WO2021100461A1 - 信号処理装置および方法、並びにプログラム - Google Patents

信号処理装置および方法、並びにプログラム Download PDF

Info

Publication number
WO2021100461A1
WO2021100461A1 PCT/JP2020/041149 JP2020041149W WO2021100461A1 WO 2021100461 A1 WO2021100461 A1 WO 2021100461A1 JP 2020041149 W JP2020041149 W JP 2020041149W WO 2021100461 A1 WO2021100461 A1 WO 2021100461A1
Authority
WO
WIPO (PCT)
Prior art keywords
error signal
signal
super
unit
frequency spectrum
Prior art date
Application number
PCT/JP2020/041149
Other languages
English (en)
French (fr)
Inventor
悠 前野
直毅 村田
祐基 光藤
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2021100461A1 publication Critical patent/WO2021100461A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present technology relates to signal processing devices, methods, and programs, and in particular, to signal processing devices, methods, and programs that enable noise canceling with sufficient performance to be realized even with a small number of microphones.
  • Noise canceling technology has been researched for a long time, and headphones equipped with a noise canceling function are now in practical use and widespread.
  • Non-Patent Document 1 a technique for suppressing noise in a control area in a spatial frequency region has been proposed (see, for example, Non-Patent Document 1).
  • an adaptive filter is used to follow the noise that fluctuates with time.
  • the noise signal acquired by the reference microphone or the error microphone is required to update the coefficient of the adaptive filter.
  • the adaptive filter cannot be updated appropriately. .. Then, the followability to noise is lowered, and the amount of noise suppression is also lowered.
  • This technology was made in view of such a situation, and makes it possible to realize noise canceling with sufficient performance even with a small number of microphones.
  • the signal processing device of one aspect of the present technology has a super-resolution processing unit that generates an error signal by performing super-resolution processing on an actual error signal, and a filter coefficient of an adaptive filter based on the error signal.
  • a signal processing device including an adaptive filter coefficient calculation unit that calculates the above, and an adaptive filter unit that performs filtering processing based on the filter coefficient on a reference signal or the error signal to generate an output device drive signal.
  • the signal processing method or program of one aspect of the present technology generates an error signal by performing super-resolution processing on the actual error signal, calculates the filter coefficient of the adaptive filter based on the error signal, and calculates the filter coefficient of the adaptive filter. It includes a step of performing a filtering process based on the filter coefficient on the reference signal or the error signal to generate an output device drive signal.
  • a super-resolution process is performed on an actual error signal to generate an error signal, a filter coefficient of an adaptive filter is calculated based on the error signal, and the reference signal or the error signal is calculated.
  • the output device drive signal is generated by performing a filtering process based on the filter coefficient.
  • This technology estimates the signal at the virtual microphone position from a small number of error microphone signals using the super-resolution technology of the sound field based on compressed sensing, so that even if a small error microphone is used, the performance is sufficient. It enables noise canceling to be realized.
  • the estimated error signal of the virtual microphone is integrated with the error signal of the original error microphone and adaptive processing is performed.
  • compressed sensing processing that is, super-resolution processing
  • iterative processing so the amount of calculation is large, but in this technology, it can be implemented with a low amount of calculation by integrating with adaptive processing.
  • error microphones 11-1 to error microphones 11-5 are arranged in a ring so as to surround the position where a predetermined user U11 is located, and the error microphones 11-1 to error microphones 11-
  • the error microphone array 12 is configured by 5.
  • the error microphones 11-1 and the error microphones 11-5 are also simply referred to as the error microphones 11.
  • the number of error microphones 11 constituting the error microphone array 12 is smaller than the number of microphones required to satisfy the sampling theorem (Nyquist theorem).
  • a plurality of speakers are arranged in a ring shape so as to surround the error microphone array 12, and the speaker array 13 is composed of these speakers.
  • a plurality of reference microphones are arranged in a ring shape so as to surround the speaker array 13, and the reference microphone array 14 is configured by the reference microphones.
  • the area surrounded by the error microphone 11, that is, the area R11 inside the error microphone array 12 is set as the control area to be noise canceled.
  • noise generated outside the control area and propagated inside the control area is targeted for noise canceling.
  • the noise propagation path from the noise source to the error microphone 11 is called a primary path.
  • the speaker array 13 outputs a sound that cancels the noise, so that the noise is reduced (cancelled) in the control area and the noise canceling is realized.
  • the propagation path of the sound output from the speaker array 13 to the error microphone 11, that is, the propagation path from the speaker constituting the speaker array 13 to the error microphone 11 is called a secondary path.
  • an adaptive filter is used for noise canceling. This is because the noise to be canceled is not a predetermined known noise.
  • the filter is based on the reference signal obtained by collecting the sound by the reference microphone array 14 and the error signal obtained by collecting the sound by the error microphone array 12. The coefficient is calculated.
  • the reference signal is a signal mainly composed of noise components
  • the error signal is a signal mainly indicating the difference between the sound component and the noise component output from the speaker array 13.
  • the noise suppression amount in the control area is reduced.
  • FIG. 2 shows a block diagram of a general feedforward type ANC system.
  • the reference signal x ( nt ) obtained by the reference microphone is multiplied by the estimated secondary path, which is the estimated value of the secondary path, and the signal x'(n t) is obtained. ) and the filter coefficient of the adaptive filter by LMS (Least Mean Squares) based on the error signal e (n t) is obtained.
  • the reference signal x ( nt ) is filtered based on the filter coefficient obtained by LMS, and the sound for noise canceling is output from the speaker based on the resulting signal.
  • the sound signal y (n t ) output from the speaker becomes a signal y'(nt t ) through the secondary path, and is picked up by the error microphone.
  • the reference signal x ( nt ) which is noise, also becomes a signal d (nt ) through the primary path and is picked up by the error microphone.
  • Such an ANC system is especially called the Filtered-X LMS algorithm.
  • the Filtered-X LMS algorithm for example, "Morgan DR,” An analysis of multiple correlation cancellation loops with a filter in the auxiliary path, “IEEE Trans. , 1980. ”, Etc. in detail.
  • the error signal, primary path, secondary path, filter coefficient of the adaptive filter, and reference signal in the time frequency region are set to E ( ⁇ ), P ( ⁇ ), S ( ⁇ ), and W (, respectively.
  • E ( ⁇ ) the error signal
  • P ( ⁇ ) the primary path
  • S ( ⁇ ) the filter coefficient of the adaptive filter
  • W the reference signal in the time frequency region
  • the error signal e ( nt ) is expressed by the following equation (3).
  • n t indicates the time index
  • d (n t ) indicates the noise signal picked up by the error microphone through the primary path
  • s (n t ) indicates the noise signal.
  • the impulse response of the secondary path S ( ⁇ ) is shown.
  • Equation (3) * indicates a linear convolution operation
  • w (n t ) indicates the filter coefficient of the adaptive filter with a tap length L
  • x (n t ) indicates the past signal for the L sample.
  • the filter coefficient w (n t ) of the adaptive filter is updated to minimize the squared error ⁇ '(n t ) of the error signal e (n t ) as shown in the following equation (4).
  • the filter coefficient of the adaptive filter can be updated as shown in the following equation (5).
  • w (n t ) indicates the filter coefficient before the update
  • w (n t + 1) indicates the filter coefficient after the update.
  • ⁇ '(nt ) shows the gradient of the squared error of the error signal e (n t).
  • Equation (7) the s '(n t) is the secondary path model S' represents the impulse response of (omega).
  • the update equation shown in equation (8) is used to update the filter coefficient of the adaptive filter.
  • SISO Single Input Single Output
  • MIMO Multiple Input Multiple Output
  • the example shown in FIG. 3 is different from the example shown in FIG. 2 in that super-resolution processing is performed on the error signal supplied to the LMS, and is the same as the example shown in FIG. 2 in other respects. Is processed.
  • a final error signal including the error signal for the virtual error microphone estimated by the super-resolution processing and the error signal obtained for the actual error microphone 11 is generated and supplied to the LMS.
  • the error signal obtained for the position of the actual error microphone 11 is also referred to as a real error signal
  • the error signal obtained for the position where the error microphone 11 does not exist, that is, the position of the virtual error microphone is also referred to as an estimated error signal. It will be referred to.
  • FIG. 4 is a diagram showing a configuration example of an embodiment of a spatial noise control device to which the present technology is applied.
  • the same reference numerals are given to the parts corresponding to the cases in FIG. 1, and the description thereof will be omitted as appropriate.
  • This spatial noise control device 71 is a signal processing device that updates the filter coefficient of the adaptive filter using a feed-forward type ANC system and realizes noise canceling in the control area using the obtained filter coefficient.
  • the spatial noise control device 71 includes a reference microphone array 14, a time-frequency analysis unit 81, an estimated secondary path addition unit 82, an error microphone array 12, a time-frequency analysis unit 83, a super-resolution processing unit 84, and an adaptive filter coefficient calculation unit 85. , The adaptive filter unit 86, the time frequency synthesis unit 87, and the speaker array 13.
  • the reference microphone array 14 is a microphone array obtained by arranging a plurality of microphones in a ring shape or a spherical shape, collects external sounds, and supplies the resulting reference signal to the time frequency analysis unit 81. To do.
  • the noise detection device for obtaining the reference signal is not limited to the microphone array, but any device such as an acceleration sensor can be used as long as it can convert information such as noise sound and vibration into an electric signal. There may be.
  • the time-frequency analysis unit 81 performs time-frequency conversion on the reference signal supplied from the reference microphone array 14, and estimates the time-frequency spectrum of the reference signal obtained as a result.
  • the estimation secondary path addition unit 82 uses the time frequency spectrum of the estimated secondary path, that is, the secondary path model, which is an estimated value of the secondary path with respect to the time frequency spectrum of the reference signal supplied from the time frequency analysis unit 81.
  • the time frequency spectrum obtained by multiplication is supplied to the adaptive filter coefficient calculation unit 85.
  • the error microphone array 12 is a microphone array obtained by arranging a plurality of error microphones 11 in a ring shape or a spherical shape, collects external sounds, and obtains an actual error signal obtained as a result in a time-frequency analysis unit. Supply to 83.
  • an acceleration sensor or the like can be used as long as it can convert information such as noise sound and vibration into an electric signal. It can be anything.
  • the actual error signal is an audio signal mainly composed of a noise component emitted from a noise source and a sound component output from the speaker array 13.
  • the sound output from the speaker array 13 is a sound that cancels, that is, cancels the noise. Therefore, it can be said that the actual error signal indicates a component in which the noise cannot be canceled at the time of noise canceling, that is, an error between the noise and the sound output from the speaker array 13.
  • the time-frequency analysis unit 83 performs time-frequency conversion on the actual error signal supplied from the error microphone array 12, and supplies the time-frequency spectrum of the resulting actual error signal to the super-resolution processing unit 84.
  • the super-resolution processing unit 84 performs super-resolution processing on the time-frequency spectrum of the real error signal supplied from the time-frequency analysis unit 83 to obtain the time-frequency spectrum of the estimation error signal of the position of the virtual error microphone. Generate (calculate).
  • the time frequency spectrum of the estimated error signal at a plurality of positions different from the arranged positions of the error microphones 11 constituting the error microphone array 12 is obtained by estimation.
  • the super-resolution processing unit 84 generates a time-frequency spectrum of the final error signal including the time-frequency spectrum of the actual error signal and the time-frequency spectrum of the estimation error signal, and supplies the time-frequency spectrum to the adaptive filter coefficient calculation unit 85.
  • the adaptive filter coefficient calculation unit 85 calculates the filter coefficient of the adaptive filter based on the time frequency spectrum from the estimated secondary path addition unit 82 and the time frequency spectrum of the error signal from the super-resolution processing unit 84, and adapts the filter coefficient. It is supplied to the filter unit 86.
  • the filter coefficient of the adaptive filter obtained by the adaptive filter coefficient calculation unit 85 is ideally the filter coefficient of the filter having the inverse characteristic of the secondary path.
  • the filter coefficient of such an adaptive filter is used to generate a speaker drive signal of the output sound output from the speaker array 13 in order to reduce noise in the control area, that is, to cancel (cancel).
  • the adaptive filter unit 86 performs filtering processing on the time frequency spectrum of the reference signal supplied from the time frequency analysis unit 81 by using the filter coefficient of the adaptive filter supplied from the adaptive filter coefficient calculation unit 85, and as a result.
  • the time frequency spectrum of the obtained speaker drive signal is supplied to the time frequency synthesis unit 87.
  • the time frequency synthesis unit 87 synthesizes the time frequency spectrum of the speaker drive signal supplied from the adaptive filter unit 86 with time frequency, and the speaker drive signal, which is the time signal (signal in the time domain) obtained as a result, is combined with the speaker array 13. Supply to.
  • the speaker array 13 is composed of a speaker array obtained by arranging a plurality of speakers in an annular shape or a spherical shape, and outputs sound based on a speaker drive signal supplied from the time-frequency synthesis unit 87.
  • the output device that outputs sound or the like for realizing noise canceling is not limited to the speaker array, and may be any other output device.
  • time frequency analysis unit 81 First, the time frequency analysis unit 81 will be described.
  • time-frequency analysis unit 81 time-frequency conversion is performed on the reference signal s (q, n t ) obtained by collecting the sound of each microphone constituting the reference microphone array 14.
  • the time-frequency analysis unit 81 performs time-frequency conversion using DFT (Discrete Fourier Transform) by performing the calculation of the following equation (9), and from the reference signal s (q, n t ). Calculate the time-frequency spectrum S (q, n tf).
  • DFT Discrete Fourier Transform
  • n tf indicates the time frequency index
  • M t indicates the number of DFT samples
  • j indicates the pure imaginary number
  • the time-frequency analysis unit 81 supplies the time-frequency spectrum S (q, n tf ) obtained by the time-frequency conversion to the estimation secondary path addition unit 82 and the adaptive filter unit 86.
  • the time-frequency analysis unit 83 also performs the same calculation as in the case of the time-frequency analysis unit 81, and performs time-frequency conversion on the actual error signal.
  • the super-resolution processing unit 84 performs super-resolution processing on the time-frequency spectrum of the actual error signal supplied from the time-frequency analysis unit 83, and obtains the time-frequency spectrum of the final error signal.
  • Super-resolution processing of the sound field can be realized by assuming the spatial sparsity of the sound source distribution.
  • the grid is defined by discretizing the area where the sound source can exist.
  • the number of grids is generally defined to be larger than the number of error microphones 11, and the equation (11) is set as a subdetermination condition.
  • the sound source distribution ⁇ is estimated by solving the minimization problem represented by the following equation (12).
  • indicates a regularization parameter.
  • p ⁇ 1 that is, p of 1 or less is usually used in order to derive a sparse solution.
  • l p norm regularization As in Eq. (12), but the mainstream method is to obtain a solution close to the true value by iterative processing, and the amount of calculation of such a method is There are many.
  • the M-FOCUSS algorithm will be described as an example.
  • M-FOCUSS algorithm for example, "Cotter, SF, Rao, BD, Engan, K. and Kreutz-Delgado, K.," Sparse solutions to linear inverse problems with multiple measurement vectors, "IEEE Transactions on Signal Processing, It is described in detail in "53 (7), pp.2477-2488, 2005.”
  • the calculation shown in the following equation (13) is iteratively performed, and the sound source distribution ⁇ k when the convergence condition is satisfied is an estimated solution, that is, the sound source distribution obtained by estimation.
  • Equation (13) k indicates the number of repetitions of the calculation shown in equation (13), that is, the number of calculations, and B k + indicates the pseudo inverse matrix of the matrix B k.
  • the super-resolution processing unit 84 pays attention to the fact that the adaptive processing for updating the adaptive filter for noise canceling is an iterative process, and under the assumption that the sound source distribution ⁇ does not change abruptly, the super-resolution processing unit 84 The number of iterations at 84 was reduced.
  • the super-resolution processing may be performed at any frequency, for example, the super-resolution processing may be performed once for each iteration (once) of the adaptive processing.
  • the super-resolution processing unit 84 can obtain the estimated value of the noise sound source distribution ⁇ 'by calculating the sound source distribution ⁇ k by performing the calculation of the above equation (13). That is, the finally obtained sound source distribution ⁇ k is defined as the noise sound source distribution ⁇ '.
  • Equation (14) can be calculated to obtain the error signal y'.
  • the error signal y' is a vector consisting of the estimated error signals S e '(q, n tf) at each position of the Q e'virtual error microphones as shown in the following equation (15). is there. More specifically, S e '(q, n tf ) is the time-frequency spectrum of the estimation error signal.
  • the super-resolution processing unit 84 integrates the estimated error signal thus obtained, more specifically y', which is the time-frequency spectrum of the estimated error signal, with the time-frequency spectrum of the actual error signal. Generate a time-frequency spectrum of the final error signal.
  • the super-resolution processing unit 84 finally determines a vector consisting of the time-frequency spectrum of the estimated error signal of the position of each virtual error microphone and the time-frequency spectrum of the actual error signal of the position of each error microphone 11. Generated as an error signal.
