WO2021100193A1 - 腐食速度推定装置とその方法 - Google Patents

腐食速度推定装置とその方法 Download PDF

Info

Publication number
WO2021100193A1
WO2021100193A1 PCT/JP2019/045769 JP2019045769W WO2021100193A1 WO 2021100193 A1 WO2021100193 A1 WO 2021100193A1 JP 2019045769 W JP2019045769 W JP 2019045769W WO 2021100193 A1 WO2021100193 A1 WO 2021100193A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion rate
rate estimation
water
metal
component information
Prior art date
Application number
PCT/JP2019/045769
Other languages
English (en)
French (fr)
Inventor
真悟 峯田
翔太 大木
水沼 守
昌幸 津田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2021558137A priority Critical patent/JP7415184B2/ja
Priority to US17/777,150 priority patent/US20220404264A1/en
Priority to PCT/JP2019/045769 priority patent/WO2021100193A1/ja
Publication of WO2021100193A1 publication Critical patent/WO2021100193A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/006Investigating resistance of materials to the weather, to corrosion, or to light of metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/20Ensemble learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • G06N3/0442Recurrent networks, e.g. Hopfield networks characterised by memory or gating, e.g. long short-term memory [LSTM] or gated recurrent units [GRU]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/01Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound

Definitions

  • the present invention relates to a corrosion rate estimation device for estimating the corrosion rate of a metal buried in the ground and a method thereof.
  • the present invention has been made in view of this problem, and provides a corrosion rate estimation device and a method thereof that can estimate the corrosion rate of a metal buried in the ground without performing measurement based on an electrochemical method. The purpose.
  • the corrosion rate estimation device 100 includes an input unit 10, a corrosion rate estimation model 20, and an output unit 30.
  • the corrosion rate estimation device 100 can be realized by, for example, a computer including a ROM, a RAM, a CPU, and the like.
  • the corrosion rate estimation model 20 inputs water component information regarding water components contained in the environment, and estimates the corrosion rate of the target metal from the water component information.
  • the corrosion rate of metals placed in the environment changes depending on the state of water in contact with the metal.
  • By modeling the relationship between the state of water in the environment where the target metal is placed and the corrosion rate in advance it is possible to estimate the corrosion rate without evaluating the corrosion rate using the AC impedance method or the like. It is possible.
  • the water component information in water is the type and concentration of the chemical reaction species, the conductivity, the amount of dissolved oxygen, the temperature of water, and the like.
  • the corrosion rate changes depending on the state of these water components.
  • the water component information in the atmosphere includes humidity, the film thickness of water on the metal surface, the wet area, the conductivity, the amount of dissolved oxygen, the temperature of water, and the like.
  • the water component information also includes information on wetness and drying of the time when the metal surface is wet and dry.
  • the soil is a three-phase composed of soil particles composed of oxides such as Si, Al, Ti, Fe, and Ca, and a gas phase (oxygen, etc.) and a liquid phase (water, etc.) existing in the gaps in the soil particles. It is a coexistence environment. Considering that the ratio of the gap in the soil is constant, the total of the ratio of the gas phase and the ratio of the liquid phase in the soil is constant, and there is a reciprocal relationship in which one increases and the other decreases.
  • the corrosion rate of metals changes mainly depending on the following factors.
  • FIG. 2 is a diagram schematically showing the relationship between rainfall and soil moisture content.
  • the horizontal axis of FIG. 2 is the elapsed time.
  • the increase / decrease in soil moisture content is closely linked to rainfall, and the cycle of rapidly increasing during rainfall and gradually decreasing when rain stops is repeated. In this way, the water content is not constant but fluctuates, and the corrosion rate of the metal changes with the water content.
  • the corrosion rate estimation model 20 is generated using, for example, a machine learning algorithm.
  • FIG. 3 is a diagram showing a conceptual diagram of the corrosion rate estimation model 20. As shown in FIG. 3, the corrosion rate estimation model 20 is a model for associating water component information with the corrosion rate.
  • the corrosion rate estimation model 20 is generated using, for example, a machine learning algorithm such as a random forest, a neural network, or an RNN (LSTM). Any algorithm can be used.
  • a machine learning algorithm such as a random forest, a neural network, or an RNN (LSTM). Any algorithm can be used.
  • the corrosion rate estimation model 20 differs depending on the soil. Therefore, the water component information of various soils and the information corresponding to the corrosion rate are measured, and the model is constructed by the machine learning algorithm including the information that characterizes the soil. By doing so, it is possible to generate an appropriate corrosion rate estimation model 20 by inputting information that characterizes the soil, for example.
