generated and displayed. The threshold value of the evaluation value when the front image determination unit 344 determines the depth range to be displayed may be changed according to the instruction of the operator. In this case, the degree of drawing of the CNV can be adjusted according to the preference of the operator. Further, the depth (depth width) when finely adjusting the depth range may be changed according to the instruction of the operator. In this case, the depth range for calculating the evaluation value can be changed according to the instruction of the operator, and the depth range corresponding to each eye to be inspected can be appropriately set.
さらに、本変形例では正面画像決定部344は、評価値が最も高いOCTA正面画像を選択したが、正面画像決定部344は、評価値が閾値を超えるOCTA正面画像を選択してもよい。この場合、正面画像決定部344は、複数の評価値が閾値を超える場合には、当該複数の評価値に対応する複数のOCTA正面画像を選択してもよい。この場合には、表示制御部306は、当該複数の評価値及びこれに対応する複数のOCTA正面画像を切り替えながら表示してもよい。また、正面画像決定部344は、当該複数のOCTA正面画像のうち、単独で表示させるべきOCTA正面画像を操作者の指示に応じて選択するようにしてもよい。
Further, in the present modification, the front image determination unit 344 selects the OCTA front image having the highest evaluation value, but the front image determination unit 344 may select the OCTA front image whose evaluation value exceeds the threshold value. In this case, the front image determination unit 344 may select a plurality of OCTA front images corresponding to the plurality of evaluation values when the plurality of evaluation values exceed the threshold value. In this case, the display control unit 306 may display the plurality of evaluation values and a plurality of OCTA front images corresponding thereto while switching between them. Further, the front image determination unit 344 may select the OCTA front image to be displayed independently from the plurality of OCTA front images according to the instruction of the operator.
(実施例4)
実施例1~3は、OCTA正面画像を用いて、加齢黄斑変性による新生血管(CNV)が発生している症例に対して、最適な深度範囲の画像を提供するものであった。ここで、実施例1~3において説明した技術は、視神経乳頭部の下部にある篩状板と呼ばれる構造を確認する際にも適用可能である。実施例4では、視神経乳頭部の下部にある篩状板を抽出対象(対象領域)とした処理について説明する。 (Example 4)
In Examples 1 to 3, OCTA frontal images were used to provide images in the optimum depth range for cases in which neovascularization (CNV) due to age-related macular degeneration is occurring. Here, the techniques described in Examples 1 to 3 can also be applied to confirm a structure called a sieve plate in the lower part of the optic nerve head. In Example 4, a process in which the lamina cribrosa below the optic nerve head is used as an extraction target (target region) will be described.
実施例1~3は、OCTA正面画像を用いて、加齢黄斑変性による新生血管(CNV)が発生している症例に対して、最適な深度範囲の画像を提供するものであった。ここで、実施例1~3において説明した技術は、視神経乳頭部の下部にある篩状板と呼ばれる構造を確認する際にも適用可能である。実施例4では、視神経乳頭部の下部にある篩状板を抽出対象(対象領域)とした処理について説明する。 (Example 4)
In Examples 1 to 3, OCTA frontal images were used to provide images in the optimum depth range for cases in which neovascularization (CNV) due to age-related macular degeneration is occurring. Here, the techniques described in Examples 1 to 3 can also be applied to confirm a structure called a sieve plate in the lower part of the optic nerve head. In Example 4, a process in which the lamina cribrosa below the optic nerve head is used as an extraction target (target region) will be described.
篩状板とは視神経乳頭部の下部にある視神経を支える網目状の構造である。篩状板の形態は緑内障の進行と相関があることが知られており、その形態(特に厚み)を表示できることは緑内障の診断上、非常に有意義であることが知られている。
The lamina cribrosa is a mesh-like structure that supports the optic nerve at the bottom of the optic nerve head. It is known that the morphology of the lamina cribrosa correlates with the progression of glaucoma, and it is known that being able to display the morphology (particularly the thickness) is very meaningful in diagnosing glaucoma.
篩状板に関しては、断層画像上では、はっきりとした層構造の変化やそれに伴う輝度変化が現れないため、網膜の層構造のように、断層画像を画像処理することで認識することは難しい。一方で、輝度のEn-Face画像等の断層データを2次元平面に投影した正面画像を用いることで、篩状板の網目上の構造を確認することが可能である。
As for the sieve plate, it is difficult to recognize by image processing the tomographic image like the layered structure of the retina because a clear change in the layer structure and the accompanying change in brightness do not appear on the tomographic image. On the other hand, it is possible to confirm the structure on the mesh of the sieve plate by using a front image obtained by projecting tomographic data such as an En-Face image of brightness onto a two-dimensional plane.
そこで、本実施例では、観察すべき対象領域を篩状板の領域とし、篩状板を観察し易い輝度のEn-Face画像を生成する。なお、本実施例に係る画像処理装置の構成は、実施例1乃至3に係る画像処理装置の構成と同様であるため、同じ参照符号を用いて説明を省略する。以下、本実施例に係る画像処理装置について、実施例1乃至3に係る画像処理装置300との違いを中心に説明する。
Therefore, in this embodiment, the target area to be observed is set as the region of the sieve plate, and an En-Face image having a brightness that makes it easy to observe the sieve plate is generated. Since the configuration of the image processing apparatus according to the present embodiment is the same as the configuration of the image processing apparatus according to the first to third embodiments, the same reference numerals will be used and the description thereof will be omitted. Hereinafter, the image processing apparatus according to the present embodiment will be described focusing on the difference from the image processing apparatus 300 according to the first to third embodiments.
以下、図25及び図26を参照して、本実施例に係る画像処理装置について説明する。本実施例では、例えば、実施例1で説明したGUI400において、輝度のEn-Face画像407の上部におけるプルダウンにおいて、篩状板が選択されると、画像生成部304が抽出処理の対象として篩状板を指定する。画像生成部304は、抽出対象として指定された篩状板用に記憶部305に予め記憶されている複数の深度範囲に基づいて、対応する複数の輝度のEn-Face画像を生成する。表示制御部306は、操作者の指示等に応じて、生成された輝度のEn-Face画像、対応する断層画像及び深度範囲を表示部310に表示させる。なお、本実施例に係る輝度のEn-Face画像の生成処理は、モーションコントラストデータの代わりに断層データを用いる点と深度範囲が篩状板用に設定されている深度範囲である点を除き、実施例1乃至3と同様であってよい。
Hereinafter, the image processing apparatus according to this embodiment will be described with reference to FIGS. 25 and 26. In this embodiment, for example, in the GUI 400 described in Example 1, when the sieve plate is selected in the pull-down at the upper part of the brightness En-Face image 407, the image generation unit 304 is sieved as the target of the extraction process. Specify the board. The image generation unit 304 generates En-Face images having a plurality of corresponding brightness based on a plurality of depth ranges stored in the storage unit 305 in advance for the sieve plate designated as the extraction target. The display control unit 306 causes the display unit 310 to display the generated En-Face image of the brightness, the corresponding tomographic image, and the depth range according to the instruction of the operator or the like. The brightness En-Face image generation process according to this embodiment is performed except that the tomographic data is used instead of the motion contrast data and the depth range is the depth range set for the sieve plate. It may be the same as in Examples 1 to 3.
図25の(a)乃至(c)は、篩状板の形態を表示した輝度のEn-Face画像及び対応する深度範囲が表示される断層画像の例である。ここで、図25の(a)乃至(c)に示す輝度のEn-Face画像は篩状板部分のEn-Face画像であって、それぞれ異なる深度範囲に対して3次元断層データ(3次元断層画像)を投影した画像である。また、図25の(a)乃至(c)に示す断層画像には、対応するEn-Face画像の深度範囲が白の直線(実線)で表示されている。
FIGS. 25 (a) to 25 (c) are examples of an En-Face image having a brightness showing the morphology of the sieve plate and a tomographic image showing a corresponding depth range. Here, the En-Face images of the brightness shown in FIGS. 25 (a) to 25 (c) are En-Face images of the sieve plate portion, and are three-dimensional tomographic data (three-dimensional tomography) for different depth ranges. Image) is a projected image. Further, in the tomographic images shown in FIGS. 25 (a) to 25 (c), the depth range of the corresponding En-Face image is displayed as a white straight line (solid line).
図25の(a)乃至(c)は、それぞれ、視神経乳頭部の網膜・硝子体界面の底部の深度位置から+50μm~+100μm、+150μm~+200μm、及び+300μm~+350μmを深度範囲としたEn-Face画像を示している。なお、各深度範囲を示す表示態様は任意であってよい。図25の(a)乃至(c)の例では、断層画像の上にLine+50μm、Line+100μm等との記載を示している。当該記載におけるLineは、深度範囲を決めるための上限及び下限が直線(Line)で設定されていることを示している。また、当該表示の数字は、図の点線で示した位置(視神経乳頭部の網膜・硝子体界面の底部の深度位置)からの距離を表している。
(A) to (c) of FIG. 25 are En-Face images having a depth range of +50 μm to +100 μm, +150 μm to +200 μm, and +300 μm to +350 μm from the depth position of the bottom of the retinal-vitreous interface of the optic nerve head, respectively. Is shown. The display mode indicating each depth range may be arbitrary. In the examples (a) to (c) of FIG. 25, the description of Line + 50 μm, Line + 100 μm, etc. is shown on the tomographic image. Line in the description indicates that the upper limit and the lower limit for determining the depth range are set by a straight line (Line). The numbers on the display represent the distance from the position indicated by the dotted line in the figure (the depth position at the bottom of the retinal-vitreous interface of the optic nerve head).
なお、複数のEn-Face画像を生成するための各深度範囲は、乳頭部の網膜と硝子体の境界(界面)から脈絡側に0~500μmの範囲内の深度範囲であってよい。例えば、各深度範囲は、視神経乳頭部と硝子体の境界から略100μm~500μm程度脈絡膜側の深度範囲のうちで任意に設定されてよい。
Note that each depth range for generating a plurality of En-Face images may be a depth range within a range of 0 to 500 μm from the boundary (interface) between the retina and the vitreous body of the papilla to the interstitial side. For example, each depth range may be arbitrarily set within a depth range on the choroidal side of approximately 100 μm to 500 μm from the boundary between the optic nerve head and the vitreous body.
図25の(a)乃至(c)は、それぞれ深度範囲を硝子体側から深い方向へ変化させた場合の輝度のEn-Face画像を示している。図25の(b)に示す輝度のEn-Face画像には視神経乳頭に相当する位置に網目状の構造を見ることができるが、図25の(a)及び(c)に示す輝度のEn-Face画像では、網膜上の構造は明確に観察することができない。
(A) to (c) of FIG. 25 show En-Face images of brightness when the depth range is changed from the glass body side to the deep direction, respectively. In the En-Face image of the brightness shown in FIG. 25 (b), a mesh-like structure can be seen at a position corresponding to the optic nerve head, but the brightness En-Face shown in FIGS. 25 (a) and 25 (c). In the face image, the structure on the retina cannot be clearly observed.
このように、抽出対象(対象領域)として篩状板を指定し、実施例1と同様の処理を行うことで、複数の深度範囲の輝度のEn-Face画像をGUI上に表示し、篩状板が観察し易い画像を操作者に提供することができる。この場合、例えば、実施例1と同様に、GUI400のEn-Face画像407をダブルクリックすると、表示制御部306が篩状板に関する複数の深度範囲に対応する輝度のEn-Face画像を含むGUIを表示部310に表示させることができる。
In this way, by designating the sieve plate as the extraction target (target region) and performing the same processing as in Example 1, an En-Face image having brightness in a plurality of depth ranges is displayed on the GUI and sieved. It is possible to provide the operator with an image in which the board is easy to observe. In this case, for example, as in the first embodiment, when the En-Face image 407 of the GUI 400 is double-clicked, the display control unit 306 displays the GUI including the En-Face image having the brightness corresponding to a plurality of depth ranges related to the sieve plate. It can be displayed on the display unit 310.
なお、篩状板に関する複数の正面画像として、複数の輝度のEn-Face画像を生成し表示させる構成について述べたが、輝度のEn-Face画像に代えてOCTA正面画像を生成し、並べて表示させてもよい。この場合には、断層データに代えてモーションコントラストデータを用いて正面画像を生成すればよい。
Although the configuration for generating and displaying a plurality of brightness En-Face images as a plurality of front images related to the sieve plate has been described, an OCTA front image is generated instead of the brightness En-Face image and displayed side by side. You may. In this case, the front image may be generated by using the motion contrast data instead of the tomographic data.
また、実施例2に係る処理と同様に、画像評価部343により、学習済モデルを用いて、複数の輝度のEn-Face画像について画像中における篩状板の存在を評価する評価値を算出してもよい。この場合、学習済モデルの学習データについて、輝度のEn-Face画像を入力データとし、該輝度のEn-Face画像における網目状の構造(篩状板)の存在を評価する評価値を出力データとすることができる。なお、出力データは、医師等が、輝度のEn-Face画像について網目状の構造(篩状板)の存在を評価した評価値を用いてよく、例えば篩状板の穴が見える画像については評価値を高くする等の基準で評価を行ってよい。この場合には、表示制御部306は、図25に示すように、輝度のEn-Face画像についての評価値を輝度のEn-Face画像とともに表示部310に表示させることができる。
Further, as in the process according to the second embodiment, the image evaluation unit 343 calculates an evaluation value for evaluating the presence of the sieve plate in the En-Face image having a plurality of brightness using the trained model. You may. In this case, for the training data of the trained model, the brightness En-Face image is used as the input data, and the evaluation value for evaluating the existence of the mesh-like structure (sieving plate) in the brightness En-Face image is used as the output data. can do. As the output data, an evaluation value obtained by a doctor or the like evaluating the existence of a mesh-like structure (sieving plate) in an En-Face image of brightness may be used. For example, an image in which holes in the sieve plate can be seen is evaluated. Evaluation may be performed based on criteria such as increasing the value. In this case, as shown in FIG. 25, the display control unit 306 can display the evaluation value of the brightness En-Face image on the display unit 310 together with the brightness En-Face image.
なお、画像評価部343は、実施例2と同様に、ルールベースの処理により輝度のEn-Face画像における篩状板の存在を評価する評価値を算出してもよい。また、輝度のEn-Face画像に代えてOCTA正面画像を生成し、評価し、並べて表示させてもよい。
Note that the image evaluation unit 343 may calculate an evaluation value for evaluating the presence of the sieve plate in the brightness En-Face image by rule-based processing as in the second embodiment. Further, instead of the brightness En-Face image, an OCTA front image may be generated, evaluated, and displayed side by side.
さらに、実施例3に係る処理と同様に、最大の評価値(他の評価値より高い評価値)に対応する輝度のEn-Face画像や閾値以上の評価値を有する輝度のEn-Face画像を自動的に選択し、表示させてもよい。
Further, similarly to the process according to the third embodiment, an En-Face image having a brightness corresponding to the maximum evaluation value (evaluation value higher than other evaluation values) and an En-Face image having a brightness equal to or higher than the threshold value are displayed. It may be automatically selected and displayed.
また、実施例3の変形例1乃至3に係る処理について、篩状板を抽出対象(対象領域)としてもよい。例えば、実施例3の変形例1で示したように、投影に用いる深度範囲を非常に薄くした状態で、細かく深度範囲を調整することで、篩状板に相当する網目構造がどの深度範囲に分布するかを推定することができる。これにより、表示すべき正面画像の最適な深度範囲を決定できるだけではなく、網目構造が分布した深度範囲から、篩状板の厚さを求めたり、断層データ等から篩状板をセグメンテーションしたりすることが可能である。
Further, for the treatment according to the modifications 1 to 3 of Example 3, the sieve plate may be the extraction target (target region). For example, as shown in the first modification of the third embodiment, by finely adjusting the depth range in a state where the depth range used for projection is very thin, the network structure corresponding to the sieve plate can be in which depth range. It is possible to estimate whether it is distributed. As a result, not only the optimum depth range of the front image to be displayed can be determined, but also the thickness of the sieve plate can be obtained from the depth range in which the network structure is distributed, and the sieve plate can be segmented from tomographic data or the like. It is possible.
なお、篩状板の形態を観察する上では、1μm帯の波長掃引(SS:Swept Source)光源を用いたSS-OCT装置を用いると、篩状板を観察し易い正面画像を生成することができる。また、輝度のEn-Face画像を用いることで、篩状板の形態を観察し易いことが知られている。しかしながら、被検眼の撮影に用いるOCT装置や生成する正面画像はこれに限れず、例えば、上述のように、SD方式の光干渉部を用いたSD-OCT装置やOCTA正面画画像を用いてもよい。
When observing the morphology of the sieve plate, it is possible to generate a front image in which the sieve plate can be easily observed by using an SS-OCT device using a wavelength sweep (SS: Swept Source) light source in the 1 μm band. it can. Further, it is known that the morphology of the sieve plate can be easily observed by using the En-Face image of brightness. However, the OCT device used for photographing the eye to be inspected and the front image to be generated are not limited to this, and for example, as described above, an SD-OCT device using an SD type optical interference unit or an OCTA front image may be used. Good.
なお、本実施例では、図25の(a)乃至(c)に示したように、視神経乳頭部の網膜・硝子体界面の底に相当する深度を基準として、断層画像に対して水平なLineにより決まる深度範囲を定義し、深度範囲を変更した正面画像を生成したり評価値を算出したりした。しかしながら、深度範囲を定義する基準はこれに限られない。例えば、ブルッフ膜の端部を結んだ線により基準を定義してもよい。
In this example, as shown in FIGS. 25 (a) to 25 (c), the line horizontal to the tomographic image is based on the depth corresponding to the bottom of the retinal-vitreous interface of the optic nerve head. The depth range determined by was defined, and the front image with the changed depth range was generated and the evaluation value was calculated. However, the criteria for defining the depth range are not limited to this. For example, the reference may be defined by a line connecting the ends of the Bruch membrane.
ここで、図26は、ブルッフ膜の端部(ブルッフ膜端P1,P2)を結んだ線による、深度範囲を定義する基準線を説明するための図である。図26は、視神経乳頭部の断層画像を示している。図26に示す断層画像には、硝子体・内境界膜(ILM)境界L1、GCL/IPL境界L2、網膜色素上皮(RPE)L3、及びブルッフ膜L4が示されている。
Here, FIG. 26 is a diagram for explaining a reference line that defines a depth range by a line connecting the ends of the Bruch film (Bruch film edges P1 and P2). FIG. 26 shows a tomographic image of the optic disc. The tomographic image shown in FIG. 26 shows the vitreous-inner limiting membrane (ILM) boundary L1, the GCL / IPL boundary L2, the retinal pigment epithelium (RPE) L3, and the Bruch's membrane L4.
