WO2021100656A1 - Radiation temperature measurement system, radiation temperature measurement program, radiation temperature measurement method, and mobile terminal - Google Patents

Radiation temperature measurement system, radiation temperature measurement program, radiation temperature measurement method, and mobile terminal Download PDF

Info

Publication number
WO2021100656A1
WO2021100656A1 PCT/JP2020/042613 JP2020042613W WO2021100656A1 WO 2021100656 A1 WO2021100656 A1 WO 2021100656A1 JP 2020042613 W JP2020042613 W JP 2020042613W WO 2021100656 A1 WO2021100656 A1 WO 2021100656A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
radiation temperature
unit
view
temperature measuring
Prior art date
Application number
PCT/JP2020/042613
Other languages
French (fr)
Japanese (ja)
Inventor
佳世 森長
有里 山▲崎▼
友里 大倉
雅幸 大角
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2021558368A priority Critical patent/JPWO2021100656A1/ja
Publication of WO2021100656A1 publication Critical patent/WO2021100656A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means

Definitions

  • the present invention relates to a radiation temperature measurement system, a radiation temperature measurement program, a radiation temperature measurement method, and a mobile terminal.
  • an infrared sensor that detects infrared radiation energy radiated from a temperature object to be measured (object to be measured) and a laser that irradiates the temperature object with laser light.
  • a laser from the laser irradiation unit is configured to indicate the detection area of the infrared sensor in a region surrounded by, for example, a laser beam.
  • the above radiation thermometer can grasp the detection area of the temperature measurement during the measurement, it cannot grasp the detection area of the measured temperature after the measurement. Then, there is a problem that problems occur in data management after measurement, processing on the object to be measured, and the like, which is not easy for the user to use.
  • the present invention has been made to solve the above problems, and mainly improves the usability of the user by making it easier to grasp the temperature measurement area (measurement field of view) not only during the measurement but also after the measurement. This is an issue.
  • the radiation temperature measuring unit that measures the temperature of the measurement object in a non-contact manner, the imaging unit that images the measurement object, and the distance to the measurement object are described.
  • a display control unit that superimposes the measurement field of view of the radiation temperature measurement unit on the image captured by the image pickup unit and displays it on the screen, and stores the measurement temperature of the radiation temperature measurement unit together with the image captured image on which the measurement field of view is superimposed. It is characterized by including a measurement result storage unit.
  • the measurement field of view of the radiation temperature measurement unit according to the distance to the object to be measured is displayed on the screen overlaid on the captured image, so that the measurement field of view of the radiation temperature measurement unit during measurement is displayed.
  • (Temperature measurement area) can be grasped on the screen.
  • the measurement temperature of the radiation temperature measuring unit is stored together with the captured image on which the measurement field of view is superimposed, the measurement field of view (temperature measurement area) can be grasped even after the measurement. As a result, the usability of the user can be improved.
  • the display control unit further includes a relationship information storage unit that stores the relationship information indicating the above, and the display control unit is based on the distance to the measurement object obtained by the distance calculation unit and the relationship information, and the radiation temperature. It is desirable to obtain the measurement field of view of the measuring unit and display the obtained measurement field on the screen by superimposing it on the captured image.
  • the display control unit displays the measurement temperature of the radiation temperature measurement unit on the screen in association with the measurement field of view.
  • the radiation temperature measuring unit measures the average temperature in the measurement field of view, it is even more important to display the area of the measurement field of view. In the case of this configuration, the effect of the present invention becomes more remarkable.
  • the display control unit superimposes the measurement temperature and the measurement field of view of the radiation temperature measurement unit acquired at each of a plurality of locations on one of the captured images and displays them on the screen. With this configuration, the usability of the user can be improved by displaying the measurement results at a plurality of locations in one captured image.
  • the display control unit displays a graph showing the time course of the measurement temperature of the radiation temperature measurement unit on the screen.
  • the imaging unit and the display control unit are provided on the mobile terminal, and the radiation temperature measuring unit is wired or wirelessly provided on the mobile terminal. It is desirable to be connected so that it can communicate with.
  • the relative positions of the radiation temperature measuring unit and the imaging unit are fixed. If the relative positions of the radiation temperature measuring unit and the imaging unit are fixed in this way, the positional relationship between the radiation temperature measuring unit and the imaging unit can be used, for example, by calibrating before the start of measurement.
  • the measurement field of view of the radiation temperature measuring unit displayed on the screen can be made accurate.
  • the radiation temperature measurement program is a radiation used in a radiation temperature measurement system including a radiation temperature measuring unit that measures the temperature of a measurement object in a non-contact manner and an imaging unit that images the measurement object.
  • a display control unit that superimposes the measurement field of view of the radiation temperature measurement unit according to the distance to the measurement object on the image captured by the image pickup unit and displays it on the screen, and the measurement field of view.
  • the computer is provided with a function as a measurement result storage unit for storing the measurement temperature of the radiation temperature measurement unit together with the captured image on which the is superimposed.
  • the temperature of the object to be measured is measured by the radiation temperature measuring unit in a non-contact manner, the object to be measured is imaged by the imaging unit, and the distance to the object to be measured is adjusted.
  • the measurement field of view of the radiation temperature measuring unit is superimposed on the image captured by the imaging unit and displayed on the screen, and the measured temperature of the radiation temperature measuring unit is stored in the memory together with the captured image on which the measurement field of measurement is superimposed. It is characterized by that.
  • the mobile terminal used for the radiation temperature measurement is a mobile terminal that acquires temperature information measured from a radiation temperature measuring unit that measures the temperature of a measurement object in a non-contact manner, and the measurement object is measured. It is characterized by including an imaging unit for imaging and a display control unit that superimposes the measurement field of view of the radiation temperature measuring unit according to the distance to the measurement object on the captured image of the imaging unit and displays it on the screen. And.
  • the present invention configured in this way, it is possible to easily grasp the temperature measurement area (measurement field of view) not only during the measurement but also after the measurement, and the usability of the user can be improved.
  • the radiation temperature measurement system 100 of the present embodiment measures the surface temperature of the measurement object W in a non-contact manner and manages the temperature data. As shown in FIG. 1, the surface temperature of the measurement object W is measured. It includes a radiation temperature measuring unit 2 for non-contact measurement, and a mobile terminal 3 to which the radiation temperature measuring unit 2 is communicably connected by wire or wirelessly. In FIG. 1, they are connected by a communication cable K. Here, the relative positions of the radiation temperature measuring unit 2 and the mobile terminal 3 are fixed by the fixing member 4. Further, the radiation temperature measuring unit 2 and the mobile terminal 3 can be operated as one by operating the fixing member 4.
  • the radiation temperature measuring unit 2 has an infrared detecting unit 21 that detects infrared rays emitted from the measuring object W and a surface of the measuring object based on the amount of infrared rays detected by the infrared detecting unit 21. It has a temperature calculation unit 22 for calculating the temperature.
  • the infrared detection unit 21 includes a sensor element 211 for detecting infrared rays such as a thermopile, an optical system 212 arranged in front of the sensor element 211, and a housing 213 for accommodating the sensor element 211 and the optical system 212. It is a thing.
  • the sensor element 211 is a thermal type that detects a temperature change when absorbing infrared rays as a change in electromotive force, and here, a thermopile in which a large number of thermocouples are arranged in series to form a thin film is used.
  • the sensor element 211 may be of another thermal type such as a porometer or a pyroelectric type, or may be of a quantum type instead of a thermal type.
  • the optical system 212 is composed of a lens 212a, an aperture 212b, etc. provided in front of the sensor element 211, and defines a solid angle (viewing angle) of infrared rays incident on the sensor element 211 from the outside, and thus measures. It defines the field of view.
  • the temperature calculation unit 22 is composed of electric circuits (not shown) such as a buffer, an amplifier, an AD converter, a CPU, and a memory, and the CPU cooperates with peripheral devices according to a program stored in the memory. It exerts a function of calculating the surface temperature of the measurement target W based on the value of the detection signal output from the sensor element 211. Specifically, the temperature calculation unit 22 calculates the average temperature in the measurement field of view defined by the optical system 212.
  • the mobile terminal 3 is, for example, a smartphone, a tablet terminal, or the like, and as shown in FIG. 3, the physical configuration thereof includes a CPU 301, for example, a memory 302 such as a ROM and a RAM, an input / output interface (communication interface) 303, and an imaging unit 304. It has a display 305, a GPS receiver 306, and the like.
  • the imaging unit 304 acquires an image under the control of the CPU 301.
  • a CCD image sensor in which charge coupling elements (CCDs) are arranged in a two-dimensional array and light receiving elements are arranged in an array.
  • a CMOS image sensor or the like can be used.
  • the image pickup unit 304 may have a zoom function or a flash function.
  • the imaging unit 304 not only the out-camera provided on the back side of the mobile terminal 3 but also the in-camera provided on the display side of the mobile terminal 3 may be provided so that they can be switched. ..
  • the CPU 301 cooperates with the peripheral device according to the radiation temperature measurement program stored in the memory 301, and as shown in FIG. 4, the display control unit 31, the measurement result storage unit 32, and the distance calculation unit 33, it exerts a function as a relational information storage unit 34 and the like.
  • the display control unit 31 displays the captured image P captured by the imaging unit 304 on the screen S of the display 305, and the radiation temperature measuring unit 2 according to the distance to the measurement object W.
  • the measurement field of view F of the above is superimposed on the captured image P of the imaging unit 304 and displayed on the screen S.
  • the measurement field of view F is directly shown by a circular shape, but the measurement field of view F may be indirectly shown by displaying both ends of the measurement field of view F at two points.
  • the imaging unit 304 may be provided with a timer function. By providing the timer function, it is possible to prevent camera shake at the timing of pressing the image pickup button.
  • the display control unit 31 displays the measurement temperature of the radiation temperature measurement unit 2 on the screen S in association with the measurement field of view F.
  • the displayed measurement field of view F is displayed in the measurement result display column S1 connected by a line such as a straight line, but in addition, the measurement result display displayed by a blowout from the measurement field of view F.
  • the measurement result display column S1 in addition to the measurement temperature in the measurement field F, for example, the measurement date and time (year, month, day, time), the field diameter of the measurement field, the distance to the measurement object W, the measurement position information, and so on.
  • the position information and the like of the mobile terminal 3 can be displayed.
  • the distance calculation unit 33 calculates the distance from the image pickup unit 304 to the measurement object W from the image captured image P captured by the image pickup unit 304.
  • the distance calculation unit 33 may be of a method that can calculate the distance without using the captured image P of the image pickup unit 304.
  • another sensor may be used to calculate the distance by transmitting an electromagnetic wave such as a radio wave or light and receiving a radio wave bounced off from the measurement object W.
  • relational information storage unit 34 stores relational information (for example, data such as a relational table or a relational expression) indicating the relationship between the distance in the radiation temperature measuring unit 2 and the visual field diameter of the measurement field of view.
  • this relational information includes, for example, the distance from the radiation temperature measuring unit 2 (l1, l2, l3, ...) And the visual field diameter ( ⁇ 1, ⁇ 2) of the measuring field F corresponding to each distance. , ⁇ 3, ). This related information is determined based on the optical system 212 and the like of the radiation temperature measuring unit 2.
  • the display control unit 31 obtains the visual field diameter of the measurement visual field F of the radiation temperature measurement unit 2 based on the distance to the measurement object W obtained by the distance calculation unit 33 and the above-mentioned relationship information.
  • the obtained measurement field of view F is superimposed on the captured image P and displayed on the screen S.
  • the center of the measurement field of view F is set so as to coincide with the center axis of the measurement field of view of the radiation temperature measuring unit 2.
  • the measurement result storage unit 32 stores the captured image P on which the measurement field of view F is superimposed and the data indicating the measurement temperature of the radiation temperature measurement unit 2.
  • the measurement result storage unit 32 also stores the measurement date and time (year, month, day, time) and the visual field diameter of the measurement field of view.
  • the timing at which the measurement result storage unit 32 stores the measurement result is the timing at which the image pickup button B1 of the mobile terminal 3 is pressed.
