WO2021100169A1 - Diagnostic system - Google Patents

Diagnostic system Download PDF

Info

Publication number
WO2021100169A1
WO2021100169A1 PCT/JP2019/045615 JP2019045615W WO2021100169A1 WO 2021100169 A1 WO2021100169 A1 WO 2021100169A1 JP 2019045615 W JP2019045615 W JP 2019045615W WO 2021100169 A1 WO2021100169 A1 WO 2021100169A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
biological information
ultrasonic probe
ultrasonic
probe
Prior art date
Application number
PCT/JP2019/045615
Other languages
French (fr)
Japanese (ja)
Inventor
直史 吉田
佐藤 武
泰弘 山下
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2021558116A priority Critical patent/JP7465889B2/en
Priority to PCT/JP2019/045615 priority patent/WO2021100169A1/en
Publication of WO2021100169A1 publication Critical patent/WO2021100169A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • This specification discloses the diagnostic system.
  • a doctor master manipulator holding a pseudo probe operated by a doctor a master manipulator control computer controlling a doctor master manipulator, and a diagnostic slave manipulator holding an ultrasonic diagnostic probe.
  • a diagnostic system including a slave manipulator control computer that controls a diagnostic slave manipulator has been proposed (see, for example, Patent Document 1).
  • This diagnostic system is equipped with a force detecting means for detecting a force in three axial directions over an ultrasonic diagnostic probe, displays a force information waveform based on the force information from the force detecting means, and sounds the force information by voice. Or something.
  • the above-mentioned diagnostic system merely provides power information to the diagnostician (doctor). For this reason, it is difficult for the diagnostician to accurately read the subject (patient) when he / she feels pain or discomfort during the diagnosis.
  • the main purpose of the present disclosure is to provide a diagnostic system capable of reducing the burden on a subject undergoing diagnosis in a case where a diagnostic probe is pressed against a subject to make a diagnosis.
  • This disclosure has taken the following measures to achieve the above-mentioned main purpose.
  • the first diagnostic system of the present disclosure is Diagnostic probe and
  • the biological information of the subject during the execution of diagnosis by pressing the diagnostic probe against the subject is acquired, the time change of the biological information is calculated, and the subject's biological information is calculated based on the time change of the biological information.
  • a control device that determines whether or not an abnormality has occurred in the biological condition and notifies that fact when it is determined that an abnormality has occurred in the biological condition of the subject. The gist is to prepare.
  • the first diagnostic system of the present disclosure acquires the biological information of the subject during the execution of the diagnosis by pressing the diagnostic probe against the subject, and calculates the time change of the biological information. Subsequently, the first diagnostic system determines whether or not an abnormality has occurred in the biological state of the subject based on the time change of the biological information. Then, the first diagnostic system notifies that when it is determined that an abnormality has occurred in the biological state of the subject. As a result, the examiner can immediately deal with the pain or discomfort of the subject being diagnosed, and can further reduce the burden on the subject.
  • the second diagnostic system of the present disclosure includes an ultrasonic probe, a moving device for moving the ultrasonic probe, and the subject who is performing ultrasonic diagnosis by pressing the ultrasonic probe against the subject.
  • the biological information is acquired, the time change of the biological information is calculated, and the ultrasonic probe is pushed into the body surface of the subject with a pushing amount such that the time change of the biological information does not reach a predetermined predetermined value.
  • the second diagnostic system of the present disclosure acquires the biological information of the subject who is performing the ultrasonic diagnosis by pressing the ultrasonic probe against the subject and calculates the time change of the biological information. Then, the second diagnostic system controls the moving device so that the ultrasonic probe is pushed into the body surface of the subject with a pushing amount such that the time change of the biological information does not reach a predetermined predetermined value. This makes it possible to reduce the burden on the subject when pushing the ultrasonic probe into the body surface of the subject.
  • the third diagnostic system of the present disclosure is in the process of performing ultrasonic diagnosis by moving the ultrasonic probe, a moving device for moving the ultrasonic probe, and the subject while pressing the ultrasonic probe against the subject.
  • the biological information of the subject is acquired, the time change of the biological information is calculated, and the ultrasonic probe moves along the body surface of the subject at a moving speed such that the time change of the biological information does not reach a predetermined value.
  • the third diagnostic system of the present disclosure acquires the biological information of the subject who is performing the ultrasonic diagnosis by pressing the ultrasonic probe against the subject and calculates the time change of the biological information. Then, the third diagnostic system controls the moving device so that the ultrasonic probe moves along the body surface of the subject at a moving speed such that the time change of the biological information does not reach a predetermined value. This makes it possible to reduce the burden on the subject when moving the ultrasonic probe while pushing it against the body surface of the subject.
  • FIG. 1 is an external perspective view of the ultrasonic diagnostic system 10.
  • FIG. 2 is a side view of the robot 20.
  • FIG. 3 is a block diagram showing an electrical connection relationship between the robot 20, the control device 70, and the ultrasonic diagnostic device 100.
  • the left-right direction is the X-axis direction
  • the front-back direction is the Y-axis direction
  • the up-down direction is the Z-axis direction.
  • the ultrasonic diagnostic system 10 holds the ultrasonic probe 101 on the robot 20 and drives the robot 20 so that the ultrasonic probe 101 is pressed against the skin of the subject to perform ultrasonic diagnosis.
  • the ultrasonic diagnostic system 10 applies ultrasonic waves to the carotid artery of the subject, acquires a cross-sectional image in the minor axis direction and a cross-sectional image in the major axis direction of the carotid artery, and obtains a cross-sectional image of the blood vessel from the acquired image. Used for carotid echography to check the condition.
  • the ultrasonic diagnostic system 10 acquires the robot 20, the control device 70 (see FIG. 3) that controls the robot 20, the ultrasonic diagnostic device 100, and the biological information of the subject. It is equipped with a biological information acquisition device 200 (see FIG. 3).
  • the ultrasonic diagnostic apparatus 100 includes an ultrasonic probe 101 and an ultrasonic diagnostic apparatus main body 102 to which the ultrasonic probe 101 is connected via a cable 101a.
  • the ultrasonic diagnostic apparatus main body 102 processes the reception signals from the control unit 103 that controls the entire apparatus, the instruction input unit 104 that inputs instructions such as the start of diagnosis, and the ultrasonic probe 101 to generate an ultrasonic image. It includes an image processing unit 105 for displaying the generated ultrasonic image and a display unit 106 for displaying the generated ultrasonic image.
  • the robot 20 includes a first arm 21, a second arm 22, a base 25, a base 26, a first arm drive device 35, a second arm drive device 36, a posture holding device 37, and an elevating device 40. , A rotating 3-axis mechanism 50, and a holder 60.
  • the first arm 21, the second arm 22, and the rotating three-axis mechanism 50 may be simply referred to as arms.
  • the base end portion of the first arm 21 is connected to the base 25 via a first joint shaft 31 extending in the vertical direction (Z-axis direction).
  • the first arm driving device 35 includes a motor 35a and an encoder 35b.
  • the rotation shaft of the motor 35a is connected to the first joint shaft 31 via a speed reducer (not shown).
  • the first arm driving device 35 rotates (turns) the first arm 21 along the horizontal plane (XY plane) with the first joint shaft 31 as a fulcrum by rotationally driving the first joint shaft 31 by the motor 35a. ..
  • the encoder 35b is attached to the rotation shaft of the motor 35a and is configured as a rotary encoder that detects the amount of rotational displacement of the motor 35a.
  • the base end portion of the second arm 22 is connected to the tip end portion of the first arm 21 via a second joint shaft 32 extending in the vertical direction.
  • the second arm driving device 36 includes a motor 36a and an encoder 36b.
  • the rotation shaft of the motor 36a is connected to the second joint shaft 32 via a speed reducer (not shown).
  • the second arm driving device 36 rotates (turns) the second arm 22 along the horizontal plane with the second joint shaft 32 as a fulcrum by rotationally driving the second joint shaft 32 by the motor 36a.
  • the encoder 36b is attached to the rotation shaft of the motor 36a and is configured as a rotary encoder that detects the amount of rotational displacement of the motor 36a.
  • the base 25 is provided so as to be able to move up and down with respect to the base 26 by an elevating device 40 installed on the base 26.
  • the elevating device 40 includes a slider 41 fixed to the base 25 and a guide member 42 fixed to the base 26 and extending in the vertical direction to guide the movement of the slider 41.
  • a ball screw shaft 43 (elevating shaft) that extends in the vertical direction and is screwed into a ball screw nut (not shown) fixed to the slider 41, a motor 44 that rotationally drives the ball screw shaft 43, and an encoder. 45 (see FIG. 3).
  • the lifting device 40 rotationally drives the ball screw shaft 43 by the motor 44 to move the base 25 fixed to the slider 41 up and down along the guide member 42.
  • the encoder 45 is configured as a linear encoder that detects a position (elevating position) of the slider 41 (base 25) in the vertical direction.
  • the rotating 3-axis mechanism 50 is connected to the tip of the second arm 22 via a posture holding shaft 33 extending in the vertical direction.
  • the rotating three-axis mechanism 50 includes a first rotating shaft 51, a second rotating shaft 52, and a third rotating shaft 53 that are orthogonal to each other, a first rotating device 55 that rotates the first rotating shaft 51, and a second rotating shaft 52.
  • a second rotating device 56 for rotating and a third rotating device 57 for rotating the third rotating shaft 53 are provided.
  • the first rotation shaft 51 is supported in a posture orthogonal to the posture holding shaft 33.
  • the second rotating shaft 52 is supported in an orthogonal posture with respect to the first rotating shaft 51.
  • the third rotation shaft 53 is supported in an orthogonal posture with respect to the second rotation shaft 52.
  • the first rotating device 55 includes a motor 55a that rotationally drives the first rotating shaft 51, and an encoder 55b that is attached to the rotating shaft of the motor 55a and detects the amount of rotational displacement of the motor 55a.
  • the second rotating device 56 includes a motor 56a that rotationally drives the second rotating shaft 52, and an encoder 56b that is attached to the rotating shaft of the motor 56a and detects the amount of rotational displacement of the motor 56a.
  • the third rotating device 57 includes a motor 57a that rotationally drives the third rotating shaft 53, and an encoder 57b that is attached to the rotating shaft of the motor 57a and detects the amount of rotational displacement of the motor 57a.
  • a holder 60 is attached to the third rotating shaft 53.
  • the holder 60 is fixed at a position radially separated from the third rotation shaft 53.
  • the ultrasonic probe 101 held by the holder 60 moves with an arc-shaped locus centered on the third rotation axis 53 due to the rotation of the third rotation axis 53.
  • the holder 60 may be attached so that the ultrasonic probe 101 is located coaxially with the third rotation shaft 53.
  • the robot 20 of the present embodiment has a translational motion in three directions of the X-axis direction, the Y-axis direction, and the Z-axis direction by the first arm drive device 35, the second arm drive device 36, and the elevating device 40, and a rotation three-axis mechanism.
  • the ultrasonic probe 101 can be moved to an arbitrary position in an arbitrary posture by combining with a rotational motion in three directions of X-axis (pitching), Y-axis (rolling), and Z-axis (yowing) according to 50. it can.
  • the posture holding device 37 holds the posture of the rotating 3-axis mechanism 50 (the direction of the first rotating shaft 51) in a constant direction regardless of the postures of the first arm 21 and the second arm 22.
  • the posture holding device 37 includes a motor 37a and an encoder 37b.
  • the rotating shaft of the motor 37a is connected to the posture holding shaft 33 via a speed reducer (not shown).
  • the posture holding device 37 has a posture based on the rotation angle of the first joint shaft 31 and the rotation angle of the second joint shaft 32 so that the axial direction of the first rotation shaft 51 is always in the left-right direction (X-axis direction).
  • the target rotation angle of the holding shaft 33 is set, and the motor 37a is driven and controlled so that the posture holding shaft 33 has the target rotation angle. This makes it possible to independently control the translational motion in the three directions and the rotational motion in the three directions, which facilitates control.
  • the force sensor 28 is attached to the tip of the arm and detects a force component acting in each of the X-axis, Y-axis, and Z-axis directions and a torque component acting around each axis as an external force acting on the arm.
  • the control device 70 is configured as a microprocessor centered on the CPU 71, and includes a ROM 72, a RAM 73, an input / output port, and a communication port (not shown) in addition to the CPU 71.
  • a detection signal from the force sensor 28, a detection signal from each encoder 35b, 36b, 37b, 45, 55b, 56b, 57b, a detection signal from the biological information acquisition device 200, and the like are transmitted via an input port. Has been entered. Further, the control device 70 outputs drive signals to the motors 35a, 36a, 37a, 44, 55a, 56a, 57a via the output port. Further, the control device 70 communicates with the control unit 103 of the ultrasonic diagnostic device 100 via the communication port, and exchanges data.
  • the biological information acquisition device 200 includes a pulse wave sensor 201 for detecting a pulse wave, a body temperature sensor 202 for detecting a body temperature, a blood pressure sensor 203 for detecting a blood pressure, and the like as sensors for detecting the biological information of a subject. ..
