WO2021100286A1 - Filter - Google Patents

Filter Download PDF

Info

Publication number
WO2021100286A1
WO2021100286A1 PCT/JP2020/033622 JP2020033622W WO2021100286A1 WO 2021100286 A1 WO2021100286 A1 WO 2021100286A1 JP 2020033622 W JP2020033622 W JP 2020033622W WO 2021100286 A1 WO2021100286 A1 WO 2021100286A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter element
opening
filter
gas
jig
Prior art date
Application number
PCT/JP2020/033622
Other languages
French (fr)
Japanese (ja)
Inventor
純也 阪井
昭二 飯山
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2021529054A priority Critical patent/JP6956928B1/en
Publication of WO2021100286A1 publication Critical patent/WO2021100286A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes

Definitions

  • the present invention relates to a filter.
  • Patent Document 1 discloses a gas filtration device including a face plate on which a through hole is formed and a filter element arranged in the through hole while filtering the gas.
  • One aspect of the present invention is to prevent the filter element from cracking.
  • the filter according to one aspect of the present invention is a filter provided in a flow path through which a gas containing the powder flows in order to separate the gas and the powder, and is a gas. And the powder are separated, and a filter element in which the filter surface extends between the first end and the second end opposite to the first end and the first opening are formed, and the first opening is formed.
  • the first end or the vicinity of the first end is fixed to the opening, and the fixing portion fixed to the inner wall of the flow path forming a space for accommodating the filter element and the filter element are inserted.
  • a second opening is formed, and a jig is provided between the first end and the second end.
  • FIG. 1 is a schematic view showing an example of the configuration of the filter 10 according to the first embodiment of the present invention.
  • FIG. 2 shows a state in which the filter element 40 is not fixed to the partition plate 30 (a state in which the filter element 40 does not exist) and a state in which the housing 20 is divided with respect to the filter 10 shown in FIG.
  • FIG. 1 shows the configuration of the filter 10 so that the inside of the housing 20 can be seen for convenience of explanation. The same applies to the figure shown by 101 in FIG.
  • the partition plate 30 corresponds to a fixed portion.
  • the filter 10 is provided in a flow path through which the gas containing the powder flows in order to separate the gas and the powder. Further, the filter 10 is, for example, a filter provided in the production system of trichlorosilane (TCS, SiHCl 3).
  • TCS trichlorosilane
  • the trichlorosilane production system refers to the entire production apparatus for producing trichlorosilane, for example, the entire production apparatus 1 or production apparatus 11 described later.
  • the scope of application of the present invention is not limited to the filter provided in the production system of trichlorosilane.
  • the present invention is also applied to a filter provided in an apparatus for producing polycrystalline silicon from chlorosilane gas and hydrogen (H 2 ) by a CVD (Chemical Vapor Deposition) method using the Siemens method.
  • the filter separates the silicon powder and hydrogen chloride from the gas containing the silicon powder (Si) and hydrogen chloride (HCl) discharged from the reaction vessel provided in the apparatus.
  • the powder separated from the gas by the filter element 40 described later of the filter 10 is silicon powder, and the gas separated from the powder by the filter element 40.
  • the chlorosilane gas include trichlorosilane, tetrachlorosilane (STC, SiCl4) and the like.
  • the vibration of the filter element 40 can be suppressed by the jig 50 described later. Further, the filter element 40 separates the silicon powder having a heavy specific gravity from the gas and separates the corrosive gas from the silicon powder. Therefore, when a filter element made of a hard and brittle sintered metal is used, a remarkable effect of preventing the filter element from cracking is exhibited as compared with the case where a filter element made of another material is used.
  • a to B representing a numerical range means “A or more (including A and larger than A) and B or less (including B and smaller than B)".
  • the filter 10 provided in the trichlorosilane production system will be described as an example.
  • the "silicon powder” is intended to be a solid substance containing a silicon element in a metallic state such as metallurgical silicon, silicon iron or polysilicon, and known substances are used without any limitation. .. Further, these silicon powders may contain impurities such as iron compounds, and the components and contents thereof are not particularly limited.
  • the filter 10 includes a housing 20, a partition plate 30 (fixed portion), a filter element 40, and a jig 50.
  • the housing 20 has an upper cap 21 and a lower chamber 22, and can be divided into an upper cap 21 and a lower chamber 22.
  • the housing 20 is formed with an inflow port 60, a gas discharge port 70, and a powder discharge port 80.
  • the inflow port 60 is formed so that a gas containing silicon powder flows into the inside of the housing 20.
  • the gas discharge port 70 is formed to discharge the gas separated from the silicon powder from the housing 20.
  • the powder discharge port 80 is formed to discharge the silicon powder separated from the gas from the housing 20.
  • a differential pressure gauge 90 for measuring the differential pressure between the pressure in the first region R1 and the pressure in the second region R2 is installed with respect to the housing 20.
  • the differential pressure between the pressure in the first region R1 and the pressure in the second region R2 is, for example, 100 to 1500 kPaG.
  • the gas containing the silicon powder flows into the housing 20 from the inflow port 60, passes through the second region R2, the filter element 40, and the first region R1 in this order, and passes from the gas discharge port 70 to the housing 20. It is discharged to the outside.
  • the particle size of the silicon powder contained in the gas flowing into the housing 20 is, for example, 1 to 40 ⁇ m, and the powder density in the gas is 1 to 5 kg / Nm 3 .
  • the powder concentration of the silicon powder in the gas is 10 to 20 wt%.
  • the partition plate 30 is a plate that partitions the space inside the housing 20 into a first region R1 and a second region R2.
  • the first region R1 is a region in which the gas separated from the silicon powder by the filter element 40 mainly exists.
  • the second region R2 is a region in which the silicon powder separated from the gas by the filter element 40 and the gas flowing into the housing 20 exist.
  • the partition plate 30 By partitioning the space inside the housing 20 into the first region R1 and the second region R2 by the partition plate 30, the gas containing silicon powder that flows into the housing 20 invades the first region R1. It can be prevented from doing so.
  • the partition plate 30 is fixed to the inner wall of the flow path forming the space in which the filter element 40 is housed. Specifically, the partition plate 30 is fixed to the inner wall 23 of the housing 20 to form a fixed portion.
  • the partition plate 30 is sandwiched between the upper cap 21 and the lower chamber 22 and is fixed to the inner wall 23 of the housing 20 to form a fixed portion.
  • a holding portion (not shown) capable of holding the partition plate 30 is provided on the upper inner wall portion of the lower chamber 22, and the partition plate 30 is placed on the holding portion so that the partition plate 30 can be placed on the inner wall 23 of the housing 20. It can also be fixed to. In this case, it is necessary to have a structure so that no gap is formed between the holding portion and the partition plate 30.
  • the partition plate 30 is formed with the first opening 31.
  • the vicinity of the first end 41 or the first end 41 of the filter element 40 is fixed to the first opening 31.
  • the first opening 31 is formed in the partition plate 30 because the gas that has passed through the filter element 40 is introduced into the first region R1. No opening is formed in the partition plate 30 other than the first opening 31.
  • the vicinity of the first end 41 is, for example, a length of about 10% of the length L1 of the filter element 40 along the first end 41 and the stretching direction D1 described later from the first end 41 of the filter element 40. Only the following is the part between the position facing the powder discharge port 80 and the position. That is, if the length L1 is 1000 to 1500 mm, the position of the filter element 40 at the first end 41 and 100 to 150 mm from the first end 41 along the stretching direction D1 toward the powder discharge port 80. Is the part between.
  • the upper end of the first end 41 and the upper surface of the partition plate 30 are in the same plane. That is, it is preferable that the first end 41 and the partition plate 30 are joined.
  • the filter element 40 separates the gas and the silicon powder as powder, and the filter surface 43 forms between the first end 41 and the second end 42 opposite to the first end 41. It is a filter medium to be stretched.
  • the filter element 40 is preferably a sintered metal. Thereby, the filter 10 having sufficient corrosion resistance and wear resistance can be realized.
  • the sintered metal include incoloy, inconel, and hastelloy, which are sintered metals containing 1 wt% or more, preferably 2 to 20 wt%, and more preferably 5 to 20 wt% of molybdenum having high corrosion resistance.
  • the gas inflow amount (linear velocity) per surface area of the filter element 40 is, for example, 20 to 60 m 3 / m 2 / hr.
  • the filtration accuracy of the filter element 40 is, for example, preferably 5 ⁇ m, more preferably 2 ⁇ m.
  • the filtration accuracy means that 99.9% or more of the powder having a numerical particle size (for example, a particle size of 5 ⁇ m or a particle size of 2 ⁇ m) indicating the filtration accuracy can be removed.
  • the length L1 of the filter element 40 along the stretching direction D1 is, for example, 1000 to 1500 mm.
  • the stretching direction D1 is the same as the stretching direction of the housing 20.
  • the diameter of the filter element 40 is 40 to 60 mm.
  • the number of filter elements 40 housed inside the housing 20 is, for example, 50 to 250 per filter 10.
  • the temperature of the filter element 40 is, for example, 100 to 300 ° C.
  • the jig 50 is arranged between the first end 41 and the second end 42 of the filter element 40. As shown in FIG. 101 in FIG. 2, the jig 50 is formed with a second opening 51. The filter element 40 is inserted into the second opening 51. Further, the position of the first opening 31 of the partition plate 30 and the position of the second opening 51 formed in the jig 50 coincide with each other when viewed from the direction from the gas discharge port 70 to the powder discharge port 80.
  • the vibration of the filter element 40 is suppressed by the structure in which the filter element 40 is inserted into the second opening 51. Therefore, the moment of force applied to the second end 42 of the filter element 40 due to the vibration of the filter element 40 can be reduced as compared with the case where the jig 50 is not arranged. Therefore, it is possible to prevent the filter element 40 from cracking.
  • the filter element 40 Since it is possible to prevent the filter element 40 from cracking, it is possible to prevent the silicon powder from accumulating in a process downstream of the filter 10 and causing a problem due to the passage of the silicon powder from the cracked portion of the filter element. Can be done. Further, when the length of the filter element is longer than a predetermined length, the probability that the filter element is cracked increases. Therefore, by providing the jig 50, the filter element 40 can be lengthened to efficiently separate the gas and the silicon powder and prevent the filter element 40 from cracking.
  • the jig 50 is arranged at a position separated from the partition plate 30 by a distance DS along the stretching direction D1 of the filter element 40.
  • the distance DS is the same as the length of 1/3 or more and 2/3 or less of the length L1 along the stretching direction D1 in the filter element 40.
  • the jig 50 is fixed to the partition plate 30 via a connecting member 32 that connects the jig 50 and the partition plate 30.
  • a connecting member 32 that connects the jig 50 and the partition plate 30.
  • the configuration in which the jig 50 is fixed to the partition plate 30 via the connecting member 32 is an example, and the configuration in which the jig 50 is fixed to the housing 20 is not limited.
  • the jig 50 may be fixed to the inner wall of the lower chamber 22.
  • the material of the jig 50 is preferably stainless steel, for example, SUS304. Further, the thickness of the jig 50 along the stretching direction D1 is preferably, for example, about 5 to 20 mm, and preferably about 10 mm.
  • the outer diameter of the jig 50 is smaller than the inner diameter of the housing 20, that is, the inner diameter of the lower chamber 22. Therefore, when the jig 50 is arranged along the plane orthogonal to the stretching direction D1, the jig 50 does not come into contact with the inner wall of the housing 20.
  • the inner diameter of the housing 20 is the diameter of the cross section of the housing 20 orthogonal to the stretching direction D1.
  • the shape of the opening of the second opening 51 formed in the jig 50 is not particularly limited, and may be any shape as long as the filter element 40 can be inserted. In this case, it is preferable that the vibration preventing material P1 described later is interposed between the second opening 51 and the filter element 40.
  • the shape of the opening of the second opening 51 is the cross section of the filter element 40 (when the filter element 40 is inserted into the second opening 51, the second opening is the second opening. It is preferable that the shape is the same as the shape of the filter element 40 (cross section of the filter element 40 existing on the same plane as 51). For example, if the filter element 40 is cylindrical, the opening shape of the second opening 51 is preferably circular.
  • the size of the opening of the second opening 51 may be a size that does not reduce the anti-vibration effect of the filter element 40.
  • the preparation of the filter 10 itself and the vibration prevention effect of the filter element 40 the following is preferable.
  • the cross-sectional shape of the filter element 40 and the shape of the opening of the second opening 51 are the same and have a similar relationship with each other.
  • it affects the scale of the filter 10 it is as follows in consideration of the ease of preparation of the filter 10 itself. Specifically, as shown in FIG. 3, when the length from the center point of the cross-sectional shape of the filter element 40 to the outer peripheral edge thereof is La, from the center point of the opening of the second opening 51 to the inner peripheral edge thereof.
  • the length of is preferably La or more and 1.80 La or less.
  • the size of the opening of the second opening 51 becomes too large, the effect of suppressing the vibration of the filter element 40 tends to decrease, and it is necessary to use a plurality of vibration prevention materials P1 and a large amount. Therefore, workability tends to decrease. Further, if the size of the opening of the second opening 51 becomes too small, precise control is required when inserting the filter element 40, and in this case as well, workability tends to decrease when the filter 10 itself is configured. It is in.
  • the length from the center point of the opening of the second opening 51 to the inner peripheral edge thereof is more preferably more than La and 1.70 La or less, and further preferably 1.02 La or more and 1.60 La or less. It is preferable, and it is particularly preferable that it is 1.05 La or more and 1.50 La or less.
  • the vibration preventing material P1 As necessary, the size of the opening of the second opening 51 varies depending on the scale of the filter. Therefore, although it cannot be unconditionally limited, when the length from the center point of the opening of the second opening 51 to the inner peripheral edge thereof is 1.01 La or more, vibration is performed in order to enhance the vibration prevention effect. It is preferable to use the preventive material P1 together.
  • the shape of the filter element 40 is cylindrical, as described above, the shape of the opening of the second opening 51 is preferably circular.
  • the radius of the opening of the second opening 51 is larger than the radius of the cross section of the filter element 40 (based on the outer peripheral edge) by more than 1 mm and 15 mm or less, preferably 2 mm or more. It is more preferable to make it larger by 10 mm or less.
  • the filter element 40 is inserted into the second opening 51. In this case, it is preferable to interpose the vibration preventing material P1 in the gap formed between the second opening 51 and the filter element 40.
  • the resin used for the anti-vibration material P1 is, for example, an olefin resin such as polyethylene or polypropylene, or a fluorine resin such as polytetrafluoroethylene (Teflon (registered trademark)).
  • the vibration-preventing material P1 made of a fluororesin is excellent in corrosion resistance and slipperiness with other materials, and therefore can be preferably used.
  • the vibration of the filter element 40 can be further suppressed as compared with the case where the anti-vibration material P1 is not provided.
  • the anti-vibration material P1 is made of resin, it is possible to reduce the corrosion of the anti-vibration material P1 even when the gas flowing through the flow path is an acidic corrosive gas.
  • the shape of the vibration preventing material P1 is not particularly limited, and by allowing the vibration preventing material P1 to exist in at least a part of the inner peripheral surface of the second opening 51, the second opening 51 and the filter element are present through the vibration preventing material P1.
  • the shape may be such that it comes into contact with 40. Therefore, the vibration preventing material P1 does not have to be present on the entire inner peripheral surface of the second opening 51.
  • the vibration preventing material P1 is present on the entire inner peripheral surface of the second opening 51. That is, since the vibration preventing material P1 is present on the entire surface of the inner peripheral surface, when the filter 10 is configured, the axis of the stretching direction D1 of the filter element 40 tends to be straight, and cracking of the filter element 40 can be suppressed. ..
  • the anti-vibration material P1 is arranged between the second opening 51 and the entire circumference of the filter element 40, it is possible to efficiently suppress the vibration of the filter element 40.
  • the filter element 40 vibrates, and the portion of the surface of the filter element 40 that may come into contact with the second opening 51 is formed by the anti-vibration material P1. Can be covered.
  • the vibration prevention material P1 can be arranged as follows. For example, the filter element 40 is inserted into the second opening 51, the jig 50 is installed at a desired position in the stretching direction D1 of the filter element 40, and then the gap between the second opening 51 and the filter element 40 is filled. As described above, the vibration prevention material P1 can be provided.
  • the anti-vibration material P1 does not have to be present on the entire inner peripheral surface of the opening of the second opening 51, and at least the filter element 40 and the second opening 51 come into contact with each other via the anti-vibration material P1. It can also be in such a state.
  • vibration prevention material P1 can be arranged in advance on the inner peripheral surface of the second opening 51, and the filter element 40 can be inserted into the second opening 51.
  • the vibration preventing material P1 is arranged between the second opening 51 and the vicinity of the second end 42 or the second end 42.
  • the jig 50 is arranged at a predetermined position in the stretching direction D1 of the filter element 40.
  • the filter 10 can be efficiently prepared even when a plurality of filter elements 40 are present.
  • the operability can be improved in the preparation of the filter 10 because the connecting member 32 connects the partition plate (fixing portion) 30 and the jig 50.
  • the position (height) of the jig 50 is used. Will be adjusted to the specified position later. Therefore, strictly speaking, a gap is formed between the vibration preventing material P1 and the filter element 40.
  • the gap is preferably 1 mm or less, more preferably 0.5 mm or less, further preferably about 0.2 mm or less, and 0.1 mm or less. It is particularly preferable that the gap is about the same.
  • the lower limit of the gap is a value exceeding 0 mm in consideration of interposing the vibration preventing material P1 in the gap after aligning the jig 50.
  • the vibration preventing material P1 is preferably made of a fluororesin because it is desirable that the vibration preventing material P1 has good slipperiness with respect to the filter element 40.
  • FIG. 3 shows an aspect when the vibration preventing material P1 is provided.
  • FIG. 3 shows a configuration in which the ring-shaped anti-vibration material P1 is arranged on the inner peripheral surface of the second opening 51, that is, at a position where the filter element 40 vibrates and comes into contact with the second opening 51.
  • FIG. 3 is a schematic view showing an example of the configuration of the jig 50 included in the filter 10 shown in FIG. Since the filter element 40 is not inserted into the third opening 52, the third opening 52 is in a state where gas can pass through. According to the configuration in which the third opening 52 is formed in the jig 50, the air permeability is improved in the vicinity of the filter element 40 as compared with the case where the third opening 52 is not formed due to the passage of gas from the third opening 52. Can be made to. Therefore, the amount of gas passing through the filter 10 can be increased.
  • the jig 50 may be formed separately from the second opening 51 and the third opening 52, and may be further formed with a fourth opening 53 for passing gas.
  • the diameter of the fourth opening 53 is smaller than the diameter of the third opening 52.
  • the porosity of the jig 50 is preferably as follows. When the jig 50 is viewed from above or below as shown in FIG. 3, it is relative to the area of the jig 50 (the area when the second opening 51, the third opening 52, and the fourth opening 53 are not opened). The larger the ratio of the total area of the second opening 51, the third opening 52, and the fourth opening 53 (hereinafter, may be referred to as the first porosity), the easier it is for gas to pass through, and the efficiency of filtration is improved. Can be enhanced. However, as the first porosity increases, the strength of the jig 50 itself and the effect of suppressing the vibration of the filter element 40 tend to decrease. Therefore, the first porosity is preferably 50 to 95%, more preferably 70 to 90%.
  • the filter element 40 is inserted into the second opening 51. At this time, it is the ratio of the total area of the third opening 52 and the fourth opening 53 to the area of the jig 50 (the area when the second opening 51, the third opening 52, and the fourth opening 53 are not opened).
  • the second porosity is preferably 10 to 50%, more preferably 20 to 40%.
  • the second porosity is the third opening 52 and the fourth opening 53 with respect to the area of the jig 50 (the area when the second opening 51, the third opening 52, and the fourth opening 53 are not opened). And the ratio of the total area of the gap.
  • the filter 10 may be provided with a plurality of jigs 50.
  • the plurality of jigs 50 are connected to each other via the connecting member 32, respectively.
  • the plurality of jigs 50 are fixed to the partition plate 30 via the connecting member 32.
  • the plurality of jigs 50 are arranged between the first end 41 and the second end 42 of the filter element 40.
  • the third opening 52 is formed in the portion of the jig where the second opening 51 is not formed.
  • the fourth opening 53 is formed in the portion of the jig where the second opening 51 and the third opening 52 are not formed.
  • FIG. 4 is a schematic view showing an example of the configuration of the manufacturing apparatus 1 including the filter 10 shown in FIG.
  • the manufacturing apparatus 1 is an apparatus for producing trichlorosilane using silicon powder.
  • the manufacturing apparatus 1 includes a first reaction vessel 2, a cooler 3, a first storage tank 4, and a filter 10. These components included in the manufacturing apparatus 1 are connected to each other by piping.
  • the first reaction vessel 2 is provided in the trichlorosilane production system, and also contains silicon powder and hydrogen chloride supplied from the outside, and reacts the silicon powder with hydrogen chloride to trichlorosilane, tetrachlorosilane, and hydrogen. To generate.
  • the reaction formula is as follows. Silicon powder (Si) + 3HCl ⁇ SiHCl 3 + H 2 Silicon powder (Si) +4 HCl ⁇ SiCl 4 + 2H 2
  • the cooler 3 cools the silicon powder, hydrogen, trichlorosilane, tetrachlorosilane, etc. supplied from the first reaction vessel 2.
  • the first storage tank 4 stores the silicon powder discharged from the lower part of the first reaction vessel 2 and the silicon powder discharged from the powder discharge port 80 of the filter 10.
  • the filter 10 takes in silicon powder, hydrogen, trichlorosilane, tetrachlorosilane, etc. that have passed through the cooler 3 from the inflow port 60.
  • the filter 10 removes the silicon powder from the silicon powder, hydrogen, trichlorosilane, tetrachlorosilane, etc. that have passed through the cooler 3. That is, the gas and powder separated by the filter element 40 of the filter 10 are discharged from the first reaction vessel 2.
  • the filter 10 may be provided in the pipes connected to the front and rear of the cooler 3.
  • FIG. 5 is a schematic view showing an example of the configuration of the manufacturing apparatus 11 according to the second embodiment of the present invention.
  • the members having the same functions as the members described in the first embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
  • the manufacturing apparatus 11 includes a second reaction vessel 12, a heat exchanger 13, a heater 14, a second storage tank 15, and a filter 10A. These components included in the manufacturing apparatus 11 are connected to each other by piping. As the filter 10A, the same filter 10A may be used.
  • Hydrogen and tetrachlorosilane are supplied to the heat exchanger 13.
  • This tetrachlorosilane was produced as a side reaction by, for example, the first reaction vessel 2 described above.
  • the heat exchanger 13 heat exchanges silicon powder, hydrogen, and trichlorosilane via the second reaction vessel 12 with hydrogen and tetrachlorosilane.
  • the heat exchanger 13 supplies hydrogen and tetrachlorosilane to the heater 14.
  • the heater 14 heats tetrachlorosilane and hydrogen to supply tetrachlorosilane and hydrogen to the second reaction vessel 12.
  • the second reaction vessel 12 contains tetrachlorosilane, hydrogen, and silicon powder supplied from the outside.
  • the second reaction vessel 12 is provided in the trichlorosilane production system, and trichlorosilane is produced by reacting tetrachlorosilane with hydrogen and silicon powder.
  • the reaction formula is as follows. Silicon powder (Si) + 3SiCl 4 + 2H 2 ⁇ 4SiHCl 3
  • the second reaction vessel 12 supplies silicon powder, hydrogen, trichlorosilane, and unreacted tetrachlorosilane to the filter 10A via the heat exchanger 13.
  • the second storage tank 15 stores the silicon powder discharged from the lower part of the second reaction vessel 12 and the silicon powder discharged from the powder discharge port 80 of the filter 10A.
  • the filter 10A takes in silicon powder, hydrogen, trichlorosilane and unreacted tetrachlorosilane supplied from the second reaction vessel 12 via the heat exchanger 13 from the inflow port 60.
  • the filter 10A removes the silicon powder from the silicon powder, hydrogen, trichlorosilane and unreacted tetrachlorosilane. That is, the gas and powder separated by the filter element 40 of the filter 10A are discharged from the second reaction vessel 12.
  • the filters 10 and 10A can be suitably used for separating the gas and powder discharged from each of the first reaction vessel 2 and the second reaction vessel 12 as described above. it can.
  • filters 10 and 10A are used for producing trichlorosilane
  • a filter element made of a sintered metal containing 1 wt% or more of molybdenum having high corrosion resistance can be obtained in order to obtain high-purity trichlorosilane (International Publication No. 2019 / It is preferable to use 098345).
  • examples of the sintered metal include incoloy, inconel, and hastelloy, which are sintered metals containing molybdenum in an amount of preferably 2 to 20 wt%, more preferably 5 to 20 wt%.
  • this filter element tends to be brittle. According to the above configuration, even when such a filter element is used, a remarkable effect of preventing the filter element from cracking can be obtained.
  • nitrogen which is an inert gas
  • nitrogen may be used after the reaction is completed. is there.
  • the supply of the raw material gas for example, the gas containing the raw material gas such as HCl, tetrachlorosilane and / or hydrogen
  • the supply is switched to the nitrogen supply, and the atmosphere in the manufacturing apparatus is replaced with nitrogen.
  • a filter is used to separate the silicon powder in the mixed gas of the raw material gas containing the silicon powder and nitrogen, or in the nitrogen containing the silicon powder. Therefore, the gas separated by the filters 10 and 10A may contain nitrogen.
  • the filter according to one aspect of the present invention is a filter provided in a flow path through which a gas containing the powder flows in order to separate the gas and the powder, and separates the gas and the powder and at the same time.
  • a filter element having a filter surface extending between the first end and the second end opposite to the first end and a first opening are formed, and the first end or the said is formed in the first opening.
  • the vicinity of the first end is fixed, a fixing portion fixed to the inner wall of the flow path forming a space for accommodating the filter element, and a second opening into which the filter element is inserted are formed.
  • a jig arranged between the first end and the second end is provided.
  • the vibration of the filter element is suppressed by the structure in which the filter element is inserted into the second opening. Therefore, the moment of force applied to the second end of the filter element due to the vibration of the filter element can be reduced as compared with the case where the jig is not arranged. Therefore, it is possible to prevent the filter element from cracking.
  • the jig is arranged at a position away from the fixing portion by a distance along the stretching direction, which is the same as a length of 1/3 or more and 2/3 or less of the length of the filter element along the stretching direction. You may. According to the above configuration, since the jig is arranged near the center of the filter element, the vibration of the filter element can be efficiently suppressed.
  • a resin anti-vibration material may be interposed between the second opening and the filter element. According to the above configuration, the vibration of the filter element can be further suppressed as compared with the case where the vibration inhibitor is not provided. Further, since the anti-vibration material is made of resin, it is possible to reduce the corrosion of the anti-vibration material even when the gas flowing through the flow path is an acidic corrosive gas.
  • the jig may be fixed to the fixing portion via a connecting member that connects the jig and the fixing portion. According to the above configuration, since the jig and the fixing portion can be taken out from the flow path collectively, the inside of the flow path can be easily cleaned.
  • the filter element may be a sintered metal. According to the above configuration, it is possible to realize a filter having sufficient corrosion resistance and wear resistance.
  • the powder separated from the gas by the filter element is silicon powder, and the gas separated from the powder by the filter element may contain at least one of hydrogen, hydrogen chloride, nitrogen and chlorosilane gas.
  • the vibration of the filter element can be suppressed by the jig even when the gas or powder as described above flows through the flow path. Further, the filter element separates the silicon powder having a heavy specific density from the gas and the corrosive gas from the silicon powder. Therefore, when a filter element made of a hard and brittle sintered metal is used, a remarkable effect of preventing the filter element from cracking is exhibited as compared with the case where a filter element made of another material is used.
  • the gas and powder separated by the filter element are provided in the trichlorosilane production system, and are discharged from the first reaction vessel that reacts the silicon powder with hydrogen chloride to produce the trichlorosilane. , It may be provided in the production system of the trichlorosilane, and may be discharged from the second reaction vessel that produces the trichlorosilane by reacting tetrachlorosilane with hydrogen and silicon powder.
  • a filter can be suitably used for separating the gas and powder discharged from each of the first reaction vessel and the second reaction vessel as described above.
  • a filter element made of a sintered metal containing 1 wt% or more of molybdenum having high corrosion resistance can be obtained in order to obtain high-purity trichlorosilane (International Publication No. 2019/098345). It is preferable to use.
  • this filter element tends to be brittle. According to the above configuration, even when such a filter element is used, a remarkable effect of preventing the filter element from cracking can be obtained.
  • the jig may be formed separately from the second opening and may be formed with a third opening for passing gas. According to the above configuration, by passing the gas through the third opening, the air permeability can be improved in the vicinity of the filter element as compared with the case where the third opening is not formed.
  • jig 50 As the jig 50, a jig 50 having a third opening 52 and a fourth opening 53 formed was used as shown in FIG. The jig 50 was provided with a third opening 52 and a fourth opening 53 so that the second porosity of the jig 50 was 28%.
  • a partition plate 30 (fixed portion 30) made of Inconel 625 (containing 1 wt% or more of molybdenum) and having 150 filter elements 40 having a length of 1200 mm, a diameter of 50 mm, and a filtration accuracy of 2 ⁇ m was used.
  • the vibration prevention material P1 made of ring-shaped fluororesin arranged on the inner peripheral surface of the second opening 51
  • the partition plate 30 and the jig 50 are combined, and the partition plate 30 and the jig 50 are formed by the connecting member 32.
  • the jig 50 was arranged so as to be 600 mm above the second end 42 of the filter element 40. That is, the jig 50 is arranged at a position having a length of 1/2 of the length along the stretching direction D1 of the filter element 40.
  • the present invention can be used for separating gas and powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Filtering Materials (AREA)
  • Silicon Compounds (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