  • the superimposed image such as the captured image P, the measurement field of view F, and the measurement temperature displayed on the screen S of the display 305 at the timing when the image pickup button B1 is pressed is stored as the measurement result image.
  • the measurement result storage unit 32 includes the measurement temperature, the measurement date and time (year, month, day, time), the viewing field diameter of the measurement field, the distance to the measurement object W, the measurement position information, or the measurement result storage unit 32. , Each data such as the position information of the mobile terminal 3 is also stored.
  • the data indicating the measurement result image or the like stored in the measurement result storage unit 32 can be displayed on the screen S of the display 305 by the display control unit 31 after the measurement.
  • the measurement result storage unit 32 stores the measurement result images acquired at each of the plurality of locations.
  • the display control unit 31 may superimpose the measurement temperature and the measurement field of view F of the radiation temperature measurement unit 2 acquired at each of the plurality of locations on one captured image P and display it on the screen S. it can.
  • one representative captured image P in which a plurality of measurement temperatures and measurement fields of view F are overlapped can be appropriately selected.
  • a plurality of measurement result images acquired on the same day are superimposed and displayed, but a plurality of measurement result images acquired on different days can also be superimposed and displayed.
  • unnecessary measurement results can be deleted from a plurality of measurement results displayed on one captured image P.
  • the measurement result display field S1 displaying unnecessary measurement results can be deleted by swiping off the screen. It is also possible to delete all the measurement results being displayed at once.
  • the radiation temperature measurement system 100 of the present embodiment can switch between a batch measurement mode in which a single temperature measurement is performed at each location and a continuous measurement mode in which a plurality of temperature measurements are continuously performed at one location. It is configured.
  • the batch measurement mode is as described above.
  • the display control unit 31 displays switching buttons B2 to B4 for switching between the batch measurement mode and the continuous measurement mode on the screen S of the display 305.
  • the batch measurement mode can further switch between the single point measurement mode and the multipoint measurement mode, and the display control unit 31 also displays those buttons B2 and B3.
  • the single-point measurement mode is a mode in which the measurement result of one location is displayed on one captured image P
  • the multi-point measurement mode is a mode in which one captured image is displayed as shown in FIG. In this mode, the measurement results (measurement temperature and measurement field of view F) at a plurality of locations are displayed on P.
  • the radiation temperature measurement system 100 switches to the single point measurement mode, and when the user selects by pressing the switching button B3 or the like, the radiation temperature measurement system 100 switches to the multipoint measurement mode.
  • the switch is made and the user selects by pressing the switch button B4 or the like, the radiation temperature measurement system 100 switches to the continuous measurement mode.
  • the radiation temperature measurement system 100 may automatically measure the measurement temperature at regular time intervals where the setting can be changed. Further, as shown in FIG. 7, the display control unit 31 further displays a graph G showing the time-dependent change of the measurement temperature of the radiation temperature measurement unit 2 on the screen S. In the present embodiment, the display control unit 31 superimposes the graph G on the captured image P and displays it on the screen S.
  • the display control unit 31 by setting the upper limit value and the lower limit value of the measurement temperature in advance, as shown in FIG. 8, when (1) the upper limit value is exceeded and (2) the lower limit value is exceeded, respectively. It is possible to change the display mode such as the color of a part of the screen (for example, the measurement result display column S1), display a notification, or emit a notification sound.
  • the measurement temperature exceeds the upper limit value or falls below the lower limit value, it may be configured to shoot and record a moving image for a predetermined time before and after that time (for example, 5 seconds before and after).
  • the measurement field F of the radiation temperature measurement unit 2 according to the distance to the measurement object W is displayed on the screen S over the captured image P. Therefore, the measurement field F (temperature measurement area) of the radiation temperature measurement unit 2 can be grasped on the screen S during the measurement. Further, since the measurement temperature of the radiation temperature measuring unit 2 is stored together with the captured image P on which the measurement field F is superimposed, the measurement field F (temperature measurement region) can be grasped even after the measurement. As a result, the usability of the user can be improved. In addition, it is possible to leave a measurement result (evidence) that allows the measurement field of view to be grasped.
  • the measurement field of view F of the radiation temperature measuring unit 2 is superimposed on the captured image P of the imaging unit 304 and displayed on the screen S.
  • the infrared detection unit 21 in the radiation temperature measuring unit 2 and the imaging unit 304 in the mobile terminal 3 that generates the captured image P are arranged at different positions as shown in FIG. Therefore, as in the above embodiment, in order to superimpose the measurement field of view F on the captured image P of the imaging unit 304 and display it on the screen S, infrared detection by a calibration function as described below is performed. It may be necessary to correct the positional deviation between the unit 21 and the imaging unit 30. In the following modified embodiments, other embodiments including a calibration function will be described.
  • the radiation temperature measurement system may be configured to calculate the measurement field of view F in consideration of the positional deviation between the image pickup unit 304 and the radiation temperature measurement unit 2 (for example, the difference in the distance from the measurement object W). good.
  • the relational information stored in the relational information storage unit 34 may be corrected.
  • the radiation temperature measurement system may use a laser beam to correct the positional deviation between the image pickup unit 304 and the radiation temperature measurement unit 2. For example, when correcting the positional deviation using laser light, the position and angle at which the radiation temperature measuring unit 2 is provided are changed so that the measurement target on the image captured by the imaging unit 304 of the mobile terminal 3 is used.
  • the imaging region (for example, the central portion of the captured image P) may include the measurement field F of the infrared detection unit 21 in the radiation temperature measurement unit 2. Whether or not the measurement field of view F of the infrared detection unit 21 is included is displayed on the screen S at a predetermined position (for example, the central portion) of the captured image P indicating that the laser beam is in the photographing region.
  • the user can easily confirm that the positional deviation has been corrected.
  • the position or angle in which the mobile terminal 3 is provided may be changed so that the photographing region is included in the measurement field of view F of the infrared detection unit 21.
  • the predetermined position (for example, the central portion) of the captured image P is displayed on the screen S, so that the user can easily confirm that the positional deviation has been corrected.
  • the image pickup unit 304 and the radiation temperature measurement unit 2 may be fixed to the fixing member 4 so as to minimize the positional deviation (for example, the difference in the distance from the measurement object W).
  • the radiation temperature measuring unit 2 is measured with the measurement object W as compared with the above embodiment. It shows the state of being fixed at a position away from.
  • the distance between the radiation temperature measuring unit 2 and the measuring object W is the distance between the sensor element 211 of the radiation temperature measuring unit 2 and the measuring object W.
  • the distance between the image pickup unit 304 and the measurement object W may be the distance between the image sensor of the image pickup unit 304 and the measurement object W.
  • the display control unit 31 double-tap the screen S of the mobile terminal 3 (operation of tapping the screen S twice in succession) or pinch out (place two fingers on the screen S to widen the interval). It is also possible to magnify and display the captured image P and the measurement field of view F on the screen S in response to an input of an enlargement operation such as (operation of moving to).
  • the still image mode (camera mode) has been described, but the moving image mode (video mode) may be used.
  • the measurement result (measurement temperature and measurement field F) may be acquired at predetermined time intervals, or the measurement result (measurement temperature and measurement field F) may be acquired by the user pressing a predetermined button. You may try to get.
  • the measurement temperature at each measurement point may be displayed in color.
  • the measurement result displayed at each measurement point is displayed by changing the color in the measurement visual field F at each measurement point according to the measurement temperature.
  • the maximum and minimum display temperatures can be set, for example, a maximum temperature of 28 degrees and a minimum temperature of 10 degrees.
  • an indicator IG that displays the measured temperature currently being measured by the radiation temperature measuring unit 2 is provided. In this way, by displaying the measurement results of the plurality of measurement points in different colors, the temperature distribution of the measurement object W can be visually grasped. Further, by selecting the measurement field of view F of the measurement point on the screen S by tapping or the like, detailed measurement result information such as the measurement temperature can be displayed.
  • the radiation temperature measuring unit 2 may include a laser irradiating unit that irradiates the measurement object W with a laser beam pointing to the measurement field F.
  • the measurement field of view F is displayed on the captured image P on the screen S, and a mark (“+” mark in FIG. 5) indicating the center of the measurement field of view F is displayed on the measurement field of view F.
  • the mark indicating the center is not displayed in the measurement field of view F.
  • the irradiation position of the laser beam may be displayed in the measurement field of view F displayed on the screen S.
  • the user may tap the screen S of the mobile terminal 3 to switch the display / non-display of the mark indicating the laser beam irradiation position.
  • the user may tap the screen S of the mobile terminal 3 to switch between the display of the measurement field of view F and the display of the mark indicating the laser beam irradiation position.
  • the radiation temperature measurement system 100 may be able to measure the radiation temperature even when the display 305 of the mobile terminal 3 is turned off (the state in which the captured image P or the like is not displayed on the display 305). ..
  • the mobile terminal 3 may have an image recognition function. That is, the mobile terminal 3 may recognize the registered image input in advance from the captured image P captured by the imaging unit 304, and measure the radiation temperature when the registered image is recognized.
  • the configuration shown in FIG. 11 may be used so as to minimize the positional deviation between the imaging unit 304 and the radiation temperature measuring unit 2.
  • the fixing member 4 is a first fixing portion 41 in which the mobile terminal 3 is fixed in a sideways state, and a mobile terminal 3 provided in the first fixing portion 41 and fixed to the first fixing portion 41. It has a second fixing unit 42 that extends laterally toward the imaging unit 304 side and to which the radiation temperature measuring unit 2 is fixed.
  • the first fixing portion 41 has a lower holding body 41a and an upper holding body 41b that hold the sideways mobile terminal 3 from above and below.
  • the lower holding body 41a and the upper holding body 41b are configured to be expandable and contractible with each other, and are fixed by a fixing screw 41c or the like while holding the mobile terminal 3.
  • the lower holding body 41a and the upper holding body 41b may be configured to hold the mobile terminal 3 by the elastic member.
  • the second fixing portion 42 is fixed to the upper holding body 41b of the first fixing portion 41 by a fixing screw 43 or the like.
  • the radiation temperature measuring unit 2 is fixed to the other end of the second fixing unit 42 by a fixing screw 44 or the like.
  • the through hole 42a through which the fixing screw 43 penetrates in the second fixing portion 42 is a long hole, and the second fixing portion 42 slides laterally with respect to the upper holding body 41b. It is configured to be possible.
  • the through hole 42b through which the fixing screw 44 penetrates in the second fixing portion 42 is an elongated hole, and is configured so that the radiation temperature measuring portion 2 can slide laterally with respect to the second fixing portion 42. ing.
  • the upper holding body 41b, the second fixing portion 42, and the radiation temperature measuring portion 2 are slidably movable with each other in this way, radiation is emitted to the imaging unit 304 of the mobile terminal 3 fixed to the first fixing portion 41.
  • the position of the temperature measuring unit 2 can be finely adjusted. Specifically, the center of the imaging unit 304 and the center of the radiation temperature measuring unit 2 can be positioned on the same vertical line in front view.
  • the radiation temperature measuring portion 2 is fixed from one end portion fixed to the upper holding body 41b in order to facilitate the operation of the button provided on the side surface of the fixed mobile terminal 3.
  • the bent portion 421 is bent in the direction away from the mobile terminal 3 (upper side) (see FIG. 11).
  • the fixing member 4 of FIG. 11 has a gripping rod 45 having a first fixing portion and 41 and a second fixing portion 42 provided at one end.
  • the gripping rod 45 is operated by gripping the other end portion by the user.
  • the image pickup signal input by operating this operation button is transmitted to the mobile terminal 3 by wired communication or wireless communication (for example, Bluetooth). With this configuration, the user can measure the temperature without approaching the object to be measured.
  • the measurement result image may be configured to be output as a report, or the measurement result image may be transmitted to a server and managed by the server. Further, the temperature data measured by the radiation temperature measuring system may be transmitted to the server and managed by the server.
  • the temperature measurement area (measurement field of view) can be easily grasped not only during measurement but also after measurement, and the usability of the user can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