図26に示すように、ブルッフ膜L4は、網膜内には一般に連続的に存在するが、視神経乳頭部には存在しない。ここで、視神経乳頭部周辺で終結するブルッフ膜の端部をブルッフ膜端と呼んでおり、断層画像ではブルッフ膜端P1,P2のように現れる。
As shown in FIG. 26, the Bruch membrane L4 is generally continuously present in the retina but not in the optic disc. Here, the end of the Bruch's membrane that terminates around the optic nerve head is called the Bruch's membrane end, and appears as the Bruch's membrane ends P1 and P2 in the tomographic image.
ここで、層認識部303によって層認識を行った結果を用いて、ブルッフ膜端P1,P2を特定した上で、ブルッフ膜端P1,P2を結んだ直線Zを深度範囲の基準線とすることができる。この場合、直線Zをドラッグする等の操作により、上下(より浅い方又はより深い方)に移動させることで深度範囲を変更してもよい。
Here, after specifying the Bruch film ends P1 and P2 using the result of layer recognition performed by the layer recognition unit 303, the straight line Z connecting the Bruch film ends P1 and P2 is set as the reference line of the depth range. Can be done. In this case, the depth range may be changed by moving the straight line Z up and down (shallower or deeper) by an operation such as dragging.
このように、ブルッフ膜等の網膜の構造に対して、正面画像を生成するための深度範囲の基準となる境界を決定することで、例えば、撮影条件により撮影された断層画像が傾いても、網膜の構造に対して略平行に投影を行った正面画像を取得することができる。このため、網膜の構造に対して安定した正面画像を取得することができる。
In this way, by determining the boundary that serves as a reference for the depth range for generating a frontal image with respect to the structure of the retina such as the Bruch's membrane, for example, even if the tomographic image captured under the imaging conditions is tilted, It is possible to obtain a frontal image projected substantially parallel to the structure of the retina. Therefore, it is possible to obtain a stable front image with respect to the structure of the retina.
なお、上述した実施例2と同様の処理について、学習済モデルに関する学習データの入力データや運用時の入力データとして複数の輝度のEn-Face画像を用いる構成について説明した。これに対し、例えば、学習データの入力データや運用時の入力データとして、輝度のEn-Face画像における視神経乳頭部を抽出し、当該輝度のEn-Face画像における視神経乳頭部以外をマスクした画像を用いてもよい。この場合には、視神経乳頭部以外の情報をニューラルネットワークに学習させないことにより、不要な情報が入力されないため、学習が早くなったり、推論結果(評価値)が正確になったりすることが期待できる。
Regarding the same processing as in Example 2 described above, a configuration using an En-Face image having a plurality of brightnesss as input data of training data related to the trained model and input data at the time of operation was described. On the other hand, for example, as input data for training data or input data during operation, the optic disc in the En-Face image of brightness is extracted, and an image masking other than the optic disc in the En-Face image of the brightness is used. You may use it. In this case, by not letting the neural network learn information other than the optic disc, unnecessary information is not input, so it can be expected that learning will be faster and the inference result (evaluation value) will be accurate. ..
(実施例5)
実施例1乃至3は、OCTA正面画像を用いて、加齢黄斑変性による新生血管(CNV)が発生している症例に対して、最適な深度範囲の正面画像を提供する構成について述べた。また、実施例4では、視神経乳頭部の篩状板の形態について最適な深度範囲の正面画像を提供する構成について述べた。 (Example 5)
In Examples 1 to 3, the OCTA frontal image was used to describe a configuration for providing a frontal image in an optimum depth range for a case in which neovascularization (CNV) due to age-related macular degeneration is occurring. Further, in Example 4, a configuration for providing a frontal image in an optimum depth range for the morphology of the optic disc is described.
実施例1乃至3は、OCTA正面画像を用いて、加齢黄斑変性による新生血管(CNV)が発生している症例に対して、最適な深度範囲の正面画像を提供する構成について述べた。また、実施例4では、視神経乳頭部の篩状板の形態について最適な深度範囲の正面画像を提供する構成について述べた。 (Example 5)
In Examples 1 to 3, the OCTA frontal image was used to describe a configuration for providing a frontal image in an optimum depth range for a case in which neovascularization (CNV) due to age-related macular degeneration is occurring. Further, in Example 4, a configuration for providing a frontal image in an optimum depth range for the morphology of the optic disc is described.
同様の技術は、脈絡膜のセグメンテーション(Sattler層及びHaller層の分離)にも応用可能である。Sattler層とHaller層の境界も、篩状板の例と同じように、断層画像上では層境界が不明瞭であるため、判別が難しい。一方で、正面画像に投影することで、Sattler層とHaller層の境界に関する血管の構造的な違いを確認することができる。血管の構造的な違いが明確に変わったところを境界とすることで、Sattler層及びHaller層を分離することができる。また、このような場合には、それぞれの層での輝度のEn-Face画像やOCTA正面画像を生成することができる。
The same technique can be applied to choroid segmentation (separation of Sattler layer and Haller layer). The boundary between the Sattler layer and the Haller layer is also difficult to distinguish because the layer boundary is unclear on the tomographic image, as in the case of the sieve plate. On the other hand, by projecting onto a frontal image, it is possible to confirm the structural difference in blood vessels regarding the boundary between the Sattler layer and the Haller layer. The Sattler layer and the Haller layer can be separated by using a boundary where the structural difference of blood vessels is clearly changed. Further, in such a case, it is possible to generate an En-Face image and an OCTA front image of the brightness in each layer.
このため、本実施例では、実施例1と同様に、抽出対象(対象領域)として、Sattler層とHaller層の境界に関する血管の構造を指定し、当該抽出対象に対応する複数の深度範囲についてのEn-Face画像を生成する。なお、複数の深度範囲に関しては、例えば、ブルッフ膜から脈絡膜又は強膜までの範囲内において任意に設定されてよい。これにより、Sattler層とHaller層の境界を確認するために最適な深度範囲の正面画像を生成し、表示することで、操作者はSattler層とHaller層の境界を容易に確認・特定することができる。また、実施例2,3及びそれらの変形例で述べた処理と同様の処理を行って、Sattler層とHaller層の境界に関する血管の構造を確認し易い正面画像を取得することもできる。
Therefore, in this embodiment, as in the first embodiment, the structure of the blood vessel related to the boundary between the Sattler layer and the Haller layer is specified as the extraction target (target area), and a plurality of depth ranges corresponding to the extraction target are specified. Generate an En-Face image. The plurality of depth ranges may be arbitrarily set within the range from the Bruch's membrane to the choroid or sclera, for example. As a result, the operator can easily confirm and identify the boundary between the Sattler layer and the Haller layer by generating and displaying a front image having an optimum depth range for confirming the boundary between the Sattler layer and the Haller layer. it can. It is also possible to obtain a frontal image in which it is easy to confirm the structure of the blood vessel with respect to the boundary between the Sattler layer and the Haller layer by performing the same processing as that described in Examples 2 and 3 and their modified examples.
なお、脈絡膜の層を解析する際は、1μm帯の波長掃引(SS)光源を用いたSS-OCT装置を用いると、脈絡膜の層を観察し易い正面画像を生成することができる。また、輝度のEn-Face画像を用いることで、脈絡膜の層を観察し易いことが知られている。しかしながら、被検眼の撮影に用いるOCT装置や生成する正面画像はこれに限れず、例えば、上述のように、SD方式の光干渉部を用いたSD-OCT装置やOCTA正面画画像を用いてもよい。
When analyzing the choroidal layer, a frontal image that makes it easy to observe the choroidal layer can be generated by using an SS-OCT device that uses a wavelength sweep (SS) light source in the 1 μm band. Further, it is known that it is easy to observe the layer of the choroid by using the En-Face image of brightness. However, the OCT device used for photographing the eye to be inspected and the front image to be generated are not limited to this, and for example, as described above, an SD-OCT device using an SD type optical interference unit or an OCTA front image may be used. Good.
なお、深度範囲の基準となる境界線は、脈絡膜の層構造に沿った形の曲線としてもよい。また、断層画像上でのブルッフ膜若しくはRPEの層形状又はそれらの境界線を用いて、深度範囲を定義するための境界線の形状を決定してもよい。この場合、基準となる境界線をドラッグ等の操作で移動させることで、深度範囲を移動させることができるように構成されてよい。
The boundary line that serves as a reference for the depth range may be a curved line that follows the layered structure of the choroid. Further, the layer shape of the Bruch film or RPE on the tomographic image or the boundary line thereof may be used to determine the shape of the boundary line for defining the depth range. In this case, the depth range may be moved by moving the reference boundary line by an operation such as dragging.
また、同様の技術は、網膜血管の毛細血管瘤の形態を確認するのに最適な深度範囲の正面画像を提供する場合にも適用できる。実施例1と同様に、抽出対象として、網膜血管の毛細血管瘤を指定し、当該抽出対象に対応する複数の深度範囲についての複数のEn-Face画像を生成してもよい。毛細血管瘤は、一般には網膜浅層(ILM~GCL/IPL+50μm)や網膜深層(GCL/IPL+50μm~INL/OPL+70μm)の範囲に存在する。そのため、複数のEn-Face画像を生成するための各深度範囲は、網膜表層又は網膜深層内の深度範囲において任意に設定されてよい。実施例1で述べた処理と同様の処理により、網膜血管の毛細血管瘤を確認するために最適な深度範囲の正面画像を生成し、表示することで、操作者は明瞭な毛細血管瘤を容易に確認することができる。また、実施例2,3及びそれらの変形例で述べた処理と同様の処理を行って、網膜血管の毛細血管瘤を確認し易い正面画像を取得することもできる。
The same technique can also be applied to provide a frontal image of the optimum depth range for confirming the morphology of capillary aneurysms of retinal blood vessels. Similar to Example 1, a capillary aneurysm of a retinal blood vessel may be designated as an extraction target, and a plurality of En-Face images for a plurality of depth ranges corresponding to the extraction target may be generated. Capillary aneurysms generally exist in the superficial retinal layer (ILM to GCL / IPL + 50 μm) and deep retinal layer (GCL / IPL + 50 μm to INL / OPL + 70 μm). Therefore, each depth range for generating a plurality of En-Face images may be arbitrarily set in the depth range in the surface layer of the retina or the deep layer of the retina. By a process similar to the process described in Example 1, an operator can easily create a clear capillary aneurysm by generating and displaying a frontal image having an optimum depth range for confirming the capillary aneurysm of the retinal blood vessel. Can be confirmed in. It is also possible to obtain a frontal image in which a capillary aneurysm of a retinal blood vessel can be easily confirmed by performing the same treatment as described in Examples 2 and 3 and their modified examples.
(変形例1)
上述した様々な実施例及び変形例における表示制御部306は、表示画面のレポート画面において、所望の層の層厚や各種の血管密度等の解析結果を表示させてもよい。また、視神経乳頭部、黄斑部、血管領域、神経線維束、硝子体領域、黄斑領域、脈絡膜領域、強膜領域、篩状板領域、網膜層境界、網膜層境界端部、視細胞、血球、血管壁、血管内壁境界、血管外側境界、神経節細胞、角膜領域、隅角領域、シュレム管等の少なくとも1つを含む注目部位に関するパラメータの値(分布)を解析結果として表示させてもよい。このとき、例えば、各種のアーチファクトの低減処理が適用された医用画像を解析することで、精度の良い解析結果を表示させることができる。なお、アーチファクトは、例えば、血管領域等による光吸収により生じる偽像領域や、プロジェクションアーチファクト、被検眼の状態(動きや瞬き等)によって測定光の主走査方向に生じる正面画像における帯状のアーチファクト等であってもよい。また、アーチファクトは、例えば、被検者の所定部位の医用画像上に撮影毎にランダムに生じるような写損領域であれば、何でもよい。また、表示制御部306は、上述したような様々なアーチファクト(写損領域)の少なくとも1つを含む領域に関するパラメータの値(分布)を解析結果として表示部310に表示させてもよい。また、ドルーゼン、新生血管、白斑(硬性白斑)、及びシュードドルーゼン等の異常部位等の少なくとも1つを含む領域に関するパラメータの値(分布)を解析結果として表示させてもよい。なお、画像解析処理は、画像評価部343によって行われてもよいし、画像処理装置300における画像評価部343とは別の解析部によって行われてもよい。 (Modification example 1)
Thedisplay control unit 306 in the various examples and modifications described above may display analysis results such as a layer thickness of a desired layer and various blood vessel densities on the report screen of the display screen. In addition, the optic nerve head, macular region, vascular region, nerve fiber bundle, vitreous region, macular region, choroidal region, scleral region, lamina cribrosa region, retinal layer boundary, retinal layer boundary edge, photoreceptor cells, blood cells, The value (distribution) of the parameter relating to the site of interest including at least one such as the vascular wall, the vascular inner wall boundary, the vascular lateral boundary, the ganglion cell, the corneal region, the corner region, and Schlemm's canal may be displayed as the analysis result. At this time, for example, by analyzing a medical image to which various artifact reduction processes are applied, it is possible to display an accurate analysis result. The artifact is, for example, a false image region generated by light absorption by a blood vessel region or the like, a projection artifact, a band-shaped artifact in a front image generated in the main scanning direction of the measured light depending on the state of the eye to be inspected (movement, blinking, etc.), or the like. There may be. Further, the artifact may be any image loss region as long as it is randomly generated for each image taken on a medical image of a predetermined portion of the subject, for example. Further, the display control unit 306 may display the value (distribution) of the parameter relating to the region including at least one of the various artifacts (copy loss region) as described above on the display unit 310 as an analysis result. Further, the value (distribution) of the parameter relating to the region including at least one such as drusen, new blood vessel, vitiligo (hard vitiligo), and abnormal site such as pseudo-drusen may be displayed as the analysis result. The image analysis process may be performed by the image evaluation unit 343, or may be performed by an analysis unit different from the image evaluation unit 343 in the image processing device 300.
上述した様々な実施例及び変形例における表示制御部306は、表示画面のレポート画面において、所望の層の層厚や各種の血管密度等の解析結果を表示させてもよい。また、視神経乳頭部、黄斑部、血管領域、神経線維束、硝子体領域、黄斑領域、脈絡膜領域、強膜領域、篩状板領域、網膜層境界、網膜層境界端部、視細胞、血球、血管壁、血管内壁境界、血管外側境界、神経節細胞、角膜領域、隅角領域、シュレム管等の少なくとも1つを含む注目部位に関するパラメータの値(分布)を解析結果として表示させてもよい。このとき、例えば、各種のアーチファクトの低減処理が適用された医用画像を解析することで、精度の良い解析結果を表示させることができる。なお、アーチファクトは、例えば、血管領域等による光吸収により生じる偽像領域や、プロジェクションアーチファクト、被検眼の状態(動きや瞬き等)によって測定光の主走査方向に生じる正面画像における帯状のアーチファクト等であってもよい。また、アーチファクトは、例えば、被検者の所定部位の医用画像上に撮影毎にランダムに生じるような写損領域であれば、何でもよい。また、表示制御部306は、上述したような様々なアーチファクト(写損領域)の少なくとも1つを含む領域に関するパラメータの値(分布)を解析結果として表示部310に表示させてもよい。また、ドルーゼン、新生血管、白斑(硬性白斑)、及びシュードドルーゼン等の異常部位等の少なくとも1つを含む領域に関するパラメータの値(分布)を解析結果として表示させてもよい。なお、画像解析処理は、画像評価部343によって行われてもよいし、画像処理装置300における画像評価部343とは別の解析部によって行われてもよい。 (Modification example 1)
The
また、解析結果は、解析マップや、各分割領域に対応する統計値を示すセクター等で表示されてもよい。なお、解析結果は、画像評価部343又は別の解析部が、医用画像の解析結果を学習データとして学習して得た学習済モデル(解析結果生成エンジン、解析結果生成用の学習済モデル)を用いて生成したものであってもよい。このとき、学習済モデルは、医用画像とその医用画像の解析結果とを含む学習データや、医用画像とその医用画像とは異なる種類の医用画像の解析結果とを含む学習データ等を用いた学習により得たものであってもよい。
Further, the analysis result may be displayed in an analysis map, a sector showing statistical values corresponding to each divided area, or the like. The analysis result is a trained model (analysis result generation engine, trained model for analysis result generation) obtained by the image evaluation unit 343 or another analysis unit learning the analysis result of the medical image as training data. It may be generated by using. At this time, the trained model is trained using training data including a medical image and an analysis result of the medical image, training data including a medical image and an analysis result of a medical image of a type different from the medical image, and the like. It may be obtained by.
また、学習データは、セグメンテーション処理により生成された領域ラベル画像と、それらを用いた医用画像の解析結果とを含んだものでもよい。この場合、画像評価部343は、例えば、解析結果生成用の学習済モデルを用いて、セグメンテーション処理を実行して得た結果(例えば、網膜層の検出結果)から、断層画像や正面画像の解析結果を生成する、解析結果生成部の一例として機能することができる。言い換えれば、画像評価部343は、評価結果を取得するための学習済モデルとは異なる解析結果生成用の学習済モデルを用いて、セグメンテーション処理により特定した異なる領域それぞれについて画像解析結果を生成することができる。なお、セグメンテーション処理は、層認識部303によって行われた層認識結果であってもよいし、層認識部303の処理とは別に行われたものであってもよい。
Further, the learning data may include the area label image generated by the segmentation process and the analysis result of the medical image using them. In this case, the image evaluation unit 343 analyzes a tomographic image or a frontal image from the result obtained by executing the segmentation process (for example, the detection result of the retinal layer) using, for example, the trained model for generating the analysis result. It can function as an example of an analysis result generation unit that generates results. In other words, the image evaluation unit 343 uses a trained model for generating analysis results different from the trained model for acquiring the evaluation results, and generates image analysis results for each of the different regions specified by the segmentation process. Can be done. The segmentation process may be the result of layer recognition performed by the layer recognition unit 303, or may be performed separately from the process of the layer recognition unit 303.
さらに、学習済モデルは、輝度正面画像及びモーションコントラスト正面画像のように、所定部位の異なる種類の複数の医用画像をセットとする入力データを含む学習データを用いた学習により得たものであってもよい。ここで、輝度正面画像は輝度のEn-Face画像に対応し、モーションコントラスト正面画像はOCTAのEn-Face画像に対応する。
Further, the trained model is obtained by training using training data including input data in which a plurality of medical images of different types of predetermined parts are set, such as a luminance front image and a motion contrast front image. May be good. Here, the luminance front image corresponds to the luminance En-Face image, and the motion contrast front image corresponds to the OCTA En-face image.
また、学習データは、例えば、解析領域を解析して得た解析値(例えば、平均値や中央値等)、解析値を含む表、解析マップ、及び画像におけるセクター等の解析領域の位置等の少なくとも1つを含む情報を(教師あり学習の)正解データとして、入力データにラベル付け(アノテーション)したデータであってもよい。なお、操作者からの指示に応じて、解析結果生成用の学習済モデルを用いて得た解析結果が表示されるように構成されてもよい。
Further, the training data includes, for example, analysis values (for example, average value, median value, etc.) obtained by analyzing the analysis area, a table including the analysis values, an analysis map, and the position of the analysis area such as a sector in the image. Information containing at least one may be data labeled (annotated) with input data as correct answer data (for supervised learning). In addition, the analysis result obtained by using the trained model for generating the analysis result may be displayed according to the instruction from the operator.