The purpose of the present invention is to prevent breakage of filter elements. A filter (10), provided with: filter elements (40) in which a filter surface (43) extends between a first end (41) and a second end (42); a partition wall (30) having first openings formed therein, the partition wall (30) being fixed to the inner wall of a channel forming a space in which the filter elements (40) are housed; and a jig (50) having formed therein second openings into which the filter elements (40) are inserted, the jig (50) being positioned between the first end (41) and the second end (42).

Description

フィルタfilter
 本発明は、フィルタに関する。 The present invention relates to a filter.
 従来、気体と粉体とを分離するために、当該粉体を含む気体が流通する流路に設けられるフィルタが知られている。例えば、特許文献1には、ガスを濾過すると共に、貫通孔が形成された面板と、当該貫通孔に配置されたフィルタエレメントと、を備えるガス濾過装置が開示されている。 Conventionally, a filter provided in a flow path through which a gas containing the powder flows in order to separate the gas and the powder is known. For example, Patent Document 1 discloses a gas filtration device including a face plate on which a through hole is formed and a filter element arranged in the through hole while filtering the gas.
中国特許出願公開第102814084号明細書Chinese Patent Application Publication No. 102814084
 しかしながら、特許文献1に開示されているガス濾過装置では、フィルタエレメントが振動することにより、フィルタエレメントが割れる虞があるという問題がある。本発明の一態様は、フィルタエレメントが割れることを防止することを目的とする。 However, in the gas filtration device disclosed in Patent Document 1, there is a problem that the filter element may be cracked due to the vibration of the filter element. One aspect of the present invention is to prevent the filter element from cracking.
 前記の課題を解決するために、本発明の一態様に係るフィルタは、気体と粉体とを分離するために、当該粉体を含む気体が流通する流路に設けられるフィルタであって、気体と粉体とを分離すると共に、第1端と、当該第1端とは反対側の第2端と、の間をフィルタ面が延伸するフィルタエレメントと、第1開口が形成され、当該第1開口に、前記第1端または前記第1端近傍が固定されると共に、前記フィルタエレメントが収容される空間を形成する前記流路の内壁に固定される固定部と、前記フィルタエレメントが挿入される第2開口が形成されると共に、前記第1端と前記第2端との間に配置される治具と、を備える。 In order to solve the above-mentioned problems, the filter according to one aspect of the present invention is a filter provided in a flow path through which a gas containing the powder flows in order to separate the gas and the powder, and is a gas. And the powder are separated, and a filter element in which the filter surface extends between the first end and the second end opposite to the first end and the first opening are formed, and the first opening is formed. The first end or the vicinity of the first end is fixed to the opening, and the fixing portion fixed to the inner wall of the flow path forming a space for accommodating the filter element and the filter element are inserted. A second opening is formed, and a jig is provided between the first end and the second end.
 本発明の一態様によれば、フィルタエレメントが割れることを防止することができる。 According to one aspect of the present invention, it is possible to prevent the filter element from cracking.
本発明の実施形態1に係るフィルタの構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the filter which concerns on Embodiment 1 of this invention. 図1に示すフィルタについて、フィルタエレメントが仕切り板に固定されていない状態と、筐体が分割された状態と、を示す模式図である。It is a schematic diagram which shows the state which the filter element is not fixed to a partition plate, and the state which the housing is divided about the filter shown in FIG. 図1に示すフィルタが備える治具の構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the jig provided in the filter shown in FIG. 図1に示すフィルタを備える製造装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the manufacturing apparatus which includes the filter shown in FIG. 本発明の実施形態2に係る製造装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the manufacturing apparatus which concerns on Embodiment 2 of this invention.
 〔実施形態1〕
 (フィルタ10の構成)
 図1は、本発明の実施形態1に係るフィルタ10の構成の一例を示す模式図である。図2は、図1に示すフィルタ10について、フィルタエレメント40が仕切り板30に固定されていない状態(フィルタエレメント40が存在していない状態)と、筐体20が分割された状態と、を示す模式図である。図1は、説明の便宜上、筐体20の内部が見えるように、フィルタ10の構成を示している。図2における101で示す図も同様である。なお、仕切り板30は、固定部に該当する。
[Embodiment 1]
(Structure of filter 10)
FIG. 1 is a schematic view showing an example of the configuration of the filter 10 according to the first embodiment of the present invention. FIG. 2 shows a state in which the filter element 40 is not fixed to the partition plate 30 (a state in which the filter element 40 does not exist) and a state in which the housing 20 is divided with respect to the filter 10 shown in FIG. It is a schematic diagram. FIG. 1 shows the configuration of the filter 10 so that the inside of the housing 20 can be seen for convenience of explanation. The same applies to the figure shown by 101 in FIG. The partition plate 30 corresponds to a fixed portion.
 フィルタ10は、気体と粉体とを分離するために、当該粉体を含む気体が流通する流路に設けられる。また、フィルタ10は、例えば、トリクロロシラン(TCS、SiHCl)の製造系に設けられるフィルタである。トリクロロシランの製造系とは、トリクロロシランを製造する製造装置全体を示しており、例えば、後述する製造装置1または製造装置11の全体を示している。 The filter 10 is provided in a flow path through which the gas containing the powder flows in order to separate the gas and the powder. Further, the filter 10 is, for example, a filter provided in the production system of trichlorosilane (TCS, SiHCl 3). The trichlorosilane production system refers to the entire production apparatus for producing trichlorosilane, for example, the entire production apparatus 1 or production apparatus 11 described later.
 ただし、本発明は、トリクロロシランの製造系に設けられるフィルタに適用範囲が限定されるものではない。本発明は、シーメンス法を用いて、CVD(Chemical Vapor Deposition)法によってクロロシランガス及び水素(H)から多結晶シリコンを製造する装置に設けられるフィルタにも適用されるものである。当該フィルタは、当該装置に備えられる反応容器から排出される、シリコン粉体(Si)及び塩化水素(HCl)を含む気体からシリコン粉体及び塩化水素を分離する。 However, the scope of application of the present invention is not limited to the filter provided in the production system of trichlorosilane. The present invention is also applied to a filter provided in an apparatus for producing polycrystalline silicon from chlorosilane gas and hydrogen (H 2 ) by a CVD (Chemical Vapor Deposition) method using the Siemens method. The filter separates the silicon powder and hydrogen chloride from the gas containing the silicon powder (Si) and hydrogen chloride (HCl) discharged from the reaction vessel provided in the apparatus.
 本発明は、前記したようなフィルタに適用されるため、フィルタ10の後述するフィルタエレメント40によって気体と分離される粉体は、シリコン粉体であり、フィルタエレメント40によって粉体と分離される気体は、水素、塩化水素、窒素及びクロロシランガスの少なくとも1つを含む。当該クロロシランガスとしては、例えば、トリクロロシラン、テトラクロロシラン(STC、SiCl4)等が挙げられる。 Since the present invention is applied to the above-mentioned filter, the powder separated from the gas by the filter element 40 described later of the filter 10 is silicon powder, and the gas separated from the powder by the filter element 40. Contains at least one of hydrogen, hydrogen chloride, nitrogen and chlorosilane gas. Examples of the chlorosilane gas include trichlorosilane, tetrachlorosilane (STC, SiCl4) and the like.
 前記構成によれば、前記のような気体や粉体が流路を流れる場合であっても、後述する治具50によってフィルタエレメント40の振動を抑制することができる。また、フィルタエレメント40によって、比重が重いシリコン粉体を気体から分離すると共に、腐食性ガスをシリコン粉体から分離する。このため、硬くて脆い焼結金属からなるフィルタエレメントを利用した場合、他の材料のフィルタエレメントを利用した場合に比べて、特に、フィルタエレメントが割れることを防止する顕著な効果を奏する。 According to the above configuration, even when the gas or powder as described above flows through the flow path, the vibration of the filter element 40 can be suppressed by the jig 50 described later. Further, the filter element 40 separates the silicon powder having a heavy specific gravity from the gas and separates the corrosive gas from the silicon powder. Therefore, when a filter element made of a hard and brittle sintered metal is used, a remarkable effect of preventing the filter element from cracking is exhibited as compared with the case where a filter element made of another material is used.
 なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意味する。以下では、一例としてトリクロロシランの製造系に設けられるフィルタ10について説明する。 Unless otherwise specified in the present specification, "A to B" representing a numerical range means "A or more (including A and larger than A) and B or less (including B and smaller than B)". Hereinafter, the filter 10 provided in the trichlorosilane production system will be described as an example.
 また、本明細書において、「シリコン粉体」とは、冶金製金属シリコン、珪素鉄またはポリシリコン等の金属状態の珪素元素を含む固体物質を意図し、公知のものが何ら制限なく使用される。また、それらシリコン粉体には鉄化合物等の不純物が含まれていてもよく、その成分及び含有量において特に制限はない。 Further, in the present specification, the "silicon powder" is intended to be a solid substance containing a silicon element in a metallic state such as metallurgical silicon, silicon iron or polysilicon, and known substances are used without any limitation. .. Further, these silicon powders may contain impurities such as iron compounds, and the components and contents thereof are not particularly limited.
 図1に示すように、フィルタ10は、筐体20と、仕切り板30(固定部)と、フィルタエレメント40と、治具50と、を備える。図2における102で示す図の通り、筐体20は、上部キャップ21と下部チャンバ22とを有すると共に、上部キャップ21と下部チャンバ22とに分割可能なものである。 As shown in FIG. 1, the filter 10 includes a housing 20, a partition plate 30 (fixed portion), a filter element 40, and a jig 50. As shown in FIG. 102 in FIG. 2, the housing 20 has an upper cap 21 and a lower chamber 22, and can be divided into an upper cap 21 and a lower chamber 22.
 筐体20には、流入口60と、気体排出口70と、粉体排出口80と、が形成される。流入口60は、シリコン粉体を含む気体が筐体20の内部に流入するために形成される。気体排出口70は、シリコン粉体と分離された気体を筐体20から排出するために形成される。粉体排出口80は、気体と分離されたシリコン粉体を筐体20から排出するために形成される。 The housing 20 is formed with an inflow port 60, a gas discharge port 70, and a powder discharge port 80. The inflow port 60 is formed so that a gas containing silicon powder flows into the inside of the housing 20. The gas discharge port 70 is formed to discharge the gas separated from the silicon powder from the housing 20. The powder discharge port 80 is formed to discharge the silicon powder separated from the gas from the housing 20.
 また、筐体20の内部において、第1領域R1内の圧力と第2領域R2内の圧力との差圧を計測する差圧計90が筐体20に対して設置されている。第1領域R1内の圧力と第2領域R2内の圧力との差圧は、例えば、100~1500kPaGである。シリコン粉体を含む気体は、流入口60から筐体20の内部に流入し、第2領域R2、フィルタエレメント40及び第1領域R1の順にこれらを通過し、気体排出口70から筐体20の外部に排出される。筐体20の内部に流入する気体に含まれるシリコン粉体の粒径は、例えば、1~40μmであり、当該気体中の粉体密度は、1~5kg/Nmである。前記気体中のシリコン粉体の粉体濃度は、10~20wt%である。 Further, inside the housing 20, a differential pressure gauge 90 for measuring the differential pressure between the pressure in the first region R1 and the pressure in the second region R2 is installed with respect to the housing 20. The differential pressure between the pressure in the first region R1 and the pressure in the second region R2 is, for example, 100 to 1500 kPaG. The gas containing the silicon powder flows into the housing 20 from the inflow port 60, passes through the second region R2, the filter element 40, and the first region R1 in this order, and passes from the gas discharge port 70 to the housing 20. It is discharged to the outside. The particle size of the silicon powder contained in the gas flowing into the housing 20 is, for example, 1 to 40 μm, and the powder density in the gas is 1 to 5 kg / Nm 3 . The powder concentration of the silicon powder in the gas is 10 to 20 wt%.
 仕切り板30は、筐体20の内部の空間を、第1領域R1と第2領域R2とに仕切る板である。第1領域R1は、フィルタエレメント40によってシリコン粉体と分離される気体が主に存在する領域である。第2領域R2は、フィルタエレメント40によって気体と分離されるシリコン粉体と、筐体20の内部に流入する気体と、が存在する領域である。 The partition plate 30 is a plate that partitions the space inside the housing 20 into a first region R1 and a second region R2. The first region R1 is a region in which the gas separated from the silicon powder by the filter element 40 mainly exists. The second region R2 is a region in which the silicon powder separated from the gas by the filter element 40 and the gas flowing into the housing 20 exist.
 仕切り板30により筐体20の内部の空間を第1領域R1と第2領域R2とに仕切ることで、筐体20の内部に流入する、シリコン粉体を含む気体が、第1領域R1に侵入することを防止することができる。仕切り板30は、フィルタエレメント40が収容される空間を形成する流路の内壁に固定される。具体的には、仕切り板30は、筐体20の内壁23に固定されて固定部となる。 By partitioning the space inside the housing 20 into the first region R1 and the second region R2 by the partition plate 30, the gas containing silicon powder that flows into the housing 20 invades the first region R1. It can be prevented from doing so. The partition plate 30 is fixed to the inner wall of the flow path forming the space in which the filter element 40 is housed. Specifically, the partition plate 30 is fixed to the inner wall 23 of the housing 20 to form a fixed portion.
 仕切り板30は、上部キャップ21と下部チャンバ22との間に挟まれることにより、筐体20の内壁23に固定されて固定部となる。この他、下部チャンバ22の上部内壁部分に、仕切り板30を保持できる保持部(図示せず)を設け、当該保持部に仕切り板30を置くことにより、仕切り板30を筐体20の内壁23に固定する態様とすることもできる。この場合、前記保持部と仕切り板30との間に隙間が生じないような構造とする必要がある。 The partition plate 30 is sandwiched between the upper cap 21 and the lower chamber 22 and is fixed to the inner wall 23 of the housing 20 to form a fixed portion. In addition, a holding portion (not shown) capable of holding the partition plate 30 is provided on the upper inner wall portion of the lower chamber 22, and the partition plate 30 is placed on the holding portion so that the partition plate 30 can be placed on the inner wall 23 of the housing 20. It can also be fixed to. In this case, it is necessary to have a structure so that no gap is formed between the holding portion and the partition plate 30.