  • Information that characterizes the soil includes, for example, classification information of soil groups and soil groups such as brown lowland soil, gly soil, and black soil, and soil classification information determined by the proportion of clay, silt, and sand based on the particle size of the soil. There are the depth of soil, the presence and type of microorganisms, etc.
  • the corrosion rate estimation model 20 generated in this way the corrosion rate of the metal can be estimated from the water component information of the environment in which the metal is placed.
  • FIG. 4 is a diagram showing a functional configuration example of the corrosion rate estimation device according to the second embodiment of the present invention.
  • the corrosion rate estimation device 200 shown in FIG. 4 is different from the corrosion rate estimation device 100 (FIG. 1) in that the learning unit 40 is provided.
  • the learning unit 40 learns the corrosion rate estimation model 20 that associates the water component information with the corrosion rate.
  • the learning unit 40 learns the corrosion rate estimation model 20 by using the water component information as an explanatory variable representing the state of the environment and using the corrosion rate as an objective function.
  • FIG. 5 shows the operation flow of the corrosion rate estimation device 200.
  • the operation flow of the corrosion rate estimation device 200 includes an input step S1, a learning step S2, and an estimation step S3.
  • water component information regarding the water component contained in the predetermined environment is input to, for example, the input port of the computer constituting the corrosion rate estimation device 200.
  • a given environment is, for example, soil in which the metal of interest whose corrosion rate is to be estimated is placed.
  • the water component information includes, for example, information such as the water content of the soil, the chemical reaction species contained in the water in the soil, the concentration of the chemical reaction species, the conductivity, the solubility of oxygen, and the temperature.
  • the corrosion rate estimation model 20 representing the relationship between the water component information and the corrosion rate of the target metal is learned.
  • the corrosion rate estimation model 20 is trained by using, for example, the above machine learning algorithm.
  • the corrosion rate of the target metal is estimated from the water component information input in the input step S1 by using the corrosion rate estimation model 20 learned in the learning step S2.
  • the corrosion rate of the metal buried in the ground can be estimated without performing the measurement based on the electrochemical method. If the corrosion rate estimation model 20 is generated in advance, it is not necessary to perform the learning step S2.
  • the estimation step S3 (corrosion rate estimation step) for estimating the corrosion rate using the rate estimation model may be executed.
  • FIG. 6 is a diagram schematically showing a case where the corrosion rate estimation device 100 is configured by a computer. As shown in FIG. 6, the corrosion rate estimation device 100 can be configured by one computer.
  • One computer includes an input unit 10, a corrosion rate estimation model 20, and an output unit 30.
  • Water component information is detected by a sensor buried in the ground and input to the input unit 10.
  • the corrosion rate estimation model 20 estimates the corrosion rate of the metal based on the sequentially input water component information.
  • a sensor that measures information related to the state of water can be used.
  • the measured value of water content may be input as it is.
  • the electric resistance and the electric capacity may be measured and converted into a water content.
  • a sensor for measuring the oxygen concentration may be connected.
  • the input unit 10 may be composed of a plurality of sensors. These sensors and the corrosion rate estimation device 100 may be connected via a network.
  • the corrosion rate estimation devices 100 and 200 are devices for estimating the corrosion rate due to wet corrosion of metal.
  • the relationship between the information related to the water state in the environment in which the target metal exists and the information corresponding to the corrosion rate of the target metal is determined in advance by statistical methods and machines. It is possible to estimate the information corresponding to the corrosion rate simply by modeling using a learning algorithm and giving the model information related to the state of water in the environment where the target metal exists.
  • the present invention is not limited to the above embodiment, and can be modified within the scope of the gist thereof.
  • the water component information the water content of the soil, the chemical reaction species contained in the water in the soil, the concentration of the chemical reaction species, the conductivity, the solubility of oxygen, the temperature, etc. are given as examples, but other factors are used. It doesn't matter if there is.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