The present invention makes it easier to grasp a temperature measurement area, not only during measurement but also after measurement, and improves usability for a user. The present invention comprises: a radiation temperature measurement unit 2 that measures the temperature of a measurement object W in a contactless manner; an imaging unit 304 that captures an image of the measurement object W; a display control unit 31 that superimposes a measurement field of view F of the radiation temperature measurement unit 2 onto a captured image P of the imaging unit 304 and displays the result on a screen S, the measurement field of view F depending on the distance to the measurement object W; and a measurement result storage unit 32 that stores the measured temperature of the radiation temperature measurement unit 2 together with the captured image P on which the measurement field of view F is superimposed.

Description

放射温度測定システム、放射温度測定プログラム、放射温度測定方法及び携帯端末Radiation temperature measurement system, radiation temperature measurement program, radiation temperature measurement method and mobile terminal
 本発明は、放射温度測定システム、放射温度測定プログラム、放射温度測定方法及び携帯端末に関するものである。 The present invention relates to a radiation temperature measurement system, a radiation temperature measurement program, a radiation temperature measurement method, and a mobile terminal.
 従来の放射温度計としては、特許文献1に示すように、被測温体(測定対象物)から放射される赤外線放射エネルギーを検出する赤外線センサと、被測温体にレーザ光を照射するレーザ照射部とを備え、当該レーザ照射部からのレーザにより、前記赤外線センサの検出エリアを、例えばレーザ光によって囲まれた領域で指示するように構成したものがある。 As a conventional radiation thermometer, as shown in Patent Document 1, an infrared sensor that detects infrared radiation energy radiated from a temperature object to be measured (object to be measured) and a laser that irradiates the temperature object with laser light. Some of them are provided with an irradiation unit, and a laser from the laser irradiation unit is configured to indicate the detection area of the infrared sensor in a region surrounded by, for example, a laser beam.
特開2012-177560号公報Japanese Unexamined Patent Publication No. 2012-177560
 しかしながら、上記の放射温度計では、測定中においては、温度測定の検出エリアを把握することができるものの、測定後においては、測定された温度の検出エリアを把握することができない。そうすると、測定後のデータ管理や測定対象物に対する処理等で不具合が生じてしまい、ユーザの使い勝手が悪いという問題がある。 However, although the above radiation thermometer can grasp the detection area of the temperature measurement during the measurement, it cannot grasp the detection area of the measured temperature after the measurement. Then, there is a problem that problems occur in data management after measurement, processing on the object to be measured, and the like, which is not easy for the user to use.
 そこで本発明は、上記問題点を解決すべくなされたものであり、測定中だけでなく測定後においても温度測定領域(測定視野)を把握しやすくして、ユーザの使い勝手を向上することを主たる課題とするものである。 Therefore, the present invention has been made to solve the above problems, and mainly improves the usability of the user by making it easier to grasp the temperature measurement area (measurement field of view) not only during the measurement but also after the measurement. This is an issue.
 すなわち本発明に係る放射温度測定システムは、測定対象物の温度を非接触で測定する放射温度測定部と、前記測定対象物を撮像する撮像部と、前記測定対象物までの距離に応じた前記放射温度測定部の測定視野を、前記撮像部の撮像画像に重畳して画面上に表示する表示制御部と、前記測定視野が重畳された前記撮像画像とともに前記放射温度測定部の測定温度を格納する測定結果格納部とを備えることを特徴とする。 That is, in the radiation temperature measurement system according to the present invention, the radiation temperature measuring unit that measures the temperature of the measurement object in a non-contact manner, the imaging unit that images the measurement object, and the distance to the measurement object are described. A display control unit that superimposes the measurement field of view of the radiation temperature measurement unit on the image captured by the image pickup unit and displays it on the screen, and stores the measurement temperature of the radiation temperature measurement unit together with the image captured image on which the measurement field of view is superimposed. It is characterized by including a measurement result storage unit.
 このようなものであれば、測定対象物までの距離に応じた放射温度測定部の測定視野を、撮像画像に重ねて画面上に表示しているので、測定中において放射温度測定部の測定視野(温度測定領域)を画面上で把握することができる。また、測定視野が重畳された撮像画像とともに放射温度測定部の測定温度を格納するので、測定後においても測定視野(温度測定領域)を把握することができる。その結果、ユーザの使い勝手を向上することができる。また、測定視野が把握可能な測定結果(エビデンス)を残すことができる。 In such a case, the measurement field of view of the radiation temperature measurement unit according to the distance to the object to be measured is displayed on the screen overlaid on the captured image, so that the measurement field of view of the radiation temperature measurement unit during measurement is displayed. (Temperature measurement area) can be grasped on the screen. Further, since the measurement temperature of the radiation temperature measuring unit is stored together with the captured image on which the measurement field of view is superimposed, the measurement field of view (temperature measurement area) can be grasped even after the measurement. As a result, the usability of the user can be improved. In addition, it is possible to leave a measurement result (evidence) that allows the measurement field of view to be grasped.
 画面上に表示する測定視野を正確にするためには、前記放射温度測定システムが、前記測定対象物までの距離を算出する距離算出部と、前記放射温度測定部における距離と測定視野との関係を示す関係情報を格納する関係情報格納部とを更に備え、前記表示制御部は、前記距離算出部により得られた前記測定対象物までの距離と、前記関係情報とに基づいて、前記放射温度測定部の測定視野を求め、当該求めた測定視野を前記撮像画像に重ねて画面上に表示することが望ましい。 In order to make the measurement field of view displayed on the screen accurate, the relationship between the distance calculation unit that calculates the distance to the measurement object by the radiation temperature measurement system and the distance and the measurement field of view in the radiation temperature measurement unit. The display control unit further includes a relationship information storage unit that stores the relationship information indicating the above, and the display control unit is based on the distance to the measurement object obtained by the distance calculation unit and the relationship information, and the radiation temperature. It is desirable to obtain the measurement field of view of the measuring unit and display the obtained measurement field on the screen by superimposing it on the captured image.
 測定視野とともに測定温度を把握しやすくするためには、前記表示制御部は、前記放射温度測定部の測定温度を、前記測定視野に関連付けて画面上に表示することが望ましい。 In order to make it easier to grasp the measurement temperature together with the measurement field of view, it is desirable that the display control unit displays the measurement temperature of the radiation temperature measurement unit on the screen in association with the measurement field of view.
 前記放射温度測定部が前記測定視野内の平均温度を測定するものである場合に、その測定視野の領域を表示することがより一層重要となる。この構成の場合に、本発明の効果が一層顕著となる。 When the radiation temperature measuring unit measures the average temperature in the measurement field of view, it is even more important to display the area of the measurement field of view. In the case of this configuration, the effect of the present invention becomes more remarkable.
 前記表示制御部は、複数箇所それぞれにおいて取得した前記放射温度測定部の測定温度及び測定視野を1つの前記撮像画像に重ねて画面上に表示するものであることが望ましい。この構成であれば、1枚の撮像画像内に複数箇所の測定結果を表示することによってユーザの使い勝手を向上することができる。 It is desirable that the display control unit superimposes the measurement temperature and the measurement field of view of the radiation temperature measurement unit acquired at each of a plurality of locations on one of the captured images and displays them on the screen. With this configuration, the usability of the user can be improved by displaying the measurement results at a plurality of locations in one captured image.
 本発明の放射温度測定システムにおいて、より一層使い勝手を向上するためには、単一の温度測定を行うバッチ測定モードと、複数回の温度測定を連続的に行う連続測定モードとを切り替え可能に構成することが望ましい。この場合、前記連続測定モードにおいて、前記表示制御部は、前記放射温度測定部の測定温度の経時変化を示すグラフを画面上に表示することが望ましい。 In the radiation temperature measurement system of the present invention, in order to further improve usability, it is possible to switch between a batch measurement mode in which a single temperature measurement is performed and a continuous measurement mode in which a plurality of temperature measurements are continuously performed. It is desirable to do. In this case, in the continuous measurement mode, it is desirable that the display control unit displays a graph showing the time course of the measurement temperature of the radiation temperature measurement unit on the screen.
 放射温度測定システムを携帯できるようにして使い勝手を向上するためには、前記撮像部及び前記表示制御部は、携帯端末に設けられており、前記放射温度測定部は、有線又は無線により前記携帯端末に通信可能に接続されていることが望ましい。 In order to make the radiation temperature measuring system portable and improve usability, the imaging unit and the display control unit are provided on the mobile terminal, and the radiation temperature measuring unit is wired or wirelessly provided on the mobile terminal. It is desirable to be connected so that it can communicate with.
 撮像部により撮像された撮像画像を用いて測定対象物までの距離を算出する場合には、放射温度測定部と撮像部との相対位置が変化してしまうと、画面上に表示される放射温度測定部の測定視野を求める際に、複雑な演算が必要となってしまう。そのため、前記放射温度計測部と前記撮像部との相対位置が固定されていることが望ましい。このように放射温度計測部と撮像部との相対位置が固定されていれば、放射温度測定部と撮像部との位置関係を用いて、例えば測定開始前にキャリブレーション(校正)することで、画面上に表示される放射温度測定部の測定視野を正確にすることができる。 When calculating the distance to the object to be measured using the image captured by the imaging unit, if the relative position between the radiation temperature measuring unit and the imaging unit changes, the radiation temperature displayed on the screen. A complicated calculation is required to obtain the measurement field of view of the measuring unit. Therefore, it is desirable that the relative positions of the radiation temperature measuring unit and the imaging unit are fixed. If the relative positions of the radiation temperature measuring unit and the imaging unit are fixed in this way, the positional relationship between the radiation temperature measuring unit and the imaging unit can be used, for example, by calibrating before the start of measurement. The measurement field of view of the radiation temperature measuring unit displayed on the screen can be made accurate.
 また、本発明に係る放射温度測定プログラムは、測定対象物の温度を非接触で測定する放射温度測定部と、前記測定対象物を撮像する撮像部とを備えた放射温度測定システムに用いられる放射温度測定プログラムであって、前記測定対象物までの距離に応じた前記放射温度測定部の測定視野を、前記撮像部の撮像画像に重畳して画面上に表示する表示制御部と、前記測定視野が重畳された前記撮像画像とともに前記放射温度測定部の測定温度を格納する測定結果格納部と、としての機能をコンピュータに備えさせることを特徴とする。 Further, the radiation temperature measurement program according to the present invention is a radiation used in a radiation temperature measurement system including a radiation temperature measuring unit that measures the temperature of a measurement object in a non-contact manner and an imaging unit that images the measurement object. In the temperature measurement program, a display control unit that superimposes the measurement field of view of the radiation temperature measurement unit according to the distance to the measurement object on the image captured by the image pickup unit and displays it on the screen, and the measurement field of view. It is characterized in that the computer is provided with a function as a measurement result storage unit for storing the measurement temperature of the radiation temperature measurement unit together with the captured image on which the is superimposed.
 また、本発明に係る放射温度測定方法は、放射温度測定部により測定対象物の温度を非接触で測定し、撮像部により前記測定対象物を撮像し、前記測定対象物までの距離に応じた前記放射温度測定部の測定視野を、前記撮像部の撮像画像に重畳して画面上に表示し、前記測定視野が重畳された前記撮像画像とともに前記放射温度測定部の測定温度をメモリに格納することを特徴とする。 Further, in the radiation temperature measuring method according to the present invention, the temperature of the object to be measured is measured by the radiation temperature measuring unit in a non-contact manner, the object to be measured is imaged by the imaging unit, and the distance to the object to be measured is adjusted. The measurement field of view of the radiation temperature measuring unit is superimposed on the image captured by the imaging unit and displayed on the screen, and the measured temperature of the radiation temperature measuring unit is stored in the memory together with the captured image on which the measurement field of measurement is superimposed. It is characterized by that.
 さらに、本発明に係る放射温度測定に用いられる携帯端末は、測定対象物の温度を非接触で測定する放射温度測定部から測定した温度情報を取得する携帯端末であって、前記測定対象物を撮像する撮像部と、前記測定対象物までの距離に応じた前記放射温度測定部の測定視野を、前記撮像部の撮像画像に重畳して画面上に表示する表示制御部とを備えることを特徴とする。 Further, the mobile terminal used for the radiation temperature measurement according to the present invention is a mobile terminal that acquires temperature information measured from a radiation temperature measuring unit that measures the temperature of a measurement object in a non-contact manner, and the measurement object is measured. It is characterized by including an imaging unit for imaging and a display control unit that superimposes the measurement field of view of the radiation temperature measuring unit according to the distance to the measurement object on the captured image of the imaging unit and displays it on the screen. And.
