WO2021100340A1 - Composite laminate and joined body - Google Patents

Composite laminate and joined body Download PDF

Info

Publication number
WO2021100340A1
WO2021100340A1 PCT/JP2020/037803 JP2020037803W WO2021100340A1 WO 2021100340 A1 WO2021100340 A1 WO 2021100340A1 JP 2020037803 W JP2020037803 W JP 2020037803W WO 2021100340 A1 WO2021100340 A1 WO 2021100340A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
treatment
layer
polyphenylene ether
Prior art date
Application number
PCT/JP2020/037803
Other languages
French (fr)
Japanese (ja)
Inventor
大谷 和男
臣二 沼尾
高橋 信行
良太 新林
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2020559567A priority Critical patent/JP6923762B1/en
Publication of WO2021100340A1 publication Critical patent/WO2021100340A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/04Dielectric heating, e.g. high-frequency welding, i.e. radio frequency welding of plastic materials having dielectric properties, e.g. PVC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/24Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool
    • B29C65/30Electrical means
    • B29C65/32Induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins

Definitions

  • the present invention provides a composite laminate capable of bonding at least one material selected from the group consisting of fiber reinforced plastics, glass and ceramics with modified polyphenylene ether with high strength, a method for producing the same, and the material and modified polyphenylene ether.
  • the present invention relates to a joined body formed by joining and a method for manufacturing the same.
  • a multi-material structure in which different materials (hereinafter, different materials) are arranged in the right place is indispensable.
  • the multi-material structure is formed by joining dissimilar materials, and various joining techniques such as melt welding and bonding are being studied as the joining means.
  • the entire surface is vitrified, and a technique for joining glass and a highly transparent resin such as polycarbonate by insert molding or the like is required.
  • Patent Document 1 As a method for joining glass and resin, the engineering plastic is melt-bonded to the glass by applying an adhesive force improving agent to the glass to the pellet-shaped engineering plastic and then heating and melting the engineering plastic in contact with the glass.
  • Patent Document 1 In automobiles, there are scenes where FRP (fiber reinforced plastic) and resin are joined, and a technique for firmly joining FRP and resin is required.
  • insulators such as insulating containers made of ceramic as an insert material and molded with resin are often used, and a technique for firmly joining ceramic and resin is required.
  • Non-Patent Document 1 a technique for preventing the occurrence of cracks at the internal interface of the resin mold structure by applying a silane coupling agent between the ceramic and the resin to perform interfacial treatment has been developed. It is disclosed (Non-Patent Document 1).
  • Non-Patent Document 1 paying attention to the above points, the adhesive strength of the internal interface of the resin mold structure is improved by the interface treatment with a silane coupling agent.
  • Patent Document 1 In the prior art, there is a problem that sufficient bonding strength cannot be realized between glass and resin in applications such as automobile parts and OA equipment. Further, in the technique of Patent Document 1, it is necessary to reduce the upper limit of the injection pressure to about 60 MPa at the maximum as a measure against glass breakage during insert molding, and the problem that the injection pressure cannot be sufficiently increased and the demand for improvement of durability are met. There is a problem that it is difficult to respond. Further, the technique of Non-Patent Document 1 cannot solve the problem that stress is concentrated on the resin end of the interface due to the difference in heat shrinkage between the materials, and it is difficult to further improve the joint strength and durability.
  • the present invention has been made in view of such technical background, and is used for bonding modified polyphenylene ether with at least one material selected from the group consisting of fiber reinforced plastics, glass and ceramics with high strength.
  • An object of the present invention is to provide a suitable composite laminate and related techniques thereof.
  • the related technology means a method for producing the composite laminate, a bonded body formed by bonding the material and a modified polyphenylene ether, and a method for producing the same.
  • joining means connecting objects to each other, and adhesion and welding are subordinate concepts thereof.
  • Adhesion means that two adherends (those to be bonded) are put into a bonded state via an organic material (thermosetting resin, thermoplastic resin, etc.) such as tape or adhesive.
  • welding means that the surface of a thermoplastic resin or the like, which is an adherend, is melted by heat and entangled by molecular diffusion and crystallized by contact pressurization and cooling to form a bonded state.
  • Composite lamination having a material layer composed of at least one selected from the group consisting of fiber reinforced plastic, glass and ceramic, and a resin coating layer composed of one or a plurality of resin layers laminated on the material layer.
  • at least one layer of the resin layer is a re-modified-modified polyphenylene ether layer formed of a resin composition containing a re-modified-modified polyphenylene ether, and the re-modified-modified polyphenylene ether layer is a body.
  • a composite which is at least one selected from a layer containing a mixture 1 which is a mixture of a modified polyphenylene ether and a thermoplastic epoxy resin, and a layer containing a mixture 2 which is a mixture of a modified polyphenylene ether and a (meth) acrylic resin.
  • Laminated body [2] The composite laminate according to [1], wherein the mixture 1 is formed by subjecting a bifunctional epoxy resin and a bifunctional phenol compound to a double addition reaction in a solution containing a modified polyphenylene ether. [3] The composite laminate according to [1], wherein the mixture 1 is a mixture of a modified polyphenylene ether and a thermoplastic epoxy resin.
  • thermosetting resin is at least one selected from the group consisting of urethane resin, epoxy resin, vinyl ester resin and unsaturated polyester resin.
  • a functional group-containing layer laminated in contact with the material layer and the resin coating layer is provided between the material layer and the resin coating layer, and the functional group-containing layer is described in (1) to (1) to the following.
  • a functional group derived from a silane coupling agent A functional group obtained by reacting at least one selected from an epoxy compound and a thiol compound (3)
  • a mercapto group derived from a silane coupling agent has an epoxy compound, an amino compound, an isocyanate compound, a (meth) acryloyl group and an epoxy group.
  • a thiol compound is reacted with a (meth) acryloyl group derived from a silane coupling agent.
  • An epoxy group derived from a silane coupling agent is reacted with at least one selected from the group consisting of a compound having an amino group and a (meth) acryloyl group, an amino compound, and a thiol compound.
  • Functional group (6) Isocyanato group derived from isocyanate compound (7) Mercapto group derived from thiol compound [9]
  • the surface of the material layer is subjected to at least one pretreatment selected from the group consisting of degreasing treatment, UV ozone treatment, blast treatment, polishing treatment, plasma treatment and corona discharge treatment. [1] ] To [8].
  • the composite laminate according to any one of.
  • Treatment to add a thiol compound after treatment (5') After treatment with a silane coupling agent having an epoxy group, it is selected from the group consisting of compounds having amino groups and (meth) acryloyl groups, amino compounds, and thiol compounds. Treatment to add at least one (6') Treatment with isocyanate compound (7') Treatment with thiol compound [11] Before forming the functional group-containing layer, at least one pretreatment selected from the group consisting of degreasing treatment, UV ozone treatment, blast treatment, polishing treatment, plasma treatment and corona discharge treatment is performed on the material layer. The method for producing a composite laminate according to [10].
  • the present invention provides a composite laminate suitable for high-strength bonding of at least one material selected from the group consisting of fiber reinforced plastics, glass and ceramics and a modified polyphenylene ether, and related techniques thereof. be able to.
  • (meth) acryloyl group means an acryloyl group and / or a methacryloyl group.
  • (meth) acrylic means acrylic and / or methacrylic
  • (meth) acrylate means acrylate and / or methacrylate.
  • the composite laminate 1 of the present embodiment is laminated on the material layer 2 composed of at least one selected from the group consisting of fiber reinforced plastic (FRP), glass, and ceramic. It is a composite laminate having a resin coating layer 3 composed of one or a plurality of resin layers. At least one layer of the resin coating layer 3 is a re-denatured-modified polyphenylene ether layer 31 formed from a resin composition containing a re-modified-modified polyphenylene ether.
  • FRP fiber reinforced plastic
  • the form of the material layer 2 is not particularly limited, and may be in the form of a lump or a film.
  • the fiber reinforced plastic (FRP), glass, and ceramic constituting the material layer 2 are not particularly limited.
  • FRP fiber reinforced plastic
  • a glass fiber reinforced plastic in which various fibers are compounded with a heat-curable resin such as urethane resin, epoxy resin, vinyl ester resin, unsaturated polyester, polyamide resin, and phenol resin to improve strength.
  • GFRP carbon fiber reinforced plastic
  • BFRP boron fiber reinforced plastic
  • AFRP aramid fiber reinforced plastic
  • the glass examples include soda-lime glass, lead glass, borosilicate glass, quartz glass, and the like.
  • the ceramic include oxide-based ceramics such as alumina, zirconia and barium titanate, hydroxide-based ceramics such as hydroxyapatite, carbide-based ceramics such as silicon carbide, and nitride-based ceramics such as silicon nitride.
  • the thickness of the glass in the material layer 2 is preferably 0.3 mm or more, more preferably 0.5 mm or more, from the viewpoint of strength.
  • the upper limit of the thickness of the glass is not particularly limited, but is preferably 30 mm or less, more preferably 10 mm or less.
  • the thickness of the FRP and the ceramic in the material layer 2 is preferably 1.0 mm or more, more preferably 2.0 mm or more, respectively, from the viewpoint of strength.
  • the upper limit of the thickness of the FRP and the ceramic is not particularly limited, but is preferably 20 mm or less, more preferably 15 mm or less.
  • the surface of the material layer 2 Before laminating the resin coating layer 3 on the material layer 2, it is preferable to pretreat the surface of the material layer 2 for the purpose of removing contaminants on the surface and / or an anchor effect.
  • fine irregularities 21 can be formed on the surface of the material layer 2 to roughen the surface.
  • the adhesiveness between the surface of the material layer 2 and the resin coating layer 3 can be improved.
  • Examples of the pretreatment include degreasing treatment, UV ozone treatment, blast treatment, polishing treatment, plasma treatment, corona discharge treatment, laser treatment, etching treatment, frame treatment and the like.
  • a pretreatment for cleaning the surface of the material layer 2 or a pretreatment for making the surface uneven is preferable, and specifically, a degreasing treatment, a UV ozone treatment, a blast treatment, a polishing treatment, a plasma treatment and a corona discharge treatment. At least one selected from the group consisting of is preferable.
  • the pretreatment may be performed with only one type or two or more types. As a specific method of these pretreatments, a known method can be used.
  • hydroxyl groups derived from resin or reinforcing material are present on the surface of FRP, and it is considered that hydroxyl groups are originally present on the surface of glass or ceramic. However, new hydroxyl groups are generated by the above pretreatment, and the material layer 2 The number of hydroxyl groups on the surface can be increased.
  • the degreasing treatment is a method of removing stains such as oils and fats on the surface of the material layer by dissolving them with an organic solvent such as acetone or toluene.
  • the UV and ozone treatment with a force of ozone (O 3) generated energy and thereby having a short wavelength ultraviolet ray emitted from a low-pressure mercury lamp, a process for modifying or cleaning the surface.
  • O 3 ozone
  • a cleaning surface modifier using a low-pressure mercury lamp is called a "UV ozone cleaner", a “UV cleaning apparatus”, an “ultraviolet surface modifier” or the like.
  • blasting treatment examples include wet blasting treatment, shot blasting treatment, sandblasting treatment, and the like. Above all, the wet blast treatment is preferable because a finer surface can be obtained as compared with the drive last treatment.
  • polishing treatment examples include buffing using a polishing cloth, roll polishing using polishing paper (sandpaper), electrolytic polishing, and the like.
  • the plasma treatment is to create a plasma beam with a high-voltage power supply and a rod and hit it against the surface of the material to excite molecules to make it in a functional state.
  • Examples thereof include an atmospheric pressure plasma treatment method capable of imparting hydroxyl groups and polar groups to the surface of the material. Be done.
  • the corona discharge treatment includes a method applied to surface modification of a polymer film, and starts from a radical generated by cutting a polymer main chain or a side chain of a polymer surface layer by electrons emitted from an electrode. This is a method of generating a hydroxyl group or a polar group on the surface.
  • the laser treatment is a technique for improving surface characteristics by rapidly heating and cooling only the surface layer by laser irradiation, and is an effective method for roughening the surface.
  • Known laser processing techniques can be used.
  • the etching treatment includes, for example, a chemical etching treatment such as an alkali method, a phosphoric acid-sulfuric acid method, a fluoride method, a chromic acid-sulfuric acid method, and a salt iron method, and an electrochemical etching treatment such as an electrolytic etching method.
  • a chemical etching treatment such as an alkali method, a phosphoric acid-sulfuric acid method, a fluoride method, a chromic acid-sulfuric acid method, and a salt iron method
  • an electrochemical etching treatment such as an electrolytic etching method.
  • the frame treatment is a method of converting oxygen in the air into plasma by burning a mixed gas of combustion gas and air, and applying oxygen plasma to the object to be treated to make the surface hydrophilic.
  • Known frame processing techniques can be used.
  • the resin coating layer is laminated on the surface of the material layer.
  • the resin coating layer may be laminated on the surface of the material layer that has not been subjected to the pretreatment, or may be laminated on the surface of the material layer that has been subjected to the pretreatment. Alternatively, it may be laminated on the surface of the functional group-containing layer described later.
  • a re-denatured-modified polyphenylene ether layer 31 formed from a resin composition containing a re-modified-modified polyphenylene ether.
  • a re-modified-modified polyphenylene ether means a mixture of a modified polyphenylene ether and a thermoplastic epoxy resin described later, and / or a mixture of a modified polyphenylene ether and a (meth) acrylic resin.
  • the composite laminate of the present embodiment can exhibit excellent adhesiveness to the modified polyphenylene ether.
  • the resin coating layer is composed of a plurality of layers including the re-modified-modified polyphenylene ether layer 31 and a layer other than the re-modified-modified polyphenylene ether layer, and the layer other than the re-modified-modified polyphenylene ether layer is a thermoplastic epoxy. It may be at least one selected from the thermoplastic epoxy resin layer 32 formed of the resin composition containing the resin and the thermosetting resin layer 33 formed of the resin composition containing the thermosetting resin.
  • the resin coating layer is composed of a plurality of layers, it is preferable that the essential re-denatured-modified polyphenylene ether layer 31 is laminated so as to be the outermost surface on the opposite side of the material layer.
  • the re-modified-modified polyphenylene ether layer 31 is at least one selected from a layer containing a mixture 1 of a modified polyphenylene ether and a thermoplastic epoxy resin and a layer containing a mixture 2 of a modified polyphenylene ether and a (meth) acrylic resin. It is composed.
  • the re-modified-modified polyphenylene ether layer 31 preferably contains 50 to 95% by mass of the modified polyphenylene ether, and more preferably 70 to 90% by mass.
  • modified polyphenylene ether is a polymer alloy of polyphenylene ether (PPE), which is a polymer of 2,6-dimethylphenylene oxide, and polystyrene (PS), polyamide (PA), polyphenylene sulfide (PPS), polypropylene (PP), etc. is there.
  • PPE polyphenylene ether
  • PS polystyrene
  • PA polyamide
  • PPS polyphenylene sulfide
  • PP polypropylene
  • SABIC NORYL series PPE / PS: 731, 7310, 731F, 7310F, Asahi Kasei Chemicals Co., Ltd.
  • PPE / PS Zylon series
  • PP / PPE PP / PPE
  • PA / PPE PA / PPE
  • PPS / PPE PPA / PPE
  • Epiace series manufactured by Mitsubishi Engineering Plastics Co., Ltd.
  • Remalloy series PPE / PS, PPE / PA
  • a polymer alloy of PPE and PS is preferable.
  • Mixture 1 is a mixture of the modified polyphenylene ether and a thermoplastic epoxy resin.
  • the thermoplastic epoxy resin that can be used in the mixture 1 is a resin that is also called a field-polymerized phenoxy resin, a field-curable phenoxy resin, a field-curable epoxy resin, or the like, and a bifunctional epoxy resin and a bifunctional phenol compound are present as catalysts.
  • a thermoplastic structure that is, a linear polymer structure is formed.
  • Thermoplastic epoxy resins have thermoplasticity, unlike thermosetting resins that form a three-dimensional network with a crosslinked structure.
  • bifunctional epoxy resin examples include bisphenol type epoxy resin and biphenyl type epoxy resin. Of these, one type may be used alone, or two or more types may be used in combination. Specifically, “jER (registered trademark) 828", “jER (registered trademark) 834", “jER (registered trademark) 1001", “jER (registered trademark) 1004", and the same, manufactured by Mitsubishi Chemical Corporation. Examples thereof include “jER (registered trademark) 1007" and "jER (registered trademark) YX-4000".
  • bifunctional phenol compound examples include bisphenol and biphenol. Of these, one type may be used alone, or two or more types may be used in combination. Examples of these combinations include bisphenol A type epoxy resin and bisphenol A, bisphenol A type epoxy resin and bisphenol F, biphenyl type epoxy resin and 4,4'-biphenol and the like. Further, for example, a combination of "WPE190" and "EX-991L” manufactured by Nagase ChemteX Corporation can be mentioned.
  • Mixture 1 can be obtained by subjecting a bifunctional epoxy resin and a bifunctional phenol compound to a double addition reaction in the presence of a catalyst in a solution containing a modified polyphenylene ether.
  • the modified polyphenylene ether may be mixed after the bifunctional epoxy resin and the bifunctional phenol compound are subjected to a double addition reaction in the presence of a catalyst in the solution.
  • tertiary amines such as triethylamine and 2,4,6-tris (dimethylaminomethyl) phenol
  • phosphorus compounds such as triphenylphosphine are preferably used. Used.
  • the total amount of the bifunctional epoxy resin and the bifunctional phenol compound used in producing the mixture 1 is preferably 5 to 100 parts by mass and 5 to 60 parts by mass when the modified polyphenylene ether is 100 parts by mass. It is more preferably parts, and even more preferably 20 to 40 parts by mass.
  • Mixture 2 is a mixture of modified polyphenylene ether and (meth) acrylic resin.
  • the (meth) acrylic resin used in the mixture 2 is a resin containing 25% by mass or more of units derived from the (meth) acrylate monomer.
  • a monomer other than the (meth) acrylate monomer may be copolymerized. Examples of the other monomer include styrene, (meth) acrylic acid, (meth) acrylamide, and the like, and styrene and methacrylic acid are preferable. Further, some polyfunctional monomers may be copolymerized in order to increase the strength.
  • the modified polyphenylene ether used for the mixture 2 can be the same as that used for producing the mixture 1.
  • ((Meta) acrylate monomer) As the (meth) acrylate monomer, a known monofunctional (meth) acrylic acid ester is used. Methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, butyl (meth) acrylate, iso-butyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, Decyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, Diethylaminoethyl (meth) acrylate, 3-chloro-2-hydroxyprop
  • Mixture 2 can be obtained by radical polymerization of a (meth) acrylate monomer in a solution containing a modified polyphenylene ether.
  • the mixture 2 can also be obtained by mixing the modified polyphenylene ether and the (meth) acrylic resin by a conventional method.
  • the total amount of the (meth) acrylic resin used in producing the mixture 2 is preferably 5 to 100 parts by mass and 5 to 60 parts by mass when the modified polyphenylene ether is 100 parts by mass. Is more preferable, and 20 to 40 parts by mass is further preferable.
  • the resin coating layer 3 is composed of a plurality of resin layers of the remodified-modified polyphenylene ether layer and other layers, and at least one of the resin layers other than the remodified-modified polyphenylene ether layer is heated. It can be composed of a thermoplastic epoxy resin layer 32 formed of a resin composition containing a plastic epoxy resin.
  • the resin composition containing the thermoplastic epoxy resin preferably contains 40% by mass or more of the thermoplastic epoxy resin, and more preferably 70% by mass or more.
  • thermoplastic epoxy resin Similar to the thermoplastic epoxy resin used for producing the mixture 1, the thermoplastic epoxy resin has a thermoplastic structure, that is, a bifunctional epoxy resin and a bifunctional phenol compound undergoing a crosslink reaction in the presence of a catalyst. , A resin that forms a linear polymer structure, and has thermoplasticity, unlike thermosetting resins that form a three-dimensional network with a crosslinked structure. Due to these characteristics, the thermoplastic epoxy resin has excellent adhesiveness to the material layer due to in-situ polymerization, and also has excellent adhesiveness to the remodified-modified polyphenylene ether layer 31. The epoxy resin layer 32 can be formed.
  • thermoplastic epoxy resin layer 32 in the layer below the re-modified-modified polyphenylene ether layer 31 (on the material layer 2 side).
  • the thermoplastic epoxy resin layer 32 can be formed by subjecting a composition containing a monomer of the thermoplastic epoxy resin to a heavy addition reaction. The heavy addition reaction is preferably carried out on the surface of the functional group-containing layer 4 described later.
  • the resin coating layer 3 including the thermoplastic epoxy resin layer 32 formed in such an embodiment is excellent in adhesiveness to the material layer 2 and also excellent in adhesiveness to the object to be bonded, which will be described later.
  • the coating method for forming the thermoplastic epoxy resin layer 32 with the composition containing the monomer of the thermoplastic epoxy resin is not particularly limited, and examples thereof include a spray coating method and a dipping method.
  • the composition containing the monomer of the thermoplastic epoxy resin a solvent and, if necessary, a colorant and the like are added in order to sufficiently proceed the polyaddition reaction of the thermoplastic epoxy resin and form a desired resin coating layer. It may contain an agent.
  • the monomer of the thermoplastic epoxy resin is the main component among the components other than the solvent of the composition.
  • the main component means that the content of the thermoplastic epoxy resin is 50 to 100% by mass. The content is preferably 60% by mass or more, more preferably 80% by mass or more.
  • the monomer for obtaining the thermoplastic epoxy resin is preferably a combination of a bifunctional epoxy resin and a bifunctional phenolic compound.
  • the heavy addition reaction is preferably carried out by heating at 120 to 200 ° C. for 5 to 90 minutes, although it depends on the type of reaction compound and the like.
  • the thermoplastic epoxy resin layer 32 can be formed by coating the resin composition, volatilizing a solvent as appropriate, and then heating to carry out a double addition reaction.
  • the resin coating layer 3 is composed of a plurality of resin layers of the re-modified-modified polyphenylene ether layer and other layers, and at least one of the resin layers other than the re-modified-modified polyphenylene ether layer is heated. It can also be composed of a thermosetting resin layer 33 formed of a cured product of a resin composition containing a curable resin.
  • thermosetting resin In the resin composition containing the thermosetting resin, a solvent and, if necessary, a colorant and the like are added in order to sufficiently proceed the curing reaction of the thermosetting resin and form a desired resin coating layer. It may contain an agent.
  • the thermosetting resin is the main component among the components other than the solvent of the resin composition.
  • the main component means that the content of the thermosetting resin is 40 to 100% by mass.
  • the content is preferably 60% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more.
  • thermosetting resin examples include urethane resin, epoxy resin, vinyl ester resin, and unsaturated polyester resin.
  • thermosetting resin layer 33 may be formed by one of these resins alone, or may be formed by mixing two or more of them.
  • the thermosetting resin layer 33 may be composed of a plurality of layers, and each layer may be formed of a resin composition containing a different type of thermosetting resin.
  • the coating method for forming the thermosetting resin layer 33 with the composition containing the monomer of the thermosetting resin is not particularly limited, and examples thereof include a spray coating method and a dipping method.
  • the thermosetting resin referred to in the present embodiment broadly means a resin that is cross-linked and cured, and is not limited to the heat-curing type, but also includes a room temperature curing type and a photocuring type.
  • the normal temperature refers to 5 to 35 ° C, preferably 15 to 25 ° C.
  • the photocurable type can be cured in a short time by irradiating with visible light or ultraviolet rays.
  • the photo-curing type may be used in combination with a heat-curing type and / or a room temperature curing type.
  • Examples of the photocurable type include vinyl ester resins such as "Lipoxy (registered trademark) LC-760" and "Lipoxy (registered trademark) LC-720" manufactured by Showa Denko KK.
  • the urethane resin is usually a resin obtained by reacting an isocyanato group of an isocyanate compound with a hydroxyl group of a polyol compound, and is defined in ASTM D16 as "a coating material containing a polyisocyanate having a vehicle non-volatile component of 10% by mass or more".
  • the urethane resin corresponding to the above is preferable.
  • the urethane resin may be a one-component type or a two-component type.
  • the one-component urethane resin examples include an oil-modified type (which cures by oxidative polymerization of unsaturated fatty acid groups), a moisture-curing type (which cures by the reaction of isocyanato groups with water in the air), and a block type (which cures by the reaction of isocyanato groups with water in the air).
  • examples thereof include a lacquer type (which cures when the solvent volatilizes and dries), a lacquer type (which cures when the isocyanato group dissociated and regenerated by heating reacts with a hydroxyl group).
  • a moisture-curable one-component urethane resin is preferably used from the viewpoint of ease of handling and the like. Specific examples thereof include "UM-50P" manufactured by Showa Denko KK.
  • Examples of the two-component urethane resin include a catalyst-curable type (a catalyst-curable type in which an isocyanato group reacts with water in the air to cure in the presence of a catalyst) and a polyol-curable type (a reaction between an isocyanato group and a hydroxyl group of a polyol compound). (Those that are cured by) and the like.
  • polyol compound in the polyol curing type examples include polyester polyols, polyether polyols, and phenol resins.
  • isocyanate compound having an isocyanato group in the polyol-curable type examples include aliphatic isocyanates such as hexamethylene diisocyanate (HDI), tetramethylene diisocyanate, and diimalate diisocyanate; 2,4- or 2,6-tolylene diisocyanate.
  • HDI hexamethylene diisocyanate
  • tetramethylene diisocyanate tetramethylene diisocyanate
  • diimalate diisocyanate 2,4- or 2,6-tolylene diisocyanate.
  • TDI p-phenylenediocyanate, xylylene diisocyanate, diphenylmethane diisocyanate (MDI) and aromatic isocyanates such as polypeptide MDI which is a polynuclear mixture thereof; alicyclic isocyanates such as isophorone diisocyanate (IPDI) and the like.
  • the compounding ratio of the polyol compound and the isocyanate compound in the polyol-curable two-component urethane resin is preferably in the range of 0.7 to 1.5 in the molar equivalent ratio of the hydroxyl group / isocyanato group.
  • urethanization catalyst used in the two-component urethane resin examples include triethylenediamine, tetramethylguanidine, N, N, N', N'-tetramethylhexane-1,6-diamine, dimethyletheramine, N, N, N', N'', N''-pentamethyldipropylene-triamine, N-methylmorpholin, bis (2-dimethylaminoethyl) ether, dimethylaminoethoxyethanol, triethylamine and other amine-based catalysts; dibutyltindi Examples thereof include organotin catalysts such as acetate, dibutyltin dilaurate, dibutyltin thiocarboxylate and dibutyltin dimalate. In the polyol curing type, it is generally preferable that 0.01 to 10 parts by mass of the urethanization catalyst is blended with respect to 100 parts by mass of the polyol compound.
  • the epoxy resin is a resin having at least two epoxy groups in one molecule.
  • the prepolymer before curing of the epoxy resin include ether-based bisphenol-type epoxy resin, novolac-type epoxy resin, polyphenol-type epoxy resin, aliphatic-type epoxy resin, ester-based aromatic epoxy resin, and cyclic aliphatic epoxy resin. , Ether-ester type epoxy resin and the like, and among these, bisphenol A type epoxy resin is preferably used. Of these, one type may be used alone, or two or more types may be used in combination.
  • Specific examples of the bisphenol A type epoxy resin include "jER (registered trademark) 828" and "jER (registered trademark) 1001" manufactured by Mitsubishi Chemical Corporation.
  • Specific examples of the novolak type epoxy resin include "DEN (registered trademark) 438 (registered trademark)” manufactured by The Dow Chemical Company.
  • Examples of the curing agent used for the epoxy resin include known curing agents such as aliphatic amines, aromatic amines, acid anhydrides, phenol resins, thiols, imidazoles, and cationic catalysts.
  • the curing agent is used in combination with a long-chain aliphatic amine and / or a thiol, the effect of having a large elongation rate and excellent impact resistance can be obtained.
  • Specific examples of the thiols include the same compounds as those exemplified as the thiol compounds for forming the functional group-containing layer described later.
  • pentaerythritol tetrakis (3-mercaptobutyrate) for example, "Carens MT (registered trademark) PE1” manufactured by Showa Denko KK
  • Carens MT registered trademark
  • PE1 manufactured by Showa Denko KK
  • the vinyl ester resin is obtained by dissolving a vinyl ester compound in a polymerizable monomer (for example, styrene). Although it is also called an epoxy (meth) acrylate resin, the vinyl ester resin also includes a urethane (meth) acrylate resin.
  • a polymerizable monomer for example, styrene
  • the vinyl ester resin also includes a urethane (meth) acrylate resin.
  • the vinyl ester resin for example, those described in "Polyester Resin Handbook” (Nikkan Kogyo Shimbun, published in 1988), "Paint Glossary” (Japan Society of Color Material, published in 1993), etc. shall also be used.
  • Lipoxy (registered trademark) R-802 "Lipoxy (registered trademark) R-804", “Lipoxy (registered trademark) R-806", etc. manufactured by Showa Denko KK, etc. Can be mentioned.
  • the urethane (meth) acrylate resin is obtained by, for example, reacting an isocyanate compound with a polyol compound and then reacting with a hydroxyl group-containing (meth) acrylic monomer (and, if necessary, a hydroxyl group-containing allyl ether monomer).
  • a hydroxyl group-containing (meth) acrylic monomer and, if necessary, a hydroxyl group-containing allyl ether monomer.
  • examples thereof include radically polymerizable unsaturated group-containing oligomers. Specific examples thereof include "Lipoxy (registered trademark) R-6545" manufactured by Showa Denko KK.
  • the vinyl ester resin can be cured by radical polymerization by heating in the presence of a catalyst such as an organic peroxide.
  • a catalyst such as an organic peroxide.
  • the organic peroxide is not particularly limited, but for example, ketone peroxides, peroxyketals, hydroperoxides, diallyl peroxides, diacyl peroxides, peroxyesters, and peroxides. Oxide carbonates and the like can be mentioned. By combining these with a cobalt metal salt or the like, curing at room temperature is also possible.
  • the cobalt metal salt is not particularly limited, and examples thereof include cobalt naphthenate, cobalt octylate, and cobalt hydroxide. Of these, cobalt naphthenate and / and cobalt octylate are preferred.
  • the unsaturated polyester resin is a monomer (eg, styrene, etc.) in which a condensation product (unsaturated polyester) obtained by an esterification reaction of a polyol compound and an unsaturated polybasic acid (and, if necessary, a saturated polybasic acid) is polymerized. ) Is dissolved.
  • a condensation product unsaturated polyester obtained by an esterification reaction of a polyol compound and an unsaturated polybasic acid (and, if necessary, a saturated polybasic acid) is polymerized.
  • unsaturated polyester resin those described in "Polyester Resin Handbook" (Nikkan Kogyo Shimbun, published in 1988), "Paint Glossary” (Japan Society of Color Material, published in 1993), etc. can also be used. Yes, and more specifically, "Rigolac (registered trademark)" manufactured by Showa Denko KK can be mentioned.
  • the unsaturated polyester resin can be cured by radical polymerization by heating in the presence of a catalyst similar to the vinyl ester resin.
  • the resin coating layer 3 is formed on the surface of the material layer 2 with excellent adhesiveness, and exhibits excellent adhesiveness with the modified polyphenylene ether to be bonded. Further, the surface of the material layer 2 is protected by the resin coating layer 3, and the adhesion of dirt to the surface of the material layer can be suppressed.
  • the resin coating layer can impart excellent bondability to the modified polyphenylene ether to be bonded to the material layer. Further, it is possible to obtain a composite laminate capable of maintaining a state in which excellent adhesiveness can be obtained for a long period of several months while the surface of the material layer is protected as described above.
  • the resin coating layer has an effect of imparting excellent bonding properties to the modified polyphenylene ether to be bonded to the material layer
  • the resin coating layer can be a primer layer of the composite laminate.
  • the primer layer referred to here is a material that is interposed between the material layer and the bonding target when the material layer is bonded and integrated with a bonding target such as a resin material, for example, as in the case of a bonded body described later. It shall mean a layer that improves the adhesiveness of the layer to the object to be joined.
  • the functional group-containing layer 4 When the functional group-containing layer 4 is provided, the functional group formed by the functional group-containing layer reacts with the hydroxyl group on the surface of the material layer and the functional group of the resin constituting the resin coating layer to form a chemical bond. As a result, the effect of improving the adhesiveness between the surface of the material layer and the resin coating layer can be obtained. In addition, the effect of improving the bondability with the bonding target can also be obtained.
  • the functional group-containing layer 4 at least a part of the functional groups on the surface of the silane coupling agent-treated layer spread in two dimensions is one or more compounds selected from the group consisting of isocyanate compounds, thiol compounds, epoxy compounds, and amino compounds. It is possible to form a functional group-containing structure in which a functional group capable of chemically bonding with a functional group of an organic material is extended in a three-dimensional direction by reacting.
  • One or more compounds selected from the group consisting of the isocyanate compound, the thiol compound, the epoxy compound, and the amino compound are groups capable of reacting with functional groups on the surface of the silane coupling agent layer and functionalities of the resin constituting the resin coating layer. It is preferably a compound having a group capable of reacting with the group.
  • the functional group-containing layer 4 is preferably formed by subjecting the surface of the material layer 2 to at least one treatment selected from the group consisting of the following (1') to (7').
  • Treatment to add a thiol compound after treatment (5') After treatment with a silane coupling agent having an epoxy group, it is selected from the group consisting of compounds having amino groups and (meth) acryloyl groups, amino compounds, and thiol compounds. Treatment to add at least one (6') Treatment with isocyanate compound (7') Treatment with thiol compound
  • the functional group-containing layer 4 preferably contains the functional group introduced by the above treatment, and specifically, preferably contains at least one functional group selected from the group consisting of the following (1) to (7). .. (1) At least one functional group derived from a silane coupling agent and selected from the group consisting of an epoxy group, an amino group, a (meth) acryloyl group and a mercapto group. (2) An amino group derived from a silane coupling agent.
  • a functional group obtained by reacting at least one selected from an epoxy compound and a thiol compound (3)
  • a mercapto group derived from a silane coupling agent has an epoxy compound, an amino compound, an isocyanate compound, a (meth) acryloyl group and an epoxy group.
  • a thiol compound is reacted with a (meth) acryloyl group derived from a silane coupling agent.
  • An epoxy group derived from a silane coupling agent is reacted with at least one selected from the group consisting of a compound having an amino group and a (meth) acryloyl group, an amino compound, and a thiol compound.
  • Functional group (6) Isocyanato group derived from isocyanate compound (7) Mercapto group derived from thiol compound
  • the above pretreatment can also be applied to the surface of the material layer before forming the functional group-containing layer 4 in the material layer.
  • the pretreatment at least one selected from the group consisting of degreasing treatment, UV ozone treatment, blast treatment, polishing treatment, plasma treatment and corona discharge treatment is preferable.
  • the method for forming the functional group-containing layer with the silane coupling agent, the isocyanate compound, the thiol compound and the like is not particularly limited, and examples thereof include a spray coating method and a dipping method. Specifically, the material layer is immersed in a solution of a silane coupling agent having a concentration of 5 to 50% by mass at room temperature to 100 ° C. for 1 minute to 5 days, and then dried at room temperature to 100 ° C. for 1 minute to 5 hours. It can be done by a method such as making it.
  • silane coupling agent for example, known ones used for surface treatment of glass fibers and the like can be used.
  • a silanol group generated by hydrolyzing a silane coupling agent or a silanol group obtained by oligomerizing the silanol group reacts with a hydroxyl group existing on the surface of the material layer 2 and bonds to the resin coating layer 3 to be chemically bonded.
  • a functional group based on the structure of the silane coupling agent can be imparted (introduced) to the material layer.
  • the silane coupling agent is not particularly limited, but a silane coupling agent having an epoxy group, a silane coupling agent having an amino group, a silane coupling agent having a mercapto group, a silane coupling agent having a (meth) acryloyl group, and the like. Can be used.
  • the silane coupling agent having an epoxy group include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and the like.
  • Examples thereof include 3-glycidoxypropylmethyldiethoxysilane and 3-glycidoxypropyltriethoxysilane.
  • Examples of the silane coupling agent having an amino group include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, and N-2-(. Aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane and the like can be mentioned.
  • silane coupling agent having a mercapto group examples include 3-mercaptopropylmethyldimethoxysilane and dithioltriazinepropyltriethoxysilane.
  • silane coupling agent having a (meth) acryloyl group examples include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxypropyltriethoxysilane. , 3-Acryloxypropyltrimethoxysilane and the like.
  • silane coupling agents having a vinyl group such as 3-isocyanatopropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, p-styryltrimethoxysilane, 3- Triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminopropyltrimethoxysilane hydrochloride, tris- (Trimethoxysilylpropyl) isocyanurate, 3-ureidopropyltrialkoxysilane, and the like. These may be used alone or in combination of two or more.
  • Epoxy compound As the epoxy compound, a known epoxy compound or the like can be used. A polyvalent epoxy compound or a compound having an alkenyl group other than the epoxy group is preferable.
  • the epoxy compound is not particularly limited, but for example, glycidyl (meth) acrylate, allyl glycidyl ether, which can have a (meth) acryloyl group or an allyl group whose terminal group is a radical reactive group, and allyl glycidyl ether, and the like. Examples thereof include 1,6-hexanediol diglycidyl ether having an epoxy group as the terminal group, and an epoxy resin having two or more epoxy groups in the molecule.
  • the thiol compound is based on the structure of the thiol compound which can be chemically bonded to a resin coating layer or a bonding target by reacting and bonding a mercapto group in the thiol compound with a hydroxyl group existing on the surface of the material layer 2. Functional groups can be imparted (introduced) to the material layer.
  • the thiol compound is not particularly limited, but for example, pentaerythritol tetrakis (3-mercaptopropionate) having a mercapto group as a terminal group (for example, "QX40" manufactured by Mitsubishi Chemical Corporation, Toray. Fine Chemicals Co., Ltd. "QE-340M”), ether-based first-class thiols (for example, "Cup Cure 3-800” manufactured by Cognis), 1,4-bis (3-mercaptobutylyloxy) butane (for example, Showa Denko Co., Ltd.
  • pentaerythritol tetrakis (3-mercaptopropionate) having a mercapto group as a terminal group for example, "QX40" manufactured by Mitsubishi Chemical Corporation, Toray. Fine Chemicals Co., Ltd. "QE-340M”
  • ether-based first-class thiols for example, "Cup Cure 3-800” manufactured by Cognis
  • Kevron MT registered trademark
  • Pentaerythritol tetrakis (3-mercaptobutylate)
  • Karenzu MT registered trademark
  • PE1 1, 3, 5 -Tris (3-mercaptobutyloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -Trione
  • Karens MT registered trademark
  • NR1 manufactured by Showa Denko KK
  • amino compound As the amino compound, a known amino compound or the like can be used. Polyfunctional amino compounds and compounds having an alkenyl group in addition to the amino group (including amide) are preferable.
  • the amino compound is not particularly limited, but for example, ethylenediamine having an amino group at the terminal, 1,2-propanediamine, 1,3-propanediamine, 1,4-diaminobutane, hexamethylenediamine, and the like.
  • the isocyanate compound is a functional group based on the structure of the isocyanate compound, which can be chemically bonded to the resin coating layer 3 by reacting and bonding an isocyanato group in the isocyanate compound with a hydroxyl group existing on the surface of the material layer 2. Can be imparted (introduced) to the material layer.
  • the isocyanate compound is not particularly limited, but is, for example, diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), isophorone diisocyanate, which are polyfunctional isocyanates having an isocyanato terminal group.
  • MDI diphenylmethane diisocyanate
  • HDI hexamethylene diisocyanate
  • TDI tolylene diisocyanate
  • isophorone diisocyanate which are polyfunctional isocyanates having an isocyanato terminal group.
  • 2-Isocyanatoethyl methacrylate for example, "Karens MOI (registered trademark)" manufactured by Showa Denko Co., Ltd., which is an isocyanate compound whose terminal group can be a (meth) acryloyl group which is a radical reactive group in addition to (IPDI) and the like.
  • 2-Isocyanate ethyl acrylate for example,“ Karens AOI® ”,“ AOI-VM® ”), 1,1- (bisacryloyloxyethyl) ethyl isocyanate manufactured by Showa Denko Co., Ltd. (For example, "Karens BEI (registered trademark)” manufactured by Showa Denko Co., Ltd.) and the like.
  • the resin coating layer 3 of the composite laminate 1 is a primer layer as described above, and the surface on the primer layer side and the modified polyphenylene ether 6 are used. Is joined and integrated.
  • the thickness of the primer layer depends on the material of the bonding target and the contact area of the bonding portion, but when the bonding target is not a film, a viewpoint of obtaining excellent bonding strength with the bonding target.
  • the thickness is preferably 1 ⁇ m to 10 mm from the viewpoint of suppressing stress concentration at the resin end of the interface due to the difference in heat shrinkage between the materials. It is more preferably 20 ⁇ m to 3 mm, and even more preferably 40 ⁇ m to 1 mm.
  • the thickness of the primer layer is the total thickness of each layer.
  • the thickness of the primer layer (thickness after drying) is preferably 0.1 ⁇ m to 1 mm, more preferably 0.1 ⁇ m to 100 ⁇ m.
  • the modified polyphenylene ether in the conjugate is not particularly limited, and the above-mentioned ones can be used.
  • a composite laminate and a molded body of modified polyphenylene ether separately produced can be bonded and integrated.
  • the molded body of the modified polyphenylene ether is molded by a method such as injection molding, press molding, or transfer molding, and at the same time, the surface of the composite laminate on the primer layer side and the modified polyphenylene ether are joined and integrated.
  • a method of welding the modified polyphenylene ether and a method of injection welding the modified polyphenylene ether onto the surface of the composite laminate on the primer layer side can be mentioned.
  • a modified polyphenylene ether (NOLYL731 manufactured by SABIC): 3.77 g and xylene: 95 g were charged in a flask, and the temperature was raised to 125 ° C. with stirring to dissolve.
  • a bifunctional epoxy resin jER (registered trademark) 1001 manufactured by Mitsubishi Chemical Co., Ltd.): 1.0 g, bisphenol A: 0.22 g, 2,4,6-tris (dimethylaminomethyl) phenol: 0.005 g.
  • jER registered trademark
  • bisphenol A 0.22 g
  • 2,4,6-tris dimethylaminomethyl
  • a modified polyphenylene ether (NOLYL731 manufactured by SABIC): 3.75 g and xylene: 95 g were placed in a flask and dissolved by raising the temperature to 125 ° C. with stirring.
  • a bifunctional epoxy resin (jER (registered trademark) 1007 manufactured by Mitsubishi Chemical Co., Ltd.): 1.18 g, bisphenol A: 0.065 g, 2,4,6-tris (dimethylaminomethyl) phenol: 0.004 g.
  • jER registered trademark
  • bisphenol A 0.065 g
  • 2,4,6-tris dimethylaminomethyl
  • a modified polyphenylene ether (NOLYL731 manufactured by SABIC): 7.0 g and xylene: 95 g were charged in a flask, and the temperature was raised to 125 ° C. with stirring to dissolve.
  • an organic peroxide catalyst Perbutyl (registered trademark) O manufactured by Nichiyu Co., Ltd.): 0.1 g in a monomer mixture in which methacrylic acid: 1.0 g, methyl methacrylate: 1.0 g, and styrene: 1.0 g were mixed.
  • ⁇ Manufacturing example 4> In a flask, a bifunctional epoxy resin (jER® 1007 manufactured by Mitsubishi Chemical Co., Ltd.): 1.18 g, bisphenol A: 0.065 g, 2,4,6-tris (dimethylaminomethyl) phenol: 0.004 g, Xylene: 95 g was charged, the temperature was raised to 140 ° C., and the reaction was carried out with stirring for 1 hour to obtain a thermoplastic epoxy resin.
  • jER® 1007 manufactured by Mitsubishi Chemical Co., Ltd. a bifunctional epoxy resin (jER® 1007 manufactured by Mitsubishi Chemical Co., Ltd.): 1.18 g, bisphenol A: 0.065 g, 2,4,6-tris (dimethylaminomethyl) phenol: 0.004 g, Xylene: 95 g was charged, the temperature was raised to 140 ° C., and the reaction was carried out with stirring for 1 hour to obtain a thermoplastic epoxy resin.
  • modified polyphenylene ether (NOLYL731 manufactured by SABIC) was added, and the mixture was stirred and mixed for 10 minutes to obtain a re-modified-modified polyphenylene ether modified with a thermoplastic epoxy resin: re-modified m-PPE-4. It was.
  • polyphenylene ether (NOLYL731 manufactured by SABIC) was added, and the mixture was stirred and mixed for 10 minutes to obtain a re-modified polyphenylene ether modified with a methacrylic resin: re-modified m-PPE-5.
  • Example 1-1 (Preprocessing) The surface of a glass substrate (manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass) having a thickness of 18 mm ⁇ 45 mm and a thickness of 1.2 mm was degreased with acetone.
  • a glass substrate manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass
  • Example 1-2 A modified polyphenylene ether resin (NOLYL731 manufactured by SABIC) to be bonded was placed on the surface of the composite laminate produced in Example 1-1 on the resin coating layer side, and an injection molding machine (SE100V manufactured by Sumitomo Heavy Industries, Ltd .; cylinder).
  • SE100V manufactured by Sumitomo Heavy Industries, Ltd .; cylinder.
  • 10 mm ⁇ 45 mm ⁇ 3 mm, overlapping length of joint portion 5 mm, width 10 mm) (glass-modified polyphenylene ether junction) was prepared.
  • the tensile test test piece prepared in Example 1-2 was left at room temperature (temperature 23 ° C., 50% RH) for 1 day, and then subjected to a tensile tester (manufactured by Shimadzu Corporation) in accordance with ISO19095 1-4.
  • the tensile shear joint strength test was performed on the autograph "AG-IS"; load cell 10 kN, tensile speed 10 mm / min, temperature 23 ° C., 50% RH), and the joint strength was measured. The measurement results are shown in Table 1 below.
  • Example 2-1> (Preprocessing) The same operation as in Example 1-1 was carried out, and the surface of a glass substrate (18 mm ⁇ 45 mm, 1.2 mm thick, manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass) was degreased with acetone.
  • thermoplastic epoxy resin composition (jER® 1001 manufactured by Mitsubishi Chemical Corporation): 100 g, bisphenol A: 24 g, and triethylamine: 0.4 g are dissolved in 250 g of acetone on the surface of the functional group-containing layer.
  • the thermoplastic epoxy resin composition was applied by a spray method so that the thickness after drying was 30 ⁇ m. After volatilizing the solvent by leaving it in the air at room temperature (23 ° C) for 30 minutes, leave it in a furnace at 150 ° C for 30 minutes to perform a heavy addition reaction, and allow it to cool to room temperature (23 ° C).
  • the first resin coating layer (thermoplastic epoxy resin layer) was formed.
  • Example 2-2 A test piece for a tensile test was prepared by performing the same operation as in Example 1-2 on the surface of the composite laminate prepared in Example 2-1 on the resin coating layer side of the second layer. The joint strength of the test piece was measured by the same method as in Example 1-2. The measurement results are shown in Table 1 below.
  • Example 3-1 (Preprocessing) The same operation as in Example 1-1 was carried out, and the surface of a glass substrate (18 mm ⁇ 45 mm, 1.2 mm thick, manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass) was degreased with acetone.
  • the pretreated glass base material was prepared by dissolving 0.5 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shinetsu Silicone Co., Ltd .; a silane coupling agent) in 100 g of industrial ethanol at 70 ° C. After immersing in the silane coupling agent solution of silane for 5 minutes, the glass substrate was taken out and dried, and a functional group (methacryloyloxy group) derived from the silane coupling agent was introduced on the surface of the glass substrate.
  • KBM-503 manufactured by Shinetsu Silicone Co., Ltd .
  • silane coupling agent a silane coupling agent
  • a bifunctional thiol compound 1,4 bis (3-mercaptobutyryloxy) butane Showa Denko KK Karens MT (registered trademark) BD1: 0.6 g, 2,4,6-tris (dimethylaminomethyl) Phenol (DMP-30): 0.05 g was immersed in a solution dissolved in 150 g of toluene at 70 ° C. for 10 minutes, and then lifted and dried. In this way, a functional group (mercapto group) -containing layer having a chemically bondable functional group was formed.
  • Example 3-2 A test piece for a tensile test was prepared by performing the same operation as in Example 1-2 on the surface of the composite laminate prepared in Example 3-1 on the resin coating layer side. The joint strength of the test piece was measured by the same method as in Example 1-2. The measurement results are shown in Table 1 below.
  • Example 4-1 (Preprocessing) A glass substrate (manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass) having a thickness of 18 mm ⁇ 45 mm and a thickness of 1.2 mm was subjected to a wet blast treatment to form fine irregularities on the surface of the glass substrate.
  • a glass substrate manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass having a thickness of 18 mm ⁇ 45 mm and a thickness of 1.2 mm was subjected to a wet blast treatment to form fine irregularities on the surface of the glass substrate.
  • Example 4-2 A test piece for a tensile test was prepared by performing the same operation as in Example 1-2 on the surface of the composite laminate prepared in Example 4-1 on the resin coating layer side. The joint strength of the test piece was measured by the same method as in Example 1-2. The measurement results are shown in Table 1 below.
  • Example 5-1 (Preprocessing) A glass substrate (manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass) having a thickness of 18 mm ⁇ 45 mm and a thickness of 1.2 mm was subjected to a wet blast treatment to form fine irregularities on the surface of the glass substrate.
  • a glass substrate manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass having a thickness of 18 mm ⁇ 45 mm and a thickness of 1.2 mm was subjected to a wet blast treatment to form fine irregularities on the surface of the glass substrate.
  • Example 5-2> A test piece for a tensile test was prepared by performing the same operation as in Example 1-2 on the surface of the composite laminate prepared in Example 5-1 on the resin coating layer side. The joint strength of the test piece was measured by the same method as in Example 1-2. The measurement results are shown in Table 1 below.
  • Example 6-1 (Preprocessing) A glass substrate (manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass) having a thickness of 18 mm ⁇ 45 mm and a thickness of 1.2 mm was subjected to a wet blast treatment to form fine irregularities on the surface of the glass substrate.
  • a glass substrate manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass having a thickness of 18 mm ⁇ 45 mm and a thickness of 1.2 mm was subjected to a wet blast treatment to form fine irregularities on the surface of the glass substrate.
  • pentaerythritol tetrakis (3-mercaptobutyrate) Showa Denko KK "Karensu MT (registered trademark) PE1": 1.2 g, 2,4,6-tris (dimethylaminomethyl) phenol (DMP-30)
  • DMP-30 2,4,6-tris (dimethylaminomethyl) phenol
  • thermosetting resin layer first layer of the resin coating layer.
  • the re-denatured m-PPE-5 obtained in Production Example 5 was applied to the surface of the thermosetting resin layer of the glass substrate, xylene was volatilized and held at 150 ° C. for 30 minutes to contain the functional group.
  • a composite laminate in which a resin-coated layer (thickness 30 ⁇ m) of re-modified m-PPE-5 was formed on the surface of the layer was prepared.
  • Example 6-2 A test piece for a tensile test was prepared by performing the same operation as in Example 1-2 on the surface of the composite laminate prepared in Example 6-1 on the resin coating layer side. The joint strength of the test piece was measured by the same method as in Example 1-2. The measurement results are shown in Table 1 below.
  • Example 1-1 (Pretreatment process) The same operation as in Example 1-1 was carried out, and the surface of a glass substrate (18 mm ⁇ 45 mm, 1.2 mm thick, manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass) was degreased with acetone.
  • Example 1-2 The same injection molding operation as in Example 1-2 was performed on the surface of the glass substrate after the acetone degreasing treatment produced in Comparative Example 1-1, but the m-PPE resin was adhered to the surface of the glass substrate. Therefore, it was not possible to prepare a glass-modified polyphenylene ether conjugate.
  • Example 2-1> (Pretreatment process) The same operation as in Example 1-1 was carried out, and the surface of a glass substrate (18 mm ⁇ 45 mm, 1.2 mm thick, manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass) was degreased with acetone.
  • Example 1-1 (Functional group-containing layer forming step) Next, the same operation as in Example 1-1 was carried out to form a functional group (amino group) -containing layer on the surface of the glass substrate after the acetone degreasing treatment.
  • Example 2-2 The same operation as in Example 1-2 was carried out on the surface of the functional group-containing layer of Comparative Example 2-1 to prepare a test piece for a tensile test.
  • the joint strength of the test piece was measured by the same method as in Example 1-2. The measurement results are shown in Table 1 below.
  • test piece [Material for test piece] The following materials were prepared as test piece materials.
  • CFRP CF-SMC Rigolac RCS-1000BK (CF: 50% by mass) manufactured by Showa Denko KK using a 1500 kN press and pressure-molded at 140 ° C. for 5 minutes. Dimensions: 18 mm x 45 mm x 1.5 mm.
  • Ceramic Substrate for thick film (alumina) manufactured by Kyocera Corporation. Dimensions: 18 mm x 45 mm x 1.5 mm.
  • Modified polyphenylene ether (m-PPE) plate An m-PPE plate of 10 mm ⁇ 45 mm ⁇ 3 mm for preparing a test piece for a tensile test conforming to ISO19095 was molded by the molding method of Example 1-2.
  • Example 7-1> (Pretreatment Wet blast treatment) A CFRP having a size of 18 mm ⁇ 45 mm and a thickness of 1.5 mm was subjected to a wet blast treatment in the same manner as in Example 4-1 to form fine irregularities on the CFRP surface.
  • Example 7-2 CFRP-modified polyphenylene ether conjugate>
  • Example 8-1> (Pretreatment Wet blast treatment) A CFRP having a size of 18 mm ⁇ 45 mm and a thickness of 1.5 mm was subjected to a wet blast treatment in the same manner as in Example 4-1 to form fine irregularities on the CFRP surface.
  • Example 7-1 Formation of functional group-containing layer Treatment with silane coupling agent
  • Example 8-2 CFRP-modified polyphenylene ether conjugate>
  • Example 7-2 the same operation as in Example 7-2 was performed, and the surface of the composite laminate prepared in Example 8-1 on the resin coating layer side and the m-PPE plate were ultrasonically welded to prepare a test piece. ..
  • the joint strength of the test piece was measured by the same method as in Example 7-2. The measurement results are shown in Table 2 below.
  • Example 9-1 (Pretreatment Wet blast treatment) A ceramic having a size of 18 mm ⁇ 45 mm and a thickness of 1.5 mm was subjected to a wet blast treatment in the same manner as in Example 4-1 to form fine irregularities on the ceramic surface.
  • Example 7-1 Formation of functional group-containing layer Treatment with silane coupling agent
  • Example 9-2 Ceramic-modified polyphenylene ether conjugate> Next, the same operation as in Example 7-2 was performed, and the surface of the composite laminate prepared in Example 9-1 on the resin coating layer side and the m-PPE plate were ultrasonically welded to prepare a test piece. .. The joint strength of the test piece was measured by the same method as in Example 7-2. The measurement results are shown in Table 2 below.
  • Example 10-1 (Pretreatment Wet blast treatment) A ceramic having a size of 18 mm ⁇ 45 mm and a thickness of 1.5 mm was subjected to a wet blast treatment in the same manner as in Example 4-1 to form fine irregularities on the ceramic surface.
  • Example 7-1 Formation of functional group-containing layer Treatment with silane coupling agent
  • Example 10-2 Ceramic-modified polyphenylene ether conjugate> Next, the same operation as in Example 7-2 was performed, and the surface of the composite laminate prepared in Example 10-1 on the resin coating layer side and the m-PPE plate were ultrasonically welded to prepare a test piece. .. The joint strength of the test piece was measured by the same method as in Example 7-2. The measurement results are shown in Table 2 below.
  • Example 7-1 the composite lamination was carried out in the same manner as in Example 7-1, except that the thermoplastic epoxy resin composition for comparative resin coating was used instead of the re-modified m-PPE-1.
  • the body was made.
  • Example 3-2 The same operation as in Example 7-2 was carried out, and the surface of the composite laminate prepared in Comparative Example 3-1 on the resin coating layer side and the m-PPE plate were ultrasonically welded to prepare a test piece.
  • the joint strength of the test piece was measured by the same method as in Example 7-2. The measurement results are shown in Table 2 below.
  • thermoplastic epoxy resin composition for comparative resin coating prepared in Comparative Example 3-1 was used instead of the re-modified m-PPE-3 in Example 9-1.
  • thermoplastic epoxy resin composition for comparative resin coating prepared in Comparative Example 3-1 was used instead of the re-modified m-PPE-3 in Example 9-1.
  • Example 4-2 The same operation as in Example 7-2 was carried out, and the surface of the composite laminate prepared in Comparative Example 4-1 on the resin coating layer side and the m-PPE plate were ultrasonically welded to prepare a test piece.
  • the joint strength of the test piece was measured by the same method as in Example 7-2. The measurement results are shown in Table 2 below.
  • Examples (1-2) to (10-2) of Table 1 by using a composite laminate having a resin coating layer containing a re-modified-modified polyphenylene ether layer, a material layer and modified polyphenylene are used. It can be bonded to ether with high strength.
  • the composite laminate according to the present invention is joined and integrated with a modified polyphenylene ether, for example, a door side panel, a bonnet roof, a tailgate, a steering hanger, an A pillar, a B pillar, a C pillar, a D pillar, a crash box, and a power.
  • Automobiles such as control unit (PCU) housings, electric compressor members (inner wall, suction port, exhaust control valve (ECV) insertion, mount boss, etc.), lithium-ion battery (LIB) spacers, battery cases, LED headlamps, etc. It is used as a component for parts, a smartphone, a notebook computer, a tablet computer, a smart watch, a large LCD TV (LCD-TV), a structure for outdoor LED lighting, and the like, but the application is not particularly limited to these examples.
  • PCU control unit
  • ECV exhaust control valve
  • LIB lithium-ion battery