所定の環境に配置される金属の腐食速度を推定する腐食速度推定装置であって、含水率(時間)、温度、導電率、及び土壌の種類等の情報である水成分情報を入力する入力部10と、環境に含まれる水の成分に関する水成分情報を入力とし、該水成分情報から、環境に配置される金属の腐食速度を推定する腐食速度推定モデル20と、推定した金属の腐食速度を外部に出力する出力部30とを備え、腐食速度推定モデル20は、例えば、ランダムフォレスト、ニューラルネットワーク、RNN(LSTM)等の機械学習アルゴリズムを用いて生成する。

Description

腐食速度推定装置とその方法
 本発明は、地中に埋設される金属の腐食速度を推定する腐食速度推定装置とその方法に関する。
 従来、地中に埋設された金属の腐食速度の推定は、交流インピーダンス法を用いて腐食の反応抵抗に相当する抵抗値を求め、その数値を元に腐食速度を推定していた(非特許文献1)。
Fei Qin et al., "Effect of soil moisture content on corrosion behavior of X70 steel", Int. J. Electrochem. Sci., 13 (2018) 1603 ~ 1613, doi: 10.20964/2018.02.32
 しかしながら、交流インピーダンス法による電気化学的測定機能を有する装置は普通、高価であり、大型であることが多い。また測定には電圧か電流の周波数掃引が必要であり、一回の測定に要する時間が長い。また微小であっても電圧を印加するため、長期間連続した測定を行うと測定対象の表面状態を変化させる恐れもある。従って、交流インピーダンス法による電気化学的測定は、腐食速度を測定したい対象や地点が多い場合、又、測定期間が長い場合などには適していないという課題がある。
 本発明は、この課題に鑑みてなされたものであり電気化学的手法に基づく測定を行わずに地中に埋設された金属の腐食速度が推定できる腐食速度推定装置とその方法を提供することを目的とする。
 本発明の一態様に係る腐食速度推定装置は、所定の環境に配置される金属の腐食速度を推定する腐食速度推定装置であって、前記環境に含まれる水の成分に関する水成分情報を入力とし、該水成分情報から、前記金属の腐食速度を推定する腐食速度推定モデルを備えることを要旨とする。
 また、本発明の一態様に係る腐食速度推定方法は、上記の腐食速度推定装置が行う腐食速度推定方法であって、所定の環境に含まれる水の成分に関する水成分情報を入力とし、該水成分情報から、前記環境に配置される金属の腐食速度を推定する腐食速度推定モデルを用いて腐食速度を推定する腐食速度推定ステップを行うことを要旨とする。
 本発明によれば、電気化学的手法に基づく測定を行わずに地中に埋設された金属の腐食速度を推定できる腐食速度推定装置とその方法を提供することができる。
本発明の第1実施形態に係る腐食速度推定装置の機能構成例を示す図である。 降雨と土壌中の金属の腐食速度との関係を模式的に示す図である。 図1に示す腐食速度推定モデルの概念図を示す図である。 本発明の第2実施形態に係る腐食速度推定装置の機能構成例を示す図である。 図4に示す腐食速度推定装置の動作フローを示す図である。 図1に示す腐食速度推定装置の具体例を模式的に示す図である。
 以下、本発明の実施形態について図面を用いて説明する。複数の図面中同一のものには同じ参照符号を付し、説明は繰り返さない。
 〔第1実施形態〕
 図1は、本発明の第1実施形態に係る腐食速度推定装置の機能構成例を示す図である。図1に示す腐食速度推定装置100は、対象の金属が配置される環境に含まれる水の成分に関する水成分情報から、金属の腐食速度を推定する装置である。水成分情報は、含水率(時間)、温度、導電率、及び土壌の種類等の情報である。
 腐食速度推定装置100は、入力部10、腐食速度推定モデル20、及び出力部30を備える。腐食速度推定装置100は、例えば、ROM、RAM、CPU等からなるコンピュータで実現することができる。
 入力部10は、水成分情報を腐食速度推定モデル20に与える。入力部10は、例えばコンピュータの入力ポートである。
 腐食速度推定モデル20は、環境に含まれる水の成分に関する水成分情報を入力とし、その水成分情報から、対象とする金属の腐食速度を推定する。環境に配置される金属は、金属が接する水の状態に応じて腐食速度が変化する。予め対象とする金属が配置される環境の水の状態と腐食速度の関係をモデル化しておくことで、交流インピーダンス法等を用いて腐食速度を評価しなくても、腐食速度を推定することが可能である。