 このように構成した本発明によれば、測定中だけでなく測定後においても温度測定領域(測定視野)を把握しやすくして、ユーザの使い勝手を向上することができる。 According to the present invention configured in this way, it is possible to easily grasp the temperature measurement area (measurement field of view) not only during the measurement but also after the measurement, and the usability of the user can be improved.
本発明の一本実施形態における放射温度測定システムの全体構成を模式的に示す斜視図である。It is a perspective view which shows typically the whole structure of the radiation temperature measurement system in one Embodiment of this invention. 同実施形態の放射温度測定部の構成を示す模式図である。It is a schematic diagram which shows the structure of the radiation temperature measuring part of the same embodiment. 同実施形態の携帯端末の物理構成を示す図である。It is a figure which shows the physical structure of the mobile terminal of the same embodiment. 同実施形態の携帯端末の機能ブロック図である。It is a functional block diagram of the mobile terminal of the same embodiment. 同実施形態の表示制御部による画面表示の一例(バッチ測定モード)を示す図である。It is a figure which shows an example (batch measurement mode) of the screen display by the display control unit of the same embodiment. 同実施形態の表示制御部による画面表示の一例(バッチ測定モード)を示す図である。It is a figure which shows an example (batch measurement mode) of the screen display by the display control unit of the same embodiment. 同実施形態の表示制御部による画面表示の一例(連続測定モード)を示す図である。It is a figure which shows an example (continuous measurement mode) of the screen display by the display control unit of the same embodiment. 同実施形態の表示制御部による画面表示の一例((1)上限値を上回った場合、(2)下限値を下回った場合)を示す図である。It is a figure which shows an example of the screen display by the display control unit of the same embodiment ((1) when it exceeds the upper limit value, (2) when it falls below a lower limit value). 変形実施形態における放射温度測定システムの全体構成を模式的に示す斜視図である。It is a perspective view which shows typically the whole structure of the radiation temperature measurement system in the modified embodiment. 変形実施形態の表示制御部による画面表示の一例を示す図である。It is a figure which shows an example of the screen display by the display control part of the modification embodiment. 変形実施形態における放射温度測定システムの正面図、背面図及び右側面図である。It is a front view, the back view and the right side view of the radiation temperature measurement system in the modification embodiment. 変形実施形態における第2固定部の正面図及び平面図である。It is a front view and a plan view of the 2nd fixed part in a modification embodiment.
100・・・放射温度測定システム
W  ・・・測定対象物
2  ・・・放射温度測定部
3  ・・・携帯端末
304・・・撮像部
F  ・・・測定視野
P  ・・・撮像画像
31 ・・・表示制御部
32 ・・・測定結果格納部
33 ・・・距離算出部
34 ・・・関係情報格納部
G  ・・・グラフ
100 ・ ・ ・ Radiation temperature measurement system W ・ ・ ・ Measurement object 2 ・ ・ ・ Radiation temperature measurement unit 3 ・ ・ ・ Mobile terminal 304 ・ ・ ・ Imaging unit F ・ ・ ・ Measurement field P ・ ・ ・ Captured image 31 ・ ・・ Display control unit 32 ・ ・ ・ Measurement result storage unit 33 ・ ・ ・ Distance calculation unit 34 ・ ・ ・ Relationship information storage unit G ・ ・ ・ Graph
 以下、本発明の一実施形態に係る放射温度測定システム100について、図面を参照して説明する。 Hereinafter, the radiation temperature measurement system 100 according to the embodiment of the present invention will be described with reference to the drawings.
<1.放射温度測定システムの装置構成>
 本実施形態の放射温度測定システム100は、測定対象物Wの表面温度を非接触で測定し、その温度データを管理するものであり、図1に示すように、測定対象物Wの表面温度を非接触で測定する放射温度測定部2と、当該放射温度測定部2が有線又は無線により通信可能に接続される携帯端末3とを備えている。なお、図1では、通信ケーブルKによって接続されている。ここで、放射温度測定部2及び携帯端末3は、固定部材4によりそれらの相対位置が固定されている。また、放射温度測定部2及び携帯端末3は、固定部材4を操作することにより、一体のものとして操作することができる。
<1. Equipment configuration of radiation temperature measurement system>
The radiation temperature measurement system 100 of the present embodiment measures the surface temperature of the measurement object W in a non-contact manner and manages the temperature data. As shown in FIG. 1, the surface temperature of the measurement object W is measured. It includes a radiation temperature measuring unit 2 for non-contact measurement, and a mobile terminal 3 to which the radiation temperature measuring unit 2 is communicably connected by wire or wirelessly. In FIG. 1, they are connected by a communication cable K. Here, the relative positions of the radiation temperature measuring unit 2 and the mobile terminal 3 are fixed by the fixing member 4. Further, the radiation temperature measuring unit 2 and the mobile terminal 3 can be operated as one by operating the fixing member 4.
 放射温度測定部2は、図2に示すように、測定対象物Wから放射される赤外線を検知する赤外線検知部21と、当該赤外線検知部21で検知した赤外線量に基づいて測定対象物の表面温度を算出する温度算出部22とを有している。 As shown in FIG. 2, the radiation temperature measuring unit 2 has an infrared detecting unit 21 that detects infrared rays emitted from the measuring object W and a surface of the measuring object based on the amount of infrared rays detected by the infrared detecting unit 21. It has a temperature calculation unit 22 for calculating the temperature.
 赤外線検知部21は、サーモパイルなどの赤外線を検知するセンサ素子211と、センサ素子211の前段に配置された光学系212と、これらセンサ素子211及び光学系212を収容する筐体213とを備えたものである。 The infrared detection unit 21 includes a sensor element 211 for detecting infrared rays such as a thermopile, an optical system 212 arranged in front of the sensor element 211, and a housing 213 for accommodating the sensor element 211 and the optical system 212. It is a thing.
 センサ素子211は、赤外線を吸収したときの温度変化を起電力の変化として検知する熱型のものであり、ここでは、熱電対を多数直列に並べて薄膜化したサーモパイルが用いられている。なお、このセンサ素子211としては、ポロメータや焦電型のような他の熱型のものでもよいし、あるいは、熱型ではなく量子型のものを用いても構わない。 The sensor element 211 is a thermal type that detects a temperature change when absorbing infrared rays as a change in electromotive force, and here, a thermopile in which a large number of thermocouples are arranged in series to form a thin film is used. The sensor element 211 may be of another thermal type such as a porometer or a pyroelectric type, or may be of a quantum type instead of a thermal type.
 光学系212は、センサ素子211の前段に設けられたレンズ212a、絞り212bなどから構成されたものであり、外部からセンサ素子211に入射する赤外線の立体角(視野角)を規定し、ひいては測定視野を規定するものである。 The optical system 212 is composed of a lens 212a, an aperture 212b, etc. provided in front of the sensor element 211, and defines a solid angle (viewing angle) of infrared rays incident on the sensor element 211 from the outside, and thus measures. It defines the field of view.
 温度算出部22は、バッファ、増幅器、ADコンバータ、CPU、メモリなどの電気回路(図示しない)で構成されるものであり、メモリに格納されたプログラムに従ってCPUが周辺機器と協動することにより、センサ素子211から出力される検知信号の値に基づいて、測定対象物Wの表面温度を算出する機能を発揮するものである。具体的には、温度算出部22は、光学系212により規定される測定視野内の平均温度を算出する。 The temperature calculation unit 22 is composed of electric circuits (not shown) such as a buffer, an amplifier, an AD converter, a CPU, and a memory, and the CPU cooperates with peripheral devices according to a program stored in the memory. It exerts a function of calculating the surface temperature of the measurement target W based on the value of the detection signal output from the sensor element 211. Specifically, the temperature calculation unit 22 calculates the average temperature in the measurement field of view defined by the optical system 212.
 携帯端末3は、例えばスマートフォンやタブレット端末等であり、図3に示すように、その物理構成として、CPU301、例えばROM、RAMなどのメモリ302、入出力インターフェース(通信インターフェース)303、撮像部304、ディスプレイ305、GPS受信機306などを有している。ここで、撮像部304は、CPU301の制御により画像を取得するものであり、例えば、電荷結合素子(CCD)が二次元アレイ状に配置されたCCDイメージセンサ、受光素子がアレイ状に配置されたCMOSイメージセンサ等を用いることができる。なお、撮像部304にズーム機能を備えていても良いし、フラッシュ機能を備えていても良い。その他、光量調整機能を備えていても良い。さらに、撮像部304として、携帯端末3の背面側に設けられたアウトカメラだけでなく、携帯端末3のディスプレイ側に設けられたインカメラを有する構成し、それらを切り替え可能に構成しても良い。 The mobile terminal 3 is, for example, a smartphone, a tablet terminal, or the like, and as shown in FIG. 3, the physical configuration thereof includes a CPU 301, for example, a memory 302 such as a ROM and a RAM, an input / output interface (communication interface) 303, and an imaging unit 304. It has a display 305, a GPS receiver 306, and the like. Here, the imaging unit 304 acquires an image under the control of the CPU 301. For example, a CCD image sensor in which charge coupling elements (CCDs) are arranged in a two-dimensional array and light receiving elements are arranged in an array. A CMOS image sensor or the like can be used. The image pickup unit 304 may have a zoom function or a flash function. In addition, it may have a light amount adjusting function. Further, as the imaging unit 304, not only the out-camera provided on the back side of the mobile terminal 3 but also the in-camera provided on the display side of the mobile terminal 3 may be provided so that they can be switched. ..
 そして、携帯端末3は、メモリ301に格納された放射温度測定プログラムに従ってCPU301が周辺機器と協動することにより、図4に示すように、表示制御部31、測定結果格納部32、距離算出部33、関係情報格納部34等としての機能を発揮するものである。 Then, in the mobile terminal 3, the CPU 301 cooperates with the peripheral device according to the radiation temperature measurement program stored in the memory 301, and as shown in FIG. 4, the display control unit 31, the measurement result storage unit 32, and the distance calculation unit 33, it exerts a function as a relational information storage unit 34 and the like.
 表示制御部31は、図5に示すように、撮像部304により撮像された撮像画像Pをディスプレイ305の画面S上に表示するとともに、測定対象物Wまでの距離に応じた放射温度測定部2の測定視野Fを、撮像部304の撮像画像Pに重畳して画面S上に表示する。ここでは、測定視野Fを円形状により直接的に示しているが、測定視野Fの両端を2点で表示するなどのように、測定視野Fを間接的に示す態様であっても良い。なお、撮像部304による撮像時において、携帯端末3に設けられた撮像ボタンを押す構成では手ブレしてしまう可能性があり、例えば撮像部304にタイマー機能を設けても良い。タイマー機能を設けることにより、撮像ボタンを押すタイミングで手ブレしてしまうことを防ぐことができる。 As shown in FIG. 5, the display control unit 31 displays the captured image P captured by the imaging unit 304 on the screen S of the display 305, and the radiation temperature measuring unit 2 according to the distance to the measurement object W. The measurement field of view F of the above is superimposed on the captured image P of the imaging unit 304 and displayed on the screen S. Here, the measurement field of view F is directly shown by a circular shape, but the measurement field of view F may be indirectly shown by displaying both ends of the measurement field of view F at two points. At the time of imaging by the imaging unit 304, there is a possibility of camera shake if the imaging button provided on the mobile terminal 3 is pressed. For example, the imaging unit 304 may be provided with a timer function. By providing the timer function, it is possible to prevent camera shake at the timing of pressing the image pickup button.
 さらに、表示制御部31は、放射温度測定部2の測定温度を、測定視野Fに関連付けて画面S上に表示する。図5では、一例として、表示された測定視野Fと例えば直線等の線で結ばれた測定結果表示欄S1に表示する構成であるが、その他、測定視野Fから吹き出しで表示された測定結果表示欄S1に表示する構成等、測定視野Fに関連していることが分かる表示態様であれば良い。この測定結果表示欄S1には、測定視野Fにおける測定温度の他に、例えば測定日時(年、月、日、時間)、測定視野の視野直径、測定対象物Wまでの距離、測定位置情報、又は、携帯端末3の位置情報等を表示することができる。 Further, the display control unit 31 displays the measurement temperature of the radiation temperature measurement unit 2 on the screen S in association with the measurement field of view F. In FIG. 5, as an example, the displayed measurement field of view F is displayed in the measurement result display column S1 connected by a line such as a straight line, but in addition, the measurement result display displayed by a blowout from the measurement field of view F. Any display mode that can be seen to be related to the measurement field of view F, such as the configuration displayed in column S1, may be used. In the measurement result display column S1, in addition to the measurement temperature in the measurement field F, for example, the measurement date and time (year, month, day, time), the field diameter of the measurement field, the distance to the measurement object W, the measurement position information, and so on. Alternatively, the position information and the like of the mobile terminal 3 can be displayed.
 ここで、測定視野Fを表示するに当たり、距離算出部33及び関係情報格納部34が関与する。
 距離算出部33は、撮像部304により撮像された撮像画像Pから、撮像部304から測定対象物Wまでの距離を算出するものである。なお、距離算出部33は、撮像部304の撮像画像Pを用いないで距離を算出できる方式のものであっても良い。例えば、別のセンサであって、電波や光などの電磁波を送出して、測定対象物Wから跳ね返った電波を受信することにより距離を算出するもの等であっても良い。
Here, the distance calculation unit 33 and the relationship information storage unit 34 are involved in displaying the measurement field of view F.
The distance calculation unit 33 calculates the distance from the image pickup unit 304 to the measurement object W from the image captured image P captured by the image pickup unit 304. The distance calculation unit 33 may be of a method that can calculate the distance without using the captured image P of the image pickup unit 304. For example, another sensor may be used to calculate the distance by transmitting an electromagnetic wave such as a radio wave or light and receiving a radio wave bounced off from the measurement object W.
 また、関係情報格納部34は、放射温度測定部2における距離と測定視野の視野直径との関係を示す関係情報(例えば関係テーブル又は関係式等のデータ)を格納している。この関係情報は、図4に示すように、例えば、放射温度測定部2からの距離(l1,l2,l3,・・・)と、各距離に対応する測定視野Fの視野直径(φ1,φ2,φ3,・・・)との関係である。この関係情報は、放射温度測定部2の光学系212等に基づいて定まるものである。 Further, the relational information storage unit 34 stores relational information (for example, data such as a relational table or a relational expression) indicating the relationship between the distance in the radiation temperature measuring unit 2 and the visual field diameter of the measurement field of view. As shown in FIG. 4, this relational information includes, for example, the distance from the radiation temperature measuring unit 2 (l1, l2, l3, ...) And the visual field diameter (φ1, φ2) of the measuring field F corresponding to each distance. , Φ3, ...). This related information is determined based on the optical system 212 and the like of the radiation temperature measuring unit 2.