Abstract

Provided are a composite laminate and a technique related thereto, the composite laminate being suitable for application in joining, with high strength, a modified polyphenylene ether and a material comprising at least one selected from the group consisting of fiber-reinforced plastic, glass, and ceramic. A composite laminate having a material layer comprising at least one selected from the group consisting of fiber-reinforced plastic, glass, and ceramic, and a resin coating layer comprising one or a plurality of resin layers layered on the material layer, wherein at least one of the resin layers is a re-modified/modified polyphenylene ether layer formed from a resin composition including a re-modified/modified polyphenylene ether, the re-modified/modified polyphenylene ether layer being at least one selected from a layer including a mixture 1 which is a mixture of a modified polyphenylene ether and a thermoplastic epoxy resin, and a layer including a mixture 2 which is a mixture of a modified polyphenylene ether and a (meth)acrylic resin.

Description

複合積層体及び、接合体Composite laminates and joints
 本発明は、繊維強化プラスチック、ガラス及びセラミックからなる群より選ばれる少なくとも1種の材料と、変性ポリフェニレンエーテルとを高い強度で接合できる複合積層体およびその製造方法、前記材料と変性ポリフェニレンエーテルとを接合させてなる接合体及びその製造方法に関する。 The present invention provides a composite laminate capable of bonding at least one material selected from the group consisting of fiber reinforced plastics, glass and ceramics with modified polyphenylene ether with high strength, a method for producing the same, and the material and modified polyphenylene ether. The present invention relates to a joined body formed by joining and a method for manufacturing the same.
 電子デバイス産業や自動車産業では技術の進化が一段と進み、素材へのニーズが多様化かつ高度化している。製品の性能を限界まで高め、複数の機能を同時に実現するために、異種の材料(以下、異種材)を適材適所に配置したマルチマテリアル構造が必要不可欠となっている。マルチマテリアル構造は、異種材を接合させてなるものであり、その接合手段として溶融溶接や接着など各種の接合技術が検討されている。
 マルチマテリアル構造に関し、例えば、スマートフォンでは全面ガラス化が進み、ガラスと、透明性のよいポリカーボネート等の樹脂をインサート成形等で接合する技術が求められている。
In the electronic device industry and the automobile industry, the evolution of technology is progressing further, and the needs for materials are diversifying and becoming more sophisticated. In order to maximize the performance of a product and realize multiple functions at the same time, a multi-material structure in which different materials (hereinafter, different materials) are arranged in the right place is indispensable. The multi-material structure is formed by joining dissimilar materials, and various joining techniques such as melt welding and bonding are being studied as the joining means.
Regarding the multi-material structure, for example, in smartphones, the entire surface is vitrified, and a technique for joining glass and a highly transparent resin such as polycarbonate by insert molding or the like is required.
 ガラスと樹脂の接合方法として、ペレット状のエンジニアリングプラスチックに、ガラスに対する接着力向上剤を付与した後、これをガラスに接触させた状態で加熱溶融することにより、前記エンジニアリングプラスチックを前記ガラスに溶融接着させる技術(特許文献1)が開示されている。自動車ではFRP(繊維強化プラスチック)と樹脂を接合する場面があり、FRPと樹脂を強固に接合する技術が求められている。動力機器ではセラミックをインサート材として樹脂でモールドした絶縁容器等の絶縁体が多く使用され、セラミックと樹脂を強固に接合する技術が求められている。 As a method for joining glass and resin, the engineering plastic is melt-bonded to the glass by applying an adhesive force improving agent to the glass to the pellet-shaped engineering plastic and then heating and melting the engineering plastic in contact with the glass. (Patent Document 1) is disclosed. In automobiles, there are scenes where FRP (fiber reinforced plastic) and resin are joined, and a technique for firmly joining FRP and resin is required. In power equipment, insulators such as insulating containers made of ceramic as an insert material and molded with resin are often used, and a technique for firmly joining ceramic and resin is required.
 従来、異種材同士を直接接合すると、材料間の熱収縮の違いから界面に応力が集中して、クラックや剥離の原因となるという問題があった。
 この問題に関連し、絶縁容器の樹脂モールド構造において、セラミックと樹脂の間にシランカップリング剤を塗布して界面処理を行うことで、樹脂モールド構造の内部界面におけるクラックの発生を防止する技術が開示されている(非特許文献1)。
Conventionally, when dissimilar materials are directly bonded to each other, there is a problem that stress is concentrated on the interface due to the difference in heat shrinkage between the materials, which causes cracks and peeling.
In relation to this problem, in the resin mold structure of the insulating container, a technique for preventing the occurrence of cracks at the internal interface of the resin mold structure by applying a silane coupling agent between the ceramic and the resin to perform interfacial treatment has been developed. It is disclosed (Non-Patent Document 1).
 絶縁容器に用いるセラミックは、汚れ防止のために、その表面にガラス質の釉薬(SiO-10%Al)を施して使用されることが多い。そのため、前記の樹脂モールド構造では、セラミック表面の釉薬と樹脂との界面が滑りやすい状態となっている。
 非特許文献1では、上記の点に着目し、シランカップリング剤での界面処理により、樹脂モールド構造の内部界面の接着強度の向上を図っている。
Ceramics used for the insulating container, in order to prevent contamination, it is often used in glazed vitreous (SiO 2 -10% Al 2 O 3) on the surface thereof. Therefore, in the resin mold structure, the interface between the glaze and the resin on the ceramic surface is slippery.
In Non-Patent Document 1, paying attention to the above points, the adhesive strength of the internal interface of the resin mold structure is improved by the interface treatment with a silane coupling agent.
特開2006-297662号公報Japanese Unexamined Patent Publication No. 2006-297662
 しかし、従来技術では、自動車部品やOA機器等の用途において、ガラスと樹脂に十分な接合強度が実現できていないという課題があった。
 また、特許文献1の技術では、インサート成形時のガラス割れ対策として射出圧の上限を最大60MPa程度に低減する必要があり射出圧を十分に上げられないという課題や、耐久性の向上といった需要に応えることが難しいという課題がある。また、非特許文献1の技術では、材料間の熱収縮の違いから界面の樹脂端部に応力が集中するという点は解決できず、更なる接合強度向上や耐久性向上は難しい。
However, in the prior art, there is a problem that sufficient bonding strength cannot be realized between glass and resin in applications such as automobile parts and OA equipment.
Further, in the technique of Patent Document 1, it is necessary to reduce the upper limit of the injection pressure to about 60 MPa at the maximum as a measure against glass breakage during insert molding, and the problem that the injection pressure cannot be sufficiently increased and the demand for improvement of durability are met. There is a problem that it is difficult to respond. Further, the technique of Non-Patent Document 1 cannot solve the problem that stress is concentrated on the resin end of the interface due to the difference in heat shrinkage between the materials, and it is difficult to further improve the joint strength and durability.
 本発明は、かかる技術的背景に鑑みてなされたものであって、繊維強化プラスチック、ガラス及びセラミックからなる群より選ばれる少なくとも1種の材料と、変性ポリフェニレンエーテルとを高い強度で接合する用途に好適な複合積層体及びその関連技術を提供することを課題とする。前記関連技術とは、前記複合積層体の製造方法、前記材料と変性ポリフェニレンエーテルとを接合させてなる接合体及びその製造方法、を意味する。 The present invention has been made in view of such technical background, and is used for bonding modified polyphenylene ether with at least one material selected from the group consisting of fiber reinforced plastics, glass and ceramics with high strength. An object of the present invention is to provide a suitable composite laminate and related techniques thereof. The related technology means a method for producing the composite laminate, a bonded body formed by bonding the material and a modified polyphenylene ether, and a method for producing the same.
 本発明は、前記目的を達成するために、以下の手段を提供する。
 なお、本明細書において、接合とは、物と物を繋合わせることを意味し、接着及び溶着はその下位概念である。接着とは、テ-プや接着剤の様な有機材(熱硬化性樹脂や熱可塑性樹脂等)を介して、2つの被着材(接着しようとするもの)を接合状態とすることを意味し、溶着とは、被着材である熱可塑性樹脂等の表面を熱によって溶融し、接触加圧と冷却により分子拡散による絡み合いと結晶化で接合状態とすることを意味する。
The present invention provides the following means for achieving the above object.
In the present specification, joining means connecting objects to each other, and adhesion and welding are subordinate concepts thereof. Adhesion means that two adherends (those to be bonded) are put into a bonded state via an organic material (thermosetting resin, thermoplastic resin, etc.) such as tape or adhesive. However, welding means that the surface of a thermoplastic resin or the like, which is an adherend, is melted by heat and entangled by molecular diffusion and crystallized by contact pressurization and cooling to form a bonded state.
[1] 繊維強化プラスチック、ガラス及びセラミックからなる群より選ばれる少なくとも1種からなる材料層と、前記材料層に積層された1層又は複数層の樹脂層からなる樹脂コーティング層とを有する複合積層体であって、前記樹脂層の少なくとも1層が、再変性―変性ポリフェニレンエーテルを含む樹脂組成物から形成されてなる再変性―変性ポリフェニレンエーテル層であり、前記再変性―変性ポリフェニレンエーテル層は、変性ポリフェニレンエーテルと熱可塑性エポキシ樹脂との混合物である混合物1を含む層、及び変性ポリフェニレンエーテルと(メタ)アクリル樹脂との混合物である混合物2を含む層、から選ばれる少なくとも1種である、複合積層体。
[2] 前記混合物1が、変性ポリフェニレンエーテルを含む溶液中で、2官能エポキシ樹脂と2官能フェノール化合物を重付加反応させてなるものである、[1]に記載の複合積層体。
[3] 前記混合物1が、変性ポリフェニレンエーテルと熱可塑性エポキシ樹脂を混合してなるものである、[1]に記載の複合積層体。
[4] 前記混合物2が、変性ポリフェニレンエーテルを含む溶液中で、(メタ)アクリレートモノマーをラジカル重合させてなるものである、[1]に記載の複合積層体。
[5] 前記混合物2が、変性ポリフェニレンエーテルと(メタ)アクリル樹脂を混合してなるものである、[1]に記載の複合積層体。
[6] 前記樹脂コーティング層が、更に、熱可塑性エポキシ樹脂を含む樹脂組成物から形成されてなる熱可塑性エポキシ樹脂層及び熱硬化性樹脂を含む樹脂組成物の硬化物から形成されてなる熱硬化性樹脂層から選ばれる少なくとも1種の樹脂層を含む、[1]~[5]のいずれかに記載の複合積層体。
[7] 前記熱硬化性樹脂が、ウレタン樹脂、エポキシ樹脂、ビニルエステル樹脂及び不飽和ポリエステル樹脂からなる群より選ばれる少なくとも1種である、[6]に記載の複合積層体。
[8] 前記材料層と前記樹脂コーティング層との間に、前記材料層と前記樹脂コーティング層に接して積層された官能基含有層を有し、前記官能基含有層が、下記(1)~(7)からなる群より選ばれる少なくとも1つの官能基を含む、[1]~[7]のいずれかに記載の複合積層体。
(1)シランカップリング剤由来であって、エポキシ基、アミノ基、(メタ)アクリロイル基及びメルカプト基からなる群より選ばれる少なくとも1つの官能基
(2)シランカップリング剤由来のアミノ基に、エポキシ化合物及びチオール化合物から選ばれる少なくとも1種を反応させてなる官能基
(3)シランカップリング剤由来のメルカプト基に、エポキシ化合物、アミノ化合物、イソシアネート化合物、(メタ)アクリロイル基及びエポキシ基を有する化合物、並びに(メタ)アクリロイル基及びアミノ基を有する化合物からなる群より選ばれる少なくとも1種を反応させてなる官能基
(4)シランカップリング剤由来の(メタ)アクリロイル基に、チオール化合物を反応させてなる官能基
(5)シランカップリング剤由来のエポキシ基に、アミノ基及び(メタ)アクリロイル基を有する化合物、アミノ化合物、並びにチオール化合物からなる群より選ばれる少なくとも1種を反応させてなる官能基
(6)イソシアネート化合物由来のイソシアナト基
(7)チオール化合物由来のメルカプト基
[9] 前記材料層は、その表面に、脱脂処理、UVオゾン処理、ブラスト処理、研磨処理、プラズマ処理及びコロナ放電処理からなる群より選ばれる少なくとも1種の前処理を施してなる、[1]~[8]のいずれかに記載の複合積層体。
[1] Composite lamination having a material layer composed of at least one selected from the group consisting of fiber reinforced plastic, glass and ceramic, and a resin coating layer composed of one or a plurality of resin layers laminated on the material layer. In the body, at least one layer of the resin layer is a re-modified-modified polyphenylene ether layer formed of a resin composition containing a re-modified-modified polyphenylene ether, and the re-modified-modified polyphenylene ether layer is a body. A composite, which is at least one selected from a layer containing a mixture 1 which is a mixture of a modified polyphenylene ether and a thermoplastic epoxy resin, and a layer containing a mixture 2 which is a mixture of a modified polyphenylene ether and a (meth) acrylic resin. Laminated body.
[2] The composite laminate according to [1], wherein the mixture 1 is formed by subjecting a bifunctional epoxy resin and a bifunctional phenol compound to a double addition reaction in a solution containing a modified polyphenylene ether.
[3] The composite laminate according to [1], wherein the mixture 1 is a mixture of a modified polyphenylene ether and a thermoplastic epoxy resin.
[4] The composite laminate according to [1], wherein the mixture 2 is formed by radical polymerization of a (meth) acrylate monomer in a solution containing a modified polyphenylene ether.
[5] The composite laminate according to [1], wherein the mixture 2 is a mixture of a modified polyphenylene ether and a (meth) acrylic resin.
[6] The resin coating layer is further thermally cured by being formed of a thermoplastic epoxy resin layer formed of a resin composition containing a thermoplastic epoxy resin and a cured product of a resin composition containing a thermosetting resin. The composite laminate according to any one of [1] to [5], which comprises at least one resin layer selected from the sex resin layers.
[7] The composite laminate according to [6], wherein the thermosetting resin is at least one selected from the group consisting of urethane resin, epoxy resin, vinyl ester resin and unsaturated polyester resin.
[8] A functional group-containing layer laminated in contact with the material layer and the resin coating layer is provided between the material layer and the resin coating layer, and the functional group-containing layer is described in (1) to (1) to the following. The composite laminate according to any one of [1] to [7], which contains at least one functional group selected from the group consisting of (7).
(1) At least one functional group derived from a silane coupling agent and selected from the group consisting of an epoxy group, an amino group, a (meth) acryloyl group and a mercapto group. (2) An amino group derived from a silane coupling agent. A functional group obtained by reacting at least one selected from an epoxy compound and a thiol compound (3) A mercapto group derived from a silane coupling agent has an epoxy compound, an amino compound, an isocyanate compound, a (meth) acryloyl group and an epoxy group. A functional group obtained by reacting at least one selected from the group consisting of a compound and a compound having a (meth) acryloyl group and an amino group. (4) A thiol compound is reacted with a (meth) acryloyl group derived from a silane coupling agent. (5) An epoxy group derived from a silane coupling agent is reacted with at least one selected from the group consisting of a compound having an amino group and a (meth) acryloyl group, an amino compound, and a thiol compound. Functional group (6) Isocyanato group derived from isocyanate compound (7) Mercapto group derived from thiol compound
[9] The surface of the material layer is subjected to at least one pretreatment selected from the group consisting of degreasing treatment, UV ozone treatment, blast treatment, polishing treatment, plasma treatment and corona discharge treatment. [1] ] To [8]. The composite laminate according to any one of.
[10] [1]~[9]のいずれかに記載の複合積層体の製造方法であって、前記材料層の表面に下記(1’)~(7’)からなる群より選ばれる少なくとも1種の処理を施し、前記官能基含有層を形成する、複合積層体の製造方法。
(1’) エポキシ基、アミノ基、(メタ)アクリロイル基及びメルカプト基からなる群より選ばれる少なくとも1つの官能基を有するシランカップリング剤での処理
(2’) アミノ基を有するシランカップリング剤での処理後に、エポキシ化合物及びチオール化合物から選ばれる少なくとも1種を付加する処理
(3’) メルカプト基を有するシランカップリング剤での処理後に、エポキシ化合物、アミノ化合物、イソシアネート化合物、(メタ)アクリロイル基及びエポキシ基を有する化合物、並びに(メタ)アクリロイル基及びアミノ基を有する化合物からなる群より選ばれる少なくとも1種を付加する処理
(4’) (メタ)アクリロイル基を有するシランカップリング剤での処理後に、チオール化合物を付加する処理
(5’) エポキシ基を有するシランカップリング剤での処理後に、アミノ基及び(メタ)アクリロイル基を有する化合物、アミノ化合物、並びにチオール化合物からなる群より選ばれる少なくとも1種を付加する処理
(6’) イソシアネート化合物での処理
(7’) チオール化合物での処理
[11] 前記官能基含有層を形成する前に、前記材料層に、脱脂処理、UVオゾン処理、ブラスト処理、研磨処理、プラズマ処理及びコロナ放電処理からなる群より選ばれる少なくとも1種の前処理を施す、[10]に記載の複合積層体の製造方法。
[10] The method for producing a composite laminate according to any one of [1] to [9], at least one selected from the group consisting of the following (1') to (7') on the surface of the material layer. A method for producing a composite laminate, which is subjected to seed treatment to form the functional group-containing layer.
(1') Treatment with a silane coupling agent having at least one functional group selected from the group consisting of an epoxy group, an amino group, a (meth) acryloyl group and a mercapto group (2') A silane coupling agent having an amino group Treatment to add at least one selected from epoxy compounds and thiol compounds after treatment with (3') After treatment with a silane coupling agent having a mercapto group, epoxy compounds, amino compounds, isocyanate compounds, (meth) acryloyl Treatment to add at least one selected from the group consisting of compounds having a group and an epoxy group, and a compound having a (meth) acryloyl group and an amino group (4') In a silane coupling agent having a (meth) acryloyl group. Treatment to add a thiol compound after treatment (5') After treatment with a silane coupling agent having an epoxy group, it is selected from the group consisting of compounds having amino groups and (meth) acryloyl groups, amino compounds, and thiol compounds. Treatment to add at least one (6') Treatment with isocyanate compound (7') Treatment with thiol compound
[11] Before forming the functional group-containing layer, at least one pretreatment selected from the group consisting of degreasing treatment, UV ozone treatment, blast treatment, polishing treatment, plasma treatment and corona discharge treatment is performed on the material layer. The method for producing a composite laminate according to [10].
[12] [1]~[9]のいずれかに記載の複合積層体の樹脂コーティング層側の面と、変性ポリフェニレンエーテルとが接合一体化された、接合体。 [12] A bonded body in which the surface of the composite laminate according to any one of [1] to [9] on the resin coating layer side and the modified polyphenylene ether are bonded and integrated.
[13] [12]に記載の接合体の製造方法であって、超音波溶着法、振動溶着法、電磁誘導法、高周波法、レーザー法及び熱プレス法からなる群より選ばれる少なくとも1種の方法で、前記複合積層体の樹脂コーティング層側の面に前記変性ポリフェニレンエーテルを溶着する、接合体の製造方法。
[14] [12]に記載の接合体の製造方法であって、前記複合積層体の樹脂コーティング層側の面に、射出成形法で、前記変性ポリフェニレンエーテルを溶着する、接合体の製造方法。
[13] The method for producing a bonded body according to [12], at least one selected from the group consisting of an ultrasonic welding method, a vibration welding method, an electromagnetic induction method, a high frequency method, a laser method and a hot pressing method. A method for producing a bonded body, wherein the modified polyphenylene ether is welded to the surface of the composite laminate on the resin coating layer side.
[14] The method for producing a bonded body according to [12], wherein the modified polyphenylene ether is welded to the surface of the composite laminate on the resin coating layer side by an injection molding method.
 本発明によれば、繊維強化プラスチック、ガラス及びセラミックからなる群より選ばれる少なくとも1種の材料と、変性ポリフェニレンエーテルとを高い強度で接合する用途に好適な複合積層体およびその関連技術を提供することができる。 The present invention provides a composite laminate suitable for high-strength bonding of at least one material selected from the group consisting of fiber reinforced plastics, glass and ceramics and a modified polyphenylene ether, and related techniques thereof. be able to.
本発明の一実施形態における複合積層体の構成を示す説明図である。It is explanatory drawing which shows the structure of the composite laminated body in one Embodiment of this invention. 本発明の他の実施形態における複合積層体の構成を示す説明図である。It is explanatory drawing which shows the structure of the composite laminated body in other embodiment of this invention. 本発明の一実施形態における接合体の構成を示す説明図である。It is explanatory drawing which shows the structure of the bonded body in one Embodiment of this invention.
 本発明の一実施形態における複合積層体およびその関連技術について詳述する。
 なお、本明細書において、「(メタ)アクリロイル基」との用語は、アクリロイル基及び/又はメタクリロイル基を意味する。同様に、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、また、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。
The composite laminate and related techniques thereof in one embodiment of the present invention will be described in detail.
In addition, in this specification, the term "(meth) acryloyl group" means an acryloyl group and / or a methacryloyl group. Similarly, "(meth) acrylic" means acrylic and / or methacrylic, and "(meth) acrylate" means acrylate and / or methacrylate.
[複合積層体]
 図1に示すように、本実施形態の複合積層体1は、繊維強化プラスチック(FRP)、ガラス、セラミックからなる群より選ばれる少なくとも1種からなる材料層2と、前記材料層に積層された1層又は複数層の樹脂層からなる樹脂コーティング層3とを有する複合積層体である。前記樹脂コーティング層3の少なくとも1層が、再変性―変性ポリフェニレンエーテルを含む樹脂組成物から形成されてなる再変性―変性ポリフェニレンエーテル層31である。
[Composite laminate]
As shown in FIG. 1, the composite laminate 1 of the present embodiment is laminated on the material layer 2 composed of at least one selected from the group consisting of fiber reinforced plastic (FRP), glass, and ceramic. It is a composite laminate having a resin coating layer 3 composed of one or a plurality of resin layers. At least one layer of the resin coating layer 3 is a re-denatured-modified polyphenylene ether layer 31 formed from a resin composition containing a re-modified-modified polyphenylene ether.
<材料層2>
 材料層2の形態は特に限定されず、塊状でもフィルム状でもよい。
 材料層2を構成する繊維強化プラスチック(FRP)、ガラス、セラミックは特に限定されるものではない。
 繊維強化プラスチック(FRP)として、ウレタン樹脂、エポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル、ポリアミド樹脂、フェノール樹脂等の熱硬化性樹脂に、各種繊維を複合して強度を向上させたガラス繊維強化プラスチック(GFRP)、炭素繊維強化プラスチック(CFRP)、ボロン繊維強化プラスチック(BFRP)、アラミド繊維強化プラスチック(AFRP)、等が挙げられる。ガラス繊維や炭素繊維SMC(シートモールディングコンパウンド)からの成形体等も挙げられる。
 ガラスとしては、ソーダ石灰ガラス、鉛ガラス、ホウケイ酸ガラス、石英ガラス、等が挙げられる。
 セラミックとしては、アルミナ、ジルコニア、チタン酸バリウムなどの酸化物系セラミック、ハイドロキシアパタイトなどの水酸化物系セラミック、炭化ケイ素などの炭化物系セラミック、窒化ケイ素などの窒化物系セラミック、等が挙げられる。
<Material layer 2>
The form of the material layer 2 is not particularly limited, and may be in the form of a lump or a film.
The fiber reinforced plastic (FRP), glass, and ceramic constituting the material layer 2 are not particularly limited.
As a fiber reinforced plastic (FRP), a glass fiber reinforced plastic in which various fibers are compounded with a heat-curable resin such as urethane resin, epoxy resin, vinyl ester resin, unsaturated polyester, polyamide resin, and phenol resin to improve strength. (GFRP), carbon fiber reinforced plastic (CFRP), boron fiber reinforced plastic (BFRP), aramid fiber reinforced plastic (AFRP), and the like. Molds made from glass fiber or carbon fiber SMC (sheet molding compound) can also be mentioned.
Examples of the glass include soda-lime glass, lead glass, borosilicate glass, quartz glass, and the like.
Examples of the ceramic include oxide-based ceramics such as alumina, zirconia and barium titanate, hydroxide-based ceramics such as hydroxyapatite, carbide-based ceramics such as silicon carbide, and nitride-based ceramics such as silicon nitride.
 材料層2においてガラスの厚さは、強度の観点から、好ましくは0.3mm以上、より好ましくは0.5mm以上である。また、ガラスの厚さの上限は特に制限されないが、好ましくは30mm以下、より好ましくは10mm以下である。
 また、材料層2においてFRP及びセラミックの厚さは、強度の観点から、それぞれ好ましくは1.0mm以上、より好ましくは2.0mm以上である。また、FRP及びセラミックの厚さの上限は特に制限されないが、好ましくは20mm以下、より好ましくは15mm以下である。
The thickness of the glass in the material layer 2 is preferably 0.3 mm or more, more preferably 0.5 mm or more, from the viewpoint of strength. The upper limit of the thickness of the glass is not particularly limited, but is preferably 30 mm or less, more preferably 10 mm or less.
Further, the thickness of the FRP and the ceramic in the material layer 2 is preferably 1.0 mm or more, more preferably 2.0 mm or more, respectively, from the viewpoint of strength. The upper limit of the thickness of the FRP and the ceramic is not particularly limited, but is preferably 20 mm or less, more preferably 15 mm or less.
 材料層2に樹脂コーティング層3を積層する前に、表面の汚染物の除去、及び/又は、アンカー効果を目的として材料層2の表面に前処理を施すことが好ましい。前処理により、図1に示すように、材料層2の表面に微細な凹凸21を形成して粗面化させることができる。これにより材料層2の表面と、樹脂コーティング層3との接着性を向上させることができる。 Before laminating the resin coating layer 3 on the material layer 2, it is preferable to pretreat the surface of the material layer 2 for the purpose of removing contaminants on the surface and / or an anchor effect. By the pretreatment, as shown in FIG. 1, fine irregularities 21 can be formed on the surface of the material layer 2 to roughen the surface. As a result, the adhesiveness between the surface of the material layer 2 and the resin coating layer 3 can be improved.
 前処理としては、例えば、脱脂処理、UVオゾン処理、ブラスト処理、研磨処理、プラズマ処理、コロナ放電処理、レーザー処理、エッチング処理、フレーム処理等が挙げられる。
 前処理としては、材料層2の表面を洗浄する前処理または表面に凹凸を付ける前処理が好ましく、具体的には、脱脂処理、UVオゾン処理、ブラスト処理、研磨処理、プラズマ処理及びコロナ放電処理からなる群より選ばれる少なくとも1種が好ましい。
 前処理は、1種のみであってもよく、2種以上を施してもよい。これらの前処理の具体的な方法としては、公知の方法を用いることができる。
 通常、FRPの表面には樹脂や補強材に由来する水酸基が存在し、ガラスやセラミック表面には元々水酸基が存在すると考えられるが、前記の前処理によって新たに水酸基が生成され、材料層2の表面の水酸基を増やすことができる。
Examples of the pretreatment include degreasing treatment, UV ozone treatment, blast treatment, polishing treatment, plasma treatment, corona discharge treatment, laser treatment, etching treatment, frame treatment and the like.
As the pretreatment, a pretreatment for cleaning the surface of the material layer 2 or a pretreatment for making the surface uneven is preferable, and specifically, a degreasing treatment, a UV ozone treatment, a blast treatment, a polishing treatment, a plasma treatment and a corona discharge treatment. At least one selected from the group consisting of is preferable.