  • the super-resolution processing is a process for obtaining a more accurate error signal from the actual error signal obtained in the actual measurement. It can be said that there is.
  • FIG. 5 shows the simulation results of noise canceling when the super-resolution processing is performed and when the super-resolution processing is not performed.
  • the vertical direction and the horizontal direction indicate the direction (position) in the space, and the shade in the figure indicates the sound pressure level at each position. Further, one circle ( ⁇ ) in the figure represents one error microphone 11.
  • the part indicated by arrow Q11 shows the simulation result of noise canceling when super-resolution processing is not performed.
  • the noise is sufficiently reduced in the vicinity of the error microphone 11, but there is a portion inside the error microphone array 12, that is, in the control area, where the noise reduction effect is lower than that in the vicinity of the error microphone 11. is there.
  • the part indicated by arrow Q12 shows the simulation result of noise canceling when super-resolution processing is performed.
  • virtual error microphones are arranged in a grid pattern in the inner region of the error microphone array 12, and noise canceling is adaptively performed based on an error signal composed of an actual error signal and an estimated error signal. ..
  • the noise is sufficiently reduced in the entire area inside the error microphone array 12 including the control area.
  • the adaptive filter coefficient calculation unit 85 uses the above equation (8) based on the time-frequency spectrum supplied from the estimation secondary path addition unit 82 and the time-frequency spectrum of the error signal supplied from the super-resolution processing unit 84. Perform the same calculation as in and update the filter coefficient of the adaptive filter.
  • the time-frequency synthesis unit 87 performs time-frequency synthesis using IDFT (Inverse Discrete Fourier Transform) with respect to the time-frequency spectrum of the speaker drive signal supplied from the adaptive filter unit 86.
  • IDFT Inverse Discrete Fourier Transform
  • the speaker drive signal d (l, n t ), which is a time signal, is calculated (generated) from the time frequency spectrum D (l, n tf) of the speaker drive signal.
  • n t indicates the time index
  • M dt indicates the number of IDFT samples
  • j indicates the pure imaginary number
  • Time frequency synthesizer 87 loudspeaker drive signal d (l, n t) obtained by the time-frequency synthesis is supplied to the speaker array 13 to output a sound based on the speaker drive signal d (l, n t).
  • step S11 the super-resolution processing unit 84 initializes the parameters of the super-resolution processing.
  • the super-resolution processing unit 84 sets a predetermined initial value as the value of the parameter W 0 used for performing the calculation of the above-mentioned equation (13).
  • step S12 the spatial noise control device 71 collects sound from the reference microphone array 14. That is, the reference microphone array 14 collects ambient sounds and supplies the resulting reference signal to the time-frequency analysis unit 81.
  • step S13 the time-frequency analysis unit 81 performs time-frequency conversion on the reference signal supplied from the reference microphone array 14, and estimates the time-frequency spectrum of the reference signal obtained as a result. It is supplied to the filter unit 86. For example, in step S13, the calculation of the above equation (9) is performed to calculate the time frequency spectrum.
  • step S14 the estimated secondary path addition unit 82 multiplies the time frequency spectrum of the reference signal supplied from the time frequency analysis unit 81 by the time frequency spectrum of the estimated secondary path, and the time frequency spectrum obtained as a result. Is supplied to the adaptive filter coefficient calculation unit 85.
  • step S15 the spatial noise control device 71 collects sound from the error microphone array 12. That is, the error microphone array 12 collects ambient sounds and supplies the resulting actual error signal to the time-frequency analysis unit 83.
  • step S16 the time-frequency analysis unit 83 performs time-frequency conversion on the actual error signal supplied from the error microphone array 12, and transfers the time-frequency spectrum of the resulting actual error signal to the super-resolution processing unit 84. Supply.
  • step S16 the same calculation as in the above equation (9) is performed.
  • step S17 the super-resolution processing unit 84 calculates the above-mentioned equation (13) based on the time-frequency spectrum of the actual error signal supplied from the time-frequency analysis unit 83, thereby performing the super-resolution processing parameter W k. Update.
  • the time frequency spectrum of the actual error signal supplied from the time frequency analysis unit 83 is assumed to be y, and the calculation of the equation (13) is performed.
  • the parameter W 0 determined in step S11 is used, and in the second and subsequent calculations, the noise sound source distribution obtained in the last calculation of the equation (13).
  • ⁇ k-1 the following parameter W k is obtained.
  • step S19 when the processing of step S19 described later is performed to generate an error signal and then the processing of the next step S17 is performed, the noise sound source distribution ⁇ k- obtained in the last step S17 is performed. 1 is used to determine the next parameter W k .
  • step S18 the super-resolution processing unit 84 determines whether or not to end the update of the parameter W k based on the calculation result in step S17.
  • step S18 the process of step S17, which is an update process for updating the parameter W k used for estimating the estimation error signal, was repeated a predetermined number of times, or a predetermined convergence condition was satisfied. In this case, it is determined that the update of the parameter W k is completed.
  • step S17 when it is determined from the processing of step S17, that is, the calculation result of the equation (13) that the predetermined convergence condition is satisfied, the noise sound source distribution ⁇ 'is obtained with sufficient accuracy, so that the parameter W k It is determined that the update of is completed.
  • the parameter W k can be calculated even when the process of step S17, that is, the calculation of the equation (13) is performed repeatedly (repeatedly) a predetermined number of times. It is determined that the update is completed.
  • step S18 If it is determined in step S18 that the update of the parameter W k has not been completed yet, the process returns to step S17, and the above-described process is repeated.
  • step S18 when it is determined in step S18 that the update of the parameter W k is completed, the super-resolution processing unit 84 uses the noise sound source distribution ⁇ k obtained by the last processing in step S17 as the noise sound source distribution. ⁇ 'is set, and then the process proceeds to step S19.
  • This noise sound source distribution ⁇ ' is obtained from the parameter W k as shown in the equation (13).
  • step S19 the super-resolution processing unit 84 generates a final error signal, more specifically, a time-frequency spectrum of the error signal, and supplies it to the adaptive filter coefficient calculation unit 85.
  • the super-resolution processing unit 84 calculates the time-frequency spectrum of the estimation error signal at each position of the plurality of virtual microphones by calculating the above-mentioned equation (14) based on the noise sound source distribution ⁇ '.
  • the super-resolution processing unit 84 integrates the time-frequency spectrum of the obtained estimated error signal with the time-frequency spectrum of the actual error signal obtained in step S16 to generate the time-frequency spectrum of the final error signal. To do.
  • step S20 the adaptive filter coefficient calculation unit 85 determines whether or not to update the filter coefficient of the adaptive filter.
  • the filter coefficient of the adaptive filter may be updated for each frame of the speaker drive signal, or may be updated at a longer time interval than a frame such as several frames of the speaker drive signal.
  • step S20 If it is determined in step S20 that the filter coefficient of the adaptive filter is to be updated, then the process proceeds to step S21.
  • step S21 the adaptive filter coefficient calculation unit 85 calculates the filter coefficient of the adaptive filter based on the time frequency spectrum from the estimation secondary path addition unit 82 and the time frequency spectrum of the error signal from the super-resolution processing unit 84. And update the filter coefficient.
  • step S21 the same calculation as in the above equation (8) is performed to update the filter coefficient.
  • the adaptive filter coefficient calculation unit 85 supplies the obtained updated filter coefficient to the adaptive filter unit 86, and then the process proceeds to step S22.
  • step S20 determines whether the update is not performed. If it is determined in step S20 that the update is not performed, the process of step S21 is not performed, and then the process proceeds to step S22.
  • step S20 If it is determined in step S20 that the update is not performed, or if the process of step S21 is performed, the process of step S22 is performed.
  • step S22 the adaptive filter unit 86 uses the filter coefficient of the adaptive filter supplied from the adaptive filter coefficient calculation unit 85 to perform filtering processing on the time frequency spectrum of the reference signal supplied from the time frequency analysis unit 81. I do.
  • the adaptive filter unit 86 supplies the time frequency spectrum of the speaker drive signal obtained by the filtering process based on the filter coefficient to the time frequency synthesis unit 87.
  • step S23 the time-frequency synthesis unit 87 synthesizes the time-frequency spectrum supplied from the adaptive filter unit 86 with time frequency, and supplies the speaker drive signal, which is the time signal obtained as a result, to the speaker array 13.
  • step S23 the calculation of the above equation (16) is performed to generate a speaker drive signal.
  • step S24 the speaker array 13 outputs sound based on the speaker drive signal supplied from the time-frequency synthesis unit 87. As a result, the noise in the control area is canceled (reduced) by the sound output from the speaker array 13.
  • step S25 the spatial noise control device 71 determines whether or not to end the process.
  • step S25 If it is determined in step S25 that the process has not yet been completed, the process returns to step S12, and the above-described process is repeated.
  • step S25 if it is determined in step S25 that the processing is finished, the noise canceling processing is finished.
  • the spatial noise control device 71 performs super-resolution processing to generate an error signal, and updates the filter coefficient based on the obtained error signal.
  • steps S12 to S25 described above are performed for each frame of the speaker drive signal.
  • the parameter W k is initialized for each frame of the loudspeaker drive signal, so that the parameter W k is updated repeatedly until the convergence condition is met ..
  • the operation of updating the parameter W k must be performed many times until the convergence condition is satisfied, which increases the amount of calculation. Moreover, if the parameter W k is initialized for each frame, the number of operations until the convergence condition is satisfied becomes even larger.
  • the spatial noise control device 71 even if the convergence condition is not satisfied , an error signal is generated when the parameter W k is updated a certain number of times, so that sufficient noise canceling performance can be achieved. The amount of calculation can be reduced while ensuring the above.
  • the parameter W k is not initialized during the noise canceling, and the noise sound source distribution ⁇ k obtained in the immediately preceding frame is not initialized. -1 is used to determine the parameter W k.
  • the parameter W k is the initial value of the parameter W k of the next super-resolution processing Used as.
  • the noise sound source distribution rarely changes suddenly, so by using the noise sound source distribution ⁇ k-1 obtained in the immediately preceding frame without initializing each frame, the equation ( Not only can the calculation of 13) be converged to reduce the amount of calculation, but sufficient noise canceling performance can be ensured.
  • the spatial noise control device is configured as shown in FIG. 7, for example.
  • the same reference numerals are given to the parts corresponding to the cases in FIG. 4, and the description thereof will be omitted as appropriate.
  • the spatial noise control device 101 shown in FIG. 7 includes a reference microphone array 14, a temporal frequency analysis unit 81, a spatial frequency analysis unit 121, an estimated secondary path addition unit 82, an error microphone array 12, a time frequency analysis unit 83, and a spatial frequency analysis. It includes a unit 122, a super-resolution processing unit 84, an adaptive filter coefficient calculation unit 85, an adaptive filter unit 86, a spatial frequency synthesis unit 123, a time frequency synthesis unit 87, and a speaker array 13.
  • the configuration of the spatial noise control device 101 is different from the configuration of the spatial noise control device 71 of FIG. 4 in that a spatial frequency analysis unit 121, a spatial frequency analysis unit 122, and a spatial frequency synthesis unit 123 are newly provided. In terms of points, it has the same configuration as the spatial noise control device 71.
  • the spatial frequency analysis unit 121 performs spatial frequency conversion on the time frequency spectrum of the reference signal supplied from the time frequency analysis unit 81, and estimates the spatial frequency spectrum of the reference signal obtained as a result. And supply to the adaptive filter unit 86.
  • the spatial frequency analysis unit 122 performs spatial frequency conversion on the time frequency spectrum of the actual error signal supplied from the time frequency analysis unit 83, and super-resolutions the spatial frequency spectrum of the resulting actual error signal. It is supplied to the processing unit 84.
  • the super-resolution processing unit 84 performs super-resolution processing in the spatial frequency domain, it is possible to obtain an estimation error signal having a higher order than the actual error signal. That is, it is possible to obtain a spatial frequency spectrum of an estimated error signal including components having an order n larger (higher) than the maximum order N of the spatial frequency of the spatial frequency spectrum of the actual error signal.
  • the super-resolution processing unit 84 includes the spatial frequency spectrum of the estimated error signal including components of a higher order than the spatial frequency spectrum of the actual error signal thus obtained, and the spatial frequency spectrum of the actual error signal. Generates the spatial frequency spectrum of the error signal containing.
  • the adaptive filter unit 86 can use even higher-order components of the spatial frequency spectrum of the reference signal. Therefore, the spatial frequency spectrum of the speaker drive signal can be obtained with high accuracy up to a higher order, and the noise canceling performance can be improved.
  • the spatial frequency synthesis unit 123 performs spatial frequency synthesis on the spatial frequency spectrum of the speaker drive signal supplied from the adaptive filter unit 86, and transfers the time frequency spectrum of the speaker drive signal obtained as a result to the time frequency synthesis unit 87. Supply.
  • the spatial frequency analysis unit 121 obtains the time frequency spectrum S (q, n tf ) supplied from the time frequency analysis unit 81 according to the shape of the reference microphone array 14, that is, the arrangement shape of the microphones constituting the reference microphone array 14. Spatial frequency analysis. That is, spatial frequency conversion is performed on the time-frequency spectrum S (q, n tf).
  • the reference microphone array 14 is an annular microphone array
  • the calculation of the following equation (17) is performed and the spatial frequency conversion is performed.
  • Equation (17) S'indicates the vector of the spatial frequency spectrum, Q indicates the number of microphones in the reference microphone array 14, and J inv indicates the matrix consisting of the spherical Bessel function.
  • E mic is a matrix consisting of a circular harmonic function
  • E H mic shows the Hermitian transposed matrix of the matrix E mic
  • S is the time frequency spectrum S (q, n tf ) of the reference signal. Shows the vector of.
  • N in the spatial frequency spectrum S 'n (n tf) shows the order of the spatial frequency, in particular N represents the maximum degree of spatial frequency.
  • n tf indicates a time frequency index.
  • the matrix J inv consisting of the sphere Bessel function in the equation (17) is represented by, for example, the following equation (19), and the matrix E mic consisting of the cyclic harmonic function is represented by the following equation (20). It is supposed to be.
  • J n indicates a spherical Bessel function whose spatial frequency order is n
  • c indicates the sound velocity
  • r mic indicates the radius of the reference microphone array 14 which is an annular microphone array. It is shown, and ⁇ indicates the angular frequency.
  • the straight line connecting the predetermined microphone MU11 constituting the reference microphone array 14 and the origin O is defined as a straight line LN
  • the straight line obtained by projecting the straight line LN from the z-axis direction onto the xy plane is defined as the straight line LN'.
  • the angle ⁇ formed by the x-axis and the straight line LN' is an azimuth that indicates the direction of the position of the microphone MU11 as seen from the origin O in the xy plane.
  • the angle ⁇ between the z-axis and the straight line LN is the elevation angle that indicates the direction of the position of the microphone MU11 as seen from the origin O in the plane perpendicular to the xy plane.
  • the vector S is a vector having the time frequency spectrum S (q, n tf ) of the reference signal obtained by each microphone of the reference microphone array 14 as an element.
  • the calculation of the following equation (22) is performed and the spatial frequency conversion is performed.
  • Equation (22) S'is the vector of the spatial frequency spectrum shown in equation (18), Q indicates the number of microphones of the reference microphone array 14, and J (sph) inv is from the sphere Bessel function. Is a matrix.
  • Y mic is a matrix consisting of spherical harmonics
  • Y H mic is the Hermitian transposed matrix of the matrix Y mic
  • S is the time-frequency spectrum S (q, n) of the reference signal shown in Eq. (21). It is a vector of tf).
  • Equation (23) the matrix J (sph) inv consisting of the sphere Bessel function is expressed by the following equation (23).
  • j n indicates a spherical Bessel function whose spatial frequency order is n
  • c indicates the sound velocity
  • r mic indicates the radius of the reference microphone array 14 which is a spherical microphone array.
  • indicates the angular frequency.
  • the elevation angle and the azimuth angle of the position of the microphone having the microphone index q are ⁇ q and ⁇ q
  • the spherical harmonics having the spatial frequency orders n and m are Y n m ( ⁇ q). , ⁇ q ).
  • Equation (24) N and M represent the maximum order of the spatial frequency.
  • the spatial frequency analyzer 121 outputs the formula (17) or Formula spatial frequency spectrum obtained by the spatial frequency conversion shown in (22) S 'n (n tf).
  • the spatial frequency analysis unit 122 also performs spatial frequency conversion (spatial frequency analysis) by the same calculation as in the case of the spatial frequency analysis unit 121, and calculates the spatial frequency spectrum of the actual error signal.
  • the spatial frequency synthesis unit 123 synthesizes the spatial frequency spectrum of the speaker drive signal supplied from the adaptive filter unit 86 according to the shape of the speaker array 13.
  • n the order of the spatial frequency
  • N the maximum order of the spatial frequency
  • D'n (n tf ) the spatial frequency spectrum of the speaker drive signal that is the output of the adaptive filter unit 86.