 図2における101で示す図の通り、仕切り板30には、第1開口31が形成される。第1開口31には、フィルタエレメント40の第1端41または第1端41近傍が固定される。第1開口31は、フィルタエレメント40を通過した気体が第1領域R1に導入されるために、仕切り板30に形成される。仕切り板30には、第1開口31以外には開口は形成されていない。 As shown in FIG. 101 in FIG. 2, the partition plate 30 is formed with the first opening 31. The vicinity of the first end 41 or the first end 41 of the filter element 40 is fixed to the first opening 31. The first opening 31 is formed in the partition plate 30 because the gas that has passed through the filter element 40 is introduced into the first region R1. No opening is formed in the partition plate 30 other than the first opening 31.
 第1端41近傍とは、例えば、フィルタエレメント40のうち、第1端41と、第1端41から後述する延伸方向D1に沿って、フィルタエレメント40の長さL1の10%程度の長さ以下だけ粉体排出口80に向かった位置と、の間の部分である。つまり、長さL1が1000~1500mmであれば、フィルタエレメント40のうち、第1端41と、第1端41から延伸方向D1に沿って100~150mmだけ粉体排出口80に向かった位置と、の間の部分である。 The vicinity of the first end 41 is, for example, a length of about 10% of the length L1 of the filter element 40 along the first end 41 and the stretching direction D1 described later from the first end 41 of the filter element 40. Only the following is the part between the position facing the powder discharge port 80 and the position. That is, if the length L1 is 1000 to 1500 mm, the position of the filter element 40 at the first end 41 and 100 to 150 mm from the first end 41 along the stretching direction D1 toward the powder discharge port 80. Is the part between.
 なお、濾過効率を考えた場合、第1端41の上端と仕切り板30の上面とが同一平面状に存在することが好ましい。つまり、第1端41と仕切り板30とが接合していることが好ましい。少なくとも第1端41近傍が第1開口31に固定されることにより、フィルタエレメント40が仕切り板30に対して第2領域R2側に十分に延伸するため、フィルタエレメント40による濾過の機能を十分に発揮することができる。 Considering the filtration efficiency, it is preferable that the upper end of the first end 41 and the upper surface of the partition plate 30 are in the same plane. That is, it is preferable that the first end 41 and the partition plate 30 are joined. By fixing at least the vicinity of the first end 41 to the first opening 31, the filter element 40 is sufficiently extended toward the second region R2 with respect to the partition plate 30, so that the filtering function of the filter element 40 is sufficient. Can be demonstrated.
 フィルタエレメント40は、気体と、粉体としてのシリコン粉体と、を分離すると共に、第1端41と、第1端41とは反対側の第2端42と、の間をフィルタ面43が延伸する濾材である。フィルタエレメント40は、焼結金属であることが好ましい。これにより、十分な耐食性及び耐摩耗性を有するフィルタ10を実現することができる。当該焼結金属としては、例えば、耐食性の高いモリブデンを1wt%以上、好ましくは2~20wt%、より好ましくは5~20wt%含む焼結金属であるインコロイ、インコネルまたはハステロイ等が挙げられる。 The filter element 40 separates the gas and the silicon powder as powder, and the filter surface 43 forms between the first end 41 and the second end 42 opposite to the first end 41. It is a filter medium to be stretched. The filter element 40 is preferably a sintered metal. Thereby, the filter 10 having sufficient corrosion resistance and wear resistance can be realized. Examples of the sintered metal include incoloy, inconel, and hastelloy, which are sintered metals containing 1 wt% or more, preferably 2 to 20 wt%, and more preferably 5 to 20 wt% of molybdenum having high corrosion resistance.
 フィルタエレメント40の表面積あたりのガス流入量(線速度)は、例えば、20~60m/m/hrである。フィルタエレメント40の濾過精度は、例えば、5μmであることが好ましく、2μmであることがより好ましい。なお、濾過精度とは、当該濾過精度を示す数値の粒子径(例えば、5μmの粒子径または2μmの粒子径)を有する粉体の99.9%以上を除去できることを示す。 The gas inflow amount (linear velocity) per surface area of the filter element 40 is, for example, 20 to 60 m 3 / m 2 / hr. The filtration accuracy of the filter element 40 is, for example, preferably 5 μm, more preferably 2 μm. The filtration accuracy means that 99.9% or more of the powder having a numerical particle size (for example, a particle size of 5 μm or a particle size of 2 μm) indicating the filtration accuracy can be removed.
 フィルタエレメント40における延伸方向D1に沿った長さL1は、例えば、1000~1500mmである。延伸方向D1は、筐体20の延伸方向と同一である。フィルタエレメント40の直径は、40~60mmである。 The length L1 of the filter element 40 along the stretching direction D1 is, for example, 1000 to 1500 mm. The stretching direction D1 is the same as the stretching direction of the housing 20. The diameter of the filter element 40 is 40 to 60 mm.
 筐体20の内部に収容されるフィルタエレメント40の本数は、1つのフィルタ10につき、例えば、50~250本である。後述する製造装置1がトリクロロシランを製造中であり、筐体20の内部に、シリコン粉体を含む気体が流通している場合、フィルタエレメント40の温度は、例えば、100~300℃である。 The number of filter elements 40 housed inside the housing 20 is, for example, 50 to 250 per filter 10. When the manufacturing apparatus 1 described later is manufacturing trichlorosilane and a gas containing silicon powder is circulating inside the housing 20, the temperature of the filter element 40 is, for example, 100 to 300 ° C.
 治具50は、フィルタエレメント40の第1端41と第2端42との間に配置される。図2における101で示す図の通り、治具50には、第2開口51が形成される。第2開口51には、フィルタエレメント40が挿入される。また、気体排出口70から粉体排出口80に向かう方向から見て、仕切り板30の第1開口31の位置と、治具50に形成される第2開口51の位置とが一致する。 The jig 50 is arranged between the first end 41 and the second end 42 of the filter element 40. As shown in FIG. 101 in FIG. 2, the jig 50 is formed with a second opening 51. The filter element 40 is inserted into the second opening 51. Further, the position of the first opening 31 of the partition plate 30 and the position of the second opening 51 formed in the jig 50 coincide with each other when viewed from the direction from the gas discharge port 70 to the powder discharge port 80.
 前記構成によれば、フィルタエレメント40が第2開口51に挿入される構造によって、フィルタエレメント40の振動が抑制される。このため、治具50が配置されない場合に比べて、フィルタエレメント40の振動に起因する、フィルタエレメント40の第2端42にかかる力のモーメントを小さくすることができる。よって、フィルタエレメント40が割れることを防止することができる。 According to the above configuration, the vibration of the filter element 40 is suppressed by the structure in which the filter element 40 is inserted into the second opening 51. Therefore, the moment of force applied to the second end 42 of the filter element 40 due to the vibration of the filter element 40 can be reduced as compared with the case where the jig 50 is not arranged. Therefore, it is possible to prevent the filter element 40 from cracking.
 フィルタエレメント40が割れることを防止できるため、フィルタエレメントが割れた箇所からシリコン粉体が通過することにより、フィルタ10よりも下流の工程でシリコン粉体が堆積して問題が生じることを防止することができる。また、フィルタエレメントの長さが所定以上の長さである場合に、フィルタエレメントが割れる確率が高くなる。このため、治具50が設けられることにより、フィルタエレメント40を長くして、気体とシリコン粉体との分離を効率的に行うと共に、フィルタエレメント40が割れることを防止することができる。 Since it is possible to prevent the filter element 40 from cracking, it is possible to prevent the silicon powder from accumulating in a process downstream of the filter 10 and causing a problem due to the passage of the silicon powder from the cracked portion of the filter element. Can be done. Further, when the length of the filter element is longer than a predetermined length, the probability that the filter element is cracked increases. Therefore, by providing the jig 50, the filter element 40 can be lengthened to efficiently separate the gas and the silicon powder and prevent the filter element 40 from cracking.
 さらに、フィルタ10を逆洗浄するとき、高圧のガスをフィルタ10の下流から流通させる。このような場合であっても、高圧のガスによるフィルタエレメント40の振動を抑制することができる。 Further, when the filter 10 is backwashed, a high-pressure gas is circulated from the downstream side of the filter 10. Even in such a case, the vibration of the filter element 40 due to the high pressure gas can be suppressed.
 治具50は、フィルタエレメント40の延伸方向D1に沿った距離DSだけ仕切り板30から離れた位置に配置されている。距離DSは、フィルタエレメント40における延伸方向D1に沿った長さL1の1/3以上2/3以下の長さと同一である。前記構成によれば、フィルタエレメント40の中央付近に治具50が配置されるため、フィルタエレメント40の振動を効率的に抑制することができる。 The jig 50 is arranged at a position separated from the partition plate 30 by a distance DS along the stretching direction D1 of the filter element 40. The distance DS is the same as the length of 1/3 or more and 2/3 or less of the length L1 along the stretching direction D1 in the filter element 40. According to the above configuration, since the jig 50 is arranged near the center of the filter element 40, the vibration of the filter element 40 can be efficiently suppressed.
 治具50は、治具50と仕切り板30とを接続する接続部材32を介して仕切り板30に固定されている。前記構成によれば、治具50と仕切り板30とを筐体20からまとめて取り出すことができるため、筐体20内を容易に掃除することができる。また、筐体20は、上部キャップ21と下部チャンバ22とに分割可能なものであるため、治具50と仕切り板30とを筐体20からまとめて取り出すことが容易にできる。さらに、後述する振動防止材P1を、第2開口51とフィルタエレメント40との間に容易に挿入することができる。 The jig 50 is fixed to the partition plate 30 via a connecting member 32 that connects the jig 50 and the partition plate 30. According to the above configuration, since the jig 50 and the partition plate 30 can be taken out from the housing 20 together, the inside of the housing 20 can be easily cleaned. Further, since the housing 20 can be divided into an upper cap 21 and a lower chamber 22, the jig 50 and the partition plate 30 can be easily taken out from the housing 20 together. Further, the vibration preventing material P1 described later can be easily inserted between the second opening 51 and the filter element 40.
 なお、治具50が接続部材32を介して仕切り板30に固定される構成は、一例であり、治具50が筐体20に固定される構成は限定されない。例えば、治具50は、下部チャンバ22の内壁に固定されてもよい。 The configuration in which the jig 50 is fixed to the partition plate 30 via the connecting member 32 is an example, and the configuration in which the jig 50 is fixed to the housing 20 is not limited. For example, the jig 50 may be fixed to the inner wall of the lower chamber 22.
 治具50の材質は、ステンレススチール製であることが好ましく、例えば、SUS304である。また、治具50における延伸方向D1に沿った厚みは、例えば、約5~20mmであることが好ましく、約10mmであることが好ましい。 The material of the jig 50 is preferably stainless steel, for example, SUS304. Further, the thickness of the jig 50 along the stretching direction D1 is preferably, for example, about 5 to 20 mm, and preferably about 10 mm.
 治具50の外径は、筐体20の内径、つまり、下部チャンバ22の内径より小さい。よって、治具50が延伸方向D1に直交する平面に沿って配置された状態では、治具50は、筐体20の内壁に接触しない。筐体20の内径とは、延伸方向D1に直交する筐体20の断面の直径である。 The outer diameter of the jig 50 is smaller than the inner diameter of the housing 20, that is, the inner diameter of the lower chamber 22. Therefore, when the jig 50 is arranged along the plane orthogonal to the stretching direction D1, the jig 50 does not come into contact with the inner wall of the housing 20. The inner diameter of the housing 20 is the diameter of the cross section of the housing 20 orthogonal to the stretching direction D1.
 治具50に形成された第2開口51の目開きの形状は、特に制限されるものではなく、フィルタエレメント40が挿入できる形状であればよい。この場合、後述する振動防止材P1を第2開口51とフィルタエレメント40との間に介在させることが好ましい。 The shape of the opening of the second opening 51 formed in the jig 50 is not particularly limited, and may be any shape as long as the filter element 40 can be inserted. In this case, it is preferable that the vibration preventing material P1 described later is interposed between the second opening 51 and the filter element 40.
 複数のフィルタエレメント40を備えたフィルタ10の場合を考える。この場合、フィルタ10自体を構成する作業性を考慮すると、第2開口51の目開きの形状は、フィルタエレメント40の断面(第2開口51にフィルタエレメント40が挿入されたときに、第2開口51と同一平面上に存在するフィルタエレメント40の断面)の形状と同一の形状であることが好ましい。例えば、フィルタエレメント40が円筒状であれば、第2開口51の目開きの形状は、円状であることが好ましい。 Consider the case of a filter 10 having a plurality of filter elements 40. In this case, considering the workability of forming the filter 10 itself, the shape of the opening of the second opening 51 is the cross section of the filter element 40 (when the filter element 40 is inserted into the second opening 51, the second opening is the second opening. It is preferable that the shape is the same as the shape of the filter element 40 (cross section of the filter element 40 existing on the same plane as 51). For example, if the filter element 40 is cylindrical, the opening shape of the second opening 51 is preferably circular.
 そして、振動防止材P1を使用しない場合、第2開口51の目開きの大きさは、フィルタエレメント40の振動防止効果を低減させない程度の大きさであればよい。ただし、フィルタ10自体の準備、及び、フィルタエレメント40の振動防止効果を考慮すると、以下の通りであることが好ましい。 When the anti-vibration material P1 is not used, the size of the opening of the second opening 51 may be a size that does not reduce the anti-vibration effect of the filter element 40. However, considering the preparation of the filter 10 itself and the vibration prevention effect of the filter element 40, the following is preferable.