また、上述した実施例及び変形例における表示制御部306は、表示画面のレポート画面において、緑内障や加齢黄斑変性等の種々の診断結果を表示させてもよい。このとき、例えば、上述したような各種のアーチファクトの低減処理が適用された医用画像を解析することで、精度の良い診断結果を表示させることができる。また、診断結果としては、特定された異常部位等の位置が画像上に表示されてもよいし、異常部位の状態等が文字等によって表示されてもよい。さらに、異常部位等の分類結果(例えば、カーティン分類)が診断結果として表示されてもよい。また、分類結果としては、例えば、異常部位毎の確からしさを示す情報(例えば、割合を示す数値)が表示されてもよい。また、医師が診断を確定させる上で必要な情報が診断結果として表示されてもよい。上記必要な情報としては、例えば、追加撮影等のアドバイスが考えられる。例えば、OCTA画像における血管領域に異常部位が検出された場合には、OCTAよりも詳細に血管を観察可能な造影剤を用いた蛍光撮影を追加で行う旨が表示されてもよい。
Further, the display control unit 306 in the above-described examples and modifications may display various diagnostic results such as glaucoma and age-related macular degeneration on the report screen of the display screen. At this time, for example, by analyzing a medical image to which various artifact reduction processes as described above are applied, it is possible to display an accurate diagnostic result. Further, as the diagnosis result, the position of the specified abnormal portion or the like may be displayed on the image, or the state or the like of the abnormal portion may be displayed by characters or the like. Further, the classification result of the abnormal part or the like (for example, Curtin classification) may be displayed as the diagnosis result. Further, as the classification result, for example, information indicating the certainty of each abnormal part (for example, a numerical value indicating the ratio) may be displayed. In addition, information necessary for the doctor to confirm the diagnosis may be displayed as a diagnosis result. As the necessary information, for example, advice such as additional shooting can be considered. For example, when an abnormal site is detected in the blood vessel region in the OCTA image, it may be displayed that fluorescence imaging using a contrast medium capable of observing the blood vessel in more detail than OCTA is performed.
なお、診断結果は、画像評価部343が、医用画像の診断結果を学習データとして学習して得た学習済モデル(診断結果生成エンジン、診断結果生成用の学習済モデル)を用いて生成されたものであってもよい。また、学習済モデルは、医用画像とその医用画像の診断結果とを含む学習データや、医用画像とその医用画像とは異なる種類の医用画像の診断結果とを含む学習データ等を用いた学習により得たものであってもよい。
The diagnosis result was generated using a trained model (diagnosis result generation engine, trained model for generation of diagnosis result) obtained by the image evaluation unit 343 learning the diagnosis result of the medical image as training data. It may be a thing. In addition, the trained model is based on training using training data including a medical image and a diagnosis result of the medical image, and training data including a medical image and a diagnosis result of a medical image of a type different from the medical image. It may be obtained.
また、学習データは、セグメンテーション処理により生成された領域ラベル画像と、それらを用いた医用画像の診断結果とを含んだものでもよい。この場合、画像評価部343は、例えば、診断結果生成用の学習済モデルを用いて、セグメンテーション処理を実行して得た結果(例えば、網膜層の検出結果)から、正面画像や断層画像の診断結果を生成する、診断結果生成部の一例として機能することができる。言い換えれば、画像評価部343は、評価結果を取得するための学習済モデルとは異なる診断結果生成用の学習済モデルを用いて、セグメンテーション処理により特定した異なる領域それぞれについて診断結果を生成することができる。なお、学習済モデルを用いた診断結果の生成は、画像処理装置300における、画像評価部343とは別の診断部によって行われてもよい。
Further, the learning data may include the area label image generated by the segmentation process and the diagnosis result of the medical image using them. In this case, the image evaluation unit 343 diagnoses the front image or the tomographic image from the result obtained by executing the segmentation process (for example, the detection result of the retinal layer) using, for example, the trained model for generating the diagnosis result. It can function as an example of a diagnostic result generation unit that generates results. In other words, the image evaluation unit 343 can generate a diagnostic result for each of the different regions specified by the segmentation process by using a trained model for generating a diagnostic result different from the trained model for acquiring the evaluation result. it can. The diagnosis result using the trained model may be generated by a diagnosis unit other than the image evaluation unit 343 in the image processing apparatus 300.
また、学習データは、例えば、診断名、病変(異常部位)の種類や状態(程度)、画像における病変の位置、注目領域に対する病変の位置、所見(読影所見等)、診断名の根拠(肯定的な医用支援情報等)、診断名を否定する根拠(否定的な医用支援情報)等の少なくとも1つを含む情報を(教師あり学習の)正解データとして、入力データにラベル付け(アノテーション)したデータであってもよい。なお、検者からの指示に応じて、診断結果生成用の学習済モデルを用いて得た診断結果が表示されるように構成されてもよい。
The learning data includes, for example, the diagnosis name, the type and state (degree) of the lesion (abnormal site), the position of the lesion in the image, the position of the lesion with respect to the region of interest, the findings (interpretation findings, etc.), and the basis of the diagnosis name (affirmation). Information including at least one such as (general medical support information, etc.) and grounds for denying the diagnosis name (negative medical support information), etc. are labeled (annotated) in the input data as correct answer data (for supervised learning). It may be data. In addition, according to the instruction from the examiner, the diagnosis result obtained by using the trained model for generating the diagnosis result may be displayed.
ここで、画像評価部343は、上記実施例2乃至5において、解析結果生成用の学習済モデルを用いて取得した画像の解析結果を、正面画像からの抽出対象(対象領域)であるCNV等の存在を評価する評価結果(評価を示す情報)として取得してもよい。同様に、画像評価部343は、診断結果生成用の学習済モデルを用いて取得した診断結果を、抽出対象の存在を評価する評価結果として取得してもよい。例えば、画像評価部343は、正面画像についてこれら学習済モデルを用いて得た、CNVが存在するという解析結果や診断結果を、当該正面画像についての評価結果とすることができる。また、画像評価部343は、アーチファクトや所定の層に関する解析結果や診断結果を、当該正面画像についての評価結果とすることもできる。
Here, the image evaluation unit 343 extracts the analysis result of the image acquired by using the trained model for generating the analysis result in the above Examples 2 to 5 as the CNV or the like which is the extraction target (target area) from the front image. It may be acquired as an evaluation result (information indicating the evaluation) for evaluating the existence of. Similarly, the image evaluation unit 343 may acquire the diagnosis result acquired by using the trained model for generating the diagnosis result as the evaluation result for evaluating the existence of the extraction target. For example, the image evaluation unit 343 can use the analysis result and the diagnosis result that CNV exists, which are obtained by using these trained models for the front image, as the evaluation result for the front image. Further, the image evaluation unit 343 can also use the analysis result or the diagnosis result regarding the artifact or the predetermined layer as the evaluation result for the front image.
例えば、画像評価部343は、注目部位や注目領域が画像内に存在することを示す解析結果や診断結果を取得した場合には評価値を1として算出することができる。また、画像評価部343は、注目部位や注目領域に関する解析結果又は診断結果の数値や面積に応じて評価値を算出してもよい。例えば、画像評価部343は、段階的に閾値を設け、注目部位や注目領域として解析・診断された領域の面積が超えた閾値に応じて評価値を算出してもよい。また、上記実施例と同様に、画像評価部343によって取得される評価を示す情報は評価値に限られず、抽出対象の存在の有無やその可能性を示す情報であってもよい。なお、上述した各種注目部位や注目領域、アーチファクトは、抽出対象(対象領域)の一例とすることができる。
For example, the image evaluation unit 343 can calculate the evaluation value as 1 when the analysis result or the diagnosis result indicating that the region of interest or the region of interest exists in the image is acquired. In addition, the image evaluation unit 343 may calculate an evaluation value according to the numerical value or area of the analysis result or the diagnosis result regarding the region of interest or the region of interest. For example, the image evaluation unit 343 may set a threshold value step by step and calculate an evaluation value according to a threshold value that exceeds the area of the region of interest or the region analyzed / diagnosed as the region of interest. Further, as in the above embodiment, the information indicating the evaluation acquired by the image evaluation unit 343 is not limited to the evaluation value, and may be information indicating the existence or nonexistence of the extraction target and its possibility. The above-mentioned various sites of interest, regions of interest, and artifacts can be used as examples of extraction targets (target regions).
また、上述した様々な実施例及び変形例に係る表示制御部306は、表示画面のレポート画面において、上述したような注目部位、注目領域、アーチファクト、及び異常部位等の物体認識結果(物体検出結果)やセグメンテーション結果を表示させてもよい。このとき、例えば、画像上の物体の周辺に矩形の枠等を重畳して表示させてもよい。また、例えば、画像における物体上に色等を重畳して表示させてもよい。なお、物体認識結果やセグメンテーション結果は、層認識部303や画像評価部343が、物体認識やセグメンテーションを示す情報を正解データとして医用画像にラベル付け(アノテーション)した学習データを学習して得た学習済モデル(物体認識エンジン、物体認識用の学習済モデル、セグメンテーションエンジン、セグメンテーション用の学習済モデル)を用いて生成されたものであってもよい。
In addition, the display control unit 306 related to the various examples and modifications described above displays object recognition results (object detection results) such as the above-mentioned attention portion, attention region, artifact, and abnormal portion on the report screen of the display screen. ) And the segmentation result may be displayed. At this time, for example, a rectangular frame or the like may be superimposed and displayed around the object on the image. Further, for example, colors and the like may be superimposed and displayed on the object in the image. The object recognition result and the segmentation result are learned obtained by learning the learning data in which the layer recognition unit 303 and the image evaluation unit 343 have labeled (annotated) the medical image with the information indicating the object recognition and the segmentation as the correct answer data. It may be generated using a completed model (object recognition engine, trained model for object recognition, segmentation engine, trained model for segmentation).
画像評価部343は、物体認識用の学習済モデルやセグメンテーション用の学習済モデルを用いた物体認識処理やセグメンテーション処理の結果を、正面画像からの抽出対象であるCNV等の存在を評価する評価結果(評価を示す情報)として取得してもよい。例えば、画像評価部343は、正面画像についてこれら学習済モデルを用いて得た、CNVを示すラベル値等を、当該正面画像についての評価結果とすることができる。また、画像評価部343は、例えば、異常部位を検出した場合には評価値を1として算出することができる。さらに、画像評価部343は、異常部位として検出された領域の面積に応じて評価値を算出してもよい。例えば、画像評価部343は、段階的に閾値を設け、異常部位として検出された領域の面積が超えた閾値に応じて評価値を算出してもよい。また、上記実施例と同様に、画像評価部343によって取得される評価を示す情報は評価値に限られず、抽出対象の存在の有無やその可能性を示す情報であってもよい。なお、上述した各種注目部位や注目領域、アーチファクトは、抽出対象(対象領域)の一例とすることができる。
The image evaluation unit 343 evaluates the result of the object recognition process or segmentation process using the trained model for object recognition or the trained model for segmentation to evaluate the existence of CNV or the like to be extracted from the front image. It may be acquired as (information indicating evaluation). For example, the image evaluation unit 343 can use the label value or the like indicating CNV obtained by using these trained models for the front image as the evaluation result for the front image. Further, the image evaluation unit 343 can calculate the evaluation value as 1, for example, when an abnormal portion is detected. Further, the image evaluation unit 343 may calculate the evaluation value according to the area of the region detected as the abnormal portion. For example, the image evaluation unit 343 may set a threshold value step by step and calculate the evaluation value according to the threshold value when the area of the region detected as the abnormal portion exceeds the threshold value. Further, as in the above embodiment, the information indicating the evaluation acquired by the image evaluation unit 343 is not limited to the evaluation value, and may be information indicating the existence or nonexistence of the extraction target and its possibility. The above-mentioned various sites of interest, regions of interest, and artifacts can be used as examples of extraction targets (target regions).
なお、上述した解析結果生成や診断結果生成は、上述した物体認識結果やセグメンテーション結果を利用することで得られたものであってもよい。例えば、物体認識やセグメンテーションの処理により得た注目部位に対して解析結果生成や診断結果生成の処理を行ってもよい。また、物体認識用の学習済モデルやセグメンテーション用の学習済モデルを用いた物体認識処理やセグメンテーション処理は、画像処理装置300における画像評価部343とは別のセグメンテーション部や層認識部303によって行われてもよい。
The above-mentioned analysis result generation and diagnosis result generation may be obtained by using the above-mentioned object recognition result and segmentation result. For example, analysis result generation or diagnosis result generation processing may be performed on a region of interest obtained by object recognition or segmentation processing. Further, the object recognition process and the segmentation process using the trained model for object recognition and the trained model for segmentation are performed by the segmentation unit and the layer recognition unit 303 different from the image evaluation unit 343 in the image processing device 300. You may.
なお、画像評価部343は、異常部位を検出する場合には、敵対的生成ネットワーク(GAN:Generative Adversarial Networks)や変分オートエンコーダー(VAE:Variational Auto-Encoder)を用いてもよい。例えば、正面画像の生成を学習して得た生成器と、生成器が生成した新たな正面画像と本物の正面画像との識別を学習して得た識別器とからなるDCGAN(Deep Convolutional GAN)を機械学習モデルとして用いることができる。
The image evaluation unit 343 may use a hostile generation network (GAN: Generative Adversarial Networks) or a variational autoencoder (VAE: Variational Auto-Encoder) when detecting an abnormal portion. For example, DCGAN (Deep Convolutional GAN) consisting of a generator obtained by learning the generation of a front image and a classifier obtained by learning the discrimination between a new front image generated by the generator and a real front image. Can be used as a machine learning model.
DCGANを用いる場合には、例えば、識別器が入力された正面画像をエンコードすることで潜在変数にし、生成器が潜在変数に基づいて新たな正面画像を生成する。その後、入力された正面画像と生成された新たな正面画像との差分を異常部位として抽出することができる。また、VAEを用いる場合には、例えば、入力された正面画像をエンコーダーによりエンコードすることで潜在変数にし、潜在変数をデコーダーによりデコードすることで新たな正面画像を生成する。その後、入力された正面画像と生成された新たな正面画像との差分を異常部位として抽出することができる。
When DCGAN is used, for example, the classifier encodes the input front image to make it a latent variable, and the generator generates a new front image based on the latent variable. After that, the difference between the input front image and the generated new front image can be extracted as an abnormal part. When VAE is used, for example, the input front image is encoded by an encoder to be a latent variable, and the latent variable is decoded by a decoder to generate a new front image. After that, the difference between the input front image and the generated new front image can be extracted as an abnormal part.
さらに、画像評価部343は、畳み込みオートエンコーダー(CAE:Convolutional Auto-Encoder)を用いて、異常部位を検出してもよい。CAEを用いる場合には、学習時に入力データ及び出力データとして同じ画像を学習させる。これにより、推定時に異常部位がある画像をCAEに入力すると、学習の傾向に従って異常部位がない画像が出力される。その後、CAEに入力された画像とCAEから出力された画像の差分を異常部位として抽出することができる。
Further, the image evaluation unit 343 may detect an abnormal part by using a convolutional autoencoder (CAE). When CAE is used, the same image is learned as input data and output data at the time of learning. As a result, when an image with an abnormal part is input to CAE at the time of estimation, an image without an abnormal part is output according to the learning tendency. After that, the difference between the image input to the CAE and the image output from the CAE can be extracted as an abnormal portion.
これらの場合、画像評価部343は、正面画像について敵対的生成ネットワーク又はオートエンコーダー(AE)を用いて得た画像と、該敵対的生成ネットワーク又はオートエンコーダーに入力された正面画像との差に関する情報を異常部位に関する情報として生成することができる。これにより、画像評価部343は、高速に精度よく異常部位を検出することが期待できる。ここで、オートエンコーダーには、VAEやCAE等が含まれる。
In these cases, the image evaluation unit 343 provides information on the difference between the image obtained by using the hostile generation network or the autoencoder (AE) for the front image and the front image input to the hostile generation network or the autoencoder. Can be generated as information about the abnormal site. As a result, the image evaluation unit 343 can be expected to detect the abnormal portion at high speed and with high accuracy. Here, the autoencoder includes VAE, CAE, and the like.
画像評価部343は、このような処理により、異常部位を検出した場合には評価値を1として算出することができる。また、画像評価部343は、異常部位として検出された領域の面積に応じて評価値を算出してもよい。例えば、画像評価部343は、段階的に閾値を設け、異常部位として検出された領域の面積が超えた閾値に応じて評価値を算出してもよい。
The image evaluation unit 343 can calculate the evaluation value as 1 when an abnormal portion is detected by such processing. Further, the image evaluation unit 343 may calculate the evaluation value according to the area of the region detected as the abnormal portion. For example, the image evaluation unit 343 may set a threshold value step by step and calculate the evaluation value according to the threshold value when the area of the region detected as the abnormal portion exceeds the threshold value.
なお、画像評価部343は、異常部位を検出するための機械学習モデルとして、例えば、FCN(Fully Convolutional Network)、又はSegNet等を用いることもできる。また、所望の構成に応じて領域単位で物体認識を行う機械学習モデルを用いてもよい。物体認識を行う機械学習モデルとしては、例えば、RCNN(Region CNN)、fastRCNN、又はfasterRCNNを用いることができる。さらに、領域単位で物体認識を行う機械学習モデルとして、YOLO(You Only Look Once)、又はSSD(Single Shot Detector、あるいはSingle Shot MultiBox Detector)を用いることもできる。
Note that the image evaluation unit 343 can also use, for example, FCN (Fully Convolutional Network), SegNet, or the like as a machine learning model for detecting an abnormal portion. Further, a machine learning model that recognizes an object in a region unit according to a desired configuration may be used. As a machine learning model for recognizing an object, for example, RCNN (Region CNN), fastRCNN, or fasterRCNN can be used. Further, as a machine learning model for recognizing an object in each area, YOLO (You Only Look None) or SSD (Single Shot Detector or Single Shot MultiBox Detector) can also be used.
上記では、異常部位について評価値を取得する構成について説明したが、GANやAEを用いた処理はこれに限られない。例えば、画像評価部343は、GANやAEを用いて取得した画像と、GANやAEに入力された画像との相関値等の差異に関する情報を評価値(評価を示す情報)としてもよい。この場合でも、画像評価部343は、正面画像における対象領域(病変部位等)の存在を評価する評価を示す情報を取得することができる。
In the above, the configuration for acquiring the evaluation value for the abnormal part has been described, but the processing using GAN or AE is not limited to this. For example, the image evaluation unit 343 may use information regarding a difference such as a correlation value between an image acquired by using GAN or AE and an image input to GAN or AE as an evaluation value (information indicating evaluation). Even in this case, the image evaluation unit 343 can acquire information indicating the evaluation for evaluating the existence of the target region (lesion site, etc.) in the front image.