  • FIG. 4 is a flowchart showing an example of ultrasonic diagnostic processing executed by the CPU 71 of the control device 70.
  • the CPU 71 first drives and controls the corresponding motor of the robot 20 to start moving the ultrasonic probe 101 toward the subject (step S100).
  • the ultrasonic probe 101 is performed as follows. That is, the CPU 71 determines the target position and the target posture of the arm holding the ultrasonic probe 101 according to the task program created in advance. Subsequently, the CPU 71 determines the target rotation angle of the first joint shaft 31, the target rotation angle of the second joint shaft 32, the target rotation angle of the posture holding shaft 33, and the base 25 for moving the arm to the target position in the target posture.
  • the target elevating position, the target rotation angle of the first rotation shaft 51, the target rotation angle of the second rotation shaft 52, and the target rotation angle of the third rotation shaft 53 are set, respectively. Then, the CPU 71 controls the corresponding motor so that the rotation angle or the elevating position detected by each encoder 35b, 36b, 37b, 45, 55b, 56b, 57b matches the corresponding target rotation angle or the target elevating position. ..
  • each axis (first joint axis 31, second joint axis 32, first to 1) detected by each encoder 35b, 36b, 37b, 45, 55b, 56b, 57b.
  • the rotation angle and the elevating position of the third rotating shafts 51 to 53 and the elevating shaft) are input (step S110).
  • the CPU 71 calculates the tip position (probe position) of the ultrasonic probe 101 by forward kinematics based on the input rotation angle and elevating position of each axis (step S120).
  • the CPU 71 calculates the pushing amount ⁇ of the ultrasonic probe 101 with respect to the subject based on the difference between the calculated probe position and the body surface position of the subject (step S130), and the probe position calculated this time and the probe position calculated last time.
  • the moving speed V of the ultrasonic probe 101 in the direction along the body surface of the subject is calculated from the displacement amount of (step S140).
  • the body surface position of the subject the one measured by the diagnostic preparation process of FIG. 5 performed prior to the ultrasonic diagnostic process is used.
  • the CPU 71 first starts moving the ultrasonic probe 101 toward the subject (step S300). Subsequently, the CPU 71 inputs the reaction force F applied to the ultrasonic probe 101 from the body surface when the ultrasonic probe 101 comes into contact with the body surface of the subject from the force sensor 28 (step S310), and the input reaction force F Waits until becomes a predetermined value slightly larger than the value 0 (step S320). The process of step S320 determines whether or not the ultrasonic probe 101 is in contact with the subject with almost no pushing.
  • the CPU 71 determines that the reaction force F has reached a predetermined value, the movement of the ultrasonic probe 101 is stopped (step S330), and each encoder 35b, 36b, 37b, 45, 55b, 56b, 57b is detected.
  • the rotation angle and elevating position of the shafts are input (step S340), and the probe position is calculated based on the input rotation angle and elevating position of each axis (step S350).
  • the CPU 71 sets the calculated probe position as the body surface position of the subject, registers the set body surface position in the RAM 73 (step S360), and ends the diagnosis preparation process.
  • the CPU 71 determines whether or not the calculated push-in amount ⁇ is larger than the value 0 (step S150). This process determines whether or not the ultrasonic probe 101 is in contact with the body surface of the subject. When the CPU 71 determines that the pushing amount ⁇ is not larger than the value 0, the CPU 71 continues to move the ultrasonic probe 101 (step S200), returns to step S110, and repeats the process.
  • the CPU 71 determines that the pushing amount ⁇ is larger than the value 0, it inputs the biometric information of the subject (step S160) and calculates the time change amount Q of the input biometric information (step S170).
  • the pulse wave detected by the pulse wave sensor 201 is input to calculate the time change amount of the pulse rate, or the body temperature detected by the body temperature sensor 202 is input to change the body temperature with time. It is performed by calculating the amount or inputting the blood pressure detected by the blood pressure sensor 203 to calculate the amount of time change of the blood pressure. Then, the CPU 71 determines whether or not the calculated time change amount Q of the biological information is larger than the first threshold value ⁇ (step S180).
  • the first threshold value ⁇ is set to a value slightly smaller than the second threshold value ⁇ , which will be described later, for determining that the subject may feel pain or discomfort.
  • step S210 It is determined whether or not (step S210).
  • the pushing amount of the ultrasonic probe 101 is not caused to the subject to feel pain or discomfort due to the excessive pushing of the ultrasonic probe 101.
  • Limiting ⁇ and the moving speed V (step S220), the process proceeds to step S190. This process is performed, for example, by driving and controlling the corresponding motor so that the pushing amount ⁇ is reduced by a predetermined amount and the moving speed V is reduced by a predetermined speed.
  • the CPU 71 may limit only one of the pushing amount ⁇ and the moving speed V.
  • step S190 the CPU 71 determines in step S190 that the diagnosis is completed, the CPU 71 stops the movement of the ultrasonic probe 101 (step S230) and ends the ultrasonic diagnosis process.
  • step S210 determines that the time change amount Q of the biological information is larger than the second threshold value ⁇ , it determines that the subject may feel pain or discomfort, and outputs a warning (step).
  • step S240 the movement of the ultrasonic probe 101 is stopped (step S230), and the ultrasonic diagnostic process is completed.
  • the process of step S230 is performed by transmitting a warning signal to the control unit 103 of the ultrasonic diagnostic apparatus 100, and the control unit 103 receiving the warning signal displays a warning screen on the display unit 106.
  • FIG. 6 is an explanatory diagram showing an example of a warning screen. As shown in the figure, the warning screen includes a warning message to call the attention of the diagnostician and the current pushing amount of the ultrasonic probe 101. As a result, it is possible to notify the examiner that the ultrasonic probe 101 may be pushed by an excessive force to the subject.
  • the CPU 71 may output a warning sound in step S240.
  • the ultrasonic probe 101 of the present embodiment corresponds to the diagnostic probe of the present disclosure
  • the control device 70 corresponds to the control device.
  • the robot 20 corresponds to a mobile device.
  • the robot 20 is configured as a 7-axis articulated robot capable of translational motion in three directions and rotational motion in three directions.
  • the number of axes can be any number.
  • the robot 20 may be composed of a so-called vertical articulated robot, a horizontal articulated robot, or the like.
  • the biological information acquisition device 200 includes a pulse wave sensor 201, a body temperature sensor 202, and a blood pressure sensor 203 as sensors for detecting the biological information of the subject under diagnosis.
  • the biological information acquisition device 200 includes, for example, a force sensor attached to a lever that can be gripped by the subject to detect the gripping force of the subject, and an image of the facial expression of the subject.
  • a camera for this purpose and a sweating sensor for detecting the amount of sweating of the subject may be included.
  • the biological information acquisition device 200 includes a body surface temperature sensor that detects the subject's body surface temperature (skin surface temperature), an electroencephalograph that detects the subject's brain waves, and a blood flow sensor that detects the subject's blood flow.
  • a body surface temperature sensor that detects the subject's body surface temperature (skin surface temperature)
  • an electroencephalograph that detects the subject's brain waves
  • a blood flow sensor that detects the subject's blood flow.
  • An electroencephalograph that detects the blood oxygen concentration of the subject may be included. That is, any kind of sensor may be used as long as it can acquire the time change of the biological information for determining whether or not the subject feels pain or discomfort during the diagnosis.
  • the ultrasonic diagnostic system 10 includes a robot 20 that automatically operates according to a task program.
  • the ultrasonic diagnostic system is a master device that is installed in a remote location and can be operated by an operator (diagnosis performer), and is connected to the master device via a communication line and holds an ultrasonic probe in an arm. It may be provided with a remote-controlled robot that operates the arm in response to the operation of the above.
  • the control device of the remote control robot pushes the ultrasonic probe regardless of the operation of the master device. And the movement speed may be limited.
  • control device of the remote control robot warns the operator (outputs a warning sound and a warning display) from the master device side when the time change amount Q of the biological information of the subject is equal to or higher than the second threshold value ⁇ .
  • a warning signal may be transmitted to the master device.
  • the ultrasonic diagnostic system 10 holds the ultrasonic probe 101 on the robot 20 and drives the robot 20 to press the ultrasonic probe 101 against the subject to perform diagnosis. ..
  • the diagnostician himself may press the ultrasonic probe 101 against the subject by grasping and operating the ultrasonic probe 101.
  • the ultrasonic diagnostic system 10 calculates the time change of the biological information of the subject acquired by the biological information acquisition device 200, and when the time change of the calculated biological information reaches a predetermined value, the diagnosis performer. Can be warned against. As a result, the examiner can immediately deal with the pain or discomfort of the subject being diagnosed, and can further reduce the burden on the subject.
  • the first diagnostic system of the present disclosure acquires the diagnostic probe and the biological information of the subject during the execution of the diagnosis by pressing the diagnostic probe against the subject, and obtains the biometric information of the subject.
  • the time change of the biological information is calculated, it is determined whether or not an abnormality has occurred in the biological state of the subject based on the time change of the biological information, and it is determined that an abnormality has occurred in the biological state of the subject.
  • the gist is to provide a control device for notifying the fact.
  • the first diagnostic system of the present disclosure acquires the biological information of the subject during the execution of the diagnosis by pressing the diagnostic probe against the subject, and calculates the time change of the biological information. Subsequently, the first diagnostic system determines whether or not an abnormality has occurred in the biological state of the subject based on the time change of the biological information. Then, the first diagnostic system notifies that when it is determined that an abnormality has occurred in the biological state of the subject. As a result, it is possible to appropriately notify the examiner that the subject being diagnosed is feeling pain or discomfort. Therefore, it is possible to further reduce the burden on the subject by performing the diagnosis by the diagnostician based on such information.
  • the moving device for moving the diagnostic probe is provided, the diagnostic probe is an ultrasonic probe, and the control device is such that the ultrasonic probe is used for ultrasonic diagnosis.
  • the moving device is controlled so as to be pushed into the body surface of the subject, and when it is determined that an abnormality has occurred in the biological state of the subject, the pushing of the ultrasonic probe into the body surface of the subject is stopped. May be good. In this way, it is possible to prevent the diagnostic probe from being pushed into the body surface of the subject with excessive force.
  • the second diagnostic system of the present disclosure includes an ultrasonic probe, a moving device for moving the ultrasonic probe, and the subject who is performing ultrasonic diagnosis by pressing the ultrasonic probe against the subject.
  • the biological information is acquired, the time change of the biological information is calculated, and the ultrasonic probe is pushed into the body surface of the subject with a pushing amount such that the time change of the biological information does not reach a predetermined predetermined value.
  • the second diagnostic system of the present disclosure acquires the biological information of the subject who is performing the ultrasonic diagnosis by pressing the ultrasonic probe against the subject and calculates the time change of the biological information. Then, the second diagnostic system controls the moving device so that the ultrasonic probe is pushed into the body surface of the subject with a pushing amount such that the time change of the biological information does not reach a predetermined predetermined value. This makes it possible to reduce the burden on the subject when pushing the ultrasonic probe into the body surface of the subject.
  • the third diagnostic system of the present disclosure is in the process of performing ultrasonic diagnosis by moving the ultrasonic probe, a moving device for moving the ultrasonic probe, and the subject while pressing the ultrasonic probe against the subject.
  • the biological information of the subject is acquired, the time change of the biological information is calculated, and the ultrasonic probe moves along the body surface of the subject at a moving speed such that the time change of the biological information does not reach a predetermined value.
  • the third diagnostic system of the present disclosure acquires the biological information of the subject who is performing the ultrasonic diagnosis by pressing the ultrasonic probe against the subject and calculates the time change of the biological information. Then, the third diagnostic system controls the moving device so that the ultrasonic probe moves along the body surface of the subject at a moving speed such that the time change of the biological information does not reach a predetermined value. This makes it possible to reduce the burden on the subject when moving the ultrasonic probe while pushing it against the body surface of the subject.
  • the moving device may be an articulated robot, and the ultrasonic probe may be attached to the arm tip of the articulated robot.
  • This disclosure can be used in the manufacturing industry of an ultrasonic probe misalignment measuring device.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