  • the spatial frequency synthesis unit 123 performs spatial frequency synthesis by calculating the following equation (25).
  • D indicates the vector of the time-frequency spectrum of the speaker drive signal that is the output of the spatial frequency synthesizer 123
  • E sp indicates the matrix consisting of the cyclic harmonic function.
  • D' indicates a vector consisting of the spatial frequency spectrum D'n (n tf ) of the speaker drive signal that is the input of the spatial frequency synthesizer 123.
  • the vector D' is represented by the following equation (26)
  • the matrix E sp is represented by the following equation (27)
  • the vector D is represented by the following equation (28).
  • n tf indicates a time-frequency index
  • l indicates a speaker index that identifies the speakers constituting the speaker array 13.
  • L 0,1,2, ..., L-1.
  • L indicates the number of speakers, which is the number of speakers constituting the speaker array 13.
  • D (l, n tf ) in Eq. (28) shows the time-frequency spectrum of the speaker drive signal.
  • j indicates a pure imaginary number
  • ⁇ l is a speaker array.
  • the azimuth angle of the position of the speaker whose speaker index at 13 is l is shown. This azimuth angle ⁇ l corresponds to the azimuth angle ⁇ q of the microphone position described above.
  • the spatial frequency synthesis unit 123 performs spatial frequency synthesis by calculating the following equation (29).
  • D is a vector consisting of the time frequency spectrum D (l, n tf ) shown in equation (28), and Y sp is a matrix consisting of spherical harmonics. Further, D' is a vector consisting of the spatial frequency spectrum D'n (n tf ) shown in the equation (26).
  • ⁇ l and ⁇ l indicate the elevation angle and the azimuth angle of the speaker position of the speaker array 13 corresponding to the elevation angle ⁇ q and the azimuth angle ⁇ q of the microphone position described above.
  • M represent the maximum order of spatial frequency.
  • Y n m ( ⁇ l , ⁇ l ) indicates the spherical harmonics.
  • the spatial frequency synthesis unit 123 generates (calculates) the time frequency spectrum D (l, n tf ) of the speaker drive signal by performing the spatial frequency synthesis shown in the equations (25) and (29), and the temporal frequency synthesis. It is supplied to the unit 87.
  • steps S51 to S53 Since the processing of steps S51 to S53 is the same as the processing of steps S11 to S13 of FIG. 6, the description thereof will be omitted.
  • step S54 the spatial frequency analysis unit 121 performs spatial frequency conversion on the time frequency spectrum supplied from the time frequency analysis unit 81, and estimates the spatial frequency spectrum obtained as a result of the estimation secondary path addition unit 82 and the adaptive filter. Supply to unit 86.
  • step S54 the above-mentioned equation (17) or equation (22) is calculated to calculate the spatial frequency spectrum of the reference signal.
  • step S54 When the process of step S54 is performed, the processes of steps S55 to S57 are subsequently performed. Since these processes are the same as the processes of steps S14 to S16 of FIG. 6, the description thereof will be omitted.
  • step S55 the estimated secondary path addition unit 82 multiplies the spatial frequency spectrum supplied from the spatial frequency analysis unit 121 by the spatial frequency spectrum of the estimated secondary path, and the spatial frequency spectrum obtained as a result. Is supplied to the adaptive filter coefficient calculation unit 85.
  • step S58 the spatial frequency analysis unit 122 performs spatial frequency conversion on the time frequency spectrum supplied from the time frequency analysis unit 83, and the spatial frequency spectrum of the actual error signal obtained as a result is converted into the superresolution processing unit 84. Supply to.
  • step S58 the same calculation as the above-mentioned equation (17) or equation (22) is performed.
  • step S58 when step S58 is performed, the processes of steps S59 to S64 are performed, but since these processes are the same as the processes of steps S17 to S22 of FIG. 6, the description thereof will be omitted.
  • steps S59 to S64 super-resolution processing, filter coefficient update, and filtering processing are performed in the spatial frequency domain.
  • step S65 the spatial frequency synthesizing unit 123 synthesizes the spatial frequency spectrum of the speaker drive signal supplied from the adaptive filter unit 86 into the spatial frequency, and the time frequency spectrum of the speaker drive signal obtained as a result is transmitted to the time frequency synthesizing unit 87. Supply.
  • step S65 the above-mentioned equation (25) or equation (29) is calculated to calculate the time frequency spectrum.
  • step S65 When the process of step S65 is performed, the processes of steps S66 to S68 are then performed to end the noise canceling process, but these processes are the same as the processes of steps S23 to S25 of FIG. , The description is omitted.
  • the spatial noise control device 101 performs super-resolution processing in the spatial frequency region to generate an error signal, and updates the filter coefficient based on the obtained error signal.
  • the spatial noise control device is configured as shown in FIG. 10, for example.
  • FIG. 10 the same reference numerals are given to the parts corresponding to the cases in FIG. 7, and the description thereof will be omitted as appropriate.
  • the spatial noise control device 151 shown in FIG. 10 includes an error microphone array 12, a time frequency analysis unit 83, a spatial frequency analysis unit 122, a super-resolution processing unit 84, an estimated secondary path addition unit 161 and an addition unit 162, and an estimated secondary unit. It has a path addition unit 163, an adaptive filter coefficient calculation unit 85, an adaptive filter unit 86, a spatial frequency synthesis unit 123, a time frequency synthesis unit 87, and a speaker array 13.
  • the reference microphone array 14 is not used, and only the error microphone array 12 is used to collect the sound.
  • the spatial frequency spectrum of the error signal obtained by the super-resolution processing unit 84 is supplied to the adaptive filter coefficient calculation unit 85 and the addition unit 162.
  • the spatial frequency spectrum of the speaker drive signal obtained by the adaptive filter unit 86 is supplied to the spatial frequency synthesis unit 123 and the estimated secondary path addition unit 161.
  • the estimated secondary route addition unit 161 corresponds to the estimated secondary route addition unit 82.
  • the estimated secondary path addition unit 161 multiplies the spatial frequency spectrum of the speaker drive signal supplied from the adaptive filter unit 86 by the spatial frequency spectrum of the estimated secondary path, and adds the spatial frequency spectrum obtained as a result. Supply to 162.
  • the addition unit 162 adds the spatial frequency spectrum of the error signal supplied from the super-resolution processing unit 84 and the spatial frequency spectrum supplied from the estimation secondary path addition unit 161 to estimate the obtained spatial frequency spectrum. It is supplied to the secondary path addition unit 163 and the adaptive filter unit 86.
  • the spatial frequency spectrum obtained by the addition unit 162 is supplied to the adaptive filter unit 86 as corresponding to the spatial frequency spectrum of the reference signal in the spatial noise control device 101.
  • the spatial noise control device 151 may be configured so that the estimated secondary path addition unit 161 is not provided. In such a case, the spatial frequency spectrum of the error signal obtained by the super-resolution processing unit 84 is supplied to the adaptive filter unit 86.
  • the estimated secondary path addition section 163 corresponds to the estimated secondary path addition section 82, and the spatial frequency spectrum supplied from the addition section 162 is multiplied by the spatial frequency spectrum of the estimated secondary path, and the resulting space is obtained.
  • the frequency spectrum is supplied to the adaptive filter coefficient calculation unit 85.
  • the adaptive filter coefficient calculation unit 85 calculates the filter coefficient of the adaptive filter based on the spatial frequency spectrum from the estimated secondary path addition unit 163 and the spatial frequency spectrum of the error signal from the super-resolution processing unit 84, and adapts the filter coefficient. It is supplied to the filter unit 86.
  • the adaptive filter unit 86 performs filtering processing on the spatial frequency spectrum supplied from the addition unit 162 by using the filter coefficient of the adaptive filter supplied from the adaptive filter coefficient calculation unit 85, and performs a filtering process on the spatial frequency spectrum of the speaker drive signal. To generate.
  • the spatial noise control device 151 may not be provided with the spatial frequency analysis unit 122 and the spatial frequency synthesis unit 123, and the super-resolution processing or the filtering processing of the adaptive filter may be performed in the time frequency region.
  • the spatial noise control device 151 is a feedback type in this way, the reference microphone array 14 is not used.
  • the region R11 inside the error microphone array 12 is set as the control area as in the case of the spatial noise control device 71.
  • the parts corresponding to the case in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the error microphone array 12 is arranged in the area surrounded by the speaker array 13, and the area R11 in the area surrounded by the error microphone array 12 is used as the control area.
  • step S91 the super-resolution processing unit 84 initializes the parameters of the super-resolution processing. For example, in step S91, the same processing as in step S51 of FIG. 9 is performed.
  • steps S92 to S97 are subsequently performed, but since these processes are the same as the processes of steps S56 to S61 of FIG. 9, the description thereof will be omitted. ..
  • the spatial frequency spectrum of the error signal obtained in step S97 is supplied from the super-resolution processing unit 84 to the adaptive filter coefficient calculation unit 85 and the addition unit 162.
  • step S98 the estimated secondary path addition unit 161 multiplies the spatial frequency spectrum of the speaker drive signal supplied from the adaptive filter unit 86 by the spatial frequency spectrum of the estimated secondary path, and the spatial frequency spectrum obtained as a result. Is supplied to the addition unit 162.
  • step S99 the addition unit 162 performs an addition process.
  • the addition unit 162 adds the spatial frequency spectrum of the error signal supplied from the super-resolution processing unit 84 and the spatial frequency spectrum supplied from the estimated secondary path addition unit 161 to obtain the spatial frequency spectrum. Is supplied to the estimated secondary route addition unit 163 and the adaptive filter unit 86.
  • step S100 the estimated secondary path addition unit 163 multiplies the spatial frequency spectrum supplied from the addition unit 162 by the spatial frequency spectrum of the estimated secondary path, and applies the resulting spatial frequency spectrum to the adaptive filter coefficient. It is supplied to the calculation unit 85.
  • step S100 When the process of step S100 is performed, the processes of steps S101 to S107 are then performed to end the noise canceling process, but these processes are the same as the processes of steps S62 to S68 of FIG. , The description is omitted.
  • step S102 the adaptive filter coefficient calculation unit 85 filters the adaptive filter based on the spatial frequency spectrum from the estimated secondary path addition unit 163 and the spatial frequency spectrum of the error signal from the super-resolution processing unit 84. Update the coefficient.
  • step S103 the adaptive filter unit 86 performs filtering processing on the spatial frequency spectrum supplied from the addition unit 162 by using the filter coefficient of the adaptive filter supplied from the adaptive filter coefficient calculation unit 85, and drives the speaker. Calculate the spatial frequency spectrum of the signal. Further, the adaptive filter unit 86 supplies the spatial frequency spectrum of the obtained speaker drive signal to the spatial frequency synthesis unit 123 and the estimated secondary path addition unit 161.
  • the spatial noise control device 151 performs super-resolution processing to generate an error signal, and updates the filter coefficient based on the obtained error signal.
  • this technology is not limited to this, and can be applied to a system that adaptively updates the filter coefficient. That is, for example, this technology can be applied to echo canceling and a system (Active room compensation) that adaptively corrects spatial characteristics such as room reflection and reverberation in sound field reproduction.
  • this technology can be applied to echo canceling and a system (Active room compensation) that adaptively corrects spatial characteristics such as room reflection and reverberation in sound field reproduction.
  • the series of processes described above can be executed by hardware or software.
  • the programs that make up the software are installed on the computer.
  • the computer includes a computer embedded in dedicated hardware and, for example, a general-purpose personal computer capable of executing various functions by installing various programs.
  • FIG. 13 is a block diagram showing a configuration example of computer hardware that executes the above-mentioned series of processes programmatically.
  • the CPU Central Processing Unit
  • the ROM ReadOnly Memory
  • the RAM RandomAccessMemory
  • An input / output interface 505 is further connected to the bus 504.
  • An input unit 506, an output unit 507, a recording unit 508, a communication unit 509, and a drive 510 are connected to the input / output interface 505.
  • the input unit 506 includes a keyboard, a mouse, a microphone, an image sensor, and the like.
  • the output unit 507 includes a display, a speaker, and the like.
  • the recording unit 508 includes a hard disk, a non-volatile memory, and the like.
  • the communication unit 509 includes a network interface and the like.
  • the drive 510 drives a removable recording medium 511 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 501 loads the program recorded in the recording unit 508 into the RAM 503 via the input / output interface 505 and the bus 504 and executes the above-described series. Is processed.
  • the program executed by the computer (CPU501) can be recorded and provided on a removable recording medium 511 as a package medium or the like, for example.
  • the program can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the recording unit 508 via the input / output interface 505 by mounting the removable recording medium 511 in the drive 510. Further, the program can be received by the communication unit 509 and installed in the recording unit 508 via a wired or wireless transmission medium. In addition, the program can be pre-installed in the ROM 502 or the recording unit 508.
  • the program executed by the computer may be a program that is processed in chronological order according to the order described in this specification, or may be a program that is processed in parallel or at a necessary timing such as when a call is made. It may be a program in which processing is performed.
  • the embodiment of the present technology is not limited to the above-described embodiment, and various changes can be made without departing from the gist of the present technology.
  • this technology can have a cloud computing configuration in which one function is shared by a plurality of devices via a network and jointly processed.
  • each step described in the above flowchart can be executed by one device or shared by a plurality of devices.
  • one step includes a plurality of processes
  • the plurality of processes included in the one step can be executed by one device or shared by a plurality of devices.
  • this technology can also have the following configurations.
  • a super-resolution processing unit that generates an error signal by performing super-resolution processing on the actual error signal, An adaptive filter coefficient calculation unit that calculates the filter coefficient of the adaptive filter based on the error signal, and an adaptive filter coefficient calculation unit.
  • a signal processing device including an adaptive filter unit that performs filtering processing based on the filter coefficient on a reference signal or the error signal and generates an output device drive signal.
  • the actual error signal is a signal obtained by collecting sound by a microphone array.
  • the super-resolution processing unit estimates an estimation error signal at a position different from the position of the microphones constituting the microphone array by the super-resolution processing, and the error including the estimated error signal and the actual error signal.
  • the signal processing apparatus for generating a signal.
  • a time-frequency analysis unit that performs time-frequency conversion on the actual error signal and calculates the time-frequency spectrum of the actual error signal.
  • a time-frequency synthesizing unit that performs time-frequency synthesis with respect to the time-frequency spectrum of the output device drive signal generated by the adaptive filter unit and generates the output device drive signal in the time domain is further provided.
  • the signal processing apparatus according to (3), wherein the super-resolution processing unit performs the super-resolution processing on the time-frequency spectrum of the actual error signal.
  • a spatial frequency analysis unit that performs spatial frequency conversion on the time-frequency spectrum of the actual error signal and calculates the spatial frequency spectrum of the actual error signal.
  • a spatial frequency synthesizer that performs spatial frequency synthesis on the spatial frequency spectrum of the output device drive signal generated by the adaptive filter unit and generates a time frequency spectrum of the output device drive signal is further provided.
  • the super-resolution processing unit performs the super-resolution processing on the spatial frequency spectrum of the actual error signal, and then performs the super-resolution processing.
  • the signal processing device according to (4), wherein the time-frequency synthesizing unit performs time-frequency synthesis with respect to the time-frequency spectrum of the output device drive signal calculated by the spatial frequency synthesizing unit.
  • the super-resolution processing unit includes the spatial frequency spectrum of the estimated error signal including components of a higher order than the spatial frequency spectrum of the actual error signal, and the spatial frequency spectrum of the actual error signal.
  • the signal processing apparatus which generates a spatial frequency spectrum of an error signal.
  • the super-resolution processing unit repeats the update process for updating the parameters used for estimating the estimation error signal a predetermined number of times, or when a predetermined convergence condition is satisfied.
  • the signal processing apparatus according to any one of (3) to (6), wherein the iterative execution of the update process is completed and the estimated error signal is estimated based on the parameter.
  • the super-resolution processing unit performs the super-resolution processing to generate the error signal, and then uses the parameter of the super-resolution processing as an initial value of the parameter of the next super-resolution processing (.
  • the signal processing apparatus according to 8).
  • the signal processing device By performing super-resolution processing on the actual error signal, an error signal is generated and Based on the error signal, the filter coefficient of the adaptive filter is calculated.
  • (11) By performing super-resolution processing on the actual error signal, an error signal is generated and Based on the error signal, the filter coefficient of the adaptive filter is calculated.
  • a program that causes a computer to perform processing including a step of performing filtering processing based on the filter coefficient on a reference signal or the error signal and generating an output device drive signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本技術は、少ないマイクロホンでも十分な性能のノイズキャンセリングを実現することができるようにする信号処理装置および方法、並びにプログラムに関する。 信号処理装置は、実誤差信号に対して超解像処理を行うことで、誤差信号を生成する超解像処理部と、誤差信号に基づいて、適応フィルタのフィルタ係数を算出する適応フィルタ係数算出部と、参照信号または誤差信号に対してフィルタ係数に基づくフィルタリング処理を行い、出力デバイス駆動信号を生成する適応フィルタ部とを備える。本技術は空間ノイズ制御装置に適用することができる。