The pretreatment may be performed with only one type or two or more types. As a specific method of these pretreatments, a known method can be used.
Normally, hydroxyl groups derived from resin or reinforcing material are present on the surface of FRP, and it is considered that hydroxyl groups are originally present on the surface of glass or ceramic. However, new hydroxyl groups are generated by the above pretreatment, and the material layer 2 The number of hydroxyl groups on the surface can be increased.
 前記脱脂処理とは、材料層表面の油脂などの汚れをアセトン、トルエン等の有機溶剤等で溶かして除去する方法である。 The degreasing treatment is a method of removing stains such as oils and fats on the surface of the material layer by dissolving them with an organic solvent such as acetone or toluene.
 前記UVオゾン処理とは、低圧水銀ランプから発光する短波長の紫外線の持つエネルギーとそれにより発生するオゾン(O)の力で、表面を洗浄したり改質する方法である。ガラスの場合、表面の有機系不純物の除去を行う表面洗浄法の一つとなる。一般に、低圧水銀ランプを用いた洗浄表面改質装置は、「UVオゾンクリーナー」、「UV洗浄装置」、「紫外線表面改質装置」などと呼ばれている。 The UV and ozone treatment, with a force of ozone (O 3) generated energy and thereby having a short wavelength ultraviolet ray emitted from a low-pressure mercury lamp, a process for modifying or cleaning the surface. In the case of glass, it is one of the surface cleaning methods for removing organic impurities on the surface. Generally, a cleaning surface modifier using a low-pressure mercury lamp is called a "UV ozone cleaner", a "UV cleaning apparatus", an "ultraviolet surface modifier" or the like.
 前記ブラスト処理としては、例えば、ウェットブラスト処理、ショットブラスト処理、サンドブラスト処理等が挙げられる。中でも、ウェットブラスト処理は、ドライブラスト処理と比べより緻密な面が得られるため、好ましい。 Examples of the blasting treatment include wet blasting treatment, shot blasting treatment, sandblasting treatment, and the like. Above all, the wet blast treatment is preferable because a finer surface can be obtained as compared with the drive last treatment.
 前記研磨処理としては、例えば、研磨布を用いたバフ研磨や、研磨紙(サンドペーパー)を用いたロール研磨、電解研磨等が挙げられる。 Examples of the polishing treatment include buffing using a polishing cloth, roll polishing using polishing paper (sandpaper), electrolytic polishing, and the like.
 前記プラズマ処理とは、高圧電源とロッドでプラズマビームを作り素材表面にぶつけて分子を励起させて官能状態とするもので、素材表面に水酸基や極性基を付与できる大気圧プラズマ処理方法等が挙げられる。 The plasma treatment is to create a plasma beam with a high-voltage power supply and a rod and hit it against the surface of the material to excite molecules to make it in a functional state. Examples thereof include an atmospheric pressure plasma treatment method capable of imparting hydroxyl groups and polar groups to the surface of the material. Be done.
 前記コロナ放電処理とは、高分子フィルムの表面改質に施される方法が挙げられ、電極から放出された電子が高分子表面層の高分子主鎖や側鎖を切断し発生したラジカルを起点に表面に水酸基や極性基を発生させる方法である。 The corona discharge treatment includes a method applied to surface modification of a polymer film, and starts from a radical generated by cutting a polymer main chain or a side chain of a polymer surface layer by electrons emitted from an electrode. This is a method of generating a hydroxyl group or a polar group on the surface.
 前記レーザー処理とは、レーザー照射によって表面層のみを急速に加熱、冷却して、表面の特性を改善する技術で表面の粗面化に有効な方法である。公知のレーザー処理技術を使用することができる。 The laser treatment is a technique for improving surface characteristics by rapidly heating and cooling only the surface layer by laser irradiation, and is an effective method for roughening the surface. Known laser processing techniques can be used.
 前記エッチング処理としては、例えば、アルカリ法、リン酸-硫酸法、フッ化物法、クロム酸-硫酸法、塩鉄法等の化学的エッチング処理、また、電解エッチング法等の電気化学的エッチング処理等が挙げられる。 The etching treatment includes, for example, a chemical etching treatment such as an alkali method, a phosphoric acid-sulfuric acid method, a fluoride method, a chromic acid-sulfuric acid method, and a salt iron method, and an electrochemical etching treatment such as an electrolytic etching method. Can be mentioned.
 前記フレーム処理とは、燃焼ガスと空気の混合ガスを燃やすことで空気中の酸素をプラズマ化させ、酸素プラズマを処理対象物に付与することで表面の親水化を図る方法である。公知のフレーム処理技術を使用することができる。 The frame treatment is a method of converting oxygen in the air into plasma by burning a mixed gas of combustion gas and air, and applying oxygen plasma to the object to be treated to make the surface hydrophilic. Known frame processing techniques can be used.
<樹脂コーティング層3>
 樹脂コーティング層は、材料層の表面上に積層される。樹脂コーティング層は、前記の前処理が施されていない材料層の表面に積層されていてもよく、前記の前処理を施した材料層の表面に積層されていてもよい。あるいはまた、後述の官能基含有層の表面に積層されていてもよい。
<Resin coating layer 3>
The resin coating layer is laminated on the surface of the material layer. The resin coating layer may be laminated on the surface of the material layer that has not been subjected to the pretreatment, or may be laminated on the surface of the material layer that has been subjected to the pretreatment. Alternatively, it may be laminated on the surface of the functional group-containing layer described later.
〔再変性―変性ポリフェニレンエーテル層31〕
 樹脂コーティング層3を構成する樹脂層の少なくとも1層は、再変性―変性ポリフェニレンエーテルを含む樹脂組成物から形成されてなる再変性―変性ポリフェニレンエーテル層31である。なお、本明細書において、再変性―変性ポリフェニレンエーテルとは、後述の変性ポリフェニレンエーテルと熱可塑性エポキシ樹脂との混合物、及び/又は変性ポリフェニレンエーテルと(メタ)アクリル樹脂との混合物を意味する。
[Re-denaturation-modified polyphenylene ether layer 31]
At least one of the resin layers constituting the resin coating layer 3 is a re-denatured-modified polyphenylene ether layer 31 formed from a resin composition containing a re-modified-modified polyphenylene ether. In addition, in this specification, a re-modified-modified polyphenylene ether means a mixture of a modified polyphenylene ether and a thermoplastic epoxy resin described later, and / or a mixture of a modified polyphenylene ether and a (meth) acrylic resin.
 前記材料層上に、このような所定の樹脂コーティング層が積層されていることにより、本実施態様の複合積層体は、変性ポリフェニレンエーテルとの優れた接着性を発揮することができる。 By laminating such a predetermined resin coating layer on the material layer, the composite laminate of the present embodiment can exhibit excellent adhesiveness to the modified polyphenylene ether.
 前記樹脂コーティング層を、前記再変性―変性ポリフェニレンエーテル層31と前記再変性―変性ポリフェニレンエーテル層以外の層を含む複数層で構成し、再変性―変性ポリフェニレンエーテル層以外の層を、熱可塑性エポキシ樹脂を含む樹脂組成物から形成されてなる熱可塑性エポキシ樹脂層32及び熱硬化性樹脂を含む樹脂組成物から形成されてなる熱硬化性樹脂層33から選ばれる少なくとも1種とすることもできる。 The resin coating layer is composed of a plurality of layers including the re-modified-modified polyphenylene ether layer 31 and a layer other than the re-modified-modified polyphenylene ether layer, and the layer other than the re-modified-modified polyphenylene ether layer is a thermoplastic epoxy. It may be at least one selected from the thermoplastic epoxy resin layer 32 formed of the resin composition containing the resin and the thermosetting resin layer 33 formed of the resin composition containing the thermosetting resin.
 樹脂コーティング層が複数層からなる場合、必須となる再変性―変性ポリフェニレンエーテル層31が、材料層と反対側の最表面となるように積層することが好ましい。 When the resin coating layer is composed of a plurality of layers, it is preferable that the essential re-denatured-modified polyphenylene ether layer 31 is laminated so as to be the outermost surface on the opposite side of the material layer.
 前記再変性―変性ポリフェニレンエーテル層31は、変性ポリフェニレンエーテルと熱可塑性エポキシ樹脂との混合物1を含む層及び変性ポリフェニレンエーテルと(メタ)アクリル樹脂との混合物2を含む層から選ばれる少なくとも1種で構成される。
 前記再変性―変性ポリフェニレンエーテル層31は、変性ポリフェニレンエーテルを50~95質量%含むことが好ましく、70~90質量%含むことがより好ましい。
The re-modified-modified polyphenylene ether layer 31 is at least one selected from a layer containing a mixture 1 of a modified polyphenylene ether and a thermoplastic epoxy resin and a layer containing a mixture 2 of a modified polyphenylene ether and a (meth) acrylic resin. It is composed.
The re-modified-modified polyphenylene ether layer 31 preferably contains 50 to 95% by mass of the modified polyphenylene ether, and more preferably 70 to 90% by mass.
(変性ポリフェニレンエーテル(m―PPE))
 変性ポリフェニレンエーテルは、2,6-ジメチルフェニレンオキサイドの重合物であるポリフェニレンエーテル(PPE)と、ポリスチレン(PS)、ポリアミド(PA)、ポリフェニレンサルファイド(PPS)、ポリプロピレン(PP)等とのポリマーアロイである。前記変性ポリフェニレンエーテルとしては公知のものが使用できる。具体的には、SABIC社製NORYLシリーズ(PPE/PS):731,7310,731F,7310F、旭化成ケミカルズ株式会社製ザイロンシリーズ(PPE/PS,PP/PPE,PA/PPE,PPS/PPE,PPA/PPE)、三菱エンジニアリングプラスチックス株式会社製エピエースシリーズ、レマロイシリーズ(PPE/PS,PPE/PA)がある。なかでも、PPEとPSとのポリマーアロイが好ましい。
(Modified polyphenylene ether (m-PPE))
The modified polyphenylene ether is a polymer alloy of polyphenylene ether (PPE), which is a polymer of 2,6-dimethylphenylene oxide, and polystyrene (PS), polyamide (PA), polyphenylene sulfide (PPS), polypropylene (PP), etc. is there. Known modified polyphenylene ethers can be used. Specifically, SABIC NORYL series (PPE / PS): 731, 7310, 731F, 7310F, Asahi Kasei Chemicals Co., Ltd. Zylon series (PPE / PS, PP / PPE, PA / PPE, PPS / PPE, PPA / PPE), Epiace series manufactured by Mitsubishi Engineering Plastics Co., Ltd., and Remalloy series (PPE / PS, PPE / PA). Of these, a polymer alloy of PPE and PS is preferable.
(混合物1)
 混合物1は、前記変性ポリフェニレンエーテルと熱可塑性エポキシ樹脂との混合物である。混合物1に用いることのできる熱可塑性エポキシ樹脂は、現場重合型フェノキシ樹脂、現場硬化型フェノキシ樹脂、現場硬化型エポキシ樹脂等とも呼ばれる樹脂であり、2官能エポキシ樹脂と2官能フェノール化合物とが触媒存在下で重付加反応することにより、熱可塑構造、すなわち、リニアポリマー構造を形成する。熱可塑性エポキシ樹脂は、架橋構造による3次元ネットワークを構成する熱硬化性樹脂とは異なり、熱可塑性を有する。
(Mixture 1)
Mixture 1 is a mixture of the modified polyphenylene ether and a thermoplastic epoxy resin. The thermoplastic epoxy resin that can be used in the mixture 1 is a resin that is also called a field-polymerized phenoxy resin, a field-curable phenoxy resin, a field-curable epoxy resin, or the like, and a bifunctional epoxy resin and a bifunctional phenol compound are present as catalysts. By under the multiple addition reaction, a thermoplastic structure, that is, a linear polymer structure is formed. Thermoplastic epoxy resins have thermoplasticity, unlike thermosetting resins that form a three-dimensional network with a crosslinked structure.
(2官能エポキシ樹脂)
 前記2官能エポキシ樹脂としては、例えば、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂が挙げられる。これらのうち、1種単独で用いても、2種以上を併用してもよい。具体的には、三菱ケミカル株式会社製「jER(登録商標)828」、同「jER(登録商標)834」、同「jER(登録商標)1001」、同「jER(登録商標)1004」、同「jER(登録商標)1007」、同「jER(登録商標) YX―4000」等が挙げられる。
(Bifunctional epoxy resin)
Examples of the bifunctional epoxy resin include bisphenol type epoxy resin and biphenyl type epoxy resin. Of these, one type may be used alone, or two or more types may be used in combination. Specifically, "jER (registered trademark) 828", "jER (registered trademark) 834", "jER (registered trademark) 1001", "jER (registered trademark) 1004", and the same, manufactured by Mitsubishi Chemical Corporation. Examples thereof include "jER (registered trademark) 1007" and "jER (registered trademark) YX-4000".
(2官能フェノール化合物)
 前記2官能フェノール化合物としては、例えば、ビスフェノール、ビフェノール等が挙げられる。これらのうち、1種単独で用いても、2種以上を併用してもよい。
 また、これらの組み合わせとしては、例えば、ビスフェノールA型エポキシ樹脂とビスフェノールA、ビスフェノールA型エポキシ樹脂とビスフェノールF、ビフェニル型エポキシ樹脂と4,4’-ビフェノール等が挙げられる。また、例えば、ナガセケムテックス株式会社製「WPE190」と「EX―991L」との組み合わせも挙げられる。
(Bifunctional phenol compound)
Examples of the bifunctional phenol compound include bisphenol and biphenol. Of these, one type may be used alone, or two or more types may be used in combination.
Examples of these combinations include bisphenol A type epoxy resin and bisphenol A, bisphenol A type epoxy resin and bisphenol F, biphenyl type epoxy resin and 4,4'-biphenol and the like. Further, for example, a combination of "WPE190" and "EX-991L" manufactured by Nagase ChemteX Corporation can be mentioned.
 混合物1は、変性ポリフェニレンエーテルを含む溶液中で、2官能エポキシ樹脂と2官能フェノール化合物とを触媒存在下で重付加反応させることで得ることができる。又は2官能エポキシ樹脂と2官能フェノール化合物とを溶液中の触媒存在下で重付加反応させた後に、変性ポリフェニレンエーテルを混合してもよい。 Mixture 1 can be obtained by subjecting a bifunctional epoxy resin and a bifunctional phenol compound to a double addition reaction in the presence of a catalyst in a solution containing a modified polyphenylene ether. Alternatively, the modified polyphenylene ether may be mixed after the bifunctional epoxy resin and the bifunctional phenol compound are subjected to a double addition reaction in the presence of a catalyst in the solution.
 熱可塑性エポキシ樹脂の重付加反応のための触媒としては、例えば、トリエチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール等の3級アミン;トリフェニルホスフィン等のリン系化合物等が好適に用いられる。 As the catalyst for the polyaddition reaction of the thermoplastic epoxy resin, for example, tertiary amines such as triethylamine and 2,4,6-tris (dimethylaminomethyl) phenol; phosphorus compounds such as triphenylphosphine are preferably used. Used.
 前記混合物1を製造する際に使用する2官能エポキシ樹脂と2官能フェノール化合物の合計量は、変性ポリフェニレンエーテルを100質量部としたとき、5~100質量部であることが好ましく、5~60質量部であることがより好ましく、20~40質量部であることがさらに好ましい。 The total amount of the bifunctional epoxy resin and the bifunctional phenol compound used in producing the mixture 1 is preferably 5 to 100 parts by mass and 5 to 60 parts by mass when the modified polyphenylene ether is 100 parts by mass. It is more preferably parts, and even more preferably 20 to 40 parts by mass.
(混合物2)
 混合物2は、変性ポリフェニレンエーテルと(メタ)アクリル樹脂との混合物である。
(Mixture 2)
Mixture 2 is a mixture of modified polyphenylene ether and (meth) acrylic resin.
((メタ)アクリル樹脂)
 混合物2に用いる(メタ)アクリル樹脂は、(メタ)アクリレートモノマーに由来する単位を25質量%以上含有する樹脂である。(メタ)アクリレートモノマー以外の他のモノマーが共重合されていてもよい。前記他のモノマーとして、スチレン、(メタ)アクリル酸、(メタ)アクリルアミド等が挙げられ、なかでもスチレン、メタクリル酸が好ましい。また強度アップのため一部多官能のモノマーを共重合させてもよい。
((Meta) acrylic resin)
The (meth) acrylic resin used in the mixture 2 is a resin containing 25% by mass or more of units derived from the (meth) acrylate monomer. A monomer other than the (meth) acrylate monomer may be copolymerized. Examples of the other monomer include styrene, (meth) acrylic acid, (meth) acrylamide, and the like, and styrene and methacrylic acid are preferable. Further, some polyfunctional monomers may be copolymerized in order to increase the strength.
 混合物2に用いる変性ポリフェニレンエーテルは、混合物1を生成するときと同じものを用いることができる。 The modified polyphenylene ether used for the mixture 2 can be the same as that used for producing the mixture 1.
((メタ)アクリレートモノマー)
 (メタ)アクリレートモノマーとしては、公知の単官能の(メタ)アクリル酸エステルが使用される。メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、iso-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2,3-ジブロムプロピル(メタ)アクリレート、(メタ)アクリル酸、グリシジル(メタ)アクリレート、2-メタクリロイルオキシエチルイソシアネート等が挙げられる。これらのうち、1種単独で用いても、2種以上を併用してもよい。
((Meta) acrylate monomer)
As the (meth) acrylate monomer, a known monofunctional (meth) acrylic acid ester is used. Methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, butyl (meth) acrylate, iso-butyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, Decyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, Diethylaminoethyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, 2,3-dibrompropyl (meth) acrylate, (meth) acrylic acid, glycidyl (meth) acrylate, 2-methacryloyloxyethyl isocyanate And so on. Of these, one type may be used alone, or two or more types may be used in combination.
 混合物2は変性ポリフェニレンエーテルを含む溶液中で、(メタ)アクリレートモノマーをラジカル重合させることで得ることができる。又は混合物2は、前記変性ポリフェニレンエーテルと、(メタ)アクリル樹脂とを常法により混合して得ることもできる。 Mixture 2 can be obtained by radical polymerization of a (meth) acrylate monomer in a solution containing a modified polyphenylene ether. Alternatively, the mixture 2 can also be obtained by mixing the modified polyphenylene ether and the (meth) acrylic resin by a conventional method.
 前記混合物2を製造する際に使用する(メタ)アクリル樹脂の合計量は、変性ポリフェニレンエーテルを100質量部としたとき、5~100質量部であることが好ましく、5~60質量部であることがより好ましく、20~40質量部であることがさらに好ましい。 The total amount of the (meth) acrylic resin used in producing the mixture 2 is preferably 5 to 100 parts by mass and 5 to 60 parts by mass when the modified polyphenylene ether is 100 parts by mass. Is more preferable, and 20 to 40 parts by mass is further preferable.
〔熱可塑性エポキシ樹脂層32〕
 前記樹脂コーティング層3を、前記再変性―変性ポリフェニレンエーテル層とそれ以外の層との複数層の樹脂層で構成し、その再変性―変性ポリフェニレンエーテル層以外の樹脂層の少なくとも1層を、熱可塑性エポキシ樹脂を含む樹脂組成物から形成されてなる熱可塑性エポキシ樹脂層32で構成することができる。
 前記熱可塑性エポキシ樹脂を含む樹脂組成物は、熱可塑性エポキシ樹脂を40質量%以上含むことが好ましく、70質量%以上含むことがより好ましい。
[Thermoplastic epoxy resin layer 32]
The resin coating layer 3 is composed of a plurality of resin layers of the remodified-modified polyphenylene ether layer and other layers, and at least one of the resin layers other than the remodified-modified polyphenylene ether layer is heated. It can be composed of a thermoplastic epoxy resin layer 32 formed of a resin composition containing a plastic epoxy resin.
The resin composition containing the thermoplastic epoxy resin preferably contains 40% by mass or more of the thermoplastic epoxy resin, and more preferably 70% by mass or more.
(熱可塑性エポキシ樹脂)
 熱可塑性エポキシ樹脂は、前記の混合物1の製造に使用する熱可塑性エポキシ樹脂と同様に、2官能エポキシ樹脂と2官能フェノール化合物とが触媒存在下で重付加反応することにより、熱可塑構造、すなわち、リニアポリマー構造を形成する樹脂であり、架橋構造による3次元ネットワークを構成する熱硬化性樹脂とは異なり、熱可塑性を有する。
 熱可塑性エポキシ樹脂は、このような特徴を有していることにより、現場重合によって、材料層との接着性に優れ、かつ、再変性―変性ポリフェニレンエーテル層31との接着性に優れた熱可塑性エポキシ樹脂層32を形成することができる。
(Thermoplastic epoxy resin)
Similar to the thermoplastic epoxy resin used for producing the mixture 1, the thermoplastic epoxy resin has a thermoplastic structure, that is, a bifunctional epoxy resin and a bifunctional phenol compound undergoing a crosslink reaction in the presence of a catalyst. , A resin that forms a linear polymer structure, and has thermoplasticity, unlike thermosetting resins that form a three-dimensional network with a crosslinked structure.
Due to these characteristics, the thermoplastic epoxy resin has excellent adhesiveness to the material layer due to in-situ polymerization, and also has excellent adhesiveness to the remodified-modified polyphenylene ether layer 31. The epoxy resin layer 32 can be formed.
 したがって、複合積層体を製造する際、再変性―変性ポリフェニレンエーテル層31より下層(材料層2側)に、熱可塑性エポキシ樹脂層32を形成することが好ましい。
 熱可塑性エポキシ樹脂層32は、熱可塑性エポキシ樹脂のモノマーを含む組成物を重付加反応させることにより形成することができる。
 前記重付加反応は、後述の官能基含有層4の表面上で行うことが好ましい。このような態様で形成された熱可塑性エポキシ樹脂層32を含む樹脂コーティング層3は、材料層2との接着性に優れ、かつ、後述の接合対象との接合性に優れる。
Therefore, when producing the composite laminate, it is preferable to form the thermoplastic epoxy resin layer 32 in the layer below the re-modified-modified polyphenylene ether layer 31 (on the material layer 2 side).
The thermoplastic epoxy resin layer 32 can be formed by subjecting a composition containing a monomer of the thermoplastic epoxy resin to a heavy addition reaction.
The heavy addition reaction is preferably carried out on the surface of the functional group-containing layer 4 described later. The resin coating layer 3 including the thermoplastic epoxy resin layer 32 formed in such an embodiment is excellent in adhesiveness to the material layer 2 and also excellent in adhesiveness to the object to be bonded, which will be described later.
 熱可塑性エポキシ樹脂のモノマーを含む組成物により、熱可塑性エポキシ樹脂層32を形成するコーティング方法は、特に限定されるものではないが、例えば、スプレー塗布法、浸漬法等が挙げられる。 The coating method for forming the thermoplastic epoxy resin layer 32 with the composition containing the monomer of the thermoplastic epoxy resin is not particularly limited, and examples thereof include a spray coating method and a dipping method.
 なお、熱可塑性エポキシ樹脂のモノマーを含む組成物は、熱可塑性エポキシ樹脂の重付加反応を十分に進行させ、所望の樹脂コーティング層を形成させるため、溶剤や、必要に応じて着色剤等の添加剤を含んでいてもよい。この場合、前記組成物の溶剤以外の含有成分中、熱可塑性エポキシ樹脂のモノマーが主成分であることが好ましい。前記主成分とは、熱可塑性エポキシ樹脂の含有率が50~100質量%であることを意味する。前記含有率は、好ましくは60質量%以上、より好ましくは80質量%以上である。 In the composition containing the monomer of the thermoplastic epoxy resin, a solvent and, if necessary, a colorant and the like are added in order to sufficiently proceed the polyaddition reaction of the thermoplastic epoxy resin and form a desired resin coating layer. It may contain an agent. In this case, it is preferable that the monomer of the thermoplastic epoxy resin is the main component among the components other than the solvent of the composition. The main component means that the content of the thermoplastic epoxy resin is 50 to 100% by mass. The content is preferably 60% by mass or more, more preferably 80% by mass or more.
 熱可塑性エポキシ樹脂を得るためのモノマーは、2官能エポキシ樹脂と2官能フェノール性化合物との組み合わせが好ましい。 The monomer for obtaining the thermoplastic epoxy resin is preferably a combination of a bifunctional epoxy resin and a bifunctional phenolic compound.
 前記重付加反応は、反応化合物等の種類にもよるが、120~200℃で、5~90分間加熱して行うことが好ましい。具体的には、前記樹脂組成物をコーティングした後、適宜溶剤を揮発させ、その後、加熱して重付加反応を行うことにより、熱可塑性エポキシ樹脂層32を形成することができる。 The heavy addition reaction is preferably carried out by heating at 120 to 200 ° C. for 5 to 90 minutes, although it depends on the type of reaction compound and the like. Specifically, the thermoplastic epoxy resin layer 32 can be formed by coating the resin composition, volatilizing a solvent as appropriate, and then heating to carry out a double addition reaction.
〔熱硬化性樹脂層33〕
 前記樹脂コーティング層3を、前記再変性―変性ポリフェニレンエーテル層とそれ以外の層との複数層の樹脂層で構成し、前記再変性―変性ポリフェニレンエーテル層以外の樹脂層の少なくとも1層を、熱硬化性樹脂を含む樹脂組成物の硬化物から形成されてなる熱硬化性樹脂層33で構成することもできる。
[Thermosetting resin layer 33]
The resin coating layer 3 is composed of a plurality of resin layers of the re-modified-modified polyphenylene ether layer and other layers, and at least one of the resin layers other than the re-modified-modified polyphenylene ether layer is heated. It can also be composed of a thermosetting resin layer 33 formed of a cured product of a resin composition containing a curable resin.
 なお、前記熱硬化性樹脂を含む樹脂組成物は、前記熱硬化性樹脂の硬化反応を十分に進行させ、所望の樹脂コーティング層を形成させるため、溶剤や、必要に応じて着色剤等の添加剤を含んでいてもよい。この場合、前記樹脂組成物の溶剤以外の含有成分中、前記熱硬化性樹脂が主成分であることが好ましい。前記主成分とは、前記熱硬化性樹脂の含有率が40~100質量%であることを意味する。前記含有率は、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上である。 In the resin composition containing the thermosetting resin, a solvent and, if necessary, a colorant and the like are added in order to sufficiently proceed the curing reaction of the thermosetting resin and form a desired resin coating layer. It may contain an agent. In this case, it is preferable that the thermosetting resin is the main component among the components other than the solvent of the resin composition. The main component means that the content of the thermosetting resin is 40 to 100% by mass. The content is preferably 60% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more.
 前記熱硬化性樹脂としては、例えば、ウレタン樹脂、エポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂が挙げられる。 Examples of the thermosetting resin include urethane resin, epoxy resin, vinyl ester resin, and unsaturated polyester resin.
 熱硬化性樹脂層33は、これらの樹脂のうちの1種単独で形成されていてもよく、2種以上が混合されて形成されていてもよい。あるいはまた、熱硬化性樹脂層33を複数層で構成し、各層を異なる種類の熱硬化性樹脂を含む樹脂組成物で形成することもできる。 The thermosetting resin layer 33 may be formed by one of these resins alone, or may be formed by mixing two or more of them. Alternatively, the thermosetting resin layer 33 may be composed of a plurality of layers, and each layer may be formed of a resin composition containing a different type of thermosetting resin.
 前記熱硬化性樹脂のモノマーを含む組成物により、熱硬化性樹脂層33を形成するコーティング方法は、特に限定されるものではないが、例えば、スプレー塗布法、浸漬法等が挙げられる。 The coating method for forming the thermosetting resin layer 33 with the composition containing the monomer of the thermosetting resin is not particularly limited, and examples thereof include a spray coating method and a dipping method.
 なお、本実施態様で言う熱硬化性樹脂は、広く、架橋硬化する樹脂を意味し、加熱硬化タイプに限られず、常温硬化タイプや光硬化タイプも包含するものとする。ここで、本明細書において、常温とは5~35℃を指し、好ましくは15~25℃である。
 前記光硬化タイプは、可視光や紫外線の照射によって短時間での硬化も可能である。前記光硬化タイプを、加熱硬化タイプ及び/又は常温硬化タイプと併用してもよい。前記光硬化タイプとしては、例えば、昭和電工株式会社製「リポキシ(登録商標)LC-760」、同「リポキシ(登録商標)LC-720」等のビニルエステル樹脂が挙げられる。
The thermosetting resin referred to in the present embodiment broadly means a resin that is cross-linked and cured, and is not limited to the heat-curing type, but also includes a room temperature curing type and a photocuring type. Here, in the present specification, the normal temperature refers to 5 to 35 ° C, preferably 15 to 25 ° C.
The photocurable type can be cured in a short time by irradiating with visible light or ultraviolet rays. The photo-curing type may be used in combination with a heat-curing type and / or a room temperature curing type. Examples of the photocurable type include vinyl ester resins such as "Lipoxy (registered trademark) LC-760" and "Lipoxy (registered trademark) LC-720" manufactured by Showa Denko KK.