 まず、前記の通り、フィルタエレメント40の断面形状と第2開口51の目開きの形状とは同一で、互いに相似の関係にあることが好ましい。そして、フィルタ10の規模にも影響するが、フィルタ10自体の準備のし易さを考慮すると、以下の通りである。具体的には、図3に示すように、フィルタエレメント40の断面形状の中心点からその外周縁までの長さをLaとしたとき、第2開口51の目開きの中心点からその内周縁までの長さはLa以上1.80La以下であることが好ましい。 First, as described above, it is preferable that the cross-sectional shape of the filter element 40 and the shape of the opening of the second opening 51 are the same and have a similar relationship with each other. Although it affects the scale of the filter 10, it is as follows in consideration of the ease of preparation of the filter 10 itself. Specifically, as shown in FIG. 3, when the length from the center point of the cross-sectional shape of the filter element 40 to the outer peripheral edge thereof is La, from the center point of the opening of the second opening 51 to the inner peripheral edge thereof. The length of is preferably La or more and 1.80 La or less.
 ただし、第2開口51の目開きの大きさが大きくなり過ぎると、フィルタエレメント40の振動を抑制する効果が低下する傾向にあり、また、振動防止材P1を複数、及び、多量に使用する必要が生じるため、作業性が低下する傾向にある。また、第2開口51の目開きの大きさが小さくなり過ぎると、フィルタエレメント40を挿入する際に精密な制御が必要となり、この場合もフィルタ10自体を構成する際に作業性が低下する傾向にある。 However, if the size of the opening of the second opening 51 becomes too large, the effect of suppressing the vibration of the filter element 40 tends to decrease, and it is necessary to use a plurality of vibration prevention materials P1 and a large amount. Therefore, workability tends to decrease. Further, if the size of the opening of the second opening 51 becomes too small, precise control is required when inserting the filter element 40, and in this case as well, workability tends to decrease when the filter 10 itself is configured. It is in.
 このため、第2開口51の目開きの中心点からその内周縁までの長さは、Laを超え1.70La以下であることがより好ましく、1.02La以上1.60La以下であることがさらに好ましく、1.05La以上1.50La以下であることが特に好ましい。 Therefore, the length from the center point of the opening of the second opening 51 to the inner peripheral edge thereof is more preferably more than La and 1.70 La or less, and further preferably 1.02 La or more and 1.60 La or less. It is preferable, and it is particularly preferable that it is 1.05 La or more and 1.50 La or less.
 そして、第2開口51の目開きの中心点からその内周縁までの長さが、Laに対して大きくなり過ぎる場合には、必要に応じて、振動防止材P1を使用することが好ましい。例えば、第2開口51の目開きの大きさは、フィルタの規模に応じて異なる。このため、一概に限定できるものではないが、第2開口51の目開きの中心点からその内周縁までの長さが1.01La以上となる場合には、振動防止効果を高めるために、振動防止材P1を併用することが好ましい。 Then, when the length from the center point of the opening of the second opening 51 to the inner peripheral edge thereof becomes too large with respect to La, it is preferable to use the vibration preventing material P1 as necessary. For example, the size of the opening of the second opening 51 varies depending on the scale of the filter. Therefore, although it cannot be unconditionally limited, when the length from the center point of the opening of the second opening 51 to the inner peripheral edge thereof is 1.01 La or more, vibration is performed in order to enhance the vibration prevention effect. It is preferable to use the preventive material P1 together.
 具体的に好適な形態を例示すると以下の通りである。特に、フィルタ10の準備のし易さを考慮すると以下の通りである。フィルタエレメント40の形状が円筒状である場合、前記の通り、第2開口51の目開きの形状は円状であることが好ましい。この場合、フィルタエレメント40の断面の半径(外周縁基準)よりも、第2開口51の目開きの半径(内周縁基準)を、1mmを超え15mm以下だけ大きなものとすることが好ましく、2mm以上10mm以下だけ大きなものとすることがより好ましい。そして、第2開口51にフィルタエレメント40を挿入する。この場合には、第2開口51とフィルタエレメント40との間に生じた隙間に振動防止材P1を介在させることが好ましい。 Specific examples of suitable forms are as follows. In particular, considering the ease of preparation of the filter 10, it is as follows. When the shape of the filter element 40 is cylindrical, as described above, the shape of the opening of the second opening 51 is preferably circular. In this case, it is preferable that the radius of the opening of the second opening 51 (based on the inner peripheral edge) is larger than the radius of the cross section of the filter element 40 (based on the outer peripheral edge) by more than 1 mm and 15 mm or less, preferably 2 mm or more. It is more preferable to make it larger by 10 mm or less. Then, the filter element 40 is inserted into the second opening 51. In this case, it is preferable to interpose the vibration preventing material P1 in the gap formed between the second opening 51 and the filter element 40.
 特に制限されるものではないが、フィルタ10自体の準備を容易にするため、及び、フィルタエレメント40の振動を抑制する効果をより一層高めるためには、第2開口51とフィルタエレメント40との間に、樹脂製の振動防止材P1を介在させることが好ましい。 Although not particularly limited, in order to facilitate the preparation of the filter 10 itself and to further enhance the effect of suppressing the vibration of the filter element 40, between the second opening 51 and the filter element 40. It is preferable to interpose the resin anti-vibration material P1.
 振動防止材P1に用いられる樹脂としては、例えば、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、ポリテトラフルオロエチレン(テフロン(登録商標))等のフッ素系樹脂である。中でも、フッ素系樹脂からなる振動防止材P1は、耐食性に優れ、他材料との滑り性にも優れているため、好適に使用できる。振動防止材P1を設けることにより、振動防止材P1がない場合に比べて、フィルタエレメント40の振動をさらに抑制することができる。また、振動防止材P1が樹脂製であるため、流路を流通する気体が酸性の腐食性ガスである場合であっても、振動防止材P1が腐食することを低減することができる。 The resin used for the anti-vibration material P1 is, for example, an olefin resin such as polyethylene or polypropylene, or a fluorine resin such as polytetrafluoroethylene (Teflon (registered trademark)). Among them, the vibration-preventing material P1 made of a fluororesin is excellent in corrosion resistance and slipperiness with other materials, and therefore can be preferably used. By providing the anti-vibration material P1, the vibration of the filter element 40 can be further suppressed as compared with the case where the anti-vibration material P1 is not provided. Further, since the anti-vibration material P1 is made of resin, it is possible to reduce the corrosion of the anti-vibration material P1 even when the gas flowing through the flow path is an acidic corrosive gas.
 また、振動防止材P1の形状は、特に制限されるものではなく、第2開口51の内周面の少なくとも一部に存在させることにより、振動防止材P1を介して第2開口51とフィルタエレメント40とが接触するような形状であればよい。このため、第2開口51の内周面の全面に振動防止材P1が存在しなくてもよい。 Further, the shape of the vibration preventing material P1 is not particularly limited, and by allowing the vibration preventing material P1 to exist in at least a part of the inner peripheral surface of the second opening 51, the second opening 51 and the filter element are present through the vibration preventing material P1. The shape may be such that it comes into contact with 40. Therefore, the vibration preventing material P1 does not have to be present on the entire inner peripheral surface of the second opening 51.
 ただし、以下の理由により、第2開口51の内周面の全面に振動防止材P1が存在することが好ましい。つまり、当該内周面の全面に振動防止材P1が存在することにより、フィルタ10を構成した際に、フィルタエレメント40の延伸方向D1の軸がまっ直ぐとなり易く、フィルタエレメント40の割れを抑制できる。 However, for the following reasons, it is preferable that the vibration preventing material P1 is present on the entire inner peripheral surface of the second opening 51. That is, since the vibration preventing material P1 is present on the entire surface of the inner peripheral surface, when the filter 10 is configured, the axis of the stretching direction D1 of the filter element 40 tends to be straight, and cracking of the filter element 40 can be suppressed. ..
 加えて、第2開口51とフィルタエレメント40の全周との間に振動防止材P1が配置されるため、フィルタエレメント40が振動することを効率的に抑制することができる。例えば、振動防止材P1の形状をリング状とすることにより、フィルタエレメント40が振動して、フィルタエレメント40の表面のうち、第2開口51に接触する可能性がある部分を振動防止材P1で覆うことができる。 In addition, since the anti-vibration material P1 is arranged between the second opening 51 and the entire circumference of the filter element 40, it is possible to efficiently suppress the vibration of the filter element 40. For example, by forming the anti-vibration material P1 into a ring shape, the filter element 40 vibrates, and the portion of the surface of the filter element 40 that may come into contact with the second opening 51 is formed by the anti-vibration material P1. Can be covered.
 振動防止材P1は、以下のように配置することができる。例えば、フィルタエレメント40を第2開口51に挿入し、フィルタエレメント40の延伸方向D1の所望とする位置に治具50を設置した後、第2開口51とフィルタエレメント40との間の隙間を埋めるように、振動防止材P1を設けることができる。 The vibration prevention material P1 can be arranged as follows. For example, the filter element 40 is inserted into the second opening 51, the jig 50 is installed at a desired position in the stretching direction D1 of the filter element 40, and then the gap between the second opening 51 and the filter element 40 is filled. As described above, the vibration prevention material P1 can be provided.
 この場合、振動防止材P1は、第2開口51の目開きの内周面の全部に存在する必要はなく、少なくともフィルタエレメント40と第2開口51とが、振動防止材P1を介して接触するような状態とすることもできる。 In this case, the anti-vibration material P1 does not have to be present on the entire inner peripheral surface of the opening of the second opening 51, and at least the filter element 40 and the second opening 51 come into contact with each other via the anti-vibration material P1. It can also be in such a state.
 また、第2開口51の内周面に振動防止材P1を予め配置しておき、第2開口51にフィルタエレメント40を挿入することもできる。 Further, the vibration prevention material P1 can be arranged in advance on the inner peripheral surface of the second opening 51, and the filter element 40 can be inserted into the second opening 51.
 最も操作性がよい方法であって、振動防止材P1を配置する方法としては、以下のような方法を採用することが好ましい。まず、フィルタエレメント40の第2端42または第2端42近傍を第2開口51に挿入する。その状態でフィルタエレメント40と第2開口51との位置を合わせ、第2開口51と、第2端42または第2端42の近傍と、の間に振動防止材P1を配置する。 It is the method with the best operability, and it is preferable to adopt the following method as the method of arranging the vibration preventing material P1. First, the second end 42 or the vicinity of the second end 42 of the filter element 40 is inserted into the second opening 51. In this state, the filter element 40 and the second opening 51 are aligned, and the vibration preventing material P1 is arranged between the second opening 51 and the vicinity of the second end 42 or the second end 42.
 そして、治具50をフィルタエレメント40の延伸方向D1の所定の位置に配置する。これにより、複数のフィルタエレメント40が存在する場合であっても、効率よく、フィルタ10を準備することができる。この方法を採用する場合、接続部材32が仕切り板(固定部)30と治具50とを接続する形態であることにより、フィルタ10の準備において、操作性を向上できる。 Then, the jig 50 is arranged at a predetermined position in the stretching direction D1 of the filter element 40. As a result, the filter 10 can be efficiently prepared even when a plurality of filter elements 40 are present. When this method is adopted, the operability can be improved in the preparation of the filter 10 because the connecting member 32 connects the partition plate (fixing portion) 30 and the jig 50.
 第2開口51の内周面に振動防止材P1を予め配置する方法、及び、第2開口51と第2端42等との位置合わせを行う方法においては、治具50の位置(高さ)を後から所定の位置に合わせる。このため、振動防止材P1とフィルタエレメント40との間には、厳密には隙間が生じていることになる。 In the method of arranging the vibration preventing material P1 in advance on the inner peripheral surface of the second opening 51 and the method of aligning the second opening 51 with the second end 42 and the like, the position (height) of the jig 50 is used. Will be adjusted to the specified position later. Therefore, strictly speaking, a gap is formed between the vibration preventing material P1 and the filter element 40.
 例えば、治具50の位置を合わせるときに、フィルタエレメント40上を振動防止材P1が移動することになる。このため、この場合には、厳密にはフィルタエレメント40と振動防止材P1との間には隙間が存在する。ただし、当該隙間は、振動防止効果を低減させず、濾過性に悪影響を及ぼさない程度の間隔であればよい。具体的には、前記隙間は、1mm以下の隙間であることが好ましく、0.5mm以下の隙間であることがより好ましく、0.2mm以下程度の隙間であることがさらに好ましく、0.1mm以下程度の隙間であることが特に好ましい。 For example, when aligning the position of the jig 50, the vibration preventing material P1 moves on the filter element 40. Therefore, in this case, strictly speaking, there is a gap between the filter element 40 and the vibration preventing material P1. However, the gaps may be such that the anti-vibration effect is not reduced and the filterability is not adversely affected. Specifically, the gap is preferably 1 mm or less, more preferably 0.5 mm or less, further preferably about 0.2 mm or less, and 0.1 mm or less. It is particularly preferable that the gap is about the same.
 なお、前記隙間の下限値は、治具50の位置合わせをした後に振動防止材P1を隙間に介在させることを考慮すれば0mmを超える値である。この場合、振動防止材P1は、フィルタエレメント40に対して滑り性がよいものが望ましいため、フッ素系樹脂からなるものが好適である。 The lower limit of the gap is a value exceeding 0 mm in consideration of interposing the vibration preventing material P1 in the gap after aligning the jig 50. In this case, the vibration preventing material P1 is preferably made of a fluororesin because it is desirable that the vibration preventing material P1 has good slipperiness with respect to the filter element 40.
 図3に、振動防止材P1を設けた場合の一態様を示す。図3は、第2開口51の内周面、即ち、フィルタエレメント40が振動して第2開口51と接触する箇所に、リング状の振動防止材P1が配置された構成を示す。 FIG. 3 shows an aspect when the vibration preventing material P1 is provided. FIG. 3 shows a configuration in which the ring-shaped anti-vibration material P1 is arranged on the inner peripheral surface of the second opening 51, that is, at a position where the filter element 40 vibrates and comes into contact with the second opening 51.