 出力部30は、腐食速度推定モデル20が推定した腐食速度を外部に出力する。出力部30は、例えばコンピュータのディスプレイである。又は、他のプリンタ等の装置に腐食速度の情報を出力する。
 以上述べた本実施形態に係る腐食速度推定装置100によれば、電気化学的手法に基づく測定を行わずに地中に埋設された金属の腐食速度を推定することができる。腐食速度推定装置100は、金属の湿食による腐食速度を推定する。
 ここで金属の湿食について説明する。湿食は、金属が配置される環境が、大気、水中、地中等の何れであったとしても、金属の溶解反応(アノード反応)と、酸素の還元反応(カソード反応)が生じる電気化学反応である。そのため、金属の腐食速度は、金属表面における水と酸素の状態に大きく関係する。
 例えば、水中の水成分情報は、化学反応種の種類及び濃度、導電率、酸素の溶解量、及び水の温度等である。これらの水成分の状態に応じて腐食速度は変化する。また、大気中の水成分情報は、湿度、金属表面の水の膜厚、濡れ面積、導電率、酸素の溶解量、及び水の温度等である。加えて、金属表面が水に濡れている時間と乾燥している時間の、濡れ乾きに関する情報も水成分情報に含まれる。
 また、土壌中の水成分情報には、含水率が加わる。以降、土壌中(地中)に配置される金属の腐食速度を推定する場合を例に説明する。
 土壌は、Si、Al、Ti、Fe、Ca等の酸化物からなる土壌粒子と、土壌粒子中の間隙中に存在する気相(酸素等)及び液相(水等)から構成される三相共存環境である。土壌中の間隙の割合が一定と考えれば、土壌中の気相の割合と液相の割合の合計は一定であり、一方が高まれば他方が低くなる相反関係にある。
 中性環境といわれる土壌中において、金属の腐食速度は主に次の要素に依存して変化する。一つは土壌中の液相である水が含む化学反応種の種類及び濃度、導電率、酸素の溶解量、及び温度といった状態要素である。もう一つは土壌粒子の間隙を占める液相と気相の割合を示す含水率の要素である。
 状態要素は、土壌の種類、粒子径分布、及び深さ等によって異るものであり土壌固有の性質である。一方で含水率は、例えば降雨などの自然環境条件によって変化する。
 図2は、降雨と土壌含水率の関係を模式的に示す図である。図2の横軸は経過時間である。
 図2に示す様に、土壌含水率の増減は降雨とよく連動しており、降雨時に急激に増加し、雨が止むと徐々に減少するというサイクルを繰り返す。このように含水率は、一定ではなく変動するものであって、金属の腐食速度は、含水率と共に変化する。
 含水率を含む地中の環境因子情報と、金属の腐食速度の関係は、理論的に複雑である。しかし、適切な情報(データ)を用いることで、環境因子情報と腐食速度の関係はモデル化(腐食速度推定モデル20)することが可能である。
 その腐食速度推定モデル20を用いれば、含水率を含む水成分情報から腐食速度を推定することが可能である。腐食速度推定モデル20は、例えば機械学習アルゴリズムを用いて生成する。
 (腐食速度推定モデル)
 図3は、腐食速度推定モデル20の概念図を示す図である。図3に示すように、腐食速度推定モデル20は、水成分情報と腐食速度を関係付けるモデルである。
 腐食速度推定モデル20は、例えば、ランダムフォレスト、ニューラルネットワーク、RNN(LSTM)等の機械学習アルゴリズムを用いて生成する。どのアルゴリズムを用いても構わない。
 腐食速度推定モデル20は、土壌によって異なる。したがって、様々な土壌の水成分情報と腐食速度に相当する情報とを測定し、土壌を特徴付ける情報を含めて機械学習アルゴリズムによるモデルの構築を行う。こうすることで、例えば土壌を特徴付ける情報を入力することで適切な腐食速度推定モデル20を生成することが可能である。
 腐食速度推定モデル20は、土壌によって異なる。したがって、様々な土壌の水成分情報と腐食速度に相当する情報を測定し、土壌を特徴付ける情報を含めて機械学習アルゴリズムを用いて腐食速度推定モデル20の構築を行う。例えば、土壌を特徴付ける情報を入力することで、適切な腐食速度推定モデル20を生成することが可能である。
 土壌を特徴付ける情報には、例えば褐色低地土やグライ土、黒ボク土等の土壌群や土壌統群の分類情報、土壌の粒子径に基づく粘土やシルト、砂の割合から決まる土性区分情報、土壌の存在する深さ、微生物の有無や種類等がある。
 したがって、例えば、土壌統群の分類、土性区分、深さ、微生物の有無等を説明変数として、水成分情報と腐食速度に相当する情報と合わせて機械学習することで、腐食速度推定モデル20の生成が可能である。
 このように生成した腐食速度推定モデル20を用いることで、金属が配置される環境の水成分情報から、その金属の腐食速度を推定することができる。
 〔第2実施形態〕