(ウレタン樹脂)
 前記ウレタン樹脂は、通常、イソシアネート化合物のイソシアナト基とポリオール化合物の水酸基との反応によって得られる樹脂であり、ASTM D16において、「ビヒクル不揮発成分10質量%以上のポリイソシアネートを含む塗料」と定義されるものに該当するウレタン樹脂が好ましい。前記ウレタン樹脂は、一液型であっても、二液型であってもよい。
(Urethane resin)
The urethane resin is usually a resin obtained by reacting an isocyanato group of an isocyanate compound with a hydroxyl group of a polyol compound, and is defined in ASTM D16 as "a coating material containing a polyisocyanate having a vehicle non-volatile component of 10% by mass or more". The urethane resin corresponding to the above is preferable. The urethane resin may be a one-component type or a two-component type.
 一液型ウレタン樹脂としては、例えば、油変性型(不飽和脂肪酸基の酸化重合により硬化するもの)、湿気硬化型(イソシアナト基と空気中の水との反応により硬化するもの)、ブロック型(ブロック剤が加熱により解離し再生したイソシアナト基と水酸基が反応して硬化するもの)、ラッカー型(溶剤が揮発して乾燥することにより硬化するもの)等が挙げられる。これらの中でも、取り扱い容易性等の観点から、湿気硬化型一液ウレタン樹脂が好適に用いられる。具体的には、昭和電工株式会社製「UM-50P」等が挙げられる。 Examples of the one-component urethane resin include an oil-modified type (which cures by oxidative polymerization of unsaturated fatty acid groups), a moisture-curing type (which cures by the reaction of isocyanato groups with water in the air), and a block type (which cures by the reaction of isocyanato groups with water in the air). Examples thereof include a lacquer type (which cures when the solvent volatilizes and dries), a lacquer type (which cures when the isocyanato group dissociated and regenerated by heating reacts with a hydroxyl group). Among these, a moisture-curable one-component urethane resin is preferably used from the viewpoint of ease of handling and the like. Specific examples thereof include "UM-50P" manufactured by Showa Denko KK.
 二液型ウレタン樹脂としては、例えば、触媒硬化型(イソシアナト基と空気中の水等とが触媒存在下で反応して硬化するもの)、ポリオール硬化型(イソシアナト基とポリオール化合物の水酸基との反応により硬化するもの)等が挙げられる。 Examples of the two-component urethane resin include a catalyst-curable type (a catalyst-curable type in which an isocyanato group reacts with water in the air to cure in the presence of a catalyst) and a polyol-curable type (a reaction between an isocyanato group and a hydroxyl group of a polyol compound). (Those that are cured by) and the like.
 前記ポリオール硬化型におけるポリオール化合物としては、例えば、ポリエステルポリオール、ポリエーテルポリオール、フェノール樹脂等が挙げられる。
 また、前記ポリオール硬化型におけるイソシアナト基を有するイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート(HDI)、テトラメチレンジイソシアネート、ダイマー酸ジイソシアネート等の脂肪族イソシアネート;2,4-もしくは2,6-トリレンジイソシアネート(TDI)又はその混合物、p-フェニレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート(MDI)やその多核体混合物であるポリメリックMDI等の芳香族イソシアネート;イソホロンジイソシアネート(IPDI)等の脂環族イソシアネート等が挙げられる。
 前記ポリオール硬化型の二液型ウレタン樹脂における前記ポリオール化合物と前記イソシアネート化合物の配合比は、水酸基/イソシアナト基のモル当量比が0.7~1.5の範囲であることが好ましい。
Examples of the polyol compound in the polyol curing type include polyester polyols, polyether polyols, and phenol resins.
Further, examples of the isocyanate compound having an isocyanato group in the polyol-curable type include aliphatic isocyanates such as hexamethylene diisocyanate (HDI), tetramethylene diisocyanate, and diimalate diisocyanate; 2,4- or 2,6-tolylene diisocyanate. (TDI) or a mixture thereof, p-phenylenediocyanate, xylylene diisocyanate, diphenylmethane diisocyanate (MDI) and aromatic isocyanates such as polypeptide MDI which is a polynuclear mixture thereof; alicyclic isocyanates such as isophorone diisocyanate (IPDI) and the like. Be done.
The compounding ratio of the polyol compound and the isocyanate compound in the polyol-curable two-component urethane resin is preferably in the range of 0.7 to 1.5 in the molar equivalent ratio of the hydroxyl group / isocyanato group.
 前記二液型ウレタン樹脂において使用されるウレタン化触媒としては、例えば、トリエチレンジアミン、テトラメチルグアニジン、N,N,N’,N’-テトラメチルヘキサン-1,6-ジアミン、ジメチルエーテルアミン、N,N,N’,N’’,N’’-ペンタメチルジプロピレン-トリアミン、N-メチルモルフォリン、ビス(2-ジメチルアミノエチル)エーテル、ジメチルアミノエトキシエタノール、トリエチルアミン等のアミン系触媒;ジブチルチンジアセテート、ジブチルチンジラウレート、ジブチルチンチオカルボキシレート、ジブチルチンジマレート等の有機錫系触媒等が挙げられる。
 前記ポリオール硬化型においては、一般に、前記ポリオール化合物100質量部に対して、前記ウレタン化触媒が0.01~10質量部配合されることが好ましい。
Examples of the urethanization catalyst used in the two-component urethane resin include triethylenediamine, tetramethylguanidine, N, N, N', N'-tetramethylhexane-1,6-diamine, dimethyletheramine, N, N, N', N'', N''-pentamethyldipropylene-triamine, N-methylmorpholin, bis (2-dimethylaminoethyl) ether, dimethylaminoethoxyethanol, triethylamine and other amine-based catalysts; dibutyltindi Examples thereof include organotin catalysts such as acetate, dibutyltin dilaurate, dibutyltin thiocarboxylate and dibutyltin dimalate.
In the polyol curing type, it is generally preferable that 0.01 to 10 parts by mass of the urethanization catalyst is blended with respect to 100 parts by mass of the polyol compound.
(エポキシ樹脂)
 前記エポキシ樹脂は、1分子中に少なくとも2個のエポキシ基を有する樹脂である。
 前記エポキシ樹脂の硬化前のプレポリマーとしては、例えば、エーテル系ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ポリフェノール型エポキシ樹脂、脂肪族型エポキシ樹脂、エステル系の芳香族エポキシ樹脂、環状脂肪族エポキシ樹脂、エーテル・エステル系エポキシ樹脂等が挙げられ、これらの中でも、ビスフェノールA型エポキシ樹脂が好適に用いられる。これらのうち、1種単独で用いてもよく、2種以上を併用してもよい。
 ビスフェノールA型エポキシ樹脂としては、具体的には、三菱ケミカル株式会社製「jER(登録商標)828」、同「jER(登録商標)1001」等が挙げられる。
 ノボラック型エポキシ樹脂としては、具体的には、ザ・ダウ・ケミカル・カンパニー製「D.E.N.(登録商標)438(登録商標)」等が挙げられる。
(Epoxy resin)
The epoxy resin is a resin having at least two epoxy groups in one molecule.
Examples of the prepolymer before curing of the epoxy resin include ether-based bisphenol-type epoxy resin, novolac-type epoxy resin, polyphenol-type epoxy resin, aliphatic-type epoxy resin, ester-based aromatic epoxy resin, and cyclic aliphatic epoxy resin. , Ether-ester type epoxy resin and the like, and among these, bisphenol A type epoxy resin is preferably used. Of these, one type may be used alone, or two or more types may be used in combination.
Specific examples of the bisphenol A type epoxy resin include "jER (registered trademark) 828" and "jER (registered trademark) 1001" manufactured by Mitsubishi Chemical Corporation.
Specific examples of the novolak type epoxy resin include "DEN (registered trademark) 438 (registered trademark)" manufactured by The Dow Chemical Company.
 前記エポキシ樹脂に使用される硬化剤としては、例えば、脂肪族アミン、芳香族アミン、酸無水物、フェノール樹脂、チオール類、イミダゾール類、カチオン触媒等の公知の硬化剤が挙げられる。前記硬化剤は、長鎖脂肪族アミン又は/及びチオール類との併用により、伸び率が大きく、耐衝撃性に優れるという効果が得られる。
 前記チオール類の具体例としては、後述の官能基含有層を形成するためのチオール化合物として例示したものと同じ化合物が挙げられる。これらの中でも、伸び率及び耐衝撃性の観点から、ペンタエリスリトールテトラキス(3-メルカプトブチレート)(例えば、昭和電工株式会社製「カレンズMT(登録商標) PE1」)が好ましい。
Examples of the curing agent used for the epoxy resin include known curing agents such as aliphatic amines, aromatic amines, acid anhydrides, phenol resins, thiols, imidazoles, and cationic catalysts. When the curing agent is used in combination with a long-chain aliphatic amine and / or a thiol, the effect of having a large elongation rate and excellent impact resistance can be obtained.
Specific examples of the thiols include the same compounds as those exemplified as the thiol compounds for forming the functional group-containing layer described later. Among these, pentaerythritol tetrakis (3-mercaptobutyrate) (for example, "Carens MT (registered trademark) PE1" manufactured by Showa Denko KK) is preferable from the viewpoint of elongation and impact resistance.
(ビニルエステル樹脂)
 前記ビニルエステル樹脂は、ビニルエステル化合物を重合性モノマー(例えば、スチレン等)に溶解したものである。エポキシ(メタ)アクリレート樹脂とも呼ばれるが、前記ビニルエステル樹脂には、ウレタン(メタ)アクリレート樹脂も包含するものとする。
 前記ビニルエステル樹脂としては、例えば、「ポリエステル樹脂ハンドブック」(日刊工業新聞社、1988年発行)、「塗料用語辞典」(色材協会、1993年発行)等に記載されているものも使用することができ、また、具体的には、昭和電工株式会社製「リポキシ(登録商標)R-802」、同「リポキシ(登録商標)R-804」、同「リポキシ(登録商標)R-806」等が挙げられる。
(Vinyl ester resin)
The vinyl ester resin is obtained by dissolving a vinyl ester compound in a polymerizable monomer (for example, styrene). Although it is also called an epoxy (meth) acrylate resin, the vinyl ester resin also includes a urethane (meth) acrylate resin.
As the vinyl ester resin, for example, those described in "Polyester Resin Handbook" (Nikkan Kogyo Shimbun, published in 1988), "Paint Glossary" (Japan Society of Color Material, published in 1993), etc. shall also be used. In addition, specifically, "Lipoxy (registered trademark) R-802", "Lipoxy (registered trademark) R-804", "Lipoxy (registered trademark) R-806", etc. manufactured by Showa Denko KK, etc. Can be mentioned.
 前記ウレタン(メタ)アクリレート樹脂としては、例えば、イソシアネート化合物と、ポリオール化合物とを反応させた後、水酸基含有(メタ)アクリルモノマー(及び、必要に応じて水酸基含有アリルエーテルモノマー)を反応させて得られるラジカル重合性不飽和基含有オリゴマーが挙げられる。具体的には、昭和電工株式会社製「リポキシ(登録商標)R-6545」等が挙げられる。 The urethane (meth) acrylate resin is obtained by, for example, reacting an isocyanate compound with a polyol compound and then reacting with a hydroxyl group-containing (meth) acrylic monomer (and, if necessary, a hydroxyl group-containing allyl ether monomer). Examples thereof include radically polymerizable unsaturated group-containing oligomers. Specific examples thereof include "Lipoxy (registered trademark) R-6545" manufactured by Showa Denko KK.
 前記ビニルエステル樹脂は、有機過酸化物等の触媒存在下での加熱によるラジカル重合で硬化させることができる。
 前記有機過酸化物としては、特に限定されるものではないが、例えば、ケトンパーオキサイド類、パーオキシケタール類、ハイドロパーオキサイド類、ジアリルパーオキサイド類、ジアシルパーオキサイド類、パーオキシエステル類、パーオキシジカーボネート類等が挙げられる。これらをコバルト金属塩等と組み合わせることにより、常温での硬化も可能となる。
 前記コバルト金属塩としては、特に限定されるものではないが、例えば、ナフテン酸コバルト、オクチル酸コバルト、水酸化コバルト等が挙げられる。これらの中でも、ナフテン酸コバルト又は/及びオクチル酸コバルトが好ましい。
The vinyl ester resin can be cured by radical polymerization by heating in the presence of a catalyst such as an organic peroxide.
The organic peroxide is not particularly limited, but for example, ketone peroxides, peroxyketals, hydroperoxides, diallyl peroxides, diacyl peroxides, peroxyesters, and peroxides. Oxide carbonates and the like can be mentioned. By combining these with a cobalt metal salt or the like, curing at room temperature is also possible.
The cobalt metal salt is not particularly limited, and examples thereof include cobalt naphthenate, cobalt octylate, and cobalt hydroxide. Of these, cobalt naphthenate and / and cobalt octylate are preferred.
(不飽和ポリエステル樹脂)
 前記不飽和ポリエステル樹脂は、ポリオール化合物と不飽和多塩基酸(及び、必要に応じて飽和多塩基酸)とのエステル化反応による縮合生成物(不飽和ポリエステル)を重合性モノマー(例えば、スチレン等)に溶解したものである。
 前記不飽和ポリエステル樹脂としては、「ポリエステル樹脂ハンドブック」(日刊工業新聞社、1988年発行)、「塗料用語辞典」(色材協会、1993年発行)等に記載されているものも使用することができ、また、具体的には、昭和電工株式会社製「リゴラック(登録商標)」等が挙げられる。
(Unsaturated polyester resin)
The unsaturated polyester resin is a monomer (eg, styrene, etc.) in which a condensation product (unsaturated polyester) obtained by an esterification reaction of a polyol compound and an unsaturated polybasic acid (and, if necessary, a saturated polybasic acid) is polymerized. ) Is dissolved.
As the unsaturated polyester resin, those described in "Polyester Resin Handbook" (Nikkan Kogyo Shimbun, published in 1988), "Paint Glossary" (Japan Society of Color Material, published in 1993), etc. can also be used. Yes, and more specifically, "Rigolac (registered trademark)" manufactured by Showa Denko KK can be mentioned.
 前記不飽和ポリエステル樹脂は、前記ビニルエステル樹脂と同様の触媒存在下での加熱によるラジカル重合で硬化させることができる。 The unsaturated polyester resin can be cured by radical polymerization by heating in the presence of a catalyst similar to the vinyl ester resin.
〔樹脂コーティング層の作用〕
 樹脂コーティング層3は、材料層2の表面に優れた接着性で形成され、接合対象である変性ポリフェニレンエーテルとも優れた接着性を発揮するものである。また樹脂コーティング層3により材料層2の表面が保護され、該材料層の表面への汚れの付着を抑制することができる。
[Action of resin coating layer]
The resin coating layer 3 is formed on the surface of the material layer 2 with excellent adhesiveness, and exhibits excellent adhesiveness with the modified polyphenylene ether to be bonded. Further, the surface of the material layer 2 is protected by the resin coating layer 3, and the adhesion of dirt to the surface of the material layer can be suppressed.
 上記のように、樹脂コーティング層によって、接合対象である変性ポリフェニレンエーテルとの優れた接合性が材料層に付与され得る。さらに、上記のように材料層の表面が保護された状態で、数ヶ月間の長期にわたって、優れた接着性が得られる状態を維持し得る複合積層体を得ることもできる。 As described above, the resin coating layer can impart excellent bondability to the modified polyphenylene ether to be bonded to the material layer. Further, it is possible to obtain a composite laminate capable of maintaining a state in which excellent adhesiveness can be obtained for a long period of several months while the surface of the material layer is protected as described above.
 上記のように、樹脂コーティング層は、材料層に、接合対象である変性ポリフェニレンエーテルに対する優れた接合性を付与する作用を奏し、樹脂コーティング層は、複合積層体のプライマー層とすることができる。
 ここで言うプライマー層とは、例えば、後述の接合体のように、材料層が樹脂材等の接合対象と接合一体化される際に、該材料層と接合対象との間に介在し、材料層の接合対象に対する接着性を向上させる層を意味するものとする。
As described above, the resin coating layer has an effect of imparting excellent bonding properties to the modified polyphenylene ether to be bonded to the material layer, and the resin coating layer can be a primer layer of the composite laminate.
The primer layer referred to here is a material that is interposed between the material layer and the bonding target when the material layer is bonded and integrated with a bonding target such as a resin material, for example, as in the case of a bonded body described later. It shall mean a layer that improves the adhesiveness of the layer to the object to be joined.
<官能基含有層4>
 図2に示すように、前記材料層2と前記樹脂コーティング層3との間に、前記材料層2と前記樹脂コーティング層3に接して積層された一層又は複数層の官能基含有層4を有することもできる。
 官能基含有層4を有する場合、該官能基含有層が有する官能基が、前記材料層の表面の水酸基および前記樹脂コーティング層を構成する樹脂が有する官能基と、それぞれ反応して形成する化学結合により、材料層の表面と、樹脂コーティング層との接着性を向上させる効果が得られる。また、接合対象との接合性を向上させる効果も得られる。
 官能基含有層4は、二次元に広がったシランカップリング剤処理層表面の官能基の少なくとも一部に、イソシアネート化合物、チオール化合物、エポキシ化合物、アミノ化合物からなる群より選ばれる一種以上の化合物を反応させて有機材料が有する官能基と化学結合可能な官能基を三次元方向に延ばした官能基含有構造とすることができる。前記イソシアネート化合物、チオール化合物、エポキシ化合物、アミノ化合物からなる群より選ばれる一種以上の化合物は、シランカップリング剤層表面の官能基と反応可能な基及び前記樹脂コーティング層を構成する樹脂が有する官能基と反応可能な基を有する化合物であることが好ましい。
<Functional group-containing layer 4>
As shown in FIG. 2, between the material layer 2 and the resin coating layer 3, there is a one-layer or a plurality of functional group-containing layers 4 laminated in contact with the material layer 2 and the resin coating layer 3. You can also do it.
When the functional group-containing layer 4 is provided, the functional group formed by the functional group-containing layer reacts with the hydroxyl group on the surface of the material layer and the functional group of the resin constituting the resin coating layer to form a chemical bond. As a result, the effect of improving the adhesiveness between the surface of the material layer and the resin coating layer can be obtained. In addition, the effect of improving the bondability with the bonding target can also be obtained.
In the functional group-containing layer 4, at least a part of the functional groups on the surface of the silane coupling agent-treated layer spread in two dimensions is one or more compounds selected from the group consisting of isocyanate compounds, thiol compounds, epoxy compounds, and amino compounds. It is possible to form a functional group-containing structure in which a functional group capable of chemically bonding with a functional group of an organic material is extended in a three-dimensional direction by reacting. One or more compounds selected from the group consisting of the isocyanate compound, the thiol compound, the epoxy compound, and the amino compound are groups capable of reacting with functional groups on the surface of the silane coupling agent layer and functionalities of the resin constituting the resin coating layer. It is preferably a compound having a group capable of reacting with the group.
《処理》
 官能基含有層4は、材料層2の表面に下記(1’)~(7’)からなる群より選ばれる少なくとも1種の処理を施し、形成したものであることが好ましい。
(1’) エポキシ基、アミノ基、(メタ)アクリロイル基及びメルカプト基からなる群より選ばれる少なくとも1つの官能基を有するシランカップリング剤での処理
(2’) アミノ基を有するシランカップリング剤での処理後に、エポキシ化合物及びチオール化合物から選ばれる少なくとも1種を付加する処理
(3’) メルカプト基を有するシランカップリング剤での処理後に、エポキシ化合物、アミノ化合物、イソシアネート化合物、(メタ)アクリロイル基及びエポキシ基を有する化合物、並びに(メタ)アクリロイル基及びアミノ基を有する化合物からなる群より選ばれる少なくとも1種を付加する処理
(4’) (メタ)アクリロイル基を有するシランカップリング剤での処理後に、チオール化合物を付加する処理
(5’) エポキシ基を有するシランカップリング剤での処理後に、アミノ基及び(メタ)アクリロイル基を有する化合物、アミノ化合物、並びにチオール化合物からなる群より選ばれる少なくとも1種を付加する処理
(6’) イソシアネート化合物での処理
(7’) チオール化合物での処理
"processing"
The functional group-containing layer 4 is preferably formed by subjecting the surface of the material layer 2 to at least one treatment selected from the group consisting of the following (1') to (7').
(1') Treatment with a silane coupling agent having at least one functional group selected from the group consisting of an epoxy group, an amino group, a (meth) acryloyl group and a mercapto group (2') A silane coupling agent having an amino group Treatment to add at least one selected from epoxy compounds and thiol compounds after treatment with (3') After treatment with a silane coupling agent having a mercapto group, epoxy compounds, amino compounds, isocyanate compounds, (meth) acryloyl Treatment to add at least one selected from the group consisting of compounds having a group and an epoxy group, and a compound having a (meth) acryloyl group and an amino group (4') In a silane coupling agent having a (meth) acryloyl group. Treatment to add a thiol compound after treatment (5') After treatment with a silane coupling agent having an epoxy group, it is selected from the group consisting of compounds having amino groups and (meth) acryloyl groups, amino compounds, and thiol compounds. Treatment to add at least one (6') Treatment with isocyanate compound (7') Treatment with thiol compound
《官能基》
 官能基含有層4は、前記処理により導入された官能基を含むことが好ましく、具体的には、下記(1)~(7)からなる群より選ばれる少なくとも1つの官能基を含むことが好ましい。
(1)シランカップリング剤由来であって、エポキシ基、アミノ基、(メタ)アクリロイル基及びメルカプト基からなる群より選ばれる少なくとも1つの官能基
(2)シランカップリング剤由来のアミノ基に、エポキシ化合物及びチオール化合物から選ばれる少なくとも1種を反応させてなる官能基
(3)シランカップリング剤由来のメルカプト基に、エポキシ化合物、アミノ化合物、イソシアネート化合物、(メタ)アクリロイル基及びエポキシ基を有する化合物、並びに(メタ)アクリロイル基及びアミノ基を有する化合物からなる群より選ばれる少なくとも1種を反応させてなる官能基
(4)シランカップリング剤由来の(メタ)アクリロイル基に、チオール化合物を反応させてなる官能基
(5)シランカップリング剤由来のエポキシ基に、アミノ基及び(メタ)アクリロイル基を有する化合物、アミノ化合物、並びにチオール化合物からなる群より選ばれる少なくとも1種を反応させてなる官能基
(6)イソシアネート化合物由来のイソシアナト基
(7)チオール化合物由来のメルカプト基
《Functional group》
The functional group-containing layer 4 preferably contains the functional group introduced by the above treatment, and specifically, preferably contains at least one functional group selected from the group consisting of the following (1) to (7). ..
(1) At least one functional group derived from a silane coupling agent and selected from the group consisting of an epoxy group, an amino group, a (meth) acryloyl group and a mercapto group. (2) An amino group derived from a silane coupling agent. A functional group obtained by reacting at least one selected from an epoxy compound and a thiol compound (3) A mercapto group derived from a silane coupling agent has an epoxy compound, an amino compound, an isocyanate compound, a (meth) acryloyl group and an epoxy group. A functional group obtained by reacting at least one selected from the group consisting of a compound and a compound having a (meth) acryloyl group and an amino group. (4) A thiol compound is reacted with a (meth) acryloyl group derived from a silane coupling agent. (5) An epoxy group derived from a silane coupling agent is reacted with at least one selected from the group consisting of a compound having an amino group and a (meth) acryloyl group, an amino compound, and a thiol compound. Functional group (6) Isocyanato group derived from isocyanate compound (7) Mercapto group derived from thiol compound
 材料層に官能基含有層4を形成する前に、材料層の表面に前記の前処理を施すこともできる。前処理としては、脱脂処理、UVオゾン処理、ブラスト処理、研磨処理、プラズマ処理及びコロナ放電処理からなる群より選ばれる少なくとも1種が好ましい。
 前処理を施すことにより、微細な凹凸によるアンカー効果と、官能基含有層が有する官能基が前記材料層の表面の水酸基および前記樹脂コーティング層を構成する樹脂が有する官能基のそれぞれと反応して形成する化学結合との相乗効果によって、材料層の表面と、樹脂コーティング層との接着性、及び、接合対象との接合性を向上させることもできる。
The above pretreatment can also be applied to the surface of the material layer before forming the functional group-containing layer 4 in the material layer. As the pretreatment, at least one selected from the group consisting of degreasing treatment, UV ozone treatment, blast treatment, polishing treatment, plasma treatment and corona discharge treatment is preferable.
By applying the pretreatment, the anchor effect due to the fine irregularities and the functional groups of the functional group-containing layer react with the hydroxyl groups on the surface of the material layer and the functional groups of the resin constituting the resin coating layer. By the synergistic effect with the formed chemical bond, the adhesiveness between the surface of the material layer and the resin coating layer and the bondability with the bonding target can be improved.
 前記シランカップリング剤、前記イソシアネート化合物、前記チオール化合物等により、官能基含有層を形成する方法は特に限定されるものではないが、例えば、スプレー塗布法、浸漬法等が挙げられる。具体的には、材料層を、濃度5~50質量%のシランカップリング剤等の常温~100℃の溶液中に1分~5日間浸漬した後、常温~100℃で1分~5時間乾燥させる等の方法により行うことができる。 The method for forming the functional group-containing layer with the silane coupling agent, the isocyanate compound, the thiol compound and the like is not particularly limited, and examples thereof include a spray coating method and a dipping method. Specifically, the material layer is immersed in a solution of a silane coupling agent having a concentration of 5 to 50% by mass at room temperature to 100 ° C. for 1 minute to 5 days, and then dried at room temperature to 100 ° C. for 1 minute to 5 hours. It can be done by a method such as making it.
〔シランカップリング剤〕
 前記シランカップリング剤としては、例えば、ガラス繊維の表面処理等に用いられる公知のものを使用することができる。シランカップリング剤を加水分解させて生成したシラノール基、又はこれがオリゴマー化したシラノール基が、材料層2の表面に存在する水酸基と反応して結合することにより、樹脂コーティング層3と化学結合可能な該シランカップリング剤の構造に基づく官能基を、材料層に対して付与する(導入する)ことができる。
〔Silane coupling agent〕
As the silane coupling agent, for example, known ones used for surface treatment of glass fibers and the like can be used. A silanol group generated by hydrolyzing a silane coupling agent or a silanol group obtained by oligomerizing the silanol group reacts with a hydroxyl group existing on the surface of the material layer 2 and bonds to the resin coating layer 3 to be chemically bonded. A functional group based on the structure of the silane coupling agent can be imparted (introduced) to the material layer.
 前記シランカップリング剤は特に限定されないが、エポキシ基を有するシランカップリング剤、アミノ基を有するシランカップリング剤、メルカプト基を有するシランカップリング剤、(メタ)アクリロイル基を有するシランカップリング剤等を使用することができる。エポキシ基を有するシランカップリング剤としては、例えば、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等が挙げられる。アミノ基を有するシランカップリング剤としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン等が挙げられる。メルカプト基を有するシランカップリング剤としては、3-メルカプトプロピルメチルジメトキシシラン、ジチオールトリアジンプロピルトリエトキシシラン等が挙げられる。(メタ)アクリロイル基を有するシランカップリング剤としては、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン等が挙げられる。また、その他の有効なシランカップリング剤として、3-イソシアナトプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン等のビニル基を有するシランカップリング剤、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノプロピルトリメトキシシランの塩酸塩、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-ウレイドプロピルトリアルコキシシラン、が挙げられる。これらは、1種単独で用いても、2種以上を併用してもよい。 The silane coupling agent is not particularly limited, but a silane coupling agent having an epoxy group, a silane coupling agent having an amino group, a silane coupling agent having a mercapto group, a silane coupling agent having a (meth) acryloyl group, and the like. Can be used. Examples of the silane coupling agent having an epoxy group include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and the like. Examples thereof include 3-glycidoxypropylmethyldiethoxysilane and 3-glycidoxypropyltriethoxysilane. Examples of the silane coupling agent having an amino group include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, and N-2-(. Aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane and the like can be mentioned. Examples of the silane coupling agent having a mercapto group include 3-mercaptopropylmethyldimethoxysilane and dithioltriazinepropyltriethoxysilane. Examples of the silane coupling agent having a (meth) acryloyl group include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxypropyltriethoxysilane. , 3-Acryloxypropyltrimethoxysilane and the like. Further, as other effective silane coupling agents, silane coupling agents having a vinyl group such as 3-isocyanatopropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, p-styryltrimethoxysilane, 3- Triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminopropyltrimethoxysilane hydrochloride, tris- (Trimethoxysilylpropyl) isocyanurate, 3-ureidopropyltrialkoxysilane, and the like. These may be used alone or in combination of two or more.