Description

信号処理装置および方法、並びにプログラム
 本技術は、信号処理装置および方法、並びにプログラムに関し、特に、少ないマイクロホンでも十分な性能のノイズキャンセリングを実現することができるようにした信号処理装置および方法、並びにプログラムに関する。
 ノイズキャンセリング技術は古くから研究され、現在ではノイズキャンセリング機能が搭載されたヘッドホンが実用化されて普及している。
 近年では、ノイズキャンセリング技術として、多数のスピーカとマイクロホンを用いて制御エリアを囲み、ノイズをより広い領域で抑制する研究が行われている。これにより例えば車の中や航空機の中などで広い領域を静かに保つことができると考えられる。
 また、ノイズキャンセリング技術として、例えば空間周波数領域で制御エリアにおけるノイズ抑圧を行う技術が提案されている(例えば、非特許文献1参照)。
Sascha Spors and Herbert Buchner, "Efficient Massive Multichannel Active Noise Control using Wave-Domain Adaptive Filtering", 2008 3rd International Symposium on Communications, Control and Signal Processing.
 ところで、ノイズキャンセリングでは、時間的に変動するノイズに追従するために適応フィルタが用いられる。適応フィルタの係数更新には参照マイクロホンや誤差マイクロホンで取得したノイズ信号が必要である。
 このとき制御したいエリアの広さや、ノイズ源の周波数、ノイズ源の個数などの条件によって定まる必要なマイクロホンの数よりも実際のマイクロホンの数が少ない場合、適応フィルタの適切な更新ができなくなってしまう。そうするとノイズへの追従性が低下し、ノイズ抑圧量も低下してしまう。
 そのため、広い制御エリアにおいてノイズ抑圧(ノイズキャンセリング)を実現するためには、多数のマイクロホンおよびスピーカを配置する必要がある。ところが、特に誤差マイクロホンは制御エリア内に配置する必要があるため、ユーザの近くに配置されることになり、移動の妨げや煩わしさにつながってしまう。
 したがって、少ないマイクロホンを用いた場合でも、十分な性能でノイズキャンセリングを実現できる技術が求められている。
 本技術は、このような状況に鑑みてなされたものであり、少ないマイクロホンでも十分な性能のノイズキャンセリングを実現することができるようにするものである。
 本技術の一側面の信号処理装置は、実誤差信号に対して超解像処理を行うことで、誤差信号を生成する超解像処理部と、前記誤差信号に基づいて、適応フィルタのフィルタ係数を算出する適応フィルタ係数算出部と、参照信号または前記誤差信号に対して前記フィルタ係数に基づくフィルタリング処理を行い、出力デバイス駆動信号を生成する適応フィルタ部とを備える信号処理装置。
 本技術の一側面の信号処理方法またはプログラムは、実誤差信号に対して超解像処理を行うことで、誤差信号を生成し、前記誤差信号に基づいて、適応フィルタのフィルタ係数を算出し、参照信号または前記誤差信号に対して前記フィルタ係数に基づくフィルタリング処理を行い、出力デバイス駆動信号を生成するステップを含む。
 本技術の一側面においては、実誤差信号に対して超解像処理が行われて誤差信号が生成され、前記誤差信号に基づいて、適応フィルタのフィルタ係数が算出され、参照信号または前記誤差信号に対して前記フィルタ係数に基づくフィルタリング処理が行われて出力デバイス駆動信号が生成される。
本技術について説明する図である。 一般的なフィードフォワード型のANCシステムについて説明する図である。 本技術のフィードフォワード型のANCシステムについて説明する図である。 空間ノイズ制御装置の構成例を示す図である。 ノイズキャンセリングのシミュレーション結果を示す図である。 ノイズキャンセリング処理を説明するフローチャートである。 空間ノイズ制御装置の構成例を示す図である。 座標系について説明する図である。 ノイズキャンセリング処理を説明するフローチャートである。 空間ノイズ制御装置の構成例を示す図である。 制御エリアについて説明する図である。 ノイズキャンセリング処理を説明するフローチャートである。 コンピュータの構成例を示す図である。
 以下、図面を参照して、本技術を適用した実施の形態について説明する。
〈第1の実施の形態〉
〈本技術について〉
 本技術は、少数の誤差マイクロホンの信号から、圧縮センシングに基づく音場の超解像技術を用いて仮想マイクロホン位置の信号を推定することで、少ない誤差マイクロホンを用いた場合でも、十分な性能でノイズキャンセリングを実現できるようにするものである。
 特に、本技術では、推定した仮想マイクロホンの誤差信号がもとの誤差マイクロホンの誤差信号と統合されて適応処理が行われる。
 また、圧縮センシング処理、すなわち超解像処理では、一般に反復処理が必要なため演算量が多いが、本技術では適応処理と統合することにより低演算量で実装可能である。
 まず、図1を参照して本技術を適用したノイズキャンセリングの概要について説明する。
 図1に示す例では、所定のユーザU11がいる位置を囲むように、誤差マイクロホン11-1乃至誤差マイクロホン11-5が環状に並べられており、それらの誤差マイクロホン11-1乃至誤差マイクロホン11-5により誤差マイクアレイ12が構成されている。
 なお、以下、誤差マイクロホン11-1乃至誤差マイクロホン11-5を特に区別する必要のない場合、単に誤差マイクロホン11とも称することとする。
 特に、この例では、誤差マイクアレイ12を構成する誤差マイクロホン11の数は、サンプリング定理(ナイキスト定理)を満たすために必要なマイクロホンの数よりも少ない本数となっている。
 また、誤差マイクアレイ12を囲むように複数のスピーカが環状に並べられて配置されており、それらのスピーカからスピーカアレイ13が構成されている。
 さらに、スピーカアレイ13を囲むように、複数の参照マイクロホンが環状に並べられており、それらの参照マイクロホンにより参照マイクアレイ14が構成されている。
 この例では、例えば誤差マイクロホン11により囲まれている領域、すなわち誤差マイクアレイ12の内側にある領域R11がノイズキャンセリングの対象となる制御エリアとされる。
 本技術では、例えば制御エリア外で発生し、制御エリア内へと伝搬するノイズ(音)がノイズキャンセリングの対象とされる。このノイズの発生源から誤差マイクロホン11までのノイズの伝搬経路は一次経路と呼ばれている。
 ノイズキャンセリング時には、スピーカアレイ13によりノイズを打ち消すような音を出力することで、制御エリア内でノイズが低減(キャンセル)され、ノイズキャンセリングが実現される。
 なお、スピーカアレイ13から出力された音の誤差マイクロホン11までの伝搬経路、つまりスピーカアレイ13を構成するスピーカから誤差マイクロホン11までの間の伝搬経路は二次経路と呼ばれている。
 例えばノイズキャンセリングには、適応フィルタが用いられる。これは、キャンセル対象となるノイズは予め定められた既知のノイズではないからである。
 適応フィルタのフィルタ係数の更新時には、参照マイクアレイ14により音を収音することで得られた参照信号と、誤差マイクアレイ12により音を収音することで得られた誤差信号とに基づいてフィルタ係数が算出される。
 ここで、参照信号は主にノイズの成分からなる信号であり、誤差信号は主にスピーカアレイ13から出力された音の成分とノイズの成分との差分を示す信号である。
 スピーカアレイ13からは、このようにして得られたフィルタ係数を用いた、参照信号に対するフィルタリング処理により得られた信号に基づく音が出力され、その音によりノイズが低減されることになる。
 ところで、例えば空間のサンプリング定理を満たさないような少ない本数の誤差マイクロホン11を用いて適応フィルタを更新する処理、つまり適応処理を行った場合、制御エリアのノイズ抑圧量が低下してしまう。
 そこで本技術では、誤差信号に対して音場の超解像技術を用いることで、少数の誤差マイクロホン11でも高いノイズ抑圧性能を実現できるようにした。
〈ANCについて〉
 以下、本技術についてより具体的に説明する。
 まず、一般的なフィードフォワード型のANC(Active Noise Controll)システムについて説明する。
 図2は、一般的なフィードフォワード型のANCシステムのブロック図を示している。
 フィードフォワード型のANCシステムでは、参照マイクロホンで得られた参照信号x(nt)に対して、二次経路の推定値である推定二次経路が乗算されて得られた信号x’(nt)と、誤差信号e(nt)とに基づいてLMS(Least Mean Squares)により適応フィルタのフィルタ係数が求められる。
 そして、適応フィルタでは参照信号x(nt)に対してLMSで得られたフィルタ係数に基づくフィルタリング処理が行われ、その結果得られた信号に基づいてスピーカからノイズキャンセリング用の音が出力される。
 スピーカから出力された音の信号y(nt)は、二次経路を通って信号y’(nt)となり、誤差マイクロホンにより収音される。同時に、ノイズである参照信号x(nt)も一次経路を通って信号d(nt)となり誤差マイクロホンにより収音される。
 このようにして誤差マイクロホンで収音された信号d(nt)と信号y’(nt)とからなる信号が新たな誤差信号e(nt)となり、この誤差信号e(nt)がLMSへと供給される。
 このようなANCシステムは、特にFiltered-X LMSアルゴリズムと呼ばれている。なお、Filtered-X LMSアルゴリズムについては、例えば「Morgan D.R., “An analysis of multiple correlation cancellation loops with a filter in the auxiliary path,” IEEE Trans. Acoust. Speech Signal Process., ASSP28(4), 454-467, 1980.」などに詳細に記載されている。
 いま、角周波数をωとして時間周波数領域における誤差信号、一次経路、二次経路、適応フィルタのフィルタ係数、および参照信号を、それぞれE(ω)、P(ω)、S(ω)、W(ω)、およびX(ω)とすると、誤差信号E(ω)は次式(1)により表される。
Figure JPOXMLDOC01-appb-M000001
 理想的には誤差信号E(ω)=0となるときノイズが完全にキャンセル(除去)されることになるので、理想的な適応フィルタのフィルタ係数Wideal(ω)は次式(2)に示すようになる。
Figure JPOXMLDOC01-appb-M000002
 しかし、直接、二次経路の逆フィルタ1/S(ω)を安定して計算できる保証はないため、一般的には、以下に示すように二次経路を考慮した適応フィルタが推定される。また、一般的に実際の二次経路は未知であることが想定され、適応フィルタの計算には、二次経路の推定値である二次経路モデルS’(ω)が用いられる。
 時間領域で考えると、誤差信号e(nt)は、次式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 なお、式(3)において、ntは時間インデックスを示しており、d(nt)は一次経路を通って誤差マイクロホンに収音されたノイズの信号を示しており、s(nt)は二次経路S(ω)のインパルス応答を示している。
 また、式(3)において*は直線畳み込み演算を示しており、w(nt)はタップ長Lの適応フィルタのフィルタ係数を示しており、x(nt)はLサンプル分だけ過去の信号が保持された参照信号(ノイズ信号)のベクトルを示している。
 適応フィルタのフィルタ係数w(nt)は、次式(4)に示すように誤差信号e(nt)の二乗誤差ξ’(nt)を最小化するように更新される。
Figure JPOXMLDOC01-appb-M000004
 例えば最急降下法を用いると、適応フィルタのフィルタ係数は次式(5)に示すように更新することができる。
Figure JPOXMLDOC01-appb-M000005
 なお、式(5)において、w(nt)は更新前のフィルタ係数を示しており、w(nt+1)は更新後のフィルタ係数を示している。また、式(5)においてμはステップサイズを示しており、∇ξ’(nt)は誤差信号e(nt)の二乗誤差の勾配を示している。
 ここで、二乗誤差の勾配∇ξ’(nt)は、次式(6)に示すように表されるものである。
Figure JPOXMLDOC01-appb-M000006
 なお、式(6)におけるx’(nt)は、次式(7)に示すものとされる。式(7)ではs’(nt)は二次経路モデルS’(ω)のインパルス応答を示している。
Figure JPOXMLDOC01-appb-M000007
 式(6)を上述の式(5)に代入することにより、次式(8)に示すフィルタ係数w(nt)の更新式が得られる。
Figure JPOXMLDOC01-appb-M000008
 フィードフォワード型のANCシステムでは、式(8)に示す更新式が用いられて適応フィルタのフィルタ係数が更新される。
 なお、ここでは単一チャネル(SISO(Single Input Single Output))の場合について説明したが、複数チャネル(MIMO(Multiple Input Multiple Output))の場合においても拡張が可能である。
 一方、本技術では、例えば図3に示すように誤差信号に対して音場の超解像処理が行われ、最終的な誤差信号とされる。
 すなわち、図3に示す例ではLMSへと供給される誤差信号に対して超解像処理が行われる点で図2に示した例とは異なり、その他の点では図2に示した例と同様の処理が行われる。
 超解像処理では、図1に示した誤差マイクロホン11により囲まれる制御エリア内における、誤差マイクロホン11の配置位置とは異なる複数の各位置に仮想誤差マイクロホンが仮想的に配置される。そして、それらの仮想誤差マイクロホンで収音することにより得られる誤差信号が推定により得られる。
 さらに、超解像処理により推定された仮想誤差マイクロホンについての誤差信号と、実際の誤差マイクロホン11について得られた誤差信号とを含む最終的な誤差信号が生成されてLMSへと供給される。
 したがって、本技術では、実際に配置されているのは5本の誤差マイクロホン11のみであるが、実際よりも多くの誤差マイクロホン11が配置されている場合と同等の誤差信号、すなわち、より正確な誤差信号を得ることができる。
 これにより、より正確な適応フィルタのフィルタ係数を得ることができ、少ない数の誤差マイクロホン11でも十分な性能のノイズキャンセリングを実現することができる。
 なお、以下では、実在する誤差マイクロホン11の位置について得られた誤差信号を実誤差信号とも称し、誤差マイクロホン11が存在しない位置、つまり仮想誤差マイクロホンの位置について得られた誤差信号を推定誤差信号とも称することとする。
〈空間ノイズ制御装置の構成例〉
 次に、本技術をフィードフォワード型のANCシステムに適用した具体的な実施の形態について説明する。
 図4は、本技術を適用した空間ノイズ制御装置の一実施の形態の構成例を示す図である。なお、図4において図1における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
 この空間ノイズ制御装置71は、フィードフォワード型のANCシステムを利用して適応フィルタのフィルタ係数を更新し、得られたフィルタ係数を用いて制御エリアにおけるノイズキャンセリングを実現する信号処理装置である。
 空間ノイズ制御装置71は、参照マイクアレイ14、時間周波数分析部81、推定二次経路付加部82、誤差マイクアレイ12、時間周波数分析部83、超解像処理部84、適応フィルタ係数算出部85、適応フィルタ部86、時間周波数合成部87、およびスピーカアレイ13を有している。
 参照マイクアレイ14は、複数のマイクロホンを環状や球状などに配置して得られたマイクアレイであり、外部の音を収音して、その結果得られた参照信号を時間周波数分析部81に供給する。
 なお、参照信号を得るためのノイズ検出デバイスは、マイクアレイに限らず、ノイズの音や振動などの情報を電気信号に変換することができるものであれば、加速度センサなど、どのようなものであってもよい。
 時間周波数分析部81は、参照マイクアレイ14から供給された参照信号に対して時間周波数変換を行い、その結果得られた参照信号の時間周波数スペクトルを推定二次経路付加部82および適応フィルタ部86に供給する。
 推定二次経路付加部82は、時間周波数分析部81から供給された参照信号の時間周波数スペクトルに対して二次経路の推定値である推定二次経路の時間周波数スペクトル、つまり二次経路モデルを乗算し、その結果得られた時間周波数スペクトルを適応フィルタ係数算出部85に供給する。
 誤差マイクアレイ12は、複数の誤差マイクロホン11を環状や球状などに配置して得られたマイクアレイであり、外部の音を収音して、その結果得られた実誤差信号を時間周波数分析部83に供給する。