 また、図3に示すように、治具50には、第2開口51とは別に形成されると共に、気体を通過させるための第3開口52が形成される。図3は、図1に示すフィルタ10が備える治具50の構成の一例を示す模式図である。第3開口52には、フィルタエレメント40が挿入されないため、第3開口52は、気体を通過させることが可能な状態となっている。治具50に第3開口52が形成される構成によれば、第3開口52から気体が通過することにより、第3開口52が形成されない場合に比べて、フィルタエレメント40付近において通気性を向上させることができる。よって、フィルタ10を通過する気体の量を増加させることができる。 Further, as shown in FIG. 3, the jig 50 is formed separately from the second opening 51 and also has a third opening 52 for passing gas. FIG. 3 is a schematic view showing an example of the configuration of the jig 50 included in the filter 10 shown in FIG. Since the filter element 40 is not inserted into the third opening 52, the third opening 52 is in a state where gas can pass through. According to the configuration in which the third opening 52 is formed in the jig 50, the air permeability is improved in the vicinity of the filter element 40 as compared with the case where the third opening 52 is not formed due to the passage of gas from the third opening 52. Can be made to. Therefore, the amount of gas passing through the filter 10 can be increased.
 さらに、治具50には、第2開口51及び第3開口52とは別に形成されると共に、気体を通過させるための第4開口53がさらに形成されてもよい。第4開口53の口径は、第3開口52の口径よりも小さい。治具50に第4開口53がさらに形成されることにより、フィルタエレメント40付近において通気性をさらに向上させることができる。 Further, the jig 50 may be formed separately from the second opening 51 and the third opening 52, and may be further formed with a fourth opening 53 for passing gas. The diameter of the fourth opening 53 is smaller than the diameter of the third opening 52. By further forming the fourth opening 53 in the jig 50, the air permeability can be further improved in the vicinity of the filter element 40.
 治具50の空隙率は以下のようになることが好ましい。図3のように治具50を上方向または下方向から見た際に、治具50の面積(第2開口51、第3開口52及び第4開口53が開けられていない場合の面積)に対する、第2開口51、第3開口52及び第4開口53の合計面積の割合(以下、第一空隙率とする場合もある)は、大きくなればなるほど気体が通過し易くなり、濾過の効率を高めることができる。しかしながら、当該第一空隙率が大きくなればなるほど、治具50自体の強度、及び、フィルタエレメント40の振動を抑制する効果が低下する傾向にある。このため、前記第一空隙率は、50~95%であることが好ましく、70~90%であることがより好ましい。 The porosity of the jig 50 is preferably as follows. When the jig 50 is viewed from above or below as shown in FIG. 3, it is relative to the area of the jig 50 (the area when the second opening 51, the third opening 52, and the fourth opening 53 are not opened). The larger the ratio of the total area of the second opening 51, the third opening 52, and the fourth opening 53 (hereinafter, may be referred to as the first porosity), the easier it is for gas to pass through, and the efficiency of filtration is improved. Can be enhanced. However, as the first porosity increases, the strength of the jig 50 itself and the effect of suppressing the vibration of the filter element 40 tend to decrease. Therefore, the first porosity is preferably 50 to 95%, more preferably 70 to 90%.
 第2開口51にはフィルタエレメント40が挿入される。このとき、治具50の面積(第2開口51、第3開口52及び第4開口53が開けられていない場合の面積)に対する、第3開口52及び第4開口53の合計面積の割合となる第二空隙率は、10~50%であることが好ましく、20~40%であることがより好ましい。 The filter element 40 is inserted into the second opening 51. At this time, it is the ratio of the total area of the third opening 52 and the fourth opening 53 to the area of the jig 50 (the area when the second opening 51, the third opening 52, and the fourth opening 53 are not opened). The second porosity is preferably 10 to 50%, more preferably 20 to 40%.
 なお、第2開口51とフィルタエレメント40との間に、振動防止材P1が存在せずに隙間が生じている場合を考える。この場合、前記第二空隙率は、治具50の面積(第2開口51、第3開口52及び第4開口53が開けられていない場合の面積)に対する、第3開口52、第4開口53及び当該隙間の合計面積の割合となる。 Consider a case where the vibration preventing material P1 does not exist and a gap is generated between the second opening 51 and the filter element 40. In this case, the second porosity is the third opening 52 and the fourth opening 53 with respect to the area of the jig 50 (the area when the second opening 51, the third opening 52, and the fourth opening 53 are not opened). And the ratio of the total area of the gap.
 なお、フィルタ10は、治具50を複数備えていてもよい。この場合、複数の治具50は、それぞれ、接続部材32を介して互いに接続される。複数の治具50は、接続部材32を介して仕切り板30に固定される。複数の治具50は、フィルタエレメント40の第1端41と第2端42との間に配置される。 The filter 10 may be provided with a plurality of jigs 50. In this case, the plurality of jigs 50 are connected to each other via the connecting member 32, respectively. The plurality of jigs 50 are fixed to the partition plate 30 via the connecting member 32. The plurality of jigs 50 are arranged between the first end 41 and the second end 42 of the filter element 40.
 (治具に対する開口の形成方法)
 まず、図2における101で示す図の通り、筐体20に仕切り板30が固定され、筐体20の内部に治具50が収容された状態を考える。この状態において、気体排出口70から粉体排出口80に向かう方向から見て、仕切り板30の第1開口31の位置と、治具50に形成される第2開口51の位置とが一致させることを考慮して、治具に第2開口51を形成する。
(Method of forming an opening for a jig)
First, as shown in FIG. 101 in FIG. 2, consider a state in which the partition plate 30 is fixed to the housing 20 and the jig 50 is housed inside the housing 20. In this state, the position of the first opening 31 of the partition plate 30 and the position of the second opening 51 formed in the jig 50 match when viewed from the direction from the gas discharge port 70 to the powder discharge port 80. In consideration of this, the second opening 51 is formed in the jig.
 治具に第2開口51を形成した後、治具のうち第2開口51が形成されていない部分に第3開口52を形成する。さらに、治具のうち第2開口51及び第3開口52が形成されていない部分に第4開口53を形成する。このように、治具に第2開口51、第3開口52及び第4開口53が形成されることにより、治具50が完成する。 After forming the second opening 51 in the jig, the third opening 52 is formed in the portion of the jig where the second opening 51 is not formed. Further, the fourth opening 53 is formed in the portion of the jig where the second opening 51 and the third opening 52 are not formed. By forming the second opening 51, the third opening 52, and the fourth opening 53 in the jig in this way, the jig 50 is completed.
 (製造装置1の構成)
 図4は、図1に示すフィルタ10を備える製造装置1の構成の一例を示す模式図である。製造装置1は、シリコン粉体を用いてトリクロロシランを製造する装置である。図4に示すように、製造装置1は、第1反応容器2と、冷却器3と、第1収容槽4と、フィルタ10と、を備える。製造装置1が備えるこれらの構成要素は、互いに配管によって接続されている。
(Structure of Manufacturing Equipment 1)
FIG. 4 is a schematic view showing an example of the configuration of the manufacturing apparatus 1 including the filter 10 shown in FIG. The manufacturing apparatus 1 is an apparatus for producing trichlorosilane using silicon powder. As shown in FIG. 4, the manufacturing apparatus 1 includes a first reaction vessel 2, a cooler 3, a first storage tank 4, and a filter 10. These components included in the manufacturing apparatus 1 are connected to each other by piping.
 第1反応容器2は、トリクロロシランの製造系に設けられると共に、外部から供給されたシリコン粉体及び塩化水素を収容し、シリコン粉体と塩化水素とを反応させてトリクロロシラン、テトラクロロシラン及び水素を生成する。反応式で示せば以下の通りである。シリコン粉体(Si)+3HCl→SiHCl+H
シリコン粉体(Si)+4HCl→SiCl+2H
 冷却器3は、第1反応容器2から供給されたシリコン粉体、水素、トリクロロシラン及びテトラクロロシラン等を冷却する。第1収容槽4は、第1反応容器2の下部から排出されたシリコン粉体と、フィルタ10の粉体排出口80から排出されたシリコン粉体と、を収容する。
The first reaction vessel 2 is provided in the trichlorosilane production system, and also contains silicon powder and hydrogen chloride supplied from the outside, and reacts the silicon powder with hydrogen chloride to trichlorosilane, tetrachlorosilane, and hydrogen. To generate. The reaction formula is as follows. Silicon powder (Si) + 3HCl → SiHCl 3 + H 2
Silicon powder (Si) +4 HCl → SiCl 4 + 2H 2
The cooler 3 cools the silicon powder, hydrogen, trichlorosilane, tetrachlorosilane, etc. supplied from the first reaction vessel 2. The first storage tank 4 stores the silicon powder discharged from the lower part of the first reaction vessel 2 and the silicon powder discharged from the powder discharge port 80 of the filter 10.
 フィルタ10は、冷却器3を通過したシリコン粉体、水素、トリクロロシラン及びテトラクロロシラン等を流入口60から取り入れる。フィルタ10は、冷却器3を通過したシリコン粉体、水素、トリクロロシラン及びテトラクロロシラン等から、シリコン粉体を除去する。つまり、フィルタ10のフィルタエレメント40によって分離される気体及び粉体は、第1反応容器2から排出されたものとなる。なお、フィルタ10が筐体20を備えていない場合、フィルタ10は、冷却器3の前後に接続された配管に設けられてもよい。 The filter 10 takes in silicon powder, hydrogen, trichlorosilane, tetrachlorosilane, etc. that have passed through the cooler 3 from the inflow port 60. The filter 10 removes the silicon powder from the silicon powder, hydrogen, trichlorosilane, tetrachlorosilane, etc. that have passed through the cooler 3. That is, the gas and powder separated by the filter element 40 of the filter 10 are discharged from the first reaction vessel 2. When the filter 10 does not include the housing 20, the filter 10 may be provided in the pipes connected to the front and rear of the cooler 3.
 〔実施形態2〕
 図5は、本発明の実施形態2に係る製造装置11の構成の一例を示す模式図である。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
FIG. 5 is a schematic view showing an example of the configuration of the manufacturing apparatus 11 according to the second embodiment of the present invention. For convenience of explanation, the members having the same functions as the members described in the first embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
 図5に示すように、製造装置11は、第2反応容器12と、熱交換器13と、加熱器14と、第2収容槽15と、フィルタ10Aと、を備える。製造装置11が備えるこれらの構成要素は、互いに配管によって接続されている。フィルタ10Aとしては、フィルタ10と同一のものが用いられてもよい。 As shown in FIG. 5, the manufacturing apparatus 11 includes a second reaction vessel 12, a heat exchanger 13, a heater 14, a second storage tank 15, and a filter 10A. These components included in the manufacturing apparatus 11 are connected to each other by piping. As the filter 10A, the same filter 10A may be used.
 熱交換器13には、水素及びテトラクロロシランが供給される。このテトラクロロシランは、例えば、前述した第1反応容器2によって副反応として生じたものである。熱交換器13は、第2反応容器12を経由したシリコン粉体、水素及びトリクロロシランを、水素及びテトラクロロシランと熱交換する。熱交換器13は、水素及びテトラクロロシランを加熱器14に供給する。加熱器14は、テトラクロロシラン及び水素を加熱して、テトラクロロシラン及び水素を第2反応容器12に供給する。 Hydrogen and tetrachlorosilane are supplied to the heat exchanger 13. This tetrachlorosilane was produced as a side reaction by, for example, the first reaction vessel 2 described above. The heat exchanger 13 heat exchanges silicon powder, hydrogen, and trichlorosilane via the second reaction vessel 12 with hydrogen and tetrachlorosilane. The heat exchanger 13 supplies hydrogen and tetrachlorosilane to the heater 14. The heater 14 heats tetrachlorosilane and hydrogen to supply tetrachlorosilane and hydrogen to the second reaction vessel 12.
 第2反応容器12は、テトラクロロシラン、水素、及び、外部から供給されたシリコン粉体を収容する。第2反応容器12は、トリクロロシランの製造系に設けられると共に、テトラクロロシランと水素とシリコン粉体とを反応させてトリクロロシランを生成する。反応式で示せば以下の通りである。
シリコン粉体(Si)+3SiCl+2H→4SiHCl
 第2反応容器12は、シリコン粉体、水素、トリクロロシラン及び未反応のテトラクロロシランを、熱交換器13を介してフィルタ10Aに供給する。第2収容槽15は、第2反応容器12の下部から排出されたシリコン粉体と、フィルタ10Aの粉体排出口80から排出されたシリコン粉体と、を収容する。
The second reaction vessel 12 contains tetrachlorosilane, hydrogen, and silicon powder supplied from the outside. The second reaction vessel 12 is provided in the trichlorosilane production system, and trichlorosilane is produced by reacting tetrachlorosilane with hydrogen and silicon powder. The reaction formula is as follows.
Silicon powder (Si) + 3SiCl 4 + 2H 2 → 4SiHCl 3
The second reaction vessel 12 supplies silicon powder, hydrogen, trichlorosilane, and unreacted tetrachlorosilane to the filter 10A via the heat exchanger 13. The second storage tank 15 stores the silicon powder discharged from the lower part of the second reaction vessel 12 and the silicon powder discharged from the powder discharge port 80 of the filter 10A.
 フィルタ10Aは、熱交換器13を介して第2反応容器12から供給されたシリコン粉体、水素、トリクロロシラン及び未反応のテトラクロロシランを流入口60から取り入れる。フィルタ10Aは、シリコン粉体、水素、トリクロロシラン及び未反応のテトラクロロシランから、シリコン粉体を除去する。つまり、フィルタ10Aのフィルタエレメント40によって分離される気体及び粉体は、第2反応容器12から排出されたものとなる。 The filter 10A takes in silicon powder, hydrogen, trichlorosilane and unreacted tetrachlorosilane supplied from the second reaction vessel 12 via the heat exchanger 13 from the inflow port 60. The filter 10A removes the silicon powder from the silicon powder, hydrogen, trichlorosilane and unreacted tetrachlorosilane. That is, the gas and powder separated by the filter element 40 of the filter 10A are discharged from the second reaction vessel 12.
 実施形態1及び実施形態2の構成から、前記のような第1反応容器2及び第2反応容器12のそれぞれから排出される気体及び粉体の分離に好適にフィルタ10,10Aを利用することができる。特に、トリクロロシランの製造にフィルタ10,10Aを利用する場合には、高純度のトリクロロシランを得るために、耐食性の高いモリブデンを1wt%以上含む焼結金属からなるフィルタエレメント(国際公開第2019/098345号)を利用することが好ましい。 From the configurations of the first and second embodiments, the filters 10 and 10A can be suitably used for separating the gas and powder discharged from each of the first reaction vessel 2 and the second reaction vessel 12 as described above. it can. In particular, when filters 10 and 10A are used for producing trichlorosilane, a filter element made of a sintered metal containing 1 wt% or more of molybdenum having high corrosion resistance can be obtained in order to obtain high-purity trichlorosilane (International Publication No. 2019 / It is preferable to use 098345).