また、疾病眼では、疾病の種類に応じて画像特徴が異なる。そのため、上述した様々な実施例や変形例において用いられる学習済モデルは、疾病の種類毎又は異常部位毎にそれぞれ生成・用意されてもよい。この場合には、例えば、画像処理装置300は、操作者からの被検眼の疾病の種類や異常部位等の入力(指示)に応じて、処理に用いる学習済モデルを選択することができる。なお、疾病の種類や異常部位毎に用意される学習済モデルは、物体認識やセグメンテーション用の学習済モデルに限られず、例えば、画像の評価用のエンジンや解析用のエンジン等で用いられる学習済モデルであってもよい。このとき、画像処理装置300は、別に用意された学習済モデルを用いて、画像から被検眼の疾病の種類や異常部位を識別してもよい。この場合には、画像処理装置300は、当該別に用意された学習済モデルを用いて識別された疾病の種類や異常部位に基づいて、上記処理に用いる学習済モデルを自動的に選択することができる。なお、当該被検眼の疾病の種類や異常部位を識別するための学習済モデルは、断層画像や眼底画像、正面画像等を入力データとし、疾病の種類やこれら画像における異常部位を出力データとした学習データのペアを用いて学習を行ってよい。ここで、学習データの入力データとしては、断層画像や眼底画像、正面画像等を単独で入力データとしてもよいし、これらの組み合わせを入力データとしてもよい。
Also, for sick eyes, the image features differ depending on the type of illness. Therefore, the trained models used in the various examples and modifications described above may be generated and prepared for each type of disease or for each abnormal site. In this case, for example, the image processing device 300 can select a trained model to be used for processing according to an input (instruction) of the type of disease of the eye to be inspected, an abnormal part, or the like from the operator. The trained models prepared for each type of disease and abnormal site are not limited to trained models for object recognition and segmentation, and are trained, for example, used in an engine for image evaluation and an engine for analysis. It may be a model. At this time, the image processing device 300 may identify the type of disease or abnormal site of the eye to be inspected from the image by using a separately prepared trained model. In this case, the image processing device 300 may automatically select the trained model to be used for the above processing based on the type of disease or abnormal site identified by using the trained model prepared separately. it can. The trained model for identifying the disease type and abnormal site of the eye to be inspected uses tomographic images, fundus images, frontal images, etc. as input data, and the disease type and abnormal site in these images as output data. Learning may be performed using a pair of training data. Here, as the input data of the training data, a tomographic image, a fundus image, a frontal image, or the like may be used alone as input data, or a combination thereof may be used as input data.
また、特に診断結果生成用の学習済モデルは、被検者の所定部位の異なる種類の複数の医用画像をセットとする入力データを含む学習データにより学習して得た学習済モデルであってもよい。このとき、学習データに含まれる入力データとして、例えば、眼底のモーションコントラスト正面画像及び輝度正面画像(あるいは輝度断層画像)をセットとする入力データが考えられる。また、学習データに含まれる入力データとして、例えば、眼底の断層画像(Bスキャン画像)及びカラー眼底画像(あるいは蛍光眼底画像)をセットとする入力データ等も考えられる。また、異なる種類の複数の医療画像は、異なるモダリティ、異なる光学系、又は異なる原理等により取得されたものであれば何でもよい。
Further, in particular, the trained model for generating the diagnosis result may be a trained model obtained by training with the training data including the input data including a set of a plurality of medical images of different types of the predetermined part of the subject. Good. At this time, as the input data included in the training data, for example, input data in which a motion contrast front image and a luminance front image (or a luminance tom image) of the fundus of the eye are set can be considered. Further, as the input data included in the training data, for example, input data in which a tomographic image (B scan image) of the fundus and a color fundus image (or a fluorescent fundus image) are set can be considered. Further, the plurality of medical images of different types may be anything as long as they are acquired by different modality, different optical systems, different principles, or the like.
また、特に診断結果生成用の学習済モデルは、被検者の異なる部位の複数の医用画像をセットとする入力データを含む学習データにより学習して得た学習済モデルであってもよい。このとき、学習データに含まれる入力データとして、例えば、眼底の断層画像(Bスキャン画像)と前眼部の断層画像(Bスキャン画像)とをセットとする入力データが考えられる。また、学習データに含まれる入力データとして、例えば、眼底の黄斑の3次元OCT画像(3次元断層画像)と眼底の視神経乳頭のサークルスキャン(又はラスタスキャン)断層画像とをセットとする入力データ等も考えられる。
Further, the trained model for generating the diagnosis result may be a trained model obtained by learning from the training data including the input data including a plurality of medical images of different parts of the subject. At this time, as the input data included in the training data, for example, input data in which a tomographic image of the fundus of the eye (B scan image) and a tomographic image of the anterior segment of the eye (B scan image) are considered as a set can be considered. Further, as the input data included in the training data, for example, input data in which a three-dimensional OCT image (three-dimensional tomographic image) of the macula of the fundus and a circle scan (or raster scan) tomographic image of the optic nerve head of the fundus are set as a set, etc. Is also possible.
なお、学習データに含まれる入力データは、被検者の異なる部位及び異なる種類の複数の医用画像であってもよい。このとき、学習データに含まれる入力データは、例えば、前眼部の断層画像とカラー眼底画像とをセットとする入力データ等が考えられる。また、上述した学習済モデルは、被検者の所定部位の異なる撮影画角の複数の医用画像をセットとする入力データを含む学習データにより学習して得た学習済モデルであってもよい。また、学習データに含まれる入力データは、パノラマ画像のように、所定部位を複数領域に時分割して得た複数の医用画像を貼り合わせたものであってもよい。このとき、パノラマ画像のような広画角画像を学習データとして用いることにより、狭画角画像よりも情報量が多い等の理由から画像の特徴量を精度良く取得できる可能性があるため、処理の結果を向上することができる。例えば、推定時(予測時)において、広画角画像における複数の位置で異常部位が検出された場合に、各異常部位の拡大画像を順次表示可能に構成させる。これにより、複数の位置における異常部位を効率よく確認することができるため、例えば、検者の利便性を向上することができる。このとき、例えば、異常部位が検出された広画角画像上の各位置を検者が選択可能に構成され、選択された位置における異常部位の拡大画像が表示されるように構成されてもよい。また、学習データに含まれる入力データは、被検者の所定部位の異なる日時の複数の医用画像をセットとする入力データであってもよい。
The input data included in the learning data may be different parts of the subject and a plurality of different types of medical images. At this time, the input data included in the training data may be, for example, input data in which a tomographic image of the anterior segment of the eye and a color fundus image are set. Further, the trained model described above may be a trained model obtained by learning from training data including input data including a set of a plurality of medical images having different shooting angles of view of a predetermined portion of the subject. Further, the input data included in the learning data may be a combination of a plurality of medical images obtained by time-dividing a predetermined portion into a plurality of regions, such as a panoramic image. At this time, by using a wide angle of view image such as a panoramic image as training data, there is a possibility that the feature amount of the image can be accurately acquired because the amount of information is larger than that of the narrow angle of view image. The result of can be improved. For example, when an abnormal portion is detected at a plurality of positions in a wide angle-of-view image at the time of estimation (prediction), an enlarged image of each abnormal portion can be sequentially displayed. As a result, it is possible to efficiently confirm the abnormal portion at a plurality of positions, so that the convenience of the examiner can be improved, for example. At this time, for example, the examiner may be configured to select each position on the wide angle-of-view image in which the abnormal portion is detected, and an enlarged image of the abnormal portion at the selected position may be displayed. .. Further, the input data included in the learning data may be input data in which a plurality of medical images of different dates and times of a predetermined part of the subject are set.
また、上述した解析結果と診断結果と物体認識結果とセグメンテーション結果とのうち少なくとも1つの結果が表示される表示画面は、レポート画面に限らない。このような表示画面は、例えば、撮影確認画面、経過観察用の表示画面、及び撮影前の各種調整用のプレビュー画面(各種のライブ動画像が表示される表示画面)等の少なくとも1つの表示画面に表示されてもよい。例えば、上述した学習済モデルを用いて得た上記少なくとも1つの結果を撮影確認画面に表示させることにより、操作者は、撮影直後であっても精度の良い結果を確認することができる。
Further, the display screen on which at least one of the above-mentioned analysis result, diagnosis result, object recognition result, and segmentation result is displayed is not limited to the report screen. Such a display screen is, for example, at least one display screen such as a shooting confirmation screen, a display screen for follow-up observation, and a preview screen for various adjustments before shooting (a display screen on which various live moving images are displayed). It may be displayed in. For example, by displaying at least one result obtained by using the above-mentioned trained model on the shooting confirmation screen, the operator can confirm the accurate result even immediately after shooting.
ここで、上述した様々な学習済モデルは、学習データを用いた機械学習により得ることができる。機械学習には、例えば、多階層のニューラルネットワークから成る深層学習(Deep Learning)がある。また、多階層のニューラルネットワークの少なくとも一部には、例えば、畳み込みニューラルネットワーク(CNN)を機械学習モデルとして用いることができる。また、多階層のニューラルネットワークの少なくとも一部には、オートエンコーダー(自己符号化器)に関する技術が用いられてもよい。また、学習には、バックプロパゲーション(誤差逆伝播法)に関する技術が用いられてもよい。ただし、機械学習としては、深層学習に限らず、画像等の学習データの特徴量を学習によって自ら抽出(表現)可能なモデルを用いた学習であれば何でもよい。ここで、機械学習モデルとは、ディープラーニング等の機械学習アルゴリズムによる学習モデルをいう。また、学習済モデルとは、任意の機械学習アルゴリズムによる機械学習モデルに対して、事前に適切な学習データを用いてトレーニングした(学習を行った)モデルである。ただし、学習済モデルは、それ以上の学習を行わないものではなく、追加の学習を行うこともできるものとする。また、学習データとは、入力データ及び出力データ(正解データ)のペアで構成される。ここで、学習データを教師データという場合もあるし、あるいは、正解データを教師データという場合もある。
Here, the various trained models described above can be obtained by machine learning using training data. Machine learning includes, for example, deep learning consisting of a multi-layer neural network. Further, for at least a part of the multi-layer neural network, for example, a convolutional neural network (CNN) can be used as a machine learning model. Further, a technique related to an autoencoder (self-encoder) may be used for at least a part of a multi-layer neural network. Further, a technique related to backpropagation (backpropagation method) may be used for learning. However, the machine learning is not limited to deep learning, and any learning using a model capable of extracting (expressing) the features of learning data such as images by learning may be used. Here, the machine learning model refers to a learning model based on a machine learning algorithm such as deep learning. The trained model is a model in which a machine learning model by an arbitrary machine learning algorithm is trained (learned) in advance using appropriate learning data. However, the trained model does not require further learning, and additional learning can be performed. The learning data is composed of a pair of input data and output data (correct answer data). Here, the learning data may be referred to as teacher data, or the correct answer data may be referred to as teacher data.
なお、GPUは、データをより多く並列処理することで効率的な演算を行うことができる。このため、ディープラーニングのような学習モデルを用いて複数回に渡り学習を行う場合には、GPUで処理を行うことが有効である。そこで、本変形例では、学習部(不図示)の一例である画像処理装置300による処理には、CPUに加えてGPUを用いる。具体的には、学習モデルを含む学習プログラムを実行する場合に、CPUとGPUが協働して演算を行うことで学習を行う。なお、学習部の処理は、CPU又はGPUのみにより演算が行われてもよい。また、上述した様々な学習済モデルを用いた処理を実行する処理部(推定部)も、学習部と同様にGPUを用いてもよい。また、学習部は、不図示の誤差検出部と更新部とを備えてもよい。誤差検出部は、入力層に入力される入力データに応じてニューラルネットワークの出力層から出力される出力データと、正解データとの誤差を得る。誤差検出部は、損失関数を用いて、ニューラルネットワークからの出力データと正解データとの誤差を計算するようにしてもよい。また、更新部は、誤差検出部で得られた誤差に基づいて、その誤差が小さくなるように、ニューラルネットワークのノード間の結合重み付け係数等を更新する。この更新部は、例えば、誤差逆伝播法を用いて、結合重み付け係数等を更新する。誤差逆伝播法は、上記の誤差が小さくなるように、各ニューラルネットワークのノード間の結合重み付け係数等を調整する手法である。
The GPU can perform efficient calculations by processing more data in parallel. Therefore, when learning is performed a plurality of times using a learning model such as deep learning, it is effective to perform processing on the GPU. Therefore, in this modification, a GPU is used in addition to the CPU for processing by the image processing device 300, which is an example of the learning unit (not shown). Specifically, when executing a learning program including a learning model, learning is performed by the CPU and the GPU collaborating to perform calculations. The processing of the learning unit may be performed only by the CPU or GPU. Further, the processing unit (estimation unit) that executes the processing using the various trained models described above may also use the GPU in the same manner as the learning unit. Further, the learning unit may include an error detecting unit and an updating unit (not shown). The error detection unit obtains an error between the output data output from the output layer of the neural network and the correct answer data according to the input data input to the input layer. The error detection unit may use the loss function to calculate the error between the output data from the neural network and the correct answer data. Further, the update unit updates the coupling weighting coefficient between the nodes of the neural network based on the error obtained by the error detection unit so that the error becomes small. This updating unit updates the coupling weighting coefficient and the like by using, for example, the backpropagation method. The error backpropagation method is a method of adjusting the coupling weighting coefficient and the like between the nodes of each neural network so that the above error becomes small.
また、評価処理やセグメンテーション等に用いられる機械学習モデルとしては、複数のダウンサンプリング層を含む複数の階層からなるエンコーダーの機能と、複数のアップサンプリング層を含む複数の階層からなるデコーダーの機能とを有するU-net型の機械学習モデルが適用可能である。U-net型の機械学習モデルでは、エンコーダーとして構成される複数の階層において曖昧にされた位置情報(空間情報)を、デコーダーとして構成される複数の階層において、同次元の階層(互いに対応する階層)で用いることができるように(例えば、スキップコネクションを用いて)構成される。
Further, as a machine learning model used for evaluation processing, segmentation, etc., a function of an encoder composed of a plurality of layers including a plurality of downsampling layers and a function of a decoder composed of a plurality of layers including a plurality of upsampling layers are provided. The U-net type machine learning model to have is applicable. In the U-net type machine learning model, position information (spatial information) that is ambiguous in a plurality of layers configured as encoders is displayed in layers of the same dimension (layers corresponding to each other) in a plurality of layers configured as a decoder. ) (For example, using a skip connection).
また、評価やセグメンテーション等に用いられる機械学習モデルとしては、例えば、FCN、又はSegNet等を用いることもできる。また、所望の構成に応じて領域単位で物体認識を行う機械学習モデルを用いてもよい。物体認識を行う機械学習モデルとしては、例えば、RCNN、fastRCNN、又はfasterRCNNを用いることができる。さらに、領域単位で物体認識を行う機械学習モデルとして、YOLO、又はSSDを用いることもできる。
Further, as a machine learning model used for evaluation, segmentation, etc., for example, FCN, SegNet, or the like can be used. Further, a machine learning model that recognizes an object in a region unit according to a desired configuration may be used. As a machine learning model for performing object recognition, for example, RCNN, fastRCNN, or fasterRCNN can be used. Further, YOLO or SSD can be used as a machine learning model for recognizing an object in a region unit.
また、機械学習モデルは、例えば、カプセルネットワーク(CapsNet:Capsule Network)でもよい。ここで、一般的なニューラルネットワークでは、各ユニット(各ニューロン)はスカラー値を出力するように構成されることによって、例えば、画像における特徴間の空間的な位置関係(相対位置)に関する空間情報が低減されるように構成されている。これにより、例えば、画像の局所的な歪みや平行移動等の影響が低減されるような学習を行うことができる。一方、カプセルネットワークでは、各ユニット(各カプセル)は空間情報をベクトルとして出力するように構成されることよって、例えば、空間情報が保持されるように構成されている。これにより、例えば、画像における特徴間の空間的な位置関係が考慮されたような学習を行うことができる。
Further, the machine learning model may be, for example, a capsule network (CapsNet: Capsule Network). Here, in a general neural network, each unit (each neuron) is configured to output a scalar value, so that, for example, spatial information regarding the spatial positional relationship (relative position) between features in an image can be obtained. It is configured to be reduced. Thereby, for example, learning can be performed so as to reduce the influence of local distortion and translation of the image. On the other hand, in the capsule network, each unit (each capsule) is configured to output spatial information as a vector, so that, for example, spatial information is retained. Thereby, for example, learning can be performed in which the spatial positional relationship between the features in the image is taken into consideration.
また、評価用の学習済モデルは、当該学習済モデルにより生成された少なくとも1つの評価値を含む学習データを追加学習して得た学習済モデルであってもよい。このとき、評価値を追加学習用の学習データとして用いるか否かを、検者からの指示により選択可能に構成されてもよい。なお、これらの構成は、評価用の学習済モデルに限らず、上述した様々な学習済モデルに対しても適用可能である。また、上述した様々な学習済モデルの学習に用いられる正解データの生成には、ラベル付け(アノテーション)等の正解データを生成するための正解データ生成用の学習済モデルが用いられてもよい。このとき、正解データ生成用の学習済モデルは、検者がラベル付け(アノテーション)して得た正解データを(順次)追加学習することにより得られたものであってもよい。すなわち、正解データ生成用の学習済モデルは、ラベル付け前のデータを入力データとし、ラベル付け後のデータを出力データとする学習データを追加学習することにより得られたものであってもよい。また、動画像等のような連続する複数フレームにおいて、前後のフレームの物体認識やセグメンテーション等の結果を考慮して、結果の精度が低いと判定されたフレームの結果を修正するように構成されてもよい。このとき、検者からの指示に応じて、修正後の結果を正解データとして追加学習するように構成されてもよい。
Further, the trained model for evaluation may be a trained model obtained by additionally learning training data including at least one evaluation value generated by the trained model. At this time, whether or not to use the evaluation value as learning data for additional learning may be configured to be selectable according to an instruction from the examiner. It should be noted that these configurations can be applied not only to the trained model for evaluation but also to the various trained models described above. Further, in the generation of the correct answer data used for learning the various trained models described above, the trained model for generating the correct answer data for generating the correct answer data such as labeling (annotation) may be used. At this time, the trained model for generating correct answer data may be obtained by (sequentially) additionally learning the correct answer data obtained by labeling (annotation) by the examiner. That is, the trained model for generating correct answer data may be obtained by additional training of training data in which the data before labeling is used as input data and the data after labeling is used as output data. Further, in a plurality of consecutive frames such as a moving image, the result of the frame judged to have low accuracy is corrected in consideration of the results of object recognition and segmentation of the preceding and following frames. May be good. At this time, according to the instruction from the examiner, the corrected result may be additionally learned as correct answer data.