 図4は、本発明の第2実施形態に係る腐食速度推定装置の機能構成例を示す図である。図4に示す腐食速度推定装置200は、上記の腐食速度推定装置100(図1)に対して学習部40を備える点で異なる。
 学習部40は、水成分情報と腐食速度を関係付ける腐食速度推定モデル20を学習する。学習部40は、水成分情報を環境の状態を表す説明変数とし、腐食速度を目的関数として腐食速度推定モデル20を学習する。
 本実施形態に係る腐食速度推定装置200によれば、学習部40において、入力部10から入力される水成分情報に応じて腐食速度推定モデル20を随時更新できる作用効果が得られる。
 (腐食速度推定方法)
 図5は、腐食速度推定装置200の動作フローを示す。図5に示すように腐食速度推定装置200の動作フローは、入力ステップS1、学習ステップS2、及び推定ステップS3を含む。
 入力ステップS1は、所定の環境に含まれる水の成分に関する水成分情報を、例えば腐食速度推定装置200を構成するコンピュータの入力ポートに入力する。所定の環境は、腐食速度を推定したい対象の金属が配置される例えば土壌のことである。
 水成分情報は、例えば、土壌の含水率、土壌中の水が含む化学反応種、化学反応種の濃度、導電率、酸素の溶解度、及び温度等の情報を含む。
 学習ステップS2は、水成分情報と、対象の金属の腐食速度との関係を表す腐食速度推定モデル20を学習する。腐食速度推定モデル20の学習は、例えば、上記の機械学習アルゴリズムを用いて行う。
 推定ステップS3は、学習ステップS2で学習した腐食速度推定モデル20を用いて、入力ステップS1で入力された水成分情報から、対象の金属の腐食速度を推定する。
 腐食速度推定装置200が行う腐食速度推定方法によれば、電気化学的手法に基づく測定を行わずに地中に埋設された金属の腐食速度を推定することができる。なお、腐食速度推定モデル20を予め生成しておけば学習ステップS2を行う必要はない。
 つまり、予め用意した腐食速度推定モデル20を用いれば、所定の環境に含まれる水の成分に関する水成分情報を入力とし、該水成分情報から、環境に配置される金属の腐食速度を推定する腐食速度推定モデルを用いて腐食速度を推定する推定ステップS3(腐食速度推定ステップ)を実行すれば良い。
 (腐食速度推定装置の具体例)
 図6は、コンピュータで腐食速度推定装置100を構成した場合を模式的に示す図である。図6に示すように、腐食速度推定装置100は、1台のコンピュータで構成することができる。1台のコンピュータは、入力部10、腐食速度推定モデル20、及び出力部30を含む。
 水成分情報は、地中に埋設されたセンサで検出され、入力部10に入力される。逐次入力される水成分情報に基づいて、腐食速度推定モデル20は金属の腐食速度を推定する。
 図6に示すように、水の状態に関わる情報を計測するセンサを利用できる。例えば含水率であれば、含水率の計測数値をそのまま入力すれば良い。また、例えば電気抵抗や電気容量を測定して含水率に変換しても良い。また、酸素濃度を入力する場合は、酸素濃度を測定するセンサを接続すれば良い。入力部10は、複数のセンサで構成されても良い。これらのセンサと腐食速度推定装置100は、ネットワークを介して接続するようにしても良い。
 以上説明したように本実施形態に係る腐食速度推定装置100,200は、金属の湿食による腐食速度を推定する装置である。腐食速度推定装置100,200によれば、対象とする金属が存在する環境の水の状態に関わる情報と、対象金属の腐食速度に相当する情報との関係性を、予め統計学的手法及び機械学習アルゴリズムを用いてモデル化しておき、そのモデルに対象金属が存在する環境の水の状態に関わる情報を与えるだけで腐食速度に相当する情報を推定することが可能になる。
 つまり、電気化学的手法に基づく測定を行わずに地中に埋設された金属の腐食速度を推定することが可能である。なお、上記の実施形態の説明において環境は、土壌を例に説明したが、本発明はこの例に限定されない。
 環境は、大気中及び水中でも構わない。その環境の水成分情報から、その環境に配置された金属の腐食速度を推定することができる。
 本発明は、上記の実施形態に限定されるものではなく、その要旨の範囲内で変形が可能である。例えば、水成分情報は、土壌の含水率、土壌中の水が含む化学反応種、化学反応種の濃度、導電率、酸素の溶解度、及び温度等を例に上げたが、これ以外の因子であっても構わない。
 このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
10:入力部
20:腐食速度推定モデル
30:出力部
40:学習部
100、200:腐食速度推定装置