 そして、表示制御部31は、距離算出部33により得られた測定対象物Wまでの距離と、上記の関係情報とに基づいて、放射温度測定部2の測定視野Fの視野直径を求め、当該求めた測定視野Fを撮像画像Pに重ねて画面S上に表示する。ここで、測定視野Fの中心は、放射温度測定部2の測定視野中心軸と一致するように設定してある。 Then, the display control unit 31 obtains the visual field diameter of the measurement visual field F of the radiation temperature measurement unit 2 based on the distance to the measurement object W obtained by the distance calculation unit 33 and the above-mentioned relationship information. The obtained measurement field of view F is superimposed on the captured image P and displayed on the screen S. Here, the center of the measurement field of view F is set so as to coincide with the center axis of the measurement field of view of the radiation temperature measuring unit 2.
 測定結果格納部32は、測定視野Fが重畳された撮像画像P及び放射温度測定部2の測定温度を示すデータを格納する。その他、測定結果格納部32は、測定日時(年、月、日、時間)及び測定視野の視野径も合わせて格納する。ここで、測定結果格納部32が測定結果を格納するタイミングとしては、携帯端末3の撮像ボタンB1を押したタイミングである。撮像ボタンB1を押したタイミングでディスプレイ305の画面S上に表示されている撮像画像P、測定視野F及び測定温度等の重畳画像を測定結果画像として格納する。また、測定結果格納部32は、測定結果画像の他に、測定温度、測定日時(年、月、日、時間)、測定視野の視野径、測定対象物Wまでの距離、測定位置情報、又は、携帯端末3の位置情報等の各データも格納する。この測定結果格納部32に格納された測定結果画像等を示すデータは、測定後において、表示制御部31により、ディスプレイ305の画面S上に表示することができる。 The measurement result storage unit 32 stores the captured image P on which the measurement field of view F is superimposed and the data indicating the measurement temperature of the radiation temperature measurement unit 2. In addition, the measurement result storage unit 32 also stores the measurement date and time (year, month, day, time) and the visual field diameter of the measurement field of view. Here, the timing at which the measurement result storage unit 32 stores the measurement result is the timing at which the image pickup button B1 of the mobile terminal 3 is pressed. The superimposed image such as the captured image P, the measurement field of view F, and the measurement temperature displayed on the screen S of the display 305 at the timing when the image pickup button B1 is pressed is stored as the measurement result image. In addition to the measurement result image, the measurement result storage unit 32 includes the measurement temperature, the measurement date and time (year, month, day, time), the viewing field diameter of the measurement field, the distance to the measurement object W, the measurement position information, or the measurement result storage unit 32. , Each data such as the position information of the mobile terminal 3 is also stored. The data indicating the measurement result image or the like stored in the measurement result storage unit 32 can be displayed on the screen S of the display 305 by the display control unit 31 after the measurement.
 このようにして、測定結果格納部32には、複数箇所それぞれにおいて取得した測定結果画像が格納される。そして、表示制御部31は、図6に示すように、複数箇所それぞれにおいて取得した放射温度測定部2の測定温度及び測定視野Fを1つの撮像画像Pに重ねて画面S上に表示することもできる。このとき、複数の測定温度及び測定視野Fを重ねる代表的な1つの撮像画像Pは、適宜選択することができる。なお、図6では、同日に取得した複数の測定結果画像を重ねて表示しているが、互いに異なる日に取得した複数の測定結果画像を重ねて表示することもできる。また、1つの撮像画像Pに表示された複数の測定結果の中から不要な測定結果を削除することができる。例えば、不要な測定結果を表示している測定結果表示欄S1を画面外にスワイプすることにより削除することができる。また、表示中の測定結果を一括してすべて削除することもできる。 In this way, the measurement result storage unit 32 stores the measurement result images acquired at each of the plurality of locations. Then, as shown in FIG. 6, the display control unit 31 may superimpose the measurement temperature and the measurement field of view F of the radiation temperature measurement unit 2 acquired at each of the plurality of locations on one captured image P and display it on the screen S. it can. At this time, one representative captured image P in which a plurality of measurement temperatures and measurement fields of view F are overlapped can be appropriately selected. In FIG. 6, a plurality of measurement result images acquired on the same day are superimposed and displayed, but a plurality of measurement result images acquired on different days can also be superimposed and displayed. In addition, unnecessary measurement results can be deleted from a plurality of measurement results displayed on one captured image P. For example, the measurement result display field S1 displaying unnecessary measurement results can be deleted by swiping off the screen. It is also possible to delete all the measurement results being displayed at once.
 さらに、本実施形態の放射温度測定システム100は、各箇所において単一の温度測定を行うバッチ測定モードと、1つの箇所において複数回の温度測定を連続的に行う連続測定モードとを切り替え可能に構成されている。なお、バッチ測定モードは、上述した説明の通りである。 Further, the radiation temperature measurement system 100 of the present embodiment can switch between a batch measurement mode in which a single temperature measurement is performed at each location and a continuous measurement mode in which a plurality of temperature measurements are continuously performed at one location. It is configured. The batch measurement mode is as described above.
 図5~図7に示すように、表示制御部31は、ディスプレイ305の画面S上に、バッチ測定モードと連続測定モードとを切り替えるための切り替えボタンB2~B4が表示する。ここで、バッチ測定モードはさらに、単点測定モードと多点測定モードとを切り替えることができ、表示制御部31は、それらのボタンB2、B3も表示する。なお、単点測定モードは、図5に示すように、1つの撮像画像Pに1箇所の測定結果を表示するモードであり、多点測定モードは、図6に示すように、1つの撮像画像Pに複数箇所の測定結果(測定温度及び測定視野F)を表示するモードである。そして、ユーザが切り替えボタンB2を押す等により選択すると、放射温度測定システム100は単点測定モードに切り替わり、ユーザが切り替えボタンB3を押す等により選択すると、放射温度測定システム100は多点測定モードに切り替わり、ユーザが切り替えボタンB4を押す等により選択すると、放射温度測定システム100は連続測定モードに切り替わる。 As shown in FIGS. 5 to 7, the display control unit 31 displays switching buttons B2 to B4 for switching between the batch measurement mode and the continuous measurement mode on the screen S of the display 305. Here, the batch measurement mode can further switch between the single point measurement mode and the multipoint measurement mode, and the display control unit 31 also displays those buttons B2 and B3. As shown in FIG. 5, the single-point measurement mode is a mode in which the measurement result of one location is displayed on one captured image P, and the multi-point measurement mode is a mode in which one captured image is displayed as shown in FIG. In this mode, the measurement results (measurement temperature and measurement field of view F) at a plurality of locations are displayed on P. Then, when the user selects by pressing the switching button B2 or the like, the radiation temperature measurement system 100 switches to the single point measurement mode, and when the user selects by pressing the switching button B3 or the like, the radiation temperature measurement system 100 switches to the multipoint measurement mode. When the switch is made and the user selects by pressing the switch button B4 or the like, the radiation temperature measurement system 100 switches to the continuous measurement mode.
 放射温度測定システム100は、連続測定モードでは、設定変更可能な一定の時間間隔で測定温度を自動測定することが考えられる。また、表示制御部31は、図7に示すように、放射温度測定部2の測定温度の経時変化を示すグラフGを画面S上にさらに表示する。本実施形態では、表示制御部31は、グラフGを撮像画像Pに重ねて画面S上に表示する。ここで、予め測定温度の上限値及び下限値を設定しておくことで、図8に示すように、(1)上限値を上回った場合、(2)下限値を下回った場合に、それぞれ、画面の一部(例えば測定結果表示欄S1)の色などの表示態様を変えたり、報知表示をしたり、報知音を発したりすることができる。また、上限値を上回った場合、下限値を下回った場合に、自動的にスクリーンショットを撮影する設定にすることもできる。その他、測定温度が上限値を上回った場合、又は下限値を下回った場合に、その時点の前後所定時間(例えば前後5秒)の動画を撮影して記録するように構成しても良い。 In the continuous measurement mode, the radiation temperature measurement system 100 may automatically measure the measurement temperature at regular time intervals where the setting can be changed. Further, as shown in FIG. 7, the display control unit 31 further displays a graph G showing the time-dependent change of the measurement temperature of the radiation temperature measurement unit 2 on the screen S. In the present embodiment, the display control unit 31 superimposes the graph G on the captured image P and displays it on the screen S. Here, by setting the upper limit value and the lower limit value of the measurement temperature in advance, as shown in FIG. 8, when (1) the upper limit value is exceeded and (2) the lower limit value is exceeded, respectively. It is possible to change the display mode such as the color of a part of the screen (for example, the measurement result display column S1), display a notification, or emit a notification sound. It is also possible to set to automatically take a screenshot when the upper limit value is exceeded or the lower limit value is exceeded. In addition, when the measurement temperature exceeds the upper limit value or falls below the lower limit value, it may be configured to shoot and record a moving image for a predetermined time before and after that time (for example, 5 seconds before and after).
<2.本実施形態の効果>
 このように構成した本実施形態の放射温度測定システム100によれば、測定対象物Wまでの距離に応じた放射温度測定部2の測定視野Fを、撮像画像Pに重ねて画面S上に表示しているので、測定中において放射温度測定部2の測定視野F(温度測定領域)を画面S上で把握することができる。また、測定視野Fが重畳された撮像画像Pとともに放射温度測定部2の測定温度を格納するので、測定後においても測定視野F(温度測定領域)を把握することができる。その結果、ユーザの使い勝手を向上することができる。また、測定視野が把握可能な測定結果(エビデンス)を残すことができる。
<2. Effect of this embodiment>
According to the radiation temperature measurement system 100 of the present embodiment configured in this way, the measurement field F of the radiation temperature measurement unit 2 according to the distance to the measurement object W is displayed on the screen S over the captured image P. Therefore, the measurement field F (temperature measurement area) of the radiation temperature measurement unit 2 can be grasped on the screen S during the measurement. Further, since the measurement temperature of the radiation temperature measuring unit 2 is stored together with the captured image P on which the measurement field F is superimposed, the measurement field F (temperature measurement region) can be grasped even after the measurement. As a result, the usability of the user can be improved. In addition, it is possible to leave a measurement result (evidence) that allows the measurement field of view to be grasped.
<3.変形実施形態>
 なお、本発明は前記実施形態に限られるものではない。
<3. Deformation embodiment>
The present invention is not limited to the above embodiment.
 前記実施形態では、放射温度測定部2の測定視野Fを、撮像部304の撮像画像Pに重畳して画面S上に表示することを説明した。ここで、放射温度測定部2における赤外線検知部21と、撮像画像Pを生成する携帯端末3における撮像部304とは図1に示すように異なる位置に配置される。したがって、前記実施形態のように、測定視野Fを、撮像部304の撮像画像Pに重畳して画面S上に表示するためには、以下に説明するようなキャリブレーション(校正)機能による赤外線検知部21と撮像部30との位置ズレを補正する必要が生じる場合がある。以下の変形実施形態では、キャリブレーション機能を含むその他の実施の形態について説明する。 In the above embodiment, it has been described that the measurement field of view F of the radiation temperature measuring unit 2 is superimposed on the captured image P of the imaging unit 304 and displayed on the screen S. Here, the infrared detection unit 21 in the radiation temperature measuring unit 2 and the imaging unit 304 in the mobile terminal 3 that generates the captured image P are arranged at different positions as shown in FIG. Therefore, as in the above embodiment, in order to superimpose the measurement field of view F on the captured image P of the imaging unit 304 and display it on the screen S, infrared detection by a calibration function as described below is performed. It may be necessary to correct the positional deviation between the unit 21 and the imaging unit 30. In the following modified embodiments, other embodiments including a calibration function will be described.
 例えば、放射温度測定システムは、撮像部304と放射温度測定部2との位置ズレ(例えば測定対象物Wからの距離の違い)を考慮して、測定視野Fを算出するように構成しても良い。なお、距離算出部33により算出された距離を補正する他に、関係情報格納部34に格納されている関係情報を補正するようにしても良い。 For example, the radiation temperature measurement system may be configured to calculate the measurement field of view F in consideration of the positional deviation between the image pickup unit 304 and the radiation temperature measurement unit 2 (for example, the difference in the distance from the measurement object W). good. In addition to correcting the distance calculated by the distance calculation unit 33, the relational information stored in the relational information storage unit 34 may be corrected.
 また、放射温度測定システムは、レーザ光を用いて撮像部304と放射温度測定部2との位置ズレを補正するようにしても良い。例えば、レーザ光を用いて位置ずれを補正する場合には、放射温度測定部2が設けられる位置や角度を変更して、携帯端末3における撮像部304が撮影している画像上の測定対象となる撮影領域(例えば、撮像画像Pの中央部)に放射温度測定部2における赤外線検知部21の測定視野Fが含まれるようにしてもよい。赤外線検知部21の測定視野Fが含まれているか否かは、レーザ光が撮影領域に入っていることを示す撮像画像Pの所定の位置(例えば、中央部)が画面S上に表示されることで、位置ズレが補正されたことをユーザが容易に確認できる。また、携帯端末3が設けられている位置や角度を変更して、撮影領域が赤外線検知部21の測定視野Fに含まれるようにしてもよい。この場合も、撮像画像Pの所定の位置(例えば、中央部)が画面S上に表示されることで、位置ズレが補正されたことをユーザが容易に確認できる。 Further, the radiation temperature measurement system may use a laser beam to correct the positional deviation between the image pickup unit 304 and the radiation temperature measurement unit 2. For example, when correcting the positional deviation using laser light, the position and angle at which the radiation temperature measuring unit 2 is provided are changed so that the measurement target on the image captured by the imaging unit 304 of the mobile terminal 3 is used. The imaging region (for example, the central portion of the captured image P) may include the measurement field F of the infrared detection unit 21 in the radiation temperature measurement unit 2. Whether or not the measurement field of view F of the infrared detection unit 21 is included is displayed on the screen S at a predetermined position (for example, the central portion) of the captured image P indicating that the laser beam is in the photographing region. As a result, the user can easily confirm that the positional deviation has been corrected. Further, the position or angle in which the mobile terminal 3 is provided may be changed so that the photographing region is included in the measurement field of view F of the infrared detection unit 21. Also in this case, the predetermined position (for example, the central portion) of the captured image P is displayed on the screen S, so that the user can easily confirm that the positional deviation has been corrected.