〔エポキシ化合物〕
 前記エポキシ化合物としては、公知のエポキシ化合物等を使用できる。多価エポキシ化合物や、エポキシ基以外にアルケニル基を有する化合物が好ましい。前記エポキシ化合物としては、特に限定されるものではないが、例えば、末端基がラジカル反応性基である(メタ)アクリロイル基やアリル基とすることができるグリシジル(メタ)アクリレート、アリルグリシジルエーテルや、末端基がエポキシ基である1,6-ヘキサンジオールジグリシジルエーテル、分子中に2個以上のエポキシ基を有するエポキシ樹脂等が挙げられる。また脂環式のエポキシ化合物でもよく、3,4-エポキシシクロヘキシルメチルメタクリレート(株式会社ダイセル製 サイクロマーM100)、1,2-エポキシ-4-ビニルシクロヘキサン(株式会社ダイセル製 セロキサイド2000)、3’,4’-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート(株式会社ダイセル製 セロキサイド2021P)等が挙げられる。
[Epoxy compound]
As the epoxy compound, a known epoxy compound or the like can be used. A polyvalent epoxy compound or a compound having an alkenyl group other than the epoxy group is preferable. The epoxy compound is not particularly limited, but for example, glycidyl (meth) acrylate, allyl glycidyl ether, which can have a (meth) acryloyl group or an allyl group whose terminal group is a radical reactive group, and allyl glycidyl ether, and the like. Examples thereof include 1,6-hexanediol diglycidyl ether having an epoxy group as the terminal group, and an epoxy resin having two or more epoxy groups in the molecule. It may also be an alicyclic epoxy compound, such as 3,4-epoxycyclohexylmethylmethacrylate (Cyclomer M100 manufactured by Daicel Co., Ltd.), 1,2-epoxy-4-vinylcyclohexane (Ceroxide 2000 manufactured by Daicel Co., Ltd.), 3', Examples thereof include 4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (celloxide 2021P manufactured by Daicel Co., Ltd.).
〔チオール化合物〕
 前記チオール化合物は、該チオール化合物中のメルカプト基が、材料層2の表面に存在する水酸基と反応して結合することにより、樹脂コーティング層や接合対象と化学結合可能な該チオール化合物の構造に基づく官能基を、材料層に対して付与する(導入する)ことができる。
[Thiol compound]
The thiol compound is based on the structure of the thiol compound which can be chemically bonded to a resin coating layer or a bonding target by reacting and bonding a mercapto group in the thiol compound with a hydroxyl group existing on the surface of the material layer 2. Functional groups can be imparted (introduced) to the material layer.
 前記チオール化合物としては、特に限定されるものではないが、例えば、末端基がメルカプト基となるペンタエリスリトールテトラキス(3-メルカプトプロピオネ-ト)(例えば、三菱化学株式会社製「QX40」、東レ・ファインケミカル株式会社製「QE-340M」)、エーテル系一級チオール(例えば、コグニス(Cognis)社製「カップキュア3-800」)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン(例えば、昭和電工株式会社製「カレンズMT(登録商標) BD1」)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)(例えば、昭和電工株式会社製「カレンズMT(登録商標) PE1」)、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(例えば、昭和電工株式会社製「カレンズMT(登録商標) NR1」)等が挙げられる。 The thiol compound is not particularly limited, but for example, pentaerythritol tetrakis (3-mercaptopropionate) having a mercapto group as a terminal group (for example, "QX40" manufactured by Mitsubishi Chemical Corporation, Toray. Fine Chemicals Co., Ltd. "QE-340M"), ether-based first-class thiols (for example, "Cup Cure 3-800" manufactured by Cognis), 1,4-bis (3-mercaptobutylyloxy) butane (for example, Showa Denko Co., Ltd. "Karensu MT (registered trademark) BD1"), Pentaerythritol tetrakis (3-mercaptobutylate) (for example, Showa Denko Co., Ltd. "Karenzu MT (registered trademark) PE1"), 1, 3, 5 -Tris (3-mercaptobutyloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -Trione (for example, "Karens MT (registered trademark) NR1" manufactured by Showa Denko KK ) Etc. can be mentioned.
〔アミノ化合物〕
 前記アミノ化合物としては、公知のアミノ化合物等を使用できる。多官能アミノ化合物や、アミノ基(アミドを含む)以外にアルケニル基を有する化合物が好ましい。前記アミノ化合物としては、特に限定されるものではないが、例えば、末端がアミノ基となるエチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、1,4-ジアミノブタン、ヘキサメチレンジアミン、2,5-ジメチル-2,5-ヘキサンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、4-アミノメチルオクタメチレンジアミン、3,3’-イミノビス(プロピルアミン)、3,3’-メチルイミノビス(プロピルアミン)、ビス(3-アミノプロピル)エーテル、1,2-ビス(3-アミノプロピルオキシ)エタン、メンセンジアミン、イソホロンジアミン、ビスアミノメチルノルボルナン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,3-ジアミノシクロヘキサン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、アミノエチルピペラジン、末端基がラジカル反応性基である(メタ)アクリロイル基とすることができる(メタ)アクリルアミド等が挙げられる。
[Amino compound]
As the amino compound, a known amino compound or the like can be used. Polyfunctional amino compounds and compounds having an alkenyl group in addition to the amino group (including amide) are preferable. The amino compound is not particularly limited, but for example, ethylenediamine having an amino group at the terminal, 1,2-propanediamine, 1,3-propanediamine, 1,4-diaminobutane, hexamethylenediamine, and the like. 2,5-dimethyl-2,5-hexanediamine, 2,2,4-trimethylhexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 4-aminomethyloctamethylenediamine, 3,3 '-Iminobis (propylamine), 3,3'-methylimiminobis (propylamine), bis (3-aminopropyl) ether, 1,2-bis (3-aminopropyloxy) ethane, mensendiamine, isophoronediamine , Bisaminomethylnorbornan, bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, 1,3-diaminocyclohexane, 3,9-bis (3-aminopropyl) -2,4 , 8,10-Tetraoxaspiro [5,5] undecane, aminoethylpiperazine, (meth) acrylamide, which can be a (meth) acryloyl group whose terminal group is a radically reactive group, and the like.
〔イソシアネート化合物〕
 前記イソシアネート化合物は、該イソシアネート化合物中のイソシアナト基が、材料層2の表面に存在する水酸基と反応して結合することにより、樹脂コーティング層3と化学結合可能な該イソシアネート化合物の構造に基づく官能基を、材料層に対して付与する(導入する)ことができる。
[Isocyanate compound]
The isocyanate compound is a functional group based on the structure of the isocyanate compound, which can be chemically bonded to the resin coating layer 3 by reacting and bonding an isocyanato group in the isocyanate compound with a hydroxyl group existing on the surface of the material layer 2. Can be imparted (introduced) to the material layer.
 前記イソシアネート化合物としては、特に限定されるものではないが、例えば、末端基がイソシアナトとなる多官能イソシアネートであるジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、イソホロンジイソシアネート(IPDI)等の他、末端基がラジカル反応性基である(メタ)アクリロイル基とすることができるイソシアネート化合物である2-イソシアナトエチルメタクリレート(例えば、昭和電工株式会社製「カレンズMOI(登録商標)」)、2-イソシアネートエチルアクリレート(例えば、昭和電工株式会社製「カレンズAOI(登録商標)」、同「AOI-VM(登録商標)」)、1,1-(ビスアクリロイルオキシエチル)エチルイソシアネート(例えば、昭和電工株式会社製「カレンズBEI(登録商標)」)等が挙げられる。 The isocyanate compound is not particularly limited, but is, for example, diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), isophorone diisocyanate, which are polyfunctional isocyanates having an isocyanato terminal group. 2-Isocyanatoethyl methacrylate (for example, "Karens MOI (registered trademark)" manufactured by Showa Denko Co., Ltd., which is an isocyanate compound whose terminal group can be a (meth) acryloyl group which is a radical reactive group in addition to (IPDI) and the like. ) ”), 2-Isocyanate ethyl acrylate (for example,“ Karens AOI® ”,“ AOI-VM® ”), 1,1- (bisacryloyloxyethyl) ethyl isocyanate manufactured by Showa Denko Co., Ltd. (For example, "Karens BEI (registered trademark)" manufactured by Showa Denko Co., Ltd.) and the like.
[接合体5]
 図3に示すように、本実施形態の接合体5は、複合積層体1の樹脂コーティング層3が、上述したように、プライマー層であり、該プライマー層側の面と、変性ポリフェニレンエーテル6とが接合一体化されたものである。
[Joint 5]
As shown in FIG. 3, in the bonded body 5 of the present embodiment, the resin coating layer 3 of the composite laminate 1 is a primer layer as described above, and the surface on the primer layer side and the modified polyphenylene ether 6 are used. Is joined and integrated.
 前記プライマー層の厚さ(乾燥後の厚さ)は、前記接合対象の材質や接合部分の接触面積にもよるが、接合対象がフィルムでない場合は、接合対象との優れた接合強度を得る観点及び材料間の熱収縮の違いにより界面の樹脂端部に応力が集中することを抑制する観点から、1μm~10mmであることが好ましい。より好ましくは20μm~3mmであり、更に好ましくは40μm~1mmである。なお、前記プライマー層が複数層の場合、プライマー層の厚さ(乾燥後の厚さ)は、各層合計の厚さとする。
 接合対象がフィルムの場合は、前記プライマー層の厚さ(乾燥後の厚さ)は、0.1μm~1mmであることが好ましく、より好ましくは0.1μm~100μmである。
The thickness of the primer layer (thickness after drying) depends on the material of the bonding target and the contact area of the bonding portion, but when the bonding target is not a film, a viewpoint of obtaining excellent bonding strength with the bonding target. The thickness is preferably 1 μm to 10 mm from the viewpoint of suppressing stress concentration at the resin end of the interface due to the difference in heat shrinkage between the materials. It is more preferably 20 μm to 3 mm, and even more preferably 40 μm to 1 mm. When the primer layer is a plurality of layers, the thickness of the primer layer (thickness after drying) is the total thickness of each layer.
When the object to be bonded is a film, the thickness of the primer layer (thickness after drying) is preferably 0.1 μm to 1 mm, more preferably 0.1 μm to 100 μm.
 前記接合体における変性ポリフェニレンエーテルは、特に限定されるものではなく、前述のものが使用できる。 The modified polyphenylene ether in the conjugate is not particularly limited, and the above-mentioned ones can be used.
 前記接合体を製造する方法としては、複合積層体と変性ポリフェニレンエーテルの成形体とを別個に作製したものを接着させて接合一体化させることができる。
 また、前記変性ポリフェニレンエーテルの成形体を射出成形、プレス成形、トランスファー成形等の方法で成形するのと同時に、複合積層体の前記プライマー層側の面と前記変性ポリフェニレンエーテルとを接合一体化させることもできる。具体的には、前記複合積層体のプライマー層側の面に、超音波溶着法、振動溶着法、電磁誘導法、高周波法、レーザー法、熱プレス法からなる群より選ばれる少なくとも1種の方法で、前記変性ポリフェニレンエーテルを溶着する方法や、前記複合積層体のプライマー層側の面に、前記変性ポリフェニレンエーテルを射出溶着する方法が挙げられる。
As a method for producing the bonded body, a composite laminate and a molded body of modified polyphenylene ether separately produced can be bonded and integrated.
Further, the molded body of the modified polyphenylene ether is molded by a method such as injection molding, press molding, or transfer molding, and at the same time, the surface of the composite laminate on the primer layer side and the modified polyphenylene ether are joined and integrated. You can also. Specifically, at least one method selected from the group consisting of an ultrasonic welding method, a vibration welding method, an electromagnetic induction method, a high frequency method, a laser method, and a heat pressing method on the surface of the composite laminate on the primer layer side. Then, a method of welding the modified polyphenylene ether and a method of injection welding the modified polyphenylene ether onto the surface of the composite laminate on the primer layer side can be mentioned.
 次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。 Next, specific examples of the present invention will be described, but the present invention is not particularly limited to those of these examples.
<製造例1>
 フラスコに変性ポリフェニレンエーテル(SABIC社製 NOLYL731):3.77g、キシレン:95gを仕込み、撹拌しながら125℃に昇温して溶解した。次に、2官能エポキシ樹脂(三菱ケミカル株式会社製 jER(登録商標)1001):1.0g、ビスフェノールA:0.22g、2,4,6-トリス(ジメチルアミノメチル)フェノール:0.005gをフラスコ中に投入し、125℃で30分間撹拌し、前記変性ポリフェニレンエーテル100質量部に対して32質量部の熱可塑性エポキシ樹脂で変性した再変性―変性ポリフェニレンエーテル:再変性m-PPE-1を得た。
<Manufacturing example 1>
A modified polyphenylene ether (NOLYL731 manufactured by SABIC): 3.77 g and xylene: 95 g were charged in a flask, and the temperature was raised to 125 ° C. with stirring to dissolve. Next, a bifunctional epoxy resin (jER (registered trademark) 1001 manufactured by Mitsubishi Chemical Co., Ltd.): 1.0 g, bisphenol A: 0.22 g, 2,4,6-tris (dimethylaminomethyl) phenol: 0.005 g. Put it in a flask, stir at 125 ° C. for 30 minutes, and re-modified-modified polyphenylene ether modified with 32 parts by mass of thermoplastic epoxy resin with respect to 100 parts by mass of the modified polyphenylene ether: re-modified m-PPE-1. Obtained.
<製造例2>
 フラスコに変性ポリフェニレンエーテル(SABIC社製 NOLYL731):3.75g、キシレン:95gを仕込み、撹拌しながら125℃に昇温して溶解した。次に、2官能エポキシ樹脂(三菱ケミカル株式会社製 jER(登録商標)1007):1.18g、ビスフェノールA:0.065g、2,4,6-トリス(ジメチルアミノメチル)フェノール:0.004gをフラスコ中に投入し、125℃で30分間撹拌し、前記変性ポリフェニレンエーテル100質量部に対して33質量部の熱可塑性エポキシ樹脂で変性した再変性―変性ポリフェニレンエーテル:再変性m-PPE-2を得た。
<Manufacturing example 2>
A modified polyphenylene ether (NOLYL731 manufactured by SABIC): 3.75 g and xylene: 95 g were placed in a flask and dissolved by raising the temperature to 125 ° C. with stirring. Next, a bifunctional epoxy resin (jER (registered trademark) 1007 manufactured by Mitsubishi Chemical Co., Ltd.): 1.18 g, bisphenol A: 0.065 g, 2,4,6-tris (dimethylaminomethyl) phenol: 0.004 g. Put it in a flask, stir at 125 ° C. for 30 minutes, and re-modified-modified polyphenylene ether modified with 33 parts by mass of thermoplastic epoxy resin with respect to 100 parts by mass of the modified polyphenylene ether: re-modified m-PPE-2. Obtained.
<製造例3>
 フラスコに変性ポリフェニレンエーテル(SABIC社製 NOLYL731):7.0g、キシレン:95gを仕込み、撹拌しながら125℃に昇温して溶解した。次にメタクリル酸:1.0g、メタクリル酸メチル:1.0g、スチレン:1.0gを混合したモノマー混合物に有機過酸化物触媒(日油株式会社製 パーブチル(登録商標)O):0.1gを混合したものを滴下し、撹拌しながら125℃で30分間撹拌し、メタクリル樹脂で変性した再変性―変性ポリフェニレンエーテル:再変性m-PPE-3を得た。
<Manufacturing example 3>
A modified polyphenylene ether (NOLYL731 manufactured by SABIC): 7.0 g and xylene: 95 g were charged in a flask, and the temperature was raised to 125 ° C. with stirring to dissolve. Next, an organic peroxide catalyst (Perbutyl (registered trademark) O manufactured by Nichiyu Co., Ltd.): 0.1 g in a monomer mixture in which methacrylic acid: 1.0 g, methyl methacrylate: 1.0 g, and styrene: 1.0 g were mixed. Was added dropwise and stirred at 125 ° C. for 30 minutes with stirring to obtain a re-modified-modified polyphenylene ether modified with a methacrylic resin: re-modified m-PPE-3.
<製造例4>
 フラスコに、2官能エポキシ樹脂(三菱ケミカル株式会社製 jER(登録商標)1007):1.18g、ビスフェノールA:0.065g、2,4,6-トリス(ジメチルアミノメチル)フェノール:0.004g、キシレン:95gを仕込み、140℃に昇温して1時間撹拌しながら反応し熱可塑性エポキシ樹脂を得た。次に、変性ポリフェニレンエーテル(SABIC社製 NOLYL731):1.24gを投入し、10分間撹拌、混合して熱可塑性エポキシ樹脂で変性した再変性―変性ポリフェニレンエーテル:再変性m-PPE-4を得た。
<Manufacturing example 4>
In a flask, a bifunctional epoxy resin (jER® 1007 manufactured by Mitsubishi Chemical Co., Ltd.): 1.18 g, bisphenol A: 0.065 g, 2,4,6-tris (dimethylaminomethyl) phenol: 0.004 g, Xylene: 95 g was charged, the temperature was raised to 140 ° C., and the reaction was carried out with stirring for 1 hour to obtain a thermoplastic epoxy resin. Next, 1.24 g of modified polyphenylene ether (NOLYL731 manufactured by SABIC) was added, and the mixture was stirred and mixed for 10 minutes to obtain a re-modified-modified polyphenylene ether modified with a thermoplastic epoxy resin: re-modified m-PPE-4. It was.
<製造例5>
 フラスコにキシレン:95gを仕込み、メタクリル酸:1.0g、メタクリル酸メチル:1.0g、スチレン:1.0gを混合したモノマー混合物に有機過酸化物触媒(日油株式会社製 パーブチル(登録商標)O):0.1gを混合したものを滴下し、125℃で30分間撹拌し、メタクリル樹脂溶液を得た。次にポリフェニレンエーテル(SABIC社製 NOLYL731):3.0gを投入し、10分間撹拌、混合してメタクリル樹脂で変性した再変性ポリフェニレンエーテル:再変性m-PPE-5を得た。
<Manufacturing example 5>
An organic peroxide catalyst (Perbutyl (registered trademark) manufactured by Nichiyu Co., Ltd.) was added to a monomer mixture in which 95 g of xylene was charged in a flask and 1.0 g of methacrylic acid, 1.0 g of methyl methacrylate and 1.0 g of styrene were mixed. O): A mixture of 0.1 g was added dropwise, and the mixture was stirred at 125 ° C. for 30 minutes to obtain a methacrylic resin solution. Next, 3.0 g of polyphenylene ether (NOLYL731 manufactured by SABIC) was added, and the mixture was stirred and mixed for 10 minutes to obtain a re-modified polyphenylene ether modified with a methacrylic resin: re-modified m-PPE-5.
<実施例1-1>
(前処理)
 18mm×45mm、厚さ1.2mmのガラス基材(日本電気硝子株式会社製、化学強化ガラス)表面を、アセトンで脱脂処理した。
<Example 1-1>
(Preprocessing)
The surface of a glass substrate (manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass) having a thickness of 18 mm × 45 mm and a thickness of 1.2 mm was degreased with acetone.
(官能基含有層の形成)
 次に、3-アミノプロピルトリメトキシシラン(信越シリコーン株式会社製 KBM-903;シランカップリング剤)2gを工業用エタノール1000gに溶解させた70℃のシランカップリング剤含有溶液中に、前記アセトン脱脂処理後のガラス基材を20分間浸漬した。該ガラス基材を取り出して乾燥させ、該ガラス基材表面に、官能基(アミノ基)含有層を形成した。
(Formation of functional group-containing layer)
Next, the acetone degreasing was carried out in a solution containing a silane coupling agent at 70 ° C. in which 2 g of 3-aminopropyltrimethoxysilane (KBM-903 manufactured by Shinetsu Silicone Co., Ltd .; a silane coupling agent) was dissolved in 1000 g of industrial ethanol. The treated glass substrate was immersed for 20 minutes. The glass substrate was taken out and dried to form a functional group (amino group) -containing layer on the surface of the glass substrate.
(樹脂コーティング層の形成)
 次に、製造例1で得た再変性m-PPE-1を前記ガラス基材の官能基含有層の表面に塗布し、キシレンを揮発させ150℃で30分間保持して、前記官能基含有層の表面に、再変性m-PPE-1の樹脂コーティング層(厚さ30μm)が形成された複合積層体を作製した。
(Formation of resin coating layer)
Next, the re-denatured m-PPE-1 obtained in Production Example 1 was applied to the surface of the functional group-containing layer of the glass substrate, xylene was volatilized and held at 150 ° C. for 30 minutes, and the functional group-containing layer was held. A composite laminate in which a resin coating layer (thickness 30 μm) of re-modified m-PPE-1 was formed on the surface of the above was prepared.
<実施例1-2>
 実施例1-1で作製した複合積層体の樹脂コーティング層側の表面に、接合対象である変性ポリフェニレンエーテル樹脂(SABIC社製 NOLYL731)を、射出成形機(住友重機械工業株式会社製 SE100V;シリンダー温度290℃、ツール温度120℃、インジェクションスピード50mm/sec、ピーク/ホールディング圧力60/55[MPa/MPa])にて射出成形することにより、ISO19095に準拠した引張試験用試験片(m-PPE樹脂、10mm×45mm×3mm、接合部の重なり長さ5mm、幅10mm)(ガラス-変性ポリフェニレンエーテル接合体)を作製した。
<Example 1-2>
A modified polyphenylene ether resin (NOLYL731 manufactured by SABIC) to be bonded was placed on the surface of the composite laminate produced in Example 1-1 on the resin coating layer side, and an injection molding machine (SE100V manufactured by Sumitomo Heavy Industries, Ltd .; cylinder). A test piece for tensile test (m-PPE resin) conforming to ISO19095 by injection molding at a temperature of 290 ° C., a tool temperature of 120 ° C., an injection speed of 50 mm / sec, and a peak / holding pressure of 60/55 [MPa / MPa]). 10 mm × 45 mm × 3 mm, overlapping length of joint portion 5 mm, width 10 mm) (glass-modified polyphenylene ether junction) was prepared.
〔接合性の評価〕
 実施例1-2で作製した引張試験用試験片について、常温で(温度23℃、50%RH)1日間放置後、ISO19095 1-4に準拠して、引張試験機(株式会社島津製作所製 万能試験機オートグラフ「AG-IS」;ロードセル10kN、引張速度10mm/min、温度23℃、50%RH)にて、引張剪断接合強度試験を行い、接合強度を測定した。測定結果を下記表1に示す。
[Evaluation of bondability]
The tensile test test piece prepared in Example 1-2 was left at room temperature (temperature 23 ° C., 50% RH) for 1 day, and then subjected to a tensile tester (manufactured by Shimadzu Corporation) in accordance with ISO19095 1-4. The tensile shear joint strength test was performed on the autograph "AG-IS"; load cell 10 kN, tensile speed 10 mm / min, temperature 23 ° C., 50% RH), and the joint strength was measured. The measurement results are shown in Table 1 below.
<実施例2-1>
(前処理)
 実施例1-1と同様の操作を行い、ガラス基材(18mm×45mm、厚さ1.2mmの日本電気硝子株式会社製、化学強化ガラス)の表面を、アセトンで脱脂処理した。
<Example 2-1>
(Preprocessing)
The same operation as in Example 1-1 was carried out, and the surface of a glass substrate (18 mm × 45 mm, 1.2 mm thick, manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass) was degreased with acetone.
(官能基含有層の形成)
 次に、実施例1-1と同様の操作を行い、前記アセトン脱脂処理後のガラス基材表面に、官能基(アミノ基)含有層を形成した。
(Formation of functional group-containing layer)
Next, the same operation as in Example 1-1 was carried out to form a functional group (amino group) -containing layer on the surface of the glass substrate after the acetone degreasing treatment.
(樹脂コーティング層の形成:1層目)
 前記官能基含有層の表面に、2官能エポキシ樹脂(三菱ケミカル株式会社製 jER(登録商標)1001):100g、ビスフェノールA:24g、及びトリエチルアミン:0.4gを、アセトン250g中に溶解してなる熱可塑性エポキシ樹脂組成物を、乾燥後の厚さが30μmになるようにスプレー法にて塗布した。空気中に常温(23℃)で30分間放置することによって溶剤を揮発させた後、150℃の炉中に30分間放置して重付加反応を行い、常温(23℃)まで放冷して、1層目の樹脂コーティング層(熱可塑性エポキシ樹脂層)を形成した。
(Formation of resin coating layer: 1st layer)
A bifunctional epoxy resin (jER® 1001 manufactured by Mitsubishi Chemical Corporation): 100 g, bisphenol A: 24 g, and triethylamine: 0.4 g are dissolved in 250 g of acetone on the surface of the functional group-containing layer. The thermoplastic epoxy resin composition was applied by a spray method so that the thickness after drying was 30 μm. After volatilizing the solvent by leaving it in the air at room temperature (23 ° C) for 30 minutes, leave it in a furnace at 150 ° C for 30 minutes to perform a heavy addition reaction, and allow it to cool to room temperature (23 ° C). The first resin coating layer (thermoplastic epoxy resin layer) was formed.
(樹脂コーティング層の形成:2層目)
 次に、製造例3で得た再変性m-PPE-3を、前記熱可塑性エポキシ樹脂層の表面に塗布し、キシレンを揮発させ150℃で30分間保持して、前記熱可塑性エポキシ樹脂層の表面に、再変性m-PPE-3の樹脂コーティング層(厚さ30μm)が形成された複合積層体を作製した。
(Formation of resin coating layer: second layer)
Next, the remodified m-PPE-3 obtained in Production Example 3 was applied to the surface of the thermoplastic epoxy resin layer, xylene was volatilized, and the mixture was held at 150 ° C. for 30 minutes to obtain the thermoplastic epoxy resin layer. A composite laminate in which a resin coating layer (thickness 30 μm) of remodified m-PPE-3 was formed on the surface was prepared.
<実施例2-2>
 実施例2-1で作製した複合積層体の2層目の樹脂コーティング層側の表面に、実施例1-2と同様の操作を行い、引張試験用試験片を作製した。
 その試験片について、実施例1-2と同じ手法で接合強度を測定した。測定結果を下記表1に示す。
<Example 2-2>
A test piece for a tensile test was prepared by performing the same operation as in Example 1-2 on the surface of the composite laminate prepared in Example 2-1 on the resin coating layer side of the second layer.
The joint strength of the test piece was measured by the same method as in Example 1-2. The measurement results are shown in Table 1 below.
<実施例3-1>
(前処理)
 実施例1-1と同様の操作を行い、ガラス基材(18mm×45mm、厚さ1.2mmの日本電気硝子株式会社製、化学強化ガラス)の表面を、アセトンで脱脂処理した。
<Example 3-1>
(Preprocessing)
The same operation as in Example 1-1 was carried out, and the surface of a glass substrate (18 mm × 45 mm, 1.2 mm thick, manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass) was degreased with acetone.
(官能基含有層の形成)
 次に、前記前処理後のガラス基材を、3-メタクリロキシプロピルトリメトキシシラン(信越シリコーン株式会社製 KBM-503;シランカップリング剤)0.5gを工業用エタノール100gに溶解させた70℃のシランカップリング剤溶液中に、5分間浸漬した後、該ガラス基材を取り出して乾燥させ、ガラス基材の表面に、シランカップリング剤由来の官能基(メタクリロイルオキシ基)を導入した。
 そしてさらに2官能チオール化合物1,4ビス(3-メルカプトブチリルオキシ)ブタン(昭和電工株式会社製 カレンズMT(登録商標)BD1):0.6g、2,4,6-トリス(ジメチルアミノメチル)フェノール(DMP-30):0.05gをトルエン150g中に溶解した溶液に70℃で10分間浸漬した後に引き揚げて乾燥した。このようにして、化学結合可能な官能基を有する官能基(メルカプト基)含有層を形成した。
(Formation of functional group-containing layer)
Next, the pretreated glass base material was prepared by dissolving 0.5 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shinetsu Silicone Co., Ltd .; a silane coupling agent) in 100 g of industrial ethanol at 70 ° C. After immersing in the silane coupling agent solution of silane for 5 minutes, the glass substrate was taken out and dried, and a functional group (methacryloyloxy group) derived from the silane coupling agent was introduced on the surface of the glass substrate.
Further, a bifunctional thiol compound 1,4 bis (3-mercaptobutyryloxy) butane (Showa Denko KK Karens MT (registered trademark) BD1): 0.6 g, 2,4,6-tris (dimethylaminomethyl) Phenol (DMP-30): 0.05 g was immersed in a solution dissolved in 150 g of toluene at 70 ° C. for 10 minutes, and then lifted and dried. In this way, a functional group (mercapto group) -containing layer having a chemically bondable functional group was formed.
(樹脂コーティング層形成工程)
 次に、製造例2で得た再変性m-PPE-2を前記ガラス基材の官能基含有層の表面に塗布し、キシレンを揮発させ150℃で30分間保持して、前記官能基含有層の表面に、再変性m-PPE-2の樹脂コーティング層(厚さ30μm)が形成された複合積層体を作製した。
(Resin coating layer forming process)
Next, the re-modified m-PPE-2 obtained in Production Example 2 was applied to the surface of the functional group-containing layer of the glass substrate, xylene was volatilized and held at 150 ° C. for 30 minutes, and the functional group-containing layer was held. A composite laminate in which a resin coating layer (thickness 30 μm) of re-modified m-PPE-2 was formed on the surface of the above was prepared.
<実施例3-2>
 実施例3-1で作製した複合積層体の樹脂コーティング層側の表面に、実施例1-2と同様の操作を行い、引張試験用試験片を作製した。
 その試験片について、実施例1-2と同じ手法で接合強度を測定した。測定結果を下記表1に示す。
<Example 3-2>
A test piece for a tensile test was prepared by performing the same operation as in Example 1-2 on the surface of the composite laminate prepared in Example 3-1 on the resin coating layer side.