 なお、実誤差信号を得るためのノイズ検出デバイスも、参照マイクアレイ14における場合と同様に、ノイズの音や振動などの情報を電気信号に変換することができるものであれば、加速度センサなど、どのようなものであってもよい。
 実誤差信号は、主にノイズ源から発せられたノイズの成分と、スピーカアレイ13から出力された音の成分とからなるオーディオ信号である。
 ここで、スピーカアレイ13から出力される音は、ノイズを打ち消す、つまりキャンセルするような音である。したがって、実誤差信号はノイズキャンセリング時におけるノイズの打ち消しきれなかった成分、つまりノイズとスピーカアレイ13から出力された音との誤差を示しているということができる。
 時間周波数分析部83は、誤差マイクアレイ12から供給された実誤差信号に対して時間周波数変換を行い、その結果得られた実誤差信号の時間周波数スペクトルを超解像処理部84に供給する。
 超解像処理部84は、時間周波数分析部83から供給された実誤差信号の時間周波数スペクトルに対して超解像処理を行うことで、仮想誤差マイクロホンの位置の推定誤差信号の時間周波数スペクトルを生成(算出)する。
 換言すれば、誤差マイクアレイ12を構成する誤差マイクロホン11の配置位置とは異なる複数の位置における推定誤差信号の時間周波数スペクトルが推定により求められる。
 超解像処理部84は、実誤差信号の時間周波数スペクトルと、推定誤差信号の時間周波数スペクトルとを含む最終的な誤差信号の時間周波数スペクトルを生成し、適応フィルタ係数算出部85に供給する。
 適応フィルタ係数算出部85は、推定二次経路付加部82からの時間周波数スペクトルと、超解像処理部84からの誤差信号の時間周波数スペクトルとに基づいて適応フィルタのフィルタ係数を算出し、適応フィルタ部86に供給する。
 適応フィルタ係数算出部85で得られる適応フィルタのフィルタ係数は、理想的には二次経路の逆特性を有するフィルタのフィルタ係数である。
 このような適応フィルタのフィルタ係数は、制御エリアにおいてノイズを低減させるため、つまりキャンセルする(打ち消す)ためにスピーカアレイ13から出力される出力音のスピーカ駆動信号の生成に用いられる。
 適応フィルタ部86は、適応フィルタ係数算出部85から供給された適応フィルタのフィルタ係数を用いて、時間周波数分析部81から供給された参照信号の時間周波数スペクトルに対してフィルタリング処理を行い、その結果得られたスピーカ駆動信号の時間周波数スペクトルを時間周波数合成部87に供給する。
 時間周波数合成部87は、適応フィルタ部86から供給されたスピーカ駆動信号の時間周波数スペクトルを時間周波数合成し、その結果得られた時間信号(時間領域の信号)であるスピーカ駆動信号をスピーカアレイ13に供給する。
 スピーカアレイ13は、複数のスピーカを環状や球状などに配置して得られたスピーカアレイからなり、時間周波数合成部87から供給されたスピーカ駆動信号に基づいて音を出力する。なお、ノイズキャンセリングを実現するための音等を出力する出力デバイスは、スピーカアレイに限らず、他のどのようなものであってもよい。
 ここで、空間ノイズ制御装置71を構成する各部についてより詳細に説明する。
(時間周波数分析部)
 まず、時間周波数分析部81について説明する。
 時間周波数分析部81では、参照マイクアレイ14を構成する各マイクロホンが収音することで得られた参照信号s(q,nt)に対して時間周波数変換が行われる。
 すなわち、時間周波数分析部81は、次式(9)の計算を行うことでDFT(Discrete Fourier Transform)(離散フーリエ変換)を用いて時間周波数変換を行い、参照信号s(q,nt)から時間周波数スペクトルS(q,ntf)を算出する。
Figure JPOXMLDOC01-appb-M000009
 なお、式(9)において、qは参照マイクアレイ14を構成するマイクロホンを識別するマイクロホンインデックスを示しており、q=0,1,2,…,Q-1である。また、Qは参照マイクアレイ14を構成するマイクロホンの数であるマイクロホン数を示しており、ntは時間インデックスを示している。
 さらに、ntfは時間周波数インデックスを示しており、MtはDFTのサンプル数を示しており、jは純虚数を示している。
 時間周波数分析部81は、時間周波数変換により得られた時間周波数スペクトルS(q,ntf)を推定二次経路付加部82および適応フィルタ部86に供給する。
 なお、時間周波数分析部83においても、時間周波数分析部81における場合と同様の計算が行われて実誤差信号に対して時間周波数変換が行われる。
(超解像処理部)
 超解像処理部84は、時間周波数分析部83から供給された実誤差信号の時間周波数スペクトルに対して超解像処理を行い、最終的な誤差信号の時間周波数スペクトルを求める。
 音場の超解像処理は、音源分布の空間的なスパース性を仮定することで実現できる。
 具体的には、まず、音源が存在し得る領域を離散化することでグリッドが定義される。
 また、誤差マイクアレイ12で観測される実誤差信号yを次式(10)で表されるものとする。より詳細には、yは実誤差信号の時間周波数スペクトルを表している。
Figure JPOXMLDOC01-appb-M000010
 この場合、各グリッド位置から誤差マイクアレイ12の誤差マイクロホン11までの伝達関数を要素にもつ辞書行列をBとし、推定する音源分布をγとすると、次式(11)が成立する。
Figure JPOXMLDOC01-appb-M000011
 スパース性を利用して音場の推定を行う際は一般に、誤差マイクロホン11の数よりもグリッド数が多く定義され、式(11)が劣決定条件に設定される。そして音源分布γは以下の式(12)により示される最小化問題を解くことで推定される。
Figure JPOXMLDOC01-appb-M000012
 なお、式(12)においてλは正則化パラメータを示している。
 このような最小化問題を解くことで音源分布γを推定する場合、スパースな解に導くために、通常p≦1、つまり1以下のpが用いられる。式(12)のようなlpノルム正則化を伴う最小化には様々な解法が存在するが、反復処理により真値に近い解を得る手法が主流であり、そのような手法の演算量は多い。
 ここで、例えばM-FOCUSSアルゴリズムを例として説明を行う。なお、M-FOCUSSアルゴリズムについては、例えば「Cotter, S.F., Rao, B.D., Engan, K. and Kreutz-Delgado, K., “Sparse solutions to linear inverse problems with multiple measurement vectors,” IEEE Transactions on Signal Processing, 53(7), pp.2477-2488, 2005.」などに詳細に記載されている。
 M-FOCUSSアルゴリズムでは、次式(13)に示す計算を反復的に行い、収束条件が満たされたときの音源分布γkが推定解、つまり推定により得られた音源分布とされる。
Figure JPOXMLDOC01-appb-M000013
 なお、式(13)においてkは式(13)に示す計算の反復回数、つまり何回目の計算であるかを示しており、Bk +は行列Bkの擬似逆行列を示している。
 このように音源分布γの推定値を得るためには、式(13)の計算を反復的に何度も行う必要があり、計算に時間がかかってしまう。そのため、音源分布γの推定値を求める計算をノイズキャンセリングシステムに直接取り入れることは難しい。
 そこで、超解像処理部84では、ノイズキャンセリングの適応フィルタを更新する適応処理が反復処理であることに注目し、音源分布γは急激に変化しないという仮定のもと、超解像処理部84での反復処理の回数を削減するようにした。
 例えば適応処理の1反復(1回)に対して超解像処理を1反復行うようにするなど、超解像処理は、どのような頻度で行われるようにしてもよい。
 超解像処理部84は、以上の式(13)の計算を行って音源分布γkを求めることで、ノイズ音源分布の推定値であるγ’を得ることができる。すなわち、最終的に得られた音源分布γkがノイズ音源分布γ’とされる。
 このノイズ音源分布γ’を用いれば、空間内の任意の位置(点)における誤差信号を推定することができる。
 例えば各グリッド位置から推定したい任意の点、すなわち仮想誤差マイクロホンの位置までの伝達関数を要素に持つ復元行列B’を定義すれば、その復元行列B’とノイズ音源分布γ’とに基づいて次式(14)を計算し、誤差信号y’を得ることができる。
Figure JPOXMLDOC01-appb-M000014
 なお、式(14)において誤差信号y’は、次式(15)に示すようにQe’個の仮想誤差マイクロホンの各位置における推定誤差信号Se’(q,ntf)からなるベクトルである。なお、より詳細には、Se’(q,ntf)は推定誤差信号の時間周波数スペクトルである。
Figure JPOXMLDOC01-appb-M000015
 超解像処理部84は、このようにして得られた推定誤差信号、より詳細には推定誤差信号の時間周波数スペクトルであるy’と、実誤差信号の時間周波数スペクトルとを統合することで、最終的な誤差信号の時間周波数スペクトルを生成する。
 換言すれば、超解像処理部84は、各仮想誤差マイクロホンの位置の推定誤差信号の時間周波数スペクトルと、各誤差マイクロホン11の位置の実誤差信号の時間周波数スペクトルとからなるベクトルを最終的な誤差信号として生成する。
 以上のような超解像処理、すなわちスパース信号処理を行うことは、制御エリア等の任意の位置に仮想誤差マイクロホンを配置し、その仮想誤差マイクロホンで収音して得られる推定誤差信号を求めることであると捉えることができる。
 また、最終的な誤差信号には実誤差信号と推定誤差信号とが含まれることから、超解像処理は、実測で得られた実誤差信号から、より正確な誤差信号を得るための処理であるともいうことができる。
 ここで、図5に超解像処理を行った場合と、超解像処理を行わなかった場合についてのノイズキャンセリングのシミュレーション結果を示す。
 なお、図中、縦方向および横方向は空間内の方向(位置)を示しており、図中の濃淡は各位置における音圧レベルを示している。また、図中における1つの円(○)は1つの誤差マイクロホン11を表している。
 例えば矢印Q11に示す部分には、超解像処理を行わなかった場合のノイズキャンセリングのシミュレーション結果が示されている。
 この例では誤差マイクロホン11の近傍ではノイズが十分に低減されているが、誤差マイクアレイ12の内側、つまり制御エリア内には、誤差マイクロホン11近傍の領域と比較してノイズ低減効果が低い部分もある。
 これに対して、矢印Q12に示す部分には、超解像処理を行った場合のノイズキャンセリングのシミュレーション結果が示されている。
 特に、ここでは誤差マイクアレイ12の内側の領域に格子状に仮想誤差マイクロホンが配置され、実誤差信号と推定誤差信号とからなる誤差信号に基づいて、適応的にノイズキャンセリングが行われている。
 この例では制御エリアを含む、誤差マイクアレイ12の内側の領域全体で、十分にノイズが低減されていることが分かる。
(適応フィルタ係数算出部)
 適応フィルタ係数算出部85は、推定二次経路付加部82から供給された時間周波数スペクトルと、超解像処理部84から供給された誤差信号の時間周波数スペクトルとに基づいて上述の式(8)と同様の計算を行い、適応フィルタのフィルタ係数を更新する。
(時間周波数合成部)
 時間周波数合成部87は、適応フィルタ部86から供給されたスピーカ駆動信号の時間周波数スペクトルに対してIDFT(Inverse Discrete Fourier Transform)(逆離散フーリエ変換)を用いた時間周波数合成を行う。
 これにより、スピーカ駆動信号の時間周波数スペクトルD(l,ntf)から、時間信号であるスピーカ駆動信号d(l,nt)が算出(生成)される。
 すなわち、時間周波数合成では、次式(16)の計算が行われる。
Figure JPOXMLDOC01-appb-M000016
 なお、式(16)において、ntは時間インデックスを示しており、MdtはIDFTのサンプル数を示しており、jは純虚数を示している。
 また、式(16)においてlはスピーカアレイ13を構成するスピーカを識別するスピーカインデックスを示しており、l=0,1,2,…,L-1である。
 時間周波数合成部87は、時間周波数合成により得られたスピーカ駆動信号d(l,nt)をスピーカアレイ13に供給し、スピーカ駆動信号d(l,nt)に基づく音を出力させる。
〈ノイズキャンセリング処理の説明〉
 次に、空間ノイズ制御装置71の動作について説明する。
 すなわち、以下、図6のフローチャートを参照して空間ノイズ制御装置71により行われるノイズキャンセリング処理について説明する。
 ステップS11において超解像処理部84は、超解像処理のパラメータの初期化を行う。
 例えば超解像処理部84は、上述した式(13)の計算を行うのに用いられるパラメータW0の値として所定の初期値を設定する。
 ステップS12において空間ノイズ制御装置71は、参照マイクアレイ14での収音を行う。すなわち、参照マイクアレイ14は、周囲の音を収音し、その結果得られた参照信号を時間周波数分析部81に供給する。
 ステップS13において時間周波数分析部81は、参照マイクアレイ14から供給された参照信号に対して時間周波数変換を行い、その結果得られた参照信号の時間周波数スペクトルを推定二次経路付加部82および適応フィルタ部86に供給する。例えばステップS13では、上述した式(9)の計算が行われて時間周波数スペクトルが算出される。
 ステップS14において推定二次経路付加部82は、時間周波数分析部81から供給された参照信号の時間周波数スペクトルに対して推定二次経路の時間周波数スペクトルを乗算し、その結果得られた時間周波数スペクトルを適応フィルタ係数算出部85に供給する。
 ステップS15において空間ノイズ制御装置71は、誤差マイクアレイ12での収音を行う。すなわち、誤差マイクアレイ12は周囲の音を収音し、その結果得られた実誤差信号を時間周波数分析部83に供給する。
 ステップS16において時間周波数分析部83は、誤差マイクアレイ12から供給された実誤差信号に対して時間周波数変換を行い、その結果得られた実誤差信号の時間周波数スペクトルを超解像処理部84に供給する。例えばステップS16では、上述した式(9)と同様の計算が行われる。
 ステップS17において超解像処理部84は、時間周波数分析部83から供給された実誤差信号の時間周波数スペクトルに基づいて上述した式(13)の計算を行うことで超解像処理のパラメータWkの更新を行う。
 このとき、時間周波数分析部83から供給された実誤差信号の時間周波数スペクトルがyとされて式(13)の計算が行われる。
 また、例えば式(13)の1回目の計算時には、ステップS11で決定したパラメータW0が用いられ、2回目以降の計算時には、最後に行った式(13)の計算で得られたノイズ音源分布γk-1が用いられて、次のパラメータWkが求められる。
 また、例えば後述するステップS19の処理が行われて誤差信号が生成された後、さらに次のステップS17の処理が行われるときには、最後に行われたステップS17で得られたノイズ音源分布γk-1が用いられて、次のパラメータWkが求められる。
 ステップS18において超解像処理部84は、ステップS17での計算結果に基づいて、パラメータWkの更新を終了するか否かを判定する。
 ステップS18では、推定誤差信号の推定に用いられるパラメータWkを更新する更新処理であるステップS17の処理が予め定められた所定回数だけ反復して行われたか、または所定の収束条件が満たされた場合に、パラメータWkの更新を終了すると判定される。
 すなわち、例えばステップS17の処理、つまり式(13)の計算結果から、予め定められた収束条件が満たされたと判定された場合、十分な精度でノイズ音源分布γ’が得られたのでパラメータWkの更新を終了すると判定される。
 また、例えば収束条件が満たされていなくても、予め定められた所定回数だけ反復して(繰り返し)ステップS17の処理、つまり式(13)の計算が行われた場合にも、パラメータWkの更新を終了すると判定される。
 この場合、収束条件が満たされていなくても、所定回数だけパラメータWkを更新する処理(更新処理)が反復して行われると、更新処理が打ち切られることになる。すなわち、更新処理の反復実行が終了される。
 ステップS18において、まだパラメータWkの更新を終了しないと判定された場合、処理はステップS17に戻り、上述した処理が繰り返し行われる。
 これに対して、ステップS18においてパラメータWkの更新を終了すると判定された場合、超解像処理部84は、最後に行ったステップS17の処理により得られたノイズ音源分布γkをノイズ音源分布γ’とし、その後、処理はステップS19へと進む。このノイズ音源分布γ’は、式(13)に示したようにパラメータWkから得られるものである。
 ステップS19において超解像処理部84は、最終的な誤差信号、より詳細には誤差信号の時間周波数スペクトルを生成し、適応フィルタ係数算出部85に供給する。