 また、撮像部304と放射温度測定部2との位置ズレ(例えば測定対象物Wからの距離の違い)を可及的に小さくするように固定部材4に固定するようにしても良い。図9には、放射温度測定部2と測定対象物Wとの距離を撮像部304と測定対象物Wとの距離に近づけるべく、前記実施形態に比べて放射温度測定部2を測定対象物Wから離した位置に固定した状態を示している。ここで、放射温度測定部2と測定対象物Wとの距離は、放射温度測定部2のセンサ素子211と測定対象物Wとの距離とすることが考えられる。また、撮像部304と測定対象物Wとの距離は、撮像部304のイメージセンサと測定対象物Wとの距離とすることが考えられる。 Further, the image pickup unit 304 and the radiation temperature measurement unit 2 may be fixed to the fixing member 4 so as to minimize the positional deviation (for example, the difference in the distance from the measurement object W). In FIG. 9, in order to make the distance between the radiation temperature measuring unit 2 and the measurement object W closer to the distance between the imaging unit 304 and the measurement object W, the radiation temperature measuring unit 2 is measured with the measurement object W as compared with the above embodiment. It shows the state of being fixed at a position away from. Here, it is conceivable that the distance between the radiation temperature measuring unit 2 and the measuring object W is the distance between the sensor element 211 of the radiation temperature measuring unit 2 and the measuring object W. Further, the distance between the image pickup unit 304 and the measurement object W may be the distance between the image sensor of the image pickup unit 304 and the measurement object W.
 また、前記表示制御部31は、携帯端末3の画面Sをダブルタップ(画面Sを連続で2回タップする操作)やピンチアウト(画面S上に2本の指を置いて、間隔を広げるように動かす操作)などの拡大操作の入力を受けて、画面S上の撮像画像P及び測定視野Fを拡大して表示することもできる。 Further, the display control unit 31 double-tap the screen S of the mobile terminal 3 (operation of tapping the screen S twice in succession) or pinch out (place two fingers on the screen S to widen the interval). It is also possible to magnify and display the captured image P and the measurement field of view F on the screen S in response to an input of an enlargement operation such as (operation of moving to).
 前記実施形態では、静止画モード(カメラモード)について説明したが、動画モード(ビデオモード)であっても良い。動画モードの場合には、所定時間間隔で測定結果(測定温度及び測定視野F)を取得するようにしても良いし、ユーザが所定のボタンを押すことによって測定結果(測定温度及び測定視野F)を取得するようにしても良い。 In the above embodiment, the still image mode (camera mode) has been described, but the moving image mode (video mode) may be used. In the case of the moving image mode, the measurement result (measurement temperature and measurement field F) may be acquired at predetermined time intervals, or the measurement result (measurement temperature and measurement field F) may be acquired by the user pressing a predetermined button. You may try to get.
 多点測定モードや連続測定モード等においては、図10に示すように、各測定箇所の測定温度を色で表示するように構成しても良い。ここで、各測定箇所に表示される測定結果は、それぞれの測定箇所における測定視野F内の色を測定温度に応じて変化させることにより表示される。表示温度の最高温度及び最低温度は、例えば最高温度28度及び最低温度10度等のように設定可能にすることができる。また、ディスプレイ305の画面S上には、現在放射温度測定部2が測定している測定温度を表示するインジケータIGが設けられている。このように、複数の測定箇所の測定結果を色別で表示することにより、視覚的に測定対象物Wの温度分布を把握することができる。また、画面S内の測定箇所の測定視野Fをタップ等で選択することにより、測定温度等の詳細な測定結果情報を表示することができる。 In the multi-point measurement mode, continuous measurement mode, etc., as shown in FIG. 10, the measurement temperature at each measurement point may be displayed in color. Here, the measurement result displayed at each measurement point is displayed by changing the color in the measurement visual field F at each measurement point according to the measurement temperature. The maximum and minimum display temperatures can be set, for example, a maximum temperature of 28 degrees and a minimum temperature of 10 degrees. Further, on the screen S of the display 305, an indicator IG that displays the measured temperature currently being measured by the radiation temperature measuring unit 2 is provided. In this way, by displaying the measurement results of the plurality of measurement points in different colors, the temperature distribution of the measurement object W can be visually grasped. Further, by selecting the measurement field of view F of the measurement point on the screen S by tapping or the like, detailed measurement result information such as the measurement temperature can be displayed.
 さらに、放射温度測定部2は、測定視野Fを指し示すレーザ光を測定対象物Wに照射するレーザ照射部を備えていても良い。この構成であれば、携帯端末3の画面S上で測定視野Fを確認できるだけでなく、測定対象物Wを視認することによっても測定視野Fを確認することができる。 Further, the radiation temperature measuring unit 2 may include a laser irradiating unit that irradiates the measurement object W with a laser beam pointing to the measurement field F. With this configuration, not only the measurement field of view F can be confirmed on the screen S of the mobile terminal 3, but also the measurement field of view F can be confirmed by visually recognizing the measurement object W.
 また、前記実施形態では、画面S上の撮像画像Pに重ねて測定視野Fを表示し、当該測定視野Fには、その中心を示すマーク(図5における「+」印)を表示しているが、測定視野Fに中心を示す印を表示しないように構成しても良い。さらに、上記のレーザ照射部を有する構成の場合には、画面S上に表示される測定視野Fに、レーザ光の照射位置を表示するようにしても良い。この場合、ユーザが携帯端末3の画面Sをタップすることにより、レーザ光の照射位置を示すマークの表示/非表示を切り替えるようにしても良い。さらに、ユーザが携帯端末3の画面Sをタップすることにより、測定視野Fの表示とレーザ光の照射位置を示すマークの表示とを切り替えるようにしても良い。 Further, in the above-described embodiment, the measurement field of view F is displayed on the captured image P on the screen S, and a mark (“+” mark in FIG. 5) indicating the center of the measurement field of view F is displayed on the measurement field of view F. However, it may be configured so that the mark indicating the center is not displayed in the measurement field of view F. Further, in the case of the configuration having the above-mentioned laser irradiation unit, the irradiation position of the laser beam may be displayed in the measurement field of view F displayed on the screen S. In this case, the user may tap the screen S of the mobile terminal 3 to switch the display / non-display of the mark indicating the laser beam irradiation position. Further, the user may tap the screen S of the mobile terminal 3 to switch between the display of the measurement field of view F and the display of the mark indicating the laser beam irradiation position.
 その上、放射温度測定システム100は、携帯端末3のディスプレイ305をオフにした状態(ディスプレイ305に撮像画像P等が表示されない状態)においても、放射温度を測定することができるようにしても良い。 Moreover, the radiation temperature measurement system 100 may be able to measure the radiation temperature even when the display 305 of the mobile terminal 3 is turned off (the state in which the captured image P or the like is not displayed on the display 305). ..
 また、携帯端末3が画像認識機能を有するものであっても良い。つまり、携帯端末3は、撮像部304により撮像された撮像画像Pから、予め入力された登録画像を認識し、登録画像を認識した場合に、その放射温度を測定するようにしても良い。 Further, the mobile terminal 3 may have an image recognition function. That is, the mobile terminal 3 may recognize the registered image input in advance from the captured image P captured by the imaging unit 304, and measure the radiation temperature when the registered image is recognized.
 固定部材4に関して言うと、撮像部304と放射温度測定部2との位置ズレを可及的に小さくするように図11に示す構成としてもよい。具体的にこの固定部材4は、携帯端末3が横向きの状態で固定される第1固定部41と、当該第1固定部41に設けられ、第1固定部41に固定された携帯端末3の撮像部304側に向かって横方向に延び、放射温度測定部2が固定される第2固定部42とを有している。 Regarding the fixing member 4, the configuration shown in FIG. 11 may be used so as to minimize the positional deviation between the imaging unit 304 and the radiation temperature measuring unit 2. Specifically, the fixing member 4 is a first fixing portion 41 in which the mobile terminal 3 is fixed in a sideways state, and a mobile terminal 3 provided in the first fixing portion 41 and fixed to the first fixing portion 41. It has a second fixing unit 42 that extends laterally toward the imaging unit 304 side and to which the radiation temperature measuring unit 2 is fixed.
 第1固定部41は、横向きの携帯端末3を上下から挟持する下側挟持体41a及び上側挟持体41bを有する。下側挟持体41a及び上側挟持体41bは互いに拡縮可能に構成されており、携帯端末3を挟持した状態で固定ねじ41c等により固定される。なお、弾性部材により、下側挟持体41a及び上側挟持体41bが携帯端末3を挟持する構成としてもよい。 The first fixing portion 41 has a lower holding body 41a and an upper holding body 41b that hold the sideways mobile terminal 3 from above and below. The lower holding body 41a and the upper holding body 41b are configured to be expandable and contractible with each other, and are fixed by a fixing screw 41c or the like while holding the mobile terminal 3. In addition, the lower holding body 41a and the upper holding body 41b may be configured to hold the mobile terminal 3 by the elastic member.
 また、第2固定部42の一端部は、第1固定部41の上側挟持体41bに固定ねじ43等により固定されている。この第2固定部42の他端部には、放射温度測定部2が固定ねじ44等により固定される。ここで、図12に示すように、第2固定部42において固定ねじ43が貫通する貫通孔42aは長孔とされており、上側挟持体41bに対して第2固定部42が横方向にスライド可能となるように構成されている。また、第2固定部42において固定ねじ44が貫通する貫通孔42bは長孔とされており、第2固定部42に対して放射温度測定部2が横方向にスライド可能となるように構成されている。このように上側挟持体41b、第2固定部42及び放射温度測定部2が互いにスライド移動可能にされているので、第1固定部41に固定された携帯端末3の撮像部304に対して放射温度測定部2の位置を微調整するができる。具体的には、正面視において撮像部304の中心と放射温度測定部2の中心を同一の鉛直線上に位置するようにできる。 Further, one end of the second fixing portion 42 is fixed to the upper holding body 41b of the first fixing portion 41 by a fixing screw 43 or the like. The radiation temperature measuring unit 2 is fixed to the other end of the second fixing unit 42 by a fixing screw 44 or the like. Here, as shown in FIG. 12, the through hole 42a through which the fixing screw 43 penetrates in the second fixing portion 42 is a long hole, and the second fixing portion 42 slides laterally with respect to the upper holding body 41b. It is configured to be possible. Further, the through hole 42b through which the fixing screw 44 penetrates in the second fixing portion 42 is an elongated hole, and is configured so that the radiation temperature measuring portion 2 can slide laterally with respect to the second fixing portion 42. ing. Since the upper holding body 41b, the second fixing portion 42, and the radiation temperature measuring portion 2 are slidably movable with each other in this way, radiation is emitted to the imaging unit 304 of the mobile terminal 3 fixed to the first fixing portion 41. The position of the temperature measuring unit 2 can be finely adjusted. Specifically, the center of the imaging unit 304 and the center of the radiation temperature measuring unit 2 can be positioned on the same vertical line in front view.
 さらに、第2固定部42は、固定された携帯端末3の側面に設けられたボタンを操作しやすくするために、上側挟持体41bに固定される一端部から放射温度測定部2が固定される他端部の間において、屈曲部421により携帯端末3から離れる方向(上側)に折れ曲がっている(図11参照)。 Further, in the second fixing portion 42, the radiation temperature measuring portion 2 is fixed from one end portion fixed to the upper holding body 41b in order to facilitate the operation of the button provided on the side surface of the fixed mobile terminal 3. Between the other ends, the bent portion 421 is bent in the direction away from the mobile terminal 3 (upper side) (see FIG. 11).
 図11の固定部材4は、第1固定部及び41及び第2固定部42が一端部に設けられた把持棒45を有している。この把持棒45は、その他端部がユーザに把持されることにより操作される。ここで、把持棒45を持った状態で携帯端末3による撮像操作を容易にするためには、把持棒45の他端部に操作ボタンを設けることが望ましい。この操作ボタンを操作することにより入力される撮像信号は、有線通信又は無線通信(例えばBluetooth)により携帯端末3に送信される。この構成であれば、ユーザが測定対象物に近づくこと無く温度を測定することができる。 The fixing member 4 of FIG. 11 has a gripping rod 45 having a first fixing portion and 41 and a second fixing portion 42 provided at one end. The gripping rod 45 is operated by gripping the other end portion by the user. Here, in order to facilitate the imaging operation by the mobile terminal 3 while holding the gripping rod 45, it is desirable to provide an operation button at the other end of the gripping rod 45. The image pickup signal input by operating this operation button is transmitted to the mobile terminal 3 by wired communication or wireless communication (for example, Bluetooth). With this configuration, the user can measure the temperature without approaching the object to be measured.
 加えて、測定結果画像をレポートとして出力できるように構成しても良いし、測定結果画像をサーバに送信し、当該サーバによって管理するシステムとしても良い。また、放射温度測定システムにより測定された温度データなどをサーバに送信し、当該サーバによって管理するシステムとしても良い。 In addition, the measurement result image may be configured to be output as a report, or the measurement result image may be transmitted to a server and managed by the server. Further, the temperature data measured by the radiation temperature measuring system may be transmitted to the server and managed by the server.
 その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.
 本発明によれば、測定中だけでなく測定後においても温度測定領域(測定視野)を把握しやすくして、ユーザの使い勝手を向上することができる。 According to the present invention, the temperature measurement area (measurement field of view) can be easily grasped not only during measurement but also after measurement, and the usability of the user can be improved.