The joint strength of the test piece was measured by the same method as in Example 1-2. The measurement results are shown in Table 1 below.
<実施例4-1>
(前処理)
 18mm×45mm、厚さ1.2mmのガラス基材(日本電気硝子株式会社製、化学強化ガラス)に対し、ウェットブラスト処理を行い、前記ガラス基材の表面に微細な凹凸を形成した。
<Example 4-1>
(Preprocessing)
A glass substrate (manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass) having a thickness of 18 mm × 45 mm and a thickness of 1.2 mm was subjected to a wet blast treatment to form fine irregularities on the surface of the glass substrate.
(官能基含有層の形成)
 次に、3-アミノプロピルトリメトキシシラン(信越シリコーン株式会社製 KBM-903;シランカップリング剤)2gを工業用エタノール1000gに溶解させた70℃のシランカップリング剤含有溶液中に、前記前処理後のガラス基材を20分間浸漬した。該ガラス基材を取り出して乾燥させ、該ガラス基材の表面に、官能基(アミノ基)含有層を形成した。
(Formation of functional group-containing layer)
Next, the pretreatment was carried out in a solution containing a silane coupling agent at 70 ° C. in which 2 g of 3-aminopropyltrimethoxysilane (KBM-903 manufactured by Shinetsu Silicone Co., Ltd .; a silane coupling agent) was dissolved in 1000 g of industrial ethanol. The subsequent glass substrate was immersed for 20 minutes. The glass substrate was taken out and dried to form a functional group (amino group) -containing layer on the surface of the glass substrate.
(樹脂コーティング層の形成)
 次に、製造例4で得た再変性m-PPE-4を前記ガラス基材の官能基含有層の表面に塗布し、キシレンを揮発させ150℃で30分間保持して、前記官能基含有層の表面に、再変性m-PPE-4の樹脂コーティング層(厚さ30μm)が形成された複合積層体を作製した。
(Formation of resin coating layer)
Next, the re-modified m-PPE-4 obtained in Production Example 4 was applied to the surface of the functional group-containing layer of the glass substrate, xylene was volatilized and held at 150 ° C. for 30 minutes, and the functional group-containing layer was held. A composite laminate in which a resin coating layer (thickness 30 μm) of re-modified m-PPE-4 was formed on the surface of the above was prepared.
<実施例4-2>
 実施例4-1で作製した複合積層体の樹脂コーティング層側の表面に、実施例1-2と同様の操作を行い、引張試験用試験片を作製した。
 その試験片について、実施例1-2と同じ手法で接合強度を測定した。測定結果を下記表1に示す。
<Example 4-2>
A test piece for a tensile test was prepared by performing the same operation as in Example 1-2 on the surface of the composite laminate prepared in Example 4-1 on the resin coating layer side.
The joint strength of the test piece was measured by the same method as in Example 1-2. The measurement results are shown in Table 1 below.
<実施例5-1>
(前処理)
 18mm×45mm、厚さ1.2mmのガラス基材(日本電気硝子株式会社製、化学強化ガラス)に対し、ウェットブラスト処理を行い、前記ガラス基材の表面に微細な凹凸を形成した。
<Example 5-1>
(Preprocessing)
A glass substrate (manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass) having a thickness of 18 mm × 45 mm and a thickness of 1.2 mm was subjected to a wet blast treatment to form fine irregularities on the surface of the glass substrate.
(樹脂コーティング層の形成)
 次に、製造例5で得た再変性m-PPE-5を前記ガラス基材の表面に塗布し、キシレンを揮発させ150℃で30分間保持して、前記ガラス基材の表面に、再変性m-PPE-5の樹脂コーティング層(厚さ30μm)が形成された複合積層体を作製した。
(Formation of resin coating layer)
Next, the re-denatured m-PPE-5 obtained in Production Example 5 was applied to the surface of the glass base material, xylene was volatilized and held at 150 ° C. for 30 minutes, and the surface of the glass base material was re-denatured. A composite laminate on which a resin coating layer (thickness 30 μm) of m-PPE-5 was formed was produced.
<実施例5-2>
 実施例5-1で作製した複合積層体の樹脂コーティング層側の表面に、実施例1-2と同様の操作を行い、引張試験用試験片を作製した。
 その試験片について、実施例1-2と同じ手法で接合強度を測定した。測定結果を下記表1に示す。
<Example 5-2>
A test piece for a tensile test was prepared by performing the same operation as in Example 1-2 on the surface of the composite laminate prepared in Example 5-1 on the resin coating layer side.
The joint strength of the test piece was measured by the same method as in Example 1-2. The measurement results are shown in Table 1 below.
<実施例6-1>
(前処理)
 18mm×45mm、厚さ1.2mmのガラス基材(日本電気硝子株式会社製、化学強化ガラス)に対し、ウェットブラスト処理を行い、前記ガラス基材の表面に微細な凹凸を形成した。
<Example 6-1>
(Preprocessing)
A glass substrate (manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass) having a thickness of 18 mm × 45 mm and a thickness of 1.2 mm was subjected to a wet blast treatment to form fine irregularities on the surface of the glass substrate.
(官能基含有層の形成)
 次に、3-アミノプロピルトリメトキシシラン(信越シリコーン株式会社製 KBM-903;シランカップリング剤)2gを工業用エタノール1000gに溶解させた70℃のシランカップリング剤含有溶液中に、前記前処理後のガラス基材を20分間浸漬した。該ガラス基材を取り出して乾燥させ、ガラス基材の表面に、シランカップリング剤由来の官能基(アミノ基)を導入した。続いてペンタエリスリトールテトラキス(3-メルカプトブチレート)(昭和電工株式会社製「カレンズMT(登録商標) PE1」):1.2g、2,4,6-トリス(ジメチルアミノメチル)フェノール(DMP-30):0.05gをトルエン150g中に溶解した溶液に70℃で5分間浸漬した後に引き揚げて乾燥した。このようにして、化学結合可能な官能基(メルカプト基)を有する官能基含有層を形成した。
(Formation of functional group-containing layer)
Next, the pretreatment was carried out in a solution containing a silane coupling agent at 70 ° C. in which 2 g of 3-aminopropyltrimethoxysilane (KBM-903 manufactured by Shinetsu Silicone Co., Ltd .; a silane coupling agent) was dissolved in 1000 g of industrial ethanol. The subsequent glass substrate was immersed for 20 minutes. The glass substrate was taken out and dried, and a functional group (amino group) derived from a silane coupling agent was introduced on the surface of the glass substrate. Subsequently, pentaerythritol tetrakis (3-mercaptobutyrate) (Showa Denko KK "Karensu MT (registered trademark) PE1"): 1.2 g, 2,4,6-tris (dimethylaminomethyl) phenol (DMP-30) ): After immersing 0.05 g in a solution of 0.05 g in 150 g of toluene at 70 ° C. for 5 minutes, the mixture was lifted and dried. In this way, a functional group-containing layer having a chemically bondable functional group (mercapto group) was formed.
(樹脂コーティング層の形成)
 固形ビニルエステル樹脂(昭和電工株式会社製 VR-77)100gをアセトン100g中に溶解し、さらに有機過酸化物(日油株式会社製 パーブチル(登録商標)O)1.0gを混合した熱硬化性樹脂組成物を、前記官能基付与工程を経た後のガラス基材の官能基付着面(以下、官能基含有層表面という)に、乾燥厚さが15μmになるようにスプレー法にて塗布した後、空気中に常温(23℃)で1時間放置することによって溶剤の揮発を行った。その後、120℃の乾燥炉中に30分間放置しビニルエステル樹脂の硬化を行って熱硬化性樹脂層(樹脂コーティング層の1層目)を形成させた。
 続いて、製造例5で得た再変性m-PPE-5を前記ガラス基材の熱硬化性樹脂層の表面に塗布し、キシレンを揮発させ150℃で30分間保持して、前記官能基含有層の表面に、再変性m-PPE-5の樹脂コーティング層(厚さ30μm)が形成された複合積層体を作製した。
(Formation of resin coating layer)
Thermosetting by dissolving 100 g of solid vinyl ester resin (VR-77 manufactured by Showa Denko Co., Ltd.) in 100 g of acetone and further mixing 1.0 g of organic peroxide (Perbutyl (registered trademark) O manufactured by Nichiyu Co., Ltd.). After applying the resin composition to the functional group-adhering surface (hereinafter referred to as the functional group-containing layer surface) of the glass substrate after undergoing the functional group-imparting step by a spray method so that the dry thickness becomes 15 μm. The solvent was volatilized by leaving it in the air at room temperature (23 ° C.) for 1 hour. Then, it was left in a drying oven at 120 ° C. for 30 minutes to cure the vinyl ester resin to form a thermosetting resin layer (first layer of the resin coating layer).
Subsequently, the re-denatured m-PPE-5 obtained in Production Example 5 was applied to the surface of the thermosetting resin layer of the glass substrate, xylene was volatilized and held at 150 ° C. for 30 minutes to contain the functional group. A composite laminate in which a resin-coated layer (thickness 30 μm) of re-modified m-PPE-5 was formed on the surface of the layer was prepared.
<実施例6-2>
 実施例6-1で作製した複合積層体の樹脂コーティング層側の表面に、実施例1-2と同様の操作を行い、引張試験用試験片を作製した。
 その試験片について、実施例1-2と同じ手法で接合強度を測定した。測定結果を下記表1に示す。
<Example 6-2>
A test piece for a tensile test was prepared by performing the same operation as in Example 1-2 on the surface of the composite laminate prepared in Example 6-1 on the resin coating layer side.
The joint strength of the test piece was measured by the same method as in Example 1-2. The measurement results are shown in Table 1 below.
<比較例1-1>
(前処理工程)
 実施例1-1と同様の操作を行い、ガラス基材(18mm×45mm、厚さ1.2mmの日本電気硝子株式会社製、化学強化ガラス)の表面を、アセトンで脱脂処理した。
<Comparative Example 1-1>
(Pretreatment process)
The same operation as in Example 1-1 was carried out, and the surface of a glass substrate (18 mm × 45 mm, 1.2 mm thick, manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass) was degreased with acetone.
<比較例1-2>
 比較例1-1で作製したアセトン脱脂処理後のガラス基材表面に、実施例1-2と同様の射出成形操作を行ったが、前記m-PPE樹脂は、前記ガラス基材表面に接着せず、ガラス-変性ポリフェニレンエーテル接合体を作製することはできなかった。
<Comparative Example 1-2>
The same injection molding operation as in Example 1-2 was performed on the surface of the glass substrate after the acetone degreasing treatment produced in Comparative Example 1-1, but the m-PPE resin was adhered to the surface of the glass substrate. Therefore, it was not possible to prepare a glass-modified polyphenylene ether conjugate.
<比較例2-1>
(前処理工程)
 実施例1-1と同様の操作を行い、ガラス基材(18mm×45mm、厚さ1.2mmの日本電気硝子株式会社製、化学強化ガラス)の表面を、アセトンで脱脂処理した。
<Comparative Example 2-1>
(Pretreatment process)
The same operation as in Example 1-1 was carried out, and the surface of a glass substrate (18 mm × 45 mm, 1.2 mm thick, manufactured by Nippon Electric Glass Co., Ltd., chemically strengthened glass) was degreased with acetone.
(官能基含有層形成工程)
 次に、実施例1-1と同様の操作を行い、前記アセトン脱脂処理後のガラス基材表面に、官能基(アミノ基)含有層を形成した。
(Functional group-containing layer forming step)
Next, the same operation as in Example 1-1 was carried out to form a functional group (amino group) -containing layer on the surface of the glass substrate after the acetone degreasing treatment.
<比較例2-2>
 比較例2-1の官能基含有層の表面に、実施例1-2と同様の操作を行い、引張試験用試験片を作製した。
 その試験片について、実施例1-2と同じ手法で接合強度を測定した。測定結果を下記表1に示す。
<Comparative Example 2-2>
The same operation as in Example 1-2 was carried out on the surface of the functional group-containing layer of Comparative Example 2-1 to prepare a test piece for a tensile test.
The joint strength of the test piece was measured by the same method as in Example 1-2. The measurement results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[試験片用材料]
 試験片用材料として、以下の材料を用意した。
(1)CFRP:昭和電工株式会社製 CF-SMCリゴラックRCS-1000BK(CF:50質量%)を1500kNのプレスを使用し、140℃で5分間加圧成形したもの。寸法:18mm×45mm×1.5mm。
(2)セラミック:京セラ株式会社製 厚膜用基板(アルミナ)。寸法:18mm×45mm×1.5mm。
(3)変性ポリフェニレンエーテル(m-PPE)板:実施例1-2の成形法でISO19095に準拠した引張試験用試験片作製のためのm-PPE板、10mm×45mm×3mmを成形した。
[Material for test piece]
The following materials were prepared as test piece materials.
(1) CFRP: CF-SMC Rigolac RCS-1000BK (CF: 50% by mass) manufactured by Showa Denko KK using a 1500 kN press and pressure-molded at 140 ° C. for 5 minutes. Dimensions: 18 mm x 45 mm x 1.5 mm.
(2) Ceramic: Substrate for thick film (alumina) manufactured by Kyocera Corporation. Dimensions: 18 mm x 45 mm x 1.5 mm.
(3) Modified polyphenylene ether (m-PPE) plate: An m-PPE plate of 10 mm × 45 mm × 3 mm for preparing a test piece for a tensile test conforming to ISO19095 was molded by the molding method of Example 1-2.
<実施例7-1>
(前処理 ウェットブラスト処理)
 18mm×45mm、厚さ1.5mmのCFRPに実施例4-1と同様の操作でウェットブラスト処理を行い、前記CFRP表面に微細な凹凸を形成した。
<Example 7-1>
(Pretreatment Wet blast treatment)
A CFRP having a size of 18 mm × 45 mm and a thickness of 1.5 mm was subjected to a wet blast treatment in the same manner as in Example 4-1 to form fine irregularities on the CFRP surface.
(官能基含有層の形成 シランカップリング剤処理)
 前記ウェットブラスト処理を施したCFRPを、3-アミノプロピルトリメトキシシラン(信越シリコーン株式会社製「KBM-903」;シランカップリング剤)2gを工業用エタノール1000gに溶解させた70℃のシランカップリング剤含有溶液中に20分間浸漬後、該CFRPを取り出して乾燥させ、該CFRP表面に官能基(アミノ基)含有層を形成した。
(Formation of functional group-containing layer Treatment with silane coupling agent)
A silane coupling at 70 ° C. in which 2 g of 3-aminopropyltrimethoxysilane (“KBM-903” manufactured by Shin-Etsu Silicone Co., Ltd .; a silane coupling agent) was dissolved in 1000 g of industrial ethanol in the CFRP subjected to the wet blast treatment. After immersing in the agent-containing solution for 20 minutes, the CFRP was taken out and dried to form a functional group (amino group) -containing layer on the surface of the CFRP.
(樹脂コーティング層の形成)
 次に、製造例1で得た再変性m-PPE-1を前記官能基含有層の表面に塗布し、キシレンを揮発させ、150℃で30分間保持して、前記官能基含有層の表面に、厚さ30μmの再変性m-PPE-1の樹脂コーティング層が形成された複合積層体を作製した。
(Formation of resin coating layer)
Next, the re-modified m-PPE-1 obtained in Production Example 1 was applied to the surface of the functional group-containing layer, xylene was volatilized, and the mixture was held at 150 ° C. for 30 minutes on the surface of the functional group-containing layer. , A composite laminate having a resin-coated layer of re-modified m-PPE-1 having a thickness of 30 μm was prepared.
<実施例7-2:CFRP-変性ポリフェニレンエーテル接合体>
 次に、CFRPの樹脂コーティング層面とm-PPE板を接合部が重なり長さ5mm、幅10mmとなるように重ね合わせた状態で、精電舎電子工業株式会社製 超音波溶着機SONOPET-JII430T-M(28.5KHz)を使用して超音波溶着し、実施例1と同様のサイズのISO19095に準拠した引張試験用の試験片:CFRP-変性ポリフェニレンエーテル接合体(CFRP:18mm×45mm×1.5mm、m-PPE:10mm×45mm×3mm、接合部の重なり長さ:5mm、幅10mm)を得た。
<Example 7-2: CFRP-modified polyphenylene ether conjugate>
Next, in a state where the resin coating layer surface of CFRP and the m-PPE plate are overlapped so that the joints overlap and have a length of 5 mm and a width of 10 mm, the ultrasonic welder SONOPET-JII430T- manufactured by Seidensha Electronics Co., Ltd. Specimen for tensile test conforming to ISO19095 of the same size as Example 1 by ultrasonic welding using M (28.5 KHz): CFRP-modified polyphenylene ether conjugate (CFRP: 18 mm × 45 mm × 1. 5 mm, m-PPE: 10 mm × 45 mm × 3 mm, overlapping length of joint portion: 5 mm, width 10 mm) was obtained.
〔引張剪断強度〕
 作製した試験片(CFRP-変性ポリフェニレンエーテル接合体)について、常温(23℃)で1日間放置後、ISO19095 1-4に準拠して、引張試験機(株式会社島津製作所製 万能試験機オートグラフ「AG-IS」;ロードセル10kN、引張速度10mm/min、温度23℃、50%RH)にて、引張剪断接合強度試験を行い、接合強度を測定した。測定結果を下記表2に示す。
[Tensile shear strength]
The prepared test piece (CFRP-modified polyphenylene ether conjugate) was left at room temperature (23 ° C.) for 1 day, and then subjected to a tensile tester (Shimadzu Seisakusho Co., Ltd. universal tester Autograph "Autograph" in accordance with ISO19095 1-4. AG-IS ”; load cell 10 kN, tensile speed 10 mm / min, temperature 23 ° C., 50% RH), a tensile shear joint strength test was performed, and the joint strength was measured. The measurement results are shown in Table 2 below.
<実施例8-1>
(前処理 ウェットブラスト処理)
 18mm×45mm、厚さ1.5mmのCFRPに実施例4-1と同様の操作でウェットブラスト処理を行い、前記CFRP表面に微細な凹凸を形成した。
<Example 8-1>
(Pretreatment Wet blast treatment)
A CFRP having a size of 18 mm × 45 mm and a thickness of 1.5 mm was subjected to a wet blast treatment in the same manner as in Example 4-1 to form fine irregularities on the CFRP surface.
(官能基含有層の形成 シランカップリング剤処理)
 次に、実施例7-1と同様の操作を行い、前記ウェットブラスト処理後のCFRP表面に官能基(アミノ基)含有層を形成した。
(Formation of functional group-containing layer Treatment with silane coupling agent)
Next, the same operation as in Example 7-1 was carried out to form a functional group (amino group) -containing layer on the CFRP surface after the wet blast treatment.
(樹脂コーティング層の形成)
 次に、製造例2で得た再変性m-PPE-2を前記官能基含有層の表面に塗布し、キシレンを揮発させ、150℃で30分間保持して、前記官能基含有層の表面に、厚さ30μmの再変性m-PPE-2の樹脂コーティング層が形成された複合積層体を作製した。
(Formation of resin coating layer)
Next, the re-modified m-PPE-2 obtained in Production Example 2 was applied to the surface of the functional group-containing layer, xylene was volatilized, and the mixture was held at 150 ° C. for 30 minutes on the surface of the functional group-containing layer. , A composite laminate having a resin-coated layer of re-modified m-PPE-2 having a thickness of 30 μm was prepared.
<実施例8-2:CFRP-変性ポリフェニレンエーテル接合体>
 次に、実施例7-2と同様の操作を行い、実施例8-1で作製した複合積層体の樹脂コーティング層側の面とm-PPE板とを超音波溶着し、試験片を作製した。その試験片について、実施例7-2と同じ手法で接合強度を測定した。測定結果を下記表2に示す。
<Example 8-2: CFRP-modified polyphenylene ether conjugate>
Next, the same operation as in Example 7-2 was performed, and the surface of the composite laminate prepared in Example 8-1 on the resin coating layer side and the m-PPE plate were ultrasonically welded to prepare a test piece. .. The joint strength of the test piece was measured by the same method as in Example 7-2. The measurement results are shown in Table 2 below.
<実施例9-1>
(前処理 ウェットブラスト処理)
 18mm×45mm、厚さ1.5mmのセラミックに実施例4-1と同様の操作でウェットブラスト処理を行い、前記セラミック表面に微細な凹凸を形成した。
<Example 9-1>
(Pretreatment Wet blast treatment)
A ceramic having a size of 18 mm × 45 mm and a thickness of 1.5 mm was subjected to a wet blast treatment in the same manner as in Example 4-1 to form fine irregularities on the ceramic surface.
(官能基含有層の形成 シランカップリング剤処理)
 次に、実施例7-1と同様の操作を行い、前記ウェットブラスト処理後のセラミック表面に官能基(アミノ基)含有層を形成した。
(Formation of functional group-containing layer Treatment with silane coupling agent)
Next, the same operation as in Example 7-1 was carried out to form a functional group (amino group) -containing layer on the ceramic surface after the wet blast treatment.
(樹脂コーティング層の形成)
 次に、製造例3で得た再変性m-PPE-3を前記官能基含有層の表面に塗布し、キシレンを揮発させ、150℃で30分間保持して、前記官能基含有層の表面に、厚さ30μmの再変性m-PPE-3の樹脂コーティング層が形成された複合積層体を作製した。
(Formation of resin coating layer)
Next, the re-modified m-PPE-3 obtained in Production Example 3 was applied to the surface of the functional group-containing layer, xylene was volatilized, and the mixture was held at 150 ° C. for 30 minutes on the surface of the functional group-containing layer. , A composite laminate having a resin-coated layer of re-modified m-PPE-3 having a thickness of 30 μm was prepared.
<実施例9-2:セラミック-変性ポリフェニレンエーテル接合体>
 次に、実施例7-2と同様の操作を行い、実施例9-1で作製した複合積層体の樹脂コーティング層側の面とm-PPE板とを超音波溶着し、試験片を作製した。その試験片について、実施例7-2と同じ手法で接合強度を測定した。測定結果を下記表2に示す。
<Example 9-2: Ceramic-modified polyphenylene ether conjugate>
Next, the same operation as in Example 7-2 was performed, and the surface of the composite laminate prepared in Example 9-1 on the resin coating layer side and the m-PPE plate were ultrasonically welded to prepare a test piece. .. The joint strength of the test piece was measured by the same method as in Example 7-2. The measurement results are shown in Table 2 below.
<実施例10-1>
(前処理 ウェットブラスト処理)
 18mm×45mm、厚さ1.5mmのセラミックに実施例4-1と同様の操作でウェットブラスト処理を行い、前記セラミック表面に微細な凹凸を形成した。
<Example 10-1>
(Pretreatment Wet blast treatment)
A ceramic having a size of 18 mm × 45 mm and a thickness of 1.5 mm was subjected to a wet blast treatment in the same manner as in Example 4-1 to form fine irregularities on the ceramic surface.
(官能基含有層の形成 シランカップリング剤処理)
 次に、実施例7-1と同様の操作を行い、前記ウェットブラスト処理後のセラミック表面に官能基(アミノ基)含有層を形成した。
(Formation of functional group-containing layer Treatment with silane coupling agent)
Next, the same operation as in Example 7-1 was carried out to form a functional group (amino group) -containing layer on the ceramic surface after the wet blast treatment.
(樹脂コーティング層の形成)
 次に、製造例4で得た再変性m-PPE-4を前記官能基含有層の表面に塗布し、キシレンを揮発させ、150℃で30分間保持して、前記官能基含有層の表面に、厚さ30μmの再変性m-PPE-4の樹脂コーティング層が形成された複合積層体を作製した。
(Formation of resin coating layer)
Next, the re-modified m-PPE-4 obtained in Production Example 4 was applied to the surface of the functional group-containing layer, xylene was volatilized, and the mixture was held at 150 ° C. for 30 minutes on the surface of the functional group-containing layer. , A composite laminate having a resin-coated layer of re-modified m-PPE-4 having a thickness of 30 μm was prepared.
<実施例10-2:セラミック-変性ポリフェニレンエーテル接合体>
 次に、実施例7-2と同様の操作を行い、実施例10-1で作製した複合積層体の樹脂コーティング層側の面とm-PPE板とを超音波溶着し、試験片を作製した。その試験片について、実施例7-2と同じ手法で接合強度を測定した。測定結果を下記表2に示す。
<Example 10-2: Ceramic-modified polyphenylene ether conjugate>
Next, the same operation as in Example 7-2 was performed, and the surface of the composite laminate prepared in Example 10-1 on the resin coating layer side and the m-PPE plate were ultrasonically welded to prepare a test piece. .. The joint strength of the test piece was measured by the same method as in Example 7-2. The measurement results are shown in Table 2 below.
<比較例3-1>
 フラスコにキシレン:95g、2官能エポキシ樹脂(三菱ケミカル株式会社製 jER(登録商標)1001):1.0g、ビスフェノールA:0.22g、2,4,6-トリス(ジメチルアミノメチル)フェノール:0.005gを仕込み、撹拌しながら125℃に昇温して30分間反応させ、比較用樹脂コーティング用熱可塑性エポキシ樹脂組成物を得た。
<Comparative Example 3-1>
In a flask, xylene: 95 g, bifunctional epoxy resin (jER® 1001 manufactured by Mitsubishi Chemical Co., Ltd.): 1.0 g, bisphenol A: 0.22 g, 2,4,6-tris (dimethylaminomethyl) phenol: 0 .005 g was charged, the temperature was raised to 125 ° C. with stirring, and the reaction was carried out for 30 minutes to obtain a thermoplastic epoxy resin composition for comparative resin coating.
 次に、実施例7-1において、再変性m-PPE-1の代わりに、前記比較用樹脂コーティング用熱可塑性エポキシ樹脂組成物を用いた以外は、実施例7-1と同様にして複合積層体を作製した。 Next, in Example 7-1, the composite lamination was carried out in the same manner as in Example 7-1, except that the thermoplastic epoxy resin composition for comparative resin coating was used instead of the re-modified m-PPE-1. The body was made.
<比較例3-2>
 実施例7-2と同様の操作を行い、比較例3-1で作製した複合積層体の樹脂コーティング層側の面とm-PPE板とを超音波溶着し、試験片を作製した。その試験片について、実施例7-2と同じ手法で接合強度を測定した。測定結果を下記表2に示す。
<Comparative Example 3-2>
The same operation as in Example 7-2 was carried out, and the surface of the composite laminate prepared in Comparative Example 3-1 on the resin coating layer side and the m-PPE plate were ultrasonically welded to prepare a test piece. The joint strength of the test piece was measured by the same method as in Example 7-2. The measurement results are shown in Table 2 below.
<比較例4-1>
 実施例9-1において、再変性m-PPE-3の代わりに、比較例3-1で調製した比較用樹脂コーティング用熱可塑性エポキシ樹脂組成物を用いた以外は、実施例9-1と同様にして複合積層体を作製した。
<Comparative Example 4-1>
Same as Example 9-1 except that the thermoplastic epoxy resin composition for comparative resin coating prepared in Comparative Example 3-1 was used instead of the re-modified m-PPE-3 in Example 9-1. To prepare a composite laminate.
<比較例4-2>
 実施例7-2と同様の操作を行い、比較例4-1で作製した複合積層体の樹脂コーティング層側の面とm-PPE板とを超音波溶着し、試験片を作製した。その試験片について、実施例7-2と同じ手法で接合強度を測定した。測定結果を下記表2に示す。
<Comparative Example 4-2>
The same operation as in Example 7-2 was carried out, and the surface of the composite laminate prepared in Comparative Example 4-1 on the resin coating layer side and the m-PPE plate were ultrasonically welded to prepare a test piece. The joint strength of the test piece was measured by the same method as in Example 7-2. The measurement results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1の実施例(1-2)~実施例(10-2)に示すように、再変性―変性ポリフェニレンエーテル層を含む樹脂コーティング層を有する複合積層体を用いることで、材料層と変性ポリフェニレンエーテルとを高い強度で接合することができる。 As shown in Examples (1-2) to (10-2) of Table 1, by using a composite laminate having a resin coating layer containing a re-modified-modified polyphenylene ether layer, a material layer and modified polyphenylene are used. It can be bonded to ether with high strength.
 本発明に係る複合積層体は、変性ポリフェニレンエーテルと接合一体化されて、例えば、ドアサイドパネル、ボンネットルーフ、テールゲート、ステアリングハンガー、Aピラー、Bピラー、Cピラー、Dピラー、クラッシュボックス、パワーコントロールユニット(PCU)ハウジング、電動コンプレッサー部材(内壁部、吸入ポート部、エキゾーストコントロールバルブ(ECV)挿入部、マウントボス部等)、リチウムイオン電池(LIB)スペーサー、電池ケース、LEDヘッドランプ等の自動車用部品や、スマートフォン、ノートパソコン、タブレットパソコン、スマートウォッチ、大型液晶テレビ(LCD-TV)、屋外LED照明の構造体等として用いられるが、特にこれら例示の用途に限定されるものではない。 The composite laminate according to the present invention is joined and integrated with a modified polyphenylene ether, for example, a door side panel, a bonnet roof, a tailgate, a steering hanger, an A pillar, a B pillar, a C pillar, a D pillar, a crash box, and a power. Automobiles such as control unit (PCU) housings, electric compressor members (inner wall, suction port, exhaust control valve (ECV) insertion, mount boss, etc.), lithium-ion battery (LIB) spacers, battery cases, LED headlamps, etc. It is used as a component for parts, a smartphone, a notebook computer, a tablet computer, a smart watch, a large LCD TV (LCD-TV), a structure for outdoor LED lighting, and the like, but the application is not particularly limited to these examples.
  1  複合積層体
  2  材料層
  21 微細な凹凸
  3  樹脂コーティング層(プライマー層)
  31 再変性―変性ポリフェニレンエーテル層
  32 熱可塑性エポキシ樹脂層
  33 熱硬化性樹脂層
  4  官能基含有層
  5  接合体
  6  変性ポリフェニレンエーテル
1 Composite laminate 2 Material layer 21 Fine irregularities 3 Resin coating layer (primer layer)
31 Re-modified-modified polyphenylene ether layer 32 Thermoplastic epoxy resin layer 33 Thermosetting resin layer 4 Functional group-containing layer 5 Bonded body 6 Modified polyphenylene ether