Claims (4)

  1.  所定の環境に配置される金属の腐食速度を推定する腐食速度推定装置であって、
     前記環境に含まれる水の成分に関する水成分情報を入力とし、該水成分情報から、前記金属の腐食速度を推定する腐食速度推定モデルを
     備える腐食速度推定装置。
  2.  前記腐食速度推定モデルは、
     機械学習アルゴリズムに基づいて生成されたものである
     請求項1に記載の腐食速度推定装置。
  3.  前記水成分情報は、
     過去の前記環境に含まれる水分量を表す含水率を含む
     請求項1又は2に記載の腐食速度推定装置。
  4.  腐食速度推定装置が行う腐食速度推定方法であって、
     所定の環境に含まれる水の成分に関する水成分情報を入力とし、該水成分情報から、前記環境に配置される金属の腐食速度を推定する腐食速度推定モデルを用いて腐食速度を推定する腐食速度推定ステップを
     行う腐食速度推定方法。
PCT/JP2019/045769 2019-11-22 2019-11-22 腐食速度推定装置とその方法 WO2021100193A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021558137A JP7415184B2 (ja) 2019-11-22 2019-11-22 腐食速度推定装置とその方法
US17/777,150 US20220404264A1 (en) 2019-11-22 2019-11-22 Corrosion Amount Estimation Device And Method
PCT/JP2019/045769 WO2021100193A1 (ja) 2019-11-22 2019-11-22 腐食速度推定装置とその方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/045769 WO2021100193A1 (ja) 2019-11-22 2019-11-22 腐食速度推定装置とその方法

Publications (1)

Publication Number Publication Date
WO2021100193A1 true WO2021100193A1 (ja) 2021-05-27

Family

ID=75981566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045769 WO2021100193A1 (ja) 2019-11-22 2019-11-22 腐食速度推定装置とその方法

Country Status (3)