Claims (11)

  1.  測定対象物の温度を非接触で測定する放射温度測定部と、
     前記測定対象物を撮像する撮像部と、
     前記測定対象物までの距離に応じた前記放射温度測定部の測定視野を、前記撮像部の撮像画像に重畳して画面上に表示する表示制御部と、
     前記測定視野が重畳された前記撮像画像とともに前記放射温度測定部の測定温度を格納する測定結果格納部とを備える、放射温度測定システム。
    A radiation temperature measuring unit that measures the temperature of the object to be measured in a non-contact manner,
    An imaging unit that images the object to be measured, and an imaging unit.
    A display control unit that superimposes the measurement field of view of the radiation temperature measuring unit according to the distance to the measurement object on the captured image of the imaging unit and displays it on the screen.
    A radiation temperature measurement system including a measurement result storage unit that stores the measurement temperature of the radiation temperature measurement unit together with the captured image on which the measurement field of view is superimposed.
  2.  前記測定対象物までの距離を算出する距離算出部と、
     前記放射温度測定部における距離と測定視野との関係を示す関係情報を格納する関係情報格納部とを更に備え、
     前記表示制御は、前記距離算出部により得られた前記測定対象物までの距離と、前記関係情報とに基づいて、前記放射温度測定部の測定視野を求め、当該求めた測定視野を前記撮像画像に重ねて画面上に表示する、請求項1記載の放射温度測定システム。
    A distance calculation unit that calculates the distance to the object to be measured, and
    Further provided with a relational information storage unit for storing relational information indicating the relationship between the distance and the measurement field of view in the radiation temperature measuring unit.
    In the display control, the measurement field of view of the radiation temperature measurement unit is obtained based on the distance to the measurement object obtained by the distance calculation unit and the related information, and the obtained measurement field of view is obtained as the captured image. The radiation temperature measurement system according to claim 1, which is superimposed on the screen and displayed on the screen.
  3.  前記表示制御は、前記放射温度測定部の測定温度を、前記測定視野に関連付けて画面上に表示する、請求項1又は2記載の放射温度測定システム。 The radiation temperature measurement system according to claim 1 or 2, wherein the display control displays the measurement temperature of the radiation temperature measuring unit on the screen in association with the measurement field of view.
  4.  前記放射温度測定部は、前記測定視野内の平均温度を測定するものである、請求項1乃至3の何れか一項に記載の放射温度測定システム。 The radiation temperature measuring system according to any one of claims 1 to 3, wherein the radiation temperature measuring unit measures the average temperature in the measurement field.
  5.  前記表示制御は、複数箇所それぞれにおいて取得した前記放射温度測定部の測定温度及び測定視野を1つの前記撮像画像に重ねて画面上に表示するものである、請求項1乃至4の何れか一項に記載の放射温度測定システム。 The display control is any one of claims 1 to 4, wherein the measurement temperature and the measurement field of view of the radiation temperature measuring unit acquired at each of a plurality of locations are superimposed on one of the captured images and displayed on the screen. The radiation temperature measurement system described in.
  6.  単一の温度測定を行うバッチ測定モードと、複数回の温度測定を連続的に行う連続測定モードとを切り替え可能に構成されており、
     前記連続測定モードにおいて、前記表示制御は、前記放射温度測定部の測定温度の経時変化を示すグラフを画面上に表示する、請求項1乃至5の何れか一項に記載の放射温度測定システム。
    It is configured to be able to switch between a batch measurement mode in which a single temperature measurement is performed and a continuous measurement mode in which multiple temperature measurements are performed continuously.
    The radiation temperature measurement system according to any one of claims 1 to 5, wherein in the continuous measurement mode, the display control displays a graph showing a time-dependent change in the measurement temperature of the radiation temperature measuring unit on the screen.
  7.  前記撮像部及び前記表示制御部は、携帯端末に設けられており、
     前記放射温度測定部は、有線又は無線により前記携帯端末に通信可能に接続されている、請求項1乃至6の何れか一項に記載の放射温度測定システム。
    The image pickup unit and the display control unit are provided on the mobile terminal.
    The radiation temperature measuring system according to any one of claims 1 to 6, wherein the radiation temperature measuring unit is connected to the mobile terminal by wire or wirelessly so as to be communicable.
  8.  前記放射温度計測部と前記撮像部との相対位置が固定されている、請求項1乃至7の何れか一項に記載の放射温度測定システム。 The radiation temperature measurement system according to any one of claims 1 to 7, wherein the relative position between the radiation temperature measuring unit and the imaging unit is fixed.
  9.  測定対象物の温度を非接触で測定する放射温度測定部と、前記測定対象物を撮像する撮像部とを備えた放射温度測定システムに用いられる放射温度測定プログラムであって、
     前記測定対象物までの距離に応じた前記放射温度測定部の測定視野を、前記撮像部の撮像画像に重畳して画面上に表示する表示制御部と、
     前記測定視野が重畳された前記撮像画像とともに前記放射温度測定部の測定温度を格納する測定結果格納部と、としての機能をコンピュータに備えさせることを特徴とする、放射温度測定プログラム。
    A radiation temperature measurement program used in a radiation temperature measurement system including a radiation temperature measuring unit that measures the temperature of a measurement object in a non-contact manner and an imaging unit that images the measurement object.
    A display control unit that superimposes the measurement field of view of the radiation temperature measuring unit according to the distance to the measurement object on the captured image of the imaging unit and displays it on the screen.
    A radiation temperature measurement program, characterized in that a computer is provided with a function as a measurement result storage unit that stores the measurement temperature of the radiation temperature measurement unit together with the captured image on which the measurement field is superimposed.
  10.  放射温度測定部により測定対象物の温度を非接触で測定し、
     撮像部により前記測定対象物を撮像し、
     前記測定対象物までの距離に応じた前記放射温度測定部の測定視野を、前記撮像部の撮像画像に重畳して画面上に表示し、
     前記測定視野が重畳された前記撮像画像とともに前記放射温度測定部の測定温度をメモリに格納する、放射温度測定方法。
    The temperature of the object to be measured is measured in a non-contact manner by the radiation temperature measuring unit.
    The object to be measured is imaged by the image pickup unit, and the measurement object is imaged.
    The measurement field of view of the radiation temperature measuring unit according to the distance to the measurement object is superimposed on the captured image of the imaging unit and displayed on the screen.
    A radiation temperature measuring method in which the measured temperature of the radiation temperature measuring unit is stored in a memory together with the captured image on which the measurement field of view is superimposed.
  11.  測定対象物の温度を非接触で測定する放射温度測定部から測定した温度情報を取得する携帯端末であって、
     前記測定対象物を撮像する撮像部と、
     前記測定対象物までの距離に応じた前記放射温度測定部の測定視野を、前記撮像部の撮像画像に重畳して画面上に表示する表示制御部とを備える、携帯端末。
    A mobile terminal that acquires temperature information measured from a radiation temperature measuring unit that measures the temperature of an object to be measured in a non-contact manner.
    An imaging unit that images the object to be measured, and an imaging unit.
    A mobile terminal including a display control unit that superimposes a measurement field of view of the radiation temperature measuring unit according to a distance to the measurement object on an image captured by the imaging unit and displays it on a screen.
PCT/JP2020/042613 2019-11-22 2020-11-16 Radiation temperature measurement system, radiation temperature measurement program, radiation temperature measurement method, and mobile terminal WO2021100656A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021558368A JPWO2021100656A1 (en) 2019-11-22 2020-11-16