Claims (14)

  1.  繊維強化プラスチック、ガラス及びセラミックからなる群より選ばれる少なくとも1種からなる材料層と、前記材料層に積層された1層又は複数層の樹脂層からなる樹脂コーティング層とを有する複合積層体であって、
     前記樹脂層の少なくとも1層が、再変性―変性ポリフェニレンエーテルを含む樹脂組成物から形成されてなる再変性―変性ポリフェニレンエーテル層であり、
     前記再変性―変性ポリフェニレンエーテル層は、変性ポリフェニレンエーテルと熱可塑性エポキシ樹脂との混合物である混合物1を含む層、及び変性ポリフェニレンエーテルと(メタ)アクリル樹脂との混合物である混合物2を含む層、から選ばれる少なくとも1種である、複合積層体。
    A composite laminate having a material layer composed of at least one selected from the group consisting of fiber reinforced plastic, glass and ceramic, and a resin coating layer composed of one or a plurality of resin layers laminated on the material layer. hand,
    At least one of the resin layers is a re-denatured-modified polyphenylene ether layer formed from a resin composition containing a re-modified-modified polyphenylene ether.
    The re-modified-modified polyphenylene ether layer includes a layer containing a mixture 1 which is a mixture of a modified polyphenylene ether and a thermoplastic epoxy resin, and a layer containing a mixture 2 which is a mixture of a modified polyphenylene ether and a (meth) acrylic resin. A composite laminate that is at least one selected from.
  2.  前記混合物1が、変性ポリフェニレンエーテルを含む溶液中で、2官能エポキシ樹脂と2官能フェノール化合物を重付加反応させてなるものである、請求項1に記載の複合積層体。 The composite laminate according to claim 1, wherein the mixture 1 is formed by subjecting a bifunctional epoxy resin and a bifunctional phenol compound to a double addition reaction in a solution containing a modified polyphenylene ether.
  3.  前記混合物1が、変性ポリフェニレンエーテルと熱可塑性エポキシ樹脂を混合してなるものである、請求項1に記載の複合積層体。 The composite laminate according to claim 1, wherein the mixture 1 is a mixture of a modified polyphenylene ether and a thermoplastic epoxy resin.
  4.  前記混合物2が、変性ポリフェニレンエーテルを含む溶液中で、(メタ)アクリレートモノマーをラジカル重合させてなるものである、請求項1に記載の複合積層体。 The composite laminate according to claim 1, wherein the mixture 2 is obtained by radically polymerizing a (meth) acrylate monomer in a solution containing a modified polyphenylene ether.
  5.  前記混合物2が、変性ポリフェニレンエーテルと(メタ)アクリル樹脂を混合してなるものである、請求項1に記載の複合積層体。 The composite laminate according to claim 1, wherein the mixture 2 is a mixture of a modified polyphenylene ether and a (meth) acrylic resin.
  6.  前記樹脂コーティング層が、更に、熱可塑性エポキシ樹脂を含む樹脂組成物から形成されてなる熱可塑性エポキシ樹脂層及び熱硬化性樹脂を含む樹脂組成物の硬化物から形成されてなる熱硬化性樹脂層から選ばれる少なくとも1種の樹脂層を含む、請求項1~5のいずれか1項に記載の複合積層体。 The resin coating layer is further formed from a thermoplastic epoxy resin layer formed of a resin composition containing a thermoplastic epoxy resin and a cured product of a resin composition containing a thermosetting resin. The composite laminate according to any one of claims 1 to 5, which comprises at least one resin layer selected from.
  7.  前記熱硬化性樹脂が、ウレタン樹脂、エポキシ樹脂、ビニルエステル樹脂及び不飽和ポリエステル樹脂からなる群より選ばれる少なくとも1種である、請求項6に記載の複合積層体。 The composite laminate according to claim 6, wherein the thermosetting resin is at least one selected from the group consisting of urethane resin, epoxy resin, vinyl ester resin and unsaturated polyester resin.
  8.  前記材料層と前記樹脂コーティング層との間に、前記材料層と前記樹脂コーティング層に接して積層された官能基含有層を有し、
     前記官能基含有層が、下記(1)~(7)からなる群より選ばれる少なくとも1つの官能基を含む、請求項1~7のいずれか1項に記載の複合積層体。
    (1)シランカップリング剤由来であって、エポキシ基、アミノ基、(メタ)アクリロイル基及びメルカプト基からなる群より選ばれる少なくとも1つの官能基
    (2)シランカップリング剤由来のアミノ基に、エポキシ化合物及びチオール化合物から選ばれる少なくとも1種を反応させてなる官能基
    (3)シランカップリング剤由来のメルカプト基に、エポキシ化合物、アミノ化合物、イソシアネート化合物、(メタ)アクリロイル基及びエポキシ基を有する化合物、並びに(メタ)アクリロイル基及びアミノ基を有する化合物からなる群より選ばれる少なくとも1種を反応させてなる官能基
    (4)シランカップリング剤由来の(メタ)アクリロイル基に、チオール化合物を反応させてなる官能基
    (5)シランカップリング剤由来のエポキシ基に、アミノ基及び(メタ)アクリロイル基を有する化合物、アミノ化合物、並びにチオール化合物からなる群より選ばれる少なくとも1種を反応させてなる官能基
    (6)イソシアネート化合物由来のイソシアナト基
    (7)チオール化合物由来のメルカプト基
    A functional group-containing layer laminated in contact with the material layer and the resin coating layer is provided between the material layer and the resin coating layer.
    The composite laminate according to any one of claims 1 to 7, wherein the functional group-containing layer contains at least one functional group selected from the group consisting of the following (1) to (7).
    (1) At least one functional group derived from a silane coupling agent and selected from the group consisting of an epoxy group, an amino group, a (meth) acryloyl group and a mercapto group. (2) An amino group derived from a silane coupling agent. A functional group obtained by reacting at least one selected from an epoxy compound and a thiol compound (3) A mercapto group derived from a silane coupling agent has an epoxy compound, an amino compound, an isocyanate compound, a (meth) acryloyl group and an epoxy group. A functional group obtained by reacting at least one selected from the group consisting of a compound and a compound having a (meth) acryloyl group and an amino group. (4) A thiol compound is reacted with a (meth) acryloyl group derived from a silane coupling agent. (5) An epoxy group derived from a silane coupling agent is reacted with at least one selected from the group consisting of a compound having an amino group and a (meth) acryloyl group, an amino compound, and a thiol compound. Functional group (6) Isocyanato group derived from isocyanate compound (7) Mercapto group derived from thiol compound
  9.  前記材料層は、その表面に、脱脂処理、UVオゾン処理、ブラスト処理、研磨処理、プラズマ処理及びコロナ放電処理からなる群より選ばれる少なくとも1種の前処理を施してなる、請求項1~8のいずれか1項に記載の複合積層体。 Claims 1 to 8 of the material layer, wherein the surface thereof is subjected to at least one pretreatment selected from the group consisting of degreasing treatment, UV ozone treatment, blast treatment, polishing treatment, plasma treatment and corona discharge treatment. The composite laminate according to any one of the above items.
  10.  請求項1~9のいずれか1項に記載の複合積層体の製造方法であって、
     前記材料層の表面に下記(1’)~(7’)からなる群より選ばれる少なくとも1種の処理を施し、前記官能基含有層を形成する、複合積層体の製造方法。
    (1’) エポキシ基、アミノ基、(メタ)アクリロイル基及びメルカプト基からなる群より選ばれる少なくとも1つの官能基を有するシランカップリング剤での処理
    (2’) アミノ基を有するシランカップリング剤での処理後に、エポキシ化合物及びチオール化合物から選ばれる少なくとも1種を付加する処理
    (3’) メルカプト基を有するシランカップリング剤での処理後に、エポキシ化合物、アミノ化合物、イソシアネート化合物、(メタ)アクリロイル基及びエポキシ基を有する化合物、並びに(メタ)アクリロイル基及びアミノ基を有する化合物からなる群より選ばれる少なくとも1種を付加する処理
    (4’) (メタ)アクリロイル基を有するシランカップリング剤での処理後に、チオール化合物を付加する処理
    (5’) エポキシ基を有するシランカップリング剤での処理後に、アミノ基及び(メタ)アクリロイル基を有する化合物、アミノ化合物、並びにチオール化合物からなる群より選ばれる少なくとも1種を付加する処理
    (6’) イソシアネート化合物での処理
    (7’) チオール化合物での処理
    The method for producing a composite laminate according to any one of claims 1 to 9.
    A method for producing a composite laminate, wherein the surface of the material layer is subjected to at least one treatment selected from the group consisting of the following (1') to (7') to form the functional group-containing layer.
    (1') Treatment with a silane coupling agent having at least one functional group selected from the group consisting of an epoxy group, an amino group, a (meth) acryloyl group and a mercapto group (2') A silane coupling agent having an amino group Treatment to add at least one selected from epoxy compounds and thiol compounds after treatment with (3') After treatment with a silane coupling agent having a mercapto group, epoxy compounds, amino compounds, isocyanate compounds, (meth) acryloyl Treatment to add at least one selected from the group consisting of compounds having a group and an epoxy group, and a compound having a (meth) acryloyl group and an amino group (4') In a silane coupling agent having a (meth) acryloyl group. Treatment to add a thiol compound after treatment (5') After treatment with a silane coupling agent having an epoxy group, it is selected from the group consisting of compounds having amino groups and (meth) acryloyl groups, amino compounds, and thiol compounds. Treatment to add at least one (6') Treatment with isocyanate compound (7') Treatment with thiol compound
  11.  前記官能基含有層を形成する前に、前記材料層に、脱脂処理、UVオゾン処理、ブラスト処理、研磨処理、プラズマ処理及びコロナ放電処理からなる群より選ばれる少なくとも1種の前処理を施す、請求項10に記載の複合積層体の製造方法。 Before forming the functional group-containing layer, the material layer is subjected to at least one pretreatment selected from the group consisting of degreasing treatment, UV ozone treatment, blast treatment, polishing treatment, plasma treatment and corona discharge treatment. The method for producing a composite laminate according to claim 10.
  12.  請求項1~9のいずれか1項に記載の複合積層体の樹脂コーティング層側の面と、変性ポリフェニレンエーテルとが接合一体化された、接合体。 A bonded body in which the surface of the composite laminate according to any one of claims 1 to 9 on the resin coating layer side and the modified polyphenylene ether are bonded and integrated.
  13.  請求項12に記載の接合体の製造方法であって、
     超音波溶着法、振動溶着法、電磁誘導法、高周波法、レーザー法及び熱プレス法からなる群より選ばれる少なくとも1種の方法で、前記複合積層体の樹脂コーティング層側の面に前記変性ポリフェニレンエーテルを溶着する、接合体の製造方法。
    The method for manufacturing a bonded body according to claim 12.
    The modified polyphenylene is applied to the surface of the composite laminate on the resin coating layer side by at least one method selected from the group consisting of an ultrasonic welding method, a vibration welding method, an electromagnetic induction method, a high frequency method, a laser method and a hot pressing method. A method for producing a bonded body by welding ether.
  14.  請求項12に記載の接合体の製造方法であって、
     前記複合積層体の樹脂コーティング層側の面に、射出成形法で、前記変性ポリフェニレンエーテルを溶着する、接合体の製造方法。
    The method for manufacturing a bonded body according to claim 12.
    A method for producing a bonded body, in which the modified polyphenylene ether is welded to the surface of the composite laminate on the resin coating layer side by an injection molding method.
PCT/JP2020/037803 2019-11-22 2020-10-06 Composite laminate and joined body WO2021100340A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020559567A JP6923762B1 (en) 2019-11-22 2020-10-06 Composite laminates and joints