なお、物体認識用の学習済モデルやセグメンテーション用の学習済モデルを用いて被検眼の領域を検出する場合には、検出した領域毎に所定の画像処理を施すこともできる。例えば、硝子体領域、網膜領域、及び脈絡膜領域のうちの少なくとも2つの領域を検出する場合を考える。この場合には、検出された少なくとも2つの領域に対してコントラスト調整等の画像処理を施す際に、それぞれ異なる画像処理のパラメータを用いることで、各領域に適した調整を行うことができる。各領域に適した調整が行われた画像を表示することで、操作者は領域毎の疾病等をより適切に診断することができる。なお、検出された領域毎に異なる画像処理のパラメータを用いる構成については、例えば、学習済モデルを用いずに検出された被検眼の領域について同様に適用されてもよい。
When the area to be inspected is detected by using the trained model for object recognition or the trained model for segmentation, predetermined image processing can be performed for each detected area. For example, consider the case of detecting at least two regions of the vitreous region, the retinal region, and the choroid region. In this case, when performing image processing such as contrast adjustment on at least two detected regions, adjustments suitable for each region can be performed by using different image processing parameters. By displaying the image adjusted suitable for each area, the operator can more appropriately diagnose the disease or the like in each area. Note that the configuration using different image processing parameters for each detected region may be similarly applied to the region of the eye to be inspected detected without using the trained model, for example.
(変形例2)
上述した様々な実施例及び変形例においては、各種学習済モデルが追加学習中である場合、追加学習中の学習済モデル自体を用いて出力(推論・予測)することが難しい可能性がある。このため、追加学習中の学習済モデルに対する正面画像や医用画像の入力を禁止することがよい。また、追加学習中の学習済モデルと同じ学習済モデルをもう一つ予備の学習済モデルとして用意してもよい。このとき、追加学習中には、予備の学習済モデルに対して正面画像や医用画像の入力が実行できるようにすることがよい。そして、追加学習が完了した後に、追加学習後の学習済モデルを評価し、問題がなければ、予備の学習済モデルから追加学習後の学習済モデルに置き換えればよい。また、問題があれば、予備の学習済モデルが用いられるようにしてもよい。 (Modification 2)
In the various examples and modifications described above, when various trained models are undergoing additional learning, it may be difficult to output (infer / predict) using the trained model itself during the additional learning. Therefore, it is preferable to prohibit the input of the front image and the medical image to the trained model during the additional learning. Further, another trained model that is the same as the trained model being additionally trained may be prepared as another preliminary trained model. At this time, during the additional learning, it is preferable to be able to input the front image and the medical image to the preliminary trained model. Then, after the additional learning is completed, the trained model after the additional learning is evaluated, and if there is no problem, the preliminary trained model may be replaced with the trained model after the additional learning. Also, if there is a problem, a preliminary trained model may be used.
上述した様々な実施例及び変形例においては、各種学習済モデルが追加学習中である場合、追加学習中の学習済モデル自体を用いて出力(推論・予測)することが難しい可能性がある。このため、追加学習中の学習済モデルに対する正面画像や医用画像の入力を禁止することがよい。また、追加学習中の学習済モデルと同じ学習済モデルをもう一つ予備の学習済モデルとして用意してもよい。このとき、追加学習中には、予備の学習済モデルに対して正面画像や医用画像の入力が実行できるようにすることがよい。そして、追加学習が完了した後に、追加学習後の学習済モデルを評価し、問題がなければ、予備の学習済モデルから追加学習後の学習済モデルに置き換えればよい。また、問題があれば、予備の学習済モデルが用いられるようにしてもよい。 (Modification 2)
In the various examples and modifications described above, when various trained models are undergoing additional learning, it may be difficult to output (infer / predict) using the trained model itself during the additional learning. Therefore, it is preferable to prohibit the input of the front image and the medical image to the trained model during the additional learning. Further, another trained model that is the same as the trained model being additionally trained may be prepared as another preliminary trained model. At this time, during the additional learning, it is preferable to be able to input the front image and the medical image to the preliminary trained model. Then, after the additional learning is completed, the trained model after the additional learning is evaluated, and if there is no problem, the preliminary trained model may be replaced with the trained model after the additional learning. Also, if there is a problem, a preliminary trained model may be used.
また、撮影部位毎に学習して得た学習済モデルを選択的に利用できるようにしてもよい。具体的には、第一の撮影部位(肺、被検眼等)を含む学習データを用いて得た第一の学習済モデルと、第一の撮影部位とは異なる第二の撮影部位を含む学習データを用いて得た第二の学習済モデルと、を含む複数の学習済モデルを用意することができる。そして、画像処理装置300は、これら複数の学習済モデルのいずれかを選択する選択手段を有してもよい。このとき、画像処理装置300は、選択された学習済モデルに対して追加学習を実行する制御手段を有してもよい。制御手段は、検者からの指示に応じて、選択された学習済モデルに対応する撮影部位と該撮影部位の撮影画像とがペアとなるデータを検索し、検索して得たデータを学習データとする学習を、選択された学習済モデルに対して追加学習として実行することができる。なお、選択された学習済モデルに対応する撮影部位は、データのヘッダの情報から取得したり、検者により手動入力されたりしたものであってよい。また、データの検索は、例えば、病院や研究所等の外部施設のサーバ等からネットワークを介して行われてよい。これにより、学習済モデルに対応する撮影部位の撮影画像を用いて、撮影部位毎に効率的に追加学習することができる。
In addition, the trained model obtained by learning for each imaging site may be selectively used. Specifically, learning including a first learned model obtained by using learning data including the first imaging site (lung, eye to be examined, etc.) and a second imaging site different from the first imaging site. A second trained model obtained using the data and a plurality of trained models including the second trained model can be prepared. Then, the image processing device 300 may have a selection means for selecting one of the plurality of trained models. At this time, the image processing device 300 may have a control means for executing additional learning on the selected trained model. The control means searches for data in which the imaged part corresponding to the selected trained model and the photographed image of the imaged part are paired according to the instruction from the examiner, and the data obtained by the search is the learning data. Can be executed as additional learning for the selected trained model. The imaging site corresponding to the selected trained model may be acquired from the information in the header of the data or manually input by the examiner. Further, the data search may be performed from a server of an external facility such as a hospital or a research institute via a network, for example. As a result, additional learning can be efficiently performed for each imaged part by using the photographed image of the imaged part corresponding to the trained model.
なお、選択手段及び制御手段は、画像処理装置300のCPUやMPU等のプロセッサーによって実行されるソフトウェアモジュールにより構成されてよい。また、選択手段及び制御手段は、ASIC等の特定の機能を果たす回路や独立した装置等によって構成されてもよい。
The selection means and the control means may be composed of a software module executed by a processor such as a CPU or an MPU of the image processing device 300. Further, the selection means and the control means may be composed of a circuit that performs a specific function such as an ASIC, an independent device, or the like.
また、追加学習用の学習データを、病院や研究所等の外部施設のサーバ等からネットワークを介して取得する際には、改ざんや、追加学習時のシステムトラブル等による信頼性低下を低減することが有用である。そこで、デジタル署名やハッシュ化による一致性の確認を行うことで、追加学習用の学習データの正当性を検出してもよい。これにより、追加学習用の学習データを保護することができる。このとき、デジタル署名やハッシュ化による一致性の確認した結果として、追加学習用の学習データの正当性が検出できなかった場合には、その旨の警告を行い、その学習データによる追加学習を行わないものとする。なお、サーバは、その設置場所を問わず、例えば、クラウドサーバ、フォグサーバ、エッジサーバ等のどのような形態でもよい。
In addition, when acquiring learning data for additional learning from a server of an external facility such as a hospital or research institute via a network, it is necessary to reduce reliability deterioration due to falsification or system trouble during additional learning. Is useful. Therefore, the correctness of the learning data for additional learning may be detected by confirming the consistency by digital signature or hashing. As a result, the learning data for additional learning can be protected. At this time, if the validity of the training data for additional learning cannot be detected as a result of confirming the consistency by digital signature or hashing, a warning to that effect is given and additional learning is performed using the training data. Make it not exist. The server may be in any form, for example, a cloud server, a fog server, an edge server, or the like, regardless of its installation location.
(変形例3)
上述した様々な実施例及び変形例において、検者からの指示は、手動による指示(例えば、ユーザーインターフェース等を用いた指示)以外にも、音声等による指示であってもよい。このとき、例えば、機械学習により得た音声認識モデル(音声認識エンジン、音声認識用の学習済モデル)を含む機械学習モデルが用いられてもよい。また、手動による指示は、キーボードやタッチパネル等を用いた文字入力等による指示であってもよい。このとき、例えば、機械学習により得た文字認識モデル(文字認識エンジン、文字認識用の学習済モデル)を含む機械学習モデルが用いられてもよい。また、検者からの指示は、ジェスチャー等による指示であってもよい。このとき、機械学習により得たジェスチャー認識モデル(ジェスチャー認識エンジン、ジェスチャー認識用の学習済モデル)を含む機械学習モデルが用いられてもよい。 (Modification example 3)
In the various examples and modifications described above, the instruction from the examiner may be an instruction by voice or the like in addition to a manual instruction (for example, an instruction using a user interface or the like). At this time, for example, a machine learning model including a voice recognition model (speech recognition engine, trained model for voice recognition) obtained by machine learning may be used. Further, the manual instruction may be an instruction by character input or the like using a keyboard, a touch panel, or the like. At this time, for example, a machine learning model including a character recognition model (character recognition engine, trained model for character recognition) obtained by machine learning may be used. Further, the instruction from the examiner may be an instruction by a gesture or the like. At this time, a machine learning model including a gesture recognition model (gesture recognition engine, learned model for gesture recognition) obtained by machine learning may be used.
上述した様々な実施例及び変形例において、検者からの指示は、手動による指示(例えば、ユーザーインターフェース等を用いた指示)以外にも、音声等による指示であってもよい。このとき、例えば、機械学習により得た音声認識モデル(音声認識エンジン、音声認識用の学習済モデル)を含む機械学習モデルが用いられてもよい。また、手動による指示は、キーボードやタッチパネル等を用いた文字入力等による指示であってもよい。このとき、例えば、機械学習により得た文字認識モデル(文字認識エンジン、文字認識用の学習済モデル)を含む機械学習モデルが用いられてもよい。また、検者からの指示は、ジェスチャー等による指示であってもよい。このとき、機械学習により得たジェスチャー認識モデル(ジェスチャー認識エンジン、ジェスチャー認識用の学習済モデル)を含む機械学習モデルが用いられてもよい。 (Modification example 3)
In the various examples and modifications described above, the instruction from the examiner may be an instruction by voice or the like in addition to a manual instruction (for example, an instruction using a user interface or the like). At this time, for example, a machine learning model including a voice recognition model (speech recognition engine, trained model for voice recognition) obtained by machine learning may be used. Further, the manual instruction may be an instruction by character input or the like using a keyboard, a touch panel, or the like. At this time, for example, a machine learning model including a character recognition model (character recognition engine, trained model for character recognition) obtained by machine learning may be used. Further, the instruction from the examiner may be an instruction by a gesture or the like. At this time, a machine learning model including a gesture recognition model (gesture recognition engine, learned model for gesture recognition) obtained by machine learning may be used.
また、検者からの指示は、表示部310における表示画面上の検者の視線検出結果等であってもよい。視線検出結果は、例えば、表示部310における表示画面の周辺から撮影して得た検者の動画像を用いた瞳孔検出結果であってもよい。このとき、動画像からの瞳孔検出は、上述したような物体認識エンジンを用いてもよい。また、検者からの指示は、脳波、体を流れる微弱な電気信号等による指示であってもよい。
Further, the instruction from the examiner may be the result of the examiner's line-of-sight detection on the display screen of the display unit 310 or the like. The line-of-sight detection result may be, for example, a pupil detection result using a moving image of the examiner obtained by photographing from the periphery of the display screen on the display unit 310. At this time, the object recognition engine as described above may be used for the pupil detection from the moving image. Further, the instruction from the examiner may be an instruction by an electroencephalogram, a weak electric signal flowing through the body, or the like.
このような場合、例えば、学習データとしては、上述したような種々の学習済モデルの処理による結果の表示の指示を示す文字データ又は音声データ(波形データ)等を入力データとし、種々の学習済モデルの処理による結果等を実際に表示部に表示させるための実行命令を正解データとする学習データであってもよい。また、学習データとしては、例えば、抽出対象(対象領域)の指定の指示を示す文字データ又は音声データ等を入力データとし、抽出対象の指定の実行命令及び図5に示す選択ボタン等を選択するための実行命令を正解データとする学習データであってもよい。なお、学習データとしては、例えば、文字データ又は音声データ等が示す指示内容と実行命令内容とが互いに対応するものであれば何でもよい。また、音響モデルや言語モデル等を用いて、音声データから文字データに変換してもよい。また、複数のマイクで得た波形データを用いて、音声データに重畳しているノイズデータを低減する処理を行ってもよい。また、文字又は音声等による指示と、マウス又はタッチパネル等による指示とを、検者からの指示に応じて選択可能に構成されてもよい。また、文字又は音声等による指示のオン・オフを、検者からの指示に応じて選択可能に構成されてもよい。
In such a case, for example, as the training data, various trained data such as character data or voice data (waveform data) indicating an instruction for displaying the result by processing the various trained models as described above are used as input data. The training data may be training data in which the execution instruction for actually displaying the result of the model processing on the display unit is the correct answer data. Further, as the training data, for example, character data or voice data indicating an instruction for designating the extraction target (target area) is used as input data, and an execution command for designating the extraction target and a selection button shown in FIG. 5 are selected. It may be learning data in which the execution instruction for the purpose is the correct answer data. The learning data may be any data as long as the instruction content and the execution instruction content indicated by the character data, the voice data, or the like correspond to each other. Further, the voice data may be converted into character data by using an acoustic model, a language model, or the like. Further, the waveform data obtained by the plurality of microphones may be used to perform a process of reducing the noise data superimposed on the voice data. Further, the instruction by characters or voice and the instruction by a mouse or a touch panel may be configured to be selectable according to the instruction from the examiner. Further, the on / off of the instruction by characters or voice may be selectably configured according to the instruction from the examiner.
このような構成によれば、抽出対象(対象領域)は、画像生成部304(対象指定部)によって、文字認識結果を生成するための学習済モデル、音声認識結果を生成するための学習済モデル、及びジェスチャー認識結果を生成するための学習済モデルのうち少なくとも一つの学習済モデルを用いて得た情報を用いて指定されることができる。これにより、検者による画像処理装置300の操作性を向上させることができる。
According to such a configuration, the extraction target (target area) is a trained model for generating a character recognition result and a trained model for generating a voice recognition result by the image generation unit 304 (target designation unit). , And the information obtained by using at least one of the trained models for generating the gesture recognition result can be specified. This makes it possible to improve the operability of the image processing device 300 by the examiner.
ここで、機械学習には、上述したような深層学習があり、また、多階層のニューラルネットワークの少なくとも一部には、例えば、再帰型ニューラルネットワーク(RNN:Recurrent Neural Network)を用いることができる。ここで、本変形例に係る機械学習モデルの一例として、時系列情報を扱うニューラルネットワークであるRNNに関して、図27A及び図27Bを参照して説明する。また、RNNの一種であるLong short-term memory(以下、LSTM)に関して、図28A及び図28Bを参照して説明する。
Here, machine learning includes deep learning as described above, and for at least a part of a multi-layer neural network, for example, a recurrent neural network (RNN) can be used. Here, as an example of the machine learning model according to this modified example, RNN, which is a neural network that handles time series information, will be described with reference to FIGS. 27A and 27B. Further, a Long short-term memory (hereinafter referred to as LSTM), which is a kind of RNN, will be described with reference to FIGS. 28A and 28B.
図27Aは、機械学習モデルであるRNNの構造を示す。RNN2720は、ネットワークにループ構造を持ち、時刻tにおいてデータxt2710が入力され、データht2730を出力する。RNN2720はネットワークにループ機能を持つため、現時刻の状態を次の状態に引き継ぐことが可能であるため、時系列情報を扱うことができる。図27Bには時刻tにおけるパラメータベクトルの入出力の一例を示す。データxt2710にはN個(Params1~ParamsN)のデータが含まれる。また、RNN2720より出力されるデータht2730には入力データに対応するN個(Params1~ParamsN)のデータが含まれる。
FIG. 27A shows the structure of the RNN, which is a machine learning model. The RNN2720 has a loop structure in the network, data x t 2710 is input at time t, and data h t 2730 is output. Since the RNN2720 has a loop function in the network, the current state can be inherited to the next state, so that time-series information can be handled. FIG. 27B shows an example of input / output of the parameter vector at time t. The data x t 2710 contains N pieces of data (Params1 to ParamsN). Further, the data h t 2730 output from the RNN 2720 includes N data (Params 1 to Params N) corresponding to the input data.
しかしながら、RNNでは誤差逆伝播時に長期時間の情報を扱うことができないため、LSTMが用いられることがある。LSTMは、忘却ゲート、入力ゲート、及び出力ゲートを備えることで長期時間の情報を学習することができる。ここで、図28AにLSTMの構造を示す。LSTM2840において、ネットワークが次の時刻tに引き継ぐ情報は、セルと呼ばれるネットワークの内部状態ct-1と出力データht-1である。なお、図の小文字(c、h、x)はベクトルを表している。
However, since RNN cannot handle long-term information during error back propagation, LSTM may be used. The LSTM can learn long-term information by including a forgetting gate, an input gate, and an output gate. Here, FIG. 28A shows the structure of the LSTM. In the RSTM2840, the information that the network takes over at the next time t is the internal state ct -1 of the network called the cell and the output data h t-1 . The lowercase letters (c, h, x) in the figure represent vectors.
次に、図28BにLSTM2840の詳細を示す。図28Bにおいては、忘却ゲートネットワークFG、入力ゲートネットワークIG、及び出力ゲートネットワークOGが示され、それぞれはシグモイド層である。そのため、各要素が0から1の値となるベクトルを出力する。忘却ゲートネットワークFGは過去の情報をどれだけ保持するかを決め、入力ゲートネットワークIGはどの値を更新するかを判定するものである。また、図28Bにおいては、セル更新候補ネットワークCUが示され、セル更新候補ネットワークCUは活性化関数tanh層である。これは、セルに加えられる新たな候補値のベクトルを作成する。出力ゲートネットワークOGは、セル候補の要素を選択し次の時刻にどの程度の情報を伝えるか選択する。
Next, FIG. 28B shows the details of RSTM2840. In FIG. 28B, the oblivion gate network FG, the input gate network IG, and the output gate network OG are shown, each of which is a sigmoid layer. Therefore, a vector in which each element has a value of 0 to 1 is output. The oblivion gate network FG determines how much past information is retained, and the input gate network IG determines which value to update. Further, in FIG. 28B, the cell update candidate network CU is shown, and the cell update candidate network CU is the activation function tanh layer. This creates a vector of new candidate values to be added to the cell. The output gate network OG selects the cell candidate element and selects how much information to convey at the next time.