This diagnostic system acquires biological information about a subject who is in the process of undergoing diagnosis with a diagnostic probe pressed against said subject, and calculates change over time of the biological information. Subsequently, a first diagnostic system determines whether or not an abnormality has occurred in the subject's biological state on the basis of the change over time of the biological information. Then, if it has been determined that an abnormality has occurred in the subject's biological state, the first diagnostic system reports this.

Description

診断システムDiagnostic system
 本明細書は、診断システムについて開示する。 This specification discloses the diagnostic system.
 従来、医師により操作される擬似プローブを保持する医師用マスタ・マニピュレータと、医師用マスタ・マニピュレータを制御するマスタ・マニピュレータ制御用コンピュータと、超音波診断用プローブを保持する診断用スレーブ・マニピュレータと、診断用スレーブ・マニピュレータを制御するスレーブ・マニピュレータ制御用コンピュータとを備える診断システムが提案されている(例えば、特許文献1参照)。この診断システムは、超音波診断用プローブに架かる3軸方向の力を検出する力検出手段を備え、力検出手段からの力情報に基づく力情報波形を表示したり、力情報を音声で発音したりする。 Conventionally, a doctor master manipulator holding a pseudo probe operated by a doctor, a master manipulator control computer controlling a doctor master manipulator, and a diagnostic slave manipulator holding an ultrasonic diagnostic probe. A diagnostic system including a slave manipulator control computer that controls a diagnostic slave manipulator has been proposed (see, for example, Patent Document 1). This diagnostic system is equipped with a force detecting means for detecting a force in three axial directions over an ultrasonic diagnostic probe, displays a force information waveform based on the force information from the force detecting means, and sounds the force information by voice. Or something.
特開2002-085353号公報Japanese Unexamined Patent Publication No. 2002-085353
 しかしながら、上述した診断システムでは、単に力情報を診断実施者(医師)に提供するものに過ぎない。このため、診断実施者は、診断中に被験者(患者)が痛みや不快感を感じている場合にこれを正確に読み取ることは困難である。 However, the above-mentioned diagnostic system merely provides power information to the diagnostician (doctor). For this reason, it is difficult for the diagnostician to accurately read the subject (patient) when he / she feels pain or discomfort during the diagnosis.
 本開示は、被験者に診断用プローブを押し当てて診断を行なうものにおいて、診断を受けている被験者の負担を軽減することが可能な診断システムを提供することを主目的とする。 The main purpose of the present disclosure is to provide a diagnostic system capable of reducing the burden on a subject undergoing diagnosis in a case where a diagnostic probe is pressed against a subject to make a diagnosis.
 本開示は、上述の主目的を達成するために以下の手段を採った。 This disclosure has taken the following measures to achieve the above-mentioned main purpose.
 本開示の第1の診断システムは、
 診断用プローブと、
 被験者に前記診断用プローブを押し当てて診断を実行している最中の前記被験者の生体情報を取得し、前記生体情報の時間変化を算出し、前記生体情報の時間変化に基づいて前記被験者の生体状態に異常が発生しているか否かを判定し、前記被験者の生体状態に異常が発生したと判定した場合にその旨を報知する制御装置と、
 を備えることを要旨とする。
The first diagnostic system of the present disclosure is
Diagnostic probe and
The biological information of the subject during the execution of diagnosis by pressing the diagnostic probe against the subject is acquired, the time change of the biological information is calculated, and the subject's biological information is calculated based on the time change of the biological information. A control device that determines whether or not an abnormality has occurred in the biological condition and notifies that fact when it is determined that an abnormality has occurred in the biological condition of the subject.
The gist is to prepare.
 この本開示の第1の診断システムは、被験者に診断用プローブを押し当てて診断を実行している最中の被験者の生体情報を取得し、生体情報の時間変化を算出する。続いて、第1の診断システムは、生体情報の時間変化に基づいて被験者の生体状態に異常が発生しているか否かを判定する。そして、第1の診断システムは、被験者の生体状態に異常が発生したと判定した場合にその旨を報知する。これにより、検査実施者は、診断を受けている被験者が痛みや不快感を感じると、直ちに対処することが可能となり、被験者の負担をより軽減することが可能となる。 The first diagnostic system of the present disclosure acquires the biological information of the subject during the execution of the diagnosis by pressing the diagnostic probe against the subject, and calculates the time change of the biological information. Subsequently, the first diagnostic system determines whether or not an abnormality has occurred in the biological state of the subject based on the time change of the biological information. Then, the first diagnostic system notifies that when it is determined that an abnormality has occurred in the biological state of the subject. As a result, the examiner can immediately deal with the pain or discomfort of the subject being diagnosed, and can further reduce the burden on the subject.
 本開示の第2の診断システムは、超音波プローブと、前記超音波プローブを移動させる移動装置と、被験者に前記超音波プローブを押し当てて超音波診断を実行している最中の前記被験者の生体情報を取得し、前記生体情報の時間変化を算出し、前記生体情報の時間変化が予め定められた所定値に達しない程度の押し込み量で前記超音波プローブが前記被験者の体表面に押し込まれるように前記移動装置を制御する制御装置と、を備えることを要旨とする。 The second diagnostic system of the present disclosure includes an ultrasonic probe, a moving device for moving the ultrasonic probe, and the subject who is performing ultrasonic diagnosis by pressing the ultrasonic probe against the subject. The biological information is acquired, the time change of the biological information is calculated, and the ultrasonic probe is pushed into the body surface of the subject with a pushing amount such that the time change of the biological information does not reach a predetermined predetermined value. It is a gist to include a control device for controlling the mobile device as described above.
 この本開示の第2の診断システムは、被験者に超音波プローブを押し当てて超音波診断を実行している最中の被験者の生体情報を取得し、生体情報の時間変化を算出する。そして、第2の診断システムは、生体情報の時間変化が予め定められた所定値に達しない程度の押し込み量で超音波プローブが被験者の体表面に押し込まれるように移動装置を制御する。これにより、超音波プローブを被験者の体表面に押し込む際の被験者の負担を軽減することができる。 The second diagnostic system of the present disclosure acquires the biological information of the subject who is performing the ultrasonic diagnosis by pressing the ultrasonic probe against the subject and calculates the time change of the biological information. Then, the second diagnostic system controls the moving device so that the ultrasonic probe is pushed into the body surface of the subject with a pushing amount such that the time change of the biological information does not reach a predetermined predetermined value. This makes it possible to reduce the burden on the subject when pushing the ultrasonic probe into the body surface of the subject.
 本開示の第3の診断システムは、超音波プローブと、前記超音波プローブを移動させる移動装置と、被験者に前記超音波プローブを押し当てながら移動させて超音波診断を実行している最中の前記被験者の生体情報を取得し、前記生体情報の時間変化を算出し、前記生体情報の時間変化が所定値に達しない程度の移動速度で前記超音波プローブが前記被験者の体表面に沿って移動するように前記移動装置を制御する制御装置と、を備えることを要旨とする。 The third diagnostic system of the present disclosure is in the process of performing ultrasonic diagnosis by moving the ultrasonic probe, a moving device for moving the ultrasonic probe, and the subject while pressing the ultrasonic probe against the subject. The biological information of the subject is acquired, the time change of the biological information is calculated, and the ultrasonic probe moves along the body surface of the subject at a moving speed such that the time change of the biological information does not reach a predetermined value. It is a gist to include a control device for controlling the mobile device so as to perform the above.
 この本開示の第3の診断システムは、被験者に超音波プローブを押し当てて超音波診断を実行している最中の被験者の生体情報を取得し、生体情報の時間変化を算出する。そして、第3の診断システムは、生体情報の時間変化が所定値に達しない程度の移動速度で超音波プローブが被験者の体表面に沿って移動するように移動装置を制御する。これにより、超音波プローブを被験者の体表面に押し込みながら移動させる際の被験者の負担を軽減することができる。 The third diagnostic system of the present disclosure acquires the biological information of the subject who is performing the ultrasonic diagnosis by pressing the ultrasonic probe against the subject and calculates the time change of the biological information. Then, the third diagnostic system controls the moving device so that the ultrasonic probe moves along the body surface of the subject at a moving speed such that the time change of the biological information does not reach a predetermined value. This makes it possible to reduce the burden on the subject when moving the ultrasonic probe while pushing it against the body surface of the subject.
超音波診断システム10の外観斜視図である。It is an external perspective view of the ultrasonic diagnostic system 10. ロボット20の側面図である。It is a side view of the robot 20. ロボット20と制御装置70と超音波診断装置100との電気的な接続関係を示すブロック図である。It is a block diagram which shows the electrical connection relationship between a robot 20, a control device 70, and an ultrasonic diagnostic apparatus 100. 超音波診断処理の一例を示すフローチャートである。It is a flowchart which shows an example of ultrasonic diagnostic processing. 診断準備処理の一例を示すフローチャートである。It is a flowchart which shows an example of the diagnosis preparation process. 警告画面の一例を示す説明図である。It is explanatory drawing which shows an example of a warning screen.
 次に、本開示を実施するための形態について図面を参照しながら説明する。図1は、超音波診断システム10の外観斜視図である。図2は、ロボット20の側面図である。図3は、ロボット20と制御装置70と超音波診断装置100との電気的な接続関係を示すブロック図である。なお、図1中、左右方向がX軸であり、前後方向がY軸方向であり、上下方向がZ軸方向である。 Next, a mode for carrying out the present disclosure will be described with reference to the drawings. FIG. 1 is an external perspective view of the ultrasonic diagnostic system 10. FIG. 2 is a side view of the robot 20. FIG. 3 is a block diagram showing an electrical connection relationship between the robot 20, the control device 70, and the ultrasonic diagnostic device 100. In FIG. 1, the left-right direction is the X-axis direction, the front-back direction is the Y-axis direction, and the up-down direction is the Z-axis direction.
 超音波診断システム10は、ロボット20に超音波プローブ101を保持し、超音波プローブ101が被験者の皮膚に押し当てられるようにロボット20を駆動することにより超音波診断を行なうものである。本実施形態では、超音波診断システム10は、被験者の頸動脈に超音波を当てて、頸動脈の短軸方向における断面画像と長軸方向における断面画像とを取得し、取得した画像から血管の状態をチェックする頸動脈エコー検査に用いられる。超音波診断システム10は、図1,図2に示すように、ロボット20と、ロボット20を制御する制御装置70(図3参照)と、超音波診断装置100と、被験者の生体情報を取得する生体情報取得装置200(図3参照)とを備える。 The ultrasonic diagnostic system 10 holds the ultrasonic probe 101 on the robot 20 and drives the robot 20 so that the ultrasonic probe 101 is pressed against the skin of the subject to perform ultrasonic diagnosis. In the present embodiment, the ultrasonic diagnostic system 10 applies ultrasonic waves to the carotid artery of the subject, acquires a cross-sectional image in the minor axis direction and a cross-sectional image in the major axis direction of the carotid artery, and obtains a cross-sectional image of the blood vessel from the acquired image. Used for carotid echography to check the condition. As shown in FIGS. 1 and 2, the ultrasonic diagnostic system 10 acquires the robot 20, the control device 70 (see FIG. 3) that controls the robot 20, the ultrasonic diagnostic device 100, and the biological information of the subject. It is equipped with a biological information acquisition device 200 (see FIG. 3).
 超音波診断装置100は、超音波プローブ101と、超音波プローブ101がケーブル101aを介して接続される超音波診断装置本体102とを備える。超音波診断装置本体102は、装置全体の制御を司る制御部103と、診断開始などの指示を入力する指示入力部104と、超音波プローブ101からの受信信号を処理して超音波画像を生成するための画像処理部105と、生成された超音波画像を表示する表示部106とを含む。 The ultrasonic diagnostic apparatus 100 includes an ultrasonic probe 101 and an ultrasonic diagnostic apparatus main body 102 to which the ultrasonic probe 101 is connected via a cable 101a. The ultrasonic diagnostic apparatus main body 102 processes the reception signals from the control unit 103 that controls the entire apparatus, the instruction input unit 104 that inputs instructions such as the start of diagnosis, and the ultrasonic probe 101 to generate an ultrasonic image. It includes an image processing unit 105 for displaying the generated ultrasonic image and a display unit 106 for displaying the generated ultrasonic image.
 ロボット20は、第1アーム21と、第2アーム22と、ベース25と、基台26と、第1アーム駆動装置35と、第2アーム駆動装置36と、姿勢保持装置37と、昇降装置40と、回転3軸機構50と、保持具60とを備える。なお、第1アーム21と第2アーム22と回転3軸機構50とは、単にアームと呼ぶ場合がある。 The robot 20 includes a first arm 21, a second arm 22, a base 25, a base 26, a first arm drive device 35, a second arm drive device 36, a posture holding device 37, and an elevating device 40. , A rotating 3-axis mechanism 50, and a holder 60. The first arm 21, the second arm 22, and the rotating three-axis mechanism 50 may be simply referred to as arms.