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-211742 2019-11-22
JP2019211742 2019-11-22

Publications (1)

Publication Number Publication Date
WO2021100340A1 true WO2021100340A1 (en) 2021-05-27

Family

ID=75980644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037803 WO2021100340A1 (en) 2019-11-22 2020-10-06 Composite laminate and joined body

Country Status (3)

Country Link
JP (1) JP6923762B1 (en)
TW (1) TW202120331A (en)
WO (1) WO2021100340A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102650437B1 (en) * 2022-03-04 2024-03-25 주식회사 유진커머스 Rotatable broom with sweeper and its method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170736A1 (en) * 2016-03-29 2017-10-05 株式会社クラレ Ionomer layered sheet, method for producing same, and layered body
WO2018124215A1 (en) * 2016-12-28 2018-07-05 新日鉄住金化学株式会社 Metal/fiber-reinforced resin material composite body, method for producing same and bonding sheet
JP2019151106A (en) * 2018-02-28 2019-09-12 日本製鉄株式会社 Metal-fiber reinforced resin material composite and manufacturing method of metal-fiber reinforced resin material composite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170736A1 (en) * 2016-03-29 2017-10-05 株式会社クラレ Ionomer layered sheet, method for producing same, and layered body
WO2018124215A1 (en) * 2016-12-28 2018-07-05 新日鉄住金化学株式会社 Metal/fiber-reinforced resin material composite body, method for producing same and bonding sheet
JP2019151106A (en) * 2018-02-28 2019-09-12 日本製鉄株式会社 Metal-fiber reinforced resin material composite and manufacturing method of metal-fiber reinforced resin material composite

Also Published As

Publication number Publication date
TW202120331A (en) 2021-06-01
JP6923762B1 (en) 2021-08-25
JPWO2021100340A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
JP6918973B2 (en) Composite laminate and its manufacturing method, and metal resin bonded body and its manufacturing method
JP6919075B2 (en) Composite laminates and metal-polyolefin conjugates
TW202033359A (en) Metal-resin joined body and production method therefor
JP6923762B1 (en) Composite laminates and joints
JP6923764B1 (en) Composite laminates and joints
JP6923626B2 (en) Composite laminates and joints
JP6919076B1 (en) Composite laminates and metal-resin joints
JP6964808B2 (en) Composite laminate, its manufacturing method, and metal resin joint
JP6967675B2 (en) Joined body and its manufacturing method
JP6923763B1 (en) Composite laminates and joints
JP6923765B1 (en) Surface-treated base materials, composite laminates, bonded bodies, and methods for manufacturing them.
JP6919074B2 (en) Composite laminates and metal-modified polyphenylene ether conjugates
JP6918894B2 (en) Composite laminate and metal-polyamide resin joint
JP6919077B2 (en) Surface-treated metal materials, composite laminates, metal-non-metal joints, and methods for manufacturing them.
JP6967676B2 (en) Bonds and materials with primers
JP6923706B1 (en) Primer material and conjugate
JP6923707B1 (en) Primer material and conjugate
JP2022178565A (en) Automobile door and method for manufacturing the same
JP2022178491A (en) Automobile door and method for manufacturing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020559567

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890619

Country of ref document: EP

Kind code of ref document: A1