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019211095 2019-11-22
JP2019-211095 2019-11-22
JP2020036239 2020-03-03
JP2020-036239 2020-03-03

Publications (1)

Publication Number Publication Date
WO2021100656A1 true WO2021100656A1 (en) 2021-05-27

Family

ID=75980766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042613 WO2021100656A1 (en) 2019-11-22 2020-11-16 Radiation temperature measurement system, radiation temperature measurement program, radiation temperature measurement method, and mobile terminal

Country Status (3)

Country Link
JP (1) JPWO2021100656A1 (en)
TW (1) TW202138770A (en)
WO (1) WO2021100656A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915056A (en) * 1995-06-30 1997-01-17 Nec San-Ei Instr Co Ltd Temperature monitor
JP3634845B2 (en) * 2000-09-04 2005-03-30 昇 早川 Temperature display device and temperature monitoring system
JP3148868U (en) * 2008-12-17 2009-03-05 株式会社佐藤計量器製作所 Radiation thermometer
JP2015194367A (en) * 2014-03-31 2015-11-05 株式会社電子技術工房 Temperature measurement device, display processing program of measurement result and temperature measurement system
US20170332062A1 (en) * 2016-05-13 2017-11-16 Radiant Innovation Inc. Thermal detecting system and thermal detecting method
WO2019191819A1 (en) * 2018-04-05 2019-10-10 Efficiency Matrix Pty Ltd Computer implemented structural thermal audit systems and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915056A (en) * 1995-06-30 1997-01-17 Nec San-Ei Instr Co Ltd Temperature monitor
JP3634845B2 (en) * 2000-09-04 2005-03-30 昇 早川 Temperature display device and temperature monitoring system
JP3148868U (en) * 2008-12-17 2009-03-05 株式会社佐藤計量器製作所 Radiation thermometer
JP2015194367A (en) * 2014-03-31 2015-11-05 株式会社電子技術工房 Temperature measurement device, display processing program of measurement result and temperature measurement system
US20170332062A1 (en) * 2016-05-13 2017-11-16 Radiant Innovation Inc. Thermal detecting system and thermal detecting method
WO2019191819A1 (en) * 2018-04-05 2019-10-10 Efficiency Matrix Pty Ltd Computer implemented structural thermal audit systems and methods

Also Published As

Publication number Publication date
TW202138770A (en) 2021-10-16
JPWO2021100656A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
CN101111748B (en) Visible light and ir combined image camera with a laser pointer
JP5902354B2 (en) Imaging device and three-dimensional measuring device
US10728468B2 (en) Activity and/or environment driven annotation prompts for thermal imager
KR101111167B1 (en) Apparatus and method for photographing temperature picture in mobile communication device
US20120320189A1 (en) Thermal imager that analyzes temperature measurement calculation accuracy
JP2010181324A (en) Temperature measuring/display device and mobile information communication terminal
JP5749319B2 (en) Portable terminal for sensor alignment
US11828847B2 (en) Distance measurement device, deriving method for distance measurement, and deriving program for distance measurement
US20140267768A1 (en) Thermographic Camera Accessory for Personal Electronics
JP6653143B2 (en) Method and apparatus for measuring 3D coordinates of an object
KR101988206B1 (en) Temperature Measurement System using an Infrared Camera
WO2021100656A1 (en) Radiation temperature measurement system, radiation temperature measurement program, radiation temperature measurement method, and mobile terminal
US20170332062A1 (en) Thermal detecting system and thermal detecting method
JP5514605B2 (en) Imaging device and monitoring device
KR20170017401A (en) Apparatus for processing Images
JP6404483B2 (en) Ranging device, ranging control method, and ranging control program
JP6404482B2 (en) Ranging device, ranging control method, and ranging control program
JP6416408B2 (en) Ranging device, ranging method, and ranging program
KR20110025724A (en) Method for measuring height of a subject using camera module
US20190197749A1 (en) Method of Displaying Object Temperature
US10321071B1 (en) Wearable device capable of displaying object temperature
JP2005156356A (en) Subject distance measuring display device and portable terminal device
JP3148869U (en) Radiation thermometer
JP2007142599A (en) Infrared ray transmission apparatus, infrared ray transmission range display method and program, and recording medium
JP2011047747A (en) Temperature measurement display device and portable information communication terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558368

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889548

Country of ref document: EP

Kind code of ref document: A1