 具体的には、当該焼結金属としては、モリブデンを好ましくは2~20wt%、より好ましくは5~20wt%含む焼結金属であるインコロイ、インコネルまたはハステロイ等が挙げられる。しかし、このフィルタエレメントは脆い傾向にある。前記構成によれば、このようなフィルタエレメントを利用する場合においても、フィルタエレメントが割れることを防止する顕著な効果を奏する。 Specifically, examples of the sintered metal include incoloy, inconel, and hastelloy, which are sintered metals containing molybdenum in an amount of preferably 2 to 20 wt%, more preferably 5 to 20 wt%. However, this filter element tends to be brittle. According to the above configuration, even when such a filter element is used, a remarkable effect of preventing the filter element from cracking can be obtained.
 なお、前記実施形態1及び実施形態2の説明においては、不活性ガスである窒素について記載していないが、いずれの実施形態においても、反応終了後に、不活性ガスである窒素を使用する場合がある。例えば、原料ガス(例えば、HCl、テトラクロロシラン及び/または水素等の原料となるガスを含むガス)の供給を止め、窒素の供給に切り替えて、製造装置内の雰囲気を窒素に置換する操作を行う場合がある。この操作においては、シリコン粉体を含む前記原料ガスと窒素との混合ガス中、またはシリコン粉体を含む窒素中のシリコン粉体を分離するためにフィルタが使用される。このため、フィルタ10,10Aで分離される気体には窒素が含まれてもよい。 Although the description of the first and second embodiments does not describe nitrogen as an inert gas, in any of the embodiments, nitrogen, which is an inert gas, may be used after the reaction is completed. is there. For example, the supply of the raw material gas (for example, the gas containing the raw material gas such as HCl, tetrachlorosilane and / or hydrogen) is stopped, the supply is switched to the nitrogen supply, and the atmosphere in the manufacturing apparatus is replaced with nitrogen. In some cases. In this operation, a filter is used to separate the silicon powder in the mixed gas of the raw material gas containing the silicon powder and nitrogen, or in the nitrogen containing the silicon powder. Therefore, the gas separated by the filters 10 and 10A may contain nitrogen.
 本発明は前述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
 〔まとめ〕
 本発明の一態様に係るフィルタは、気体と粉体とを分離するために、当該粉体を含む気体が流通する流路に設けられるフィルタであって、気体と粉体とを分離すると共に、第1端と、当該第1端とは反対側の第2端と、の間をフィルタ面が延伸するフィルタエレメントと、第1開口が形成され、当該第1開口に、前記第1端または前記第1端近傍が固定されると共に、前記フィルタエレメントが収容される空間を形成する前記流路の内壁に固定される固定部と、前記フィルタエレメントが挿入される第2開口が形成されると共に、前記第1端と前記第2端との間に配置される治具と、を備える。
[Summary]
The filter according to one aspect of the present invention is a filter provided in a flow path through which a gas containing the powder flows in order to separate the gas and the powder, and separates the gas and the powder and at the same time. A filter element having a filter surface extending between the first end and the second end opposite to the first end and a first opening are formed, and the first end or the said is formed in the first opening. The vicinity of the first end is fixed, a fixing portion fixed to the inner wall of the flow path forming a space for accommodating the filter element, and a second opening into which the filter element is inserted are formed. A jig arranged between the first end and the second end is provided.
 前記構成によれば、フィルタエレメントが第2開口に挿入される構造によって、フィルタエレメントの振動が抑制される。このため、治具が配置されない場合に比べて、フィルタエレメントの振動に起因する、フィルタエレメントの第2端にかかる力のモーメントを小さくすることができる。よって、フィルタエレメントが割れることを防止することができる。 According to the above configuration, the vibration of the filter element is suppressed by the structure in which the filter element is inserted into the second opening. Therefore, the moment of force applied to the second end of the filter element due to the vibration of the filter element can be reduced as compared with the case where the jig is not arranged. Therefore, it is possible to prevent the filter element from cracking.
 前記治具は、前記フィルタエレメントにおける延伸方向に沿った長さの1/3以上2/3以下の長さと同一である、当該延伸方向に沿った距離だけ前記固定部から離れた位置に配置されてもよい。前記構成によれば、フィルタエレメントの中央付近に治具が配置されるため、フィルタエレメントの振動を効率的に抑制することができる。 The jig is arranged at a position away from the fixing portion by a distance along the stretching direction, which is the same as a length of 1/3 or more and 2/3 or less of the length of the filter element along the stretching direction. You may. According to the above configuration, since the jig is arranged near the center of the filter element, the vibration of the filter element can be efficiently suppressed.
 前記第2開口とフィルタエレメントとの間に、樹脂製の振動防止材を介在させてもよい。前記構成によれば、振動防止材がない場合に比べて、フィルタエレメントの振動をさらに抑制することができる。また、振動防止材が樹脂製であるため、流路を流通する気体が酸性の腐食性ガスである場合であっても、振動防止材が腐食することを低減することができる。 A resin anti-vibration material may be interposed between the second opening and the filter element. According to the above configuration, the vibration of the filter element can be further suppressed as compared with the case where the vibration inhibitor is not provided. Further, since the anti-vibration material is made of resin, it is possible to reduce the corrosion of the anti-vibration material even when the gas flowing through the flow path is an acidic corrosive gas.
 前記治具は、当該治具と前記固定部とを接続する接続部材を介して前記固定部に固定されてもよい。前記構成によれば、治具と固定部とを流路からまとめて取り出すことができるため、流路内を容易に掃除することができる。 The jig may be fixed to the fixing portion via a connecting member that connects the jig and the fixing portion. According to the above configuration, since the jig and the fixing portion can be taken out from the flow path collectively, the inside of the flow path can be easily cleaned.
 前記フィルタエレメントは、焼結金属であってもよい。前記構成によれば、十分な耐食性及び耐摩耗性を有するフィルタを実現することができる。 The filter element may be a sintered metal. According to the above configuration, it is possible to realize a filter having sufficient corrosion resistance and wear resistance.
 前記フィルタエレメントによって気体と分離される粉体は、シリコン粉体であり、前記フィルタエレメントによって粉体と分離される気体は、水素、塩化水素、窒素及びクロロシランガスの少なくとも1つを含んでもよい。 The powder separated from the gas by the filter element is silicon powder, and the gas separated from the powder by the filter element may contain at least one of hydrogen, hydrogen chloride, nitrogen and chlorosilane gas.
 前記構成によれば、前記のような気体や粉体が流路を流れる場合であっても、治具によってフィルタエレメントの振動を抑制することができる。また、フィルタエレメントによって、比重が重いシリコン粉体を気体から分離すると共に、腐食性ガスをシリコン粉体から分離する。このため、硬くて脆い焼結金属からなるフィルタエレメントを利用した場合、他の材料のフィルタエレメントを利用した場合に比べて、特に、フィルタエレメントが割れることを防止する顕著な効果を奏する。 According to the above configuration, the vibration of the filter element can be suppressed by the jig even when the gas or powder as described above flows through the flow path. Further, the filter element separates the silicon powder having a heavy specific density from the gas and the corrosive gas from the silicon powder. Therefore, when a filter element made of a hard and brittle sintered metal is used, a remarkable effect of preventing the filter element from cracking is exhibited as compared with the case where a filter element made of another material is used.
 前記フィルタエレメントによって分離される気体及び粉体は、トリクロロシランの製造系に設けられると共に、シリコン粉体と塩化水素とを反応させて前記トリクロロシランを生成する第1反応容器から排出される、または、前記トリクロロシランの製造系に設けられると共に、テトラクロロシランと水素とシリコン粉体とを反応させて前記トリクロロシランを生成する第2反応容器から排出されてもよい。 The gas and powder separated by the filter element are provided in the trichlorosilane production system, and are discharged from the first reaction vessel that reacts the silicon powder with hydrogen chloride to produce the trichlorosilane. , It may be provided in the production system of the trichlorosilane, and may be discharged from the second reaction vessel that produces the trichlorosilane by reacting tetrachlorosilane with hydrogen and silicon powder.
 前記構成によれば、前記のような第1反応容器及び第2反応容器のそれぞれから排出される気体及び粉体の分離に好適にフィルタを利用することができる。特に、トリクロロシランの製造にフィルタを利用する場合には、高純度のトリクロロシランを得るために、耐食性の高いモリブデンを1wt%以上含む焼結金属からなるフィルタエレメント(国際公開第2019/098345号)を利用することが好ましい。しかし、このフィルタエレメントは脆い傾向にある。前記構成によれば、このようなフィルタエレメントを利用する場合においても、フィルタエレメントが割れることを防止する顕著な効果を奏する。 According to the above configuration, a filter can be suitably used for separating the gas and powder discharged from each of the first reaction vessel and the second reaction vessel as described above. In particular, when a filter is used for producing trichlorosilane, a filter element made of a sintered metal containing 1 wt% or more of molybdenum having high corrosion resistance can be obtained in order to obtain high-purity trichlorosilane (International Publication No. 2019/098345). It is preferable to use. However, this filter element tends to be brittle. According to the above configuration, even when such a filter element is used, a remarkable effect of preventing the filter element from cracking can be obtained.
 前記治具には、前記第2開口とは別に形成されると共に、気体を通過させるための第3開口が形成されてもよい。前記構成によれば、第3開口から気体が通過することにより、第3開口が形成されない場合に比べて、フィルタエレメント付近において通気性を向上させることができる。 The jig may be formed separately from the second opening and may be formed with a third opening for passing gas. According to the above configuration, by passing the gas through the third opening, the air permeability can be improved in the vicinity of the filter element as compared with the case where the third opening is not formed.
 (実施例)
 以下、本発明のフィルタについて実施例を示してさらに具体的に説明するが、本発明は、この実施例に限定されるものではない。図1及び図4に示すようなフィルタ及び製造装置を使用した。使用したフィルタ10は以下の通りである。
(Example)
Hereinafter, the filter of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to this Example. Filters and manufacturing equipment as shown in FIGS. 1 and 4 were used. The filter 10 used is as follows.
 <治具50>
 治具50は、図3に示すように第3開口52及び第4開口53が形成されたものを使用した。治具50の第二空隙率が28%となるように、治具50に第3開口52及び第4開口53を施した。
<Jig 50>
As the jig 50, a jig 50 having a third opening 52 and a fourth opening 53 formed was used as shown in FIG. The jig 50 was provided with a third opening 52 and a fourth opening 53 so that the second porosity of the jig 50 was 28%.
 <フィルタ10の準備>
 インコネル625(モリブデン1wt%以上含有)からなり、長さ1200mm、直径50mm、濾過精度2μmのフィルタエレメント40が150本固定された仕切り板30(固定部30)を使用した。第2開口51の内周面にリング状のフッ素系樹脂からなる振動防止材P1を配置した状態で、仕切り板30と治具50とを組み合わせ、接続部材32で仕切り板30と治具50とを接続した。このとき、治具50を、フィルタエレメント40の第2端42から600mm上方にあるように配置した。つまり、フィルタエレメント40の延伸方向D1に沿った長さの1/2の長さの位置に治具50を配置した。
<Preparation of filter 10>
A partition plate 30 (fixed portion 30) made of Inconel 625 (containing 1 wt% or more of molybdenum) and having 150 filter elements 40 having a length of 1200 mm, a diameter of 50 mm, and a filtration accuracy of 2 μm was used. With the vibration prevention material P1 made of ring-shaped fluororesin arranged on the inner peripheral surface of the second opening 51, the partition plate 30 and the jig 50 are combined, and the partition plate 30 and the jig 50 are formed by the connecting member 32. Was connected. At this time, the jig 50 was arranged so as to be 600 mm above the second end 42 of the filter element 40. That is, the jig 50 is arranged at a position having a length of 1/2 of the length along the stretching direction D1 of the filter element 40.
 <固体と気体との分離試験>
 フィルタ10を使用して、以下の処理を行った。シリコン粉体(平均して粒子径が約10μm)、塩化水素、水素、トリクロロシラン及びテトラクロロシランを含む気体(粉体を15wt%含むガス)について、フィルタエレメント40の表面積あたりのガスの流入量(線速度)を40m/m/hrとした。フィルタエレメント40の温度を200℃で管理して1年間運転した。その後、製造装置を分解してフィルタエレメント40を確認したが、ひびが生じているフィルタエレメント40は存在しなかった。
<Separation test between solid and gas>
The following processing was performed using the filter 10. For a gas containing silicon powder (average particle size of about 10 μm), hydrogen chloride, hydrogen, trichlorosilane, and tetrachlorosilane (gas containing 15 wt% of powder), the amount of gas inflow per surface area of the filter element 40 (gas inflow). The linear velocity) was set to 40 m 3 / m 2 / hr. The temperature of the filter element 40 was controlled at 200 ° C. and the operation was performed for one year. After that, the manufacturing apparatus was disassembled and the filter element 40 was confirmed, but the cracked filter element 40 did not exist.
 (比較例)
 前記実施例の「フィルタの準備」において、治具50を使用していない状態でフィルタエレメント40が150本固定された仕切り板30を使用したこと以外は、前記実施例と同様の方法(同様の「固体と気体との分離試験」)で試験を行った。3か月の運転後、フィルタの差圧計90の差圧の指示値が低下したため、運転を停止して、フィルタの開放点検を実施した。その結果、18本のフィルタエレメント40が第1開口31の近傍でひび割れが生じていた。
(Comparison example)
In the "preparation of the filter" of the above embodiment, the same method as that of the above embodiment (similar) except that the partition plate 30 to which 150 filter elements 40 are fixed is used without using the jig 50. The test was carried out in "Separation test of solid and gas"). After 3 months of operation, the indicated value of the differential pressure of the differential pressure gauge 90 of the filter decreased, so the operation was stopped and the filter was inspected to be open. As a result, 18 filter elements 40 were cracked in the vicinity of the first opening 31.
 本発明は、気体と粉体との分離に利用することができる。 The present invention can be used for separating gas and powder.
 1、11 製造装置
 2 第1反応容器
 10、10A フィルタ
 12 第2反応容器
 20 筐体
 23 内壁
 31 第1開口
 32 接続部材
 40 フィルタエレメント
 43 フィルタ面
 50 治具
 51 第2開口
 52 第3開口
 D1 延伸方向
 P1 振動防止材
1, 11 Manufacturing equipment 2 1st reaction vessel 10, 10A filter 12 2nd reaction vessel 20 Housing 23 Inner wall 31 1st opening 32 Connecting member 40 Filter element 43 Filter surface 50 Jig 51 2nd opening 52 3rd opening D1 Stretching Direction P1 Anti-vibration material