Country Link
US (1) US20220404264A1 (ja)
JP (1) JP7415184B2 (ja)
WO (1) WO2021100193A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210341381A1 (en) * 2018-09-27 2021-11-04 Nippon Telegraph And Telephone Corporation Corrosivity Evaluation Device and Method Thereof
CN114266925A (zh) * 2021-12-30 2022-04-01 华北电力大学 一种基于dlstm-rf的用户窃电检测方法及系统
WO2023073751A1 (ja) * 2021-10-25 2023-05-04 日本電信電話株式会社 腐食推定方法および装置
WO2023223413A1 (ja) * 2022-05-17 2023-11-23 日本電信電話株式会社 腐食推定装置および方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021211A (ja) * 1996-06-28 1998-01-23 Taisei Corp ニューラルネットワークおよびコンクリート構造物中の鉄筋腐食の評価方法および予測方法
JP2012251846A (ja) * 2011-06-02 2012-12-20 Nippon Telegr & Teleph Corp <Ntt> 腐食解析システムおよび方法
JP2018091740A (ja) * 2016-12-05 2018-06-14 日本電信電話株式会社 腐食量推定装置とその方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021211A (ja) * 1996-06-28 1998-01-23 Taisei Corp ニューラルネットワークおよびコンクリート構造物中の鉄筋腐食の評価方法および予測方法
JP2012251846A (ja) * 2011-06-02 2012-12-20 Nippon Telegr & Teleph Corp <Ntt> 腐食解析システムおよび方法
JP2018091740A (ja) * 2016-12-05 2018-06-14 日本電信電話株式会社 腐食量推定装置とその方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210341381A1 (en) * 2018-09-27 2021-11-04 Nippon Telegraph And Telephone Corporation Corrosivity Evaluation Device and Method Thereof
WO2023073751A1 (ja) * 2021-10-25 2023-05-04 日本電信電話株式会社 腐食推定方法および装置
CN114266925A (zh) * 2021-12-30 2022-04-01 华北电力大学 一种基于dlstm-rf的用户窃电检测方法及系统
CN114266925B (zh) * 2021-12-30 2022-09-30 华北电力大学 一种基于dlstm-rf的用户窃电检测方法及系统
WO2023223413A1 (ja) * 2022-05-17 2023-11-23 日本電信電話株式会社 腐食推定装置および方法

Also Published As

Publication number Publication date
JP7415184B2 (ja) 2024-01-17
JPWO2021100193A1 (ja) 2021-05-27
US20220404264A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
WO2021100193A1 (ja) 腐食速度推定装置とその方法
Garg et al. A new computational approach for estimation of wilting point for green infrastructure
Homborg et al. Time–frequency methods for trend removal in electrochemical noise data
Grassini et al. A simple Arduino-based EIS system for in situ corrosion monitoring of metallic works of art
Kim et al. Global and local parameters for characterizing and modeling external corrosion in underground coated steel pipelines: A review of critical factors
Haghverdi et al. A pseudo-continuous neural network approach for developing water retention pedotransfer functions with limited data
Syariz et al. Retrieval of sea surface temperature over Poteran Island water of Indonesia with Landsat 8 TIRS image: A preliminary algorithm
WO2019225664A1 (ja) 腐食量推定装置および腐食量推定方法
Azoor et al. Coupled electro-chemical-soil model to evaluate the influence of soil aeration on underground metal pipe corrosion
Wang et al. Fractal study on collective evolution of short fatigue cracks under complex stress conditions
JP7280533B2 (ja) 予測装置とその方法
Zhu et al. Building pedotransfer functions for estimating soil erodibility in southeastern China
CN113721086A (zh) 用于监视mv或hv电气系统的装备件的电气绝缘状况的方法
CN209624318U (zh) 定量表征混凝土中钢筋锈蚀程度的电磁感应装置
Hamed et al. An application of K-Nearest Neighbor interpolation on calibrating corrosion measurements collected by two non-destructive techniques
Wang et al. Estimation of measurement results with poor information using the dynamic bootstrap grey method
Adler et al. Martensite transformations and fatigue behavior of nitinol
Fazeli et al. A fractal approach for estimating soil water retention curve
Mojid et al. Comparative performance of multiple linear regression and artificial neural network models in estimating solute-transport parameters
Fattah-alhosseini et al. Investigation of the electrochemical behavior of alloy C in NaOH solutions
He et al. An order optimal regularization method for the Cauchy problem of a Laplace equation in an annulus domain
Shorafa et al. Comparison of fractal and empirical model for estimation Soil Water Retention Curve
CN105651968B (zh) 一种利用水势仪在线检测土壤含水量的方法
Li et al. Virtual electrical capacitance tomography sensor
TWI698760B (zh) 汙染源追蹤系統及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558137

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952964

Country of ref document: EP

Kind code of ref document: A1