 すなわち、超解像処理部84は、ノイズ音源分布γ’に基づいて上述した式(14)を計算することで、複数の仮想マイクロホンの各位置の推定誤差信号の時間周波数スペクトルを推定により求める。
 そして超解像処理部84は、得られた推定誤差信号の時間周波数スペクトルと、ステップS16で得られた実誤差信号の時間周波数スペクトルとを統合し、最終的な誤差信号の時間周波数スペクトルを生成する。
 ステップS20において、適応フィルタ係数算出部85は、適応フィルタのフィルタ係数の更新を行うか否かを判定する。
 例えば適応フィルタのフィルタ係数は、スピーカ駆動信号のフレームごとに更新されてもよいし、スピーカ駆動信号の数フレームなどのフレームよりも長い時間間隔で更新されるようにしてもよい。
 ステップS20において、適応フィルタのフィルタ係数の更新を行うと判定された場合、その後、処理はステップS21へと進む。
 ステップS21において適応フィルタ係数算出部85は、推定二次経路付加部82からの時間周波数スペクトルと、超解像処理部84からの誤差信号の時間周波数スペクトルとに基づいて適応フィルタのフィルタ係数を算出し、フィルタ係数を更新する。
 例えばステップS21では、上述した式(8)と同様の計算が行われてフィルタ係数が更新される。適応フィルタ係数算出部85は、得られた更新後のフィルタ係数を適応フィルタ部86に供給し、その後、処理はステップS22へと進む。
 これに対して、ステップS20において更新を行わないと判定された場合、ステップS21の処理は行われず、その後、処理はステップS22へと進む。
 ステップS20において更新を行わないと判定されたか、またはステップS21の処理が行われると、ステップS22の処理が行われる。
 すなわち、ステップS22において、適応フィルタ部86は適応フィルタ係数算出部85から供給された適応フィルタのフィルタ係数を用いて、時間周波数分析部81から供給された参照信号の時間周波数スペクトルに対してフィルタリング処理を行う。
 適応フィルタ部86は、フィルタ係数に基づくフィルタリング処理により得られたスピーカ駆動信号の時間周波数スペクトルを時間周波数合成部87に供給する。
 ステップS23において時間周波数合成部87は、適応フィルタ部86から供給された時間周波数スペクトルを時間周波数合成し、その結果得られた時間信号であるスピーカ駆動信号をスピーカアレイ13に供給する。
 例えばステップS23では、上述した式(16)の計算が行われてスピーカ駆動信号が生成される。
 ステップS24においてスピーカアレイ13は、時間周波数合成部87から供給されたスピーカ駆動信号に基づいて音を出力する。これにより、スピーカアレイ13から出力された音により、制御エリア内のノイズがキャンセル(低減)される。
 ステップS25において空間ノイズ制御装置71は、処理を終了するか否かを判定する。
 ステップS25において、まだ処理を終了しないと判定された場合、処理はステップS12に戻り、上述した処理が繰り返し行われる。
 これに対して、ステップS25において処理を終了すると判定された場合、ノイズキャンセリング処理は終了する。
 以上のようにして空間ノイズ制御装置71は、超解像処理を行って誤差信号を生成し、得られた誤差信号に基づいてフィルタ係数を更新する。
 このようにすることで、少ない数の誤差マイクロホン11を用いた場合でも、少ない演算量で十分な性能のノイズキャンセリングを実現することができる。
 例えば上述したステップS12乃至ステップS25の処理が、スピーカ駆動信号のフレームごとに行われるとする。
 このとき、単純に適応処理と超解像処理とを組み合わせたとすると、スピーカ駆動信号のフレームごとにパラメータWkが初期化され、収束条件が満たされるまで繰り返しパラメータWkが更新されることになる。
 この場合、収束条件が満たされるまでパラメータWkを更新する演算を何度も行わなければならず、演算量が多くなってしまう。しかも、フレームごとにパラメータWkが初期化されると、収束条件が満たされるまでの演算回数はさらに多くなってしまう。
 これに対して、空間ノイズ制御装置71では収束条件が満たされなくても、ある程度の回数だけパラメータWkが更新されると誤差信号が生成されるようにすることで、十分なノイズキャンセリング性能を確保しつつ演算量を低減させることができる。
 しかも、空間ノイズ制御装置71では、スピーカ駆動信号のフレームが切り替わっても、ノイズキャンセリングが行われている間はパラメータWkは初期化されず、直前のフレームで得られたノイズ音源分布γk-1が用いられてパラメータWkが決定される。
 換言すれば、超解像処理が行われて誤差信号が生成されると、その後、パラメータWkが初期化されずに、そのパラメータWkが次の超解像処理のパラメータWkの初期値として用いられる。
 一般的にノイズ音源分布が急激に変化することは殆どないので、フレームごとに初期化を行わず、直前のフレームで得られたノイズ音源分布γk-1を用いることで、より迅速に式(13)の演算を収束させて演算量を低減させることができるだけでなく、十分なノイズキャンセリング性能を確保することができる。
〈第2の実施の形態〉
〈空間ノイズ制御装置の構成例〉
 なお、以上においては時間周波数領域で参照信号に対するフィルタリング処理が行われる例について説明したが、空間周波数領域でフィルタリング処理を行うようにしてもよい。
 そのような場合、空間ノイズ制御装置は、例えば図7に示すように構成される。なお、図7において図4における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
 図7に示す空間ノイズ制御装置101は、参照マイクアレイ14、時間周波数分析部81、空間周波数分析部121、推定二次経路付加部82、誤差マイクアレイ12、時間周波数分析部83、空間周波数分析部122、超解像処理部84、適応フィルタ係数算出部85、適応フィルタ部86、空間周波数合成部123、時間周波数合成部87、およびスピーカアレイ13を有している。
 この空間ノイズ制御装置101の構成は、新たに空間周波数分析部121、空間周波数分析部122、および空間周波数合成部123を設けた点で図4の空間ノイズ制御装置71の構成と異なり、その他の点では空間ノイズ制御装置71と同じ構成となっている。
 空間周波数分析部121は、時間周波数分析部81から供給された参照信号の時間周波数スペクトルに対して空間周波数変換を行い、その結果得られた参照信号の空間周波数スペクトルを推定二次経路付加部82および適応フィルタ部86に供給する。
 また、空間周波数分析部122は、時間周波数分析部83から供給された実誤差信号の時間周波数スペクトルに対して空間周波数変換を行い、その結果得られた実誤差信号の空間周波数スペクトルを超解像処理部84に供給する。
 この場合、超解像処理部84では空間周波数領域で超解像処理が行われることになるので、実誤差信号よりも高い次数の推定誤差信号を得ることができる。すなわち、実誤差信号の空間周波数スペクトルの空間周波数の最大次数Nよりも、より大きい(高い)次数nの成分まで含まれる推定誤差信号の空間周波数スペクトルを得ることができる。
 超解像処理部84は、このようにして得られた、実誤差信号の空間周波数スペクトルよりも、より高い次数の成分を含む推定誤差信号の空間周波数スペクトルと、実誤差信号の空間周波数スペクトルとを含む誤差信号の空間周波数スペクトルを生成する。
 このように、より高次の誤差信号を得ることができれば、適応フィルタ部86において参照信号の空間周波数スペクトルのより高次の成分まで利用することができる。したがって、より高い次数まで精度よくスピーカ駆動信号の空間周波数スペクトルを得ることができ、ノイズキャンセリング性能を向上させることができる。
 空間周波数合成部123は、適応フィルタ部86から供給されたスピーカ駆動信号の空間周波数スペクトルに対して空間周波数合成を行い、その結果得られたスピーカ駆動信号の時間周波数スペクトルを時間周波数合成部87に供給する。
(空間周波数分析部)
 ここで、空間周波数分析部121と空間周波数合成部123について、さらに詳細に説明する。
 空間周波数分析部121は、参照マイクアレイ14の形状、すなわち参照マイクアレイ14を構成するマイクロホンの配置形状に応じて、時間周波数分析部81から供給された時間周波数スペクトルS(q,ntf)を空間周波数分析する。すなわち、時間周波数スペクトルS(q,ntf)に対する空間周波数変換が行われる。
 例えば参照マイクアレイ14が環状マイクアレイである場合、次式(17)の計算が行われて空間周波数変換が行われる。
Figure JPOXMLDOC01-appb-M000017
 なお、式(17)において、S’は空間周波数スペクトルのベクトルを示しており、Qは参照マイクアレイ14のマイクロホン数を示しており、Jinvは球ベッセル関数からなる行列を示している。
 また、Emicは環状調和関数(circular harmonic function)からなる行列であり、EH micは行列Emicのエルミート転置行列を示しており、Sは参照信号の時間周波数スペクトルS(q,ntf)のベクトルを示している。
 具体的には、空間周波数スペクトルのベクトルS’は次式(18)により表される。
Figure JPOXMLDOC01-appb-M000018
 式(18)において、S’n(ntf)(但し、n=-N,-N+1,…,N)は、参照信号の空間周波数スペクトルを示している。空間周波数スペクトルS’n(ntf)におけるnは空間周波数の次数を示しており、特にNは空間周波数の最大次数を示している。また、式(18)においてntfは時間周波数インデックスを示している。
 さらに、式(17)における球ベッセル関数からなる行列Jinvは、例えば次式(19)により表されるものとされ、環状調和関数からなる行列Emicは以下の式(20)により表されるものとされる。
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
 なお、式(19)において、Jnは空間周波数の次数がnである球ベッセル関数を示しており、cは音速を示しており、rmicは環状マイクアレイである参照マイクアレイ14の半径を示しており、ωは角周波数を示している。
 また、式(20)において、jは純虚数を示しており、n(但し、n=-N,-N+1,…,N)は空間周波数の次数を示しており、φqは参照マイクアレイ14におけるマイクロホンインデックスがqであるマイクロホンの位置の方位角を示している。
 ここで、マイクロホン位置の方位角および仰角について説明する。
 例えば図8に示すように原点Oを基準とし、x軸、y軸、およびz軸を各軸とする3次元の直交座標系を考えるとする。
 いま、参照マイクアレイ14を構成する所定のマイクロホンMU11と原点Oとを結ぶ直線を直線LNとし、直線LNをz軸方向からxy平面に投影して得られる直線を直線LN’とする。
 このとき、x軸と直線LN’とのなす角度φが、xy平面における原点Oから見たマイクロホンMU11の位置の方向を示す方位角とされる。
 また、z軸と直線LNとのなす角度θが、xy平面と垂直な平面における原点Oから見たマイクロホンMU11の位置の方向を示す仰角とされる。
 さらに、上述した式(17)におけるベクトルSは次式(21)により表される。
Figure JPOXMLDOC01-appb-M000021
 式(21)では、ベクトルSは参照マイクアレイ14の各マイクロホンで得られた参照信号の時間周波数スペクトルS(q,ntf)を要素とするベクトルとなっている。
 また、例えば参照マイクアレイ14が球状マイクアレイである場合、次式(22)の計算が行われて空間周波数変換が行われる。
Figure JPOXMLDOC01-appb-M000022
 なお、式(22)において、S’は式(18)に示した空間周波数スペクトルのベクトルであり、Qは参照マイクアレイ14のマイクロホン数を示しており、J(sph) invは球ベッセル関数からなる行列である。
 また、Ymicは球面調和関数からなる行列であり、YH micは行列Ymicのエルミート転置行列を示しており、Sは式(21)に示した参照信号の時間周波数スペクトルS(q,ntf)のベクトルである。
 ここで、球ベッセル関数からなる行列J(sph) invは、次式(23)により表される。なお、式(23)においてjnは空間周波数の次数がnである球ベッセル関数を示しており、cは音速を示しており、rmicは球状マイクアレイである参照マイクアレイ14の半径を示しており、ωは角周波数を示している。
Figure JPOXMLDOC01-appb-M000023
 また、参照マイクアレイ14における、マイクロホンインデックスがqであるマイクロホンの位置の仰角および方位角をθqおよびφqとし、空間周波数の次数がnおよびmである球面調和関数をYn mqq)とする。
 この場合、球面調和関数からなる行列Ymicは次式(24)により表される。なお、式(24)においてNおよびMは空間周波数の最大次数を表している。
Figure JPOXMLDOC01-appb-M000024
 空間周波数分析部121は、式(17)や式(22)に示す空間周波数変換により得られた空間周波数スペクトルS’n(ntf)を出力する。
 なお、空間周波数分析部122においても、空間周波数分析部121における場合と同様の計算により空間周波数変換(空間周波数分析)が行われ、実誤差信号の空間周波数スペクトルが算出される。
(空間周波数合成部)
 空間周波数合成部123は、スピーカアレイ13の形状に応じて、適応フィルタ部86から供給されたスピーカ駆動信号の空間周波数スペクトルを空間周波数合成する。
 例えば空間周波数の次数をnとし、その空間周波数の最大次数をNとして、適応フィルタ部86の出力であるスピーカ駆動信号の空間周波数スペクトルをD’n(ntf)と表すとする。
 このとき、例えばスピーカアレイ13が環状スピーカアレイである場合には、空間周波数合成部123は以下の式(25)を計算することにより空間周波数合成を行う。
Figure JPOXMLDOC01-appb-M000025
 なお、式(25)においてDは空間周波数合成部123の出力となるスピーカ駆動信号の時間周波数スペクトルのベクトルを示しており、Espは環状調和関数からなる行列を示している。また、D’は空間周波数合成部123の入力となるスピーカ駆動信号の空間周波数スペクトルD’n(ntf)からなるベクトルを示している。
 すなわち、ベクトルD’は以下の式(26)により表され、行列Espは以下の式(27)により表され、ベクトルDは以下の式(28)により表される。
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
 なお、式(26)および式(28)においてntfは時間周波数インデックスを示しており、式(27)および式(28)において、lはスピーカアレイ13を構成するスピーカを識別するスピーカインデックスを示しており、l=0,1,2,…,L-1である。
 また、Lはスピーカアレイ13を構成するスピーカの数であるスピーカ数を示している。特に、式(28)におけるD(l,ntf)は、スピーカ駆動信号の時間周波数スペクトルを示している。
 さらに、式(27)において、jは純虚数を示しており、n(但し、n=-N,-N+1,…,N)は空間周波数の次数を示しており、φlはスピーカアレイ13におけるスピーカインデックスがlであるスピーカの位置の方位角を示している。この方位角φlは上述したマイクロホンの位置の方位角φqに対応するものである。
 また、例えばスピーカアレイ13が球状スピーカアレイである場合には、空間周波数合成部123は以下の式(29)を計算することにより空間周波数合成を行う。
Figure JPOXMLDOC01-appb-M000029
 なお、式(29)において、Dは式(28)に示した時間周波数スペクトルD(l,ntf)からなるベクトルであり、Yspは球面調和関数からなる行列を示している。また、D’は式(26)に示した空間周波数スペクトルD’n(ntf)からなるベクトルである。
 球面調和関数からなる行列Yspは次式(30)により表される。
Figure JPOXMLDOC01-appb-M000030
 なお、式(30)においてθlおよびφlは、上述したマイクロホンの位置の仰角θqおよび方位角φqに対応する、スピーカアレイ13のスピーカの位置の仰角および方位角を示しており、NおよびMは空間周波数の最大次数を表している。また、Yn mll)は球面調和関数を示している。
 空間周波数合成部123は、式(25)や式(29)に示す空間周波数合成を行うことで、スピーカ駆動信号の時間周波数スペクトルD(l,ntf)を生成(算出)し、時間周波数合成部87に供給する。
〈ノイズキャンセリング処理の説明〉
 次に、空間ノイズ制御装置101の動作について説明する。
 すなわち、以下、図9のフローチャートを参照して空間ノイズ制御装置101により行われるノイズキャンセリング処理について説明する。