Claims (8)

  1.  気体と粉体とを分離するために、当該粉体を含む気体が流通する流路に設けられるフィルタであって、
     気体と粉体とを分離すると共に、第1端と、当該第1端とは反対側の第2端と、の間をフィルタ面が延伸するフィルタエレメントと、
     第1開口が形成され、当該第1開口に、前記第1端または前記第1端近傍が固定されると共に、前記フィルタエレメントが収容される空間を形成する前記流路の内壁に固定される固定部と、
     前記フィルタエレメントが挿入される第2開口が形成されると共に、前記第1端と前記第2端との間に配置される治具と、を備えることを特徴とするフィルタ。
    A filter provided in a flow path through which a gas containing the powder flows in order to separate the gas and the powder.
    A filter element that separates gas and powder and has a filter surface extending between the first end and the second end opposite to the first end.
    A first opening is formed, and the first end or the vicinity of the first end is fixed to the first opening, and is fixed to the inner wall of the flow path forming a space for accommodating the filter element. Department and
    A filter characterized in that a second opening into which the filter element is inserted is formed, and a jig is provided between the first end and the second end.
  2.  前記治具は、前記フィルタエレメントにおける延伸方向に沿った長さの1/3以上2/3以下の長さと同一である、当該延伸方向に沿った距離だけ前記固定部から離れた位置に配置されることを特徴とする請求項1に記載のフィルタ。 The jig is arranged at a position away from the fixing portion by a distance along the stretching direction, which is the same as a length of 1/3 or more and 2/3 or less of the length of the filter element along the stretching direction. The filter according to claim 1.
  3.  前記第2開口とフィルタエレメントとの間に、樹脂製の振動防止材を介在させることを特徴とする請求項1または2に記載のフィルタ。 The filter according to claim 1 or 2, wherein a resin anti-vibration material is interposed between the second opening and the filter element.
  4.  前記治具は、当該治具と前記固定部とを接続する接続部材を介して前記固定部に固定されることを特徴とする請求項1から3のいずれか1項に記載のフィルタ。 The filter according to any one of claims 1 to 3, wherein the jig is fixed to the fixing portion via a connecting member that connects the jig and the fixing portion.
  5.  前記フィルタエレメントは、焼結金属であることを特徴とする請求項1から4のいずれか1項に記載のフィルタ。 The filter according to any one of claims 1 to 4, wherein the filter element is a sintered metal.
  6.  前記フィルタエレメントによって気体と分離される粉体は、シリコン粉体であり、
     前記フィルタエレメントによって粉体と分離される気体は、水素、塩化水素、窒素及びクロロシランガスの少なくとも1つを含むことを特徴とする請求項1から5のいずれか1項に記載のフィルタ。
    The powder separated from the gas by the filter element is a silicon powder.
    The filter according to any one of claims 1 to 5, wherein the gas separated from the powder by the filter element contains at least one of hydrogen, hydrogen chloride, nitrogen and chlorosilane gas.
  7.  前記フィルタエレメントによって分離される気体及び粉体は、
     トリクロロシランの製造系に設けられると共に、シリコン粉体と塩化水素とを反応させて前記トリクロロシランを生成する第1反応容器から排出される、または、
     前記トリクロロシランの製造系に設けられると共に、テトラクロロシランと水素とシリコン粉体とを反応させて前記トリクロロシランを生成する第2反応容器から排出されることを特徴とする請求項1から6のいずれか1項に記載のフィルタ。
    The gas and powder separated by the filter element
    It is provided in the production system of trichlorosilane, and is discharged from the first reaction vessel that reacts silicon powder with hydrogen chloride to produce the trichlorosilane, or is discharged from the first reaction vessel.
    Any of claims 1 to 6, which is provided in the trichlorosilane production system and is discharged from a second reaction vessel that produces the trichlorosilane by reacting tetrachlorosilane with hydrogen and silicon powder. Or the filter according to item 1.
  8.  前記治具には、前記第2開口とは別に形成されると共に、気体を通過させるための第3開口が形成されることを特徴とする請求項1から7のいずれか1項に記載のフィルタ。 The filter according to any one of claims 1 to 7, wherein the jig is formed separately from the second opening and also has a third opening for passing a gas. ..
PCT/JP2020/033622 2019-11-21 2020-09-04 Filter WO2021100286A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021529054A JP6956928B1 (en) 2019-11-21 2020-09-04 filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-210570 2019-11-21
JP2019210570 2019-11-21