なお、上述したLSTMのモデルは基本形であるため、ここで示したネットワークに限らない。ネットワーク間の結合を変更してもよい。LSTMではなく、QRNN(Quasi Recurrent Neural Network)を用いてもよい。さらに、機械学習モデルは、ニューラルネットワークに限定されるものではなく、ブースティングやサポートベクターマシン等が用いられてもよい。また、検者からの指示が文字又は音声等による入力の場合には、自然言語処理に関する技術(例えば、Sequence to Sequence)が適用されてもよい。また、検者に対して文字又は音声等による出力で応答する対話エンジン(対話モデル、対話用の学習済モデル)が適用されてもよい。
Since the above-mentioned LSTM model is a basic model, it is not limited to the network shown here. You may change the coupling between the networks. QRNN (Quasi Recurrent Neural Network) may be used instead of RSTM. Further, the machine learning model is not limited to the neural network, and boosting, a support vector machine, or the like may be used. Further, when the instruction from the examiner is input by characters, voice, or the like, a technique related to natural language processing (for example, Sequence to Sequence) may be applied. Further, a dialogue engine (dialogue model, trained model for dialogue) that responds to the examiner by outputting characters or voices may be applied.
(変形例4)
上述した様々な実施例及び変形例において、正面画像やセグメンテーション処理により生成された領域ラベル画像等は、操作者からの指示に応じて記憶部に保存されてもよい。このとき、例えば、領域ラベル画像を保存するための操作者からの指示の後、ファイル名の登録の際に、推奨のファイル名として、ファイル名のいずれかの箇所(例えば、最初の箇所、又は最後の箇所)に、セグメンテーション用の学習済モデルを用いた処理により生成された画像であることを示す情報(例えば、文字)を含むファイル名が、操作者からの指示に応じて編集可能な状態で表示されてもよい。なお、同様に、他の学習済モデルを用いて得た画像等について、当該学習済モデルを用いた処理により生成された画像である情報を含むファイル名が表示されてもよい。 (Modification example 4)
In the various examples and modifications described above, the front image, the area label image generated by the segmentation process, and the like may be stored in the storage unit in response to an instruction from the operator. At this time, for example, after an instruction from the operator for saving the area label image, when registering the file name, as a recommended file name, any part of the file name (for example, the first part, or In the last part), a file name containing information (for example, characters) indicating that the image is generated by processing using a trained model for segmentation can be edited according to an instruction from the operator. It may be displayed as. Similarly, for an image or the like obtained by using another trained model, a file name including information which is an image generated by a process using the trained model may be displayed.
上述した様々な実施例及び変形例において、正面画像やセグメンテーション処理により生成された領域ラベル画像等は、操作者からの指示に応じて記憶部に保存されてもよい。このとき、例えば、領域ラベル画像を保存するための操作者からの指示の後、ファイル名の登録の際に、推奨のファイル名として、ファイル名のいずれかの箇所(例えば、最初の箇所、又は最後の箇所)に、セグメンテーション用の学習済モデルを用いた処理により生成された画像であることを示す情報(例えば、文字)を含むファイル名が、操作者からの指示に応じて編集可能な状態で表示されてもよい。なお、同様に、他の学習済モデルを用いて得た画像等について、当該学習済モデルを用いた処理により生成された画像である情報を含むファイル名が表示されてもよい。 (Modification example 4)
In the various examples and modifications described above, the front image, the area label image generated by the segmentation process, and the like may be stored in the storage unit in response to an instruction from the operator. At this time, for example, after an instruction from the operator for saving the area label image, when registering the file name, as a recommended file name, any part of the file name (for example, the first part, or In the last part), a file name containing information (for example, characters) indicating that the image is generated by processing using a trained model for segmentation can be edited according to an instruction from the operator. It may be displayed as. Similarly, for an image or the like obtained by using another trained model, a file name including information which is an image generated by a process using the trained model may be displayed.
また、レポート画面等の種々の表示画面において、表示部310に領域ラベル画像を表示させる際に、表示されている画像がセグメンテーション用の学習済モデルを用いた処理により生成された画像であることを示す表示が、画像とともに表示されてもよい。この場合には、操作者は、当該表示によって、表示された画像が撮影によって取得した画像そのものではないことが容易に識別できるため、誤診断を低減させたり、診断効率を向上させたりすることができる。なお、セグメンテーション用の学習済モデルを用いた処理により生成された画像であることを示す表示は、入力画像と当該処理により生成された画像とを識別可能な表示であればどのような態様のものでもよい。また、セグメンテーション用の学習済モデルを用いた処理だけでなく、上述したような種々の学習済モデルを用いた処理についても、その種類の学習済モデルを用いた処理により生成された結果であることを示す表示が、その結果とともに表示されてもよい。また、セグメンテーション処理用の学習済モデルを用いたセグメンテーション結果の解析結果を表示する際にも、セグメンテーション用の学習済モデルを用いた結果に基づいた解析結果であることを示す表示が、解析結果とともに表示されてもよい。
Further, when displaying the area label image on the display unit 310 on various display screens such as the report screen, it is determined that the displayed image is an image generated by processing using the trained model for segmentation. The indication shown may be displayed with the image. In this case, the operator can easily identify from the display that the displayed image is not the image itself acquired by shooting, so that misdiagnosis can be reduced or the diagnosis efficiency can be improved. it can. In addition, the display indicating that the image is generated by the process using the trained model for segmentation is any form as long as the input image and the image generated by the process can be distinguished from each other. But it may be. Further, not only the processing using the trained model for segmentation but also the processing using the various trained models as described above is the result generated by the processing using the trained model of that type. May be displayed with the result. In addition, when displaying the analysis result of the segmentation result using the trained model for segmentation processing, the display indicating that the analysis result is based on the result using the trained model for segmentation is displayed together with the analysis result. It may be displayed.
このとき、レポート画面等の表示画面は、操作者からの指示に応じて、画像データとして記憶部に保存されてもよい。例えば、領域ラベル画像等と、これらの画像が学習済モデルを用いた処理により生成された画像であることを示す表示とが並んだ1つの画像としてレポート画面が記憶部に保存されてもよい。
At this time, the display screen such as the report screen may be saved in the storage unit as image data according to the instruction from the operator. For example, the report screen may be saved in the storage unit as one image in which the area label image and the like and the display indicating that these images are images generated by the processing using the trained model are arranged side by side.
また、セグメンテーション用の学習済モデルを用いた処理により生成された画像であることを示す表示について、セグメンテーション用の学習済モデルがどのような学習データによって学習を行ったものであるかを示す表示が表示部に表示されてもよい。当該表示としては、学習データの入力データと正解データの種類の説明や、入力データと正解データに含まれる撮影部位等の正解データに関する任意の表示を含んでよい。なお、例えば上述した種々の学習済モデルを用いた処理についても、その種類の学習済モデルがどのような学習データによって学習を行ったものであるかを示す表示が表示部310に表示されてもよい。
In addition, regarding the display showing that the image is generated by the processing using the trained model for segmentation, the display showing what kind of training data the trained model for segmentation used for training is displayed. It may be displayed on the display unit. The display may include an explanation of the types of the input data and the correct answer data of the learning data, and an arbitrary display regarding the correct answer data such as the imaging part included in the input data and the correct answer data. For example, even in the case of processing using the various trained models described above, even if a display indicating what kind of training data the trained model of that type is trained by is displayed on the display unit 310. Good.
また、学習済モデルを用いた処理により生成された画像であることを示す情報(例えば、文字)を、画像等に重畳した状態で表示又は保存されるように構成されてもよい。このとき、画像上に重畳する箇所は、撮影対象となる注目部位等が表示されている領域には重ならない領域(例えば、画像の端)であればどこでもよい。また、重ならない領域を判定し、判定された領域に重畳させてもよい。なお、セグメンテーション用の学習済モデルを用いた処理だけでなく、他の上述した種々の学習済モデルを用いた処理により得た画像についても、同様に処理してよい。
Further, information (for example, characters) indicating that the image is generated by processing using the trained model may be displayed or stored in a state of being superimposed on the image or the like. At this time, the portion to be superimposed on the image may be any region (for example, the edge of the image) that does not overlap with the region where the region of interest to be photographed is displayed. Further, the non-overlapping areas may be determined and superimposed on the determined areas. In addition to the processing using the trained model for segmentation, the image obtained by the processing using the other various trained models described above may be processed in the same manner.
また、レポート画面の初期表示画面として、図4に示すように所定の抽出対象(対象領域)が選択されるようにデフォルト設定されている場合には、検者からの指示に応じて、抽出対象の画像等を含むレポート画面に対応するレポート画像がサーバに送信されるように構成されてもよい。また、所定の抽出対象が選択されるようにデフォルト設定されている場合には、検査終了時(例えば、検者からの指示に応じて、撮影確認画面やプレビュー画面からレポート画面に変更された場合)に、抽出対象の画像等を含むレポート画面に対応するレポート画像がサーバに(自動的に)送信されるように構成されてもよい。このとき、デフォルト設定における各種設定(例えば、レポート画面の初期表示画面におけるEn-Face画像の生成のための深度範囲、解析マップの重畳の有無、抽出対象の画像か否か、経過観察用の表示画面か否か等の少なくとも1つに関する設定)に基づいて生成されたレポート画像がサーバに送信されるように構成されもよい。
Further, when the default setting is set so that a predetermined extraction target (target area) is selected as the initial display screen of the report screen as shown in FIG. 4, the extraction target is according to the instruction from the examiner. The report image corresponding to the report screen including the image of the above may be configured to be transmitted to the server. In addition, when the default setting is set so that a predetermined extraction target is selected, when the inspection is completed (for example, when the shooting confirmation screen or preview screen is changed to the report screen in response to an instruction from the inspector). ) May be configured to (automatically) send the report image corresponding to the report screen including the image to be extracted to the server. At this time, various settings in the default settings (for example, the depth range for generating the En-Face image on the initial display screen of the report screen, whether or not the analysis map is superimposed, whether or not the image is to be extracted, and the display for follow-up observation. The report image generated based on (settings related to at least one such as screen or not) may be configured to be transmitted to the server.
(変形例5)
上述した様々な実施例及び変形例において、上述したような種々の学習済モデルのうち、第一の種類の学習済モデルで得た画像(例えば、解析マップ等の解析結果を示す画像、物体認識結果を示す画像、セグメンテーション結果を示す画像)を、第一の種類とは異なる第二の種類の学習済モデルに入力してもよい。このとき、第二の種類の学習済モデルの処理による結果(例えば、評価結果、解析結果、診断結果、物体認識結果、セグメンテーション結果)が生成されるように構成されてもよい。 (Modification 5)
In the various examples and modifications described above, among the various trained models described above, images obtained by the first type of trained model (for example, an image showing an analysis result such as an analysis map, object recognition). An image showing the result, an image showing the segmentation result) may be input to the trained model of the second type different from the first type. At this time, the result of processing the second type of trained model (for example, evaluation result, analysis result, diagnosis result, object recognition result, segmentation result) may be generated.
上述した様々な実施例及び変形例において、上述したような種々の学習済モデルのうち、第一の種類の学習済モデルで得た画像(例えば、解析マップ等の解析結果を示す画像、物体認識結果を示す画像、セグメンテーション結果を示す画像)を、第一の種類とは異なる第二の種類の学習済モデルに入力してもよい。このとき、第二の種類の学習済モデルの処理による結果(例えば、評価結果、解析結果、診断結果、物体認識結果、セグメンテーション結果)が生成されるように構成されてもよい。 (Modification 5)
In the various examples and modifications described above, among the various trained models described above, images obtained by the first type of trained model (for example, an image showing an analysis result such as an analysis map, object recognition). An image showing the result, an image showing the segmentation result) may be input to the trained model of the second type different from the first type. At this time, the result of processing the second type of trained model (for example, evaluation result, analysis result, diagnosis result, object recognition result, segmentation result) may be generated.
また、上述したような種々の学習済モデルのうち、第一の種類の学習済モデルの処理による結果(例えば、解析結果、診断結果、物体認識結果、セグメンテーション結果)を用いて、第一の種類の学習済モデルに入力した画像から、第一の種類とは異なる第二の種類の学習済モデルに入力する画像を生成してもよい。このとき、生成された画像は、第二の種類の学習済モデルを用いて処理する画像として適した画像である可能性が高い。このため、生成された画像を第二の種類の学習済モデルに入力して得た画像(例えば、解析マップ等の解析結果を示す画像、物体認識結果を示す画像、セグメンテーション結果を示す画像)の精度を向上することができる。
Further, among the various trained models as described above, the first type is used by using the result of processing the first type of trained model (for example, analysis result, diagnosis result, object recognition result, segmentation result). An image to be input to a second type of trained model different from the first type may be generated from the image input to the trained model of. At this time, the generated image is likely to be an image suitable as an image to be processed using the second type of trained model. Therefore, an image obtained by inputting the generated image into the second type of trained model (for example, an image showing an analysis result such as an analysis map, an image showing an object recognition result, an image showing a segmentation result). The accuracy can be improved.
また、上述したような学習済モデルの処理による解析結果や診断結果等を検索キーとして、サーバ等に格納された外部のデータベースを利用した類似症例画像検索を行ってもよい。なお、データベースにおいて保存されている複数の画像が、既に機械学習等によって該複数の画像それぞれの特徴量を付帯情報として付帯された状態で管理されている場合等には、画像自体を検索キーとする類似症例画像検索エンジン(類似症例画像検索モデル、類似症例画像検索用の学習済モデル)が用いられてもよい。例えば、画像処理装置は、評価結果を取得するための学習済モデルとは異なる類似症例画像検索用の学習済モデルを用いて、セグメンテーション処理等により特定した異なる領域それぞれについて類似症例画像の検索を行うことができる。
Alternatively, a similar case image search using an external database stored in a server or the like may be performed using the analysis result, the diagnosis result, etc. obtained by the processing of the trained model as described above as a search key. If a plurality of images stored in the database are already managed by machine learning or the like with the feature amount of each of the plurality of images attached as incidental information, the image itself is used as a search key. A similar case image search engine (similar case image search model, trained model for similar case image search) may be used. For example, the image processing device searches for similar case images for each of the different regions specified by segmentation processing or the like, using a trained model for searching for similar case images that is different from the trained model for acquiring evaluation results. be able to.
(変形例6)
なお、上記実施例及び変形例では、被検眼の眼底部分に関する3次元ボリュームデータや正面画像について説明したが、被検眼の前眼部に関する画像について上記画像処理を行ってもよい。この場合、画像において異なる画像処理が施されるべき領域には、水晶体、角膜、虹彩、及び前眼房等の領域が含まれる。なお、当該領域に前眼部の他の領域が含まれてもよい。また、眼底部分に関する画像についての領域は、硝子体部、網膜部、及び脈絡膜部に限られず、眼底部分に関する他の領域を含んでもよい。 (Modification 6)
In the above-described examples and modifications, the three-dimensional volume data and the front image relating to the fundus portion of the eye to be inspected have been described, but the image processing may be performed on the image relating to the anterior segment of the eye to be inspected. In this case, the regions of the image to be subjected to different image processing include regions such as the crystalline lens, cornea, iris, and anterior chamber of eye. The region may include another region of the anterior segment of the eye. Further, the region for the image relating to the fundus portion is not limited to the vitreous portion, the retina portion, and the choroid portion, and may include other regions relating to the fundus portion.
なお、上記実施例及び変形例では、被検眼の眼底部分に関する3次元ボリュームデータや正面画像について説明したが、被検眼の前眼部に関する画像について上記画像処理を行ってもよい。この場合、画像において異なる画像処理が施されるべき領域には、水晶体、角膜、虹彩、及び前眼房等の領域が含まれる。なお、当該領域に前眼部の他の領域が含まれてもよい。また、眼底部分に関する画像についての領域は、硝子体部、網膜部、及び脈絡膜部に限られず、眼底部分に関する他の領域を含んでもよい。 (Modification 6)
In the above-described examples and modifications, the three-dimensional volume data and the front image relating to the fundus portion of the eye to be inspected have been described, but the image processing may be performed on the image relating to the anterior segment of the eye to be inspected. In this case, the regions of the image to be subjected to different image processing include regions such as the crystalline lens, cornea, iris, and anterior chamber of eye. The region may include another region of the anterior segment of the eye. Further, the region for the image relating to the fundus portion is not limited to the vitreous portion, the retina portion, and the choroid portion, and may include other regions relating to the fundus portion.
また、上記実施例及び変形例では、被検体として被検眼を例に説明したが、被検体はこれに限定されない。例えば、被検体は皮膚や他の臓器等でもよい。この場合、上記実施例及び変形例に係るOCT装置は、眼科装置以外に、内視鏡等の医療機器に適用することができる。
Further, in the above-mentioned Examples and Modified Examples, the subject to be examined has been described as an example, but the subject is not limited to this. For example, the subject may be skin, other organs, or the like. In this case, the OCT device according to the above embodiment and the modified example can be applied to a medical device such as an endoscope in addition to the ophthalmic device.
(変形例7)
また、上述した様々な実施例及び変形例による画像処理装置又は画像処理方法によって処理される画像は、任意のモダリティ(撮影装置、撮影方法)を用いて取得された医用画像を含む。処理される医用画像は、任意の撮影装置等で取得された医用画像や、上記実施例及び変形例による画像処理装置又は画像処理方法によって作成された画像を含むことができる。 (Modification 7)
Further, the image processed by the image processing apparatus or the image processing method according to the various examples and modifications described above includes a medical image acquired by using an arbitrary modality (imaging apparatus, imaging method). The medical image to be processed may include a medical image acquired by an arbitrary imaging device or the like, or an image created by an image processing device or an image processing method according to the above-described embodiment and modification.
また、上述した様々な実施例及び変形例による画像処理装置又は画像処理方法によって処理される画像は、任意のモダリティ(撮影装置、撮影方法)を用いて取得された医用画像を含む。処理される医用画像は、任意の撮影装置等で取得された医用画像や、上記実施例及び変形例による画像処理装置又は画像処理方法によって作成された画像を含むことができる。 (Modification 7)
Further, the image processed by the image processing apparatus or the image processing method according to the various examples and modifications described above includes a medical image acquired by using an arbitrary modality (imaging apparatus, imaging method). The medical image to be processed may include a medical image acquired by an arbitrary imaging device or the like, or an image created by an image processing device or an image processing method according to the above-described embodiment and modification.
さらに、処理される医用画像は、被検者(被検体)の所定部位の画像であり、所定部位の画像は被検者の所定部位の少なくとも一部を含む。また、当該医用画像は、被検者の他の部位を含んでもよい。また、医用画像は、静止画像又は動画像であってよく、白黒画像又はカラー画像であってもよい。さらに医用画像は、所定部位の構造(形態)を表す画像でもよいし、その機能を表す画像でもよい。機能を表す画像は、例えば、OCTA画像、ドップラーOCT画像、fMRI画像、及び超音波ドップラー画像等の血流動態(血流量、血流速度等)を表す画像を含む。なお、被検者の所定部位は、撮影対象に応じて決定されてよく、人眼(被検眼)、脳、肺、腸、心臓、すい臓、腎臓、及び肝臓等の臓器、頭部、胸部、脚部、並びに腕部等の任意の部位を含む。
Further, the medical image to be processed is an image of a predetermined part of the subject (subject), and the image of the predetermined part includes at least a part of the predetermined part of the subject. In addition, the medical image may include other parts of the subject. Further, the medical image may be a still image or a moving image, and may be a black-and-white image or a color image. Further, the medical image may be an image showing the structure (morphology) of a predetermined part or an image showing the function thereof. The image showing the function includes, for example, an OCTA image, a Doppler OCT image, an fMRI image, and an image showing blood flow dynamics (blood flow volume, blood flow velocity, etc.) such as an ultrasonic Doppler image. The predetermined part of the subject may be determined according to the subject to be imaged, and the human eye (eye to be examined), brain, lung, intestine, heart, pancreas, kidney, liver and other organs, head, chest, etc. Includes any part such as legs and arms.
また、医用画像は、被検者の断層画像であってもよいし、正面画像であってもよい。正面画像は、例えば、眼底正面画像や、前眼部の正面画像、蛍光撮影された眼底画像、OCTで取得したデータ(3次元のOCTデータ)について撮影対象の深さ方向における少なくとも一部の範囲のデータを用いて生成したEn-Face画像を含む。En-Face画像は、3次元のOCTAデータ(3次元のモーションコントラストデータ)について撮影対象の深さ方向における少なくとも一部の範囲のデータを用いて生成したOCTAのEn-Face画像(モーションコントラスト正面画像)でもよい。また、3次元のOCTデータや3次元のモーションコントラストデータは、3次元の医用画像データの一例である。
Further, the medical image may be a tomographic image of the subject or a frontal image. The frontal image is, for example, a frontal image of the fundus, a frontal image of the anterior segment of the eye, a fluorescently photographed fundus image, and data acquired by OCT (three-dimensional OCT data) in at least a part of a range in the depth direction of the object to be imaged. Includes En-Face images generated using the data from. The En-Face image is an OCTA En-Face image (motion contrast front image) generated by using data in at least a part of the depth direction of the shooting target for three-dimensional OCTA data (three-dimensional motion contrast data). ) May be. Further, three-dimensional OCT data and three-dimensional motion contrast data are examples of three-dimensional medical image data.
ここで、撮影装置とは、診断に用いられる画像を撮影するための装置である。撮影装置は、例えば、被検者の所定部位に光、X線等の放射線、電磁波、又は超音波等を照射することにより所定部位の画像を得る装置や、被写体から放出される放射線を検出することにより所定部位の画像を得る装置を含む。より具体的には、上述した様々な実施例及び変形例に係る撮影装置は、少なくとも、X線撮影装置、CT装置、MRI装置、PET装置、SPECT装置、SLO装置、OCT装置、OCTA装置、眼底カメラ、及び内視鏡等を含む。
Here, the photographing device is a device for photographing an image used for diagnosis. The photographing device detects, for example, a device that obtains an image of a predetermined part by irradiating a predetermined part of the subject with radiation such as light or X-rays, electromagnetic waves, ultrasonic waves, or the like, or radiation emitted from the subject. This includes a device for obtaining an image of a predetermined part. More specifically, the imaging devices according to the various examples and modifications described above include at least an X-ray imaging device, a CT device, an MRI device, a PET device, a SPECT device, an SLO device, an OCT device, an OCTA device, and a fundus. Includes cameras, endoscopes, etc.
そのため、上記実施例及び変形例で記載した発明に関し、例えば、CT装置で取得した被検体の異なる位置に対応する複数のスライス画像について、画像評価部343によってスライス画像内の対象領域(注目部位又は対象部位)の存在を評価するように構成してもよい。この場合、画像生成部304は、画像評価部343による評価結果(評価を示す情報)を用いて、出力画像を決定することができる。このような画像処理は、眼科分野に限られず、上述した任意の撮影装置により対象部位について取得された医用画像について適用することができる。被検体の注目部位は、個人差によって位置がずれる可能性があるため、当該処理により、異なる箇所に対応する複数の画像を評価し、評価結果を用いて出力画像を決定することで、注目部位を確認し易い画像を取得することができる。なお、上述した被検者の所定の部位は、抽出対象(対象領域)の一例とすることができる。
Therefore, with respect to the inventions described in the above Examples and Modifications, for example, for a plurality of slice images corresponding to different positions of the subject acquired by the CT apparatus, the target region (attention site or the region of interest) in the slice image is obtained by the image evaluation unit 343. It may be configured to evaluate the presence of the target site). In this case, the image generation unit 304 can determine the output image by using the evaluation result (information indicating the evaluation) by the image evaluation unit 343. Such image processing is not limited to the field of ophthalmology, and can be applied to medical images acquired for a target site by any of the above-mentioned imaging devices. Since the position of interest in the subject may shift due to individual differences, the process evaluates multiple images corresponding to different locations and determines the output image using the evaluation results to determine the region of interest. It is possible to acquire an image that is easy to confirm. The predetermined part of the subject described above can be an example of the extraction target (target area).
なお、撮影装置を用いて取得した医用画像は、注目部位の種類に応じて画像特徴が異なる。そのため、上述した様々な実施例や変形例において用いられる学習済モデルは、注目部位の種類毎にそれぞれ生成・用意されてもよい。この場合、例えば、画像処理装置300は、指定された対象領域(注目部位)に応じて、画像評価部343等による処理に用いる学習済モデルを選択することができる。
The medical image acquired by using the imaging device has different image features depending on the type of the region of interest. Therefore, the trained models used in the various examples and modifications described above may be generated and prepared for each type of the region of interest. In this case, for example, the image processing apparatus 300 can select a trained model to be used for processing by the image evaluation unit 343 or the like according to the designated target area (part of interest).
また、上記実施例及び変形例で説明したGUI等の表示態様は、上述のものに限られず、所望の構成に応じて任意に変更されてよい。例えば、GUI500等について、OCTA正面画像、断層画像、及び深度範囲を表示すると記載したが、断層画像上に、モーションコントラストデータを表示してもよい。この場合、どの深度にモーションコントラスト値が分布しているのかを合わせて確認することができる。また、画像の表示等に色を用いるなどしてもよい。
Further, the display mode of the GUI or the like described in the above-described embodiment and the modified example is not limited to the above-mentioned one, and may be arbitrarily changed according to a desired configuration. For example, although it is described that the OCTA front image, the tomographic image, and the depth range are displayed for the GUI500 and the like, the motion contrast data may be displayed on the tomographic image. In this case, it is possible to confirm at which depth the motion contrast value is distributed. Further, colors may be used for displaying an image or the like.
さらに、上記実施例及び変形例では、生成した画像を表示部310に表示させる構成としたが、例えば、外部のサーバ等の外部装置に出力する構成としてもよい。また、複数の正面画像に対応する互いに異なる深度範囲は、一部が重複する深度範囲であってもよい。
Further, in the above embodiment and the modified example, the generated image is displayed on the display unit 310, but for example, it may be output to an external device such as an external server. Further, the different depth ranges corresponding to the plurality of front images may be partially overlapping depth ranges.
さらに、上記実施例及び変形例に係る抽出対象(対象領域)の評価用の学習済モデルでは、正面画像の輝度値の大小、明部と暗部の順番や傾き、位置、分布、連続性等を特徴量の一部として抽出して、推定処理に用いているものと考えられる。
Further, in the trained model for evaluation of the extraction target (target area) according to the above-mentioned example and the modified example, the magnitude of the brightness value of the front image, the order and inclination of the bright part and the dark part, the position, the distribution, the continuity, etc. are determined. It is considered that it is extracted as a part of the feature quantity and used for the estimation process.
なお、上記実施例及び変形例では、OCT装置として、SLDを光源として用いたスペクトラムドメインOCT(SD-OCT)装置について述べたが、本発明によるOCT装置の構成はこれに限られない。例えば、出射光の波長を掃引することができる波長掃引光源を用いた波長掃引型OCT(SS-OCT)装置等の他の任意の種類のOCT装置にも本発明を適用することができる。また、ライン光を用いたLine-OCT装置(あるいはSS-Line-OCT装置)に対して本発明を適用することもできる。また、エリア光を用いたFull Field-OCT装置(あるいはSS-Full Field-OCT装置)にも本発明を適用することもできる。さらに、波面補償光学系を用いた波面補償OCT(AO-OCT)装置、又は偏光位相差や偏光解消に関する情報を可視化するための偏光OCT(PS-OCT)装置にも本発明を適用することができる。
In the above-described embodiment and modification, the spectrum domain OCT (SD-OCT) device using the SLD as the light source has been described as the OCT device, but the configuration of the OCT device according to the present invention is not limited to this. For example, the present invention can be applied to any other type of OCT apparatus such as a wavelength sweep type OCT (SS-OCT) apparatus using a wavelength sweep light source capable of sweeping the wavelength of emitted light. The present invention can also be applied to a Line-OCT device (or SS-Line-OCT device) using line light. The present invention can also be applied to a Full Field-OCT device (or SS-Full Field-OCT device) using area light. Further, the present invention may be applied to a wave surface adaptive optics tomography (AO-OCT) device using an adaptive optics system or a polarized light OCT (PS-OCT) device for visualizing information on polarization phase difference and polarization elimination. it can.
上記実施例及び変形例では、分割手段としてカプラーを使用した光ファイバ光学系を用いているが、コリメータとビームスプリッタを使用した空間光学系を用いてもよい。また、光干渉部100及び走査光学系200の構成は、上記の構成に限られず、光干渉部100及び走査光学系200に含まれる構成の一部をこれらとは別体の構成としてもよい。さらに、干渉系としてマイケルソン干渉系を用いたが、マッハツェンダー干渉系を用いてもよい。
In the above examples and modifications, an optical fiber optical system using a coupler is used as the dividing means, but a spatial optical system using a collimator and a beam splitter may be used. Further, the configurations of the optical interference unit 100 and the scanning optical system 200 are not limited to the above configurations, and a part of the configurations included in the optical interference unit 100 and the scanning optical system 200 may be different from these configurations. Further, although the Michelson interference system is used as the interference system, the Mach-Zehnder interference system may be used.
また、上記実施例及び変形例では、画像処理装置300は、光干渉部100で取得された干渉信号や再構成部301で生成された断層データ等を取得した。しかしながら、画像処理装置300がこれらの信号や画像を取得する構成はこれに限られない。例えば、画像処理装置300は、画像処理装置300とLAN、WAN、又はインターネット等を介して接続されるサーバや撮影装置からこれらの信号やデータを取得してもよい。
Further, in the above embodiment and the modified example, the image processing apparatus 300 has acquired the interference signal acquired by the optical interference unit 100, the tomographic data generated by the reconstruction unit 301, and the like. However, the configuration in which the image processing device 300 acquires these signals and images is not limited to this. For example, the image processing device 300 may acquire these signals and data from a server or a photographing device connected to the image processing device 300 via a LAN, WAN, the Internet, or the like.
なお、上記実施例及び変形例に係る学習済モデルは画像処理装置300に設けられることができる。学習済モデルは、例えば、CPUや、MPU、GPU、FPGA等のプロセッサーによって実行されるソフトウェアモジュール等で構成されてもよいし、ASIC等の特定の機能を果たす回路等によって構成されてもよい。また、これら学習済モデルは、画像処理装置300と接続される別のサーバの装置等に設けられてもよい。この場合には、画像処理装置300は、インターネット等の任意のネットワークを介して学習済モデルを備えるサーバ等に接続することで、学習済モデルを用いることができる。ここで、学習済モデルを備えるサーバは、例えば、クラウドサーバや、フォグサーバ、エッジサーバ等であってよい。また、学習済モデルの学習データは、実際の撮影を行う眼科装置自体を用いて得たデータに限られず、所望の構成に応じて、同型の眼科装置を用いて得たデータや、同種の眼科装置を用いて得たデータ等であってもよい。
The trained model according to the above embodiment and the modified example can be provided in the image processing device 300. The trained model may be composed of, for example, a CPU, a software module executed by a processor such as an MPU, GPU, or FPGA, or a circuit or the like that performs a specific function such as an ASIC. Further, these trained models may be provided in a device of another server connected to the image processing device 300 or the like. In this case, the image processing device 300 can use the trained model by connecting to a server or the like provided with the trained model via an arbitrary network such as the Internet. Here, the server provided with the trained model may be, for example, a cloud server, a fog server, an edge server, or the like. Further, the training data of the trained model is not limited to the data obtained by using the ophthalmology device itself that actually performs the imaging, but the data obtained by using the same type of ophthalmology device or the same type of ophthalmology according to a desired configuration. It may be data or the like obtained by using the device.
これに関連して、画像評価部343は、画像処理装置300の外部に設けられてもよい。この場合、画像処理装置300に接続された外部のサーバ等の外部装置により画像評価部343を構成し、画像処理装置300は、取得した3次元ボリュームデータや生成した正面画像、抽出対象(対象領域)に関する情報を外部装置に送信する。その後、画像処理装置300は、外部装置から取得した評価結果を用いて、出力すべき正面画像を決定したり、生成したりしてもよい。この場合には、画像処理装置300と当該外部装置(評価装置)とが設けられた画像処理システムを構成することができる。なお、画像評価部343を画像処理装置300の外部に設ける場合には、評価を示す情報を用いて出力すべき画像を決定する決定部は、画像評価部343と同じ装置内に設けられてもよい。
In connection with this, the image evaluation unit 343 may be provided outside the image processing device 300. In this case, the image evaluation unit 343 is configured by an external device such as an external server connected to the image processing device 300, and the image processing device 300 includes the acquired three-dimensional volume data, the generated front image, and the extraction target (target area). ) Is sent to an external device. After that, the image processing device 300 may determine or generate a front image to be output by using the evaluation result acquired from the external device. In this case, an image processing system provided with the image processing device 300 and the external device (evaluation device) can be configured. When the image evaluation unit 343 is provided outside the image processing device 300, the determination unit that determines the image to be output using the information indicating the evaluation may be provided in the same device as the image evaluation unit 343. Good.
本発明の上述した様々な実施例及び変形例によれば、対象領域を容易に確認可能とすることができる。
According to the various examples and modifications described above of the present invention, the target area can be easily confirmed.
(その他の実施例)
本発明は、上述の実施例及び変形例の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータがプログラムを読出し実行する処理でも実現可能である。コンピュータは、一つ又は複数のプロセッサー若しくは回路を有し、コンピュータ実行可能命令を読み出し実行するために、分離した複数のコンピュータ又は分離した複数のプロセッサー若しくは回路のネットワークを含みうる。 (Other Examples)
The present invention is also a process in which a program that realizes one or more functions of the above-described examples and modifications is supplied to a system or device via a network or storage medium, and a computer of the system or device reads and executes the program. It is feasible. A computer may have one or more processors or circuits and may include multiple separate computers or a network of separate processors or circuits to read and execute computer executable instructions.
本発明は、上述の実施例及び変形例の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータがプログラムを読出し実行する処理でも実現可能である。コンピュータは、一つ又は複数のプロセッサー若しくは回路を有し、コンピュータ実行可能命令を読み出し実行するために、分離した複数のコンピュータ又は分離した複数のプロセッサー若しくは回路のネットワークを含みうる。 (Other Examples)
The present invention is also a process in which a program that realizes one or more functions of the above-described examples and modifications is supplied to a system or device via a network or storage medium, and a computer of the system or device reads and executes the program. It is feasible. A computer may have one or more processors or circuits and may include multiple separate computers or a network of separate processors or circuits to read and execute computer executable instructions.
プロセッサー又は回路は、中央演算処理装置(CPU)、マイクロプロセッシングユニット(MPU)、グラフィクスプロセッシングユニット(GPU)、特定用途向け集積回路(ASIC)、又はフィールドプログラマブルゲートウェイ(FPGA)を含みうる。また、プロセッサー又は回路は、デジタルシグナルプロセッサ(DSP)、データフロープロセッサ(DFP)、又はニューラルプロセッシングユニット(NPU)を含みうる。
The processor or circuit may include a central processing unit (CPU), a microprocessing unit (MPU), a graphics processing unit (GPU), an application specific integrated circuit (ASIC), or a field programmable gateway (FPGA). Also, the processor or circuit may include a digital signal processor (DSP), a data flow processor (DFP), or a neural processing unit (NPU).
本発明の上記の実施例に制限されるものではなく、本発明の趣旨及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
It is not limited to the above-described embodiment of the present invention, and various changes and modifications can be made without departing from the gist and scope of the present invention. Therefore, the following claims are attached in order to publicize the scope of the present invention.
本願は、2019年11月22日提出の日本国特許出願特願2019-211862を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。
This application claims priority based on Japanese Patent Application No. 2019-211862 submitted on November 22, 2019, and all the contents thereof are incorporated herein by reference.
300:画像処理装置、304:画像生成部(決定部)、343:画像評価部(評価部)
300: Image processing device, 304: Image generation unit (decision unit), 343: Image evaluation unit (evaluation unit)
300: Image processing device, 304: Image generation unit (decision unit), 343: Image evaluation unit (evaluation unit)
Claims (28)
- 被検眼の3次元ボリュームデータの異なる深度範囲に対応した複数の正面画像を用いて、対象領域の存在を評価した評価を示す情報であって、前記複数の正面画像に対応する複数の情報を取得する評価部と、
前記複数の情報を用いて、前記複数の正面画像のうち少なくとも一つを出力画像として決定する決定部と、
を備える、画像処理装置。 Information indicating an evaluation of the existence of a target area using a plurality of front images corresponding to different depth ranges of the three-dimensional volume data of the eye to be inspected, and acquiring a plurality of information corresponding to the plurality of front images. Evaluation department and
A determination unit that determines at least one of the plurality of front images as an output image using the plurality of information.
An image processing device. - 表示部の表示を制御する表示制御部を更に備え、
前記表示制御部は、前記複数の情報を前記表示部に前記複数の正面画像と並べて表示させる、請求項1に記載の画像処理装置。 It also has a display control unit that controls the display of the display unit.
The image processing device according to claim 1, wherein the display control unit causes the display unit to display the plurality of information side by side with the plurality of front images. - 前記複数の情報は複数の評価値であり、
前記決定部は、前記複数の評価値のうち他の評価値よりも高い評価値に対応する正面画像を前記出力画像として決定する、請求項1又は2に記載の画像処理装置。 The plurality of pieces of information are a plurality of evaluation values.
The image processing apparatus according to claim 1 or 2, wherein the determination unit determines a front image corresponding to an evaluation value higher than the other evaluation values among the plurality of evaluation values as the output image. - 被検眼の3次元ボリュームデータの異なる深度範囲に対応した複数の正面画像を用いて、対象領域の存在を評価した評価を示す情報であって、前記複数の正面画像に対応する複数の情報を取得する評価部と、
前記複数の情報を用いて深度範囲を決定し、前記決定された深度範囲を用いて生成した画像を出力画像として決定する決定部と、
を備える、画像処理装置。 Information indicating an evaluation of the existence of a target area using a plurality of front images corresponding to different depth ranges of the three-dimensional volume data of the eye to be inspected, and acquiring a plurality of information corresponding to the plurality of front images. Evaluation department and
A determination unit that determines the depth range using the plurality of information and determines an image generated using the determined depth range as an output image.
An image processing device. - 前記複数の情報は複数の評価値であり、
前記決定部は、前記複数の評価値のうち閾値以上である評価値に対応する深度範囲を連結することで前記深度範囲を決定する、請求項4に記載の画像処理装置。 The plurality of pieces of information are a plurality of evaluation values.
The image processing apparatus according to claim 4, wherein the determination unit determines the depth range by connecting the depth ranges corresponding to the evaluation values that are equal to or greater than the threshold value among the plurality of evaluation values. - 前記複数の情報は複数の評価値であり、
前記決定部は、前記複数の評価値のうち閾値以上である評価値に対応する深度範囲における、他の深度位置よりも浅い深度位置を上限とし、他の深度位置よりも深い深度位置を下限として前記出力画像の深度範囲を決定する、請求項4に記載の画像処理装置。 The plurality of pieces of information are a plurality of evaluation values.
The determination unit has an upper limit of a depth position shallower than other depth positions in a depth range corresponding to an evaluation value equal to or higher than a threshold value among the plurality of evaluation values, and a lower limit of a depth position deeper than other depth positions. The image processing apparatus according to claim 4, wherein the depth range of the output image is determined. - 前記複数の情報は複数の評価値であり、
前記決定部は、前記複数の評価値のうち他の評価値よりも高い評価値に対応する深度範囲を中心として、前記出力画像の深度範囲を決定する、請求項4に記載の画像処理装置。 The plurality of pieces of information are a plurality of evaluation values.
The image processing apparatus according to claim 4, wherein the determination unit determines a depth range of the output image centering on a depth range corresponding to an evaluation value higher than the other evaluation values among the plurality of evaluation values. - 正面画像を生成する画像生成部を更に備え、
前記複数の情報は複数の評価値であり、
前記画像生成部は、前記複数の評価値のうち他の評価値よりも高い評価値に対応する深度範囲を増減させた複数の深度範囲を決定するとともに該複数の深度範囲に対応する正面画像を生成し、
前記評価部は、前記複数の深度範囲に対応する正面画像を用いて、前記複数の深度範囲に対応する複数の正面画像の複数の評価値を取得し、
前記決定部は、前記複数の深度範囲に対応する複数の正面画像の複数の評価値のうち他の評価値よりも高い評価値に対応する正面画像を前記出力画像として決定する、請求項4に記載の画像処理装置。 It also has an image generator that generates a front image.
The plurality of pieces of information are a plurality of evaluation values.
The image generation unit determines a plurality of depth ranges obtained by increasing or decreasing the depth range corresponding to an evaluation value higher than the other evaluation values among the plurality of evaluation values, and obtains a front image corresponding to the plurality of depth ranges. Generate and
The evaluation unit acquires a plurality of evaluation values of the plurality of front images corresponding to the plurality of depth ranges by using the front images corresponding to the plurality of depth ranges.
According to claim 4, the determination unit determines as the output image a front image corresponding to an evaluation value higher than the other evaluation values among a plurality of evaluation values of the plurality of front images corresponding to the plurality of depth ranges. The image processing apparatus described. - 前記複数の正面画像を生成するための各深度範囲は、網膜外層又はブルッフ膜から脈絡膜側に0~50μmの範囲内の深度範囲である、請求項1乃至8のいずれか一項に記載の画像処理装置。 The image according to any one of claims 1 to 8, wherein each depth range for generating the plurality of frontal images is a depth range within a range of 0 to 50 μm from the outer layer of the retina or the Bruch's membrane to the choroid side. Processing equipment.
- 前記複数の正面画像を生成するための各深度範囲は、乳頭部の網膜と硝子体の境界から脈絡側に0~500μmの範囲内の深度範囲である、請求項1乃至8のいずれか一項に記載の画像処理装置。 Any one of claims 1 to 8, wherein each depth range for generating the plurality of front images is a depth range within a range of 0 to 500 μm from the boundary between the retina and the vitreous body of the papilla to the interstitial side. The image processing apparatus according to.
- 前記複数の正面画像を生成するための各深度範囲は、網膜表層又は網膜深層内の深度範囲である、請求項1乃至8のいずれか一項に記載の画像処理装置。 The image processing apparatus according to any one of claims 1 to 8, wherein each depth range for generating the plurality of front images is a depth range in the surface layer of the retina or the deep layer of the retina.
- 前記評価部は、正面画像と該正面画像における対象領域の存在を評価した評価を示す情報とを含む学習データによる学習を行って得た学習済モデルを用いて、前記複数の正面画像から前記複数の情報を取得する、請求項1乃至11のいずれか一項に記載の画像処理装置。 The evaluation unit uses a trained model obtained by training with training data including a front image and information indicating an evaluation for evaluating the existence of a target region in the front image, and uses the plurality of trained models from the plurality of front images. The image processing apparatus according to any one of claims 1 to 11, wherein the information of the above is acquired.
- 前記学習データは、異なる深度範囲に対応した複数の正面画像と該複数の正面画像における対象領域の存在を評価した評価を示す情報とを含む、請求項12に記載の画像処理装置。 The image processing apparatus according to claim 12, wherein the training data includes a plurality of front images corresponding to different depth ranges and information indicating an evaluation for evaluating the existence of a target region in the plurality of front images.
- 前記評価部は、正面画像からセグメンテーション結果又は物体認識結果を生成するための学習済モデルを用いて、前記複数の正面画像から前記複数の情報を取得する、請求項1乃至13のいずれか一項に記載の画像処理装置。 One of claims 1 to 13, wherein the evaluation unit acquires the plurality of information from the plurality of front images by using a trained model for generating a segmentation result or an object recognition result from the front image. The image processing apparatus according to.
- 前記評価部は、前記複数の正面画像のそれぞれについて敵対的生成ネットワーク又はオートエンコーダーを用いて得た正面画像と、該敵対的生成ネットワーク又は該オートエンコーダーに入力された正面画像との差異に関する情報を用いて前記複数の情報を取得する、請求項1乃至14のいずれか一項の記載の画像処理装置。 The evaluation unit obtains information on the difference between the front image obtained by using the hostile generation network or the autoencoder for each of the plurality of front images and the front image input to the hostile generation network or the autoencoder. The image processing apparatus according to any one of claims 1 to 14, wherein the plurality of information is acquired by using the image processing apparatus.
- 前記評価部は、正面画像から解析結果又は診断結果を生成するための学習済モデルを用いて、前記複数の正面画像から前記複数の情報を取得する、請求項1乃至15のいずれか一項に記載の画像処理装置。 The evaluation unit obtains the plurality of information from the plurality of front images by using a trained model for generating an analysis result or a diagnosis result from the front image, according to any one of claims 1 to 15. The image processing apparatus described.
- 被検体の3次元ボリュームデータの異なる位置に対応した複数の医用画像を用いて、対象領域の存在を評価した評価を示す情報であって、前記複数の医用画像に対応する複数の情報を取得する評価部と、
前記複数の情報を用いて、前記複数の医用画像のうち少なくとも一つを出力画像として決定する決定部と、
を備える、画像処理装置。 Information indicating evaluation of evaluation of the existence of a target region using a plurality of medical images corresponding to different positions of three-dimensional volume data of a subject, and acquiring a plurality of information corresponding to the plurality of medical images. Evaluation department and
A determination unit that determines at least one of the plurality of medical images as an output image using the plurality of information.
An image processing device. - 前記対象領域を指定する対象指定部を更に備える、請求項1乃至17のいずれか一項に記載の画像処理装置。 The image processing apparatus according to any one of claims 1 to 17, further comprising a target designation unit for designating the target area.
- 被検眼の3次元ボリュームデータからの対象領域を指定する対象指定部と、
前記3次元ボリュームデータの異なる深度範囲に対応した複数の正面画像であって、前記指定された対象領域の情報を用いて生成された複数の正面画像を表示部に並べて表示させる表示制御部と、
前記指定された対象領域の情報を用いて、前記複数の正面画像を生成するための3次元ボリュームデータの種別、前記対象領域となる層又は深度範囲、生成する正面画像の枚数、正面画像を生成する深度範囲、及び正面画像を生成する深度範囲の間隔のうち少なくとも一つを決定する決定部と、
を備える、画像処理装置。 A targeting part that specifies the target area from the 3D volume data of the eye to be inspected,
A display control unit that displays a plurality of front images corresponding to different depth ranges of the three-dimensional volume data, and a plurality of front images generated by using the information of the designated target area, arranged side by side on the display unit.
Using the information of the designated target area, the type of three-dimensional volume data for generating the plurality of front images, the layer or depth range to be the target area, the number of front images to be generated, and the front image are generated. A determinant that determines at least one of the depth range to be created and the interval between the depth ranges to generate the front image.
An image processing device. - 前記対象領域は、文字認識結果を生成するための学習済モデル、音声認識結果を生成するための学習済モデル、及びジェスチャー認識結果を生成するための学習済モデルのうち少なくとも一つの学習済モデルを用いて指定される、請求項18又は19に記載の画像処理装置。 The target area includes at least one trained model among a trained model for generating a character recognition result, a trained model for generating a voice recognition result, and a trained model for generating a gesture recognition result. The image processing apparatus according to claim 18 or 19, which is designated in use.
- 前記対象領域は新生血管の領域であり、前記3次元ボリュームデータは3次元のモーションコントラストデータである、請求項1乃至20のいずれか一項に記載の画像処理装置。 The image processing apparatus according to any one of claims 1 to 20, wherein the target region is a region of a neovascularization, and the three-dimensional volume data is three-dimensional motion contrast data.
- 前記対象領域は篩状板の領域であり、前記3次元ボリュームデータは乳頭部の3次元の断層データである、請求項1乃至20のいずれか一項に記載の画像処理装置。 The image processing apparatus according to any one of claims 1 to 20, wherein the target area is a sieve plate area, and the three-dimensional volume data is three-dimensional tomographic data of the papilla.
- 前記対象領域は毛細血管瘤の領域であり、前記3次元ボリュームデータは黄斑部の3次元のモーションコントラストデータである、請求項1乃至20のいずれか一項に記載の画像処理装置。 The image processing apparatus according to any one of claims 1 to 20, wherein the target region is a region of a capillary aneurysm, and the three-dimensional volume data is three-dimensional motion contrast data of a yellow spot portion.
- 被検眼の3次元ボリュームデータの異なる深度範囲に対応した複数の正面画像を用いて、対象領域の存在を評価した評価を示す情報であって、前記複数の正面画像に対応する複数の情報を取得することと、
前記複数の情報を用いて、前記複数の正面画像のうち少なくとも一つを出力画像として決定することと、
を含む、画像処理方法。 Information indicating an evaluation of the existence of a target area using a plurality of front images corresponding to different depth ranges of the three-dimensional volume data of the eye to be inspected, and acquiring a plurality of information corresponding to the plurality of front images. To do and
Using the plurality of information, at least one of the plurality of front images is determined as an output image.
Image processing methods, including. - 被検眼の3次元ボリュームデータの異なる深度範囲に対応した複数の正面画像を用いて、対象領域の存在を評価した評価を示す情報であって、前記複数の正面画像に対応する複数の情報を取得することと、
前記複数の情報を用いて深度範囲を決定し、前記決定された深度範囲を用いて生成した画像を出力画像として決定することと、
を含む、画像処理方法。 Information indicating an evaluation of the existence of a target area using a plurality of front images corresponding to different depth ranges of the three-dimensional volume data of the eye to be inspected, and acquiring a plurality of information corresponding to the plurality of front images. To do and
The depth range is determined using the plurality of information, and the image generated using the determined depth range is determined as the output image.
Image processing methods, including. - 被検体の3次元ボリュームデータの異なる位置に対応した複数の医用画像を用いて、対象領域の存在を評価した評価を示す情報であって、前記複数の医用画像に対応する複数の情報を取得することと、
前記複数の情報を用いて、前記複数の医用画像のうち少なくとも一つを出力画像として決定することと、
を含む、画像処理方法。 Information indicating evaluation of evaluation of the existence of a target region using a plurality of medical images corresponding to different positions of three-dimensional volume data of a subject, and acquiring a plurality of information corresponding to the plurality of medical images. That and
Using the plurality of information, at least one of the plurality of medical images is determined as an output image.
Image processing methods, including. - 被検眼の3次元ボリュームデータからの対象領域を指定することと、
前記3次元ボリュームデータの異なる深度範囲に対応した複数の正面画像であって、前記指定された対象領域の情報を用いて生成された複数の正面画像を表示部に並べて表示させることと、
前記指定された対象領域の情報を用いて、前記複数の正面画像を生成するための3次元ボリュームデータの種別、前記対象領域となる層又は深度範囲、生成する正面画像の枚数、正面画像を生成する深度範囲、及び正面画像を生成する深度範囲の間隔のうち少なくとも一つを決定することと、
を含む、画像処理方法。 Specifying the target area from the 3D volume data of the eye to be inspected,
A plurality of front images corresponding to different depth ranges of the three-dimensional volume data, and a plurality of front images generated by using the information of the designated target area are displayed side by side on the display unit.
Using the information of the designated target area, the type of three-dimensional volume data for generating the plurality of front images, the layer or depth range to be the target area, the number of front images to be generated, and the front image are generated. Determining at least one of the depth range to be used and the interval of the depth range to generate the front image,
Image processing methods, including. - コンピュータによって実行されると、該コンピュータに請求項24乃至27のいずれか一項に記載の画像処理方法の各工程を実行させるプログラム。
A program that, when executed by a computer, causes the computer to perform each step of the image processing method according to any one of claims 24 to 27.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019211862A JP7254682B2 (en) | 2019-11-22 | 2019-11-22 | Image processing device, image processing method, and program |
JP2019-211862 | 2019-11-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021100694A1 true WO2021100694A1 (en) | 2021-05-27 |
Family
ID=75961865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/042764 WO2021100694A1 (en) | 2019-11-22 | 2020-11-17 | Image processing device, image processing method, and program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7254682B2 (en) |
WO (1) | WO2021100694A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023062361A (en) * | 2021-10-21 | 2023-05-08 | 株式会社日立製作所 | Operation command generation device and operation command generation method |
WO2023199848A1 (en) * | 2022-04-13 | 2023-10-19 | 株式会社ニコン | Image processing method, image processing device, and program |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016010658A (en) * | 2014-06-30 | 2016-01-21 | 株式会社ニデック | Optical coherence tomography device, optical coherence tomography calculation method and optical coherence tomography calculation program |
JP2017077414A (en) * | 2015-10-21 | 2017-04-27 | 株式会社ニデック | Ophthalmic analysis apparatus and ophthalmic analysis program |
US20180012359A1 (en) * | 2016-07-06 | 2018-01-11 | Marinko Venci Sarunic | Systems and Methods for Automated Image Classification and Segmentation |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4294853B2 (en) | 2000-12-19 | 2009-07-15 | アルパイン株式会社 | Operation instruction device |
JP2013251623A (en) | 2012-05-30 | 2013-12-12 | Kyocera Document Solutions Inc | Image processing apparatus, portable terminal, and image processing system |
JP6471593B2 (en) | 2015-04-09 | 2019-02-20 | 株式会社ニデック | OCT signal processing apparatus and OCT signal processing program |
JP6828295B2 (en) | 2016-08-01 | 2021-02-10 | 株式会社ニデック | Optical coherence tomography equipment and optical coherence tomography control program |
JP7182350B2 (en) | 2016-09-07 | 2022-12-02 | 株式会社ニデック | Ophthalmic analysis device, ophthalmic analysis program |
US9943225B1 (en) | 2016-09-23 | 2018-04-17 | International Business Machines Corporation | Early prediction of age related macular degeneration by image reconstruction |
WO2018181714A1 (en) | 2017-03-31 | 2018-10-04 | 株式会社ニデック | Ophthalmological information processing system |
JP6883463B2 (en) | 2017-04-26 | 2021-06-09 | 株式会社トプコン | Ophthalmic equipment |
CN107506770A (en) | 2017-08-17 | 2017-12-22 | 湖州师范学院 | Diabetic retinopathy eye-ground photography standard picture generation method |
US10878574B2 (en) | 2018-02-21 | 2020-12-29 | Topcon Corporation | 3D quantitative analysis of retinal layers with deep learning |
-
2019
- 2019-11-22 JP JP2019211862A patent/JP7254682B2/en active Active
-
2020
- 2020-11-17 WO PCT/JP2020/042764 patent/WO2021100694A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016010658A (en) * | 2014-06-30 | 2016-01-21 | 株式会社ニデック | Optical coherence tomography device, optical coherence tomography calculation method and optical coherence tomography calculation program |
JP2017077414A (en) * | 2015-10-21 | 2017-04-27 | 株式会社ニデック | Ophthalmic analysis apparatus and ophthalmic analysis program |
US20180012359A1 (en) * | 2016-07-06 | 2018-01-11 | Marinko Venci Sarunic | Systems and Methods for Automated Image Classification and Segmentation |
Also Published As
Publication number | Publication date |
---|---|
JP7254682B2 (en) | 2023-04-10 |
JP2021079042A (en) | 2021-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7250653B2 (en) | Image processing device, image processing method and program | |
KR102543875B1 (en) | Medical image processing apparatus, medical image processing method, computer readable medium, and trained model | |
US12094082B2 (en) | Image processing apparatus, image processing method and computer-readable medium | |
JP7269413B2 (en) | MEDICAL IMAGE PROCESSING APPARATUS, MEDICAL IMAGE PROCESSING SYSTEM, MEDICAL IMAGE PROCESSING METHOD AND PROGRAM | |
US12039704B2 (en) | Image processing apparatus, image processing method and computer-readable medium | |
US11887288B2 (en) | Image processing apparatus, image processing method, and storage medium | |
US20220151483A1 (en) | Ophthalmic apparatus, method for controlling ophthalmic apparatus, and computer-readable medium | |
JP7362403B2 (en) | Image processing device and image processing method | |
WO2020075719A1 (en) | Image processing device, image processing method, and program | |
JP2021037239A (en) | Area classification method | |
WO2021100694A1 (en) | Image processing device, image processing method, and program | |
JP7332463B2 (en) | Control device, optical coherence tomography device, control method for optical coherence tomography device, and program | |
WO2020138128A1 (en) | Image processing device, image processing method, and program | |
JP2022011912A (en) | Image processing apparatus, image processing method and program | |
JP2021164535A (en) | Image processing device, image processing method and program | |
JP2021086560A (en) | Medical image processing apparatus, medical image processing method, and program | |
JP2021069667A (en) | Image processing device, image processing method and program | |
WO2020049828A1 (en) | Image processing apparatus, image processing method, and program | |
JP2021058285A (en) | Image processing device, image processing method and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20890481 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20890481 Country of ref document: EP Kind code of ref document: A1 |