 なお、ステップS51乃至ステップS53の処理は、図6のステップS11乃至ステップS13の処理と同様であるので、その説明は省略する。
 ステップS54において空間周波数分析部121は、時間周波数分析部81から供給された時間周波数スペクトルに対して空間周波数変換を行い、その結果得られた空間周波数スペクトルを推定二次経路付加部82および適応フィルタ部86に供給する。
 例えばステップS54では、上述した式(17)または式(22)の計算が行われて参照信号の空間周波数スペクトルが算出される。
 ステップS54の処理が行われると、その後、ステップS55乃至ステップS57の処理が行われる。なお、これらの処理は、図6のステップS14乃至ステップS16の処理と同様であるので、その説明は省略する。
 但し、ステップS55では、推定二次経路付加部82は、空間周波数分析部121から供給された空間周波数スペクトルに対して推定二次経路の空間周波数スペクトルを乗算し、その結果得られた空間周波数スペクトルを適応フィルタ係数算出部85に供給する。
 ステップS58において空間周波数分析部122は、時間周波数分析部83から供給された時間周波数スペクトルに対して空間周波数変換を行い、その結果得られた実誤差信号の空間周波数スペクトルを超解像処理部84に供給する。例えばステップS58では、上述した式(17)または式(22)と同様の計算が行われる。
 また、ステップS58が行われると、ステップS59乃至ステップS64の処理が行われるが、これらの処理は、図6のステップS17乃至ステップS22の処理と同様であるので、その説明は省略する。
 但し、ステップS59乃至ステップS64では、空間周波数領域で超解像処理やフィルタ係数の更新、フィルタリング処理が行われる。
 ステップS65において空間周波数合成部123は、適応フィルタ部86から供給されたスピーカ駆動信号の空間周波数スペクトルを空間周波数合成し、その結果得られたスピーカ駆動信号の時間周波数スペクトルを時間周波数合成部87に供給する。
 例えばステップS65では、上述した式(25)または式(29)の計算が行われて時間周波数スペクトルが算出される。
 ステップS65の処理が行われると、その後、ステップS66乃至ステップS68の処理が行われてノイズキャンセリング処理は終了するが、これらの処理は図6のステップS23乃至ステップS25の処理と同様であるので、その説明は省略する。
 以上のようにして空間ノイズ制御装置101は、空間周波数領域で超解像処理を行って誤差信号を生成し、得られた誤差信号に基づいてフィルタ係数を更新する。
 このようにすることで、少ない数の誤差マイクロホン11を用いた場合でも、少ない演算量で十分な性能のノイズキャンセリングを実現することができる。
〈第3の実施の形態〉
〈空間ノイズ制御装置の構成例〉
 なお、以上においては、本技術をフィードフォワード型のANCシステムに適用した場合を例として説明を行ったが、本技術をフィードバック型のANCシステムに適用することも勿論可能である。以下では、本技術をフィードバック型のANCシステムに適用した場合を例として説明を行う。
 そのような場合、空間ノイズ制御装置は、例えば図10に示すように構成される。なお、図10において図7における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
 図10に示す空間ノイズ制御装置151は、誤差マイクアレイ12、時間周波数分析部83、空間周波数分析部122、超解像処理部84、推定二次経路付加部161、加算部162、推定二次経路付加部163、適応フィルタ係数算出部85、適応フィルタ部86、空間周波数合成部123、時間周波数合成部87、およびスピーカアレイ13を有している。
 空間ノイズ制御装置151では、参照マイクアレイ14は用いられず、誤差マイクアレイ12のみが用いられて音が収音される。
 また、超解像処理部84で得られた誤差信号の空間周波数スペクトルは、適応フィルタ係数算出部85および加算部162に供給される。
 さらに適応フィルタ部86で得られたスピーカ駆動信号の空間周波数スペクトルは、空間周波数合成部123および推定二次経路付加部161に供給される。
 推定二次経路付加部161は推定二次経路付加部82に対応する。推定二次経路付加部161は、適応フィルタ部86から供給されたスピーカ駆動信号の空間周波数スペクトルに対して推定二次経路の空間周波数スペクトルを乗算し、その結果得られた空間周波数スペクトルを加算部162に供給する。
 加算部162は、超解像処理部84から供給された誤差信号の空間周波数スペクトルと、推定二次経路付加部161から供給された空間周波数スペクトルとを加算し、得られた空間周波数スペクトルを推定二次経路付加部163および適応フィルタ部86に供給する。
 したがって、この例では加算部162で得られた空間周波数スペクトルが、空間ノイズ制御装置101における参照信号の空間周波数スペクトルに対応するものとして適応フィルタ部86に供給されることになる。
 なお、空間ノイズ制御装置151に推定二次経路付加部161が設けられないような構成とされてもよい。そのような場合には、超解像処理部84で得られた誤差信号の空間周波数スペクトルが適応フィルタ部86に供給されることになる。
 推定二次経路付加部163は推定二次経路付加部82に対応し、加算部162から供給された空間周波数スペクトルに対して推定二次経路の空間周波数スペクトルを乗算し、その結果得られた空間周波数スペクトルを適応フィルタ係数算出部85に供給する。
 適応フィルタ係数算出部85は、推定二次経路付加部163からの空間周波数スペクトルと、超解像処理部84からの誤差信号の空間周波数スペクトルとに基づいて適応フィルタのフィルタ係数を算出し、適応フィルタ部86に供給する。
 適応フィルタ部86は、適応フィルタ係数算出部85から供給された適応フィルタのフィルタ係数を用いて、加算部162から供給された空間周波数スペクトルに対してフィルタリング処理を行い、スピーカ駆動信号の空間周波数スペクトルを生成する。
 なお、ここでは空間ノイズ制御装置151に、空間周波数分析部122および空間周波数合成部123が設けられる例について説明する。しかし、空間ノイズ制御装置151に空間周波数分析部122および空間周波数合成部123が設けられず、時間周波数領域で超解像処理や適応フィルタのフィルタリング処理が行われるようにしてもよい。
 このように空間ノイズ制御装置151がフィードバック型とされるときには、参照マイクアレイ14は用いられない。
 しかし、例えば図11に示すように、空間ノイズ制御装置71における場合と同様に誤差マイクアレイ12の内側の領域R11が制御エリアとされる。なお、図11において図1における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
 図11に示す例では、スピーカアレイ13により囲まれる領域内に誤差マイクアレイ12が配置されており、さらに誤差マイクアレイ12により囲まれる領域内にある領域R11が制御エリアとされている。
〈ノイズキャンセリング処理の説明〉
 続いて、空間ノイズ制御装置151の動作について説明する。
 すなわち、以下、図12のフローチャートを参照して空間ノイズ制御装置151により行われるノイズキャンセリング処理について説明する。
 ステップS91において超解像処理部84は、超解像処理のパラメータの初期化を行う。例えばステップS91では、図9のステップS51と同様の処理が行われる。
 また、パラメータの初期化が行われると、その後、ステップS92乃至ステップS97の処理が行われるが、これらの処理は図9のステップS56乃至ステップS61の処理と同様であるので、その説明は省略する。
 但し、ステップS97で得られた誤差信号の空間周波数スペクトルは、超解像処理部84から適応フィルタ係数算出部85および加算部162に供給される。
 ステップS98において推定二次経路付加部161は、適応フィルタ部86から供給されたスピーカ駆動信号の空間周波数スペクトルに対して推定二次経路の空間周波数スペクトルを乗算し、その結果得られた空間周波数スペクトルを加算部162に供給する。
 ステップS99において加算部162は加算処理を行う。
 すなわち、加算部162は、超解像処理部84から供給された誤差信号の空間周波数スペクトルと、推定二次経路付加部161から供給された空間周波数スペクトルとを加算し、得られた空間周波数スペクトルを推定二次経路付加部163および適応フィルタ部86に供給する。
 ステップS100において、推定二次経路付加部163は、加算部162から供給された空間周波数スペクトルに対して推定二次経路の空間周波数スペクトルを乗算し、その結果得られた空間周波数スペクトルを適応フィルタ係数算出部85に供給する。
 ステップS100の処理が行われると、その後、ステップS101乃至ステップS107の処理が行われてノイズキャンセリング処理は終了するが、これらの処理は図9のステップS62乃至ステップS68の処理と同様であるので、その説明は省略する。
 但し、ステップS102では、適応フィルタ係数算出部85は、推定二次経路付加部163からの空間周波数スペクトルと、超解像処理部84からの誤差信号の空間周波数スペクトルとに基づいて適応フィルタのフィルタ係数を更新する。
 また、ステップS103では、適応フィルタ部86は適応フィルタ係数算出部85から供給された適応フィルタのフィルタ係数を用いて、加算部162から供給された空間周波数スペクトルに対してフィルタリング処理を行い、スピーカ駆動信号の空間周波数スペクトルを算出する。さらに、適応フィルタ部86は、得られたスピーカ駆動信号の空間周波数スペクトルを空間周波数合成部123および推定二次経路付加部161に供給する。
 以上のようにして空間ノイズ制御装置151は、超解像処理を行って誤差信号を生成し、得られた誤差信号に基づいてフィルタ係数を更新する。
 このようにすることで、少ない数の誤差マイクロホン11を用いた場合でも、少ない演算量で十分な性能のノイズキャンセリングを実現することができる。
 なお、以上においては、本技術をノイズキャンセリングに適用する例について説明したが、本技術はこれに限らず、適応的にフィルタ係数を更新するシステムなどに適用することができる。すなわち、例えば本技術は、エコーキャンセリングや、音場再現において部屋の反射や残響などの空間の特性を適応的に補正するシステム(Active room compensation)などにも適用可能である。
〈コンピュータの構成例〉
 ところで、上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウェアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
 図13は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。
 コンピュータにおいて、CPU(Central Processing Unit)501,ROM(Read Only Memory)502,RAM(Random Access Memory)503は、バス504により相互に接続されている。
 バス504には、さらに、入出力インターフェース505が接続されている。入出力インターフェース505には、入力部506、出力部507、記録部508、通信部509、及びドライブ510が接続されている。
 入力部506は、キーボード、マウス、マイクロホン、撮像素子などよりなる。出力部507は、ディスプレイ、スピーカなどよりなる。記録部508は、ハードディスクや不揮発性のメモリなどよりなる。通信部509は、ネットワークインターフェースなどよりなる。ドライブ510は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブル記録媒体511を駆動する。
 以上のように構成されるコンピュータでは、CPU501が、例えば、記録部508に記録されているプログラムを、入出力インターフェース505及びバス504を介して、RAM503にロードして実行することにより、上述した一連の処理が行われる。
 コンピュータ(CPU501)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブル記録媒体511に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
 コンピュータでは、プログラムは、リムーバブル記録媒体511をドライブ510に装着することにより、入出力インターフェース505を介して、記録部508にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部509で受信し、記録部508にインストールすることができる。その他、プログラムは、ROM502や記録部508に、あらかじめインストールしておくことができる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 また、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、本技術は、以下の構成とすることも可能である。
(1)
 実誤差信号に対して超解像処理を行うことで、誤差信号を生成する超解像処理部と、
 前記誤差信号に基づいて、適応フィルタのフィルタ係数を算出する適応フィルタ係数算出部と、
 参照信号または前記誤差信号に対して前記フィルタ係数に基づくフィルタリング処理を行い、出力デバイス駆動信号を生成する適応フィルタ部と
 を備える信号処理装置。
(2)
 前記実誤差信号は、マイクアレイにより収音を行うことで得られた信号である
 (1)に記載の信号処理装置。
(3)
 前記超解像処理部は、前記超解像処理により、前記マイクアレイを構成するマイクロホンの位置とは異なる位置における推定誤差信号を推定し、前記推定誤差信号と前記実誤差信号とを含む前記誤差信号を生成する
 (2)に記載の信号処理装置。
(4)
 前記実誤差信号に対して時間周波数変換を行い、前記実誤差信号の時間周波数スペクトルを算出する時間周波数分析部と、
 前記適応フィルタ部により生成された前記出力デバイス駆動信号の時間周波数スペクトルに対して時間周波数合成を行い、時間領域の前記出力デバイス駆動信号を生成する時間周波数合成部と
 をさらに備え、
 前記超解像処理部は、前記実誤差信号の時間周波数スペクトルに対して前記超解像処理を行う
 (3)に記載の信号処理装置。
(5)
 前記実誤差信号の時間周波数スペクトルに対して空間周波数変換を行い、前記実誤差信号の空間周波数スペクトルを算出する空間周波数分析部と、
 前記適応フィルタ部により生成された前記出力デバイス駆動信号の空間周波数スペクトルに対して空間周波数合成を行い、前記出力デバイス駆動信号の時間周波数スペクトルを生成する空間周波数合成部と
 をさらに備え、
 前記超解像処理部は、前記実誤差信号の空間周波数スペクトルに対して前記超解像処理を行い、
 前記時間周波数合成部は、前記空間周波数合成部により算出された前記出力デバイス駆動信号の時間周波数スペクトルに対して時間周波数合成を行う
 (4)に記載の信号処理装置。
(6)
 前記超解像処理部は、前記実誤差信号の空間周波数スペクトルよりも、より高い次数の成分を含む前記推定誤差信号の空間周波数スペクトルと、前記実誤差信号の空間周波数スペクトルとが含まれる、前記誤差信号の空間周波数スペクトルを生成する
 (5)に記載の信号処理装置。
(7)
 前記超解像処理部は、前記超解像処理において、前記推定誤差信号の推定に用いるパラメータを更新する更新処理を所定回数だけ反復して行ったか、または所定の収束条件が満たされた場合、前記更新処理の反復実行を終了し、前記パラメータに基づいて前記推定誤差信号を推定する
 (3)乃至(6)の何れか一項に記載の信号処理装置。
(8)
 前記超解像処理部は、前記超解像処理を行って前記誤差信号を生成した後、前記パラメータの初期化を行わずに次の前記超解像処理を行う
 (7)に記載の信号処理装置。
(9)
 前記超解像処理部は、前記超解像処理を行って前記誤差信号を生成した後、その前記超解像処理の前記パラメータを次の前記超解像処理の前記パラメータの初期値として用いる
 (8)に記載の信号処理装置。
(10)
 信号処理装置が、
 実誤差信号に対して超解像処理を行うことで、誤差信号を生成し、
 前記誤差信号に基づいて、適応フィルタのフィルタ係数を算出し、
 参照信号または前記誤差信号に対して前記フィルタ係数に基づくフィルタリング処理を行い、出力デバイス駆動信号を生成する
 信号処理方法。
(11)
 実誤差信号に対して超解像処理を行うことで、誤差信号を生成し、
 前記誤差信号に基づいて、適応フィルタのフィルタ係数を算出し、
 参照信号または前記誤差信号に対して前記フィルタ係数に基づくフィルタリング処理を行い、出力デバイス駆動信号を生成する
 ステップを含む処理をコンピュータに実行させるプログラム。
 12 誤差マイクアレイ, 13 スピーカアレイ, 14 参照マイクアレイ, 71 空間ノイズ制御装置, 84 超解像処理部, 85 適応フィルタ係数算出部, 86 適応フィルタ部