Publications (1)

Publication Number Publication Date
WO2021100286A1 true WO2021100286A1 (en) 2021-05-27

Family

ID=75981557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033622 WO2021100286A1 (en) 2019-11-21 2020-09-04 Filter

Country Status (3)

Country Link
JP (1) JP6956928B1 (en)
TW (1) TW202120170A (en)
WO (1) WO2021100286A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028519U (en) * 1988-06-30 1990-01-19
JPH06166512A (en) * 1991-04-26 1994-06-14 Hemlock Semiconductor Corp Method for separating silicon particle from by-product liquid flow containing silane
JP2005262086A (en) * 2004-03-18 2005-09-29 Takuma Co Ltd Connection tool and dust collector equipped with the same
CN201643908U (en) * 2009-12-01 2010-11-24 乐山乐电天威硅业科技有限责任公司 Gas-solid separating device for trichlorosilane synthesis gas
JP2011148651A (en) * 2010-01-21 2011-08-04 Mitsubishi Materials Corp Apparatus for producing trichlorosilane
KR20120012855A (en) * 2010-08-03 2012-02-13 조광섭 Dust collector
WO2019098345A1 (en) * 2017-11-20 2019-05-23 株式会社トクヤマ Trichlorosilane manufacturing apparatus, and method for manufacturing trichlorosilane

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028519U (en) * 1988-06-30 1990-01-19
JPH06166512A (en) * 1991-04-26 1994-06-14 Hemlock Semiconductor Corp Method for separating silicon particle from by-product liquid flow containing silane
JP2005262086A (en) * 2004-03-18 2005-09-29 Takuma Co Ltd Connection tool and dust collector equipped with the same
CN201643908U (en) * 2009-12-01 2010-11-24 乐山乐电天威硅业科技有限责任公司 Gas-solid separating device for trichlorosilane synthesis gas
JP2011148651A (en) * 2010-01-21 2011-08-04 Mitsubishi Materials Corp Apparatus for producing trichlorosilane
KR20120012855A (en) * 2010-08-03 2012-02-13 조광섭 Dust collector
WO2019098345A1 (en) * 2017-11-20 2019-05-23 株式会社トクヤマ Trichlorosilane manufacturing apparatus, and method for manufacturing trichlorosilane

Also Published As

Publication number Publication date
JP6956928B1 (en) 2021-11-02
JPWO2021100286A1 (en) 2021-11-25
TW202120170A (en) 2021-06-01

Similar Documents

Publication Publication Date Title
KR100907392B1 (en) HIGH FLOW GaCl3 DELIVERY
TWI576560B (en) Shell and tube heat exchangers and methods of using such heat exchangers
US10442694B2 (en) Production of polycrystalline silicon by the thermal decomposition of silane in a fluidized bed reactor
JP2012528785A (en) Apparatus and method for producing trisilylamine
US10442695B2 (en) Production of polycrystalline silicon by the thermal decomposition of silane in a fluidized bed reactor
US20130011558A1 (en) Process for producing polysilicon
WO2021100286A1 (en) Filter
US20040042950A1 (en) Method for producing high-purity, granular silicon
KR102490962B1 (en) Methods for separating halosilanes
KR100879173B1 (en) Process for producing metal powders
US10301182B2 (en) Method for producing chlorosilane gas using continuous tubular reactor
TWI752280B (en) Trichlorosilane production apparatus and production method of trichlorosilane
US20230002237A1 (en) Apparatus and method for producing polycrystalline silicon, and polycrystalline silicon
WO2019098343A1 (en) Production method for trichlorosilane, and pipe
CN109923656B (en) Reactor component placement device in a liner wall
TW201922344A (en) Reactor and production method of trichlorosilane
TW201621100A (en) Fluidized bed reactor and process for producing polycrystalline silicon granules
US20160348983A1 (en) Heat exchange apparatus
US20130104799A1 (en) Shroud and Method for Adding Fluid to a Melt

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021529054

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888756

Country of ref document: EP

Kind code of ref document: A1