 第1アーム21の基端部は、上下方向(Z軸方向)に延在する第1関節軸31を介してベース25に連結されている。第1アーム駆動装置35は、モータ35aと、エンコーダ35bとを備える。モータ35aの回転軸は、図示しない減速機を介して第1関節軸31に接続されている。第1アーム駆動装置35は、モータ35aにより第1関節軸31を回転駆動することにより、第1関節軸31を支点に第1アーム21を水平面(XY平面)に沿って回動(旋回)させる。エンコーダ35bは、モータ35aの回転軸に取り付けられ、モータ35aの回転変位量を検出するロータリエンコーダとして構成される。 The base end portion of the first arm 21 is connected to the base 25 via a first joint shaft 31 extending in the vertical direction (Z-axis direction). The first arm driving device 35 includes a motor 35a and an encoder 35b. The rotation shaft of the motor 35a is connected to the first joint shaft 31 via a speed reducer (not shown). The first arm driving device 35 rotates (turns) the first arm 21 along the horizontal plane (XY plane) with the first joint shaft 31 as a fulcrum by rotationally driving the first joint shaft 31 by the motor 35a. .. The encoder 35b is attached to the rotation shaft of the motor 35a and is configured as a rotary encoder that detects the amount of rotational displacement of the motor 35a.
 第2アーム22の基端部は、上下方向に延在する第2関節軸32を介して第1アーム21の先端部に連結されている。第2アーム駆動装置36は、モータ36aと、エンコーダ36bとを備える。モータ36aの回転軸は、図示しない減速機を介して第2関節軸32に接続されている。第2アーム駆動装置36は、モータ36aにより第2関節軸32を回転駆動することにより、第2関節軸32を支点に第2アーム22を水平面に沿って回動(旋回)させる。エンコーダ36bは、モータ36aの回転軸に取り付けられ、モータ36aの回転変位量を検出するロータリエンコーダとして構成される。 The base end portion of the second arm 22 is connected to the tip end portion of the first arm 21 via a second joint shaft 32 extending in the vertical direction. The second arm driving device 36 includes a motor 36a and an encoder 36b. The rotation shaft of the motor 36a is connected to the second joint shaft 32 via a speed reducer (not shown). The second arm driving device 36 rotates (turns) the second arm 22 along the horizontal plane with the second joint shaft 32 as a fulcrum by rotationally driving the second joint shaft 32 by the motor 36a. The encoder 36b is attached to the rotation shaft of the motor 36a and is configured as a rotary encoder that detects the amount of rotational displacement of the motor 36a.
 ベース25は、基台26上に設置された昇降装置40により、基台26に対して昇降可能に設けられている。昇降装置40は、図1,図2に示すように、ベース25に固定されたスライダ41と、基台26に固定されると共に上下方向に延出してスライダ41の移動をガイドするガイド部材42と、上下方向に延出すると共にスライダ41に固定されたボールねじナット(図示せず)に螺合されるボールねじ軸43(昇降軸)と、ボールねじ軸43を回転駆動するモータ44と、エンコーダ45(図3参照)とを備える。昇降装置40は、モータ44によりボールねじ軸43を回転駆動することにより、スライダ41に固定されたベース25をガイド部材42に沿って上下に移動させる。エンコーダ45は、スライダ41(ベース25)の上下方向における位置(昇降位置)を検出するリニアエンコーダとして構成される。 The base 25 is provided so as to be able to move up and down with respect to the base 26 by an elevating device 40 installed on the base 26. As shown in FIGS. 1 and 2, the elevating device 40 includes a slider 41 fixed to the base 25 and a guide member 42 fixed to the base 26 and extending in the vertical direction to guide the movement of the slider 41. , A ball screw shaft 43 (elevating shaft) that extends in the vertical direction and is screwed into a ball screw nut (not shown) fixed to the slider 41, a motor 44 that rotationally drives the ball screw shaft 43, and an encoder. 45 (see FIG. 3). The lifting device 40 rotationally drives the ball screw shaft 43 by the motor 44 to move the base 25 fixed to the slider 41 up and down along the guide member 42. The encoder 45 is configured as a linear encoder that detects a position (elevating position) of the slider 41 (base 25) in the vertical direction.
 回転3軸機構50は、上下方向に延在する姿勢保持用軸33を介して第2アーム22の先端部に連結されている。回転3軸機構50は、互いに直交する第1回転軸51,第2回転軸52および第3回転軸53と、第1回転軸51を回転させる第1回転装置55と、第2回転軸52を回転させる第2回転装置56と、第3回転軸53を回転させる第3回転装置57とを備える。第1回転軸51は、姿勢保持用軸33に対して直交姿勢で支持されている。第2回転軸52は、第1回転軸51に対して直交姿勢で支持されている。第3回転軸53は、第2回転軸52に対して直交姿勢で支持される。第1回転装置55は、第1回転軸51を回転駆動するモータ55aと、モータ55aの回転軸に取り付けられモータ55aの回転変位量を検出するエンコーダ55bとを有する。第2回転装置56は、第2回転軸52を回転駆動するモータ56aと、モータ56aの回転軸に取り付けられモータ56aの回転変位量を検出するエンコーダ56bとを有する。第3回転装置57は、第3回転軸53を回転駆動するモータ57aと、モータ57aの回転軸に取り付けられモータ57aの回転変位量を検出するエンコーダ57bとを有する。また、第3回転軸53には、保持具60が取り付けられている。本実施形態では、保持具60は、第3回転軸53から径方向に離間した位置に固定されている。保持具60に保持された超音波プローブ101は、第3回転軸53の回転により、第3回転軸53を中心とした円弧状の軌跡をもって移動する。なお、保持具60は、超音波プローブ101が第3回転軸53と同軸上に位置するように取り付けられてもよい。 The rotating 3-axis mechanism 50 is connected to the tip of the second arm 22 via a posture holding shaft 33 extending in the vertical direction. The rotating three-axis mechanism 50 includes a first rotating shaft 51, a second rotating shaft 52, and a third rotating shaft 53 that are orthogonal to each other, a first rotating device 55 that rotates the first rotating shaft 51, and a second rotating shaft 52. A second rotating device 56 for rotating and a third rotating device 57 for rotating the third rotating shaft 53 are provided. The first rotation shaft 51 is supported in a posture orthogonal to the posture holding shaft 33. The second rotating shaft 52 is supported in an orthogonal posture with respect to the first rotating shaft 51. The third rotation shaft 53 is supported in an orthogonal posture with respect to the second rotation shaft 52. The first rotating device 55 includes a motor 55a that rotationally drives the first rotating shaft 51, and an encoder 55b that is attached to the rotating shaft of the motor 55a and detects the amount of rotational displacement of the motor 55a. The second rotating device 56 includes a motor 56a that rotationally drives the second rotating shaft 52, and an encoder 56b that is attached to the rotating shaft of the motor 56a and detects the amount of rotational displacement of the motor 56a. The third rotating device 57 includes a motor 57a that rotationally drives the third rotating shaft 53, and an encoder 57b that is attached to the rotating shaft of the motor 57a and detects the amount of rotational displacement of the motor 57a. A holder 60 is attached to the third rotating shaft 53. In the present embodiment, the holder 60 is fixed at a position radially separated from the third rotation shaft 53. The ultrasonic probe 101 held by the holder 60 moves with an arc-shaped locus centered on the third rotation axis 53 due to the rotation of the third rotation axis 53. The holder 60 may be attached so that the ultrasonic probe 101 is located coaxially with the third rotation shaft 53.
 本実施形態のロボット20は、第1アーム駆動装置35と第2アーム駆動装置36と昇降装置40とによるX軸方向,Y軸方向およびZ軸方向の3方向の並進運動と、回転3軸機構50によるX軸回り(ピッチング),Y軸回り(ローリング)およびZ軸回り(ヨーイング)の3方向の回転運動との組み合わせにより、超音波プローブ101を任意の姿勢で任意の位置へ移動させることができる。 The robot 20 of the present embodiment has a translational motion in three directions of the X-axis direction, the Y-axis direction, and the Z-axis direction by the first arm drive device 35, the second arm drive device 36, and the elevating device 40, and a rotation three-axis mechanism. The ultrasonic probe 101 can be moved to an arbitrary position in an arbitrary posture by combining with a rotational motion in three directions of X-axis (pitching), Y-axis (rolling), and Z-axis (yowing) according to 50. it can.
 姿勢保持装置37は、第1アーム21および第2アーム22の姿勢によらず回転3軸機構50の姿勢(第1回転軸51の向き)を一定の向きに保持するものである。姿勢保持装置37は、モータ37aと、エンコーダ37bとを備える。モータ37aの回転軸は、図示しない減速機を介して姿勢保持用軸33に接続されている。姿勢保持装置37は、第1回転軸51の軸方向が常時、左右方向(X軸方向)となるように第1関節軸31の回転角度と第2関節軸32の回転角度とに基づいて姿勢保持用軸33の目標回転角度を設定し、姿勢保持用軸33が目標回転角度となるようにモータ37aを駆動制御する。これにより、3方向の並進運動の制御と3方向の回転運動の制御とをそれぞれ独立して行なうことが可能となり、制御が容易となる。 The posture holding device 37 holds the posture of the rotating 3-axis mechanism 50 (the direction of the first rotating shaft 51) in a constant direction regardless of the postures of the first arm 21 and the second arm 22. The posture holding device 37 includes a motor 37a and an encoder 37b. The rotating shaft of the motor 37a is connected to the posture holding shaft 33 via a speed reducer (not shown). The posture holding device 37 has a posture based on the rotation angle of the first joint shaft 31 and the rotation angle of the second joint shaft 32 so that the axial direction of the first rotation shaft 51 is always in the left-right direction (X-axis direction). The target rotation angle of the holding shaft 33 is set, and the motor 37a is driven and controlled so that the posture holding shaft 33 has the target rotation angle. This makes it possible to independently control the translational motion in the three directions and the rotational motion in the three directions, which facilitates control.
 力覚センサ28は、アームの先端に取り付けられ、アームに作用する外力としてX軸,Y軸およびZ軸の各軸方向に作用する力成分と各軸周りに作用するトルク成分とを検出する。 The force sensor 28 is attached to the tip of the arm and detects a force component acting in each of the X-axis, Y-axis, and Z-axis directions and a torque component acting around each axis as an external force acting on the arm.
 制御装置70は、図3に示すように、CPU71を中心としたマイクロプロセッサとして構成されており、CPU71の他に、ROM72やRAM73、入出力ポートおよび通信ポート(図示せず)を備える。制御装置70には、力覚センサ28からの検出信号や各エンコーダ35b,36b,37b,45,55b,56b,57bからの検出信号、生体情報取得装置200からの検出信号などが入力ポートを介して入力されている。また、制御装置70からは、各モータ35a,36a,37a,44,55a,56a,57aへの駆動信号が出力ポートを介して出力されている。また、制御装置70は、超音波診断装置100の制御部103と通信ポートを介して通信しており、データのやり取りを行なう。 As shown in FIG. 3, the control device 70 is configured as a microprocessor centered on the CPU 71, and includes a ROM 72, a RAM 73, an input / output port, and a communication port (not shown) in addition to the CPU 71. In the control device 70, a detection signal from the force sensor 28, a detection signal from each encoder 35b, 36b, 37b, 45, 55b, 56b, 57b, a detection signal from the biological information acquisition device 200, and the like are transmitted via an input port. Has been entered. Further, the control device 70 outputs drive signals to the motors 35a, 36a, 37a, 44, 55a, 56a, 57a via the output port. Further, the control device 70 communicates with the control unit 103 of the ultrasonic diagnostic device 100 via the communication port, and exchanges data.
 生体情報取得装置200は、被験者の生体情報を検出するセンサとして、本実施形態では、脈波を検出する脈波センサ201や体温を検出する体温センサ202、血圧を検出する血圧センサ203などを備える。 In the present embodiment, the biological information acquisition device 200 includes a pulse wave sensor 201 for detecting a pulse wave, a body temperature sensor 202 for detecting a body temperature, a blood pressure sensor 203 for detecting a blood pressure, and the like as sensors for detecting the biological information of a subject. ..
 次に、こうして構成された本実施形態の超音波診断システム10の動作について説明する。図4は、制御装置70のCPU71により実行される超音波診断処理の一例を示すフローチャートである。 Next, the operation of the ultrasonic diagnostic system 10 of the present embodiment configured in this way will be described. FIG. 4 is a flowchart showing an example of ultrasonic diagnostic processing executed by the CPU 71 of the control device 70.
 超音波診断処理が実行されると、CPU71は、まず、ロボット20の対応するモータを駆動制御して被験者に向けて超音波プローブ101の移動を開始する(ステップS100)。超音波プローブ101は、以下のようにして行なわれる。すなわち、CPU71は、予め作成されたタスクプログラムに従って超音波プローブ101を保持するアームの目標位置および目標姿勢を決定する。続いて、CPU71は、アームを目標姿勢で目標位置へ移動させるための第1関節軸31の目標回転角度と第2関節軸32の目標回転角度と姿勢保持用軸33の目標回転角度とベース25の目標昇降位置と第1回転軸51の目標回転角度と第2回転軸52の目標回転角度と第3回転軸53の目標回転角度とをそれぞれ設定する。そして、CPU71は、各エンコーダ35b,36b,37b,45,55b,56b,57bにより検出される回転角度あるいは昇降位置が対応する目標回転角度あるいは目標昇降位置と一致するように対応するモータを制御する。 When the ultrasonic diagnostic processing is executed, the CPU 71 first drives and controls the corresponding motor of the robot 20 to start moving the ultrasonic probe 101 toward the subject (step S100). The ultrasonic probe 101 is performed as follows. That is, the CPU 71 determines the target position and the target posture of the arm holding the ultrasonic probe 101 according to the task program created in advance. Subsequently, the CPU 71 determines the target rotation angle of the first joint shaft 31, the target rotation angle of the second joint shaft 32, the target rotation angle of the posture holding shaft 33, and the base 25 for moving the arm to the target position in the target posture. The target elevating position, the target rotation angle of the first rotation shaft 51, the target rotation angle of the second rotation shaft 52, and the target rotation angle of the third rotation shaft 53 are set, respectively. Then, the CPU 71 controls the corresponding motor so that the rotation angle or the elevating position detected by each encoder 35b, 36b, 37b, 45, 55b, 56b, 57b matches the corresponding target rotation angle or the target elevating position. ..
 CPU71は、超音波プローブ101の移動を開始すると、各エンコーダ35b,36b,37b,45,55b,56b,57bにより検出される各軸(第1関節軸31,第2関節軸32,第1~第3回転軸51~53および昇降軸)の回転角度および昇降位置を入力する(ステップS110)。続いて、CPU71は、入力した各軸の回転角度および昇降位置に基づいて順運動学により超音波プローブ101の先端位置(プローブ位置)を計算する(ステップS120)。そして、CPU71は、計算したプローブ位置と被験者の体表面位置との差分により被験者に対する超音波プローブ101の押し込み量δを計算すると共に(ステップS130)、今回計算したプローブ位置と前回計算したプローブ位置との変位量により被験者の体表面に沿った方向における超音波プローブ101の移動速度Vを計算する(ステップS140)。ここで、被験者の体表面位置は、超音波診断処理に先立って行なわれる図5の診断準備処理により測定されたものが用いられる。 When the CPU 71 starts moving the ultrasonic probe 101, each axis (first joint axis 31, second joint axis 32, first to 1) detected by each encoder 35b, 36b, 37b, 45, 55b, 56b, 57b. The rotation angle and the elevating position of the third rotating shafts 51 to 53 and the elevating shaft) are input (step S110). Subsequently, the CPU 71 calculates the tip position (probe position) of the ultrasonic probe 101 by forward kinematics based on the input rotation angle and elevating position of each axis (step S120). Then, the CPU 71 calculates the pushing amount δ of the ultrasonic probe 101 with respect to the subject based on the difference between the calculated probe position and the body surface position of the subject (step S130), and the probe position calculated this time and the probe position calculated last time. The moving speed V of the ultrasonic probe 101 in the direction along the body surface of the subject is calculated from the displacement amount of (step S140). Here, as the body surface position of the subject, the one measured by the diagnostic preparation process of FIG. 5 performed prior to the ultrasonic diagnostic process is used.
 診断準備処理では、CPU71は、まず、被験者に向けて超音波プローブ101の移動を開始する(ステップS300)。続いて、CPU71は、超音波プローブ101が被験者の体表面に接触した際に体表面から超音波プローブ101に加わる反力Fを力覚センサ28から入力し(ステップS310)、入力した反力Fが値0よりも若干大きい所定値となるまで待つ(ステップS320)。ステップS320の処理は、超音波プローブ101が被験者に殆ど押し込まれることなく接触した状態にあるか否かを判定するものである。CPU71は、反力Fが所定値となったと判定すると、超音波プローブ101の移動を停止して(ステップS330)、各エンコーダ35b,36b,37b,45,55b,56b,57bにより検出される各軸の回転角度および昇降位置を入力し(ステップS340)、入力した各軸の回転角度および昇降位置に基づいてプローブ位置を計算する(ステップS350)。そして、CPU71は、計算したプローブ位置を被験者の体表面位置として設定すると共に設定した体表面位置をRAM73に登録して(ステップS360)、診断準備処理を終了する。 In the diagnosis preparation process, the CPU 71 first starts moving the ultrasonic probe 101 toward the subject (step S300). Subsequently, the CPU 71 inputs the reaction force F applied to the ultrasonic probe 101 from the body surface when the ultrasonic probe 101 comes into contact with the body surface of the subject from the force sensor 28 (step S310), and the input reaction force F Waits until becomes a predetermined value slightly larger than the value 0 (step S320). The process of step S320 determines whether or not the ultrasonic probe 101 is in contact with the subject with almost no pushing. When the CPU 71 determines that the reaction force F has reached a predetermined value, the movement of the ultrasonic probe 101 is stopped (step S330), and each encoder 35b, 36b, 37b, 45, 55b, 56b, 57b is detected. The rotation angle and elevating position of the shafts are input (step S340), and the probe position is calculated based on the input rotation angle and elevating position of each axis (step S350). Then, the CPU 71 sets the calculated probe position as the body surface position of the subject, registers the set body surface position in the RAM 73 (step S360), and ends the diagnosis preparation process.
 超音波診断処理に戻って、CPU71は、計算した押し込み量δが値0よりも大きいか否かを判定する(ステップS150)。この処理は、超音波プローブ101が被験者の体表面に接触しているか否かを判定するものである。CPU71は、押し込み量δが値0よりも大きくないと判定すると、超音波プローブ101の移動を継続して(ステップS200)、ステップS110に戻り、処理を繰り返す。 Returning to the ultrasonic diagnostic processing, the CPU 71 determines whether or not the calculated push-in amount δ is larger than the value 0 (step S150). This process determines whether or not the ultrasonic probe 101 is in contact with the body surface of the subject. When the CPU 71 determines that the pushing amount δ is not larger than the value 0, the CPU 71 continues to move the ultrasonic probe 101 (step S200), returns to step S110, and repeats the process.
 一方、CPU71は、押し込み量δが値0よりも大きいと判定すると、被験者の生体情報を入力し(ステップS160)、入力した生体情報の時間変化量Qを算出する(ステップS170)。この処理は、本実施形態では、脈波センサ201により検出される脈波を入力して脈拍数の時間変化量を算出したり、体温センサ202により検出される体温を入力して体温の時間変化量を算出したり、血圧センサ203により検出される血圧を入力して血圧の時間変化量を算出したりすることにより行なわれる。そして、CPU71は、算出した生体情報の時間変化量Qが第1閾値αよりも大きいか否かを判定する(ステップS180)。第1閾値αは、被験者が痛みや不快感を感じているおそれがあると判断するための後述する第2閾値βよりも若干小さな値に定められる。生体情報の時間変化量Qが第1閾値α以下であると判定すると、診断が完了したか否かを判定する(ステップS190)。診断が完了していないと判定すると、超音波プローブ101の移動を継続して(ステップS200)、ステップS110に戻り、処理を繰り返す。CPU71は、ステップS110~S200の処理の繰り返しの過程において、生体情報の時間変化量Qが第1閾値αよりも大きいと判定すると、生体情報の時間変化量Qが第2閾値βよりも小さいか否かを判定する(ステップS210)。生体情報の時間変化量Qが第2閾値βよりも小さいと判定すると、超音波プローブ101の過度な押し込みによって被験者に痛みや不快感を感じさせないようにするために、超音波プローブ101の押し込み量δと移動速度Vとを制限して(ステップS220)、ステップS190に進む。この処理は、例えば、押し込み量δが所定量だけ少なくなり且つ移動速度Vが所定速度だけ低くなるように対応するモータを駆動制御することにより行なわれる。なお、CPU71は、ステップS220において、押し込み量δと移動速度Vとのうちいずれか一方のみを制限してもよい。 On the other hand, when the CPU 71 determines that the pushing amount δ is larger than the value 0, it inputs the biometric information of the subject (step S160) and calculates the time change amount Q of the input biometric information (step S170). In this process, in the present embodiment, the pulse wave detected by the pulse wave sensor 201 is input to calculate the time change amount of the pulse rate, or the body temperature detected by the body temperature sensor 202 is input to change the body temperature with time. It is performed by calculating the amount or inputting the blood pressure detected by the blood pressure sensor 203 to calculate the amount of time change of the blood pressure. Then, the CPU 71 determines whether or not the calculated time change amount Q of the biological information is larger than the first threshold value α (step S180). The first threshold value α is set to a value slightly smaller than the second threshold value β, which will be described later, for determining that the subject may feel pain or discomfort. When it is determined that the time change amount Q of the biological information is equal to or less than the first threshold value α, it is determined whether or not the diagnosis is completed (step S190). If it is determined that the diagnosis is not completed, the movement of the ultrasonic probe 101 is continued (step S200), the process returns to step S110, and the process is repeated. When the CPU 71 determines that the time change amount Q of the biological information is larger than the first threshold value α in the process of repeating the processes of steps S110 to S200, is the time change amount Q of the biological information smaller than the second threshold value β? It is determined whether or not (step S210). When it is determined that the time change amount Q of the biological information is smaller than the second threshold value β, the pushing amount of the ultrasonic probe 101 is not caused to the subject to feel pain or discomfort due to the excessive pushing of the ultrasonic probe 101. Limiting δ and the moving speed V (step S220), the process proceeds to step S190. This process is performed, for example, by driving and controlling the corresponding motor so that the pushing amount δ is reduced by a predetermined amount and the moving speed V is reduced by a predetermined speed. In step S220, the CPU 71 may limit only one of the pushing amount δ and the moving speed V.
 CPU71は、ステップS190において、診断が完了したと判定すると、超音波プローブ101の移動を停止して(ステップS230)、超音波診断処理を終了する。 When the CPU 71 determines in step S190 that the diagnosis is completed, the CPU 71 stops the movement of the ultrasonic probe 101 (step S230) and ends the ultrasonic diagnosis process.
 CPU71は、ステップS210において、生体情報の時間変化量Qが第2閾値βよりも大きいと判定すると、被験者が痛みや不快感を感じているおそれがあると判断し、警告を出力すると共に(ステップS240)、超音波プローブ101の移動を停止して(ステップS230)、超音波診断処理を終了する。ステップS230の処理は、超音波診断装置100の制御部103に警告信号を送信することによって、警告信号を受信した制御部103が表示部106に警告画面を表示することにより行なわれる。図6は、警告画面の一例を示す説明図である。図示するように、警告画面は、診断実施者の注意を喚起する旨の警告メッセージと超音波プローブ101の現在の押し込み量とが含まれる。これにより、被験者に超音波プローブ101が過大な力で押し込まれているおそれがあることを検査実施者に報知することができる。なお、CPU71は、ステップS240において、警告音を出力してもよい。 When the CPU 71 determines in step S210 that the time change amount Q of the biological information is larger than the second threshold value β, it determines that the subject may feel pain or discomfort, and outputs a warning (step). S240), the movement of the ultrasonic probe 101 is stopped (step S230), and the ultrasonic diagnostic process is completed. The process of step S230 is performed by transmitting a warning signal to the control unit 103 of the ultrasonic diagnostic apparatus 100, and the control unit 103 receiving the warning signal displays a warning screen on the display unit 106. FIG. 6 is an explanatory diagram showing an example of a warning screen. As shown in the figure, the warning screen includes a warning message to call the attention of the diagnostician and the current pushing amount of the ultrasonic probe 101. As a result, it is possible to notify the examiner that the ultrasonic probe 101 may be pushed by an excessive force to the subject. The CPU 71 may output a warning sound in step S240.
 ここで、実施形態の主要な要素と請求の範囲に記載した本開示の主要な要素との対応関係について説明する。即ち、本実施形態の超音波プローブ101が本開示の診断用プローブに相当し、制御装置70が制御装置に相当する。また、ロボット20が移動装置に相当する。 Here, the correspondence between the main elements of the embodiment and the main elements of the present disclosure described in the claims will be described. That is, the ultrasonic probe 101 of the present embodiment corresponds to the diagnostic probe of the present disclosure, and the control device 70 corresponds to the control device. Further, the robot 20 corresponds to a mobile device.
 なお、本開示は上述した実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present disclosure is not limited to the above-described embodiment, and it goes without saying that the present disclosure can be carried out in various embodiments as long as it belongs to the technical scope of the present disclosure.
 例えば、上述した実施形態では、ロボット20は、3方向の並進運動と3方向の回転運動とが可能な7軸の多関節ロボットとして構成されるものとした。しかし、軸の数はいくつであっても構わない。また、ロボット20は、いわゆる垂直多関節ロボットや水平多関節ロボットなどにより構成されてもよい。 For example, in the above-described embodiment, the robot 20 is configured as a 7-axis articulated robot capable of translational motion in three directions and rotational motion in three directions. However, the number of axes can be any number. Further, the robot 20 may be composed of a so-called vertical articulated robot, a horizontal articulated robot, or the like.
 また、上述した実施形態では、生体情報取得装置200は、診断中の被験者の生体情報を検出するためのセンサとして、脈波センサ201と体温センサ202と血圧センサ203を備えるものとした。しかし、これに限定されるものではなく、生体情報取得装置200には、例えば、被験者が把持可能なレバーに取り付けられて被験者の把持力を検出する力センサや、被験者の顔の表情を撮像するためのカメラ、被験者の発汗量を検出する発汗センサが含まれてもよい。また、生体情報取得装置200には、被験者の体表温度(皮膚表面の温度)を検出する体表温度センサや、被験者の脳波を検出する脳波計、被験者の血流量を検出する血流センサ、被験者の血中酸素濃度を検出する血中酸素濃度計が含まれてもよい。すなわち、診断中に被験者が痛みや不快感を感じている否かを判断するための生体情報の時間変化を取得できるものであれば、如何なる種類のセンサを用いてもよい。 Further, in the above-described embodiment, the biological information acquisition device 200 includes a pulse wave sensor 201, a body temperature sensor 202, and a blood pressure sensor 203 as sensors for detecting the biological information of the subject under diagnosis. However, the present invention is not limited to this, and the biological information acquisition device 200 includes, for example, a force sensor attached to a lever that can be gripped by the subject to detect the gripping force of the subject, and an image of the facial expression of the subject. A camera for this purpose and a sweating sensor for detecting the amount of sweating of the subject may be included. Further, the biological information acquisition device 200 includes a body surface temperature sensor that detects the subject's body surface temperature (skin surface temperature), an electroencephalograph that detects the subject's brain waves, and a blood flow sensor that detects the subject's blood flow. An electroencephalograph that detects the blood oxygen concentration of the subject may be included. That is, any kind of sensor may be used as long as it can acquire the time change of the biological information for determining whether or not the subject feels pain or discomfort during the diagnosis.
 また、上述した実施形態では、超音波診断システム10は、タスクプログラムに従って自動的に動作するロボット20を備えるものとした。しかし、超音波診断システムは、遠隔地に設置されオペレータ(診断実施者)による操作が可能なマスタ装置と、マスタ装置と通信回線を介して接続されると共に超音波プローブをアームに保持しマスタ装置の操作に応じてアームを動作する遠隔操作ロボットとを備えるものとしてもよい。この場合、遠隔操作ロボットの制御装置は、被験者の生体情報の時間変化量Qが第1閾値αよりも大きく第2閾値βよりも小さいときには、マスタ装置の操作に拘わらず超音波プローブの押し込み量と移動速度とを制限するものとしてもよい。また、遠隔操作ロボットの制御装置は、被験者の生体情報の時間変化量Qが第2閾値β以上であるときには、マスタ装置側からオペレータに対して警告(警告音や警告表示の出力)を行なうためにマスタ装置へ警告信号を送信するものとしてもよい。 Further, in the above-described embodiment, the ultrasonic diagnostic system 10 includes a robot 20 that automatically operates according to a task program. However, the ultrasonic diagnostic system is a master device that is installed in a remote location and can be operated by an operator (diagnosis performer), and is connected to the master device via a communication line and holds an ultrasonic probe in an arm. It may be provided with a remote-controlled robot that operates the arm in response to the operation of the above. In this case, when the time change amount Q of the biological information of the subject is larger than the first threshold value α and smaller than the second threshold value β, the control device of the remote control robot pushes the ultrasonic probe regardless of the operation of the master device. And the movement speed may be limited. Further, the control device of the remote control robot warns the operator (outputs a warning sound and a warning display) from the master device side when the time change amount Q of the biological information of the subject is equal to or higher than the second threshold value β. A warning signal may be transmitted to the master device.
 また、上述した実施形態では、超音波診断システム10は、ロボット20に超音波プローブ101を保持してロボット20を駆動することにより、超音波プローブ101を被験者に押し当てて診断を行なうものとした。しかし、診断実施者自身が超音波プローブ101を把持して操作することにより超音波プローブ101を被験者に押し当ててもよい。この場合でも、超音波診断システム10は、生体情報取得装置200により取得される被験者の生体情報の時間変化を算出し、算出した生体情報の時間変化が所定値に達したときに、診断実施者に対して警告を行なうことができる。これにより、検査実施者は、診断を受けている被験者が痛みや不快感を感じると、直ちに対処することが可能となり、被験者の負担をより軽減することが可能となる。 Further, in the above-described embodiment, the ultrasonic diagnostic system 10 holds the ultrasonic probe 101 on the robot 20 and drives the robot 20 to press the ultrasonic probe 101 against the subject to perform diagnosis. .. However, the diagnostician himself may press the ultrasonic probe 101 against the subject by grasping and operating the ultrasonic probe 101. Even in this case, the ultrasonic diagnostic system 10 calculates the time change of the biological information of the subject acquired by the biological information acquisition device 200, and when the time change of the calculated biological information reaches a predetermined value, the diagnosis performer. Can be warned against. As a result, the examiner can immediately deal with the pain or discomfort of the subject being diagnosed, and can further reduce the burden on the subject.
 以上説明したように、本開示の第1の診断システムは、診断用プローブと、被験者に前記診断用プローブを押し当てて診断を実行している最中の前記被験者の生体情報を取得し、前記生体情報の時間変化を算出し、前記生体情報の時間変化に基づいて前記被験者の生体状態に異常が発生しているか否かを判定し、前記被験者の生体状態に異常が発生したと判定した場合にその旨を報知する制御装置と、を備えることを要旨とする。 As described above, the first diagnostic system of the present disclosure acquires the diagnostic probe and the biological information of the subject during the execution of the diagnosis by pressing the diagnostic probe against the subject, and obtains the biometric information of the subject. When the time change of the biological information is calculated, it is determined whether or not an abnormality has occurred in the biological state of the subject based on the time change of the biological information, and it is determined that an abnormality has occurred in the biological state of the subject. The gist is to provide a control device for notifying the fact.
 この本開示の第1の診断システムは、被験者に診断用プローブを押し当てて診断を実行している最中の被験者の生体情報を取得し、生体情報の時間変化を算出する。続いて、第1の診断システムは、生体情報の時間変化に基づいて被験者の生体状態に異常が発生しているか否かを判定する。そして、第1の診断システムは、被験者の生体状態に異常が発生したと判定した場合にその旨を報知する。これにより、診断を受けている被験者が痛みや不快感を感じていることを検査実施者に適切に報知することができる。したがって、こうした情報に基づいて診断実施者が診断を実行することにより、被験者の負担をより軽減することが可能となる。 The first diagnostic system of the present disclosure acquires the biological information of the subject during the execution of the diagnosis by pressing the diagnostic probe against the subject, and calculates the time change of the biological information. Subsequently, the first diagnostic system determines whether or not an abnormality has occurred in the biological state of the subject based on the time change of the biological information. Then, the first diagnostic system notifies that when it is determined that an abnormality has occurred in the biological state of the subject. As a result, it is possible to appropriately notify the examiner that the subject being diagnosed is feeling pain or discomfort. Therefore, it is possible to further reduce the burden on the subject by performing the diagnosis by the diagnostician based on such information.
 こうした本開示の第1の診断システムにおいて、前記診断用プローブを移動させる移動装置を備え、前記診断用プローブは、超音波プローブであり、前記制御装置は、超音波診断に際して前記超音波プローブが前記被験者の体表面に押し込まれるように前記移動装置を制御し、前記被験者の生体状態に異常が発生したと判定した場合には前記超音波プローブの前記被験者の体表面への押し込みを停止するものとしてもよい。こうすれば、被験者の体表面に診断用プローブが過大な力で押し込まれるのを回避することができる。 In the first diagnostic system of the present disclosure, the moving device for moving the diagnostic probe is provided, the diagnostic probe is an ultrasonic probe, and the control device is such that the ultrasonic probe is used for ultrasonic diagnosis. The moving device is controlled so as to be pushed into the body surface of the subject, and when it is determined that an abnormality has occurred in the biological state of the subject, the pushing of the ultrasonic probe into the body surface of the subject is stopped. May be good. In this way, it is possible to prevent the diagnostic probe from being pushed into the body surface of the subject with excessive force.
 本開示の第2の診断システムは、超音波プローブと、前記超音波プローブを移動させる移動装置と、被験者に前記超音波プローブを押し当てて超音波診断を実行している最中の前記被験者の生体情報を取得し、前記生体情報の時間変化を算出し、前記生体情報の時間変化が予め定められた所定値に達しない程度の押し込み量で前記超音波プローブが前記被験者の体表面に押し込まれるように前記移動装置を制御する制御装置と、を備えることを要旨とする。 The second diagnostic system of the present disclosure includes an ultrasonic probe, a moving device for moving the ultrasonic probe, and the subject who is performing ultrasonic diagnosis by pressing the ultrasonic probe against the subject. The biological information is acquired, the time change of the biological information is calculated, and the ultrasonic probe is pushed into the body surface of the subject with a pushing amount such that the time change of the biological information does not reach a predetermined predetermined value. It is a gist to include a control device for controlling the mobile device as described above.
 この本開示の第2の診断システムは、被験者に超音波プローブを押し当てて超音波診断を実行している最中の被験者の生体情報を取得し、生体情報の時間変化を算出する。そして、第2の診断システムは、生体情報の時間変化が予め定められた所定値に達しない程度の押し込み量で超音波プローブが被験者の体表面に押し込まれるように移動装置を制御する。これにより、超音波プローブを被験者の体表面に押し込む際の被験者の負担を軽減することができる。 The second diagnostic system of the present disclosure acquires the biological information of the subject who is performing the ultrasonic diagnosis by pressing the ultrasonic probe against the subject and calculates the time change of the biological information. Then, the second diagnostic system controls the moving device so that the ultrasonic probe is pushed into the body surface of the subject with a pushing amount such that the time change of the biological information does not reach a predetermined predetermined value. This makes it possible to reduce the burden on the subject when pushing the ultrasonic probe into the body surface of the subject.
 本開示の第3の診断システムは、超音波プローブと、前記超音波プローブを移動させる移動装置と、被験者に前記超音波プローブを押し当てながら移動させて超音波診断を実行している最中の前記被験者の生体情報を取得し、前記生体情報の時間変化を算出し、前記生体情報の時間変化が所定値に達しない程度の移動速度で前記超音波プローブが前記被験者の体表面に沿って移動するように前記移動装置を制御する制御装置と、を備えることを要旨とする。 The third diagnostic system of the present disclosure is in the process of performing ultrasonic diagnosis by moving the ultrasonic probe, a moving device for moving the ultrasonic probe, and the subject while pressing the ultrasonic probe against the subject. The biological information of the subject is acquired, the time change of the biological information is calculated, and the ultrasonic probe moves along the body surface of the subject at a moving speed such that the time change of the biological information does not reach a predetermined value. It is a gist to include a control device for controlling the mobile device so as to perform the above.
 この本開示の第3の診断システムは、被験者に超音波プローブを押し当てて超音波診断を実行している最中の被験者の生体情報を取得し、生体情報の時間変化を算出する。そして、第3の診断システムは、生体情報の時間変化が所定値に達しない程度の移動速度で超音波プローブが被験者の体表面に沿って移動するように移動装置を制御する。これにより、超音波プローブを被験者の体表面に押し込みながら移動させる際の被験者の負担を軽減することができる。 The third diagnostic system of the present disclosure acquires the biological information of the subject who is performing the ultrasonic diagnosis by pressing the ultrasonic probe against the subject and calculates the time change of the biological information. Then, the third diagnostic system controls the moving device so that the ultrasonic probe moves along the body surface of the subject at a moving speed such that the time change of the biological information does not reach a predetermined value. This makes it possible to reduce the burden on the subject when moving the ultrasonic probe while pushing it against the body surface of the subject.
 本開示の第1~第3の診断システムにおいて、前記移動装置は、多関節ロボットであり、前記超音波プローブは、前記多関節ロボットのアーム先端部に取り付けられているものとしてもよい。 In the first to third diagnostic systems of the present disclosure, the moving device may be an articulated robot, and the ultrasonic probe may be attached to the arm tip of the articulated robot.
 本開示は、超音波プローブの位置ずれ量測定装置の製造産業などに利用可能である。 This disclosure can be used in the manufacturing industry of an ultrasonic probe misalignment measuring device.
 10 超音波診断システム、20 ロボット、21 第1アーム、22 第2アーム、25 ベース、26 基台、28 力覚センサ、31 第1関節軸、32 第2関節軸、33 姿勢保持用軸、35 第1アーム駆動装置、35a モータ、35b エンコーダ、36 第2アーム駆動装置、36a モータ、36b エンコーダ、37 姿勢保持装置、37a モータ、37b エンコーダ、40 昇降装置、41 スライダ、42 ガイド部材、43 ボールねじ軸、44 モータ、45 エンコーダ、50 回転3軸機構、51 第1回転軸、52 第2回転軸、53 第3回転軸、55 第1回転装置、55a モータ、55b エンコーダ、56 第2回転装置、56a モータ、56b エンコーダ、57 第3回転装置、57a モータ、57b エンコーダ、60 保持具、100 超音波診断装置、101 超音波プローブ、101a ケーブル、102 超音波診断装置本体、103 制御部、104 指示入力部、105 画像処理部、106 表示部、200 生体情報取得装置、201 脈波センサ、202 体温センサ、203 血圧センサ。 10 ultrasonic diagnostic system, 20 robot, 21 1st arm, 22 2nd arm, 25 base, 26 base, 28 force sensor, 31 1st joint axis, 32 2nd joint axis, 33 posture holding axis, 35 1st arm drive device, 35a motor, 35b encoder, 36 2nd arm drive device, 36a motor, 36b encoder, 37 posture holding device, 37a motor, 37b encoder, 40 lifting device, 41 slider, 42 guide member, 43 ball screw Shaft, 44 motor, 45 encoder, 50 rotating 3-axis mechanism, 51 1st rotating shaft, 52 2nd rotating shaft, 53 3rd rotating shaft, 55 1st rotating device, 55a motor, 55b encoder, 56 2nd rotating device, 56a motor, 56b encoder, 57 third rotation device, 57a motor, 57b encoder, 60 holder, 100 ultrasonic diagnostic device, 101 ultrasonic probe, 101a cable, 102 ultrasonic diagnostic device main body, 103 control unit, 104 instruction input Unit, 105 image processing unit, 106 display unit, 200 biometric information acquisition device, 201 pulse wave sensor, 202 body temperature sensor, 203 blood pressure sensor.

Claims (5)

  1.  診断用プローブと、
     被験者に前記診断用プローブを押し当てて診断を実行している最中の前記被験者の生体情報を取得し、前記生体情報の時間変化を算出し、前記生体情報の時間変化に基づいて前記被験者の生体状態に異常が発生しているか否かを判定し、前記被験者の生体状態に異常が発生したと判定した場合にその旨を報知する制御装置と、
     を備える診断システム。
    Diagnostic probe and
    The biological information of the subject during the execution of diagnosis by pressing the diagnostic probe against the subject is acquired, the time change of the biological information is calculated, and the subject's biological information is calculated based on the time change of the biological information. A control device that determines whether or not an abnormality has occurred in the biological condition and notifies that fact when it is determined that an abnormality has occurred in the biological condition of the subject.
    Diagnostic system with.
  2.  請求項1に記載の診断システムであって、
     前記診断用プローブを移動させる移動装置を備え、
     前記診断用プローブは、超音波プローブであり、
     前記制御装置は、超音波診断に際して前記超音波プローブが前記被験者の体表面に押し込まれるように前記移動装置を制御し、前記被験者の生体状態に異常が発生したと判定した場合には前記超音波プローブの前記被験者の体表面への押し込みを停止する、
     診断システム。
    The diagnostic system according to claim 1.
    A moving device for moving the diagnostic probe is provided.
    The diagnostic probe is an ultrasonic probe.
    The control device controls the moving device so that the ultrasonic probe is pushed into the body surface of the subject at the time of ultrasonic diagnosis, and when it is determined that an abnormality has occurred in the biological state of the subject, the ultrasonic wave. Stop pushing the probe into the subject's body surface,
    Diagnostic system.
  3.  超音波プローブと、
     前記超音波プローブを移動させる移動装置と、
     被験者に前記超音波プローブを押し当てて超音波診断を実行している最中の前記被験者の生体情報を取得し、前記生体情報の時間変化を算出し、前記生体情報の時間変化が予め定められた所定値に達しない程度の押し込み量で前記超音波プローブが前記被験者の体表面に押し込まれるように前記移動装置を制御する制御装置と、
     を備える診断システム。
    With ultrasonic probe,
    A moving device for moving the ultrasonic probe and
    The biological information of the subject during the execution of ultrasonic diagnosis by pressing the ultrasonic probe against the subject is acquired, the time change of the biological information is calculated, and the time change of the biological information is predetermined. A control device that controls the moving device so that the ultrasonic probe is pushed into the body surface of the subject with a pushing amount that does not reach a predetermined value.
    Diagnostic system with.
  4.  超音波プローブと、
     前記超音波プローブを移動させる移動装置と、
     被験者に前記超音波プローブを押し当てながら移動させて超音波診断を実行している最中の前記被験者の生体情報を取得し、前記生体情報の時間変化を算出し、前記生体情報の時間変化が所定値に達しない程度の移動速度で前記超音波プローブが前記被験者の体表面に沿って移動するように前記移動装置を制御する制御装置と、
     を備える診断システム。
    With ultrasonic probe,
    A moving device for moving the ultrasonic probe and
    The biological information of the subject during the execution of ultrasonic diagnosis is acquired by moving the ultrasonic probe while pressing it against the subject, the time change of the biological information is calculated, and the time change of the biological information is calculated. A control device that controls the moving device so that the ultrasonic probe moves along the body surface of the subject at a moving speed that does not reach a predetermined value.
    Diagnostic system with.
  5.  請求項2ないし4いずれか1項に記載の診断システムであって、
     前記移動装置は、多関節ロボットであり、
     前記超音波プローブは、前記多関節ロボットのアーム先端部に取り付けられている、
     診断システム。
    The diagnostic system according to any one of claims 2 to 4.
    The moving device is an articulated robot.
    The ultrasonic probe is attached to the arm tip of the articulated robot.
    Diagnostic system.
PCT/JP2019/045615 2019-11-21 2019-11-21 Diagnostic system WO2021100169A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021558116A JP7465889B2 (en) 2019-11-21 2019-11-21 Diagnostic Systems
PCT/JP2019/045615 WO2021100169A1 (en) 2019-11-21 2019-11-21 Diagnostic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/045615 WO2021100169A1 (en) 2019-11-21 2019-11-21 Diagnostic system

Publications (1)

Publication Number Publication Date
WO2021100169A1 true WO2021100169A1 (en) 2021-05-27

Family

ID=75980483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045615 WO2021100169A1 (en) 2019-11-21 2019-11-21 Diagnostic system

Country Status (2)

Country Link
JP (1) JP7465889B2 (en)
WO (1) WO2021100169A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007215671A (en) * 2006-02-15 2007-08-30 Tottori Univ Massage machine and massage output setup method
WO2017020081A1 (en) * 2015-08-03 2017-02-09 Deakin University Apparatus, system and method for controlling motion of a robotic manipulator
JP2018094032A (en) * 2016-12-12 2018-06-21 ダイキン工業株式会社 Discomfort determination device
JP2018093997A (en) * 2016-12-09 2018-06-21 デルタ工業株式会社 Biological state estimation device, biological state estimation method, computer program, and recording medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6843639B2 (en) 2016-03-07 2021-03-17 キヤノンメディカルシステムズ株式会社 Ultrasonic diagnostic device and ultrasonic diagnostic support device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007215671A (en) * 2006-02-15 2007-08-30 Tottori Univ Massage machine and massage output setup method
WO2017020081A1 (en) * 2015-08-03 2017-02-09 Deakin University Apparatus, system and method for controlling motion of a robotic manipulator
JP2018093997A (en) * 2016-12-09 2018-06-21 デルタ工業株式会社 Biological state estimation device, biological state estimation method, computer program, and recording medium
JP2018094032A (en) * 2016-12-12 2018-06-21 ダイキン工業株式会社 Discomfort determination device

Also Published As

Publication number Publication date
JP7465889B2 (en) 2024-04-11
JPWO2021100169A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
CN111084661B (en) Surgical assistance device and recording medium
CN107961078B (en) Surgical robot system and surgical instrument thereof
CN108210078B (en) Surgical robot system
KR20180043326A (en) Robot system
WO2013018908A1 (en) Manipulator for medical use and surgery support device
US11478316B2 (en) Surgical robot system
CN112568998B (en) Remote master-slave interactive medical system and method
JP6546361B1 (en) Surgery support device
CN114311031B (en) Master-slave end delay test method, system, storage medium and equipment for surgical robot
JP7228717B2 (en) Ultrasound diagnostic system
JP6562174B1 (en) Surgery support device
JP2011182978A (en) Probe operation assisting device for ultrasonic diagnostic apparatus
WO2021100169A1 (en) Diagnostic system
CN111772795A (en) Handle movement device of flexible endoscope surgical robot system
US20220378531A1 (en) Surgical robot
WO2022195776A1 (en) Ultrasonic diagnostic system
JP2020039397A (en) Work device
JP2021529020A (en) User interface device with finger grip
WO2024089813A1 (en) Robot
WO2023275989A1 (en) Robot device and method for operating arm
WO2023062737A1 (en) Ultrasound diagnostic system and monitoring method therefor
JP2016068177A (en) Processing equipment
JP7256289B2 (en) Positional deviation measurement device for ultrasonic probe
WO2018203365A1 (en) Medical manipulator system and method for operating medical manipulator system
US20240217115A1 (en) Robotic surgical system and method for controlling robotic surgical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558116

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953133

Country of ref document: EP

Kind code of ref document: A1