Claims (11)

  1.  実誤差信号に対して超解像処理を行うことで、誤差信号を生成する超解像処理部と、
     前記誤差信号に基づいて、適応フィルタのフィルタ係数を算出する適応フィルタ係数算出部と、
     参照信号または前記誤差信号に対して前記フィルタ係数に基づくフィルタリング処理を行い、出力デバイス駆動信号を生成する適応フィルタ部と
     を備える信号処理装置。
  2.  前記実誤差信号は、マイクアレイにより収音を行うことで得られた信号である
     請求項1に記載の信号処理装置。
  3.  前記超解像処理部は、前記超解像処理により、前記マイクアレイを構成するマイクロホンの位置とは異なる位置における推定誤差信号を推定し、前記推定誤差信号と前記実誤差信号とを含む前記誤差信号を生成する
     請求項2に記載の信号処理装置。
  4.  前記実誤差信号に対して時間周波数変換を行い、前記実誤差信号の時間周波数スペクトルを算出する時間周波数分析部と、
     前記適応フィルタ部により生成された前記出力デバイス駆動信号の時間周波数スペクトルに対して時間周波数合成を行い、時間領域の前記出力デバイス駆動信号を生成する時間周波数合成部と
     をさらに備え、
     前記超解像処理部は、前記実誤差信号の時間周波数スペクトルに対して前記超解像処理を行う
     請求項3に記載の信号処理装置。
  5.  前記実誤差信号の時間周波数スペクトルに対して空間周波数変換を行い、前記実誤差信号の空間周波数スペクトルを算出する空間周波数分析部と、
     前記適応フィルタ部により生成された前記出力デバイス駆動信号の空間周波数スペクトルに対して空間周波数合成を行い、前記出力デバイス駆動信号の時間周波数スペクトルを生成する空間周波数合成部と
     をさらに備え、
     前記超解像処理部は、前記実誤差信号の空間周波数スペクトルに対して前記超解像処理を行い、
     前記時間周波数合成部は、前記空間周波数合成部により算出された前記出力デバイス駆動信号の時間周波数スペクトルに対して時間周波数合成を行う
     請求項4に記載の信号処理装置。
  6.  前記超解像処理部は、前記実誤差信号の空間周波数スペクトルよりも、より高い次数の成分を含む前記推定誤差信号の空間周波数スペクトルと、前記実誤差信号の空間周波数スペクトルとが含まれる、前記誤差信号の空間周波数スペクトルを生成する
     請求項5に記載の信号処理装置。
  7.  前記超解像処理部は、前記超解像処理において、前記推定誤差信号の推定に用いるパラメータを更新する更新処理を所定回数だけ反復して行ったか、または所定の収束条件が満たされた場合、前記更新処理の反復実行を終了し、前記パラメータに基づいて前記推定誤差信号を推定する
     請求項3に記載の信号処理装置。
  8.  前記超解像処理部は、前記超解像処理を行って前記誤差信号を生成した後、前記パラメータの初期化を行わずに次の前記超解像処理を行う
     請求項7に記載の信号処理装置。
  9.  前記超解像処理部は、前記超解像処理を行って前記誤差信号を生成した後、その前記超解像処理の前記パラメータを次の前記超解像処理の前記パラメータの初期値として用いる
     請求項8に記載の信号処理装置。
  10.  信号処理装置が、
     実誤差信号に対して超解像処理を行うことで、誤差信号を生成し、
     前記誤差信号に基づいて、適応フィルタのフィルタ係数を算出し、
     参照信号または前記誤差信号に対して前記フィルタ係数に基づくフィルタリング処理を行い、出力デバイス駆動信号を生成する
     信号処理方法。
  11.  実誤差信号に対して超解像処理を行うことで、誤差信号を生成し、
     前記誤差信号に基づいて、適応フィルタのフィルタ係数を算出し、
     参照信号または前記誤差信号に対して前記フィルタ係数に基づくフィルタリング処理を行い、出力デバイス駆動信号を生成する
     ステップを含む処理をコンピュータに実行させるプログラム。
PCT/JP2020/041149 2019-11-18 2020-11-04 信号処理装置および方法、並びにプログラム WO2021100461A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019207885 2019-11-18
JP2019-207885 2019-11-18

Publications (1)

Publication Number Publication Date
WO2021100461A1 true WO2021100461A1 (ja) 2021-05-27

Family

ID=75980665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041149 WO2021100461A1 (ja) 2019-11-18 2020-11-04 信号処理装置および方法、並びにプログラム

Country Status (1)

Country Link
WO (1) WO2021100461A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230125941A1 (en) * 2021-10-25 2023-04-27 Gn Hearing A/S Wave-domain approach for cancelling noise entering an aperture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512194A (ja) * 1995-08-29 1999-10-19 ユナイテッド テクノロジーズ コーポレイション 調整されたアレイを使用するアクティブノイズ制御システム
WO2018163810A1 (ja) * 2017-03-07 2018-09-13 ソニー株式会社 信号処理装置および方法、並びにプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512194A (ja) * 1995-08-29 1999-10-19 ユナイテッド テクノロジーズ コーポレイション 調整されたアレイを使用するアクティブノイズ制御システム
WO2018163810A1 (ja) * 2017-03-07 2018-09-13 ソニー株式会社 信号処理装置および方法、並びにプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230125941A1 (en) * 2021-10-25 2023-04-27 Gn Hearing A/S Wave-domain approach for cancelling noise entering an aperture
US11908444B2 (en) * 2021-10-25 2024-02-20 Gn Hearing A/S Wave-domain approach for cancelling noise entering an aperture

Similar Documents

Publication Publication Date Title
JP7028238B2 (ja) 信号処理装置および方法、並びにプログラム
Kajikawa et al. Recent advances on active noise control: open issues and innovative applications
Feintuch et al. A frequency domain model for'filtered'LMS algorithms-stability analysis, design, and elimination of the training mode
EP3170173B1 (en) Active noise cancellation device
US8374358B2 (en) Method for determining a noise reference signal for noise compensation and/or noise reduction
Morgan History, applications, and subsequent development of the FXLMS Algorithm [DSP History]
CN108141691B (zh) 自适应混响消除系统
JP5091948B2 (ja) ブラインド信号抽出
Koyama et al. Spatial active noise control based on kernel interpolation of sound field
CN110402540A (zh) 主动降噪方法、装置、芯片、主动控制系统和存储介质
Shi et al. Understanding multiple-input multiple-output active noise control from a perspective of sampling and reconstruction
WO2021100461A1 (ja) 信号処理装置および方法、並びにプログラム
Arikawa et al. Spatial active noise control method based on sound field interpolation from reference microphone signals
US20210375256A1 (en) Signal processing device and method, and program
JP2023542007A (ja) 推定された二次経路を適応させるためのシステム及び方法
Kuo et al. Active noise control
US11315543B2 (en) Pole-zero blocking matrix for low-delay far-field beamforming
Sachau et al. Real-time implementation of the frequency-domain FxLMS algorithm without block delay for an adaptive noise blocker
JP3616341B2 (ja) 多チャネルエコーキャンセル方法、その装置、そのプログラム及び記録媒体
Kuo Adaptive active noise control systems: algorithms and digital signal processing (DSP) implementations
Murata et al. Fast Convergent Method for Active Noise Control Over Spatial Region with Causal Constraint
Kannan et al. Performance enhancement of adaptive active noise control systems for fMRI machines
WO2022234822A1 (ja) 信号処理装置、信号処理方法及びプログラム
JP7252086B2 (ja) 適応同定システム、適応同定装置、及び適応同定方法
US11837248B2 (en) Filter adaptation step size control for echo cancellation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP